
POLITECNICO DI TORINO

MASTER DEGREE THESIS

Department or Control and Computer Engineering

Mechatronic Engineering

a.y. 2023/2024

Enhacement of 2D lidar-based SLAM in an
accelerator housing using fiducial markers

Supervisors:

Marcello CHIABERGE

(Politecnico di Torino)

Thomas T.THAYER

(SLAC National Accelerator
Laboratory)

Candidate:

Valeria PIGNATARO

July 2024

i

POLITECNICO DI TORINO

Abstract

Department or Control and Computer Engineering

Mechatronic Engineering

Enhacement of 2D lidar-based SLAM in an accelerator housing using fiducial

markers

by Valeria PIGNATARO

Mobile robots are known for their flexibility and autonomy, being able to execute dif-
ferent tasks in dynamic and non-structured environments. Regardless of the robot’s
aim, the main thing underlying the correct execution of whatever task is their abil-
ity to move autonomously in environments that might be known or not. For this
reason, great attention has been paid to develop efficient algorithms of localization
and mapping, in particular when it come to environments where the most common
GPS-tracking systems can not be used. Nowadays, mapping the surrounding envi-
ronment and localizing a robot inside the map created can be done simultaneously
using SLAM (Simultaneous localization and mapping) algorithms.

The aim of the thesis project is the implementation of a mapping and localization
system inside an indoor repetitive environment. Due to the particular structure
of the environment, navigation performances using standard localization algoritms
such as Monte Carlo particle filter do not have optimal performances. For this reason
the standard localization approach has been enforces using Arucos, a set of fiducial
marker whose position is known. Tests have been performed using a real robot and
the testing environment is the accelerator housing of SLAC (Stanford linear accel-
erator laboratory). Thanks to the usage of the fiducial markers, safe and reliable
navigation can be performed, avoiding collisions and obstacles.

ii

Contents

Abstract i

1 Introduction 1

1.1 Thesis objective . 1
1.2 Robot . 2

1.2.1 Hardware . 2
1.2.2 Software . 3

1.3 Thesis structure . 4

2 Background 6

2.1 Transformations and transformation matrices 6
2.1.1 Pose of a rigid body: . 6
2.1.2 Rotation matrix . 7
2.1.3 Parametrizations of rotation: . 9

ZYZ Angles . 10
RPY angles . 11
Angle-Axis . 12
Quaternion . 13

2.1.4 Homogeneous Transformation: 14
2.2 ROS - Robotic Operating System . 14

2.2.1 Graph Structure: . 16
2.2.2 ROS commands: . 16
2.2.3 Transform Tree: . 17
2.2.4 Coordinate Frame for Mobile Platforms: 18
2.2.5 Rviz: . 19

2.3 Camera Model . 20
2.3.1 Pinhole camera model . 20
2.3.2 Camera calibration and pose computation: 20

3 State of art 23

3.1 SLAM . 23
3.1.1 Related concepts . 23
3.1.2 Sensor-based classification . 24
3.1.3 ROS open source packages for SLAM 25

3.2 Monte Carlo Localization . 26
3.3 Fiducial Markers . 27

4 Algorithms and methods 29

4.1 Sensors calibration . 29
4.1.1 IMU . 29
4.1.2 Cameras . 29

4.2 Pose estimation with Aruco markers . 30

iii

4.2.1 Reference frames involved: . 30
4.2.2 Reference frame transformations: 30

From Map to Marker . 30
From Marker to Camera . 31
From camera to base_link . 32

4.3 Variance estimation . 32
4.3.1 IMU and wheels encoders . 32
4.3.2 LiDAR . 32
4.3.3 Markers . 33

Data collection . 33
Interpolation . 35
Error propagation . 35

4.4 Odometry . 36
4.5 SLAM . 37
4.6 Localization . 38

4.6.1 Without Markers . 38
4.6.2 With Markers . 38
4.6.3 TF tree . 39

5 Implementation and Experiments 41

5.1 Tools and Technologies . 41
5.1.1 Programming languages . 41
5.1.2 Packages and Libraries . 41
5.1.3 Instrumentation . 41

5.2 Experimentation and Results . 42
5.2.1 Data collection . 42
5.2.2 SLAM testing . 51
5.2.3 Navigation testing . 52

6 Discussion and conclusions 56

6.1 Challenges with real robots . 56
6.1.1 Verifiability Issues . 56
6.1.2 Robot failures and real-time limitations 56

6.2 Possible Improvements . 57
6.2.1 Markers new features . 57
6.2.2 Autonomous driving . 58

6.3 Conclusions . 58

Bibliography 59

Acknowledgements 62

iv

List of Figures

1.1 Accelerator housing . 2
1.2 SLAC Robot . 4

2.1 Rigid Body . 7
2.2 Rotation example . 8
2.3 Composition of Rotation about current axes 9
2.4 Composition of Rotation about fixed axes 10
2.5 Euler Angles . 11
2.6 RPY Angles . 12
2.7 ROS Structure . 15
2.8 ROSGraph . 17
2.9 ROS frames convention . 19
2.10 Pinhole Camera Model . 21

3.1 Markers . 28

4.1 Camera-Marker frames . 31
4.2 Positions of the marker during data collection 33
4.3 Area Normalization . 34
4.4 Bilinear Interpolation . 35
4.5 SLAM structure . 37
4.6 Navigation algorithm . 39
4.7 Transformation tree . 40

5.1 IMU not calibrated . 43
5.2 IMU calibrated . 43
5.3 Wheel encoders . 44
5.4 Local EKF . 45
5.5 Aruco data 1 . 46
5.6 Aruco data 2 . 47
5.7 Yaw variance . 48
5.8 Distance variance . 49
5.9 Offset variance . 49
5.10 Position estimation with Aruco . 50
5.11 LTU map . 51
5.12 AMCL initialization . 52
5.13 AMCL ambiguity . 53
5.14 Rviz visualization of the wrong result 53
5.15 Rviz visualization of the correct result 54
5.16 Result anlysis with Aruco, EKF and amcl 55
5.17 Result analysis with Aruco and EKF . 55

v

List of Tables

4.1 IMU Operation modes . 29
4.2 Inputs to the Extended Kalman filter publishing the odom → base_link

transform . 37
4.3 Inputs to the Extended Kalman filter publishing the map → odom

transform . 38

5.1 Front camera calibration parameter . 42
5.2 Rear camera calibration parameter . 42
5.3 Right camera calibration parameter . 42
5.4 Left camera calibration parameter . 42

vi

List of Abbreviations

COTS Commercial Of The Shelf
CPU Central Processing Unit
CV Computer Vision
EKF Extenbded Kalman Filter
FOV Field Of View
GPS Global Positioning System
LTU Linac To Undulator
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LiDAR Lidar Detection And Ranging
PF Particle Filter
PnP Perspective-n-Point
RANSAC Random Sample Consensus
REP ROS Enhacement Proposal
RGB Red Green Blue
RPY Roll, Pitch, Yaw
SLAC Stanford Linear Accelerator Center
SLAM Simultaneous Localization And Mapping
SSH Secure, Shell
UART Universal Asynchronous Receiver Transmitter

vii

List of Symbols

Symbol Name Unit

Rk(θ) Rotation about k axis by angle θ -
A Intrinsic camera matrix -
σ2 Variance -
Sβ Detected area of the marker px
Sn Normalized area of the marker px

1

Chapter 1

Introduction

1.1 Thesis objective

Nowadays robots are used in a broad diversity of applications. If, on one hand,
there is a whole category of static robots used to accomplish repetitive actions, on the
other hand there is another category that is gaining interest: the one of mobile robots.
Mobile robots can move autonomously in the space and can be really versatile [1].

These robots have become fundamental when it comes to industrial processes, in
particular when talking about warehouse and industry logistic. These robots are
also used in other fields like the medic and domestic ones, space and underwater
exploration an many others.

Autonomous mobile robots have the advantage of being able to navigate in the
space and execute tasks without a constant human supervision. This can be done
thanks to a whole set of sensors that allow robots to sense the surrounding envi-
ronment in real-time and act accordingly, avoiding obstacles and making decisions
autonomously, adapting themselves to dynamic environments.

These robots are used to explore places that can not be reached by humans or for
surveillance of already known environments, executing task such as diagnostic, data
collection and material handling.

The characteristic underlying every action that these robots can accomplish is their
ability to move autonomously and safely. To achieve this autonomy robots need
to map the surrounding environment and be able to navigate inside the map they
have created. When it comes to outdoor environment the problem of localization is
usually solved using GPS systems, but when there is an indoor navigation to be ac-
complished or any other kind of GPS-deprived environments, a whole set of sensors
is used to help the robot localize itself within the surrounding environment.

Localization and mapping of the surrounding space has been a main theme for the
robotic research for many years and it still is, leading to the development of many
algorithms.

Nowadays, localization and mapping are two problems that can be solved simul-
taneously thank to a category of algorithms called SLAM. Once the map has been
created, the robot can navigate inside the map everlasting. This second problem is
easier and is a localization problem.

This thesis is done in collaboration with SLAC [2]. Accelerator housings are harsh
environments for humans due to the high level of radiations when the accelerator is
active. For this reason monitoring and troubleshooting operations are accomplished

Chapter 1. Introduction 2

by autonomous robots that can work in the accelerator housing even when the beam
is on. It is very important that tasks are done in the safest way, avoiding any kind of
collision with instruments and equipment.

This thesis presents the work that has been done to make the robot available in the
laboratory able to navigate inside the accelerator housing safely. In particular, due
to the repetitive structure of the indoor environment, see figure 1.1, the localization
inside the acceleration could not be achieved using standard methods. For this rea-
son, a set of fiducial markers called Aruco was used to find a workaround and solve
the localization problem.

FIGURE 1.1: Accelerator housing and its repetitive environment
made of pedestals placed all along the corridor

1.2 Robot

The robot available at SLAC was designed from COTS components and uses the
open source framework ROS [3]. It is a remotely controlled robot and is equipped
with sensors helpful both for navigation or diagnostic. In figure 1.2 robot’s appear-
ance is shown.

1.2.1 Hardware

The main components of the robot’s hardware are [4]:

• Robot Chassis: The robot chassis is a Rover Robotics 4WD Rover Pro, a differen-
tial drive ground robot. The two front wheels are driven by brushless motors,
while the rear two are connected by belts that synchronize their movement
whit the front wheels.

Chapter 1. Introduction 3

• Battery: The robot is powered by a 294Wh lithium-ion battery pack and op-
erates between 12V to 16.8V with over-current protection. The battery life de-
pends on the devices on board and the task performed, but can last up to about
12h while stationary. The battery can be charged using charging docks that can
be placed anywhere.

• Onboard Computers: To control the robot there is a Nvidia Jetson Tx2 embed-
ded computer dated 2017. Compared to newer technologies this computer is
outdated, but anyway it is powerful enough to accomplish the main tasks the
robot is built for.

• Scissor lift: Mounted on top of the chassis there’s a scissor lift that can be
adjusted at different heights to align with the accelerator components. On the
scissor lift different sensors are installed to perform useful monitoring.

• Sensors: Sensors can be divided in two categories:

– Navigation:

* Velodyne VLP-16 Puck Lite: is a 3D LiDAR sensor providing distance
data of robot’s surrounding. It can measure distances up to 100m and
its field of view is 360° with a 2° angular resolution.

* RGB Cameras : the cameras are 4, one facing each direction. the reso-
lution of the image is 640x360 pixels.

* IMU: The sensor is a Bosh Sensortec BNO-055. It includes an accelerom-
eter, a gyroscope and a magnetometer. It provides linear acceleration,
angular velocity and orientation information along the three axes.

* Limit Switches: Are used for collision detection. The robot is equipped
with 8 limit switches, 4 on the front and 4 on the back. They are
placed behind transparent bumper and anytime one of them is trig-
gered the robot’s e-stop is activated.

– Data Acquisition:

* Radiation measurement : The Canberra EcoGamma-G environmental
gamma monitor measures the radiation levels in the accelerator hous-
ing.

* Thermal camera : This sensor is a Mosaic Core S304NP. Provides a
320x240 pixel resolution image with calibrated temperature informa-
tion. Is used to detect components in the accelerator housing that
might experience overheating.

* Extra Camera: Is a Razor Kiyo RGB camera. It ss an high resolution
camera that acquires 1920x1080 pixel resolution images. It has an
integrated microphone and a LED light.

1.2.2 Software

The Jetson TX2 runs Ubuntu 20.04 and ROS is installed. To control the robot re-
motely, Ubuntu and ROS are set up to provide SSH connection. While the robot
collects data and information, a remote computer displays the information. The re-
mote computer serves also for the operator to send commands to the robot, such as

Chapter 1. Introduction 4

moving it backward and forward, turning left or right, rising or lowering the scissor
lift.

FIGURE 1.2: Robot supplied by SLAC

1.3 Thesis structure

The thesis is structured in further five chapters:

Chapter 2 - Background:
This chapter provides an overview of key concepts necessary for the correct
understanding of this work, with a focus on reference frames and transfor-
mation matrices, monocular camera models, perspective projection and ROS
basic concepts.

Chapter 3 - State-of-art:
This chapter delves into the main localization and mapping approaches for
indoor and outdoor environments, focusing on the different SLAM approaches
adopted by far for indoor application. The Monte Carlo Localization algorithm
is presented as a standard navigation algorithm in a pre-built map. After that,
an overview of fiducial markers is done.

Chapter 4 - Algorithms and Methods:
This chapter delves into the methodology’s core algorithms and techniques. It
describes how the sensors have been calibrated, then the chapter presents the
math behind the pose estimation retrieved from the detection of fiducial mark-
ers and how the covariance of the estimation has been computed. Finally, the
ROS packages used for the mapping and navigation processes are presented
and an explanation of why and how fiducial markers where used is given.

Chapter 1. Introduction 5

Chapter 5 - Implementation and Experiments:
The chapter presents the results and performances of the method used, high-
lighting how it improves the standard approach. It also outlines possible fur-
ther implementation of other features that might be helpful for a better navi-
gation and user experience.

Chapter 6 - Discussion and Conclusion: An overview of the challenges encountered
during the work is presented, highlighting the limitations and struggles of
working with a real robot. Finally conclusions about the work done are drawn.

6

Chapter 2

Background

2.1 Transformations and transformation matrices

The creation of multiple coordinate systems to capture the locations and orientations
of rigid objects, as well as the transformations between these coordinate systems,
are important subjects in robot motion. Indeed, the geometry of rigid motions and
three-dimensional space is fundamental to all facets of robotic operation.

2.1.1 Pose of a rigid body:

To define a rigid body within a space we need to know its position and orientation,
or better, its pose with respect to a predefined reference frame. When it comes to
rigid body it is common practice to attach a reference frame to the center of gravity
of the body (or another relevant point) and express its unit vectors with respect to
another reference frame [5] [6].

The position of a point p’ with respect to the coordinate frame O-xyz is expressed by:

p’ = p′xx + p′yy + p′zz (2.1)

Where p′x, p′y, p′z are the components of the vector p’ ∈ R3 along the axes x, y and z

of the O-xyz reference frame.

The position of point p’ can be compactly written in vector form as :

p’ =





p′x
p′y
p′z



 (2.2)

To express the position of a rigid body we need a set of three equations, describing
the position of the three axis of the reference frame attached to it.

x’ = x′xx + x′yy + x′zz

y’ = y′xx + y′yy + y′zz

z’ = z′xx + z′yy + z′zz

(2.3)

Chapter 2. Background 7

FIGURE 2.1: Position of a rigid body represented by the attached
frame O-x’y’z’ with respect to the reference frame O-xyz

2.1.2 Rotation matrix

The set of equations in 2.3 can be rewritten in compact form as:

R =



 x′ y′ z′



 =





x′x y′x z′x
x′y y′y z′y
x′z y′z z′z



 (2.4)

This matrix is called Rotation Matrix and is peculiarity is that it is an orthogonal ma-
trix. This means that all rows and columns are mutually orthogonal and with unit
norm. This leads to the following statements:

RTR = I3 (2.5)

RT = R−1 (2.6)

Where I3 is the identity matrix in R3.

Rotation matrices are used to express rotation about any axis. When the rotation is
not around one of the three standard axis, the rotation matrix can be decomposed,
so that the rotation can be expressed as a combination of rotations about the x, y and
z axes.

If a reference frame O-xyz is rotated counter-clockwise by an angle θ around the x,
the y or the z axes the associated rotation matrices are:

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (2.7)

Chapter 2. Background 8

Ry(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (2.8)

Rz(θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (2.9)

FIGURE 2.2: Example of rotation about z axis [7]

An important feature of rotation matrices is that :

Rk(−θ) = RT
k (θ) (2.10)

Consider a point p and two reference frames O-xyz and O-x’y’z’ , one rotated with
respect to the other around a generic axis of rotation. The point p can be represented
in both reference frames as:

p =





px

py

pz



 or p’ =





p′x
p′y
p′z





Referring to 2.4 we can derive that :

p = Rp’ (2.11)

And from 2.6 we obtain that:

p′ = RTp (2.12)

Thus, the matrix R can be used both to represent the orientation of a frame with
respect to another and to transform the coordinates of a point from one frame to the

Chapter 2. Background 9

other. Moreover, as for a point, the matrix R can be use to express the rotation of a
vector in the space.

Suppose now to have three reference frames with a common origin O, O − x0y0z0 ,
O − x1y1z1 and O − x2, y2, z2. The position of a point p in the space can be expressed
in each reference frame as p0 , p1 and p2. Since a rotation matrix represents the
rotational transformation from one frame of reference to another, we can use the
notation R0

1 to represent the rotation from frame O − x1y1z1 to frame O − x0y0z0. In
this way the following relationship held:

p0 = R0
1 p1

p1 = R1
2 p2

p0 = R0
2 p2

It follows that:
p0 = R0

1R1
2 p2

This means that to transform the coordinate of a point from frame O − x2y2z2 to
O − x0y0z0 we can pass through the middle frame O − x1y1z1.

R0
2 = R0

1R1
2 (2.13)

FIGURE 2.3: Composition of rotation about current axes [5]

Thus, the whole rotation can be decomposed into two smaller rotations. We can
also interpret the relation 2.13 as if, starting from frame O0 we rotate according to
R1

0 to align with frame O1 and then, once aligned, we rotate again according to R1
2.

Anyway, what we are doing is rotating about the current frame. The order of multi-
plication is really important since matrix multiplication is not commutative.

If it is necessary to perform consecutive rotation keeping the original reference frame
as rotation reference, the order of multiplication must be inverted!

2.1.3 Parametrizations of rotation:

Using the composition of rotations, every kind of rotation can be represented using
matrices. Anyway, using matrices means involving 9 parameters. But, since a rigid
body can have at most three degrees of freedom when it comes to rotations, only 3

Chapter 2. Background 10

FIGURE 2.4: Composition of rotation about fixed axes [5]

parameters are needed, so rotation matrices are not the most efficient way of repre-
senting rotations. Many other equivalent representations exist and they can be used
as preferred.

ZYZ Angles

The rotation described by the ZYZ Angles is a composition of three elementary rota-
tions about current frames.

• Rotation by angle φ about axis z

• Rotation by angle θ about current axis y

• Rotation by angle ψ about current axis z

R(Φ) = Rz(φ)R
′
y(θ)R

′′
z (ψ) =





cφcθcψ − sφsψ −cφcθ sψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθ sψ + cφcψ sφsθ

−sθcψ sθ sψ cθ



 (2.14)

If, given the following rotation matrix

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 (2.15)

the ZYZ angles representation is needed, the formulas to use are:

φ = Atan2(r23, r13)

θ = Atan2(
√

r2
13 + r2

23, r33) (2.16)

ψ = Atan2(r32,−r31)

The square root limits the value of θ to (0,π). There is a singularity problem when
sθ = 0. In this case φ and ψ cannot be determined, their sum or difference can
though.

Chapter 2. Background 11

FIGURE 2.5: Representation of Euler Angles [8]

RPY angles

The rotation described by the RPY Anlges is a composition of three elementary rota-
tions about fixed frames.

• Rotation by angle ψ about fixed axis x - Roll

• Rotation by angle θ about fixed axis y - Pitch

• Rotation by angle φ about fixed axis z - Yaw

The composition of these rotations gives :

R(Φ) = Rz(φ)Ry(θ)Rx(ψ) =





cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθ sψ cθcψ



 (2.17)

If, given the following rotation matrix

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 (2.18)

the RPY angles representation is needed, the formulas to use are:

φ = Atan2(r21, r11)

θ = Atan2(−r31,
√

r2
32 + r2

33) (2.19)

ψ = Atan2(r32,−r33)

The square root limits the value of θ to (−π/2,π/2). There is a singularity problem
when cθ = 0. In this case φ and ψ cannot be determined, their sum or difference can
though.

RPY and ZYZ Angles use the minimum amount of parameters to represent rotations,
but they are both subject to singularities. This two type of representation go under
the name of Euler Angles.

Chapter 2. Background 12

FIGURE 2.6: Representation of RPY Angles [9]

Angle-Axis

The angle-axis representation uses four parameter to represent a rotation by angle θ
around an axis of rotation defined by the vector r=[rxryrz]T

The corresponding rotation matrix is:

R(Φ) =





r2
x(1 − cθ) + cθ rxry(1 − cθ)− rzsθ rxrz(1 − cθ) + rysθ

rxry(1 − cθ) + rzsθ r2
y(a − cθ) + cθ ryrz(1 − cθ)− rxsθ

rxrz(1 − cθ)− rysθ ryrz(1 − cθ) + rxsθ r2
z(1 − cθ) + cθ



 (2.20)

This representation is not unique since R(−θ,−r) = R(θ, r)

If, given the following rotation matrix

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 (2.21)

the Angle-Axis representation is needed, the formulas to use are:

θ = cos− 1
r11 + r22 + r33 − 1

2
(2.22)

r =
1

2 sin θ





r32 − r23

r13 − r31

r21 − r12



 (2.23)

r2
x + r2

y + r2
z = 1 (2.24)

When sin θ = 0 a singularity occurs.

Chapter 2. Background 13

Quaternion

Quaternions are another way of representing rotations with four parameters. A
quaternion can be represented in the form q = a + bi + cj + dk where a, b, c, d are
real numbers, while i, j, k are the basis vectors.

Knowing the angle-axis representation of a rotation (θ, rx, ry, rz) it is possible to con-
vert the representation into a quaternion (q0, q1, q2, q3) using the following formulas:

q0 = cos
θ

2

q1 = rx sin
θ

2

q2 = ry sin
θ

2

q3 = rz sin
θ

2

That can be written as q = cos θ
2 + r sin θ

2

If, given the following rotation matrix

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 (2.25)

the Angle-Axis representation is needed, the formulas to use are:

q0 =
1

2

√

r11 + r22 + r33 + 1 (2.26)





q1
q2
q3



 =





sgn(r32 − r23)
√

r11 − r22 − r33 + 1
sgn(r13 − r31)

√
r22 − r33 − r11 + 1

sgn(r21 − r12)
√

r33 − r11 − r22 + 1



 (2.27)

for θ ∈ [−π, π].
Quaternion multiplication correspond to rotation matrix multiplication and, as for
matrices, is not commutative. Multiplication is defined in this way :

t = rs

(t0, t1, t2, t3) = (r0, r1, r2, r3)× (s0, s1, s2, s3)

t0 = r0s0 − r1s1 − r2s2 − r3s3

t1 = r0s1 − r1s0 − r2s3 − r3s2

t2 = r0s2 − r1s3 − r2s0 − r3s1

t3 = r0s3 − r1s2 − r2s1 − r3s0

The quaternion corresponding to R−1 is equivalent to (q0,−q1,−q2,−q3). All rota-
tion quaternion must be unit quaternions, that means that |q| = 1

Chapter 2. Background 14

2.1.4 Homogeneous Transformation:

By now, we extensively addressed the problem of describing the rotation of a frame
with respect to the other, supposing thet the two frames have origin in the same po-
sition. As we have seen, reference frames can be attached to rigid bodies to describe
their position in the space, so talking about the position of a frame with respect to
the other is actually the same as talking about the pose of a rigid body. If we have
a point p in the space this point can be described as p0 with respect to the reference
frame O − x0y0z0 and as p1 with respect to the reference frame O − x1y1z1. Defining
o0

1 the vector that describes the origin of frame O1 with respect to O0 and R0
1 the

rotation of frame O1 with respect to O0 we can say that :

p0 = o0
1 + R0

1p1 (2.28)

p1 = −R1
0o0

1 + R0
1p0 (2.29)

In order to have a compact notation, called homogeneous representation the vector p

needs to be extended to p̃.

p̃ =

[

p

1

]

(2.30)

Formula 2.28 can be rewritten in compact form using:

T0
1 =

[

R0
1 o0

1

0T 1

]

(2.31)

In this way 2.28 becomes :

p̃0 = T0
1p̃1 (2.32)

And 2.29 becomes :
p̃1 = T1

0p̃0 = (T0
1)

−1p̃0 (2.33)

Where

T1
0 =

[

R0
1

T −R0
1o0

1

0T 1

]

(2.34)

For this matrix, called homogeneous transformation matrix the orthogonality does not
hold.

2.2 ROS - Robotic Operating System

ROS is an open source framework for robot programming. It’s a meta-operating
system operating as a middle-ware, functioning as an intermediate layer between
the Operating System and robotic applications. It provides a diversity of function-
ality such as hardware abstraction, package management, device drivers, tools and
libraries, processes management, data logging, and much more.

Chapter 2. Background 15

Even though the acronym stands for Robotic Operating System, ROS is not an op-
erating system. ROS is usually targeted to work with Ubuntu, but other operating
systems such as Windows and MacOS are supported to varying degrees.

Low latency in robotics application is an important feature, ROS is not a real time
operating system though. For this reason a second version of ROS, ROS2 has been
developed in recent years to address this and other issues.

FIGURE 2.7: ROS structure [10]

The key feature of ROS are [11]:

• Open Source : Together with the ROS platform, also the majority of codes
written in ROS are open source. Being open source is one of the key idea
behind ROS philosophy. In this way, users can use packages and tools to create
the main structure of their own robot is a small amount of time, focusing on
the key feature of their new application using an existing foundation.

• Multi-Lingual: The officially supported programming languages are C++ and
Python, which are the mostly used in robotic applications. However, ROS
modules can be written in any language for which a client library exist. How-
ever, in some cases it might be easier to add support for a different language
wrapping an existing library.

• Flexibility: ROS programs do not need to run on the same system or architec-
ture. Multiple devices, each of them with their own architecture are all con-
nected to each other.

• Peer-to-Peer: Some robotic systems carry multiple computers on board and
have also offboard computers running computation-intense tasks. All these
computers are connected through a peer-to-peer topology. Since the system is
usually divided into independent modules, many message routes are entirely
contained inside a subnet. For this reason running a central server either on-
board or offboard would lead to unnecessary traffic.

• Tools-based: The complexity of a robot using ROS is simplified by the usage
of different small tools that can be built and ran independently. The decision of
using separate modules instead of a monolithic development makes the struc-
ture more manageable by the user.

• Thin: Drivers and algorithms do not need any ROS dependencies. Libraries
can be wrapped so that they can communicate with other ROS modules. The
use of CMake builds the code module by module inside the source code tree.
This makes the code reusable and easier to extract.

• Rapid testing: The modular structure makes the debugging easier: a new node
can run alongside well debugged nodes. In this way, the user can easily isolate

Chapter 2. Background 16

the behaviour of the new node and test it. Moreover testing can be time con-
suming and a robot may not always be available. Working with ROS allows
to record and play sensor data or any other kind of message type using the
command rosbag. These recordings can be replayed anytime to do intensive
tests using always the same collection of data without the need of having the
physical robot.

2.2.1 Graph Structure:

The peer-to-peer structure is easier to picture if ROS is saw as a graph structure with
nodes and arcs. On top of everything there is a main node called ROS Master that
manages the peer-to-peer communication between nodes. To do this, nodes need to
register at startup with the ROS Master.
The fundamental concepts of the ROS implementation are:

• Nodes:

A running instance of a ROS program is called ’Node’. Each node is a piece
of code that is compiled, executed and managed individually. Every node has
a name and is registered to the ROS Master. Nodes can have the same name
if they are under different namespaces or an additional random identifier can
be assigned to make it unique. A node can send and receive information or
requests for action to/from other nodes. Nodes can send and receive messages
to/from another node using topics, can provide services for other nodes or
retrieve data from a common database called parameter server.

• Messages:

A message is a strictly typed data structure. Messages can be of a broad va-
riety of types and can be also user-costumized. Typically messages represents
sensor data, commands, state information or anything else.

• Topics:

Topics are buses that drive messages from one node to the other. The name
of the topic must be unique within the namespace as well as nodes. To send a
message to a topic, the node needs to publish on that topic, and if a node wants
to receive messages from a topic, it must subscribe to it. Usually, one topic has
one publisher and n subscribers, but it’s not mandatory and more than one
node can publish on the same topic.

• Services: When a node wants to broadcast a message, topics are used. But
when it comes to one-to-one communication, services are more appropriate.
A service is a synchronous procedure call that allows a node to call a function
that executes in another node. They are useful for functions that are needed
occasionally. Only one node can advertise a particular service.

2.2.2 ROS commands:

• roscore: It is the command used to initialize the ROS master and the ROS envi-
ronment. The master is the node that manages communication between nodes.
When roscore is run the environment variable ROS_MASTER_URI is set to
http://hostname:11311 by default. This means that there is a running instance of
roscore running on port 11311 on a host called hostname. This variable can be

Chapter 2. Background 17

FIGURE 2.8: Basic ROS graph with a simple publisher and subscriber
[12]

modified, changing the port and the hostname so that multiple ROS systems
can coexist on a single network.

When a new node is fired up, ROS_MASTER_URI variable gives information
about where to find the master node so that the new node can register to it,
telling which messages it provides and which it would like to subscribe to.
The master provides the information needed to form a peer-to-peer communi-
cation.

roscore provides also the parameter server where data structures are stored and
made available to nodes. The parameter server can be accessed with the rosparam
command.

• rosrun: ROS is organized in packages that are collections of resources built
together. The command rosrun search for the package location in the file sys-
tem and passes any argument called by the command line. The syntax is the
following:

rosrun package_name [ARGS]

• roslaunch: A robotic system can consist of hundreds of nodes. Running rosrun
for each node would not be handy. roslaunch is a tool that allows the launching
of more than one node simultaneously, setting parameter for each one. The
syntax is the same of rosrun, but a file name is given instead of the node name.
The file must be a .launch file, that is a XML code that describes all the nodes
that need to be launched together with their name, their parameters, and their
remapped topics. Running this command will initialize automatically a ROS
master.

• rostopic: It is used to inspect topics and messages. It has different sub com-
mands such as list, that prints the list of the active topics; echo, that prints
messages to screen; info, that displays information about the message type
and who is publishing/subscribing to that topic.

2.2.3 Transform Tree:

A robot is usually composed of different pieces assembled together. For example,
a robot might be running on 4 wheels, might have a sensor mounted on top, might
have a robotic arm or whatever. Tracking the spatial relationship between robot’s
components but also the relation between the robot and the environment is funda-
mental to accomplish many tasks.

Chapter 2. Background 18

The problem is addressed by the tf [13] package. The tf package constructs a dy-
namic transform tree that relates all frames of reference in the system. Any node
can publish information about some transform through the /tf topic and any node
can subscribe to this topic to retrieve information. The message inside the tf topic
contains a string with the name of the two reference frames we are transforming
and the time associated with the transform, together with the transform vector. An
important rule of the transformation tree is that each node of the tree can have only
one parent, creating, as a matter of fact, a tree structure.

2.2.4 Coordinate Frame for Mobile Platforms:

ROS creators have written a series of REP to provide information to the ROS com-
munity, such as naming conventions or description of new features.

REP-103 [14] and REP-105 [15] address the problem of coordinate and naming con-
ventions when it comes to coordinate frames for mobile platform.

• Axis orientation: In relation to a body the standard is:

– x forward

– y left

– z up

• Suffix Frames: In the case of cameras there is an ’optical’ reference frame that
uses a different orientation convention:

– z forward

– x right

– y down

• Rotation Representation: The convention depends on which representation is
chosen.

Quaternion:

– Compact representation

– No singularities

Rotation matrix:

– No singularities

Fixed RPY:

– No ambiguity on order

– Used for angular velocities

Euler Angles:

– Usually discouraged

By the right end rule, yaw increases when the body rotates counterclockwise.

• Covariance Representation:

– 3 Dimensional: 3x3 row major matrix in x,y,z

Chapter 2. Background 19

– 6 Dimensional: 6x6 x, y, z, rotation about x axis, y axis, z axis

• Coordinate frames: When it comes to Mobile Robots the reference frame nam-
ing convention are:

– base_link: This coordinate frame is attached to the robot base in any arbi-
trary position, even though is usually placed in the center.

– odom: Is a world fixed frame. The pose of the robot in this frame is contin-
uous, even though can drift over time from the real pose. For this reason
this frame is useful for short-term global reference, but not for long-term
navigation.

– map: Is a world fixed frame. The pose of a mobile robot in this reference
frame is not continuous, this means that discrete jumps can occur over
time. Usually, a localization component computes the transform of the
mobile base in the map frame, eliminating the drift that can occur in the
odom frame. For this reason, the map frame is useful as a long-term refer-
ence.

– earth: This frame is also referred as world frame and it is present only if
there is more the one map. For each map a complete transformation tree
from map to base_link frame must be defined.

By convention the map frame is the parent of odom and odom is the parent of base_link.
The transform odom → base_link is broadcast by only one odometry source. The
transform map → base_link is broadcast by a localization source that actually pub-
lishes the map → odom transform, since base_link can have only one parent in the
transformation tree.

FIGURE 2.9: Standard transformation tree for mobile robots [15]

2.2.5 Rviz:

Rviz [16] is a powerful visualization tool. It subscribes to the topics and the trans-
formation tree and allows the visualization of data. Thanks to the most common

Chapter 2. Background 20

plugins it is possible to visualize grid maps, robot models, the transformation tree,
images viewed form cameras and point clouds collected by LiDARs. In this way the
user can have a view of what the robot is seeing, sensing and doing. Moreover Rviz
has a nice user interface the allow the user to set the initial pose of a localization
system or to set a goal pose.

2.3 Camera Model

Cameras are one of the most used sensors in robotics since they are the most human
way to record the environment around the robot. As every other sensor, a model for
the camera is needed and different models exist. The most common is the Pinhole
camera model.

2.3.1 Pinhole camera model

The pinhole camera model is a monocular camera model. It simplifies the complex
model of a real camera approximating it to a single point in space. No lenses are
included in the model and this leads to no distortion model. It’s the easiest way of
representing the relation between a true three dimensional object in the space and
its two dimensional projection onto the image. A model for the camera and the es-
timation of the parameters that characterize the model are fundamental to calibrate
the camera and use the model for reconstructing 3D objects.

The ingredients of this model are

• Optical center: Is the point where the camera is placed in the model and where
all the rays of light converge.

• Image plane: Is the virtual plane where the object’s projection lies.

• Optical axis: Is the Z axis of the camera model pointing forward.

• Focal length: The focal length is the shortest distance between the image plane
and the optical center.

• Principal point: Is the intersection of the image plane and the optical axis.

2.3.2 Camera calibration and pose computation:

The function that transforms a 3D point Pc in the camera coordinate into pixel coor-
dinates p = (u, v) is called perspective transformation. Without taking into consid-
eration any distortion the simplified transformation is [18][19]:

sp = APc (2.35)

s





u
v
1



 =





fx 0 cx

0 fy cy

0 0 1









Xc

Yc

Zc



 (2.36)

Where A is the so-called intrinsic camera matrix and Pc is a whatever point in the
camera space, that can be represented in the world frame using an appropriate roto-
translation matrix.

Chapter 2. Background 21

FIGURE 2.10: Pinhole Camera Model [17]

Moreover we have that the transformation that maps 3D point into 2D points in the
image plane and in normalized camera coordinates is:

Zc





x′

y′

1



 =





1 0 0 0
0 1 0 0
0 0 1 0













Xc

Yc

Zc

1









(2.37)

Combining the three formulas we obtain that :

s





u
v
1



 =





fx 0 cx

0 fy cy

0 0 1









1 0 0 0
0 1 0 0
0 0 1 0









r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz













Xw

Yw

Zw

1









(2.38)

If Zc ̸= 0 we obtain:

[

u
v

]

=

[

fxXc/Zc + cx

fyYc/Zc + cy

]

(2.39)

The pinhole mode actually does not take into account any kind of distortion, but in
reality lenses of the cameras usually have two type of distortion: radial and tangen-
tial. Radial distortion makes straight line far from the center of the camera appear
curved. Tangential distortion is introduced because the image plane and the lens are
not aligned.

Chapter 2. Background 22

To remove both distortion from the image a twelve-parameter model (k1, k2, k3, k4,
k5, k6, p1, p2, s1, s2, s3, s4) is used:

[

u
v

]

=

[

fxx′′ + cx

fyy′′ + cy

]

(2.40)

Where

[

x′′

y′′

]

=





x′ (1+k1r2+k2r4+k3r6)
1+k4r2+k5r4+k6r6 + 2p1x′y′ + p2(r2 + 2x′2) + s1r2 + s2r4

y′ (1+k1r2+k2r4+k3r6)
1+k4r2+k5r4+k6r6 + 2p2x′y′ + p1(r

2 + 2y′2) + s3r2 + s4r4



 (2.41)

And r2 = x′2 + y′2.

To estimate the set of parameters necessary to perform the transformation the cam-
era must be calibrated. Different tools exist to perform calibrations of cameras, such
as the one offered by the open-source library OpenCV or Matlab. The OpenCV cali-
bration method uses a simplified model with only five parameters: (k1, k2, k3, p1, p2)

Once the camera is calibrated it is possible to use this pinhole camera model to es-
timate the pose of objects captured by the camera. To do this, the OpenCV library
is helpful again. The library offers different algorithm to solve the problem of pose
computation.

23

Chapter 3

State of art

3.1 SLAM

SLAM problem is the problem of building a map of the environment and simultane-
ously localize the robot inside this map. Before the advent of SLAM algorithms the
problems of localization and mapping where faced separately but now the SLAM
approach is the one used. Since measurements coming from sensors are affected by
noise, all SLAM algorithms are based on probability [1].

Initially the probabilistic models were based on Bayes filters such as Extended Kalman
or Particle Filters, then graph based approaches arrived, overcoming some weak-
nesses of filter-based approaches. To understand how SLAM works, few related
concepts need to be introduced:

3.1.1 Related concepts

• Grid map

Grid maps are a way to represent the surrounding environment in 2D. Te map
is subdivided in different cells and to each one a value is associated. Each cell
is a binary random variable, but usually the values are three: 1,0,-1. The value
assigned is the one with higher probability. When the value associated with
the cell is 1, that means that there is an obstacle that can be an object or a wall,
then, if it is 0, that means that the space is empty and the robot can navigate
that space, if it is -1 that mean that the space is unexplored and there is no
information about it. [20]

• Filters

When it comes to SLAM algorithms two kind of filter are used: Extended
Kalman Filter and Particle Filter.

– Extended Kalman Filter:

The Extended Kalman Filter is the non-linear version of the standard
Kalman Filter.
The algorithm takes into account a series of measurements together with
their covariance, over time. Measurements can come from different sen-
sors and the result is obtained by a joint probability distribution. The
covariances are supposed to be zero mean multivariate Gaussian distri-
butions.

Chapter 3. State of art 24

The algorithm is developed in two steps: Prediction and Update phase.
In the prediction phase the filter predicts an estimate of the state variables
based on how the system has behaved up to that time.
Then, once a new set of measurements arrive, the estimate is compared
with the predicted estimate and the result is updated using a weighted
average.

EKF is not an optimal estimator, because it is not linear and if the initial
estimate is wrong or the model is not correct the result can diverge [21].

– Particle Filter:

Particle Filter are also know as sequential Monte Carlo. It is used in non-
linear problems to find an approximate solution when information com-
ing from sensors are partial and corrupted by noise.

The result comes from the computation of a posteriori distribution, then,
this distribution is used to generate a set of samples together with their
likelihood that are called particles.

When the probability of a particle goes to low, the particle is replaced with
another one closer to the particles with higher likelihood. This kind of fil-
ter does not have good performances when it comes to high dimensional
systems [22].

• Dead Reckoning

The SLAM algorithm make use of data coming from other sensors to estimate
the position of the robot, incorporating estimates of speed and time. The esti-
mated position is with respect to a starting point, so we can say that it is a local,
but not global estimation, since the position is not estimated with respect to a
map. Since there is no global reference and no way to correct error over time,
this method is not suitable for long term navigation [23]. Usually, to make the
estimate more accurate the estimation is made from more than one sensor and
the measurements coming from all these sensors are generally fused together
through an Extended Kalman Filter.

3.1.2 Sensor-based classification

The only way robots can perceive the environment is through sensors. According to
what sensors are available the way robots can interact with the environment, store
information and process information is different. When speaking about SLAM the
two sensor that can help a robot to store information about surrounding dimensional
space are cameras and LiDARs.
For this reasons SLAM can be divided in two main categories [24][25]:

• Visual-SLAM

Visual SLAM uses cameras to extract features from the surrounding environ-
ment. Cameras can be monocular, stereo or RGB-D cameras: for each of them
different algorithms exist. In some cases features are extracted from images
and sequential images are compared to see how these features move in the
images to extract velocity information. Another approach is to compare the
whole images without extracting any feature. In the case of RGB-D camera the
information about the depth is really important for computing distances.

Chapter 3. State of art 25

Usually, image processing is computational expensive and, more important,
the precision of this methods really depends on how many features are present
in the images and the resolution of the camera. Another disadvantage is that
cameras do not work with in the darkness or if there is dust.

• Lidar-SLAM

LiDAR sensors are more expensive than cameras, but the higher price is com-
pensated by a really higher accuracy in distance computation. LiDARs work
by sending beams of light in different directions and measuring the time it
takes for the beam to be reflected by an object and come back. In this way
distances are determined. 2D or 3D Lidar exists, ranging 360° degree or less.
All these distance measurements put together form a so-called pointcloud that
is used by SLAM algorithms to estimate robot’s pose. Usually the algorithm
used is a scan-matching approach that consists in comparing two consecutive
scans of the surrounding environment and from the comparison determine the
transformation that makes the two scans match as much as possible.

Unlike cameras, LiDARs can work in the darkness or in presence of dust. The
disadvantage is that this sensor requires more processing power than cameras
and the algorithms might be slower.

3.1.3 ROS open source packages for SLAM

• Gmapping (2007)

Gmapping toolbox [26] is based on a Particle Filter. The result of the filter is a
set of particles that stand for possible robot’s poses. The a posteriori distribu-
tion is computed taking into account the likelihood of the pose computed with
scan-matching procedure together with odometry information coming from
other sensors.

Due to the usage of the particle filter, it struggles in large environments. In
complex and intricate environments the toolbox succeed but only if a increased
number of particles are use, leading to a higher computation cost.

• Karto (2010)

slam_karto toolbox [27] Is a Graph-based SLAM algorithm, structured in the
same way as Cartographer. The map is updated every time a new node is
added to the graph. At every node registration an optimal map is computed
and when the robot goes back to a previous position a loop closure algorithm is
provided. The algorithm is based on the decomposition of Cholesky matrices
to minimize the error.

• Hector_mapping (2011)

The Hector_mapping toolbox [28] is a LiDAR-based approach and does not
make use of odometry information coming from other sensors because it uses
the Newton-Gauss method. For this reason it is necessary for LiDAR’s data
to arrive at very high speed. It can be used in small scenarios where large
loops do not exist, because it does not provide any explicit algorithm for loop
closure. When the environment is big it struggles to succeed.

Chapter 3. State of art 26

If there is no reliable source of odometry data, it can be a good choice. Since
it does not use any odometry information it can accumulate drift over time
which can lead to inaccurate map generation.

• Google Cartographer (2016)

Google Cartographer [29] is a graph-based SLAM. The graph is composed of
nodes and edges, where nodes are saved position of the robot and links are the
movement between each position. It has a front-end working to scan match
the LiDAR with the map that has been built and to trace the trajectory and a
back-end that checks for loop closures using the Ceres Solver.

Requires more data storage and faster CPU than the other packages, but shows
better results. Has a localization node if a map already exists and provides data
serialization for storing maps. Unfortunately, Google abandoned the project
and nowadays there is no maintenance and support for this package.

• Slam_toolbox (2019)

The slam_toolbox [30] offers two different types of nodes, built from two differ-
ent code sources: synchronous and asynchronous. Despite the other packages
this one offers a variety of useful tools such as the ability of merging together
different maps created in different sessions, multi session mapping, lifelong
mapping and pose-graph manipulation. Nowadays is the most used package
for SLAM and was integrated in the Navigation2 project. It can serialize a map-
ping session and deserialize it later for further mapping. Has a Rviz plugin to
assist the user doing operations such as manual pose graph manipulation to
close challenging loops.

Synchronous mapping keeps a buffer of the measurements. It is suited when
the quality of the map is important or when doing offline processing. Asyn-
chronous mode will process new data only when the last one is completed,
this leads to lagging in real-time if there are difficult loop-closures. The local-
ization node has a temporary buffer of measurement that are matched against
the pose-graph computed while mapping. The new measurements are added
to the original pose-graph only temporarily.

According to the presentation paper, it is 10x faster then Karto thanks to multi-
thread processes. The sparse Pose adjustment was replaced with google Ceres,
that is faster and has more flexible optimization settings and other technical
improvements.

3.2 Monte Carlo Localization

Once the map has been built the robot can navigate inside it. This problem is differ-
ent from SLAM because the map is now available so the name for this new problem
is simply localization. To solve this problem the standard approach when a LiDAR
is available is the Adaptive Monte Carlo algorithm that is implemented in the amcl
[31] open source package for ROS.

When the algorithm starts, the particles indicating the belief of where the robot can
be are spread uniformly over the entire map. As the robot senses the environment
and find characteristic features importance factors are assigned to each particle. The
result is incorporated with the robot motion sensed by other sensors, contributing to

Chapter 3. State of art 27

giving importance to some particles with respect to others. The feature extraction is
done through scan-matching: at each time sampling, the scan made by the LiDar is
compared with the map available.

The accuracy of the estimation can be seen looking at how many particles are con-
centrated in the same point.

To overcome the problem of kidnapping or wrong result, a set of particle is add every
now and then in the probability distribution to simulate the remote probability that
the robot was moved by a human operator or that the estimated position is wrong.
The algorithm keeps track of long and short term likelihood of the measurement and
during the resampling process new particles are added depending on whether the
short-term likelihood is higher or lower then the long term likelihood [32].

3.3 Fiducial Markers

Fiducial markers are commonly used in robotics for labeling and localization when
natural features such as doors, corners and other objects are not sufficient and unique.
They are cheap and easy to use since they can be recognized using a simple monoc-
ular camera [33][34].

A fiducial markers has a simple and unique pattern that comes together with a fast
algorithm for recognition. The pattern can go from simple circles to more sophisti-
cated bar codes and can be of different shapes and colours. Black and white markers
are easier to recognize.

Thank to these markers it is possible to estimate, through some geometric transfor-
mations the position of the robot with respect to the markers. With the algorithms
developed until today, such as PnP methods, it is important that at least four rele-
vant point in the marker can be extracted. For this reason, a squared shape is the
most reasonable, also because it makes easier the computation due to the symmetry.

Detect a marker and estimate the position of the robot with respect to it needs few
steps: first of all the marker needs to be recognized, for this purpose the algorithm
focuses on finding the right shape using some threshold algorithms, then searches
for a pattern inside the shape. If the pattern found matches one of the pattern stored
in a library, the marker is recognized. After, the pose of the robot is computed taking
into account the four relevant points of the marker using various transformations.

The disadvantages of this method and the reasons why they are not the main local-
ization method is that the algorithm is prone to error due to different factors such
as:

• Pose Ambiguity: Due to 3D-2D projection in some cases the pose of the marker
cannot be determined uniquely since the true and the flipped orientation are
indistinguishable. This problem is due to the quality of the camera and how
many big the marker is inside the image.

• Occlusion: When an object is between the camera and the marker the recogni-
tion of the pattern is more difficult leading to no recognition or, worse, wrong
recognition. The same problem arises also with poor lighting condition.

There are different kind of packages that provide fiducial markers, most of them are
open source and compatible with ROS. The most famous outside the robot field are
doubtlessly QR-codes, but there are actually many other kind of fiducial markers

Chapter 3. State of art 28

that are easier to detect and more reliable. Among the variety of packages available
some of the most used are Arucos, AprilTag and ARTag.

FIGURE 3.1: Examples of fiducial markers

29

Chapter 4

Algorithms and methods

4.1 Sensors calibration

When using real instruments, calibration is always necessary to avoid systematic
error in measurements. Calibration needs to be done only once or, in case of instru-
ment degradation, every now and then.
In this project, the sensors that needed prior calibration were the IMU and the four
cameras.

4.1.1 IMU

The IMU used in this project is a sensor that fuses together measurements coming
from an accelerometer, a gyroscope and a magnetometer. It can work in different
configurations:

Operation mode Accelerometer Gyroscope Magnetometer

IMU X X
COMPASS X X
M4G X X
NDOF_FMC_OFF X X X
NDOF X X X

TABLE 4.1: IMU Operation modes

This IMU has a ROS library that works as a driver for the instrument using UART
communication. In addition, the library provides a user-friendly calibration inter-
face [35].

Using IMU mode, only accelerometer and gyroscope need to be calibrated.
To calibrate the gyroscope the device needs to be placed in a stable position for few
seconds.
To calibrate the accelerator the device needs to be positioned in six different stable
positions perpendicular to the three orthonormal axes for few seconds each.

4.1.2 Cameras

The robot is equipped with four USB cameras. For each one of them calibration has
been performed using the camera_calibration [36] node in ROS. To calibrate a camera
the standard procedure is to print a checkerboard pattern of known dimensions. In

Chapter 4. Algorithms and methods 30

this case a 8x6 checkerboard with 30mm squares was used. Then, using the camera,
image messages are published over a topic in ROS and the camera_calibration node
is launched. To get a good calibration the checkerboard has to be moved around the
camera in different positions and orientations. As the checkerboard is moved, the
interface displays the amount of calibration achieved. Once satisfied with the result
the CALIBRATE button can be pressed and the camera parameters are saved.

4.2 Pose estimation with Aruco markers

Among the various markers available, the decision fell on the Aruco library. The rea-
son behind this decision is that Arucos are included inside the OpenCV [37] library,
one of the most used open source library for image processing and computer vision.
The methods offered in this library make the marker detection possible with only
few lines of code. Moreover detection performance in terms of CPU usage are one of
the best and also detection accuracy and pose estimation are proved to be resilient
to distances and high angles of rotation [33][34]. Using the OpenCV library markers
can be detected easily.

4.2.1 Reference frames involved:

Once the marker has been detected it is necessary to estimate the position of the
camera with respect to the marker and then the position of the robot with respect to
the world frame.

To do this we need to transform among different reference frames:

• Marker Frame: The marker’s reference frame has its origin in the center of the
marker. The x axis points right, the y axis points up and the z axis points out.

• Camera Frame: The camera reference frame follows the REP103. So it has the
x axis pointing right, the y axis pointing down and the z axis pointing forward.

• Robot Frame: The robot frame is called base_link in accordance with REP105
conventions. The x axis point forward, the y axis points left, the z axis points
up.

• Map Frame: The map frame has its origin where the map started to be created.
The direction of the axis is in accordance to the base_link frame when the robot
was spawned in the map during the map creation, so x pointing forward, y
pointing left and z pointing up.

4.2.2 Reference frame transformations:

From Map to Marker

The pose of the marker inside the map needs to be measured manually. Once a
marker position is placed inside the map, information regarding the position and
orientation, together with the id number and the square size, are stored inside a .yaml
file. When markers detection is needed, the parameters are loaded as rosparams.

Since the four markers are facing each direction of the robot, attaching markers to
walls was the smartest option, so markers are rotated with respect to the map around
z by an angle θ and can be placed everywhere in the map, so there is also a translation

Chapter 4. Algorithms and methods 31

vector t = [tx, ty, tz]. Now to orient the axis as described in the previous section a
rotation by 90° about x and then y is performed:

Tworld
marker =









cos θ − sin θ 0 tx

sin θ cos θ 0 ty

0 0 1 tz

0 0 0 1

















0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1









(4.1)

From Marker to Camera

As explained in 2.3 it is possible to estimate the pose of a camera just looking at the
position of a known object inside the image. In this case, the known object is the
marker. About it we know the side length of the square and its position in the map.

Knowing the length of the side it is possible to derive the distance between the cam-
era and the marker, and since we know that it is a square, we can compute the
relative pose of the camera and the marker.

To do this the PnP algorithm is used. This algorithm is provided by the OpenCV
library and has different methods to perform it, according to the situation. When the
object to estimate is a square of known dimension the SOLVEPNP_IPPE_SQUARE
is the most suitable one.

The necessary information are the intrinsic camera parameters, the dimension of the
side of the square and the pixels position of the four corners of the marker inside the
image.

The result is given with a rotation matrix and a translation vector representing the
rotation and translation of the marker with respect to the camera.

Tcamera
marker =

[

Rcamera
marker tcamera

marker

0T 1

]

(4.2)

FIGURE 4.1: Reference frames orientation of camera and marker [38]

Chapter 4. Algorithms and methods 32

This matrix needs to be inverted to obtain the pose of the camera with respect to the
marker.

Tmarker
camera = Tcamera

marker
−1 (4.3)

From camera to base_link

This transformation depends on the camera that is detecting the marker. To compute
automatically the transformation the tf package helps providing the lookupTranform
method that looks at the transformation tree and gives as result the rotation matrix
and the translation vector. Anyway, the rotation is a simple 90° rotation around the
x and then another rotation about the z axis. The amount of rotation φ around the z
axis depends on which camera is in action.

Tcamera
base_link =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

















cos φ − sin φ 0 cx

sin φ cos φ 0 cy

0 0 1 cz

0 0 0 1









(4.4)

Where c = [cx, cy, cz] is the distance between the camera and the base_link.

As a result the position of the robot with respect to the map, given a know position
of a marker in the map frame can be achieved multiplying together the following
transformation matrix:

Tworld
base_link = Tworld

marker · Tmarker
camera · Tcamera

base_link (4.5)

4.3 Variance estimation

4.3.1 IMU and wheels encoders

Every measurement acquired by any sensor is affected by error. The estimation of
this error is fundamental to have information about the accuracy of the final result.

For the IMU and the wheel encoders, measurements of speed and acceleration were
taken with the robot slowly moving. The variance was estimated using the standard
formula:

σ2 =
∑

N
i=1(xi − x)

N
(4.6)

Where N is the numbers of samples and x is the true value.

4.3.2 LiDAR

The LiDAR does not measure velocity or acceleration directly. The only thing that a
LiDAR does is giving sets of 3D-point cloud and 2D scans of the surrounding envi-
ronment. From these scans it possible to derive information about velocity through
scan-matching algorithms. The algorithm used is the one implemented in the rf2o
[39] ROS open-source package. The source code has its own method to estimate
measurement variance, so no work was needed.

Chapter 4. Algorithms and methods 33

4.3.3 Markers

Data collection

For the pose estimation retrieved from the marker detection the work is different.
In this case, the measurement taken is the position of the camera with respect to the
marker and then, from that measurement, the position of the robot is derived. What
can be computed directly is the variance of the measurement taken. To have the
uncertainty about the robot position the theory about propagation of uncertainty has
to be taken into account.

First of all, variance of the direct measurement must be computed. What affects the
precision of the estimation is the distance and the angulation of the marker with
respect to the camera. Following the work done in [40] an experiment was run to
understand how distance e relative orientation affect the measurement.

For the experiment, an Aruco marker of 180mm size was mounted on a stepper
motor and rotated from -80° to 80° with a step of around 3°. The marker was placed
at different distances spanning from 0.4m to more than 2.5m and for each position
and orientation 200 images were taken with one of the four cameras available. Most
of this positions were exactly in front of the camera but also off-center positions
were tested. The 200 images for each pose are used to compute the variance of the
measurement according to 4.6. The whole experiment was repeated three times.

FIGURE 4.2: Positions of the marker during data collection

The accuracy of the estimation depends on the distance between the marker and the
camera, but actually it is not always accurate. On this note, further analysis were
made. After a certain distance and for some angles, the estimated position of the
marker shows to be flickering between the right position and the symmetric one.
Indeed this is a huge problem and a workaround to avoid wrong estimations was
necessary.

The idea was to compute accurately the variance for each position and orientation
and build a model of the variance, in this way, every time a marker is detected the

Chapter 4. Algorithms and methods 34

variance can be computed and if it happens to be too high, the measurement is dis-
carded. Moreover, in case multiple markers are detected at the same time, only the
one with lower variance will be taken in consideration.

The accuracy depends on the angle and the dimension of the marker in the image,
so the key factor is not the distance itself, but the number of pixels representing the
area of the marker in the image. If the model was dependent on the area instead
of the distance, it would be possible to use markers of different sizes, as preferred.
The detected area of the marker depends not only on the distance but also on the
orientation of the marker, for this reason a formula to normalized the detected area
is used:

Sn =
(x2 − a2 sin2 β)2

x3(x cos β + y sin β)
Sβ (4.7)

Where a is the half of the square side, x (l in the figure), y and β are the marker
coordinates and yaw with respect to the camera, Sβ is the number of pixels in the
undistorted image displaying the marker and Sn is the normalized area.

FIGURE 4.3: Rotated and equivalent marker detected by the camera
on the projection plane [40]

The variance of the estimation of yaw, x and y with respect to the camera σc
mβ

σc
mx

σc
my

are estimated depending on the detected area and the angle. The offset dependence
was removed because data showed that a y-offset does not affect the variance. Vari-
ances can be written in compact notation as :

Σ
c
m =







σc
mx

0 0
0 σc

my
0

0 0 σc
mβ






(4.8)

This covariance matrix is made of functions depending on the detected area and the
angle of the marker in the image. A fitting non-linear function was searched using
the Levenberg-Marquardt algorithm, but the result was not successful.

Chapter 4. Algorithms and methods 35

Interpolation

Since no function could be found, an alternative solution was implemented: the data
collected during the experiment were put together in a look-up table. Every time a
marker is detected, the online variance of the measurement is computed interpolat-
ing the data in the look-up table. The interpolation performed is a bilinear interpo-
lation over a surface determined by the four closest data collected. To perform the
interpolation the algorithm is pretty simple: having four point P00, P10, P01, P11 and
the function to interpolate as f (x, y) ≈ a00 + a10x + a01y + a11xy the problem can be
solved as:









1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y1 x2y1

1 x2 y2 x2y2

















a00

a10

a01

a11









=









f (P00)
f (P10)
f (P01)
f (P11)









(4.9)

Yielding to the result:









a00

a10

a01

a11









=
1

(x2 − x1)(y2 − y1)









x2y2 −x2y1 −x1y2 x1y1

−y2 y1 y2 −y1

−x2 x2 x1 −x1

1 −1 −1 1

















a00

a10

a01

a11









(4.10)

Using the estimated parameter we can compute f (x, y) and obtain the value of
σc

mβ
σc

mx
σc

my
in real time.

FIGURE 4.4: Example of bilinear interpolation in 3D [41]

Error propagation

Another source of variance in the measurements is the human inaccuracy when plac-
ing markers in the designated spot. This affects the precision of the position of the
marker with respect to the map frame. A matrix of the same form of 4.8 can be
written:

Chapter 4. Algorithms and methods 36

Σ
map
m =





σ
map
mx

0 0

0 σ
map
my

0

0 0 σ
map
mβ



 (4.11)

Using the formula 4.3 it is possible to compute the x and y coordinates of the robot
with respect to the map frame, r

map
x and r

map
y . The other data needed is the angle of

the robot, that can be computed as r
map
β = m

map
β − mc

β where the last two parameter

are the yaws of the marker with respect to the map and the camera frame. This
can be written with the notation rmap = f (mc, mmap). The resulting formulas will
depend on the position of the marker with respect to the world and the position
of the marker with respect to the robot and we just derived the two corresponding
covariance matrices.

Finally, we can apply the formula for the propagation of the uncertainty:

Σrmap =
∂ f (mc, mmap)

∂mc
Σmc

∂ f (mc, mmap)

∂mc

T

+
∂ f (mc, mmap)

∂mmap
Σmmap

∂ f (mc, mmap)

∂mmap

T

(4.12)

The result is the estimation of the covariance of x,y and yaw of the robot in the map
frame.

4.4 Odometry

Once all the sensors are calibrated and the variance of the measurements is esti-
mated, it is common practice to fuse the measurements through an Extended Kalman
Filter. The reason is that taking into account measurements coming from different
sensors is way better then relying only on one. This helps to overcome problems that
can arise from momentary sensors failure or break down. The EKF is implemented
by the robot_localization [42] package. This package gives the possibility to use all the
sensors wanted and configure them individually.

The state variables are (x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇, ẍ, ÿ, z̈). Each sensor contributes to
the estimation of any of these variables, but the filter works also if data coming from
sensors are not continuous, allowing a partial update of the state vector. In general,
at least information about ẋ, ẏ and pitch should be given to the filter.

A first EKF filter was used to provide the odom → base_link transform fusing to-
gether measurements coming from wheel encoders, IMU and LiDAR with the fol-
lowing configuration (1=active , 0=disabled) :

As it is possible to notice, the markers are not included for the odometry calculation.
This happens because the robot’s position computed using the markers is referenced
to the map frame and not the odometry frame. Moreover, to estimate the position of
the robot using the marker, we need to know the position of the marker inside the
map, so we first need to build the map.

Trying to estimate the marker position by hand before building the map, and then
using the marker to help estimating the robot’s position to create the map led to no
result: the measurement retrieved from wheels, IMU and LiDAR are giving velocity
and acceleration estimation, while the marker are giving precise position estimation.

Chapter 4. Algorithms and methods 37

Configuration Vector

Sensor x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇ ẍ ÿ z̈

Encoders 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

IMU 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

rf2o 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

TABLE 4.2: Inputs to the Extended Kalman filter publishing the
odom → base_link transform

Using only velocity and acceleration ensure the odometry frame to move smoothly,
allowing the mapping toolbox to create a map; but using the markers leads to jumps
in the position estimation and this leads to map segmentation.

4.5 SLAM

Among all the packages listed in chapter 3 the slam_toolbox was the one chosen. Is
the newest one and allows mapping in multiple section, has two different mapping
method and a user-friendly plugin for Rviz to help with the mapping, together with
all the features already mentioned in the previous chapter.

The node used for mapping is the sync_slam_toolbox_node and it is used with the
default parameter suggested in the documentation. To work, the only information
the toolbox needs to know are the transformations LiDAR → base_link and the
odom → base_link. Both of them are sent as messages in the tf topic. The topics
published by the toolbox are the map and the position of the robot as map → odom
transform. The position of the robot is estimated from the odometry correcting it
using a scan matching algorithm.

The built map can be saved in two ways: using the map_server [43] package the map
is saved as .pgm format and using the slam_toolbox the serialized file is saved for
possible further mapping.

FIGURE 4.5: Graph of the algorithm structure during SLAM

Chapter 4. Algorithms and methods 38

4.6 Localization

Once the map is created, it can be used for navigating the robot without using the
SLAM algorithm every time, using less CPU. Anyway another way for computing
the map → odom needs to be chosen.

4.6.1 Without Markers

Typically, the standard procedure for robot navigation is to use the amcl package.
This package uses the LiDAR to perform scan-matching and implement the Monte
Carlo Localization algorithm. It takes as inputs the tf transform between odom →
base_link, the 2D scans coming from the LiDAR and a map. The algorithm works
comparing the real time scan of the environment with the 2D map, searching for the
best matches all over it.

To start working it is necessary to give a starting position to the algorithm, that will
help to converge to the right result. In the case no initial estimation can be given be-
cause there is no idea of where the robot is, it is possible to use the global_localization
service. Using it, the particles will be spread all over the map, and the algorithm
will understand autonomously the estimated position. Convergence in this way is
slower and could actually lead to wrong result, but it is way better to use this option
instead of giving a wrong initial estimate.

The published topics are the map → odom transform, the pose of the robot and,
together with it, a cloud of particles indicating other possible poses of the robot.

A second Extend Kalman Filter fusing the result of amcl and other sensors publishes
the tf transform map → odom. Since the transform is better to be published by only
one node, the transform published by the amcl package is discarded. The inputs to
this second filter are displayed in table 4.3 :

Configuration Vector

Sensor x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇ ẍ ÿ z̈

Encoders 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

IMU 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

rf2o 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

amcl 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

TABLE 4.3: Inputs to the Extended Kalman filter publishing the
map → odom transform

4.6.2 With Markers

Localization with amcl was not successful due to the repetitive structure of the ac-
celerator housing. To be exact, problems arise when no initial position can be given.
In this case, the algorithm gets lost in the repetitive structure of the tunnel without
being able to localize the robot in the correct position, moreover, it takes a long time
to converge and this is really dangerous because until the right position is found
collisions can happen anytime. Even worse is the convergence to a wrong position.

Chapter 4. Algorithms and methods 39

To overcome this problem markers were placed evenly all around the tunnel. When
the robot is turned on it has no idea about its position, but has soon as an Aruco is
detected, position is estimated correctly. This position information is given as input
to amcl as initial position estimate. From that point, the Monte Carlo algorithm,
together with all the sensors fused together with the second EKF continues with the
localization. Every now and then, when a new marker is found, the filter is reset as
a preventative measure in case of kidnapping.

If the LiDAR is not available or out of work, localization can be performed using
other sensors and the markers, without the Monte Carlo algorithm. Anyway, other
sensors are not so accurate, so between one Aruco and the next one position estima-
tion might be inaccurate, thus, in this case markers should be placed closer all over
the map.

FIGURE 4.6: Graph of the algorithm structure during navigation

4.6.3 TF tree

To give a better visualization of how the robot is structured and how the transforma-
tion tree is made, a simplified version of the tf tree is shown below. In the graph only
the transformation necessary for the understanding of this work are presented, even
though the robot is way more complex than this, and other sensors, as mentioned
in Chapter 1, are mounted on it. chassis_link and upper_link represent pieces of the
chassis, that consist of more pieces assembled.

Chapter 4. Algorithms and methods 40

FIGURE 4.7: Simplified tf tree of the robot

41

Chapter 5

Implementation and Experiments

5.1 Tools and Technologies

For this research, a screening of the available tools and technologies was made to
understand what would best support the analysis and implementation. This sec-
tions provides an overview of the packages and libraries used, the instrumentation
employed and the programming languages supporting the work.

5.1.1 Programming languages

The main programming language used is Python. It was chosen for its simplicity and
wide variety of open-source libraries available. Moreover, is the supported language
for ROS together with C++. No code was directly written in C++, but this language
is largely used in other nodes of the robot. Another programming language that is
worth to mention is XML to write launch files.

5.1.2 Packages and Libraries

• Numpy

Numpy [44] is a library for Python that implements support for multi dimen-
sional arrays and matrices. It also provides implementation of mathemati-
cal functions to operate on them. Most of the libraries in python depend on
Numpy-like arrays or matrices, so using it makes the work easier in terms of
compatibility.

• OpenCV

Is a library used for computer vision and image processing application in real-
time. Is written in C++ but there are wrapper and language bindings for
Python. The library offers a module for Aruco detection and is compatible
with the Numpy library contributing to a smooth and cohesive workflow.

• MatplotLib

MatplotLib [45] is a Python library for plotting static or animated 2D or 3D
data plotting and visualization. It offers a lot of customization options and
various plot types. Moreover is perfectly integrated with the Numpy library.

5.1.3 Instrumentation

The instrumentation available in the laboratory consist of two twin robots as de-
scribed in 1.2 and a laptop running Ubuntu 20.04 with ROS mounted on it. For the

Chapter 5. Implementation and Experiments 42

data collection during the experiment described in 4.3.3 the stepper motor was set
up using an Arduino Uno. An holder for sticking the marker on a flat surface rotated
by the stepper motor was designed ad-hoc and 3D printed.

5.2 Experimentation and Results

5.2.1 Data collection

First of all as reported in Chapter 4, camera and IMU needed to be calibrated. Pa-
rameter of the four calibrated camera are reported in the following tables:

Intrinsic parameters Values

fx 622
fy 621
cx 334
cy 220
k1 -0.4104
k2 0.1795
k3 0.0087
p1 0.0023
p2 0

TABLE 5.1: Front cam-
era calibration parame-

ter

Intrinsic parameters Values

fx 651
fy 656
cx 340
cy 194
k1 -0.4239
k2 0.1091
k3 0.0041
p1 0.0068
p2 0

TABLE 5.2: Rear cam-
era calibration parame-

ter

Intrinsic parameters Values

fx 642
fy 642
cx 331
cy 179
k1 -0.4339
k2 0.2421
k3 0.0016
p1 0.0015
p2 0

TABLE 5.3: Right cam-
era calibration parame-

ter

Intrinsic parameters Values

fx 641
fy 621
cx 346
cy 193
k1 -0.4259
k2 0.2264
k3 0.0017
p1 0.0027
p2 0

TABLE 5.4: Left camera
calibration parameter

Also the IMU was calibrated and comparison between the values before and after
calibration with the robot standing still shows that an offset of 0.005 was success-
fully removed for acceleration measurement in the x direction. For what regards the
angular velocity, results were pretty good also before calibration.

Chapter 5. Implementation and Experiments 43

FIGURE 5.1: Values of linear acceleration on the x axis and angular
velocity about the z axis BEFORE calibration with the robot standing

still

FIGURE 5.2: Values of linear acceleration on the x axis AFTER cali-
bration with the robot standing still

Chapter 5. Implementation and Experiments 44

While trying to perform SLAM, the odometry performed poor results. Diving deep
into the possible causes, it came out that the encoders of the wheel where measur-
ing wrong results. The plot below shows the measurement of the encoders against
the input given as command to the robot. As it is possible to see, the encoders are
jumping between right measurement and completely wrong measurement.

Looking carefully, it is possible to notice that when the linear velocity is measured
0m/s an angular velocity is measured. The reason behind this wrong result is that
the encoders on the wheels are not acquiring correctly all the data: when both the
encoders are measuring a value the sensors measure a linear velocity, if only one of
them is measuring something or the two values are different then there is a angu-
lar velocity too. In the plot below the robot was going straight, so this behaviour
probably means that the two encoders are not synchronised.

FIGURE 5.3: Faulting behaviour of wheel encoders

Repairing the encoders was not possible in a short period of time, so they were not
used.

Once all the variances of the sensors were estimated, the measurements acquired are
fused together in a first local Kalman filter. As it is possible to see from Figure 5.4
the values registered from the sensors are lower then the commands sent as input,

Chapter 5. Implementation and Experiments 45

this is due to some sort of low power in the motor or a faulty loop closure in the
PID. Except for this thing, the value of the EKF fuse correctly the data coming from
the other sensors w8th just a little delay. In the case of the linear velocity, also the
acceleration coming from the IMU is taken into account even if not displayed.

FIGURE 5.4: Extend Kalman Filter, LiDAR and IMU and command
velocity data for odometry estimation

With regards to markers and their detection multiple images were collected to es-
timate the accuracy and variance of the estimation. Images were taken in different
positions and for each position the marker was rotated from 0° to 80° with a step of
5°. For each angle 200 images were collected and position was estimated from each
image.

In the two following graphs, as examples, it is possible to see the data collected for
the 200 images when the robot was in front of the camera (so no offset along the
Y axis) rotate of 40° and distant 0.800m and 2.400 m. When the robot is closer to
the camera, the position estimated is accurate to the real values, but when the robot
is further it is possible to see from 5.6 that the angle detected jumps from 40° and
-40°. At that distance, an error like that means a lot of centimeter of error, so it is

Chapter 5. Implementation and Experiments 46

not acceptable. The farther the marker is from the camera, the more this faulting
behaviour appears.

FIGURE 5.5: Area normalized, Offest, Distance and Angle detected
when x=0.823, y=0, angle=40°

Chapter 5. Implementation and Experiments 47

FIGURE 5.6: Area normalized, Offest, Distance and Angle detected
when x=2.420, y=0, angle=40°

Chapter 5. Implementation and Experiments 48

To have a clear idea of where the variance is higher and not acceptable, variance was
computed for each set of images and all the variances were put together to form a 3D
graph, dependent on the angle and the distance (in term of normalized area). The
variance was estimated not only for the angle, but also for the measured distance
in meters and the position of the marker along the y axis. In this way, an accurate
pattern of how the variance behave was made.

The experiment was repeated three time and a mean of the variances across the three
experiments was computed. For an intuitive understanding of the graphs, a color
code was used: the darker the color, the higher the variance.

As it is possible to see from the below figures, the highest variance is generally asso-
ciated with the angle measurement, that due to some geometric reasons affects not
only the estimated orientation of the robot, but also its position.

FIGURE 5.7: Values of Yaw variance depending on marker’s detected
area and orientation

Chapter 5. Implementation and Experiments 49

FIGURE 5.8: Values of Distance variance depending on marker’s de-
tected area and orientation

FIGURE 5.9: Values of Offset variance depending on marker’s de-
tected area and orientation

Chapter 5. Implementation and Experiments 50

Once the variance of the robot position in the map has been computed using the
propagation of uncertainty, it was possible to publish the position information to-
gether with the covariance through a topic sending PoseWithCovarianceStamped mes-
sages. In figure 5.10 an Aruco is detected by the right camera and the result of the
pose estimation is displayed in Rviz, giving with a lilac ellipse the uncertainty about
the position, and with the yellow cone the orientation variance is shown. As it is
possible to see, the estimation is pretty accurate.

FIGURE 5.10: Position of the robot based on the Aruco detection

Chapter 5. Implementation and Experiments 51

5.2.2 SLAM testing

In figure 5.11 the result of the SLAM session in the accelerator housing is shown.

FIGURE 5.11: Map of the accelerator housing (LTU)

Chapter 5. Implementation and Experiments 52

As it is possible to see, the SLAM session was successful. The accelerator housing
was mapped completely. The top of the map may appears as if the map was done
wrong, but actually there was a mesh fence dividing two sections of the accelerator,
so it was possible for the Lidar to see over fence, but access was not permitted. The
tunnel in the map appears to be a little bit skewed, probably due to some drifts in
the odometry estimation that is inevitable when it comes to long environment like
this. Anyway, the skewness of the map is low and it does not affect the accuracy of
the localization.

5.2.3 Navigation testing

When the first navigation test was performed, only the local Kalman filter and the
amcl package were used. The goal was to achieve a correct position starting from an
unknown position, so no information about initial position was given to the Monte
Carlo localization algorithm. This means that at the beginning particles are spread
all over the map as shown in figure 5.12

FIGURE 5.12: AMCL particles at the beginning

In normal condition, the amcl package is reported to show great results. But dur-
ing the testing session inside the accelerator housing, the results were not good as
expected.

When starting the navigation session, if a good estimate of the initial position is
given, the localization filter converges fast to a correct position and the robot can
navigate safely inside the tunnel.

If no initial estimate is given, the particles of the filter, initially spread all over the
map, are gradually grouped together. The algorithm struggles to converge to a re-
sult, forming different groups of particles in the map. During this period navigation
is obviously a problem, since there is no certainty of where the robot is. Finally,
when the particles are all grouped together, the result is wrong.

The reason behind this faulty behavior is the repetitive structure of the accelerator
housing: the filter works using a scan-matching approach against the map, and since
the map is all similar, the probability associated with each scan are all close to each
other. In figure 5.13 and 5.14 the initial ambiguity and the final wrong result of one
of the testing session are shown.

It is possible to understand that the result is wrong because together with the re-
sult of the particle filter, also the real-time particle cloud scanned by the LiDAR is

Chapter 5. Implementation and Experiments 53

available. The particle cloud is showing the truth of what is around the robot in
that precise moment, so that one is the ground truth. Since the particle cloud is not
matching the map, the position the filter is estimating is necessarily wrong.

FIGURE 5.13: AMCL particles in the middle of the testing session

FIGURE 5.14: AMCL particles showing wrong result compared to the
point cloud of the LiDAR

Chapter 5. Implementation and Experiments 54

Using the markers completely solved the problem: when the robot starts navigating
inside the map, it has no idea of where it is, but as soon as a marker is detected by
one of the cameras, the position of the particle filter is reset according to the marker
detection.

Finally, the result of the amcl is fused together with the other sensors available using
a second global Kalman Filter. In Figure 5.15 the Rviz visualization of the robot
navigating inside the map is shown. It is possible to see how the real-time point
cloud is matching the map, and from the lilac circle it is possible to see that the
variance of the estimation is really low.

In addiction to the graphical visualization it is possible to check the correctness of
the results plotting the values of x,y and yaw of the robot according to the markers,
the amcl package and the Kalman filter, as shown in figure 5.16 In the graph is shown
how, with the first detected marker, the position of the robot is corrected. Then after
the first correction, the localization work fine, and the marker are confirming the
pose of the robot.

FIGURE 5.15: Rviz visualization of the navigation algorithm

Chapter 5. Implementation and Experiments 55

FIGURE 5.16: Plot of x,y,yaw of the robot in the map frame when
using Arucos and amcl fused in the EKF together with other sensors

Another test was performed to see if it was possible to remove the amcl package and
use only the fiducial markers. To do that, amcl was removed from the algorithm and
the position estimate coming from the marker detection was used as input to the
EKF, fusing the result with the rf2o algorithm and the IMU measurement. Result is
shown in figure 5.17.

FIGURE 5.17: Plot of x,y,yaw of the robot in the map frame when
using Arucos fused in the EKF together with other sensors

The results are pretty similar to the ones in 5.16 but looking closely at the y coor-
dinate it is possible to see that around time=48s , when the last marker is detected,
there is a jump in the y coordinate. The jump is of more than 1m and it is a lot con-
sidering that the width of the corridor is on average 3m. This amount of error cannot
be accepted since it could lead to collision, so using both the amcl package and the
markers leads to the best result.

56

Chapter 6

Discussion and conclusions

6.1 Challenges with real robots

Dealing with real robot instead of using simulations means encountering different
sources of problems: the first one has to do with the verifiability of the results and
correctness of the algorithm, another one is due to having to deal with a real robot
that is made of circuits, firmware and pieces of software working all together to
make the robot work. Any of them can fail anytime and to go on with the project is
necessary to solve different side problems that can arise.

6.1.1 Verifiability Issues

To verify the accuracy and correctness of an algorithm is often necessary to have
a ground truth to refer to. In outdoor environment satellite tracking systems are
the one used as reference, being the most accurate in most of the cases. In indoor
environment GPS can not be used and finding another reliable tracking system to
compare the result might be hard.

A solution for indoor environment might be using an external camera to track the
position of the robot directly inside the environment and use that position as a
ground truth reference to compare the results obtained by the sensors mounted on
the robot. In this case, an external camera could not be used and establishing the
ground truth was a problem.

For the mapping, no accuracy estimation could be done. For localization, the best
way to be sure whether the robot is in the correct estimated position or not is to
check it using Rviz: using Rviz it is possible to visually check if the pre-built map
is actually matching the real-time point cloud detected by the LiDAR sensor. A
real-time 2D map can also be created and this can be overlapped with the pre-built
one to see if they are matching. Of course this can give an approximate idea of the
correctness of the result, but it does not provide an accuracy metric.

6.1.2 Robot failures and real-time limitations

Robots are complex objects made of mechanical components, electrical circuits, oper-
ating systems and pieces of code running and anyone of these parts of the robot can
fail or have some sort of problem that need to be solved in order to have a perfectly
working robot.

When using real robots it is perfectly normal to face setbacks of different nature
and the robot used was not an exception: during the project the charging circuit got

Chapter 6. Discussion and conclusions 57

broken in one of the robot and a twin robot was used since then. Another problem
was that the network connection between the robot and the laptop used to drive to
robot was failing all of a sudden without reporting any kind of error. It took two
weeks to troubleshoot the issue and understand if it was an electrical or a software
problem. It ended up being just a wrong set-up during the update of the Ubuntu
operating system, that was making the Network connection unstable. As already
mentioned, another issue was that the encoders of the wheels were not collecting
data as expected and they could not be used.

Together with these issues also the limited computational speed of the processor
had to be taken into account: mapping the environment is a real computationally
expensive procedure and to map everything it was easier to record all the data and
process them at a later time using the laptop.

6.2 Possible Improvements

Due to the limited time available to work at the project, some side tasks were left
undone. The main goal was a safe navigation inside the acceleration and it was
accomplished, but there is room for further improvements that can make the navi-
gation system more feature rich and autonomous.

6.2.1 Markers new features

At SLAC there is more than one accelerator and the longest one is long more than
3km. This accelerator is subdivided in different sections and it would be helpful in
the future if the robot could work in more than just one of them. To this date, only
a sector of the accelerator housing was mapped. When the navigation node starts in
ROS, a map of the sector is loaded together with the position of the markers inside
the map.

Once that more then one sector will be mapped it will be possible to choose every
time which map needs to be loaded together with the markers position, anyway this
can be done only when firing up the localization and navigation node. If a change of
map needs to be done in real time while the robot is operating, it would be possible,
but markers positions would not be loaded together with the map. The problem
can be easily solved using a service in ROS, removing the rosparams referring to the
old markers position and loading the new set of positions every time the map is
changed.

Another interesting feature that might be added is to recognize what map should
be loaded just by detecting a marker. In this way, the operator driving remotely the
robot would not need to manually load the map.

For what concerns the navigation, by now the markers are used every time they are
detected to reset the Monte Carlo localization algorithm, but as it possible to see from
5.16, the amcl output, fused together with the measurement coming from the other
sensors, is sufficient to estimate the correct position once it is correctly initialized, so
resetting it every time is not wrong, but probably useless.

For this reason a good practice would be to use the markers only when necessary, at
the beginning of the navigation or when the robot is manually moved by a human
operator. Also in this case, a service might be useful to accomplish the task.

Chapter 6. Discussion and conclusions 58

6.2.2 Autonomous driving

A standard practice once you have a map and a robot that can accurately estimate
its own position inside that map is to make the robot able to navigate autonomously
without the tele-operation of a human operator. In this way the robot can execute
long term operation of surveillance overnight and get back to the charging station
once the operation is done.

To do this, a package in ROS called move_base exist and it helps with setting the
robot’s position goal and gives feedback about whether the task is accomplished or
not.

6.3 Conclusions

This projects presents the work that was done on a real robot to implement a map-
ping and localization algorithm, overcoming the difficulties arisen by the repetitive
structure of the environment. The algorithm is implemented using the most known
ROS packages usually used for this kind of situations, enhancing the localization al-
gorithm using a marker-based approach. If the mapping process didn’t present any
particular issue, the localization encountered some problems leading to ambiguity in
the estimation, if not a completely wrong result. The usage of fiducial markers inside
the algorithm as a way to initialize the particle filter efficiently solves the problem
and the markers can also be used as a checkpoint throughout the navigation, provid-
ing a correct estimation of the position and orientation of the robot inside the map
and ensuring a safe navigation and avoidance of the obstacles.

59

Bibliography

[1] Andrew Yarovoi and Yong Kwon Cho. “Review of simultaneous localization
and mapping (SLAM) for construction robotics applications”. In: Automation
in Construction 162 (2024), p. 105344. ISSN: 0926-5805. DOI: https://doi.org/
10.1016/j.autcon.2024.105344. URL: https://www.sciencedirect.com/
science/article/pii/S0926580524000803.

[2] SLAC National Accelerator Laboratory. 2024. URL: https://www6.slac.stanford.
edu/ (visited on 07/11/2024).

[3] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System. Ver-
sion ROS Melodic Morenia. May 23, 2018. URL: https://www.ros.org.

[4] Thomas C. Thayer, Maria Alessandra Montironi, and Alessandro Ratti. “ROAM:
A Remotely Operated Accelerator Monitor”. In: 2022 18th IEEE/ASME Interna-
tional Conference on Mechatronic and Embedded Systems and Applications (MESA).
2022, pp. 1–6. DOI: 10.1109/MESA55290.2022.10004449.

[5] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control.
Wiley select coursepack. Wiley, 2005. ISBN: 9780471765790. URL: https : / /
books.google.it/books?id=muCMAAAACAAJ.

[6] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. 1st. Springer
Publishing Company, Incorporated, 2008. ISBN: 1846286417.

[7] How to derive rotation matrix by Euler angles. 2022. URL: https://semath.info/
src/euler-angle.html (visited on 07/11/2024).

[8] The Cylindrical Keyword. 2016. URL: https://www.svibs.com/resources/
ARTeMIS_Modal_Help/The_Cylindrical_Keyword.htm (visited on 07/11/2024).

[9] Flavio Ferraz et al. “A comparative study of the accuracy between two computer-
aided surgical simulation methods in virtual surgical planning”. In: Journal of
Cranio-Maxillofacial Surgery 49 (Dec. 2020). DOI: 10.1016/j.jcms.2020.12.
002.

[10] Atte Rantanen. “Robot Operating System: overview and case study”. MA the-
sis. University of Turku, 2024.

[11] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In:
vol. 3. Jan. 2009.

[12] Robert JohnJul. Hands-On Introduction to Robot Operating System(ROS). 2020.
URL: https://master- engineer.com/2020/11/05/writing- ros- node/
(visited on 07/11/2024).

[13] Tully Foote. “tf: The transform library”. In: Technologies for Practical Robot Ap-
plications (TePRA), 2013 IEEE International Conference on. Open-Source Software
workshop. Apr. 2013, pp. 1–6. DOI: 10 . 1109 / TePRA . 2013 . 6556373. URL:
https://wiki.ros.org/tf.

[14] Purvis Foote. Standard Units of Measure and Coordinate Conventions. 2010. URL:
https://www.ros.org/reps/rep-0103.html#copyright (visited on 07/11/2024).

[15] Wim Meeussen. Coordinate Frames for Mobile Platforms. 2010. URL: https://
www.ros.org/reps/rep-0105.html (visited on 07/11/2024).

Bibliography 60

[16] HyeongRyeol Kam et al. “RViz: a toolkit for real domain data visualization”.
In: Telecommunication Systems 60 (Oct. 2015), pp. 1–9. DOI: 10.1007/s11235-
015-0034-5. URL: https://wiki.ros.org/rviz.

[17] Luis Ortiz, Luiz Gonçalves, and Elizabeth Cabrera. A Generic Approach for Error
Estimation of Depth Data from (Stereo and RGB-D) 3D Sensors. May 2017. DOI:
10.20944/preprints201705.0170.v1.

[18] Camera Calibration and 3D Reconstruction. 2024. URL: https://docs.opencv.
org/4.x/d9/d0c/group__calib3d.html (visited on 07/11/2024).

[19] Perspective-n-Point (PnP) pose computation. 2024. URL: https://docs.opencv.
org/4.x/d5/d1f/calib3d_solvePnP.html (visited on 07/11/2024).

[20] Bayu Kanugrahan Luknanto. “A Review of 2D SLAM Algorithms on ROS”.
MA thesis. Politecnico di Milano, 2019.

[21] Wikipedia contributors. Extended Kalman filter — Wikipedia, The Free Encyclope-
dia. [Online; accessed 11-July-2024]. 2024. URL: https://en.wikipedia.org/
w/index.php?title=Extended_Kalman_filter&oldid=1224606263.

[22] Wikipedia contributors. Particle filter — Wikipedia, The Free Encyclopedia. [On-
line; accessed 11-July-2024]. 2024. URL: https://en.wikipedia.org/w/index.
php?title=Particle_filter&oldid=1218031285.

[23] Wikipedia contributors. Dead reckoning — Wikipedia, The Free Encyclopedia. [On-
line; accessed 11-July-2024]. 2024. URL: https://en.wikipedia.org/w/index.
php?title=Dead_reckoning&oldid=1230006947.

[24] César Debeunne and Damien Vivet. “A Review of Visual-LiDAR Fusion based
Simultaneous Localization and Mapping”. In: Sensors 20.7 (2020). ISSN: 1424-
8220. DOI: 10.3390/s20072068. URL: https://www.mdpi.com/1424-8220/20/
7/2068.

[25] LiDAR SLAM vs Visual SLAM: Which is Better? 2023. URL: https://eu.hookii.
com/it/blogs/robot-lawn-mowers/laser-slam-vs-visual-slam-which-

is-better (visited on 07/11/2024).
[26] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Improved Techniques

for Grid Mapping With Rao-Blackwellized Particle Filters”. In: IEEE Transac-
tions on Robotics 23.1 (2007), pp. 34–46. DOI: 10.1109/TRO.2006.889486. URL:
https://wiki.ros.org/gmapping.

[27] slam_karto. 2019. URL: https://wiki.ros.org/slam_karto (visited on 07/11/2024).
[28] Stefan Kohlbrecher et al. “A flexible and scalable SLAM system with full 3D

motion estimation”. In: 2011 IEEE International Symposium on Safety, Security,
and Rescue Robotics. 2011, pp. 155–160. DOI: 10.1109/SSRR.2011.6106777. URL:
https://wiki.ros.org/hector_slam.

[29] Github cartographer. 2016. URL: https://github.com/cartographer-project/
cartographer (visited on 07/11/2024).

[30] Steve Macenski and Ivona Jambrecic. “SLAM Toolbox: SLAM for the dynamic
world”. In: Journal of Open Source Software 6 (May 2021), p. 2783. DOI: 10 .
21105/joss.02783. URL: https://wiki.ros.org/slam_toolbox.

[31] amcl. 2020. URL: https://wiki.ros.org/amcl (visited on 07/11/2024).
[32] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent Robotics

and Autonomous Agents series. MIT Press, 2005. ISBN: 9780262201629. URL:
https://books.google.it/books?id=2Zn6AQAAQBAJ.

[33] David Jurado et al. “Planar fiducial markers: a comparative study”. In: Virtual
Reality 27 (Feb. 2023), pp. 1–17. DOI: 10.1007/s10055-023-00772-5.

[34] Michail Kalaitzakis et al. “Fiducial Markers for Pose Estimation: Overview,
Applications and Experimental Comparison of the ARTag, AprilTag, ArUco

Bibliography 61

and STag Markers”. In: Journal of Intelligent and Robotic Systems 101 (Apr. 2021).
DOI: 10.1007/s10846-020-01307-9.

[35] ros_imu_bno055. 2020. URL: https://wiki.ros.org/ros_imu_bno055 (visited
on 07/11/2024).

[36] cameracalibration. 2020. URL: https://wiki.ros.org/camera_calibration
(visited on 07/11/2024).

[37] Detection of ArUco Markers. 2024. URL: https://docs.opencv.org/4.x/d5/
dae/tutorial_aruco_detection.html (visited on 07/11/2024).

[38] Yazmin Villegas-Hernandez and Federico Guedea-Elizalde. “Marker’s posi-
tion estimation under uncontrolled environment for augmented reality”. In:
International Journal on Interactive Design and Manufacturing (IJIDeM) 11 (Aug.
2017). DOI: 10.1007/s12008-016-0356-x.

[39] rf20. 2016. URL: http://wiki.ros.org/rf2o (visited on 07/11/2024).
[40] Roman Adámek et al. “Analytical Models for Pose Estimate Variance of Planar

Fiducial Markers for Mobile Robot Localisation”. In: Sensors 23.12 (2023). ISSN:
1424-8220. DOI: 10.3390/s23125746. URL: https://www.mdpi.com/1424-
8220/23/12/5746.

[41] Kenneth R. Castleman. “Chapter Four - Geometric Transformations”. In: Mi-
croscope Image Processing (Second Edition). Ed. by Fatima A. Merchant and Ken-
neth R. Castleman. Second Edition. Academic Press, 2023, pp. 47–54. ISBN:
978-0-12-821049-9. DOI: https://doi.org/10.1016/B978- 0- 12- 821049-
9.00005-8. URL: https://www.sciencedirect.com/science/article/pii/
B9780128210499000058.

[42] robot_localization. 2024. URL: https://github.com/cra- ros- pkg/robot_
localization (visited on 07/11/2024).

[43] map_server. 2024. URL: https : / / wiki . ros . org / map _ server (visited on
07/11/2024).

[44] Numpy libray. 2024. URL: https://numpy.org/ (visited on 07/11/2024).
[45] Matplotlib libray. 2024. URL: https://matplotlib.org/stable/ (visited on

07/11/2024).

62

Acknowledgements
I would like to reserve this final section to say thank you to all the people who helped
me through this journey and with the completion of this thesis.

I must start with my mum and dad, who always supported me and made me believe
that I could achieve any goal I set for myself. I wouldn’t be here if it weren’t for them.

A special thanks goes to my two supervisors: professor Marcello Chiaberge and
Thomas T. Thayer. Despite their many commitments, they always tried to give their
utmost to help and guide me in my thesis work, making it possible to achieve all the
results.

I must also mention Maurizio and Daniele for giving me enormous emotional sup-
port and helping me during my time at SLAC. Moreover, I want to say thank you
to all my colleagues and superiors for always being nice to me and making me feel
welcome. A special thanks goes to Alessandro Ratti that contribuited to make all of
this possible.

Finally, a huge thanks and hug go to all my friends: those I’ve known all my life
and those I’ve met during my university journey. Thank you for cheering me on and
making me feel your support.

I am deeply grateful to everyone who has been part of my life; your support has
been invaluable.

Valeria

	Abstract
	Introduction
	Thesis objective
	Robot
	Hardware
	Software

	Thesis structure

	Background
	Transformations and transformation matrices
	Pose of a rigid body:
	Rotation matrix
	Parametrizations of rotation:
	ZYZ Angles
	RPY angles
	Angle-Axis
	Quaternion

	Homogeneous Transformation:

	ROS - Robotic Operating System
	Graph Structure:
	ROS commands:
	Transform Tree:
	Coordinate Frame for Mobile Platforms:
	Rviz:

	Camera Model
	Pinhole camera model
	Camera calibration and pose computation:

	State of art
	SLAM
	Related concepts
	Sensor-based classification
	ROS open source packages for SLAM

	Monte Carlo Localization
	Fiducial Markers

	Algorithms and methods
	Sensors calibration
	IMU
	Cameras

	Pose estimation with Aruco markers
	Reference frames involved:
	Reference frame transformations:
	From Map to Marker
	From Marker to Camera
	From camera to base_link

	Variance estimation
	IMU and wheels encoders
	LiDAR
	Markers
	Data collection
	Interpolation
	Error propagation

	Odometry
	SLAM
	Localization
	Without Markers
	With Markers
	TF tree

	Implementation and Experiments
	Tools and Technologies
	Programming languages
	Packages and Libraries
	Instrumentation

	Experimentation and Results
	Data collection
	SLAM testing
	Navigation testing

	Discussion and conclusions
	Challenges with real robots
	Verifiability Issues
	Robot failures and real-time limitations

	Possible Improvements
	Markers new features
	Autonomous driving

	Conclusions

	Bibliography
	Acknowledgements

