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Summary

The electrification of vehicles is advancing rapidly, with DC-DC converters playing
a central role in their electrical architecture. Semiconductor technologies such
as gallium nitride (GaN) MOSFETs enable high-power, high-temperature oper-
ation, enhancing vehicle performance. However, these advancements necessitate
improvements in microcontrollers managing these components, including faster
computation, advanced pulse-width modulation (PWM) signal generation, and
real-time synchronization. This thesis analyses the AURIX TC39 microcontroller
in order to develop software for managing a DC-DC converter in a hybrid vehicle
architecture. This architecture comprises one inverter connected to the electric
motor and two DC-DC converters, one of which interfaces with a battery and the
other with a fuel cell. The research starts by implementing the Universal Asyn-
chronous Receiver-Transmitter (UART) communication, which is crucial for the
inverter to send reference currents to the DC-DC converters. The Direct Memory
Access (DMA) is employed for the purpose of facilitating the efficient transfer of
data within the system. To guarantee the reliability of the communication process,
a synchronisation mechanism has been implemented to discard messages in the
event of a transmission failure. This approach not only enhances the performance
of the system by reducing the load on the CPU during data transfer operations, but
also ensures the integrity and reliability of communications by preventing the prop-
agation of corrupted or incomplete data. A further aspect of the communication
system between the three microcontrollers is the use of Controller Area Network
(CAN). This protocol is widely used in the automotive field due to its high degree of
reliability. In the subsequent system, CAN is employed to facilitate the exchange of
diagnostic, error and status messages between the electrical components within the
architecture. In the following, the behaviour of the AURIX TC39 microcontroller
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in external input clock mode was analysed by studying its internal modules that
deal with clock generation and distribution. The analysis that follows was carried
out with a view to the future, as three AURIX TC39 micro controllers are expected
to share the same clock source to optimise their synchronisation. Furthermore, the
Generic Timer Module (GTM) is employed for the generation of PWM signals and
the determination of sampling instants in order to manage the switching poles of
the DC-DC converter. This is achieved using the Timer Output Module (TOM). To
improve the correct behaviour of the components inside the electrical architecture,
the counters responsible for generating the PWM signals are synchronised to the in-
verter component by means of a reset signal. The implementation of dead time and
the optimization of synchronisation between microcontrollers are achieved through
the use of the Dead Time Module (DTM) and Timer Input Module (TIM). As a
result, the Generic Timer Module (GTM) within the AURIX TC39 has proven to
be an optimal component for the developed applications, offering high-speed signal
generation and synchronisation features to enhance the behaviour of the system
in automotive applications. Finally, the developed control algorithm was tested
on the microcontroller to verify compliance with the execution time constraints
imposed by the requirements, thus ensuring efficient management of the DC-DC
converter within the electrical system of the vehicle.
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Chapter 1

Introduction

Currently, DC-DC converters play a fundamental role in vehicular electrical archi-
tecture. Thanks to advancements in semiconductor component technologies, the
complete electrification of vehicles is becoming increasingly feasible. In particular,
the use of GaN (gallium nitride) or SiC (silicon carbide) MOSFETs is becoming
more widespread in vehicular components, as these materials allow operation at
higher power levels and temperatures, ensuring excellent performance.
This development necessitates significant improvements in the micro-controllers
managing these components, requiring high computational speeds, elevated sam-
pling frequencies, advanced PWM signal generation capabilities, synchronization
among micro-controllers and highly deterministic real-time software behaviour. On
the market, there are various micro-controllers suited for such applications, thanks
to their multi-core architectures that allow increasingly complex software to be
executed while optimizing execution times. Among these, the AURIX TC39 by
Infineon and the SPC5 family by STMicroelectronics stand out, widely used in
engine, transmission, body and chassis control.
In this context, this thesis focused on the analysis of the AURIX TC39 micro-
controller to develop management software for a DC-DC converter used in an
architecture consisting of an inverter and two DC-DC converters: one managing
power flows to a battery and the other managing power flows to a fuel cell, all
centred in a hybrid vehicle.
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Introduction

The proposed configuration is depicted in Figure 1.1. Each electrical component
is managed by an AURIX TC39. The first step of the research was to implement

Figure 1.1: Hybrid Vehicle Architecture.

Universal Asynchronous Receiver-Transmitter (UART) communication by exploit-
ing the ASCLIN module in the micro-controller. This communication is critical for
the management of the DC-DC converters, as it is used by the inverter to send
reference currents to the DC-DC converters every 50 µs. For the implementation of
the UART communication, the Direct Memory Access (DMA) mechanism was used
to transfer the received data from the receive FIFO memory to the destination
buffer, thus optimizing the CPU load. In addition, a synchronization mechanism
between transmitter and receiver was implemented to make the system more robust
in case of communication interruptions.
Additionally, the Controller Area Network (CAN) was studied and implemented
on the same micro-controller, managed by the MCMCAN module. This CAN
network is utilized by the three components to send diagnostic messages, enhancing
communication reliability and integration within the vehicle’s network.
In this context, both modules ASCLIN and MCMCAN are configured to guarantee
an efficient communication management. The two communication networks were
tested, simulating messages exchange between AURIX TC39 modules, verifying
that the communication requirements are fulfilled in terms of Baud rate and cor-
rectness acquisition and transmission of the messages.
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The next step was to analyse the behaviour of the microcontroller in external input
clock mode, with the future aim of implementing a configuration where the three
micro-controllers share the same clock to optimise their synchronisation, as shown
in Figure 1.2. For this analysis, both the clock acquisition system and the system
clock generation mechanism were examined to see if the microcontroller was capable
of generating a correct system clock of 300MHz from an external clock of 8MHz.
However, the analysis showed that the minimum required input clock frequency
was 10MHz. Consequently, the study was adapted to take this new frequency into
account, which introduced a new requirement and led to a revision of the previous
requirements.

Figure 1.2: Clock Sharing configuration between the three AURIX TC39s

The Generic Timer Module (GTM) was employed to generate the eight pulse-width
modulation (PWM) signals required to manage the eight metal-oxide semiconductor
field-effect transistors (MOSFETs) at a frequency of 100 kHz.
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Furthermore, the Enhanced Versatile Analog-to-Digital Converter module was
enabled to determine the sampling instances performed by the Timer Output
Module (TOM) sub module, exploiting the cascading connection of TOM channels.
Additionally, the implementation of dead time in the eight PWM signals was
achieved through the use of the Dead Time Module (DTM). In order to further
optimise the synchronisation among the three micro-controllers and to prevent phase
shift phenomena between the TOM counters, a configuration was implemented
where the inverter sends a reset signal to the GTM counters of the micro-controllers
managing the DC-DC converters. In order to achieve this, the Timer Input Module
(TIM) sub module was employed, which acquires the reset signal and transmits it
via hardware to the TOM counters, thereby ensuring more deterministic system
behaviour.
As a result, the GTM results as a suitable module to be used for a real time
management for PWM generation for power structure control task, thanks to the
TOM architecture which allows synchronization between the counters inside the
module.
In conclusion, the developed control task was implemented in the AURIX TC39,
which is executed at a frequency of 100 kHz. Its function is to calculate duty cycles
for the PWMs generated in the successive period based on the reference currents
received via UART and on the samplings performed. In addition, it is necessary to
ensure that the duty cycles are updated synchronously and independently for each
counter at the time they are reset. Consequently, the Sub Timer Output Module
(TOM) was identified as an appropriate solution for the described application, as it
is capable of fulfilling all the necessary requirements.
Finally, it was demonstrated that the AURIX TC39 microcontroller is capable of
executing the tasks required within the imposed dead times, ensuring deterministic
behaviour, thus proving suitable for real-time applications.
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Chapter 2

State of art

2.1 PWM definition

Pulse Width Modulation (PWM) is a method frequently employed to generate an
analogue output signal from a digital input. This method involves a digital signal
that alternates between two logical values, 1 and 0, which typically correspond
to 0V and 5V. As illustrated in Figure 2.1 the principal attribute of PWM is the
capacity to establish an equivalent mean value by adjusting the percentage of time
the signal remains ON throughout the entire period, which is also known as the
duty cycle.
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Figure 2.1: Hybrid Vehicle Architecture.

The definition of the duty cycle is expressed by the following equation:

DC = Ton

Ttot
∗ 100

.
In this context, the variable Ton represents the time at which the signal level is at a
value of 1, while Ttot denotes the total period. Due to its inherent properties, PWM
is frequently employed in micro-controllers to control the operation of electrical
components such as MOSFETs, thereby facilitating the management of power
flows.
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2.2 PWM modulations

Depending on the type of application, different PWM modulation techniques can
be used, each with specific characteristics determined by the counter configuration
for signal generation, the need for signal symmetry, and the efficiency required by
the controlled system.

2.2.1 Symmetrical PWM

Symmetrical PWM modulation uses a triangular signal as a carrier to set the
period of the PWM. The duty cycle is defined by a threshold typically set by a
compare register of the timer module. This approach produces a PWM signal that
is symmetrical with respect to the center of the period, as shown Figure 2.2. With
this modulation, a center-aligned series of multiple PWMs can be generated if all
counters are in phase and with the same period.

Figure 2.2: Symmetrical PWM.
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2.2.2 Asymmetrical PWM

Asymmetric PWM modulation, uses a saw tooth signal as a carrier to define the
period. The duty cycle is determined through a threshold value, as illustrated in
Figure 2.3. This technique allows for multiple edge-aligned PWMs, which can be
left-aligned or right-aligned if the counters generating them are configured with
the same period and are in phase with each other.

Figure 2.3: Asymmetrical PWM.

2.2.3 Synusoidal PWM

Sinusoidal PWM modulation (SPWM) is a technique based on a sinusoidal modu-
lating signal, widely used in industrial [1]and alternate current motor applications
despite limitations due to low switching frequencies that cause low order harmonics
in the output signal[2]. In this modulating technique, a sinusoidal modulating
signal Vref is compared with a triangular carrier Vc.

8
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The frequency of the output signal produced depends on the frequency of
the modulating signal vref, while the frequency of the triangular carrier signal
determines the duty cycle of the output signal[3]. The switching state of the output
signal is shown if Figure 2.4 and is defined according to the following rules:

• Vout = 1 when Vref > Vc

• Vout = 0 when Vref < Vc

Figure 2.4: Synusoidal PWM.

The maximum amplitude of the sine wave must be less than the maximum amplitude
of the triangle wave to obtain linear modulation.
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2.2.4 A practical example of PWM for DC-DC Converter
control

[4]The following study is based on the analysis of Dual PWM control on a con-
ventional boost converter, as shown in Figure 2.5. The control sees two PWMs
controlled simultaneously, divided into high (PWMH) and low (PWML) frequency.
The two PWMs are driven by the voltage Vc, which is the resultant of the difference
between the reference voltage Vref and the feedback voltage fb, obtained by dividing
the voltage Vo between the two resistors R1 and R2.

Figure 2.5: Representation of the circuit for realising Dual PWM Control

The goal of such a PWM technique is to set the (1-DL)*TL duration of the low-
frequency PWM as a multiple of the period of the high-frequency PWM, resulting
in the following relationship:

(1 − DL) ∗ TL

TH

= n

with n representing the number of rising and falling edges of the high-frequency
PWM over time (1-DL)*TL.

10
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These two PWMs are combined in OR logic generating the resulting PWMs
that will control the converter switch. It is obtained that the period of the resulting
PWM is equal to TL, while the parameter n defines the number of operating
phases in a period TL, as shown in Figure 2.6. In conclusion, this study shows that
the Dual PWM technique brings advantages in terms of DC-DC implementation
cost and performance, as it allows quadratic voltage gain while maintaining a
conventional DC-DC converter architecture.

Figure 2.6: Dual PWM control output given by the combination of PWMH and
PWML signals
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2.3 The role of Dead Time in PWM

The role of dead time in Pulse Width Modulation (PWM) is crucial in controlling
high-power MOSFETs for current management. A typical application is the use of
switching circuits in DCDC converters, which consist of a high-side and a low-side
MOSFET. Both MOSFETs are driven by complementary PWM signals, for this
reason it is essential to avoid simultaneous activation of the two MOSFETs to
prevent the phenomenon known as Shoot-through, which would result in a short
circuit between the input voltage and ground.
In order to avoid the shoot-through phenomenon, a dead time is used, which
consists of setting both gate signals of the two switches to zero, thus preventing
both gates from being active for certain periods of time[5].
One consequence of dead time is distortion in the duty cycle; therefore, it’s important
to consider these effects. Figure 2.7 illustrates two complementary signals with
dead time.

Figure 2.7: Representation of two complementary PWM signals with Dead Time
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2.3.1 Dead Time Implementation Techniques in Aurix TC39

[6] In this research activity, two techniques for implementing dead time in the
AURIX TC39 microcontroller are investigated. Both techniques rely on the use
of the Generic Timer Module (GTM), a module widely used in the automotive
sector[6], and the ATOM sub-module for PWM generation.

Dead Time implementation with PwmAtomHl.h library

The first technique employs the PwmAtomHl.h library, which allows for high-level
manipulation of PWM characteristics, including dead time. The advantage of this
configuration is the ability to implement complementary PWMs without using
additional modules besides ATOM. However, the disadvantage is the high number
of counters required, as each counter is associated to a single PWM.

Dead Time implementation with Dead Time Module

The second technique examined in the research utilises the Dead Time Module
(DTM) present in the GTM, internally connected to the TOM and ATOM modules.
This module is capable of generating a pair of complementary PWMs with dead
time from a single input PWM. This feature represents a significant advantage, as
it halves the number of counters required to generate the PWMs compared to the
first method discussed.The only drawback is the introduction of a delay of three
clock pulses between the input PWM and the two output PWMs, which remains
constant over time, ensuring deterministic behaviour in the system, consequently,
it is suitable for use in the following application.
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Chapter 3

Background

3.1 AURIX TC39 and Triboard TC3x9

3.1.1 AURIX TC39 Micro-Controller

The AURIX TC39 microcontroller, depicted in Figure 4.1, manufactured by Infineon,
is employed extensively in the industrial and automotive sectors due to its multi-core
architecture, rendering it well-suited for real-time systems. One of the principal

Figure 3.1: AURIX TC39 Micro-Controller[7]

characteristics of the TC39 is its core structure. In fact, the microcontroller
comprises six Tricore cores operating at up to 300MHz, thereby conferring high
performance and parallelised computing capabilities. Another significant attribute
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of the AURIX TC39 is its memory configuration, which includes a flash memory
of up to 16MB and a static RAM of up to 6.9MB. This enables the execution
of highly complex applications in real time. These features render it particularly
suitable for advanced automotive applications, such as driver assistance systems
(ADAS), power train and chassis management. This is also due to the modules
integrated within it, such as the MCMCAN module, which allows the Controller
Area Network (CAN) protocol to be integrated, or the Asynchronous/Synchronous
Interface (ASCLIN) module, which provides a series of protocols such as UART and
LIN, thus guaranteeing robust connectivity. Another significant attribute of the
AURIX TC39 microcontroller that renders it suitable for this type of application is
the presence of the Generic Timer Module (GTM), a module that is capable of
managing timing operations and generating PWM signals, thereby enhancing the
performance of power control systems.

3.1.2 Triboard TC3x9 Evaluation Board

Figure 3.2 illustrates the Triboard TC3x9 evaluation board, which is a widely used
tool in the field of software development. The board provides a series of components
that permit the simulation of a wide range of automotive scenarios.

Figure 3.2: Triboard TC3x9 Evaluation board
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The Triboard TC3x9 evaluation board includes the following components:

• High Speed CAN Transceiver TLE9251VSJ, illustrated in Figure 3.3.

• Two 10-pin (2x5) Header for CAN High Speed Transceiver (CAN0 and
CAN1).

• Infineon’s Multi Voltage Safety Micro Processor Supply TLF35584QV[8]

Figure 3.3: Triboard TC3x9 Architecture

16



Background

3.2 Universal Asynchronous Receiver / Trans-
mitter (UART)

The UART serial communication protocol is a widely used method of communication
between electronic devices over short distances. Its implementation is relatively
inexpensive, although the transmission speed is not particularly high. The protocol
can be used in various modes, including Half-Duplex and Full-Duplex[9]
As an asynchronous protocol, the UART does not require the use of a clock signal
to synchronise the transmitter with the receiver, which allows for a very simple
communication interface. This is demonstrated in Figure 3.4. Since only two

Figure 3.4: Full-Duplex UART Communication

pins are required for communication between two electronic components, one for
transmission and one for reception, the interface is straightforward. Internally, in
the electronic device, there is a module for managing the communication protocol.
This is because the data to be transmitted or received is managed on a parallel
bus by the processor, while the data in the communication line is transmitted and
received in serial mode.
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Figure 3.5 shows a representation of the serial transmission, while Figure 3.6
shows the management of data in parallel by the processor.

Figure 3.5: Serial Communication representation

Figure 3.6: Serial-to-Parallel conversion
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The parameters characterising the data frame in the UART protocol, depicted
in Figure 3.7, include:

• Baud rate: indicates the transmission speed of a single bit. For communica-
tion to take place correctly, it is essential that the transmitter and receiver
are configured with the same baud rate. Once communication commences,
the initial bit is employed to notify the receiver of the commencement of
transmission. This bit has a duration of one clock cycle and is typically
associated with the logic low level.

• Data frame: contains the packet of information to be transmitted. Typically,
the data frame is 8 bits long, but can vary from 5 to 9 bits.

• Parity bit: the UART protocol is highly susceptible to electromagnetic
interference, which can result in the transmission of erroneous bits. To
enhance the resilience of communication, the parity bit is employed. The
parity bit is defined during transmission by counting the number of bits 1
present in the data frame. If this number is even, the parity bit will be 0.
The receiver compares the parity bit with the data frame it received. If, once
the number of 1 bits is counted, they are even, then the data frame has been
acquired correctly.

• Stop bit: This bit is used to indicate the end of transmission. This is achieved
by the transmitter bringing the communication line from a low to a high state
for one or two clock cycles, depending on the configuration.[10]

Figure 3.7: Serial Communication representation
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The UART protocol is therefore widely employed in the automotive and in-
dustrial sectors, due to its simplicity and low implementation costs. It only
requires two wires for full-duplex communication and does not necessitate the use
of a shared clock between the two communicating systems. Nevertheless, there
are a number of limitations to the UART protocol, including a restricted size of
the data frame and a lower transmission speed than other communication protocols.

3.3 Asynchronous/Synchronous Interface (ASCLIN)

The Asynchronous/Synchronous Interface (ASCLIN) module is integrated in the
AURIX TC39 microcontroller in order to implement serial communication protocols,
including UART, LIN and SPI. Figure 3.8 shows the internal division of the module
into blocks.

Figure 3.8: Block Diagram of the ASCLIN module[11]
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The module’s principal characteristics include the presence of FIFOs with a
capacity of 16 bytes in both the transmission and reception modes, as well as the
capacity to generate interrupts in accordance with the FIFOs’ filling levels, thus
enabling the transmission and reception mechanisms to be managed in a flexible
manner[11].

3.3.1 Asynchronous Serial Control (ASC) features for UART
implementation

In the AURIX TC39 microcontroller, the Universal Asynchronous Receiver-Transmitter
(UART) communication protocol is implemented via the ASCLIN module. Refer-
ring to the Figure 3.8, the clock frequency of the module is defined by fA, which
determines the maximum configurable baud rate. For fA = 100 MHz, the maximum
baud rate of the UART is 6.25 MBaud, while for fA = 200 MHz, the maximum
baud rate is 25 MBaud[11].

3.3.2 Transmission and Reception Mechanism via FIFO

The presence of FIFO memory allows for the flexible management of the transmission
and reception of serial packets. This enables interrupt generation to execute the
transmission or reception of a single message or data packet. The interrupt
generation can be configured in three different modes, which are listed below.

Single Move Mode

In the context of transmission, each time the Transmission FIFO (TXFIFO) is
emptied of a byte, an interrupt is generated that fills the TXFIFO with the
remaining bytes to be transmitted. This mechanism is depicted in Figure 3.9,
which illustrates the generation of interrupts in the Single Move Mode.
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In the context of reception, each time the reception FIFO (RXFIFO) is filled
with a byte, an interrupt is generated that moves the received byte to a destination
buffer, as illustrated in the Figure 3.10.

Figure 3.9: Interrupt Generation in the Single Move Mode[11]

In both the transmit and receive modes, data can be transferred via direct
memory access (DMA).

Figure 3.10: RXFIFO - Interrupt Triggering in the Single Move Mode[11]
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Batch Move Mode

In the transmission phase, the TXFIFO is filled with the remaining bytes to be
transmitted only if the fill level of the TXFIFO is below a user-defined threshold,
as illustrated in Figure 3.11, which depicts the interrupt generation in the batch
move mode.

Figure 3.11: TXFIFO - Interrupt Generation in the Batch Move Mode[11]

In the event of reception, the RXFIFO is only cleared if the fill level exceeds a
user-defined threshold, as illustrated in the Figure 3.12. It should be noted that
this mode does not support direct memory access (DMA) for data transfer.

Figure 3.12: RXFIFO - Interrupt Triggering in the Batch Move Mode[11]
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Combined Move Mode

In this operational mode, an interrupt is generated when the fill level falls below the
threshold and the TXFIFO is emptied by one byte in transmission, as illustrated
in Figure 3.13, which depicts the interrupt generation in the Combined Mode.

Figure 3.13: TXFIFO - Interrupt Generation in the Combined Mode[11]

On the receiving side, the interrupt is generated whenever the fill level exceeds
the threshold and the RXFIFO is filled by one byte. This is illustrated in the
Figure 3.14

Figure 3.14: RXFIFO - Interrupt Triggering in the Combined Mode[11]
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3.4 Controller Area Network (CAN)

The Controller Area Network (CAN) protocol was developed by Bosch in the
early 1980s with the objective of enhancing the communication capabilities of
electronic devices in vehicles. It is a robust and reliable protocol, in part due
to the implementation of the bus, which involves the use of a differential signal
transmitted via two twisted pair cables[12].
Figure 3.15 illustrates a typical CAN Bus configuration. This configuration com-
prises a series of nodes, namely electronic devices, which communicate with each
other via a bus defined with two termination resistors of 120 Ω each. The aim of
this configuration is to improve the reliability of communication by eliminating
signal reflections on the bus.

Figure 3.15: Controller Area Network Bus
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CAN is distinguished from many other protocols by its Multi-Master architecture,
which allows all nodes to transmit and receive messages. In order to address
messages only to interested nodes, each message is assigned an ID. During reception,
an acceptance filtering mechanism is applied, whereby all nodes receive messages,
but only those that are really interested in a certain message acquire it, while
other nodes discard the message. Furthermore, the message ID serves to determine
the priority of the message. In the event of two nodes attempting to transmit
simultaneously, an arbitration technique is employed. This involves both nodes
initiating transmission simultaneously, commencing with their respective identifiers.
At this stage, the message with the highest identifier, that is, the one containing
the highest number of most significant 0s, is declared the winner of the arbitration
process and is therefore permitted to continue transmission. In contrast, the
message with the lowest priority must wait until the conclusion of the current
transmission.
The CAN protocol frame, depicted in Figure 3.16, is comprised of the following
fields:

• The Start of Frame (SOF) indicates the commencement of transmission,
thereby synchronising the nodes on the bus.

• The Identifier specifies the priority of each individual message. The smaller
the identifier, the higher the priority of the message.

• The Data Length Code (DLC) represents the maximum number of bytes
that can be transmitted in a single message. The maximum value for this
parameter is 8 bytes.

• The Data Field contains the information to be transmitted.

• The CRC field is a parameter consisting of 16 bits that contains the checksum
of the message.
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• The ACK field contain a bit of value 1, the message will be transmitted again,
as it was not correctly received by all nodes.

• The End of Frame field marks the end of the message.

Figure 3.16: CAN Message Frame

Figure 3.17 illustrates an example of a CAN message. The figure shows the signal
transmitted by the microcontroller (CAN TX) and the message in differential
form in the CAN BUS converted by the transceiver (CAN H and CAN L).

Figure 3.17: Illustration of the CAN message at the various stages. Above is the
message in the form of bits. In green is the message converted into a signal, and in
red and blue are the messages in the CAN BUS in the form of CAN H and CAN L
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3.5 Generic Timer Module (GTM)

The Generic Timer Module (GTM) is suitable for the acquisition of precise data
from multiple inputs and the generation of signals for multiple outputs. It is
therefore well-suited to automotive powertrain and active safety applications, as
well as industrial closed-loop applications. Figure 3.18 shows the main modules
contained within the GTM that enable a wide range of timer applications.

Figure 3.18: GTM Block Diagram[13]
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3.5.1 Timer Output Module (TOM)

The Timer Output Module (TOM) is comprised of six clusters, each of which
contains 16 cascaded channels, thereby enabling the propagation of diverse types
of reset signals between channels. As illustrated in Figure 3.19 , each channel is
equipped with a 16-bit counter and two compare registers, CM0 and CM1, which
are employed to determine the period and duty cycle of the PWM output.

Figure 3.19: TOM Block Diagram[11]
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Among the potential parameters that can be modified within the TOM, it is
possible to configure the bits of the internal registers to establish one of three reset
sources for the counter CN0. The specific bits in question are EXT_TRIG and
RST_CCU0, as illustrated in Figure 3.19. The possible configurations are listed
below:

• Internal Reset produced by condition CN0 = CM0.

• Reset TRIG_[x-1] generated by the previous channel TOM_CH[x-1].

• Reset acquired from the Timer Input Module (TIM) TIM_EXT_CAP-
TURE(x).

The interconnection between the various sub-modules of the GTM allows for the
propagation of the PWM produced to the DTM module, where two complementary
PWMs with implemented dead time can be generated. An alternative is for the
signals to be propagated to the EVADC module, where the A/D conversion can
be triggered. Figure 3.20 illustrates the internal modules of the microcontroller,
demonstrating how they can be connected to the GTM, in particular to the TOM,
in order to offer a variety of functionalities.
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Figure 3.20: Interconnections between GTM and modules in AURIX TC39[13]

3.5.2 Tom Global Channel Control (TGC)

The TGC is a sub-module of the TOM and is responsible for the synchronous and
asynchronous control of the TOM channels based on internal or external events.
Each cluster of the TOM is comprised of two TGCs, each of which drives up to
eight TOM channels. In particular, TGC0 controls from TOM CH0 up to TOM
CH7, while TGC1 controls from TOM CH8 up to TOM CH15[11].
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Referring to the diagram in Figure 3.21, the functionality provided by the
following submodule is shown:

• Mechanism for enabling/disabling the counter of each TOM channel.

• Mechanism for enabling/disabling the output of each TOM channel.

• Force update mechanism to update the duty cycle or period of each TOM
channel asynchronously.

• Mechanism for enabling/disabling the synchronous update of the duty cycle
and period of each TOM channel

Figure 3.21: TGC Block Diagram[11]
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The preceding mechanisms can be activated in two distinct modes:

• Synchronously: Based on a signal acquired from the Timer Input Module
(TIM) or a Time Base Event

• Asynchronously: By writing to the HOST_TRIG register.

When one of the pre-defined events occurs, the contents of the shadow registers
[FUPD_CTRL, OUTEN_CTRL, ENDIS_CTRL, UPEN_CTRL] are
written to the status registers [FUPD_STAT, OUTEN_STAT, ENDIS_STAT,
UPEN_STAT], triggering the desired mechanisms.
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Chapter 4

Scope of the research

The following research project is concerned with the analysis of the AURIX TC39
micro-controller, which is employed in the development of software for the hardware
control of a DC-DC converter comprising Gallium Nitride (GaN) MOSFETs. The
following component is employed in a hybrid vehicle architecture comprising a
battery, a fuel cell and a motor, as illustrated in Figure 1.1

4.1 Communication Network: CAN and UART

The initial phase of the research concerns the implementation of communication
between the inverter module and the DC-DCs.

Figure 4.1: Communication Network between the three AURIX TC39
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This communication is essential for the exchange of control-critical information
such as reference currents and diagnostic messages. A detailed diagram of the
communication scheme is presented in the Figure 4.1, which illustrates the two
communication protocols, respectively UART and CAN.
The initial protocol subjected to analysis was the Controller Area Network (CAN).
Two CAN lines are provided for the implementation of the initial protocol.

• CAN1: This bus comprises three nodes: the two DC-DC converters and the
inverter. It is used to exchange diagnostic messages, including temperatures,
errors and system status. The latter is necessary for controlling the DC-DC
converter.

• CAN2: This bus comprises the inverter and the vehicle controller, and is
used by the vehicle controller to send the motor reference torque.

The second protocol implemented is the Universal Asynchronous Receiver-Transmitter
(UART), which is used by the inverter to communicate every 50 µs to the DC-DC
converters with the reference currents to be used in the control. Each data packet
comprises five bytes, four of which contain data on the reference currents, and one
byte contains information on the status register.
In order to enhance the resilience of the communication, a mechanism was imple-
mented that incorporates an additional synchronisation signal to indicate to the
receiving unit the commencement of the transmission of the complete data packet.
This mechanism is illustrated in Figure 4.2.
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Figure 4.2: UART synchronization mechanism to improve communication robust-
ness

This mechanism allows the receiver to discard partially sent data packets due to
communication errors. Furthermore, the Direct Memory Access (DMA) mechanism
is employed to transfer data from the receive FIFO to the global buffer, thus
reducing the CPU overload. The entire UART communication process is depicted
in the flow chart in Figure 4.3.

Figure 4.3: Flow Chart describing the UART communication process
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4.2 External Clock Task

The research proceeded with the configuration of the microcontroller to generate
the system clock from an external clock signal of 8MHz. This configuration is
intended for the final configuration of the hybrid vehicle, in which the two DC-DC
converters and the inverter are to share the same clock. The objective is to improve
synchronisation between the three microcontrollers. This configuration is illustrated
in Figure 1.2. The clocking system was then subjected to further analysis, with
the oscillator circuit configured to acquire an external clock in place of the crystal
signal. This was followed by the configuration of the System Phase-Locked Loop
(SYSPLL) Module, which is responsible for generating the system clock from the
clock provided by the oscillator circuit. During the configuration of the SYSPLL, a
limitation was identified for the input clock frequency, which must be at least 10
MHz. Consequently, the search was conducted at the frequency of 10MHz. Two
applications were developed to validate the system clock generated by the SYSPLL
configuration, the first using the external clock output mode of the microcontroller
and the second using the GTM to generate a PWM signal.
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4.3 Power Structure Control Task

Subsequently, the control of the power structure, as illustrated in Figure 4.4, was
implemented.

Figure 4.4: DC-DC Converter Electrical Circuit

The implementation of the aforementioned control necessitates the fulfilment of
the following time requirements:

• A reference duty cycle and triangular carrier are associated with each switching
pole.
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• It is necessary to define a phase shift between the triangular carriers of the
four switching poles, as illustrated in Figure 4.5

Figure 4.5: Triangular Carriers for PWM generation and Sampling instants
determination

• All triangular carriers are synchronised to a main carrier, which is set by the
inverter.

• The calculation of the duty cycle is controlled by an Interrupt Service Routine
(ISR), which is synchronised with the main carrier.

• Each physical quantity to be sampled is associated with a specific carrier,
which is synchronised with a triangular carrier controlling a switching pole.
This is done in consideration of the sampling delays introduced by the sensor
via the Td_AD factor. This is exemplified in Figure 4.6
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Figure 4.6: Sampling instants for A/D conversions. Parameter Td_AD takes
into account the delay introduced by the sensors

• The update of the compare registers of the PWM-generating counters following
the execution of the control must occur at precise instants of time, as illustrated
in Figure 4.7

Figure 4.7: Synchronous Duty Cycle update
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Finally, the duty cycle update control was implemented in the microcontroller,
adapting it to the specific registers of the AURIX TC39, in particular those required
to perform the synchronous update of the compare registers of the various counters
involved. The call time to the ISR has been configured so that it occurs after all
the samples required for the control execution are available. This is illustrated in
Figure 4.8. In conclusion, it was verified that the execution time was within the
set limit of 8 µs.

Figure 4.8: The blue samples represent the quantities i2, i4, vdcN and vbat. The
red samples represent the quantities i1, i3 and vdcP. The samples circled will be
used to determine the duty cycles in the ARk control task.
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Chapter 5

Development Methodologies

5.1 Communication System Implementation

5.1.1 Implementation of Controller Area Network (CAN)

In order to implement the CAN protocol in the AURIX TC39, the MCMCAN
module was employed, configured in the Classical CAN variant, which permits a
maximum data rate of 1Mb/s.

Figure 5.1: MCMCAN Module internal architecture[11]
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The internal architecture of the module is depicted in Figure 5.1. Each MCM-
CAN cluster comprises four CAN nodes, which share a common Message RAM.
This is a portion of memory used to store messages to be transmitted or received
signals. As illustrated in Figure 5.2 , three memories are available for reception:
The RX FIFO 0, RX FIFO 1 and RX Buffer are available for transmission
purposes, with two additional memories being made available for this purpose: The
TX FIFO and TX Buffer.

Figure 5.2: Message RAM internal subdivision[14]
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In order to test CAN communication in the AURIX TC39, a CAN Database
(CAN DBC) was created. This was employed to assess the efficacy of the message
filtering and transmission mechanism, which was configured at 1 Mbps. Table
5.1 illustrates the CAN DBC configuration employed. The following messages
are exchanged between the modules of the two communicating microcontrollers,
MODULE_CAN0 and MODULE_CAN1, respectively.

CAN Message Message ID Message Data Length Code
Message 1 0x792 8
Message 2 0x016 3
Message 3 0x020 4

Table 5.1: definition of the DBC containing ID and DLC of the three
CAN messages

As evidenced by Pseudo Code 5.1, the initial phase of the process entails
configuring the two CAN modules. This involves the following steps:

• Configuring a node from the 4 available nodes.

• Setting the BaudRate of the communication.

• Configuration of the node type between Transmitter, Receiver or Transmitter
and Receiver.

• Configuration of the transmit interrupt completed.

• Configuration of the receive interrupt for a new message received.

• Assignment of pins connected internally to the transceiver.
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void initMcmcan (void)
{

MCMCAN_initConfig (); // CAN Module initialization with default
parameter

MCMCAN_initNode (); // CAN Node initialization with default
parameter

MCMCAN . nodeId = CAN_node ; // Select the CAN node

MCMCAN . baudRate = CAN_baudrate ; // Select the CAN baudrate

MCMCAN . nodeType = CAN_type ; // Configure the CAN node as
Transmitter , Receiver or Transmitter and Receiver

MCMCAN . interruptTransmissionComplete = TRUE; // Enable the
interrupt generated at the end of the Transmission of a message

MCMCAN . interruptNewMessageInRxBuffer = TRUE; // Enable the
interrupt generated in receipt of a new message

MCMCAN . pinConfig = CAN_pins ; // Configuration of the Tx and Rx
pins connected to the transceiver

MCMCAN_nodeConfiguration ();

. . .

Pseudo Code 5.1: MCMCAN configuration function
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The second part of the configuration, depicted in the Pseudo Code 5.2 , illustrates
the filter configuration of the two modules, with the possibility of setting the
following parameters:

• Memory in which the message will be saved.

• ID to define which messages will be accepted.

• If RxBuffer is designated as the destination memory, it is possible to select
one of the available 64 receive buffers.

. . .

MCMCAN . filterNumber = filter (i); // i-th filter configuration

MCMCAN . filterId = filterId ; // configuration of the ID
accepted by the filter

MCMCAN . filterRxBuffer = filterBuffer (i); // Configure the i-th
buffer as the target buffer

MCMCAN_filter_configuration ();

}

Pseudo Code 5.2: MCMCAN acceptance filter configuration
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The transmission mechanism is configured within the function transmitCan-
MessageX(), with X representing a symbol belonging to one of the following
values: 1, 2, or 3. Each of these symbols corresponds to a specific CAN message,
defined in Table 5.1.
A detailed definition of Message X is provided in the Pseudo Code 5.3. Within the
aforementioned function, the txMsg object is configured with the ID and Data
Length Code (DLC) that are to be assigned to the transmitter CAN data array
txData[]. The transmission is initiated via the MCMCAN_sendMessage()
function.

void transmitCanMessageX (void)
{

MCMCAN_initMessage (); // CAN Message initialization with
default parameter

txData [] = TransmitMessage ; // Definition of the array to be
transmitted

MCMCAN_txMsg .Id = MessageID ; // Message ID definition

MCMCAN_txMsg . DataLengthCode = MessageDataLengthCode // Message
Data Length Code definition

MCMCAN_sendMessage ( MCMCAN_txMsg , txData []); // Function that
transmit the CAN message

}

Pseudo Code 5.3: Definition of the function that is responsible for configuring
IDs and DLCs and for performing the transmission..
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The reception takes place according to the configuration of the event that triggers
the interrupt service routine, as shown in the Pseudo Code 5.4. This interrupt is
initiated whenever the node that has received a new message successfully passes
the acceptance filtering phase.

void canIsrRxHandler (void)
{

MCMCAN_clearInterrupt (); // Clear New Message In Rx Buffer
flag

if( MCMCAN . NewMessageInRxBufferX == TRUE) // Checking which
RxBuffer triggered the interrupt
{
MCMCAN_readMessage ( MCMCAN_rxMsg , rxData []); // Save the

received message in the corresponding array
}

}

Pseudo Code 5.4: ISR triggered by receiving a message that passes the acceptance
filter

The receiving mechanism within the ISR involves identifying the ID of the received
message within the rxMsg object, and then checking which of the three RxBuffers
(one for each message) has triggered the interrupt. This is done in order to save the
message in the array dedicated to it via the MCMCAN_readMessage() function.
Table 5.2 contains the assignment of messages between MODULE_CAN0 and
MODULE_CAN1.

CAN Message Transmitter Module Receiver Module
Message 1 MODULE_CAN0 MODULE_CAN1
Message 2 MODULE_CAN0 MODULE_CAN1
Message 3 MODULE_CAN1 MODULE_CAN0

Table 5.2: CAN message assignment table
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Finally, in order to implement the CAN BUS, the IDC10 connectors must be
employed, with their pinout illustrated in Figure 5.3. These are internally connected
to the TLE9251VSJ transceiver.

Figure 5.3: IDC10 Pinout

5.1.2 Implementation of Universal Asynchronous Receiver-
Transmitter (UART)

In order to implement the 8Mb/s UART communication mechanism that allows the
exchange of information between the inverter and the DC/DC converter, including
reference currents and the status register, the Asynchronous/Synchronous Interface
(ASCLIN) module was used, which is located in the AURIX TC39 microcontroller,
whose internal structure was introduced in Chapter 3.
Direct Memory Access (DMA) was used to implement this mechanism, which allows
the software behaviour to be adapted to a real-time system. DMA manages the
transmit and receive data transfers between the FIFO memories and the arrays used
in the software, thus reducing the load on the CPU. In the final stage of the UART
protocol implementation, the External Request Unit (ERU) was configured to
generate receive interrupts in response to external events, and the synchronisation
mechanism was introduced to make communication more robust.
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ASCLIN Configuration for Transmission

The Pseudo Code 5.5 shows the configuration of the ASCLIN module for trans-
mission, carried out by the initASCLIN() function, divided into the following
steps:

• Initialisation of the ASCLIN module.

• Baud Rate setting.

• Activation of single move mode for the TXFIFO.

• Configuration of the TXFIFO and setting the transmission pin

void initASCLIN_transmitter (void)
{

ASCLIN_initConfig ; // UART Module initialization with default
parameters

ASCLIN . baudRate = UART_baudrate ; // Select the UART
baudrate

ASCLIN . txFifoInterruptMode = Single_Move_Mode ; // Set TxFIFO
interrupt in Single Mode Mode

ASCLIN . txFifo = txFifoBuffer ; // Configure the TxFIFO

ASCLIN . pinConfig = ASCLIN_pins ; // Configure the Transmission
pin

}

Pseudo Code 5.5: Configuration of the Transmitter ASCLIN module
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To implement the synchronisation mechanism, the transmitter node must toggle
an output port. This signal is detected by the receiver node and interpreted as
the start of the transmission of a 5 byte packet. The transmission mechanism is
performed by the transmitUARTMessage() function, defined in Pseudo Code
5.6.

void transmitUARTMessage (void)
{

PORT_togglePin (); // Toggle on synchronization signal

ASCLIN_sendMessage (); // Function that initiates the
transmission of the data packet

}

Pseudo Code 5.6: Configuration of the function to perform UART transmission

ASCLIN Configuration for Reception

The configuration of the UART node is shown in Pseudo Code 5.7 and includes
the following steps:

• Initialisation of the ASCLIN module.

• Baud Rate setting.

• Activation of single move mode for the RXFIFO.

• Configuration of the RXFIFO and setting the receive pin.

• Configuration of the DMA as interrupt server.
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void initASCLIN_receiver (void)
{

ASCLIN_initConfig ; // UART Module initialization with default
parameters

ASCLIN . baudRate = UART_baudrate ; // Select the UART
baudrate

ASCLIN . rxFifoInterruptMode = Single_Move_Mode ; // Set RxFIFO
interrupt in Single Mode Mode

ASCLIN . rxFifo = rxFifoBuffer ; // Configure the RxFIFO

ASCLIN . pinConfig = ASCLIN_pins ; // Configure the Reception pin

ASCLIN . interruptTypeOfService = DMA; // Configure DMA as
server of interrupt

}

Pseudo Code 5.7: Configuration of the Receiver ASCLIN module

In the node configuration in single move mode, each byte received in the
RXFIFO causes an interrupt to be generated. During this process, the CPU
performs the byte extraction and storage operation from the RXFIFO to the
destination buffer, repeating this process five times for each transmitted packet.
In order to reduce the load on the CPU during these operations, DMA is used,
which handles the transfer of data from the RXFIFO to the destination buffer in
response to each interrupt generated, i.e. for each byte received.
In the implementation considered, the DMA has been configured to perform a
single transaction consisting of five transfers, each corresponding to one of the five
bytes of the data packet to be received, as shown in the Pseudo Code 5.8.
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void initDMA (void)
{

DMA_initConfig ; // DMA Module initialization with default
parameters

DMA_initChannel ; // DMA Channel initialization with default
parameters

DMA. transferCount = 5; // DMA Transfer per Transaction

DMA. moveSize = 8; // DMA Move of 8 bits

DMA. requestMode = OneTransferPerRequest ; // DMA performs
one Transfer per each Interrupt

DMA. sourceAddress = & RxFIFO ; // DMA Takes data from the
RxFIFO

DMA. destinationAddress = & RxBuffer [0]; // DMA initial
destination address

DMA. destinationAddressIncrementStep = 1; // DMA destination
pointer increment of 1 bytes after a transfer

}

Pseudo Code 5.8: DMA configuration for UART receiver

This configuration aims to optimise the DMA transfer time, as shown in the
following study [15]. At the end of the five transfer of the DMA transactions, an
end-of-transaction interrupt is generated. During the ISR associated with this
event, the content of the RxBuffer receive buffer is copied to the RxControlBuffer
used for control. This ensures that, in the event of a communication interruption
due to a malfunction, the RxControlBuffer will not be updated with the content of
the last interrupted transmission, but with that of the previous one.
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The Pseudo Code 5.9 shows the ISR of the end of the DMA transaction.

void DMA_int_Handler (void)
{

int i=0;
for(i=0; i< DATA_LEN ; i++)
{

RxControlBuffer [i]= RxBuffer [i]; // At the end of the DMA
transaction , RxBuffer is copied to RxControlBuffer
}

}

Pseudo Code 5.9: ISR of the end-of-transaction DMA performed following the
acquisition of 5 bytes belonging to the same data packet

To complete the communication mechanism, the ERU module was configured
to generate an interrupt at the start of transmission following the toggling of
the synchronisation signal generated by the transmitter. The interface pin was
first configured to detect the external event, followed by the configuration of the
interrupt to respond to both the rising and falling edge of the input pin. This
configuration is implemented within the initERU() function as described in Pseudo
Code 5.10. During the ISR generated by the input event, the DMA pointer is moved
from the end of the RxBuffer array to its beginning. This process is described in
Pseudo Code 5.11.

void initERU (void)
{

ERU.pin = pin; // Configure the input pin.

ERU. inputChannel = ERU_channel ; // Configure ERU channel

ERU. enableRisingEdgeDetection (); // Enable rising edge
detection
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ERU. enableFallingEdgeDetection (); // Enable falling edge
detection

ERU. enableInterrupt (); // Enable interrupt related to Rising
and Falling detection

}

Pseudo Code 5.10: ERU configuration function to identify the start of UART
transmission

void ERU_int_Handler (void)
{

ERU_setDestinationAddress (& RxBuffer [0]); // Resets the DMA
pointer after the synchronization event

}

Pseudo Code 5.11: Interrupt service routine generated by the ERU when it
detects the edge indicating the start of packet transmission.

5.2 External Clock Task

In order to implement the shared clock mechanism between the three micro-
controllers in the hybrid vehicle architecture, with the objective of improving
synchronisation and preventing clock shifting, the behaviour of the AURIX TC39
microcontroller mounted on the Triboard TC3x9 evaluation board was subjected to
analysis. In this analysis, the clock is no longer sourced from the crystal mounted
on the board, as in the default configuration, but from an external clock source.
The external source must provide a 10 MHz periodic signal.
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In order to develop this task, it was first necessary to examine the oscillator
circuit inside the micro-controller. This circuit acquires the signal from either the
crystal or the external clock source, and then propagates it to the System PLL. The
System PLL is responsible for increasing the frequency of the input signal to a level
that is compatible with the operational requirements of the micro-controller under
standard conditions, with a maximum frequency of 300 MHz. The clock generation
mechanism in the AURIX TC39 microcontroller is depicted in Figure 5.4. Two
applications were developed to validate the configuration of the System PLL, in
which the clock source is derived from an external signal. The first application
serves to validate the behaviour using the External Clock Output mode, while the
second application generates a PWM signal via the Generic Timer Module (GTM).

Figure 5.4: Clock Generation Unit Block Diagram[16]
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5.2.1 Oscillator configuration

The oscillator circuit mounted on the AURIX TC39 has the capacity to operate in
two distinct modes:

• External Input Clock Mode: The configuration illustrated in Figure 5.5 is
employed when the input clock is a signal originating from an external source.
In this mode, only the XTAL1 input pin is utilised, while the XTAL2 input
pin must remain open[16]. In this configuration, the oscillator input frequency
must be between 4 MHz and 40 MH[17].

Figure 5.5: Oscillator configured in External Input Clock Mode

• External Crystal Mode: The configuration illustrated in Figure 5.6 involves
a crystal or resonator for clock generation. In this mode, the XTAL2 pin
serves to excite the crystal, while the XTAL1 pin is responsible for acquiring
the generated signal. In this configuration, the crystal frequency must be
between 16 MHz and 40 MHz[17].
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Figure 5.6: Oscillator configured in External Crystal Mode

Furthermore, the oscillator circuit also provides watchdog functionality for the
input clock, monitoring that the input clock conforms, within a certain tolerance,
to the clock set in the system register. This functionality is automatically enabled
when the input clock to the PLL is the oscillator signal. In the event that the
watchdog detects a discrepancy, the clock generated by the SYSPLL is replaced
with the backup clock, a 100 MHz clock that is less accurate than the one generated
by the crystal. However, this allows the system to continue operating even under
fault conditions[16].

The following application, described in Pseudo Code 5.12, configures the oscillator
in External Input Clock Mode to utilise the external clock. In accordance with the
instructions provided in the user manual, the oscillator hysteresis was enabled for
this configuration[16].

void initOsc (void)
{

OSC_clearSafetyAccess (); // Enable write access to
registers

OSC.mode = ExternalInputClock ; // Configure the oscillator in
External Input Clock

OSC. hysteresis = Enabled ; // Enable Hysteresis
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OSC_setSafetyAccess (); // Disable write access to registers

}

Pseudo Code 5.12: Oscillator configuration for External Input Clock Mode

5.2.2 System Phase-Locked Loop Module configuration

Figure 5.7: System PLL Block Diagram[16]

The SYSPLL is a frequency up-scaler for the oscillator module output, raising
the frequency of the input signal to achieve the CPU operating frequency limit of
300MHz. The up-scaling mechanism is illustrated in Figure 5.7, which allows the
following blocks to be identified:

• Oscillator Watchdog: Functionality provided by the oscillator which mon-
itors the input clock frequency to the system to verify that it is within the
operating range
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• Divider: the input frequency fosc is conditioned by the following divider
blocks in order to obtain the output frequency fpll0, defined by the following
formula:

fpll0 = N ∗ fosc

P ∗ K2
(5.1)

For the SYSPLL to operate correctly, the frequency fosc must fall within the
limit defined in the datasheet. This limit is between 10MHz and 40MHz. The
divider parameters N and P must be dimensioned so that the frequency within
the control loop is between 400MHz and 800MHz [17].

• Lock Detector: Monitors that the frequency of the DCO is within the range
[400MHz, 800MHz].

The objective of the SYSPLL configuration is to increase the input frequency from
10 MHz to 300 MHz, in order to fully utilise the capabilities of the AURIX TC39.
Table 5.3 illustrates the configuration of parameters P, N and K2 to achieve the
desired final frequency. The configuration of the SYSPLL parameters is illustrated
in Pseudo Code 5.13.

N Parameter P Parameter K2 Parameter
60 1 2

Table 5.3: configuration of SYSPLL parameters N, P and K2

void initSYSPLL (void)
{

SYSPLL_initConfig (); // SYSPLL Module initialization with
default parameters

SYSPLL . nDivider = 60; // Configuration of N divider

SYSPLL . k2Divider = 2; // Configuration of K2 divider

SYSPLL . pDivider = 1; // Configuration of P divider
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}

Pseudo Code 5.13: System PLL configuration to raise the frequency from
10 MHz to 300 MHz

Two applications were developed with the objective of verifying the correctness of
the oscillator and system PLL configuration.

Application 1: Validation using External Clock Output

The initial application is to validate the behaviour of the micro-controller when it
receives a 10MHz clock signal as input, utilising the External Clock Output mode.
To operate in the following mode, the AURIX TC39 incorporates a Fractional
Divider module, as illustrated in Figure 5.8. This module accepts the input
frequency fspb and divides it by a factor of 1/n in Normal Divider Mode or by a
factor of n/1024 in Fractional Divider mode.

Figure 5.8: Oscillator configured in External Crystal Mode[16]
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In the following application, Normal Divider Mode was employed, resulting
in the generation of the following signal as an output:

fout = fspb ∗ 1
n ∗ 2 (5.2)

with n = 1024 − STEP, where STEP can have a range from 000H to 3FFH.
The clock output signal fout is divided by 2 in the above formula to produce a
square-wave signal with 50% duty cycle at the output.
The frequency fspb is obtained via the Clock Distribution (CCU) module shown
in Figure 5.9. The following module has the role of distributing the system clock
to the various modules of the AURIX TC39. Each module is associated with a
divider that adapts the input frequency fsource0 to the operating frequency of the
individual module.

Figure 5.9: Clock Distribution Unit Block Diagram[16]
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In the following application, the desired frequency for fspb is 100 MHz. In order
to obtain this frequency, it is necessary to divide the frequency fsource0, which
corresponds to fpll0, by a factor of 3. This is because the configuration of the
SYSPLL has been set up in such a way that parameters N, P and K2 have been
configured to obtain fpll0 = 300 MHz.

The objective of the subsequent application is to generate a signal with a fre-
quency of 1 MHz and analyse it using an oscilloscope to determine frequency of the
signal. This approach enables the determination of the frequency fsource0, which
corresponds to fpll0, via the following formula:

fsource0 = fout ∗ SPBDIV ∗ n ∗ 2 (5.3)

The parameters employed in the equation are enumerated in the following list:

• fout: frequency produced by External Clock Output Mode, measured by
oscilloscope

• SPBDIV: divisor by a factor of 3 to obtain frequency fspb from fsource0

• n = 1024 - STEP, where STEP = 974 to obtain fout = 1 MHz.

This process allows for the verification of the correct configuration of the SYSPLL.
The following Pseudo Code 5.14 illustrates the configuration of the CCU and
External Clock Output mode.

void initCCU (void)
{

CCU_clearSafetyAccess (); // Enable write access to
registers

CCU_initConfig (); // CCU Module initialization with default
parameters

CCU. ClockSel = 1; // Configure f_source0 = f_pll0
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CCU. SPBDivider = 3; // Configure SPB divider = 3 -> f_spb=
f_sourc0 /3

CCU_setSafetyAccess (); // Disable write access to registers

}

void initExtClk (void)
{

EXTCLK_clearSafetyAccess (); // Enable write access to
registers

EXTCLK . enable = TRUE; // Enable External Clock Output Mode

EXTCLK . outputSignal = f_out; // Select Fractional Divider
as output signal

EXTCLK .mode = NormalMode ; // Configure Fractional Divider in
Normal Mode

EXTCLK .step = 0x3CE; // Select step = 974 to obtain n=50

EXTCLK_setSafetyAccess (); // Disable write access to
registers

}

Pseudo Code 5.14: Configuration of CCU and External Clock Output Mode for
Application 1
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Application 2: Validation using GTM

In the second application, the correct operation of the AURIX in External Input
Clock mode was verified using the GTM. The input clock frequency of the GTM is
defined by the CCU in the following ways:

• fGT M = fsourceGT M

GT MDIV

• fsourceGT M = fspb ∗ 2 if GTMDIV = 1, otherwise fsourceGT M = fsource0

In this instance, GTMDIV = 1 was configured, resulting in fGT M = fspb ∗ 2 =
200MHz. This is consistent with the approach taken in Application 1, where
fspb = fsource0

3 .
The Clock Management Unit (CMU), depicted in Figure 5.10, is responsible for
generating the clocks required by the GTM’s various sub-modules, including the
Timing Module (TIM), the Timing and Output Module (TOM), and the ATOM.
With regard to the TOM, this module is capable of utilising one of five fixed clocks,
each with a division factor with respect to the input clock.
In the following application, the clock CMU_FXCLK0 = CMU_CLK0

2 has been
enabled. In the theoretical case, this should be CMU_FXCLK0 = 200MHz

2 =
100MHz. In this context, the TOM is employed to generate a PWM with a fre-
quency of 2 kHz and a duty cycle of 50%. Pseudo Code 5.15 shows the configuration
of the CCU and TOM to realise Application 2.
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Figure 5.10: Clock Management Unit Block Diagram[11]

void initCCU (void)
{

CCU_clearSafetyAccess (); // Enable write access to
registers

CCU_initConfig (); // CCU Module initialization with default
parameters
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CCU. ClockSel = 1; // Configure f_source0 = f_pll0

CCU. SPBDivider = 3; // Configure SPB divider = 3 -> f_spb=
f_sourc0 /3

CCU. GTMDivider = 1; // Configure f_sourceGTM =2* f_spb and f_GTM
= f_sourceGTM

CCU_setSafetyAccess (); // Disable write access to registers

}

void initGTMTom (void)
{

GTMTom_initConfig (); // GTM Module initialization with
default parameters

GTMTom_enablefxclk0 (); // Function to enable the Fixed Clock
0 frequency to the TOM

GTMTom . channel = 0; // Configure TOM Channel 0 to generate the
PWM

GTMTom . period = 49999; // Configure the period in ticks which
correspond to 2kHz PWM if the system clock is correct

GTMTom . dutyCycle = 24999; // Configure the duty cycle in
ticks which correspond to 50% if the system clock is correct

GTMTom . outputPin = outPin ; // Configure the output pin of the
PWM signal

GTMTom_start (); // Function to start the PWM generation

}

Pseudo Code 5.15: Configuration of CCU and TOM for Application 2
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5.3 Power Structure Control Task

In order to implement the Power Structure Control to manage the power flows of
the DC/DC converter, the TOM was used in the configuration shown in Figure 5.11,
where the eight channels of the TOM are connected in cascade and all synchronised
with respect to the EXT_CLK signal from the AURIX TC39, which is managed
by the inverter.

Figure 5.11: TOM Channels configuration
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During the initial phases, immediately following the system’s activation, the reset
signal from the inverter is not transmitted. At this stage, the DC/DC converter
is in an idle state in which all the micro-controller modules are active, but the
counters that manage all the DC/DC control have not yet been activated. Upon
system startup, the reset signal from the drive is transmitted. The TGC is triggered
from the moment the reset signal is detected by the TIM module, resulting in the
synchronous activation of all counters depicted in Figure 5.11, although with a
slight delay.

The small delay introduced by the TGC in enabling all the counters in syn-
chronous mode precludes the possibility of perfectly replicating the modulating
triangular signals defined in Figure 4.5. This is because the TOM channel counters
must be used in Up-Down mode, and if an error is present at the outset of counting,
it will persist throughout the system’s operational phase.

The solution to this problem is to replicate the modulating triangle waves by
means of counters in Up mode, so that even if there is a small phase shift in the
first period when the channels start counting, this error is immediately cleared by
the arrival of the next reset signal, i.e. after the first 10µs after start-up.

Figures 5.12 and 5.13 show the difference between the two counting modes. In
Up-Down mode, on arrival of the external reset (TIM_EXT_CAPTURE) the
direction of counting is reversed. In Up mode when the reset (TIM_EXT_CAP-
TURE) arrives, the counter value is reset to zero in the following case when
CN0 = CM0, but in external reset mode it is reset when the TIM_EXT_CA-
PTURE signal arrives.
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Figure 5.12: UP-DOWN counting mode[11]

Figure 5.13: UP counting mode[11]

The following section describes the functions associated with the counters within
the structure represented by Figure 5.11:

• CH0: Watchdog timer. The function of this channel is to monitor the reset
signal generated by the inverter, verifying that it arrives with a frequency of
100 kHz within a specified tolerance range of 100 ns. In the event that the
watchdog window is exceeded, the following timer generates an interrupt. This
allows for the internal configuration of CH0 to be modified so that the reset no
longer originates from the inverter,but it is CH0 itself that generates the reset
signal for the other counters of the TOM. This ensures that DC-DC operation
can continue even in the absence of the reset signal from the inverter.
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• CH1, CH2, CH6, CH7: The following channels have the task of reproducing
the four triangular signals shown in Figure 4.5. These are ntr1, ntr3, ntr2
and ntr4, respectively. As illustrated in Figure 5.11, channels CH1 and CH2
are reset by the signal EXT_RESET and are connected to channels CH1
and CH2 of DTM0, which generates two complementary PWMs with dead
time for each input PWM. In contrast, channels CH6 and CH7 are reset by
the signal INT_RESET, generated by CH5, which implements the phase
shift between the four carriers. The latter are also connected to the DTM
module, specifically to channels CH2 and CH3 of DTM1.

• CH3, CH4:The following channels are responsible for generating the rising
and falling edges that will be acquired by the EVADC module and will act as
triggers for the conversions depicted in Figure 4.6.

• CH8: The following channel is responsible of triggering the control task at a
frequency of 100 kHz.

5.3.1 Timer Input Module (TIM) Configuration for Exter-
nal Reset Mechanism

The Timer Input Module (TIM) is responsible for acquiring the reset signal from
the inverter in order to ensure synchronisation between the counters on the TOM.
Figure 5.14 illustrates the block diagram of the TIM module, which depicts a series
of channels connected in cascade.
Each channel receives a series of signals, including TIM_IN(x), and generates
the TIM_EXT_CAPTURE(x) signal, which propagates up to the TOM
module to provide resets to the counters. In the subsequent configuration, the
TIM_CHANNEL 0 is employed, which will generate the TIM_EXT_CAPTURE(0)
signal.
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Figure 5.14: Timer Input Module Block Diagram[11]

The mechanism for generating the TIM_EXT_CAPTURE reset signal is
based on the acquisition and identification of a rising edge, which is monitored
by the EXT_CAP_SRCx sub-block shown in Figure 5.15 . This sub-block is
responsible for generating the pulse to reset the counters of the TOM. The Pseudo
Code 5.16 illustrates the configuration of the TIM in order to achieve the desired
behaviour.

void initTim (void)
{

GTM_enable (); // Function to enable the GTM

TIM_initConfig (); // TIM initialization with default
parameters
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TIM. clusterIndex = 0; // Configure TIM cluster 0

TIM. channelIndex = 0; // Configure TIM channel 0

TIM. inputPin = InputPin ; // Configure the peripheral pin
from which the reset signal is acquired

TIM. activeEdge = RaisingEdge ; // Configure Raising Edge
detection

TIM.mode = ExternalCapture ; // Configure TIM mode in External
Capture Mode

TIM_init ();

}

Pseudo Code 5.16: Configuration of TIM to acquire the external reset signal
and generate the internal reset TIM_EXT_CAPTURE

Figure 5.15: TIM Channel Block Diagram[11]
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5.3.2 Watchdog Timer Configuration

The implementation of the Watchdog Timer utilised TOM Channel 0, thus changing
the source of the reset for all other counters from the reset imposed by the inverter
to the reset generated by the Watchdog Timer. In order to guarantee an error
tolerance in the transmission of the reset signal, the watchdog window has been
configured to 10.1 µs. This ensures that if the reset signal has a periodicity greater
than the watchdog window, the system will enter a safe state in which the reset
source will be changed. Figure 5.11 illustrates that the TOM channel comprises two
compare registers, which can be utilised for the generation of rising and falling edges
of a PWM signal or for interrupt generation. The latter function was employed to
implement the watchdog mechanism, with the CM0 register defining the reset time
window.

Register No Time-Out Configuration Time-Out Configuration
RST_CCU0 1 0
TRIGOUT 0 1

Table 5.4: TOM Channel configuration when the time-out event is triggered

In the event of CN0 = CM0, the TOM channel generates an interrupt service
routine, modifying the internal configuration of Channel 0 as illustrated in Table 5.4.
The Pseudo Code 5.17 provides a comprehensive illustration of the configuration
of TOM Channel 0 and the interrupt service routine that is executed following a
timeout.

void initTom_Channel0 (void)
{

TOM_CH0 . UpDownMode = UpMode ; // Set TOM Channel 0 counter
in Up Mode

TOM_CH0 . RSTCCU0 = 1; // Set TOM Channel 0 to be reset from
TIM_EXT_CAPTURE

TOM_CH0 . EXT_TRIG = 1; // Set TOM Channel 0 to be reset from
TIM_EXT_CAPTURE
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TOM_CH0 . EXTTRIGOUT = 1; // Set TOM Channel 0 to propagate the
TIM_EXT_CAPTURE reset signal to subsequent counters

TOM_CH0 . TRIGOUT = 0; // Set TOM Channel 0 to propagate the
TIM_EXT_CAPTURE reset signal to subsequent counters

TOM_CH0 .CM0 = TimeWindow ; // Configure the Time window to
10.1 micro seconds

TOM_CH0 . Interrupt = InterruptOnCM0 ; // Enable interrupt
generated on CN0=CM0

}

void WATCHDOG_Handler (void)
{

TOM_CH0 . RSR_CCU0 = 0; // Set TOM Channel 0 to be reset from
CN0=CM0

TOM_CH0 . TRIGOUT = 1; // Set TOM Channel 0 to propagate the
internal reset signal to subsequent counters

TOM_CH0 .CM0 = PWM_Period ; // Set TOM Channel 0 to reset
subsequent signals to a frequency of 100 kHz

}

Pseudo Code 5.17: Configuration of TOM Channel 0 for watchdog timer function
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5.3.3 PWM For Switching Pole Control

In order to implement the generation of the eight PWMs for controlling the
MOSFET in the DC-DC circuit diagram, it is necessary to manage the phase shift
between the ntr1, ntr2, ntr3 and ntr4 carriers. Furthermore, the centred aligned
PWMs must be implemented using counters in Up mode. Finally, the dead time
must be introduced between the PWMs and the complementary ones, with the
configuration of this being carried out via DTM.

Phase Shift and Duty Cycle Configuration

In order to reproduce the triangular carriers depicted in Figure 4.5, the cascaded
configuration of the TOM channels illustrated in Figure 5.11 was employed. In
this configuration, TOM_CH1 and TOM_CH2 channels implement the ntr1
and ntr3 carriers, respectively, while TOM_CH6 and TOM_CH7 channels
represent the ntr2 and ntr4 carriers. Given that the theoretical carriers of the
signals are triangular, it is possible to assign the positive vertex of each signal to
the centre of the PWM signal part with a high value.
From the carriers ntr1 and ntr3, it can be observed that the distance between the
high vertices of the two triangulars corresponds to half a period. Furthermore,
from the moment the reset arrives, and therefore the two channels TOM_CH1 and
TOM_CH2 are reset, for TOM_CH1 the high vertex of the triangular corresponds
to a time of 50 µs from the arrival of the reset, while for TOM_CH2 the point
corresponding to the high vertex of the carrier ntr3 corresponds to the instant of
time of the arrival of the reset. With regard to the aforementioned points, which
identify the apex of the triangular shapes generated by the counters in Up mode,
registers CM0 and CM1 will be configured to achieve the desired duty cycle, as
illustrated in the following equations:

CM0 = ResetPoint + DutyCycle ∗ 500 (5.4)

CM1 = ResetPoint − DutyCycle ∗ 500 (5.5)
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The definitions of the parameters in equations 5.4 and 5.5 are provided below:

• ResetPoint indicates the equivalent arrival time of the reset in ticks.

• DutyCycle represents the computed duty cycle in percentage.

With regard to the carriers ntr2 and ntr4, it can be observed from Figure 4.5 that
these are out of phase with each other by half a period. However, they are out
of phase with ntr1 by a quarter period and three-quarters period, respectively.
In order to implement the aforementioned phase shifts correctly, the counter
TOM_CH5 must be employed in addition. The function of this counter is to reset
the channels TOM_CH6 and TOM_CH7 when CN0 = 249, which is equivalent to
one quarter period. At this subsequent moment in time, both counters TOM_CH6
and TOM_CH7 will be reset and thus commence counting from CN0 = 0. With
regard to TOM_CH6, the centre of the PWM generated by it is 50 µs from the
arrival of the reset from TOM_CH5, while for TOM_CH7 it is 0 seconds. The
same logic is employed to configure the duty cycles for ntr2 and ntr4 as for ntr1
and ntr3.

Dead Time Implementation

In order to effectively regulate the power flows within each switching pole, thus
preventing the occurrence of the shoot-through phenomenon, it is essential to
implement two distinct PWMs, with a defined interval of dead time between them
of 200 ns. In order to perform the aforementioned task, the Dead Time Module was
employed, whereby a PWM was taken as an input and generated the complementary
one with the desired dead time. In the following application, two clusters of the
Dead Time Module were employed, DTM0 and DTM1, respectively.
Cluster DTM0 is internally connected to channels TOM_CH1 and TOM_CH2,
and generates the signals ntr1_n and ntr3_n. These, in conjunction with the
two signals generated by the two TOM channels, provide the four PWM signals
required for switching poles 1 and 3. Similarly, DTM1 is connected internally to
the TOM_CH6 and TOM_CH7 channels, which generate the two PWM signals
ntr2_n and ntr4_n, thereby completing the generation of the signals required to
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control switching poles 2 and 4. The Pseudo Code 5.18 illustrates the configuration
procedure of the DTM module.

void initDtm (void)
{

GTM_enable (); // Function to enable the GTM

DTM_initConfig (); // DTM initialization with default
parameters

DTM_RisingDelay = 200 ns // DTM rising delay of 200 ns
configuration

DTM_FallingDelay = 200 ns // DTM falling delay of 200 ns
configuration

TIM_init ();

}

Pseudo Code 5.18: Configuration of DTM

Enhanced Versatile Analog-to-Digital Converter (EVADC) Trigger Con-
figuration

In order to configure the EVADC module channels to be triggered via the TOM
channels, it is first necessary to refer to the internal interconnections between the
TOM and EVADC, which are detailed in the micro-controller’s user manual [18].
From the data extracted from the internal configuration of the AURIX TC39, it
can be discerned that the channels of the TOM that are suitable for hardware
triggering of the EVADC conversion are listed below:

• TOM0 Channel 3

• TOM0 Channel 4
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• TOM0 Channel 6

• TOM0 Channel 7

In the configuration of the TOM channels as depicted in Figure 5.11, it can be
observed that beyond the channel TOM_CH5, the reset for the channels is provided
in a shifted manner with respect to the one provided by the inverter, as elucidated
in Section "Phase Shift and Duty Cycle Configuration". In order to utilise the
TOM channels for triggering the EVADC in phase with the EXT_RESET signal, it
was determined that the only two available channels, TOM_CH3 and TOM_CH4,
immediately preceding TOM_CH5, should be utilised. The two TOM channels
used to trigger the ADC conversions have been assigned to the quantities shown in
Table 5.5.

TOMO Channel Physical quantities
Channel 3 i1, i3, vdcP

Channel 4 i2, i4, vdcN , vbat

Table 5.5: Assignment of triggers for the physical quantities to be sampled.

In order to ensure that the acquisitions are triggered according to the timing
provided in Figure 4.6, it is necessary to check that the first sample is taken by
TOM_CH4 at 2.5 µs after the start of the period.
Following the setting of the two TOM channels for triggering, the first edge from
the moment the channels are first activated is executed by TOM_CH3, which
would not allow the sequence described above. For this purpose, the TGC is used to
enable TOM_CH3 only after TOM_CH4 has generated the first edge for sampling.
Specifically, TOM_CH4 generates an interrupt each time it generates the first edge
of the period, and this is iterated until the EVADC module is configured. From
the moment EVADC has been configured in the software start-up and TOM_CH4
generates the interrupt, the signal produced by TOM_CH4 will be enabled within
the corresponding ISR in a synchronous manner, i.e. at the beginning of the next
period. In the following period, TOM_CH4 generates an interrupt again when this
time it performs the first actual trigger on the EVADC, in the ISR the output of
TOM_CH3 will be enabled, this time asynchronously, so that when TOM_CH3
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generates the next edge, it will propagate to the EVADC generating the trigger.
This configuration mechanism is explained in detail in Pseudo Code 5.19.

void Tom0_Ch4IsrHandler (void)
{

// Verifies that EVADC has been initialised
if( Evadc_is_configured == 0)
{

TOM0_CH4 . clearFlag (); // Reset of Interrupt flag
}

// Verifies that EVADC has been initialized and TOM0_CH4
output is not enabled
else if( Evadc_is_configured == 1 && TOM0_TGC0 .

OutEnableSynchCH4 == 0)
{

TOM0_TGC0 . OutEnableSynchCH4 = 2; // Synchronously enables
TOM0_CH4 output

TOM0_CH4 . clearFlag (); // Reset of Interrupt flag
}

// Verifies that EVADC has been initialized and TOM0_CH4
output is enabled
else if( Evadc_is_configured == 1 && TOM0_TGC0 . OutEnableSynch

== 2)
{

TOM0_TGC0 . OutEnableAsynchCH3 = 2; // Asynchronously
enables TOM0_CH3 output
}

}

Pseudo Code 5.19: Definition of the ISR for the TOM_CH3 and TOM_CH4
channel inizilisation mechanism to trigger on sampling
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Subsequently, the TOM channels were configured to provide the requisite rising
and falling edges at the precise points where sampling was to be performed. As
reported in Chapter 4, it is necessary to consider the delay introduced by the
current sensors, as it does not provide voltage values corresponding to the same
instant of time in which the current sampling is carried out. In order to achieve
this, the rising and falling edges that determine the triggers for sampling have
been shifted by an amount Td_AD, corresponding to 500 ns. This allows the
voltage measurements corresponding to the sampling of currents at the vertices of
the triangular carriers to be acquired. The configuration for the subsequent task
is presented in Pseudo Code 5.20, which illustrates the procedure for configuring
channels TOM_CH3 and TOM_CH4 to generate the sampling triggers for the
EVADC.

void initTom_SamplingChannels (void)
{

// TOM0 Channel 3 configuration

TOM_CH3 . UpDownMode = UpMode ; // Set TOM Channel 3 counter
in Up Mode

TOM_CH3 . RSTCCU0 = 1; // Set TOM Channel 3 to be reset from
Trig [2]

TOM_CH3 . EXT_TRIG = 0; // Set TOM Channel 3 to be reset from
Trig [2]

TOM_CH3 . EXTTRIGOUT = 0; // Set TOM Channel 3 to propagate the
Trig [3] reset signal to subsequent counters

TOM_CH3 . TRIGOUT = 0; // Set TOM Channel 3 to propagate the
Trig [3] reset signal to subsequent counters

TOM_CH3 .CM0 = 5 _micro_sec + Td_AD; // Configure the first
trigger point
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TOM_CH3 .CM1 = 0 _micro_sec + Td_AD; // Configure the second
trigger point

// TOM0 Channel 4 configuration

TOM_CH4 . UpDownMode = UpMode ; // Set TOM Channel 4 counter
in Up Mode

TOM_CH4 . RSTCCU0 = 1; // Set TOM Channel 4 to be reset from
Trig [3]

TOM_CH4 . EXT_TRIG = 0; // Set TOM Channel 4 to be reset from
Trig [3]

TOM_CH4 . EXTTRIGOUT = 0; // Set TOM Channel 4 to propagate the
Trig [4] reset signal to subsequent counters

TOM_CH4 . TRIGOUT = 0; // Set TOM Channel 4 to propagate the
Trig [4] reset signal to subsequent counters

TOM_CH4 .CM0 = 2.5 _micro_sec + Td_AD; // Configure the first
trigger point

TOM_CH4 .CM1 = 7.5 _micro_sec + Td_AD; // Configure the
second trigger point

TOM_CH4 . Interrupt = InterruptOnCM0 ; // Enable interrupt
generated on CN0=CM0

}

Pseudo Code 5.20: Configuration of TOM_CH3 and TOM_CH4
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Control Software for Duty Cycle Update configuration

The final stage of the Power Structure Control Task entails the adaptation of the
previously developed control function to the AURIX TC39. In order to complete
this task, a series of points relating to the behaviour of the microcontroller were
analysed. These included the triggering of the control task, measuring the worst-
case execution time, as the deadline of 8 µs must be observed, and checking the
duty cycle updates synchronously on the control PWMs.

In order to achieve this objective, the optimal point at which to execute the
control task was identified. In accordance with the specifications of the application,
the control task is to be initiated once the four sampling points indicated in Figure
4.8 have been acquired.
To this end, the time taken by the EVADC to carry out two consecutive samplings
at 5 µs intervals was initially measured, utilising the configuration of the EVADC
that employs the DMA mechanism to execute a transaction comprising two trans-
fers: the initial transfer corresponding to the initial sampling and the subsequent
transfer corresponding to the subsequent sampling, i.e. the final sampling.
To measure this time interval, the AURIX TC39’s internal system timer was em-
ployed. Following the initial sampling, the system timer reading was obtained,
while the subsequent reading was taken within the interrupt service routine at
the conclusion of the DMA transaction. In order to generate the trigger for the
conversions, the TOM_CH3 was employed in one-shot mode, with the intention of
creating two fronts 5 µs apart following the trigger provided via software. Once the
optimal point for executing the control task had been determined, the TOM_CH8
was configured to trigger the task in accordance with the condition CN0 = CM0

Once the optimal point at which to call the control task was determined, the
task was executed on the microcontroller to ascertain whether the execution time
exceeded the deadline of 8 µs. In order to obtain the most critical measurement,
the time was recorded in the system’s normal operational mode, which is the
most computationally demanding.
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Finally, a simulation was conducted to verify the duty cycle updates in syn-
chronous mode. The control task was invoked every 10 µs at the previously es-
tablished optimum point, and the duty cycle of the four PWMs associated with
the four triangular carriers was increased by 10% with each call of the task. This
method enabled the determination that the duty cycles update correctly with a
periodicity of 10 µs, in accordance with the requirement.
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Chapter 6

Experimental Results

6.1 Communication System Validation

6.1.1 Controller Area Network (CAN) Validation

As explained in chapter 5.1, a DBC was defined containing the characteristics
of the CAN messages exchanged between the two modules CAN0 and CAN1. In
order to verify the communication system, several CAN messages were sent from
among those in the DBC; in particular, messages were sent in the order and with
the contents shown in Table 6.1.

CAN Message Tx Order Message Content

Message 1 0x55555555
0xABCDEFAB

Message 2 0x24ACDA
Message 3 0x34AB38BC

Message 1 0x55555555
0xABCDEFAB

Message 2 0x24ACDA

Message 1 0x55555555
0xABCDEFAB

Table 6.1: CAN Message Transmission Order and Content
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As a result of the following test it is expected that, after transmission, the
array RxData1 will contain 3 CAN messages of type CAN_Message_1, while
the array RxData2 will contain 2 CAN messages of type CAN_Message_2
and finally the buffer RxData3 will contain only one CAN message of type
CAN_Message_3. First, the accuracy of the actual Baud rate was checked
against the theoretical one. Figure 6.1 shows the Baud rate measurement using an
oscilloscope.

Figure 6.1: Measurement of the accuracy of teh CAN transmission

The result of the test carried out on the micro-controllers in communication,
configured in the way illustrated in Figure 6.2 is reported in Table 6.2, from which
it is possible to note the correct acquisition of the messages on the different buffers,
demonstrating that the transmission and reception mechanism, and in particular
the acceptance filtering, works correctly.
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Figure 6.2: Configuration of two Triboard TC3x9 to test CAN communication

RxData First 32 bit of the
buffer

Last 32 bit of the
buffer

RxData1[0] 0x55555555 0xABCDEFAB
RxData1[1] 0x55555555 0xABCDEFAB
RxData1[2] 0x55555555 0xABCDEFAB
RxData2[0] 0x24ACDA //
RxData2[1] 0x24ACDA //
RxData2[2] // //
RxData3[0] 0x34AB38BC //
RxData3[1] // //
RxData3[2] // //

Table 6.2: contents of registers RxData1, RxData2 and RxData3 following CAN
communication

87



Experimental Results

6.1.2 Universal Asynchronous Receiver Transmitter (UART)
Validation

To validate the UART communication mechanism between the two micro-controllers,
the correct transmission of a single data packet was first verified to measure
the accuracy of the transmission baud rate. The next step was to validate the
synchronisation mechanism implemented to make the communication more robust
in the event of a transmission interruption. For both tests, the two TC3x9 Triboards
were configured as shown in Figure 6.3.

Figure 6.3: Configuration of two Triboard TC3x9 to test UART communication
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Verification of transmission accuracy

To measure the accuracy of the transmission baud rate, a data packet was sent and
the transmission was recorded on an oscilloscope to make the following measurement.
Figure 6.4 shows the measurement of the duration of a single bit, which was found
to be 125 ns, corresponding to the theoretical transmission time of 8Mbps.

Figure 6.4: Measurement of UART transmission time accuracy

Synchronization Mechanism Validation

Two AURIX TC39s were used to validate the communication mechanism in order
to make the system more robust in the event of communication line failures, one
to simulate the inverter, which acts as the transmitter, and the other for the
DC-DC, which acts as the receiver. For validation, the micro-controller managing
the DC-DC converter was used in debug mode, while a logic analyser was used to
verify transmission by the micro-controller managing the inverter.
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The following test identifies two receive buffers for the DC/DC converter:

• RxBuffer: destination buffer of the DMA transfer, which takes data from
the RxFIFO.

• RxControlBuffer: buffer used in the control task containing the last complete
UART transmission.

In the following scenario, two data packets were sent in the order shown in Table
6.3

UART Message Tx order Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Data Package 1 0x23 0x43 0x12 0x28 0x01
Data Package 2 0x11 0x12 0x13 0x14 //

Table 6.3: UART Message Transmission Order and Content

As can be seen, packet 2 consists of 4 bytes, so that a communication interruption
due to a malfunction is simulated. Figure 6.5 shows the communication acquired
via the Logical Analyser.

Figure 6.5: Acquisition of UART communication via logical analyser. The top
shows the two transmitted data packets, while the bottom shows the status of the
synchronisation signal toggling before the start of a packet transmission
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As a result of the communication, it is expected that the RxControlBuffer is
equal to the content of the first packet sent, since, as 5 bytes have not arrived since
the last communication, the content of packet 1 in the RxControlBuffer has not
been replaced with the partially sent packet 2. Figure 6.6 shows the last 4 transfers
of the DMA in RxBuffer, the last content of the buffer is the last element of packet
1 as it was not overwritten.

Figure 6.6: RxBuffer content after the transmission of the two Data Packages
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Figure 6.7 shows the content in RxControlBuffer, which as can be seen respects
the expected behaviour in that it contains the first transmitted data packet, as the
latter is complete.

Figure 6.7: RxControlBuffer content after the transmission of the two Data
Packages

6.2 External Clock Task Verification

In order to verify the correct configuration of the System PLL, two applications
were developed, Application 1 and Application 2, respectively, as defined in 5.2.
For both applications, a 10 MHz input clock signal to the microcontroller with a
voltage between 0V and 2V was used, as illustrated in Figure 6.8. The two results
obtained from the two validation methods are presented below.
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Figure 6.8: External clock signal at 10 MHz and amplitude between 0V and 2V

6.2.1 Results of Application 1

The objective of the subsequent application is to validate the configuration of the
SYSTEM PLL utilising the micro-controller in External Clock Output Mode.
By measuring the generated output signal f_out, it is possible to determine the clock
frequency generated by the SYSPLL. To ensure an accurate measurement of the
frequency in question, the oscilloscope was employed. The resulting measurement
of the output signal is illustrated in Figure 6.9, which depicts a frequency of
approximately 1 MHz on the f_out signal. From the measured frequency, it is
possible to determine the frequency f_source0 using the formula defined in section
5.2.3:

fsource0 = fout ∗ SPBDIV ∗ n ∗ 2 = 995.149 ∗ 103 ∗ 3 ∗ 50 ∗ 2 = 298.5MHz (6.1)
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Figure 6.9: Output signal produced in External Clock Output Mode

6.2.2 Application 2 Results

In order to generate a PWM signal of 2 kHz, it was necessary to configure
the compare register to guarantee the theoretical clock frequency of the TOM
CMU_FXCLK0, which is 100 MHz. The value used by the compare register to
determine the period is therefore 100MHz

2kHz
= 50,000 ticks. From the measurement of

the PWM signal frequency shown in Figure 6.10, the frequency was found to be
1.99 kHz, from which is possible to compute the clock frequency of the TOM:

CMU_FXCLK0 = 1.99 ∗ 103 ∗ 50000 = 99.5MHz (6.2)

From the following frequency, it is possible to derive the frequency f_GTM:

fGT M = 2 ∗ CMU_FXCLK0 = 2 ∗ 99.5MHz = 199MHz (6.3)

The same f_GTM is derived from the frequency f_spb, according to the following
relationship:

fGT M = 2 ∗ fspb = 2 ∗ fsource0

3 (6.4)
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The inverse of the equation 6.4 yields the following result:

fsource0 = fGT M ∗ 3
2 = 199MHz ∗ 3

2 = 298.5MHz (6.5)

, which corresponds to the frequency also obtained in Application 1

Figure 6.10: Output signal produced by GTM in External Input Clock Mode

From the results provided by Application 1 and Application 2, it is possible
to trace the frequency of the input signal to the microcontroller. Exploiting the
configuration of the SYSPLL, the following result was obtained:

fosc = fsource0 ∗ 2
60 = 9.95MHz (6.6)

. The following result shows that from the input signal to the micro-controller,
although there is a deviation in the signal between the desired frequency and the
actual frequency of 50kHz, the micro-controller is still able to function correctly,
guaranteeing the correct operation of the modules inside it.
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6.2.3 Verification of Backup Clock Triggering

In order to verify the correct intervention of the backup clock in the event of a fault
in the input clock signal to the microcontroller, the clock signal was voluntarily
interrupted in the case of Application 1. As the backup clock is at a frequency of
100MHz, it is expected that the frequency of the signal f_out will be as follows:

fout = fback

SPBDIV ∗ n ∗ 2 = 100 ∗ 106

3 ∗ 50 ∗ 2 = 333.3kHz (6.7)

Figure 6.11 shows the output signal f_out in the fault situation where the external
clock fails. As can be seen from the measurement taken, the frequency of the f_out
signal is 335.8 kHz, resulting in a slight deviation from the theoretical value of
approximately 3kHz.

Figure 6.11: Output signal Produced in External Clock Output Mode when
Backup Clock is active
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To confirm that the backup clock is effectively active, the CLK_SEL bit is
monitored, which determines which of the two clocks f_pll0 and f_back will be
distributed across all modules in the form of f_source0. Table 6.4 shows the
definition of the CLK_SEL bitfield. First, the CLK_SEL bitfield was observed
during correct system operation, i.e. in the situation where the input clock is
present and that it meets the system requirements, obtaining from debugging the
result shown in Figure 6.12.

CLK_SEL
BIT Description
00 fBACK is used as clock source

fsource0, fsrc1, and fsource2

01 fPLL0 is used as clock source fsource0;
fPLL1 is used as clock source fsrc1;

fPLL2 is used as clock source fsource2

Table 6.4: Definition of CLK_SEL bitfield

Figure 6.12: CLK_SEL bitfield status when input clock frequency meets require-
ments

Once the input clock is removed from the microcontroller, the following bit is
automatically changed, making the switch from frequency f_pll0 to f_back, as
shown in Figure 6.13.

Figure 6.13: CLK_SEL bitfield status when f_back clock is activated
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6.3 Power Structure Control Task Validation

6.3.1 Phase shift between the four carriers

The initial validation of the power structure control task was conducted on the
configuration of TOM channels 1, 2, 6 and 7. This was done to verify that the
phase shifts between the counters complied with the specifications shown in Figure
4.5. In order to validate the correctness of the phase shift, groups of two signals
were acquired by oscilloscope using different duty cycles for each measurement.
This was done in order to verify that the phase shifts are always made with respect
to the centre of the time interval in which the signals have a high value.
Figure 6.14 illustrates the signals ntr1 (yellow) and ntr2 (green), which demonstrate
a phase shift corresponding to the theoretical value of 2.5 µs. The duty cycles of
ntr1 and ntr2 are 60% and 20%, respectively.

Figure 6.14: phase shift between ntr1 and ntr2 acquired by oscilloscope. From
the measurements, ∆t = 2.5 µs
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Figure 6.15 illustrates the measurement conducted on signals ntr1(yellow) and
ntr3(green), with duty cycles of 26% and 36% respectively, and with a phase shift
of half a period, i.e. 5 µs.

Figure 6.15: phase shift between ntr1 and ntr3 acquired by oscilloscope. From
the measurements, ∆t = 5 µs

Finally, the signals ntr1 (yellow) and ntr4 (green) were measured with duty
cycles of 72% and 60%, respectively. The acquisition of these signals is shown in
Figure 6.16. From this figure, it can be verified that the phase shift is 2.5 µs, which
is in the opposite direction to the phase shift between ntr1 and ntr2.
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Figure 6.16: phase shift between ntr1 and ntr4 acquired by oscilloscope. From
the measurements, ∆t = 2.5 µs

100



Experimental Results

6.3.2 Dead Time measurement

Once the configuration of the channels for the phase shift had been validated,
the DTM was enabled in order to verify that, in addition to the dead time, the
total eight PWMs for controlling the MOSFETs met the specified requirements.
Firstly, the dead time between the ntr1 and ntr1_n signals was measured using
an oscilloscope. The acquisition of this is shown in Figure 6.17, and it is precisely
equal to the theoretical value, namely 200 ns.

Figure 6.17: Dead Time Measurement

The 8 PWMs for controlling the 8 MOSFETs were then acquired by means of
a logical analyser, which are shown in Figure 6.18. One aspect to be taken into
consideration is the error on the duty cycle introduced by the dead time; in fact,
following the dead time, the time interval in which the signal has a high value is
less than 100 ns on each edge, for a total of 200 ns. This reduction corresponds to
2% less duty cycle than the theoretical one, as shown in Figure 6.19, in which it
can be seen that the actual duty cycle is 58% while the theoretical duty cycle is
60%.

101



Experimental Results

Figure 6.18: Acquisition of the 8 PWMs for controlling the DC-DC converter

Figure 6.19: Measurement of the 2% duty cycle variation due to the presence of
dead time
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6.3.3 EVADC Trigger Validation

To verify the initialisation mechanism of the TOM CH3 and CH4 channels for
triggering the EVADC converter in order to guarantee the correct sampling sequence,
the logical analyser was used to acquire the signals produced by TOM_CH3 and
TOM_CH4 following the arrival of the reset signal from the inverter. Figure 6.20
shows the initialisation sequence of the triggers for sampling, from which it can
be seen that the first edge is generated by TOM_CH4, thus guaranteeing the
correct acquisition sequence. The same figure shows that the second trigger, the
one performed by TOM_CH3, occurs 2.5 µs after the first trigger, thus meeting
the requirements.

Figure 6.20: Representation of the trigger sequence for EVADCs from channels
TOM_CH3 and TOM_CH4 following the first arrival of the external reset signal.

6.3.4 Control Task Verification

The first validation of the control task was carried out at the optimal point
of execution of the control ISR. Using the technique described in Chapter 5.5,
the time between the first conversion carried out by TOM_CH3 and the end
of the DMA transaction corresponding to the samplings also associated with
TOM_CH3 was measured. Figure 6.21 shows the two acquisitions made on the
System Timer, respectively tick0 corresponding to the time of the first sampling
and tick2 corresponding to the end of the DMA transaction.
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Figure 6.21: The time interval between the initial trigger and the conclusion of
the DMA transaction is to be quantified utilising the methodology delineated in
Method 1.

Performing the difference between tick2 and tick0 yields a tick interval of 588,
which corresponds to 5.88 µs since the System Timer has a clock of 100 MHz. The
same measurement is shown in Figure 6.22, performed with logical analyser, which
is slightly different due to the lower accuracy of the device.

Figure 6.22: The time interval between the initial trigger and the conclusion of
the DMA transaction is to be quantified utilising the methodology delineated in
Method 2.
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Figure 6.23: Oscilloscope measurement of the time between the first sampling by
TOM_CH3 and the call to the control task. As can be seen from the measurement,
the value ∆t corresponds to the theoretical value, i.e. 6 µs

Following the measurement of the time elapsed between the initial sampling
and the conclusion of the DMA transaction, the start time of the control task
was set at 6 µs from the initial sampling. This was done in order to ensure that,
upon the invocation of the task, all four acquisitions are available on the buffers
utilized within the task. Figure 6.23 illustrates the temporal interval between the
initial sampling event and the initiation of the control task, which is represented
by the falling edge generated by TOM_CH8. Once the call point of the control
algorithm was determined, it was analysed the worst case execution time among
the various possible states of the DC-DC converter.
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The measured execution times associated with each state were entered in Table
6.5, from which it is possible to identify the state that provides the worst case
execution time, i.e. the GO state. From the following analysis, it can be concluded
that the AURIX TC39 micro controller is capable of executing the control task
within the imposed dead time of 8 µs.

STATE Average Execution Time
RESET 4.95 µs

START UP 4.75 µs
START UP CC 4.35 µs

GO 5.09 µs
Table 6.5: Measurement of the execution times for each state of the DC-DC
converter

Finally, the control task was analysed in order to verify that the synchronous
update of the duty cycles functions correctly. In order to achieve this, the control
task was configured in such a way that the duty cycles within it are increased by
10% each time the task is executed. Figure 6.24 illustrates the sequence of updates
for the four PWM carriers, ntr1, ntr2, ntr3 and ntr4, respectively.

Figure 6.24: Synchronous duty cycle update of the 4 main PWMs carriers for
controlling the MOSFETs of the DC-DC converter
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Chapter 7

Conclusion and future works

The AURIX TC39 micro-controller, due to its internal architecture and the sub-
modules it contains, represents an optimal solution for the type of application
developed. In terms of the implementation of the communication network with the
other micro-controllers in the electrical architecture, it was possible to implement
the UART and CAN protocols, thereby ensuring precise and fast transmission
times, particularly for the UART, for which it was possible to configure a baud rate
of 8MBaud, thus meeting the requirement imposed in order to guarantee adequate
DC-DC control. Furthermore, the ERU module enabled the implementation of
a synchronisation mechanism, thereby enhancing the robustness of the UART
protocol.
To analyse the behaviour of the microcontroller in External Clock Input mode,
the System PLL was examined. It was found that the System PLL was capable
of configuring the system clock to 300MHz, derived from an external clock of
10MHz. A further module that requires in-depth study is the Peripheral PLL,
which is responsible for generating the clock for the interface sub-modules with the
external environment. These include the MCMCAN and ASCLIN modules, which
are used for the CAN and UART protocols, respectively. A potential future area
of investigation could be the comprehensive analysis of the collective behaviour
of the three micro-controllers, with their respective PERPLLs configured in an
appropriate manner, with the objective of validating the configuration for the final
architectural design, which involves the three AURIX micro-controllers sharing the
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same input clock and communicating with each other.
The utilisation of the TOM module for the generation of the eight complementary
PWMs with dead time proved to be an optimal solution for the control of the
power structure. This was achieved by the use of nine TOM channels, which were
all part of the same cluster, thus guaranteeing the propagation of the reset signal
common to all counters. The implementation of the dead time was facilitated by
the DTM within the GTM, as it was possible to implement the dead time via
hardware, despite the three instants of clock delay caused by the DTM between
input and output. This did not prove to be a problem, as the delay represents a
constant value, thus guaranteeing deterministic behaviour.
From the experimental results, the AURIX TC39 micro controller was able to
execute the periodic control task with a worst-case execution time of 5.09 micro
seconds, thus falling within the imposed dead line of 8 µs, within which the reading
from the sampling registers, the functions for calculating duty cycles and updating
the shadow registers for the compare registers are executed.
To further optimise the robustness of the control, guaranteeing higher margins
than the current dead line, a multi-core architecture analysis could be carried out
in order to distribute the execution of the tasks in the application over the 6 cores
of the AURIX TC39 architecture.
To conclude, it would be interesting to validate the software by performing an
integration test, thus merging all the software portions developed and verifying the
behaviour of the software and of the micro-controller in a simulated environment.
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