
POLITECNICO DI TORINO

MASTER’s Degree in Software Engineering

MASTER’s Degree Thesis

Transforming IoT Prototypes into
Scalable and Maintainable Industrial

Software Solutions

Supervisors

Prof. STEFANO QUER

Candidate

EDOARDO MICCONO

July 2024

Summary

The modern software development landscape offers multiple ways to write small
code snippets in a really fast and efficient way, thanks to a variety of AI-powered
tools that greatly simplify the creation of small to medium-sized projects. However,
transitioning from a small proof-of-concept project to a scalable and maintainable
industrial production code is a challenging endeavor.
The thesis analyzes the difference between these two phases, emphasizing the
transformation from a code prototype, focused on core functionalities and feasibility
of a project, into a robust, scalable, and maintainable market-ready software
solution. This transformation process involves multiple crucial steps, that will
greatly enhance the overall quality of the product thanks to CI/CD methodologies
and best practices while also adding new features and functionalities.
Extensive testing will be implemented ensuring the software works as intended and
meets the requirements, also identifying errors that may go unnoticed otherwise.
The test suite is implemented using Jest and Supertest, leveraging new technologies
such as Test containers instead of relying on mocking services and databases.
The suite will then be integrated into a pipeline, further improving the quality
of the code merged into the main repository. This will be paired with precise
documentation, crucial for maintenance, general system’s understanding and future
development of the application.
An Object relational mapping (ORM) library and a validation library will be
introduced (Drizzle ORM and ZOD in this case) with the purpose of further
improving the software reliability, security and scalability.
Additionally, this thesis leverages this new infrastructure, making the integration
of Quality of Life (QoL) and management features easier to test and implement,
refactoring huge parts of the existing code, and enhancing the overall application.
Through examination of methodologies, tools and best practices, this thesis pro-
vides a guide transitioning from prototype to production code, demonstrating the

ii

effectiveness of these practices directly with the implementation of new useful
features.

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1

2 Presentation: IoT, Architecture and Context 3

2.1 IoT . 3

2.1.1 IIoT . 4

2.2 AROL Group . 5

2.3 AROL Layered modular architecture 6

2.3.1 Device or Perception layer 7

2.3.2 Network or Transport layer 9

2.3.3 Service or Processing layer 10

2.3.4 Content or Application layer 10

2.4 Objective of the thesis . 11

3 Tech Stack 12

3.1 Objectives of the app . 12

3.2 Local development environment and Tools 13

v

3.2.1 VS Code . 14
3.2.2 Intellij IDEA . 14

3.3 Programming languages . 15
3.3.1 JavaScript . 15
3.3.2 Typescript . 16

3.4 Application’s Architecture . 18
3.5 Client tier . 20

3.5.1 React.js . 20
3.6 Server tier . 22

3.6.1 Node.js . 22
3.6.2 Express.js - a Node.js framework 23

3.7 Data tier . 24
3.7.1 PostgreSQL - operational DB 24
3.7.2 AWS Timestream . 25
3.7.3 AWS S3 . 26

3.8 Docker . 26
3.8.1 Docker architecture . 27
3.8.2 Docker images and containers 27
3.8.3 Docker Compose . 28

3.9 Localstack . 30
3.10 Security . 31

3.10.1 Authentication . 32
3.10.2 JWT - JSON Web Token . 33
3.10.3 Role based access . 36

3.11 Starting point . 36

4 New functionalities 37

4.1 Superuser . 38
4.2 Company management . 39

vi

4.3 User management features . 40
4.4 Machinery Management . 42
4.5 Template creation and management 42
4.6 Notification System Design . 43

4.6.1 Requirements . 44
4.6.2 System Design . 44
4.6.3 Implementation . 45
4.6.4 Optimizing Frontend folder structure and organization . . . 46

5 Technological Improvements, New Tools and Libraries 48

5.1 Drizzle ORM . 48
5.1.1 Model definition and query construction 49
5.1.2 Database migration and transaction 50

5.2 ZOD validation . 51
5.3 Test Suite . 52

5.3.1 Unit Tests . 53
5.3.2 Integration Test . 53
5.3.3 Benefits . 53

5.4 Frameworks and Libraries . 54
5.4.1 Supertest . 55
5.4.2 Jest . 56

5.5 ESLint . 58
5.6 Test Containers . 59

6 Conclusions and results 61

6.1 Bitbucket Pipeline . 61
6.2 BE refactoring . 64
6.3 Cloud deployment vs on premises deployment 68
6.4 Conclusions and future works . 69

vii

List of Tables

2.1 Summary of AROL’s layered architecture 6

3.1 Comparison of JavaScript and Typescript 18

4.1 Initial Notification Table Structure 44
4.2 Notification Table Structure . 45
4.3 Notification Content Table Structure 45

5.1 Differences between a Library and a Framework 55

6.1 Summary of BE’s architecture . 65

viii

List of Figures

2.1 Image IIoT architecture [2]; . 7

2.2 Images of AROL Equatorque capping machine [3] 8

2.3 AROL current IIoT architecture and Infrastructure 9

2.4 Example of MQTT protocol [4] . 10

2.5 Images of built-in software . 11

3.1 Dynamic dashboard solution . 13

3.2 Typescript infers the ’string’ type even if it’s not declared and the
IDE throws an error . 17

3.3 Images of Client Server and Data tier 19

3.4 React Virtual DOM and browser DOM comparison [9] 21

3.5 Docker Containerization . 28

3.6 Differences between a VM and a container 29

3.7 Docker Compose Example . 30

3.8 Localstack architecture . 31

3.9 JSON JWT object [18] . 33

3.10 Schema explaining the normal functioning of a JWT token [19] . . . 35

3.11 Schema explaining the refreshing of a JWT token [20] 35

4.1 Screenshots of Superuser schema . 38

4.2 Screenshots of Superuser interface 39

4.3 Images of Company Management 40

ix

4.4 Users management menu . 41
4.5 Machinery management options and filters 42
4.6 Templates selection example . 43
4.7 FE folders structure . 47

5.1 Example of a Drizzle table . 49
5.2 Query construction example . 50
5.3 User Schema Example . 52
5.4 Supertest Agent’s Setup . 56
5.5 Jest Test Example . 57
5.6 Jest Code Coverage examples . 57

6.1 example of .YAML file . 62
6.2 GUI of Bitbucket Pipeline . 63
6.3 BE schema design . 64
6.4 BE controller before refactoring . 65
6.5 BE service before refactoring . 66
6.6 BE controller after refactoring . 67
6.7 BE service after refactoring . 67

x

Acronyms

DB
Data Base

API
Application Programming Interface

ORM
Object Relational Mapper

CI/CD
Continuous Integration / Continuous Development

I/O
Input Output

HTTP
HyperText Transfer Protocol

UI
User Interface

UX
User eXperience

SQL
Structured Query Language

xii

IoT
Internet of Things

IIoT
Industrial Internet of Things

QoL
Quality of Life

AI
Artificial Intelligence

IDE
Integrated Development Environment

ECMA
European Computer Manufacturers Association

HTML
HyperText Markup Language

CSS
Cascading Style Sheets

DOM
Document Object Model

RDBMS
Relational Database System

AWS
Amazon Web Services

JSON
JavaScript Object Notation

xiii

JWT
JSON Web Token

DevOps
Development and Operations

YAML
Yet Another Markup Language

VM
Virtual Machine

FE
FrontEnd

BE
BackEnd

PK
Primary Key

FK
Foreign Key

xiv

Chapter 1

Introduction

The Internet of Things (IoT) and Artificial Intelligence (AI) have been rapidly
evolving in recent years, transforming various industries and significantly impacting
daily life.
IoT refers to an interconnected network of physical devices, that collects and
exchange data, while AI involves systems capable of performing tasks that typically
require human intelligence.
The proliferation and growth of IoT has been remarkable in the recent years, and
it has influenced the whole world, from normal people living their daily life, with
"smart" accessories such as light bulbs or thermostats, to companies that leverage
sensors and data to optimize their industrial processes.
At the same time AI had huge breakthroughs, in many of its fields, particularly in
machine learning, deep learning and natural language processing. These advance-
ments made advanced algorithms, capable of analyzing large datasets, recognizing
patterns, making high accuracy predictions and even program in every programming
language with high proficiency.
The high amount of data provided by IoT devices, can now be analyzed by AI
to improve products and processes. This synergy will eventually lead to smarter
systems, capable of predictive maintenance and autonomous decision making.
In the modern era of software development, thanks to AI powered tools such as
ChatGPT, CodeCopilot and others, is really easy to create small to medium sized
projects. Nowadays any reasonably motivated individual could create some small
applications able to perform simple tasks.
As many may see this as the end of the developer’s job, this thesis will deeply

1

Introduction

analyze the differences between a small sized project and a professional, sellable
software product.
These small medium projects are usually really effective to test functionalities,
ideas or proof of concepts, and they are critical to understand if a software product
may work or not, but transitioning a project from a nascent code prototype to a
robust and scalable industrial production code base is an important and challenging
endeavor. This transition is crucial for properly transforming new innovative ideas
and solutions into reliable and maintainable code, able to withstand the real-world
applications.
A code prototype typically implements all the core functionalities and demonstrates
the feasibility of a concept, and it is always focused on proving the viability of ideas
rather than adhering to best practices. This approach is optimal for exploring and
validating new concepts but it lacks documentation and robustness, required for
industrial production.
Industrial production code on the other hand demands a more careful and com-
prehensive approach, that takes into account multiple factors obviously left out
when prototyping. It is required to adhere to some code standards, to take into
account the scale (and the potential scalability) of a project, as well as security
and maintainability. This transition requires a meticulous approach, involving code
refactoring, extensive testing, documentation, optimization and adherence to best
coding practices and standards.
This thesis will delve into this process of transforming a project from its prototype
phase into a large-scale production code, not only from a purely technical standpoint,
but also implementing into the existing app useful management functionality and
Quality of Life (QoL) features, to leverage the infrastructure created that made
this addictions easier to test and implement.
We will be exploring critical steps, methodologies and tools used to make this
transformation possible.

2

Chapter 2

Presentation: IoT,
Architecture and Context

This chapter explores the impact of IoT and Industry 4.0 , and introduces AROL
IoT architecture. We examine principles, implementation and benefits of this
architecture, showcasing its role in the modern industry, and presenting some core
concepts that will be useful to understand the future chapters.

2.1 IoT

IoT represents a paradigm shift in how devices and systems connect and interact
with each others. Embedding sensors and softwares into traditionally analogical
everyday objects, we obtain a huge network of interconnected devices that can
communicate seamlessly.
The IoT concept dates back to 1980, where a university equipped a Coke machine
with sensors to report its inventory and check if they were cold, however it isn’t
until the early-mid 2000s that IoT began to look like a new system that can shape
the future, where technological innovation in wireless connectivity, sensors and
data analytics made this concept more real and feasible.
IoT encompasses a broad variety of devices, from wearable technology to household
appliances, but they all share 4 key components:

1. Devices/Sensors - literally the "Things" in IoT, equipped with sensors to
perform some kind of checks.

3

Presentation: IoT, Architecture and Context

2. Connectivity - every device needs some kind of connectivity unit able to
transmit data to other devices or central systems.

3. Data Processing - the data collected by the devices must be properly processed,
this can happen directly on the device (edge computing) or directly at a central
server (cloud computing).

4. User Interface - everyday users must be able to interact with the IoT system
through mobile apps or web applications, to check and receive notification
about the status of their devices.

As example any IoT device could be programmed to improve performance or energy
consumption depending on the situation and with very little computing effort,
while also providing real time feedback to the user.
The primary aim of IoT is to enhance every aspect of everyday life, improving
convenience, efficiency and decision making. Its versatility allows it to be applied
to numerous different use cases: from smart homes, to healthcare, to agriculture or
smart cities.
The IoT term is really wide and it encompasses so many sectors that we must
narrow our focus, to the one we are more interested in: Industrial Internet of
Things (IIoT).

2.1.1 IIoT

While IoT focuses on consumer application, IIoT (Industrial Internet Of Things)
targets the industrial sector, deploying smart sensors on industrial machines,
allowing data gathering and analysis, improving efficiency, productivity and safety.
The general idea is basically the same as IoT, but given the industrial impact on
economy, production ad safety, The stakes in the industrial field are even higher.
Storing and analyzing this huge amount of data allows to extend the machineries
lifespan by predicting potential failures and doing the needed maintenance before
accidents happen. Also processes like supply chain management are enhanced
through real time tracking of goods, which makes the whole process simpler, not
to mention the fact that having all of these sensors on (usually) very expensive
machines, allows the company to take data-driven decision, minimizing the wastes
and maximizing production and performances.
All of these upsides granted the IIoT the name of Industry 4.0, representing a
substantial shift in how the industries operate, driven by technological innovations.

4

Presentation: IoT, Architecture and Context

Integrating IoT, cloud computing and AI to create smart factories and intelligent
production systems, leads the world into unprecedented levels of efficiency and
innovation.
The number 4.0 derives from the fact that historically there has been three industrial
revolutions, and that’s why it is also usually referred as the Fourth Industrial
Revolution:

1. First Industrial Revolution - late 18th century, brings steam power into
industry production.

2. Second Industrial Revolution - early 20th century, brings mass production
and electricity into assembly lines.

3. Third Industrial Revolution - mid 20th century, brings automation, computers
and electronics into industries.

While it brings to the table lots of benefits, it also raises some concerns, since
it changes not only the way people interact with machines but also the whole
workforce of industries has to be redistributed in the newest areas like AI, data
analytics, robotics and so on. Also the great number of devices connected one
another may raise concerns due security and interoperability, since integrating two
different IIoT systems together may be quite complex, and it needs establishing
of some common standards. Not to mention the fact that mid to small industries
may find hard to perform this transition since it requires a huge investment in
infrastructure, technology and training.
Even knowing some problems that may arise, the future of Industry 4.0 looks
promising, and the constant digital innovations and advancements are bound to
improve and enhance this sector even more.

2.2 AROL Group

AROL Group includes 4 different companies : AROL Closure System, MACA,
Tirelli and UNIMAC-GHERRI. Thanks to 40+ years of experience, AROL Closure
System is a global point of reference and world’s leading manufacturer for the
design, production and distribution of capping, corking, crowning, plugging, and
closing equipment.
AROL’s on-site vast manufacturing capability and lean commitment ensure flexibil-
ity, the highest quality standards, and reliable delivery times. It manufactures over

5

Presentation: IoT, Architecture and Context

700 machines a year and to date, AROL GROUP has installed more than 30.000
machines worldwide [1] .

2.3 AROL Layered modular architecture

We now need to take a step back and discuss the 4 key components of the IoT
structure.
IIoT systems are usually designed following the Layered Modular Architecture,
where each layer represent a different technological stack.
AROL, being an advanced and successful industry, already adopts an IIoT layered
modular architecture, and we need to discuss it in detail.

AROL Layered modular architecture
Device or Perception layer Capping machineries and their built-in

sensors
Network or Transport layer Communication and network infrastruc-

ture like : Modbus TCP/IP protocol,
PackML, Bluetooth

Service or Processing layer Software in the cloud that collects and
processes data arriving from the net-
work layer

Content or Application Layer People interface devices, like computer
screens or tablets

Table 2.1: Summary of AROL’s layered architecture

6

Presentation: IoT, Architecture and Context

Figure 2.1: Image IIoT architecture [2];

2.3.1 Device or Perception layer

The Perception layer is represented by the machinery itself, in our case the capping
machinery. Capping machines are huge industrial equipment used to apply a secure
closure to some kind of container. The containers may vary in size and purposes,
ranging from any kind of bottles to jars. Obviously different kinds of containers
will have different types of capping machines.
Capping machines are widely used in the packaging industry to secure the contents
of a container and maintain the quality and freshness of the product, protecting
it from external contamination. Some machines are designed for high speed, high
volume of operations, while others are designed for lower volume or more specialized
applications. All the sensors are installed directly onto the machine to provide
trustable real time data.

7

Presentation: IoT, Architecture and Context

Figure 2.2: Images of AROL Equatorque capping machine [3]
8

Presentation: IoT, Architecture and Context

2.3.2 Network or Transport layer

The AROL capping machines are equipped with different kinds of sensors, mounted
in different positions. Sensors can be in the central body of the machine or inside
the capping heads (the piece of the machine that will actually perform the closure
of the container). Depending on the position and the need of every sensor, they
may have different kinds of communications, body mounted sensors are directly
connected to the machine’s PLC through Modbus TCP/IP protocol (standard
IEEE Ethernet 802.3) while the head mounted sensors may also be polled via
Bluetooth(or the same Modbus protocol).

Figure 2.3: AROL current IIoT architecture and Infrastructure

AROL in recent years have also expanded and modernized its technology, to better
adapt to the rapid changes of Industry 4.0. Combining edge computing devices and
Node-RED scripts, sensor data processing is brought closer to the device where data
is actually generated, reducing the amount of data sent through the network and
limiting the amount of data processing that needs to be done later on. These edge
computing devices have processing and short term storage capabilities, limiting
the amount of data that needs to be stored in the cloud server since the quantity
of data stored in the cloud is directly proportional with the cloud provider’s bills.
The data ingestion in the cloud is supported by protocols like MQTT (Message
Queuing Telemetry Transport), a lightweight publish-subscribe network protocol
that grants low bandwidth usage and power consumption.

9

Presentation: IoT, Architecture and Context

Figure 2.4: Example of MQTT protocol [4]

2.3.3 Service or Processing layer

This layer represents the software run in the cloud to analyze and transform the
devices data into valuable and insightful information. This is where AI can be
applied to the data to obtain some useful results, such as preemptive maintenance.
The project object of this thesis just presents the information processed and
analyzed by this layer.

2.3.4 Content or Application layer

The existing web application presents the data on this layer, visualizing it on a
computer screens, miles away from where the machine is actually located. This
layer also comprehends the built-in screen of capping machines, that presents the
data in real time as it is sent into the cloud.

10

Presentation: IoT, Architecture and Context

Figure 2.5: Images of built-in software

2.4 Objective of the thesis

This thesis aims to develop and expand an application designed to interact with
IIoT devices. We will start from the excellent initial project, developed by Mario
Deda, and we will delve into a new journey, understanding the work, adapting it to
new technological standards, adding more functionalities, making it more scalable
and reliable through the implementation of test suites, pipelines, linters and CI/CD
best practices.

11

Chapter 3

Tech Stack

In this section we will briefly discuss the local development environment, as well
as the principal tools used and the existing web application, which is the starting
point for all of our future discussions and work. Designed to allow AROL company
to provide software support for their products, the application aims to be an easy
and intuitive way to monitor productivity and efficiency of the capping machines
sold, leveraging this IIoT architecture opportunity.
This chapter will focus on the initial state of the application, which was also our
primary constraint. Understanding the starting conditions is the first step to
appreciate the challenges faced and the decisions made to overcome them. This
insight will provide a comprehensive foundation for understanding the evolution
and growth of this project.

3.1 Objectives of the app

The app has the primary objective of being able to scan, fuse, process and visualize
in a human-friendly manner all the machinery data stored in the cloud. Users must
be able to visualize all this data through a completely customizable and dynamic
dashboard solution, as well as store data and documents for every machinery they
possess. This way the app will be the central point to monitor, manage and check
all machines sold by AROL. Of course most of the data managed by the app is
sensible or reserved, so adequate authentication methods and role based access
must be implemented accordingly.

12

Tech Stack

Figure 3.1: Dynamic dashboard solution

We will now talk about the initial Tech Stack and its Architecture, and all the
following chapters will be dedicated to how this evolved to allow the growth of
functionality and reliability of the app.

3.2 Local development environment and Tools

Integrated Development Environments (IDEs) are used daily by millions of devel-
opers and programmers all over the world, and VS Code and Intellij IDEA are two
of the most popular ones. Each one of them has a huge numbers of supporters due
to its uniqueness, since they represent two sides of the same coin. VS Code it’s

13

Tech Stack

the open source side, being free and completely customizable, Intellij IDEA is paid
software, that offers hundreds of excellent tools out of the box, that most of the
users will never even appreciate properly since no one really needs all of them.

3.2.1 VS Code

VS Code stands for Visual Studio Code, an IDE developed by Microsoft, which
is a lightweight and open source editor that has become the favourite of many
developers.
Being lightweight also means that it’s really fast to install and setup, it only
requires a few clicks and offers a limited set of functionalities. The idea here is that
every developer can choose from the huge marketplace of extension to customize
his workflow only with the specific tools that he needs, without being forced to
download and install a whole package of features that will probably never be used.
One important extension of VS Code that needs to be mentioned is Copilot, an AI-
powered code completion tool developed by GitHub in collaboration with OpenAI.
Copilot assist developers as they write code, it understands the context and the
pattern of the code, suggesting whole lines or blocks of code, greatly accelerating
the development process, enhancing productivity and code quality.
This with many other useful plugins and functionalities like
the integrated terminal, the really well done Version Control integration with Git
and the Live Share features that allows distant team members to work together
remotely, made VS Code a really simple, free, yet powerful product, with almost
no limits to its capabilities [5].

3.2.2 Intellij IDEA

Intellij IDEA on the other hand, developed by JetBrains, is a paid premium
software, it’s a fully fledged full featured IDE with all the functionalities that any
developer may ever need. Primarily aimed at Java development, it also supports a
wide array of languages, each equipped with intelligent coding assistance and deep
integration with developers tools. It offers a large sets of features, but some of the
most notable ones are:

1. Intelligent code completion - Intellij can refactor your code in a simple click
and perform real-time code analysis

14

Tech Stack

2. Database tools - really handy tools for database management such as SQL
databases, allowing to interact with them directly within the IDE.

3. Framework support - extensive support for a wide variety of frameworks,
making it particularly indicated for almost any kind of environment.

4. Version Control Integration - excellent version control support, allows to take
a quick look at the state of the repository you are working in and to perform
operations in a few clicks that may be hard to do manually such as merge or
rebase.

These feature singularly looks like they aren’t a big deal, but all together they
make navigating the codebase and interacting with database or version control
system a seamless activity, really fast and efficient once you learn how to use it.
This rich feature set and its advanced tools makes IntelliJ IDEA a preferred choice
for professional use and enterprise environments [6].

3.3 Programming languages

JavaScript is the clear leader of front-end (FE) development and it has been the go
to choice for many years. Its versatility and ease of use made it a staple in web
development. However application are grown in complexity and often a simple
crash of the app (for whatever reason) may translate in a huge loss of money for the
majority of companies, making the limitation of JavaScript much more apparent.

3.3.1 JavaScript

JavaScript is an interpreted programming language created in 1995 by Brendan
Eich in just 10 days. It was named "Java"script just for marketing purposes to
capitalize on the Java popularity at that time, but it has nothing in common
with it. It was intended to enable web designers and part time programmers to
create dynamic web pages, but its simplicity and cross-platform capabilities made
JavaScript much bigger and largely used than what its creator had ever envisioned.
JavaScript was submitted to ECMA (European Computer Manufacturers Associa-
tion) for standardization, and it was updated over the years, continuously evolving
and improving.
JavaScript is integrated with HTML (HyperText Markup Language) and CSS
(Cascading Style Sheets), and it usually interacts with the DOM (Document Model

15

Tech Stack

Object) of a webpage. The DOM can be visualized as a tree of HTML objects,
managed in fact through JavaScript, which has the capabilities of adding, removing
and modify elements of the DOM, as well as handling events like clicks and form
submissions or fetch data through HTTPs (HyperText Transfer Protocol) requests.
In 2009 Ryan Dahl created Node.js, a runtime environment that allows JavaScript
to run on the server-side, significantly expanding its capabilities beyond the browser.
Since the creation of Node.js, JavaScript landed in the server side of application,
offering an event-driven, non-blocking I/O (Input/Output), and being perfectly
capable to handle HTTP requests and responses, database or file system interactions
[7].

3.3.2 Typescript

As JavaScript became more spread worldwide, its limits became much more ap-
parent. JavaScript was created to carry on simple scripting tasks in browsers,
but overtime it evolved so much that is used both in client and server side. The
simplicity that made him so popular started to become a problem in large codebases.
To address these issues, Microsoft released Typescript in 2012, positioning it as
a tool for building large-scale JavaScript application with robust and safe code.
Typescript is a superset of JavaScript that introduces static typing, type inference
and enhanced IDE support.
Being a super-set means that any JavaScript code will be valid in Typescript,
allowing developers to gradually migrate from the former to the latter without
completely rewriting their code or libraries. Also, being a superset means that any
Typescript code is effectively compiled to JavaScript code before being executed,
since it only adds features like type safety, to avoid many of JavaScript runtime
problems.
Static typing is probably the most important Typescript feature. Typescript
allows developers to define types for variables, parameters and return values,
greatly helping catch type related errors at compile time rather than at runtime,
reducing the likelihood of bugs in production and making the code more robust
and maintainable.
Type inference is also really important, since it allows to keep the repetitive type
annotations at minimum and the code short and clean, while still providing type
safety.

16

Tech Stack

Figure 3.2: Typescript infers the ’string’ type even if it’s not declared and the
IDE throws an error

Explicit type declaration means that the code is more readable and self-documenting,
also allowing the IDE of your choice to do real time error checking [8].
For a more in depth comparison between JavaScript and Typescript check the table
below.

17

Tech Stack

Feature JavaScript Typescript
Typing Dynamically typed Statically typed
Compilation Interpreted Compiled to JavaScript
Type Safety No type safety Provides type safety
Learning Curve Easier for beginners Steeper due to type system
Tooling Support Limited to JavaScript tools Excellent tooling support

with modern IDEs
Code Scalability Less suitable for large

codebases
Better suited for large-scale
applications

Syntax ES5/ES6 and later versions Superset of JavaScript
(ES5/ES6 and later ver-
sions)

Tooling Basic tools (linters debug-
gers)

Advanced tooling and IDE
support

Error Detection Errors found at runtime Errors are caught at
compile-time

Backward Compat-
ibility

Fully compatible with all
browsers

Requires transpilation to
JavaScript

Development
Speed

Faster prototyping Slower due to type check-
ing

Code maintainabil-
ity

Harder to maintain large
codebases

Easier to maintain code-
bases due to type checking

Popular Use Cases Web development, server-
side scripting, game devel-
opment

Enterprise-level ap-
plications, large-scale
JavaScript projects

Table 3.1: Comparison of JavaScript and Typescript

3.4 Application’s Architecture

Here we will discuss the initial architecture, laying the basis for all future discussions
and modifications. The architecture is subdivided in three layers: client, server
and data tier. The whole client and server tier are programmed in Typescript. We
will now proceed to analyze every one of them.

18

Tech Stack

Figure 3.3: Images of Client Server and Data tier

19

Tech Stack

3.5 Client tier

The client tier of the app is developed in React.js which is a Javascript framework
responsible of the whole user interface and user experience. This layer runs in the
user browser and interacts with the server side of the application through API
calls.
This tier is a presentation of the data analyzed and processed by the server side,
but at the same time it’s a sophisticated and highly responsive part of the overall
architecture, which has to call the APIs properly.
User interface and sensor data visualization (achieved through dashboards and
widgets) are presented here. Programmed in Typescript, the purpose of this layer
is to provide clear info and friendly user interaction.

3.5.1 React.js

React.js is an open-source JavaScript library for building UI components and
interfaces. It was created by Jordan Walke, a software engineer at Facebook in
2011, that wanted to offer a solution to the big challenge that its company was facing
at the time: offering a rich and flawless UX, building a dynamic and responsive UI
without giving up on performance.
React was later in 2013 open sourced and released to the public under MIT license.
The resulting features of React are specifically designed to solve this issue, starting
from the component-based architecture, that encourages the realization of reusable
UI components which can be nested, managed and handled independently.
Another key feature in React is the virtual DOM (Document Object Model) since
it keeps track of the state of components and it handles the changes updating only
the part of the UI that changed rather than re-rendering the entire page. Instead
of directly manipulating the browser’s DOM, React creates a new virtual DOM,
compares it with the previous version, and only updates the necessary parts of the
real DOM, reducing useless rendering, minimizing expensive DOM operations and
enhancing performance.

20

Tech Stack

Figure 3.4: React Virtual DOM and browser DOM comparison [9]

Another advantage of React is the JSX (TSX in our case since we are using
Typescript) syntax extension, which allows developers to write HTML-like elements,
which can then be controlled through JavaScript code, making the structure
management of the page intuitive and convenient.
One last cornerstone of React is the unidirectional data flow, that may look like a
limitation initially, but having data flow in a single direction through the whole
application makes it more predictable and easy to understand, especially as it
grows in complexity.
React has 4 principal core concepts that need to be understood and respected to
proficiently work with it:

1. Components - subdivided in functional and class components. Functional
components are stateless and take props as inputs and return JSX.

2. Props - short for proprieties, are read-only inputs passed only from a parent
component to a child component, enforcing this way the unidirectional data
flow.

3. State - a variable inside a component, with dynamic data. States are mutable

21

Tech Stack

and they change over time due to user interactions or network responses. State
is used to control a component’s rendering and behavior.

4. Life-cycle methods - methods bound to execute code at specific points during
a component’s life-cycle.

Nowadays React.js is really popular and diffused, well supported and with good doc-
umentation, making it particularly well-suited for creating dynamic and responsive
single-page (or multiple-pages) applications.
Additionally, since its success and popularity, React offers a large and active
community with a large selection of libraries and tools, that are generally pretty
handy and easy to pick up.
The whole React architecture is designed to offer extreme control to the programmer
offering him ways to control components rendering, appearance (through CSS),
life-cycle, how data is passed between them, states of variables, routing and much
more [10].

3.6 Server tier

At this layer, the technologies used to implement it are specified. We will use
dedicated frameworks and libraries, containing ready-made code that helps the
developer to prevent security issues and reduce the potential of critical bugs.

3.6.1 Node.js

Node.js an open source cross-platform runtime environment that executes JavaScript
on the server side, effectively outside the browser, opening new possibilities and
broadening developers limits, since JavaScript was initially developed to be run in
browsers.
It is efficient, lightweight, and uses and event-driven, non-blocking, single threaded
I/O model; making it optimal for real time services that need to handle a large
number of concurrent connections.
Node.js operates in a single-threaded event loop, handling concurrent operations
using promises, callbacks and async/await calls, so that operations like reading
from a database or file system can be performed asynchronously, leaving the main
thread free to perform other tasks.

22

Tech Stack

Node.js also includes the npm package manager, which makes easier to manage and
install libraries and modules in any Node applications. Its abundance of modules
(it’s the world’s largest software registry) and well maintained plugins makes it a
great choice for small and medium sized projects.
Some of the most important Node.js features are:

1. Middlewares - functions able to access the request(req) and response(res)
objects. Used to perform logging and authentication

2. Routing - allows developers to define routes for different HTTP methods and
URL paths, organizing application logic

3. Database integration - all the most widely used databases, from MongoDB to
PostgreSQL, offers libraries able to help managing database operations.

4. Testing - Node.js application can be tested using frameworks like Mocha or
Jest, providing great support for unit and integration testing.

Node.js has the merit of transforming the server side of development bringing
JavaScript to the back-end. Its architecture is high performance and highly scalable,
with a great offer of libraries and plugins, making it one of the most popular choices
on the market, given that either you are building a simple web server or a complex
enterprise application, Node.js has the tools to suit your needs [11].

3.6.2 Express.js - a Node.js framework

Express.js is a minimalistic and flexible Node.js web application framework, easy
to use and well supported. The very same existence of Express is one of the reason
of Node.js success and vice versa.
Express is open source and can claim a large community of contributors. This
makes it a popular choice among developers for creating server side applications,
since its built in functions and middle-wares, make the management of the server
side a breeze.
Express.js also provides an efficient routing mechanism that allows developers
to map specific URLs to different function or controllers (that handles requests
with different HTTP methods such as GET, POST, PUT, DELETE), as well as
a mechanism that specifies pieces of code that must be executed before or after
certain API calls, allowing for a precise execution flow management.

23

Tech Stack

Express.js offers libraries used to augment existing features, a few of the most
relevant ones are the following:

1. Multer - middleware used to handle multipart/form-data and uploading files.

2. PG-Promise - a PostgreSQL interface for Node.

3. AWS SDK for JS - a set of APIs useful to easily interact with AWS services.

To recap, Express.js is built on top of Node.js, it’s simple and minimal, it does not
come with a lot of built-in functionalities that would force the structure or the
architectural pattern of the project, allowing each project to adopt the strategy
that suits it more, making it versatile and used for a wide range of application,
from web servers to microservices to real time IoT applications [12].

3.7 Data tier

All the complexity is on condensed on the server tier, since the data tier has only
to provide the data when requested. This tier is divided in 3 different parts with 3
different purposes: a PostgreSQL DB as our operational DB, an AWS Timestream
DB, an AWS3 DB.

3.7.1 PostgreSQL - operational DB

This is our operational db, where most of the data created and needed by the
application is stored. As example Here we have all of our user’s and company’s
data.
PostgreSQL (or simply Postgres) is an open-source RDBMS (Relational Database
Management System), known for its robustness and reliability. Born in 1989 by
Michael Stonebraker as POSTGRES project, it was later in 1996 transformed into
PostgreSQL, to highlight its SQL capabilities, and released under that same name.
Given its long history, and the fact that is a system still used and still standing,
Postgres has evolved over decades into a leading database system used worldwide,
with a wide and rich feature set :

1. ACID compliant - Atomicity, Consistency, Isolation and Durability are 4 key
properties of a database, that together ensure data integrity.

24

Tech Stack

2. MVCC (Multi-Version Concurrency Control) - allows multiple transaction to
occur concurrently without blocking the database, greatly improving perfor-
mance

3. Extensible data types - beyond standard types like integers and strings Postgres
supports JSON, XML and key-value pairs, also letting the user define their
own data types.

4. Replication and Partitioning - both synchronous and asynchronous replication
is supported, as well as table partitioning to improve performances on large
tables.

PostgreSQL follows a client-server model; the server, known as "postgres" manages
the database files, accepts connections from the client and performs operations for
them. This allows opportunity for performance and query optimization to be done
directly by the server, leveraging shared buffers, that reduces the needs of disk I/O,
WAL (Write-Ahead Logging) that ensures data integrity logging all changes before
applying them.
All of these features, perks and options make PostgreSQL viable for a large variety
of use cases, that go from web application to geospatial applications or data
warehousing. Its wide range of applications, combined with its open-source nature,
its strong and vibrant community and the continuous innovation, PostgreSQL offers
robustness and flexibility, making it one of the most beloved RDBMS [13].

3.7.2 AWS Timestream

AWS (Amazon Web Services) Timestream is where the Amazon cloud is used to
store sensor data. Exactly for this reason it is a non traditional database, especially
designed to handle big data in input and store it in a proper way.
Timestream is a a fully managed time series database service offered by AWS
(Amazon Web Services), designed to handle the storage, the ingestion and the
querying of time series data. For this reason it’s a No-SQL database, specifically
designed for handling timestamped data, such as monitoring of industrial equipment
(and this is our case), logs of user behaviours or managing of IoT devices.
The storage is efficient, and it separates the data based on the entry age. The older
entries are stored in a slower magnetic storage, and eventually cancelled after a
certain period of time. The newest and freshest data are stored in faster devices,
because it is supposed those are the most accessed and desirable ones.

25

Tech Stack

Timestream is considered a schema-less database since there’s no enforced schema,
but it supports SQL-like queries to provide built-in analytics, able to smooth and
interpolate the high throughput data ingested.
Of course, being an Amazon product, it is well integrated with the whole Amazon
cloud ecosystem [14].

3.7.3 AWS S3

AWS S3 Bucket (Amazon Simple Storage Service or simply Amazon S3 since it
has 3 ’S’ in the name) is used for the storage of machinery documents.
It’s yet another service offered by Amazon, designed for data storage and retrieval
at any scale. It is very durable, reliable, scalable, flexible and integrated with the
whole AWS ecosystem.
One of the most important and impressive statistic is that S3 is designed for
99.999999999% (11 9’s) of durability and 99.99% availability of objects over a
given year. The data is stored redundantly across multiple devices and facilities to
achieve this values [15].

3.8 Docker

Docker is an open-source platform developed by Docker.inc, and today plays
a crucial role in automating the deployment of application inside portable and
lightweight virtual containers.
Docker was released in 2013 by dotCloud and it was specifically designed to solve
the application’s dependency problem. Programming an applications that runs into
every computer system available on the market is quite complex, and the developers
effort to develop and maintain a specific version leads inevitably to abandoning
some systems to favor some of the most diffused ones. The Docker team proposed a
solution to this "dependency hell" problem, giving birth to containerization, crucial
technology in DevOps (Development and Operations) and CI/CD pipelines.
Docker allows developers to package applications and their dependencies into a
unit known as a container. The unit will be equal in all the environments it will
be run, so if it runs on your personal PC, it will run also in every other system
launching that container. A container is similar to a virtual machine, but while
isolating the application processes it also shares the host system kernel, making it

26

Tech Stack

in fact lightweight and efficient.

3.8.1 Docker architecture

The core of Docker is the Docker Engine, a client-server application made of 3
things: The Docker Daemon, the background service responsible for container
management, The Docker Client, needed to interact with the Docker Daemon and
the REST API which allows access to some functionality of Docker through code.

3.8.2 Docker images and containers

The architecture described is used to run containers, that are basically composed
by 2 parts : Docker images and Docker containers.
Docker images are immutable read-only files, also known as Dockerfiles. They
include everything that is needed from the program to run, just like a recipe, they
specify everything that is needed for the correct program execution, from the very
same application code to environment variables and libraries. They serve ad a
blueprint for creating containers. When these instruction are executed by the
Docker Engine, the Docker container is created.
Docker containers are simply instances of Docker images, their greatest perk
being the fact that they are isolated from the outside system, while encapsulating
everything needed to execute the software [16].

27

Tech Stack

Figure 3.5: Docker Containerization

3.8.3 Docker Compose

Docker Compose is a tool used to create multi-container applications. A YAML
file (Yet Another Markup Language) is read by Compose, and multiple containers
will be run as a single service. Each one of them will be run independently and
isolated, but is able to interact with the others when needed.
This whole infrastructure, is highly portable, well isolated, with good performances
since the VMs (Virtual Machines) share the host’s kernel, thus making it all highly
horizontally scalable. This is why Docker has become the standard for Microservices
architectures and Cloud deployments. The independence of containers is also well
suited for DevOps practices, granting environment consistency between different
working teams.
In our case we will use docker Compose to launch 3 different containers, one for
the frontend, one for the backend and one for the application database (Post-
greSQL). When launched locally the application needs 4 containers, the extra one
for localstack to mock AWS3 services.

28

Tech Stack

Figure 3.6: Differences between a VM and a container

29

Tech Stack

Figure 3.7: Docker Compose Example

3.9 Localstack

As the times goes on Cloud services are becoming much more persistent in modern
architectures. AWS (Amazon Web Services) is constantly growing and every year

30

Tech Stack

offers more option and more services to support need an application may have. As
the number of cloud services grows over time, the applications dependency to these
services also raises. Unfortunately, testing these services on the cloud is not an
option, since the bills are calculated on the data used, running test suites that may
insert or remove data just for testing purposes is economically unfeasible.
This is where Localstack enters in the game, an open-source tool that emulates
locally AWS services, an efficient and cost-effective solution to test apps cloud
functionalities. Localstack supports a wide range of AWS services, like AWS S3
(Simple Storage Service), Dynamo DB, SNS, SQS, Elasticsearch and many others.
The service provided are also customizable, making the testing as close as possible
to a real world scenario [17].
In order to communicate with Localstack, since a consistent environment is needed,
a Docker containers needs to be up and running, in order to make the AWS SDK
(Software Development Kit) able to contact the fake cloud service (the Docker
container) through the 4566 port.

Figure 3.8: Localstack architecture

3.10 Security

Due to the wide range of web application and their exposure to the Internet, the
need for robust security measures is critical to protect sensitive data, maintain
users’ trust and ensure the overall integrity of the whole system. Mishandled data

31

Tech Stack

can lead to severe consequences, not only like financial loss but also can have legal
repercussions on the company.
With the word "security" in this case we refer not only to hacker attacks like
man-in-the-middle schemes or SQL injections, but we encompass the overall user
system safety too, since no user in the system should be able to meaningfully
modify data or give inputs that could harm the system or lead to malfunctions.
One of the first step towards a robust and secure web application is a reliable
authentication system.

3.10.1 Authentication

Authentication is the process of verifying the identity of a user before granting
them access to resources, ensuring that only authorized individuals can interact
with sensitive information and systems.
There are different systems to implement the authentication mechanism, compared
and discussed below, but in our web application we opted for a Token Based
Authentication, using JWT (JSON Web Token).

1. Password based authentication - Basic security level, very vulnerable to brute
force attacks and phishing, easy to implement but difficult to scale. Simple
and widely used but less secure. Best for small applications where security is
not a primary concern.

2. Token based authentication - Good security, tokens are short lived and can be
encrypted, it’s highly scalable with moderate vulnerabilities since token can
also be intercepted, stateless. Provides higher security and scalability, suitable
for APIs. Reduces the need for session management.

3. Multi-factor authentication (MFA) - Very high security combining multiple
factors, really complex to implement and cumbersome for the users since it
requires multiple steps, really high implementation complexity, better suited
for high security environments

4. Biometric authentication - High security, biometric information are really
unique and hard to replicate, with moderate complexity and easily scalable.
Provides high security through unique user traits. Best for applications
requiring stringent security measures, though it requires specific hardware.

32

Tech Stack

3.10.2 JWT - JSON Web Token

JWT is a proposed Internet standard (RFC 7519) for transmitting information
between two parties as a JSON object. These tokens are signed to ensure the
integrity and authenticity they claim to contain. Unlike session based authentication,
JWT allows for stateless authentication, which comes in really handy when dealing
with distributed systems or microservices architectures.
A JWT is composed of three parts: Header, Payload and Signature, opportunely
concatenated with dots(.) to form the whole token.

1. Header - typically contains two parts: the type of token used (JWT in our
case) and the signing algorithm used such as HMAC, RSA or SHA256

2. Payload - The payload contains the claims, the statements about the entity
who want to access our services

3. Signature - to create this part we need to take the encoded header, the encoded
payload, a secret and sign that all with the encryption algorithm specified in
the header. this is the part that ensures that our messages and infos weren’t
tampered along the way.

Figure 3.9: JSON JWT object [18]

33

Tech Stack

When a user successfully logs in, the server creates a JWT and sends it back to the
user. This token contains all the claims needed for security and is signed to prevent
tampering. The user will store the token client side or in the local storage. For
every subsequent request, the client need to include the JWT in the Authorization
Header. The server will then proceed to verify the token’s signature, check the
claims and authenticate the user.
Since JWTs are stateless and expire after some predefined time, handling token
refresh is crucial for maintaining user sessions without asking the user again for
authentication. Usually when the user logs into the system 2 different types of
tokens are generated : an access token, used to perform API requests, and a refresh
token, used to obtain a new one when the current one expires. The access token has
usually a short lifespan (usually 10 minutes but can be defined by the programmer)
to minimize the risk of someone snuffing it out. When this happens the client sends
a request to the server refresh token endpoint with its own refresh token. The
server will proceed to verify the refresh token and issue a new access token, so that
the client can update its old one.
In the end JWT is a good, reliable and safe approach to authentication, nonetheless
it has some pros as well as some issues.
Potential issues that may arise are due to inconsistency in its implementation or
in the chosen algorithm. Stronger algorithm are recommended like RSA (Rivest-
Shamir-Adleman algorithm). The secret key used to validate the tokens is also a
point of potential failure, because if compromised, then tokens can be forged by
anyone. Moreover when a token is issued is difficult to revoke, posing yet another
security risk.
The advantages compared to other strategies are not negligible too, like the fact
that they can be safely sent via URL POST parameters or in HTTP headers, or
the fact that they contain all the required information about the user, eliminating
the need of eventual database lookups.

34

Tech Stack

Figure 3.10: Schema explaining the normal functioning of a JWT token [19]

Figure 3.11: Schema explaining the refreshing of a JWT token [20]

35

Tech Stack

3.10.3 Role based access

Given the huge number of different kinds of data present in the application and
the huge number of users that must be able to use it concurrently, the access to
resources is controlled through role based access, which gives users of a specific
roles only certain permissions. Since this roles are unchanged we will briefly discuss
them, giving them context and purpose. The roles are the following: ADMIN,
MANAGER, WORKER.

1. Administrator: Has the highest authority within the company. It is granted
permission to every entity that belongs to his company, overseeing all aspects
of machinery and user administration.

2. Manager: acts as a delegate of the administrator, possessing similar permis-
sion, but only on a subset of machineries that were granted to him by the
administrator. While he is able to modify user profiles, managers cannot
delete users.

3. Worker: He occupies the lowest tier of the hierarchy. Most of his actions are
limited to interacting with dashboards and documents. He cannot manage
users, cannot modify them and he is involved in daily routine operations,
consulting documents and dashboards for his task execution.

3.11 Starting point

This was a brief resume of the starting point of the app, which was expanded and
improved mainly to achieve its original objectives and improve on the industrial
and professional development aspect, introducing new frameworks and CI/CD
integration tools, with the intention to provide it in the future to all AROL
customers, also laying the basis for its potential scalability and adaptation in other
contexts. Through this examination, this research seeks to offer valuable insights
into best practices for web application development and the future trends shaping
the industry.

36

Chapter 4

New functionalities

In this chapter we will discuss about the new functionalities that have been added
to the application to make it more compliant to the requirements defined more
than an year ago by AROL. All the core functionalities were already in place, but
management of users, companies and templates has been added to grant AROL
a better control on the whole system, making a single trusted user able able to
interact and manage the whole system through an intuitive user interface, without
any technological skill required other than understanding the interface. We will
now briefly present the new features as we will discuss them more in depth in the
chapter

• Superuser : Complete control over the application. This user has to be in the
AROL company.

• Company Management features : The superuser can manage all other compa-
nies, creating new ones and deleting old ones.

• User Management features : Users can now be created, updated, disabled and
deleted. User’s passwords can be reset, permissions can be modified, users can
be filtered and searched.

• Machinery Management features : Machines can now be created, updated,
deleted, modified, filtered and searched.

• Template creation and management : Now AROL can create dashboard
templates, so that users don’t have to create them from scratch.

37

New functionalities

4.1 Superuser

A new role has been added. The Superuser will the user entrusted with the control
of the whole application, who can give or revoke access and permissions to data to
any other user in the system. The Superuser is basically the most powerful user
of the application and it can be really useful even simply for debugging purposes
since he can access every resource and every functionality ever implemented.
The addition of the Superuser role is critical for two reasons. First and foremost
it allows the complete control of the system directly to AROL, where even a
non-programmer can be in charge of managing and monitoring every company
everywhere in the world. Second, but not less important, it allows for excellent
customer support. For any problem with the application the superuser can login
and verify the issues in a matter of seconds, as well as provide documentation or
realize specific dashboards templates tailored on the customer’s needs.

Figure 4.1: Screenshots of Superuser schema

38

New functionalities

AROL is the only company allowed to have Superuser roles, so the superuser will be
able to see (and eventually test) all the functionality in the application, for internal
tests and quality assurance, so that AROL itself can use its own application to
monitor its own machines. This means that the superuser belongs to a company
like all the other users, can use and test every functionality, and can manage and
control every other user of the other companies.

Figure 4.2: Screenshots of Superuser interface

4.2 Company management

One of the key features of this work, strictly tied to the Superuser.
A company is in fact a company, a customer of AROL who bought one of more
of its machines. A single company basically containerize the whole package of
machines, documents, users and templates, making the management of all of it
much easier. Another advantage is that each company is independent and cannot

39

New functionalities

see any data belonging to other companies. Each company is uniquely identified
by an ID, a name and a city. Company management allows the creation of new
ones, making the number of potential AROL customers virtually unlimited.
While the old version of the application had basically the scope of a single company,
creating multiple ones means a better partition of users, machineries, and allows
for a better and faster management, as well as an easy and convenient way to
make some data available only to a single customer. Companies can be created
and deleted by the superuser as he sees fit, and ideally they should coincide with
real companies, AROL’s customers.

Figure 4.3: Images of Company Management

4.3 User management features

A new module has been developed with the objective of facilitating the creation
of new users within the AROL system. This module existed previously, and it is
now accessible in multiple parts of the application, like when accessing a company
management page or when managing user’s permissions. It is also possible to
update an existing user account with the added feature of enabling or disabling a
certain account, or simply reset their password, so that every user can chose the

40

New functionalities

one they prefer to access the system

Figure 4.4: Users management menu

Also, users can be disabled or enabled if user has at least admin permission.
Disabled users won’t be able to login into the systems until they are enabled again.
Disabled users are eligible to be cancelled. Cancelling a users requires a two-step
confirmation, that ensures careful consideration, with the option to confirm the
deletion or revert the action and enabling the account. The deletion process under
the hood is managed by database triggers, that allows the database to remain
consistent and remove every piece of data regarding the old user like permissions
on machines or documents.
A filtering and search component has been developed since as the number of user
using the system get bigger, the need for user searching and filtering becomes more
crucial. Users can now be filtered by status, creation date and role, and can be
filtered only by logged in users with user management permissions like admins and
managers.

41

New functionalities

4.4 Machinery Management

Each machinery has now its own drop-down menu where all kinds of operations
can be performed. Machinery can now be created, updated, deleted and searched
through filters. The filter and search component for machineries operates in an
analogous manner to the user filter. The search term is intersected with the applied
filters for a more refined and customized search result. Machines can be filtered for
model and type, number of heard dashboards and documents.

Figure 4.5: Machinery management options and filters

A filtering and search component has been developed since as the number of
machines in the system gets bigger, the need for searching and filtering becomes
more crucial. Machineries can now be filtered by model, type, number of heads,
dashboards and documents.

4.5 Template creation and management

Probably the most useful addiction to the application. A template in this context
refers to a predefined dashboard structure, designed to simplify the monitoring and
management of dashboards, particularly for users who may not have the technical
expertise needed or just are not sure about what widgets to use and in which

42

New functionalities

scenario. The possibility of creating a dashboard for scratch is useful and offers
endless possibilities of customization, but it is a complex and technical task that
many user may want to avoid. The templates solve this issue, giving customers a
predefined dashboards, tailored on the machine that users are working with, and
still giving them the power to modify and update it with the widgets and data
they may like.

Figure 4.6: Templates selection example

4.6 Notification System Design

In today’s digital age an effective communication with customers is critical for the
success of every application, and in AROL’s case, notification could be used to
perform some kind of interaction with the customer, whether it is for marketing
purposes, or just to alert that the system may be down due to an update or even
for signaling that maintenance on some kind of machine is due.

43

New functionalities

4.6.1 Requirements

Before starting to design a system, it is important to have a clear idea of what the
program needs to achieve.
This design is focused on providing the most functionalities possible, in the context
of what functionality may really be useful, with minimal changes to the original
code and keeping in mind the potential scalability of the system.
Given the fact that our software isn’t a social network the complexity of this
system greatly diminishes, since there are no followers to keep track, and the
communication is almost only in one direction: from AROL to customers.
The main goals were the following :

1. Minimal changes to the existing infrastructure

2. Most flexible and most useful functionalities given the context

3. Different types of possible notifications

4. Possibility of sending notifications only to a certain role or company

5. Scalability to handle high volume of notifications

6. Security and privacy

4.6.2 System Design

Given the fact that our software isn’t a social network the complexity of this
system greatly diminishes, since there are no followers to keep track, and the
communication is almost only in one direction: from AROL to customers.
One initial solution to save the notifications in a database was something like this:
NOTIFICATIONS:

id (PK) userID type title message date isRead
integer integer string string string string boolean

Table 4.1: Initial Notification Table Structure

But this solution has a fatal flaw. In the context of this application and with
the volumes that AROL may expect this solution could work, but it has one big
problem.

44

New functionalities

Title, message and data this way are repeated for each user in the system, meaning
that if we want to notify something to a thousand of users in our system, we
would have of course a thousand entries in the notification table, but those three
properties would be the same for everyone, because it’s the same notification for
every user.
For this reason a new better design was studied, and the database table has been
split in two:
NOTIFICATIONS TABLE:

id (PK) userID type notification-content-id (FK) isRead
integer integer string integer boolean

Table 4.2: Notification Table Structure

NOTIFICATION CONTENTS:

notification-content-id (PK) title message data
integer string string JSON

Table 4.3: Notification Content Table Structure

Please note that in the tables "PK" stands for Primary Key and "FK" stands for
Foreign Key. This way we solve the problem of duplicated messages and titles,
relying on a external key to retrieve the content of the notification, that will be
stored in the database only once.
The type and isRead values are left in the original table, since they are useful
to the FE rendering. To be specific, the isRead value is a boolean value used to
determine whether we need to render the notification icon or not, the type value
specifies the various kinds of notification that may be sent or received.

4.6.3 Implementation

To properly use and leverage the two tables proposed in the design, some new APIs
need to be added to the BE:

1. getUsersByRole() - to get every user of the system of a certain role (only for
Superuser)

2. getNotifications() - to be called by every user to get its notifications

45

New functionalities

3. getNotificationContent() - to be called when notification data is required

4. setNotificationIsRead() - to update a single notification and set its isRead
field

The first function is useful for the superuser to send notification only to users of a
certain role. The second function is important to get the number of notifications
that still has to be read by the user as well as the respective notification-content-id.
The third function is really important, since it exist only because we divided
the notification table into two. One could argue that it makes the system overly
complex, since we have to do one extra call to the server (and consequentially the
DB) just to get the content of our communication, but the added benefits of not
repeating hundreds of times the same notification content greatly surpasses any
downsides that one may come up with, not to mention that doing things this way
makes it a lot more scalable. The fourth function is useful to properly visualize
pending notifications, since the "isRead" field will primarily be used by the FE.

4.6.4 Optimizing Frontend folder structure and organiza-
tion

Having a well-organized FE folder structure is crucial for maintainability and
scalability, and it ensures the project remains clean and easy to navigate, making
it simpler for developers to collaborate and manage the project over time.
The source directory (/src folder) is the core of the project, containing all of the
source code. There are several viable strategies for organizing the code, in this case
the chosen approach is an hybrid between grouping files by route and grouping
them by type, with the idea of having the best of both worlds.
Grouping files by route makes the files and folders directly communicate the
application features, but confusion arises when a component needs to be shared
between different routes, inevitably leading to a future refactoring.
Grouping files by type on the other hand has the advantage of having a flatter file
and folder structure, but finding out which files are used by which features gets
harder as the project gets bigger, and integrating new people into the project might
be tricky since the structure does not communicate the application features.

46

New functionalities

Figure 4.7: FE folders structure

The obvious advantage is that we can be sure that everything concerning the
"companies" components is in fact in that folder. Moreover this folder is further
subdivided in components, interfaces and pages, giving the reader more clarity and
organization.
Another FE improvement is the subdivision of big files into logic and components.
The useCompaniesPanelLogic.ts file basically takes all the logic needed by the Com-
paniesPanel.tsx component and it regroups everything into a single file, ultimately
resulting into 2 different files of manageable size, instead of having a single big file
that has to display and manage the logic of all of its components (and could easily
go over the thousand lines of code).

47

Chapter 5

Technological Improvements,
New Tools and Libraries

This chapter will be dedicated to all new architectural improvements and library
or tools addiction that has been done in order to make the application easier to
develop and more compliant to the industry standard. The objective of this chapter
will be to illustrate and propose all the updates done to the system in order to
make it more flexible, scalable and/or maintainable.

5.1 Drizzle ORM

Drizzle is a modern and lightweight ORM (Object Relational Mapper), designed
to simplify and make application-database interaction safer.
It is especially indicated for Typescript-based projects, since it leverages Typescript
strengths to offer type safety, intuitive API for constructing queries and flexibility.
Of course when needed we can specify raw SQL queries, even though the whole
purpose of an ORM is to use its syntax to produce automatically optimized queries
for your tables. Of course as any other database interface Drizzle needs to be
configured, but fortunately it is pretty straight forward. Specifying the type of the
database, the host, the port, username, password and database name is a common
practice for any database, and this is enough for drizzle to connect to it.
Another upside is Drizzle’s compatibility with a large number of the most used
databases in the industry. The fact that Drizzle code is independent from the
database underneath, allows extreme flexibility, and makes changing the database

48

Technological Improvements, New Tools and Libraries

system a really easy process that requires very little to none code refactoring,
granting the programmers the freedom of changing the databases as they see fit,
while also leaving the project open to eventually change database system in the
future as the services grow larger and larger. Long story short, It makes the project
highly scalable.

5.1.1 Model definition and query construction

In Drizzle, Models are classes that represent the database tables. Table definition
it’s deeply tied to Typescript type safety, since each class property corresponds
to a table column and annotations are used to define these mappings, seamlessly
translating application objects into database records.

Figure 5.1: Example of a Drizzle table

Query construction gives meaning to the whole ORM concept. It makes building
query fast and more importantly perfectly readable and maintainable. After a
query is built it is executed against the database (and implicitly translated into
optimized raw SQL). The query result will be translated back to the defined model
classes. This whole process basically allows the developer to exploit Typescript
type safety and autocompletion features, making the interrogation of the database
a pretty fast and efficient task

49

Technological Improvements, New Tools and Libraries

Figure 5.2: Query construction example

5.1.2 Database migration and transaction

Database migration is one of the most useful Drizzle features and it allows to
incrementally evolve the database schema as the application requirements changes.
A migration represents a set of changes, contained in a script, that can be applied
or rolled back to switch the database schema from one version to another. Also
Drizzle itself keeps track of the applied migrations, ensuring that each one is applied
only once.
Database migrations are really useful in deployment scenarios, if we suppose we
need to deploy a new version of the application, and this new version needs a
different db schema, we can run migrations automatically as part of the deployment
process, ensuring that the new version of the db schema is updated correctly and
basically granting consistency between development, testing and production stages.
At the same time migrations can be easily rolled back, mitigating the impact of any
fatal changes, and significantly reducing the application downtime. It’s important
to consider that the migration itself is some kind of document that accurately
describes any database changes [21].

50

Technological Improvements, New Tools and Libraries

5.2 ZOD validation

ZOD is a TypeScript-first schema declaration and validation library with static
type inference.
Let’s start with defining what a validator is. A validator is a tool or in our case
a function used in software development to ensure that some data is conformed
to a specific format or structure. It is commonly use to check input data or data
transmitted through APIs. Slight errors in the data received by the server could
cause issues of any sort, and sometime things may take a bad turn.
There are plenty of other libraries for doing the data validation but ZOD was
chosen because of its perks and approach. With ZOD, you declare a validator once
and Zod will automatically infer the static TypeScript type (ZOD works with plain
JavaScript too, but this feature just makes the decision of using Typescript much
more valuable). It’s easy to compose simpler types into complex data structures.
ZOD is :

1. Designed to be developer friendly : really easy to use. Its goal is to eliminate
any duplicate declaration

2. Lightweight : 8kb minified + zipped.

3. Has zero dependencies : can be used in any project almost without impacting
its size

4. Works in Node.js : and in all modern browsers

5. Immutable : its methods return a new instance

6. Concise and chainable interface : declaring schemas and chaining them is
really intuitive

51

Technological Improvements, New Tools and Libraries

Figure 5.3: User Schema Example

The code is very simple, it can be reused multiple times and also allows transfor-
mations during the validation process, again ensuring the the data is exactly the
way it is requested by the schema. All the 403 errors (BAD BODY) are thrown by
a single line of code, common in the whole server-side, making the error handling
quite precise and informative.
All these features make ZOD a powerful yet versatile validation tool, making it
an excellent choice for ensuring data integrity into application and to write a
well-organized, simpler and cleaner code [22].

5.3 Test Suite

The larger a project is the harder it is to maintain code quality and ensure reliability.
Keeping track of dependencies between components and features, as well as a simple
refactoring of some functions, as the project grows linearly becomes exponentially
harder, and eventually at some point it becomes close to impossible.
The only way to overcome these difficulties is through the use of a comprehensive
test suite, which will provide us with some insightful metrics and data the developers
can use to ensure their code functionality and reliability. After a test suite has
run, it usually produces some kind of result, usually a document where the test
coverage is explicitly stated. Coverage is literally a measure of how much code had
been covered by the different types of tests. The higher the percentage of the code
coverage is, the better the test suite will be, and higher code quality will be the

52

Technological Improvements, New Tools and Libraries

result. Different types of tests can be written, the two most important ones are
Unit tests and Integration tests, which yields better results if combined together
since they have different purposes.

5.3.1 Unit Tests

Unit tests verify only a small portion of the application, generally singular functions
or methods. They are used to ensure that every function or method behaves exactly
as intended, as they have the smallest scope possible. The bigger and larger a
function is, the harder it is to correctly test and verify. Knowing this it becomes
clear that big functions that do a lot of things are just bad programming practice
since they are non trivial to test. The upside is that singular functions have usually
little to no dependency since they are isolated, are fast to run and very simple
since their narrow scope.

5.3.2 Integration Test

Integration tests are a little bit more complicated than unit tests since they evaluate
the interaction between different modules and services in the application, ensuring
they work together as expected. Their purpose is to ensure that combined parts of
the application function correctly together and to identify any issue that may arise
from the integration of different components. They usually involve real instances
of a database rather than mocks or stubs, they provide a higher level of coverage
of code and they have usually slower performance to run respect than the unit
ones. Integration tests are typically used (like in our case) to verify the correct
functioning of the APIs.
By calling one by one all the APIs in our back-end system we can drastically reduce
the insurgence of problems in our back-end, and we can test even the most unusual
combination of data, significantly raising the chances that our system behaves as
intended and that the results of our API calls are consistent throughout the whole
application.

5.3.3 Benefits

Let’s see some of the upsides of having a well done test suite before looking into
the details.

53

Technological Improvements, New Tools and Libraries

• Improved Development cycle : when tests are automated and properly inserted
in a pipeline, developers can quickly verify that new changes do not break ex-
isting functionalities. This continuous integration and continuous deployment
(CI/CD) approach makes the delivery of new features easier, reducing manual
testing and the time spent debugging.

• Better Code Quality : tests can also highlight small bugs and errors, before
they propagate further in the development process and cause more significant
issues.

• Easier Collaboration : more people working in a project also means more
opportunity for everyone to inadvertently affect other’s people work. If the
test suite runs and finds no errors, the chances that everything still works are
pretty high.

• Better Documentation : the documentation explains how the code works,
which kind of input data is expected and which kind of output you should get.
Through test we verify that the documentation is actually correct.

• Easy Refactoring : code refactoring is a standard (and common) practice
during development, and since it is just a refactoring and no functions of the
code should be altered, having comprehensive tests is the best way to ensure
this process happened flawlessly.

• Less issues post-release: the likelihood of post-release issues and customer
dissatisfaction are significantly lower since automated tests provide some
assurance that the code will perform as expected in production.

• Cost Efficiency : setupping a test suite and writing test requires a significant
amount of time, but it pays off in the long run since usually the later bugs
are found the more they cost to be fixed.

5.4 Frameworks and Libraries

The terms "library" and "framework" are often used in software development context,
and they may seem similar, but they pack some differences that is better to highlight.
Libraries are a collection of pre-written code that used to add predefined func-
tionalities to applications. They usually solve common programming problems,
generally allowing developers to write faster and more efficient code, with fewer

54

Technological Improvements, New Tools and Libraries

errors. Libraries have usually a narrow scope addressing specific functionality, and
they are designed to be used across different parts of the application.
A Framework in the other hand is a more comprehensive structure that provides a
foundation on which developers can build entire applications. It offers a kind of
skeletal/template support that dictates the architecture of the application.

Key Differences Library Framework
Control Flow Developer’s code is in

control and calls the library.
Framework is in control and
calls the developer’s code.

Scope and Purpose Typically focused on a
specific task or a set of
related tasks.

Provides a comprehensive
platform for building an
application, covering many
aspects like data handling,
UI, and control flow.

Usage Used as needed, allowing
developers to pick and
choose which parts to
include in their project.

Requires developers to
follow its structure and
guidelines, which can lead
to a more standardized way
of building applications.

Table 5.1: Differences between a Library and a Framework

The choice between one library or another can be influenced by a few factors,
such as the cadence of updates, the offered functionalities, the support from the
developers, the ease of use and/or the flexibility they allow, and the same discourse
hold for the frameworks too
The realization of the test suite can be done with a lot of different tools, but
the language used for the program influences our choices too. In our case, using
Typescript, we have a few widely used libraries and frameworks at our disposition,
like Supertest, Mocha, Chai and Jest.
After a few tries, combining different ones together, Jest and Supertest looked
like the optimal choice, since their Typescript support was excellent and they are
overall more reliable and well documented compared to the others.

5.4.1 Supertest

Supertest is originally born as a JavaScript library used for testing APIs HTTP
requests, but nowadays it has some excellent Typescript support. Supertest allows
the developers to make HTTP assertions and test API endpoints efficiently [23]. It

55

Technological Improvements, New Tools and Libraries

supports all standard HTTP methods, it is really easy to use and it integrates well
with any test framework (Jest in this case).

Figure 5.4: Supertest Agent’s Setup

5.4.2 Jest

Jest is an open source testing framework for JavaScript. Initially released in 2014
by Facebook. It was designed to test large-scale JavaScript application, particularly
those built in React (built by Facebook too). It has excellent support and over the
years has evolved significantly, adapting to latest technologies and incorporating
community feedback. It is nowadays one of the preferred testing framework in the
JavaScript ecosystem as it is used and endorsed by major organizations [24].
Jest requires little to none configurations, and it works just right out of the box,
without needing external dependencies. It comes with a built-in test runner and
assertion library and it is also really useful for testing UI components. One of
the most important features of Jest is that it includes support for code coverage
reporting. After all the tests have run it generates a detailed report that highlights
the area of the codebase that have been covered by tests as well as other interesting

56

Technological Improvements, New Tools and Libraries

insights.

Figure 5.5: Jest Test Example

Figure 5.6: Jest Code Coverage examples

The code coverage document generated by Jest has some interesting data to evaluate

57

Technological Improvements, New Tools and Libraries

the effectiveness of our tests. It evaluates:

• Statements Coverage - percentage of statements executed

• Branches Coverage - percentage of control flow branches executed

• Functions Coverage - percentage of functions that have been called

• Lines Coverage - percentage of lines of code that have been executed

Jest also highlights which lines of code are covered and which are not. This precision
allows the developers to efficiently identify where the problems might be, if the tests
are thought out and executed correctly or if simply the code performs some useless
checks or operation. If some lines of code are never executed in any circumstances,
the code should probably be refactored, resulting in a cleaner and easier to read
code.
We must also keep in mind that generally reaching a hundred percent coverage
is usually just impossible to do, given that some lines of code are meant to be
executed only in some extreme edge cases, where recreating the conditions needed
would be so difficult that deviates from the testing purposes. In our case, there are
some parts of the code that are meant to interact with the Timestream database,
which is really hard to mock given its perks and unique functionalities. For this
very peculiar characteristics, that part of the project needs to be manually tested
and the reached code coverage is just around 80 percent.
As a reference, ninety percent coverage is generally accepted as a real good statistic,
and only a really small portion of projects need to go higher than that, like mission
critical code run on advanced and expensive machinery, or where faulty code
execution could have really huge impact on life of human beings.
Even if the coverage statistic is not that impressive, this is still a first iteration
of the test suite, which wasn’t present at the start of the project, consequently
meaning that the early written prototype code wasn’t meant to be tested. From
now on every new project feature will be added to the test suite, providing instant
feedback on functionality and code quality, that will ultimately lead to better code.

5.5 ESLint

ESLint is an open-source static code analysis tool. "Static" means that it analyzes
the code without actually running it, meaning that performances of the code are
not in the scope of this tool.

58

Technological Improvements, New Tools and Libraries

Doing an analogy with writing a book, ESLint focuses on the correct grammar and
syntax of the phrases, but it does not care about the contents of the story.
Created in 2013 by Nicholas Zakas it has become an indispensable part of the
JavaScript/Typescript ecosystem.
ESLint’s main function is to grant code consistency and ensure that code best
practices are followed. In big projects, having two different files coded in completely
different ways may be an issue, and having some guidelines to follow to make
the whole project consistent makes things easier, for the people that are actually
working on it and even for the people that will work on it in the future. ESLint
job is to enforce those guidelines. Consistent code is easier for team members to
read and understand, improving cooperation and reducing the cognitive load on
developers.
One of the best features of ESLint is its extensibility and customizability, giving the
opportunity to every team to chose the rules they prefer and being able to adapt
to every kind of project since different projects may have different programming
languages and may require following different rules of formatting. ESLint supports
ECMAScript 6 (ES6) and it also supports jsx files (jsx is a syntax extension for
React).
The ESLint configuration files can be written in different formats, from JSON to
YAML files, but they all serve the same purpose: they specify what rules needs to
be enforced.
Most of moderns IDEs, such as Visual Studio Code or Jetbrains products have a
plugin or some kind of built in function that supports ESLint, providing developers
with real time feedback while working on the code.
ESLint is also used in most of CI/CD systems, to enforce on the repository code
consistency and catch any eventual errors before they are merged into the main
codebase.
To sum it up, ESLint encourages all the best practices and modern coding techniques
and enforces those coding standards in projects, enhancing code safety, readability
and maintainability, ultimately leading to better software products [25].

5.6 Test Containers

Traditionally testing software means creating mock services, which can be error-
prone, resource-intensive, and they also require a huge effort to setup and populate.

59

Technological Improvements, New Tools and Libraries

Originally designed for Java, Testcontainers is an open source framework that
provides throwaway, lightweight instances of Docker containers, that not only solves
this issue but also provides a consistent and reliable testing environment.
It enables to create containers with testing purposes directly within the code,
giving developers the freedom to effortlessly generate an isolated and reproducible
environment. The power of containerizing stuff means that we can use containerized
instances of databases to test our data access layer code, or we can use containerized
web browsers to run automated UI tests.
Testcontainers are also especially useful for integration testing, since their purpose is
to verify the correct functioning of different systems, being able to quickly generate
and destroy a service speeds up the process by a lot. More importantly, when a test
fails, we can be confident that the test failed because of some bug or error within
the code and not due to environmental discrepancies, and the fact that containers
are generated on the fly through code, they can be easily shared and replicated
across different machines and CI/CD pipelines.
saving time and effort of setting up a mock db isn’t a negligible perk, since in
our case we were able to populate the database with the same SQL file we use for
testing the app locally, basically using the same instance of the Postgres DB.
The basic usage of Testcontainers is pretty straightforward, but it is possible to
create custom containers, configuring all kinds of settings to suit every testing need
that a developer might have, allowing for instance to simulate complex microservices
architectures. All kinds of languages and databases are supported, making it a tool
usable in every project [26].
Another important advantage is the seamless integration into CI/CD pipelines,
since the environment is standardized they are an optimal choice for this kinds of
practices that will be discussed here below.

60

Chapter 6

Conclusions and results

This chapter will be focused on the results obtained by all the functionalities and
the libraries added to the system, briefly presenting and resuming all the advantages
given by this new approach.

6.1 Bitbucket Pipeline

CI/CD (Continuous Integration / Continuous Delivery) is a common and standard
practice nowadays, since building, testing and deploying code are the very basics of
every modern software product, being able to control and supervise these processes
directly through the repository hub of your choice is really useful and speeds up
the developing process.
Bitbucket pipelines are a CI/CD service directly built into Bitbucket Cloud, that
allows developers that store code on Bitbucket server to automatically build test
and deploy their projects through a simple YAML file. Customizing the YAML file
the developers can chose to run certain routines that will define the series of tests
and checks that will be performed whenever a certain trigger happens (like when a
pull request is created). Once the code is stored in the Bitbucket repository, the
system will look for the YAML file and will execute the chosen tests in parallel,
speeding up the verification time.

61

Conclusions and results

Figure 6.1: example of .YAML file

62

Conclusions and results

This approach enhances not only the potential scalability of the code, but also
allows multiple teams of developers to work together without worrying too much
to break other’s people code, providing visibility into the build and deploy process,
and significantly improving collaboration. In the code snippet above, we run four
main test: the first two check that both the FE and the BE correctly compile, while
also checking that the ESLint is satisfied, the third performs some Docker checks,
making sure that the containers are created properly and that the code builds as
intended, while the fourth one runs the whole test suite we discussed in the previous
chapter, automatically creating and successively deleting the Testcontainers needed
for it to run, further enforcing that everything works properly [27].

Figure 6.2: GUI of Bitbucket Pipeline

The complete customizability of the pipelines, allows developers to perform any
kind of checks and tests that they prefer, and overtime while the size and complexity
of a project grows, new tests and checks can be added, suiting every development’s
team needs.

63

Conclusions and results

6.2 BE refactoring

As we mentioned multiple times previously, the addition of a test suite makes
some work such as the refactoring, possible. Given our BE design, and we are now
in a condition of being able to test all of our code’s main functionalities with a
few clicks, we can now polish and clean our Service layer, given that after a few
iterations of our app, it got pretty messy and unorganized.

Figure 6.3: BE schema design

The controller layer should be the one in charge of deciding if a certain user or
request can access the service layer or not. The repository layer must be the only
one able to access the DB and the service layer is the one that has to manage the
communication between the two, eventually filtering results or manipulating data
obtained from the repository.
The accessibility to data should be one of our primary concerns, and for this reason,
all the security and authority checks performed in the service layer will be moved a
layer up, to the Controller layer, to keep further away users without the required
permissions and authorizations. Here is a table that will summarize this concept:
This approach leads to the creation of new functions in the service layer, as example
: verifyPermissionAndOwnership().
The creation of this function makes the code cleaner and avoids code repetition, also
specifically checking both permission to access some machineries and the ownership
of those in the service layer, along with user roles and authorizations, brought
confusion and unnecessary complexity.
This means that every route that needs to perform these kinds of checks, will call
the controller, that will call the "verifyPermissionAndOwnership" services, making
the service layer accessible only to the ones that truly have the rights to access
them and improving further our security and system design.

64

Conclusions and results

Function Errors
Routes API access point, vali-

dates input with ZOD,
authenticates user with
JWT token strategy

403 UNAUTHORIZED,
400 BAD BODY

Controller Checks that the logged
user has all needed per-
missions and authoriza-
tion for accessing the ser-
vice

403 UNAUTHORIZED

Service Calls repository func-
tions, filters and manages
the results

404 NOT FOUND, 500
ERROR, 200 OK

Repository Calls the DB to access
data

x

Table 6.1: Summary of BE’s architecture

Another benefit of this approach is the fact that errors "403 UNAUTHORIZED"
will all be thrown by the controller layer, giving consistency to our project, since if
we ever get that kind of error we are sure that the controller layer is where it was
generated, also at the same time we remove them from the service layer, leaving it
only with 200, 404 or 500 errors to manage.

Figure 6.4: BE controller before refactoring

65

Conclusions and results

Figure 6.5: BE service before refactoring

As proven by the images, the controller layer wasn’t really used before, becoming
an unnecessary layer in our code, while the service layer had way too much checks
and controls performed, making single functions long, hard to understand and
debug properly.

66

Conclusions and results

Figure 6.6: BE controller after refactoring

Figure 6.7: BE service after refactoring

67

Conclusions and results

This refactoring makes the controller layer useful again, while also making all the
checks in a single place and improving all the code quality factors like coverage of
the tests and readability of the overall code.
This process, is not only long and time consuming, but also it does not change the
functionalities of our app in any way. The upsides are worth it though, the project
will greatly benefit of this refactoring, since ultimately the whole BE will be:

1. Safer - the inappropriate or unauthorized calls will be blocked earlier at the
Controller layer and not later on

2. Cleaner - the Controller layer was massively underutilized and the Service
layer was filled with security checks that made it all difficult to understand
and messy

3. Readable - people that will work on this project will find structured and
organized checks, greatly improving readability

All of this work was possible thanks to the test suite, because there wouldn’t
be any other way of verifying that the whole system is still working as intended
after massively changing most of the BE files, and even if we were an exceptional
programmer and we were sure of our code, we would have no way of granting that
every function in the system still worked as intended. Also at the same time, it
slightly improved the project’s code coverage, removing many lines of code that
had no way of being executed. Repeating this process on more components of the
BE will ultimately lead to a well designed and maintainable codebase.

6.3 Cloud deployment vs on premises deployment

Deploying applications on premises means utilizing the company’s own infrastruc-
ture rather than the cloud.
The trend of these last years is the opposite of the on premises deployment, since
nowadays the cloud infrastructure is growing constantly year after year, nonetheless
it still is an option that many organizations should consider.
The deployment on premises offers some unique features, having the complete
control over the hardware software and data allows for extreme customization and
flexibility, tailoring systems to the exact system requirements. It has some security
benefits too, owning the hardware and having physical access to services greatly

68

Conclusions and results

reduces the risk of data breaches from third party providers, also can provide
reduced latency with faster data access since the data is stored locally and does
not have to travel over the internet, and the performance are more consistent too
because they are not subject anymore to the internet speed or the cloud service
provider limitations.
Of course this approach has some cons too, otherwise the could hype over this
years wouldn’t be justified. The initial investment for hardware and software isn’t
negligible and the needed system maintenance has a cost too, not to mention the
eventual scalability problem that may arise and lead to buy and set up additional
hardware, compared to cloud services that can just adjust the resources needed
dynamically. Everyone always hope that nothing bad happens, but accidents may
happen and disaster recovery functions, that come out of the box in cloud services,
may be costly to be properly setup and manage.
All of this discussion holds, but the company and the system that we need to host
may influence our deployment decision, the point is that nowadays the decision
looks obvious, and everybody wants to jump into the cloud trend, but many systems
and companies don’t really need the cloud for their services.
Cloud services can become pretty pricey pretty fast, and depending on system
requirements, a company maybe doesn’t even need all the benefits offered by the
provider. Organizations need to carefully assess their requirements, resources, and
long-term strategy when deciding between on-premises and cloud deployments.

6.4 Conclusions and future works

The application now offers more features and functionalities: users will be able to
select the template they prefer, simplifying the dashboard creation process, and
AROL itself has way more management features, making it able to control and
manage every aspect of the system with ease and efficiency.
The addition of libraries like Drizzle ORM and ZOD validation grants respec-
tively flexibility and security, decoupling the code from the database underneath,
improving the scalability and adaptability of the project.
The whole code infrastructure is cleaner and safer, the code is now well documented
and the introduction of the test suite and the integration with the Bitbucket
pipelines not only grants a reliable development process but also made a huge
refactoring possible, making the architecture simpler and more defined.

69

Conclusions and results

This all together made the application resilient and sustainable in the long run which
was exactly our objective right from the start. The number of functionalities added
isn’t very high but most of the work was dedicated on enhancing and improving
not functionalities but readability and maintainability of the code. Refactoring by
definition does not change anything functionally, but it has insane value over time
especially for the ones that will work on this project after me, and the same holds
for the produced documentation.
In the future of this project, developers will need to dedicate more time to test
and document new features, but if the test are properly designed and they pass,
it ultimately means that the error in the code can be only logic ones, as the
functionality is granted by all the numerous CI/CD instruments implemented.
Another important addiction can be the actual implementation of the notification
system, only proposed and designed in this thesis but not actually implemented,
which will further improve customer support and satisfaction.

70

Acknowledgements

I would like to express my sincere gratitude to all those who supported and guided
me throughout my university career and the development of this thesis.
My heartfelt thanks go to my family and friends for their unwavering support and
encouragement throughout my academic journey. Their belief in me provided the
motivation I needed to complete this thesis.
Lastly, I am grateful to my colleagues and fellow researchers for their collaborative
spirit and stimulating discussions, which greatly enriched this research.
Thank you all for your contributions and support.

71

Bibliography

[1] AROL group website. Accessed: 2024-07-09. url: https://www.arol.com/
it/ (cit. on p. 6).

[2] IoT architecture. Accessed: 2024-07-09. url: https://dgtlinfra.com/
internet-of-things-iot-architecture/ (cit. on p. 7).

[3] Equatorque image. Accessed: 2024-07-09. url: https://www.arol.com/
it/macchine- tappatrici- per- bevande/tappatrici- per- tappo- in-
plastica-pre-filettato-flat/288-equatorque-pk-it (cit. on p. 8).

[4] MQTT protocol. Accessed: 2024-07-09. url: https://www.twilio.com/en-
us/blog/what-is-mqtt (cit. on p. 10).

[5] VS Code website. Accessed: 2024-07-09. url: https://code.visualstudio.
com/docs (cit. on p. 14).

[6] IntelliJ website. Accessed: 2024-07-09. url: https://www.jetbrains.com/
idea/ (cit. on p. 15).

[7] Javascript wikipedia page. Accessed: 2024-07-09. url: https://it.wikipedi
a.org/wiki/JavaScript (cit. on p. 16).

[8] Typescript website. Accessed: 2024-07-09. url: https://www.typescriptla
ng.org/docs/ (cit. on p. 17).

[9] DOM and VDOM. Accessed: 2024-07-09. url: https://www.babbel.com/
en/magazine/build-your-own-react-episode-2 (cit. on p. 21).

[10] React website. Accessed: 2024-07-09. url: https://react.dev/ (cit. on
p. 22).

[11] Node.js docs. Accessed: 2024-07-09. url: https : / / nodejs . org / docs /
latest/api/ (cit. on p. 23).

[12] ExpressJS website. Accessed: 2024-07-09. url: https://expressjs.com/
(cit. on p. 24).

72

https://www.arol.com/it/
https://www.arol.com/it/
https://dgtlinfra.com/internet-of-things-iot-architecture/
https://dgtlinfra.com/internet-of-things-iot-architecture/
https://www.arol.com/it/macchine-tappatrici-per-bevande/tappatrici-per-tappo-in-plastica-pre-filettato-flat/288-equatorque-pk-it
https://www.arol.com/it/macchine-tappatrici-per-bevande/tappatrici-per-tappo-in-plastica-pre-filettato-flat/288-equatorque-pk-it
https://www.arol.com/it/macchine-tappatrici-per-bevande/tappatrici-per-tappo-in-plastica-pre-filettato-flat/288-equatorque-pk-it
https://www.twilio.com/en-us/blog/what-is-mqtt
https://www.twilio.com/en-us/blog/what-is-mqtt
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://it.wikipedia.org/wiki/JavaScript
https://it.wikipedia.org/wiki/JavaScript
https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/docs/
https://www.babbel.com/en/magazine/build-your-own-react-episode-2
https://www.babbel.com/en/magazine/build-your-own-react-episode-2
https://react.dev/
https://nodejs.org/docs/latest/api/
https://nodejs.org/docs/latest/api/
https://expressjs.com/

BIBLIOGRAPHY

[13] PostgreSQL website. Accessed: 2024-07-09. url: https://www.postgresql.
org/docs/ (cit. on p. 25).

[14] AWS Timestream website. Accessed: 2024-07-09. url: https://aws.amazon.
com/it/timestream/ (cit. on p. 26).

[15] AWSS3 website. Accessed: 2024-07-09. url: https://aws.amazon.com/it/
s3/ (cit. on p. 26).

[16] Docker website. Accessed: 2024-07-09. url: https://docs.docker.com/
(cit. on p. 27).

[17] Localstack website. Accessed: 2024-07-09. url: https://www.localstack.
cloud/ (cit. on p. 31).

[18] JWT Token Structure. Accessed: 2024-07-09. url: https://www.miniorange.
com/blog/what-is-jwt-json-web-token-how-does-jwt-authenticatio
n-work/ (cit. on p. 33).

[19] JWT token schema. Accessed: 2024-07-09. url: https://auth0.com/learn/
json-web-tokens (cit. on p. 35).

[20] JWT refresh schema. Accessed: 2024-07-09. url: https://www.bezkoder.
com/spring-security-refresh-token/ (cit. on p. 35).

[21] Drizzle website. Accessed: 2024-07-09. url: https://orm.drizzle.team/
docs/overview (cit. on p. 50).

[22] ZOD website. Accessed: 2024-07-09. url: https://zod.dev/ (cit. on p. 52).
[23] Supertest website. Accessed: 2024-07-09. url: https://www.npmjs.com/

package/supertest (cit. on p. 55).
[24] Jest website. Accessed: 2024-07-09. url: https://jestjs.io/ (cit. on p. 56).
[25] ESLint website. Accessed: 2024-07-09. url: https://eslint.org/ (cit. on

p. 59).
[26] Testcontainers website. Accessed: 2024-07-09. url: https://testcontainer

s.com/ (cit. on p. 60).
[27] Altissan website. Accessed: 2024-07-09. url: https://www.atlassian.com/

it/software/bitbucket/features/pipelines (cit. on p. 63).

73

https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://aws.amazon.com/it/timestream/
https://aws.amazon.com/it/timestream/
https://aws.amazon.com/it/s3/
https://aws.amazon.com/it/s3/
https://docs.docker.com/
https://www.localstack.cloud/
https://www.localstack.cloud/
https://www.miniorange.com/blog/what-is-jwt-json-web-token-how-does-jwt-authentication-work/
https://www.miniorange.com/blog/what-is-jwt-json-web-token-how-does-jwt-authentication-work/
https://www.miniorange.com/blog/what-is-jwt-json-web-token-how-does-jwt-authentication-work/
https://auth0.com/learn/json-web-tokens
https://auth0.com/learn/json-web-tokens
https://www.bezkoder.com/spring-security-refresh-token/
https://www.bezkoder.com/spring-security-refresh-token/
https://orm.drizzle.team/docs/overview
https://orm.drizzle.team/docs/overview
https://zod.dev/
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://jestjs.io/
https://eslint.org/
https://testcontainers.com/
https://testcontainers.com/
https://www.atlassian.com/it/software/bitbucket/features/pipelines
https://www.atlassian.com/it/software/bitbucket/features/pipelines

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Presentation: IoT, Architecture and Context
	IoT
	IIoT

	AROL Group
	AROL Layered modular architecture
	Device or Perception layer
	Network or Transport layer
	Service or Processing layer
	Content or Application layer

	Objective of the thesis

	Tech Stack
	Objectives of the app
	Local development environment and Tools
	VS Code
	Intellij IDEA

	Programming languages
	JavaScript
	Typescript

	Application's Architecture
	Client tier
	React.js

	Server tier
	Node.js
	Express.js - a Node.js framework

	Data tier
	PostgreSQL - operational DB
	AWS Timestream
	AWS S3

	Docker
	Docker architecture
	Docker images and containers
	Docker Compose

	Localstack
	Security
	Authentication
	JWT - JSON Web Token
	Role based access

	Starting point

	New functionalities
	Superuser
	Company management
	User management features
	Machinery Management
	Template creation and management
	Notification System Design
	Requirements
	System Design
	Implementation
	Optimizing Frontend folder structure and organization

	Technological Improvements, New Tools and Libraries
	Drizzle ORM
	Model definition and query construction
	Database migration and transaction

	ZOD validation
	Test Suite
	Unit Tests
	Integration Test
	Benefits

	Frameworks and Libraries
	Supertest
	Jest

	ESLint
	Test Containers

	Conclusions and results
	Bitbucket Pipeline
	BE refactoring
	Cloud deployment vs on premises deployment
	Conclusions and future works

