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Abstract 

In the rapidly evolving field of electronics, Field-Programmable Gate Arrays (FPGAs) 

have emerged as a cornerstone technology for a wide range of applications. The 

versatility and programmability of FPGAs, combined with the increasing demand for 

low-power, high-performance computing, have led to the widespread adoption of 

Reduced Instruction Set Computing (RISC) architectures, notably the RISC-V, within 

FPGA designs. This open-source architecture offers significant advantages in terms of 

customization, scalability, and efficiency. However, the deployment of RISC-V based 

FPGAs in radiation-prone environments, such as space, raises substantial reliability 

concerns due to the potential effects of radiation-induced errors. 

Radiation effects on semiconductor devices can lead to a myriad of operational 

challenges, including transient faults, permanent damage, and functional disruptions. 

For critical applications, these effects can compromise the integrity of the mission. 

Therefore, understanding the susceptibility of RISC-V based FPGA architectures to 

radiation is crucial for the development of effective mitigation strategies, ensuring 

reliability and functionality in adverse conditions. 

This thesis aims to delve into the intricate dynamics of radiation effects on NEORV32 

Processor is a customizable microcontroller-like system on chip (SoC) built around the 

open-source RISC-V compatible processor system that is written in platform-

independent VHDL. Effects are studies by simulating single even transient, exploring 

the mechanisms behind radiation-induced failures and the implications for system 

reliability. By conducting a comprehensive analysis of these effects, this work seeks find 

ways to mitigate these effects. In summary, as the use of RISC-V based FPGA 

architectures continues to expand into new frontiers, the significance of ensuring their 

reliability under radiation exposure cannot be overstated.  
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Chapter 1 

1 Introduction 

1.1  RISC-V Overview 

RISC-V (pronounced "risk-five") is a free and open ISA enabling a new era of processor 

innovation through open standard collaboration. Born at the University of California, 

Berkeley, in 2010, RISC-V ISA delivers a new level of free, extensible software and 

hardware freedom on architecture, paving the way for the next 50 years of computing 

design and innovation. Unlike proprietary ISAs, RISC-V is available under open licenses 

that do not require fees to use, making it appealing for various applications, from 

embedded systems to massive parallel computing. 

1.1.1  Advantages of RISC-V 

• Open and Extensible: One of the core tenets of RISC-V is its openness and 

extensibility. This means that any organization or individual can design, 

manufacture, and sell RISC-V chips and software without the need for royalties 
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or licensing fees. This openness fosters innovation and allows for custom 

extensions to meet specific needs. 

 

• Simplicity and Efficiency: The RISC (Reduced Instruction Set Computing) 

approach emphasizes simplicity and efficiency. RISC-V instructions are 

designed to be simple to understand and implement, which can lead to more 

efficient processor designs, especially in terms of power consumption and 

performance. 

 

• Broad Support and Adoption: RISC-V has garnered widespread support from 

both academia and industry. This broad support ensures a rich ecosystem of 

tools, libraries, and resources, facilitating the development of RISC-V based 

solutions. 

1.1.2  RISC-V Appeal for Space Applications 

• Customizability for Specific Missions: The open-source nature of RISC-V 

allows for the creation of custom ISA extensions tailored to the unique 

computational needs of space missions. This could include optimized 

instructions for navigation, data processing, or communication, enhancing 

efficiency and performance. 

 

• Reduced Power Consumption: Space missions critically need to manage power 

consumption due to limited energy resources aboard spacecraft. RISC-V's 

efficient instruction set can be optimized further for low-power operations, 

making it ideal for such constrained environments. 

 

• Enhanced Reliability and Fault Tolerance: The simplicity of RISC-V facilitates 

the design of processors with inherent reliability and fault tolerance, crucial 
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for handling the radiation-induced errors common in space. Coupled with 

FPGA's reconfigurability, systems can be designed to adapt and respond to 

failures, enhancing mission resilience. (1) 

1.2  Single Event Transient 

A Single Event Transient (SET) refers to a temporary change in the electrical state of 

a device due to the passage of a single ionizing particle. When this particle strikes a 

semiconductor material, such as those found in circuits and microchips, it can generate 

a localized charge along its path. This sudden generation of charge can momentarily 

change the state of transistors or other electronic components, leading to transient 

pulses in the output signals of the affected circuits. SETs are particularly significant in 

space applications due to the high-energy particles found in cosmic rays and solar flares, 

which are not shielded by Earth's atmosphere as they are at the surface. (2) 

1.2.1  How SETs Affect Circuits in Space 

• Transient Faults: Unlike permanent faults, which damage the physical structure 

of the device, SETs cause temporary malfunctions. These can result in erroneous 

data outputs or unexpected behaviour in digital circuits, potentially leading to 

critical errors in spacecraft operations, satellite communications, and other space-

based systems. 

 

• System Disruptions: In complex systems, such as onboard computers and 

sensors, a single transient can propagate through the system, leading to cascading 

failures or system resets. This is especially problematic in space missions, where 

reliability and autonomous operation are paramount. 
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• Increased Error Rates: The prevalence of high-energy particles in space means 

that circuits are continually exposed to conditions that can cause SETs. This 

increases the overall error rate, necessitating robust error detection and correction 

mechanisms to ensure data integrity and system reliability. 

 

• Design Challenges: To mitigate the effects of SETs, space-bound electronic 

systems must be designed with radiation-hardened components and architectures. 

This includes the use of redundant systems, error detection and correction codes, 

and specific circuit design techniques to minimize the impact of transients. 

However, these measures often result in increased complexity, weight, and cost. 

 

• Operational Considerations: SETs can affect not only the hardware but also the 

software running on space systems. Software algorithms may need to include 

checks for plausibility and redundancy to handle transient-induced errors 

gracefully, ensuring that critical operations can continue even in the presence of 

SETs. 

 

The understanding and mitigation of SETs are critical components of designing 

electronic systems for space. By considering the potential impact of these transients, 

engineers can create more reliable and resilient systems capable of withstanding the 

harsh conditions encountered beyond Earth's atmosphere. This is an area of ongoing 

research, as the continued miniaturization of electronics and the push for more powerful 

computing capabilities in space present new challenges in the management of SETs and 

other radiation-induced effects. (2) 
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1.3  Circuit-Level Affect Breakdown 

A Single Event Transient (SET) affects digital circuits by causing a temporary, 

unintended change in the state of the circuit, which can disrupt its normal operation. 

This phenomenon occurs when a high-energy particle, such as a neutron or a proton 

from cosmic rays or solar flares, strikes a semiconductor material used in the circuit. 

Here's a breakdown of how an SET impacts a circuit: (3) (4) 

1.3.1  Generation of Charge 

• Ionizing Particle Strike: When the high-energy particle collides with the 

semiconductor material, it ionizes atoms along its path, generating electron-

hole pairs. 

 

• Charge Collection: The generated charge carriers (electrons and holes) are 

collected by nearby junctions, potentially causing a significant, localized 

change in voltage. 

1 Particle strike path across a NMOS transistor, charge collection happens in 
three stages 
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1.3.2  Transient Pulse Formation 

• Pulse Generation: This localized voltage change can create a transient pulse in 

the electronic signal. The transient's amplitude and duration depend on several 

factors, including the particle's energy, the semiconductor material's properties, 

and the circuit's design. 

 

• Propagation: The transient pulse can propagate through the circuit, affecting 

logic states, analog signal levels, or both. (5) 

1.3.3  Effects on Circuit Operation 

• Logical Errors: In digital circuits, an SET can lead to bit flips (changing a 0 

to a 1 or vice versa) in memory elements or logic gates. This can cause errors 

in data processing or storage, potentially leading to incorrect outputs or 

system behaviour. 

2 A particle strike at the drain of the inverter gate creates a burst of current, 
changing output voltage value  (5) 
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• Signal Disturbance: In analog circuits, an SET can temporarily alter signal levels, 

potentially leading to misinterpretation of the signals or triggering false 

conditions. 

 

• System Disruption: Critical systems, such as those used in aerospace, 

automotive, and medical applications, may experience malfunctions, leading to a 

failure in performing essential tasks. (5) 

 

 

 

 

 

 

 

3 SET pulse reaches the memory element and its value is stored con- figuring 
a SEU  (5) 
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1.4  Design Level Mitigation Strategies 

To counteract the effects of SETs, several mitigation strategies are employed in circuit 

design and system architecture: 

• Redundancy: Implementing redundancy in critical components or circuits is a 

common strategy for mitigating radiation effects. Techniques like Triple Modular 

Redundancy (TMR) involve tripling critical logic and then voting on the outputs 

to ensure correctness, effectively filtering out transient errors caused by radiation. 

 

• Hardened-by-Design (HBD): This approach involves modifying the physical 

layout and electrical properties of integrated circuits to enhance their resistance 

to radiation effects. Techniques include increasing the critical charge required for 

a bit flip, using guard rings to prevent lateral charge collection, and designing 

latches and flip-flops that are inherently more resistant to SETs. 

 

• Time Redundancy: Time redundancy involves performing critical operations 

multiple times and comparing the results to identify and correct errors. This can 

be effective for mitigating SETs but may not be suitable for time-sensitive 

applications due to the increased latency. (4) 
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1.4.1  Component-Level Techniques 

• Radiation-Hardened Components: Using components specifically designed to 

withstand radiation is a straightforward approach to mitigate its effects. These 

components are manufactured using specialized materials and processes to 

enhance their tolerance to Total Ionizing Dose (TID), Single Event Upsets 

(SEUs), and SETs. 

 

• Error Detection and Correction (EDAC): EDAC circuits, such as parity checkers 

and Hamming codes, are used to detect and correct errors in data storage and 

transmission. While more commonly associated with SEUs in memory, these 

techniques can also be adapted to address transient errors in logic circuits. 

1.4.2  System-Level Techniques 

• System Architecture Adjustments: Adjusting the overall system architecture can 

enhance resilience to radiation. This includes designing systems with fail-safe 

states, isolation of critical subsystems, and employing non-volatile memory for 

essential data storage to prevent corruption. 

 

• Software Mitigation: Software techniques, including watchdog timers, periodic 

system resets, and software-based error detection and correction algorithms, can 

also mitigate radiation effects. These methods are particularly useful for correcting 

transient errors and ensuring system reliability without requiring hardware 

modifications. 
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• Dynamic Reconfiguration: For systems based on reconfigurable hardware like 

FPGAs, dynamic reconfiguration can be used to correct radiation-induced errors. 

Faulty logic blocks can be reconfigured or bypassed, allowing the system to 

recover from SETs and SEUs without manual intervention 

 

• Environmental Shielding: Although not a direct mitigation technique for the 

circuit itself, providing environmental shielding can significantly reduce the 

radiation exposure of electronic components. Materials like lead, aluminium, and 

hydrogen-rich compounds are commonly used to shield electronics from high-

energy particles. (4) 
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Chapter 2 

2 Technology Background 

2.1  FPGAs 

Field-Programmable Gate Arrays (FPGAs) are a class of semiconductor devices that 

offer a unique blend of versatility, performance, and adaptability, distinguishing them 

4 FPGA Block (16) 
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from traditional fixed-function integrated circuits. An FPGA consists of an array of 

programmable logic blocks, interconnected by programmable routing channels. These 

logic blocks can be configured and reconfigured, even after manufacturing, to perform 

a wide variety of digital functions. This reconfigurability allows FPGAs to be customized 

for specific applications or to be updated post-deployment to enhance functionality or 

correct errors.  

FPGAs find a prominent place in the pantheon of space electronics due to a confluence 

of their intrinsic features and the exigent requirements of space missions. The 

formidable environment of space, characterized by extreme temperature variations, high 

vacuum, and, most critically, intense radiation levels, presents unique challenges for 

electronic systems. These challenges demand solutions that not only withstand these 

conditions but also offer flexibility, high performance, and reliability—qualities inherent 

to FPGAs. (6) 

2.2  FPGA Features 

2.2.1  Performance and Efficiency 

FPGAs excel in executing parallel processing tasks, a capability that is particularly 

beneficial for the data-intensive operations common in space applications, such as image 

processing, signal processing, and onboard data analysis. Their architecture enables 

them to handle multiple processes simultaneously, dramatically reducing the time 

required for data processing and analysis, a critical factor in time-sensitive missions and 

when communicating with Earth-based systems. 
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2.2.2  Radiation Tolerance 

Space is a hostile environment filled with ionizing radiation from solar flares, cosmic 

rays, and the Van Allen belts. This radiation can cause severe damage to electronic 

circuits, leading to data corruption, system malfunctions, or even complete failure. 

Radiation-hardened FPGAs are specifically designed to resist such effects, incorporating 

design features and manufacturing processes that enhance their resilience to single-

event upsets (SEUs), single-event transients (SETs), and total ionizing dose (TID) 

effects. These features make FPGAs an indispensable choice for reliable operation in 

space environments. 

2.2.3  Reduced Size, Weight, and Power (SWaP) 

The constraints of launching and operating systems in space necessitate stringent 

control over size, weight, and power consumption. FPGAs contribute significantly to 

SWaP optimization by integrating the functionalities of multiple discrete components 

into a single device. This integration not only reduces the physical footprint and weight 

of electronic systems but also enhances power efficiency, a paramount consideration for 

satellite and spacecraft designers. 

2.2.4  Customization and Application-Specific Optimization 

The programmable nature of FPGAs allows for the tailoring of their logic to meet the 

precise requirements of specific applications, enabling optimal performance for 

particular tasks. This level of customization is particularly advantageous in space 

applications, where specific processing algorithms, control logic, and data handling 

procedures can be implemented directly on the FPGA, reducing the need for external 

components and streamlining system architecture. 
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2.3  Implementing RISC-V on FPGAs for Space 

The combination of RISC-V and FPGA technologies for space applications provides a 

powerful platform for developing highly adaptable and efficient computing systems. 

FPGA’s inherent flexibility allows for on-the-fly reprogramming and adaptation to 

changing mission requirements or in response to hardware failures. 

• Rapid Prototyping and Testing: Utilizing FPGAs for RISC-V implementation 

enables rapid prototyping of spaceborne processors, allowing for extensive 

testing and iteration in the development phase. This is critical in ensuring 

that the final design meets the stringent reliability and efficiency requirements 

of space missions. 

 

• On-Mission Reconfigurability: The dynamic nature of space missions often 

necessitates adjustments to computational strategies. FPGAs allow for such 

reconfigurability in space, enabling adjustments to RISC-V based processors 

for optimized performance throughout the mission lifecycle. 

 

• Radiation Hardening: While FPGAs are inherently susceptible to radiation, 

specialized radiation-hardened FPGAs combined with RISC-V's adaptable 

architecture can lead to the development of processors that are both resilient 

to space conditions and capable of recovery from radiation-induced faults. (7) 
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2.4  FPGA programming 

FPGA programming, unlike traditional software development, involves configuring a 

Field-Programmable Gate Array (FPGA) to perform specific digital computations. An 

FPGA consists of an array of programmable logic blocks and a hierarchy of 

reconfigurable interconnects that allow these blocks to be wired together—somewhat 

like a blank canvas for digital circuits. Programming an FPGA involves defining how 

these blocks and interconnects work together to perform a desired function. This 

process transforms the FPGA into a hardware implementation of your specific 

requirements, whether it be a custom processor, a digital signal processing algorithm, 

or any other digital system. 

• Hardware Description Languages (HDLs): FPGA programming is primarily done 

using Hardware Description Languages, such as VHDL (VHSIC Hardware 

Description Language) and Verilog. These languages allow developers to describe 

the hardware functionality and logic at a high level of abstraction. 

 

• Synthesis: The HDL code is synthesized, meaning it is compiled and translated 

into a configuration that specifies how the FPGA's logic blocks and interconnects 

should be configured. This step essentially converts your design from a high-level 

description into a map of logic gates and connections. 

 

• Simulation: Before loading the design onto an FPGA, it is crucial to simulate it 

to ensure it behaves as expected. Simulation tools allow developers to test their 

designs under various conditions without the need for physical hardware. 

 

• Implementation: This phase involves placing and routing, where the synthesized 

design is fitted onto the FPGA's physical layout. The software tools allocate 
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specific logic blocks for the design's components and connect them according to 

the design's needs, while optimizing for performance and resource utilization. 

 

• Bitstream Generation: Once the design is implemented, the toolchain generates 

a bitstream file. This file contains the binary configuration data that will be loaded 

onto the FPGA, physically configuring its logic blocks and interconnections to 

realize the design. 

 

• Configuration: Finally, the bitstream is loaded onto the FPGA, configuring it as 

per the design. This step is where the FPGA becomes the digital circuit that you 

designed. The configuration can be volatile, meaning it needs to be reloaded if 

the FPGA loses power, or non-volatile, depending on the FPGA type and the 

configuration method used. (6) 
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2.5  NEORV32 RISC-V Processor 

The NEORV32 RISC-V Processor presents a comprehensive, open-source system 

compatible with the RISC-V architecture, designed for seamless integration as an 

auxiliary processor within broader System-on-Chip (SoC) designs, or as a dedicated, 

tailor-made microcontroller. This processor system stands out for its extensive 

configurability, offering a suite of optional peripherals such as built-in memory modules, 

timers, serial communication interfaces, general-purpose input/output (GPIO) ports, 

and an external bus interface for the addition of custom Intellectual Property (IP) 

elements like memory blocks, Network-on-Chips (NoCs), and various peripherals. 

Additionally, it supports both online and in-system debugging through a debugger that 

is compatible with OpenOCD/gdb, accessible via a JTAG interface. 

A key priority of the NEORV32 system is execution safety, aiming to ensure consistent 

and predictable performance under all circumstances. To this end, the CPU is designed 

to confirm all memory accesses and to reject any invalid or malformed instructions. In 

the event of an unforeseen issue, the system is engineered to notify the application code 

through hardware exceptions, maintaining operational integrity. 
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On the software front, the NEORV32 ecosystem is equipped with a robust framework 

that includes application-specific makefiles, libraries supporting all CPU and processor 

functionalities, a bootloader, a runtime environment, and a variety of example 

programs. This suite even features a version of the CoreMark microcontroller 

benchmark and the official test suite for RISC-V architecture, ensuring comprehensive 

testing capabilities. The default toolchain for software development is the RISC-V GCC, 

with prebuilt versions also available, facilitating a wide range of development and 

implementation scenarios. The NEORV32 is not based on another RISC-V core. It was 

build entirely from ground up (just following the official ISA specs. (8) 

5 NEORV32 Architecture (8) 
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2.6  ProASIC3 

The ProASIC3 FPGA, developed by Microsemi (now part of Microchip Technology), 

represents a significant advancement in FPGA technology, especially suited for 

applications demanding high reliability, low power consumption, and stringent security 

requirements. In the context of space applications, ProASIC3 FPGAs offer a compelling 

choice due to their non-volatile, flash-based technology, which inherently provides better 

resistance to radiation effects compared to SRAM-based FPGAs. This makes them 

particularly well-suited for the harsh environments of space, where radiation can cause 

bit flips and other errors. (9) 

 

 

 

6 ProASIC3 Architecture (9) 
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2.6.1  Key Features of ProASIC3 FPGA 

• Non-volatile and Instant-on: Unlike SRAM-based FPGAs, ProASIC3 devices 

are non-volatile, meaning they retain their configuration even after power is 

removed. They also feature instant-on capability, significantly reducing the 

initialization time after power-up, which is critical for time-sensitive space 

applications. 

 

• Radiation Tolerance: ProASIC3 FPGAs are designed with inherent tolerance 

to radiation, making them less susceptible to Single Event Upsets (SEUs) and 

other radiation-induced failures. This is crucial for space missions, where 

exposure to high levels of cosmic rays and solar radiation is a significant 

concern. 

 

• Low Power Consumption: These FPGAs are optimized for low power 

operation, which is essential for space missions that often operate on limited 

power budgets. Their flash-based technology contributes to lower static power 

consumption compared to other FPGA technologies. 

 

• Security Features: ProASIC3 FPGAs come with advanced security features, 

including built-in AES encryption and a unique FlashLock technology, which 

provides a method to secure the FPGA configuration against unauthorized 

access. This is particularly important for missions that handle sensitive data 

or require secure communication. 

 

• High Performance and Density: Despite their focus on reliability and low 

power, ProASIC3 FPGAs do not compromise on performance. They offer a 

range of densities and support high-speed digital signal processing, making 

them suitable for complex computational tasks in space applications. (9) 
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2.7  Flash Technology  

The superior density, performance, and security features distinguishing ProASIC3/E 

Flash-based FPGAs from traditional SRAM-based FPGAs stem from their innovative 

Flash-based LVCMOS process that incorporates seven metal layers. Utilizing 

conventional CMOS design approaches for logic and control functions, these devices 

achieve remarkable efficiency. The blend of fine-grained architecture, improved flexible 

routing capabilities, and plentiful Flash switches facilitates unmatched logic utilization 

rates, ensuring devices maintain excellent routability and performance. Central to 

ProASIC3/E devices is their Flash programming element, which is designed around a 

dual-transistor structure. 

 

Flash switches, strategically integrated throughout the device, enable non-volatile and 

reconfigurable interconnect programming, setting Flash FPGAs apart from SRAM-

based counterparts, which often struggle with place-and-route efficiency beyond 70% 

utilization. Flash FPGA architecture allows for near-total core utilization for a wide 

range of designs. Moreover, comprehensive on-device programming circuitry supports 

swift (3.3 V) programming through an IEEE1532 JTAG interface, enhancing the 

ProASIC3/E devices' convenience and accessibility. (9) 

7 Flash Gate Design (9) 
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Contrastingly, SRAM-based FPGAs typically require four to six transistors for each 

programming element, leading to a larger die area. Consequently, to be cost-

competitive, SRAM FPGAs need to be manufactured using smaller, more advanced, 

and thus more costly and power-intensive process technologies. 

Flash technology underpins the ProASIC3/E devices, offering significant benefits over 

SRAM-based FPGAs. These include reduced system costs due to the elimination of 

external components, the inclusion of user-accessible non-volatile memory, enhanced 

security features, lower power requirements, immediate operation upon power-up, and 

robustness against firm errors, contributing to their appeal in cost-sensitive and 

reliability-critical applications. 

2.7.1  Integration with RISC-V 

The integration of RISC-V cores into ProASIC3 FPGAs for space applications leverages 

the FPGA's reliability and performance features while benefiting from RISC-V's 

flexibility and customizability. This combination allows for the development of highly 

specialized computing solutions that can be optimized for specific mission requirements, 

from enhanced data processing capabilities to improved fault tolerance. 
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Chapter 3 

3 Analysing and Hardening of 

Implementation 

In the initial phase of my thesis research, I embarked on a comprehensive process to 

prepare and evaluate a digital circuit designed to withstand the harsh conditions of 

space, particularly focusing on the mitigation of radiation effects such as Single Event 

Transients (SETs). The foundation of my work involved leveraging the NEORV32 RISC-

V Processor, a versatile, open-source processor system compatible with the RISC-V 

architecture, renowned for its adaptability and efficiency in custom and stand-alone 

microcontroller applications. 

3.1  Preparing the Circuit 

The methodology commenced with deriving my circuit from the base Register Transfer 

Level (RTL) VHDL files provided by the NEORV32 framework. A pivotal element of 

this phase was the development of a succinct test program designed to perform matrix 

multiplication. This program was initially composed in C, subsequently compiled into 
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instruction memory data utilizing the RISC-V GCC toolchains for Linux provided by the 

NEORV32 suite. This translation from a high-level programming language to machine 

language was a critical step, ensuring the program's compatibility with the intended 

hardware environment. 

Detailed Steps: 

• Derivation of Circuit:  The base RTL VHDL files from the NEORV32 framework 

were used as the starting point. These files define the hardware architecture and 

behaviour of the NEORV32 processor. 

 

• Development of Test Program:  A test program performing matrix multiplication 

was developed in C. This program served as a benchmark to evaluate the 

performance and functionality of the NEORV32 processor within the FPGA 

environment. 

 

• Compilation to Machine Language:  Using the RISC-V GCC toolchains for Linux, 

the C program was compiled into machine language, specifically into instruction 

memory data compatible with the NEORV32 processor. The RISC-V GCC 

toolchains translate the high-level C code into RISC-V assembly language and 

then into binary instructions that can be executed by the NEORV32 processor. 

 

• Loading into Instruction Memory: The compiled machine language instructions 

were loaded into the instruction memory of the NEORV32 processor within the 

FPGA. This step ensured that the test program could be executed by the 

processor during the subsequent phases of the methodology. 

By meticulously following these steps, the foundation was laid for the subsequent 

phases of circuit design, testing, and modification aimed at mitigating the effects 

of radiation induced Single Event Transients (SETs). This initial setup was crucial 
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for validating the processor’s functionality and performance under normal operating 

conditions. (8) 

 

 

Following the program compilation, the RTL description was synthesized using the 

Libero SoC software, targeting a ProASIC3 FPGA platform. This choice of hardware 

was deliberate, selected for its capability to accommodate the demands of the compiled 

program, aligning with the specific requirements dictated by the foundational program 

structure. A thorough examination of timing and space utilization reports ensued, 

providing an analytical basis for subsequent modifications aimed at enhancing radiation 

resilience. 

8 Sample application code in machine Language 
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9 Compile Options in Libero SOC 

10 Compile Report Example of final resource usage 
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9 Circuit Placement by Libero SOC 

The next phase involved the exportation of the project's netlist, facilitating the 

transition to the physical layout stage. At this juncture, the circuit's layout was 

meticulously organized using a variety of parameters to pre-emptively address potential 

radiation-induced challenges. A novel approach was employed using a script to calculate 

the optimal placement of components based on the average Manhattan distance, 

constrained by a predetermined maximum spatial allowance for the circuit. This script 

ingeniously allocated all components within a specified average Manhattan distance, 

effectively optimizing the layout for radiation resistance. (10) 

3.2  Manhattan Circuit Placement Technique 

The Manhattan placement technique, often referred to in the context of integrated 

circuit design and particularly FPGA layouts, involves arranging circuit components in 

a grid-like pattern that resembles the street layout of Manhattan, New York. This 

method optimizes the physical placement of components to minimize interconnect 

lengths and improve overall circuit performance. (11) 
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3.2.1  Implementation Steps 

• Initial Component Placement: Start by placing the most critical components at 

strategic locations within the grid. These are typically components with the 

highest connectivity or those that are sensitive to delays. Subsequent components 

are placed relative to these critical nodes to ensure minimal interconnect distance. 

 

• Heuristic Algorithms: Heuristic algorithms, such as simulated annealing or genetic 

algorithms, can be employed to find an optimal placement that minimizes the 

Manhattan distance. These algorithms iteratively adjust component positions to 

improve the overall placement efficiency. 

 

• Spacing and Alignment: Ensure that components are aligned with grid points, 

maintaining uniform spacing to facilitate orthogonal routing. Adjust spacing to 

account for component sizes and connectivity requirements, ensuring that there 

is sufficient space for routing interconnects without congestion. 

 

• Routing Optimization: Once components are placed, routing algorithms are used 

to connect them, following the grid paths to maintain the orthogonal routing 

structure. The routing process must ensure that all connections are made without 

violating design rules, such as maximum allowed wire length or crosstalk limits. 
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• Performance Evaluation: Evaluate the placement and routing for key performance 

metrics, including signal delay, power consumption, and overall circuit area. Use 

simulation tools to validate the functionality and performance of the placed and 

routed design. (12) 

 

10 Bit-Count Circuit Manhattan Placement 
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11 Matrix Multiplication Circuit Manhattan Placement 

 

12 Hello World Circuit Manhattan Placement 
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3.3  SET Simulation 

With the physical design layout (PDD file) established, the focus shifted towards 

simulating the impact of radiation on the circuit's integrity. A Python script was 

developed for this purpose, ingeniously designed to simulate the effect of radiation by 

specifying parameters such as the maximum radiation pulse width (in picoseconds) and 

its amplitude. This simulation targeted the sensitive nodes within the circuit, identifying 

every connection as a potential vulnerability to SETs. The execution of this script 

culminated in a detailed report, elucidating the simulated radiation's impact on the 

circuit's operational efficacy. The report highlighted the extent of data transmission 

width expansion across sensitive nodes, a metric crucial for evaluating the circuit's 

resilience to SETs. (13) 

 

13 Set Propagation Box Plot showing pulse width elongation at different input pulse  
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This foundational work sets the stage for the exploration of strategies to mitigate the 

adverse effects of radiation on the circuit, ensuring its reliability and performance in 

environments susceptible to high levels of ionizing radiation. The results derived from 

these initial experiments are instrumental in guiding the development of robust, 

radiation-hardened digital circuits capable of operating within the demanding conditions 

of space and other radiation-rich environments.  

 

 

 

14 Set Propagation of Varying Width to analyse trend across different width 
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3.4  Mitigation Process 

Upon obtaining the diagnostic reports from the previously executed Single Event 

Transient (SET) simulation script, our methodology progresses to a meticulous analysis 

of each sensitive node within the circuit. This entails evaluating the extent of pulse 

broadening induced by the simulated SETs and cataloguing the unique identifiers of 

affected nodes. To facilitate this analysis, a specialized script was developed to parse 

through the data, extracting the pertinent information regarding the breadth of impact 

on each node. 

Subsequent to this analytical phase, our approach leverages the Libero SoC software 

suite to generate a Verilog netlist of the circuit, specifically the iteration subjected to 

SET analysis across varying pulse widths. In response to the insights garnered from the 

SET impact reports, another bespoke script was conceived. The core objective of this 

script is to amend the circuit design in a manner that effectively mitigates the observed 

radiation effects. The proposed modification entails the integration of a delay 

mechanism, ingeniously constructed from a series of inverters coupled with an AND 

gate. This configuration exploits the inherent gate delays to introduce a corrective 

temporal offset when an SET event is detected, thereby averting potential bit flips and 

preserving the integrity of the circuit's operation in accordance with the specified 

parameters. 
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3.5  Delay Circuit: Inverters and AND Gates 

Delay circuits introduce a controlled delay in the signal path, effectively filtering out 

transient pulses that are short-lived. The combination of inverters and AND gates can 

create such delays (14). Here’s a breakdown of how these components work together 

to mitigate SET effects: 

Inverters 

• Inverting Logic State: An inverter flips the logic state of a signal (e.g., from 0 

to 1 or 1 to 0). (14) 

 

• Introducing Delay: Each inverter introduces a small propagation delay due to the 

time it takes for the signal to travel through the transistor gate. By chaining 

multiple inverters, you can achieve a significant cumulative delay. 

AND Gates 

• Logic Condition:  An AND gate outputs a 1 only if all its inputs are 1; otherwise, 

it outputs 0. (14) 

 

• SET Filtering: By using an AND gate in conjunction with delayed signals, you 

can effectively filter out transient pulses. The idea is that a transient pulse on 

one input will not align with the delayed signals on other inputs, thus preventing 

an incorrect output. 
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3.5.1  Implementation Strategy 

    Signal Delaying with Inverters: 

• Delay Line: Create a delay line using a series of inverters. The number of inverters 

determines the total delay introduced to the signal. 

 

• Delayed Signal: The output of the delay line provides a version of the original 

signal delayed by a specific amount of time. 

    Combining Signals with an AND Gate: 

• Original and Delayed Signals: Feed both the original and delayed signals into an 

AND gate. 

 

• Pulse Filtering: Since an SET-induced pulse is typically very short, it will not 

appear on both the original and delayed signals simultaneously. The AND gate 

will output a logic high only when both signals are high, effectively filtering out 

the transient pulse. 

 

The implementation strategy involves a precise identification of each component within 

the Verilog netlist, followed by the extraction of its input signal. The mitigation circuitry 

characterized by a calculated sequence of inverters designed to match the maximum 

observed pulse broadening—is then inserted at strategic points within the circuit. This 

modification process takes the original signal from each identified component and 

15 Example of type of Delay Circuit Inserted  

Input 

 

Delayed Input 
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subjects it to a controlled delay, effectively replicating the initial signal with a calculated 

temporal displacement. The modified signal is then rerouted to the input of the affected 

component, thus providing a robust countermeasure against the disruptive effects of 

SETs. 

 

16 Modified Circuit snippet showing delay circuit  

However, it is pertinent to note that this mitigation technique is contingent upon the 

magnitude of the pulse broadening observed at each node. Given the practical 

limitations of introducing delay elements, this strategy is selectively applied to 

components exhibiting a maximum delay exceeding a predefined threshold. This ensures 

that the corrective measures are both feasible and effective, targeting the most 

susceptible components within the circuit while maintaining overall system performance 

and reliability. (15) 
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Chapter 4 

4 Experimental Analysis 

Once the circuit placement and the selective implementation of the mitigation strategies 

were completed, as determined from the previously gathered reports, a thorough 

analysis of the modified circuit was conducted across various critical parameters. 

4.1  Resource Utilization Analysis 

The first step involved assessing the additional resource requirements introduced by the 

mitigation strategies. This step was crucial to ensure that the FPGA had sufficient 

capacity to accommodate the extra hardware components, such as the inverters and 

AND gates, integrated for delay-based SET mitigation. The analysis focused on 

quantifying the increase in logic elements, interconnect usage, and any other relevant 

resources. The goal was to verify that the enhancements did not exceed the FPGA's 

resource limits and could be seamlessly integrated into the existing design framework. 

4.2  Timing and Power Constraints Verification 

Following the resource utilization analysis, the next phase involved verifying that the 

modified circuit met the stringent timing and power constraints necessary for its 

intended operational environment. 
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4.2.1  Timing Analysis 

This included checking setup and hold times, propagation delays, and overall 

timing closure to ensure that the circuit performed its functions within the 

required temporal parameters. Given the low power and high precision demands 

of space applications, it was imperative that the timing analysis confirmed the 

circuit’s ability to operate without timing violations despite the introduced delays 

for SET mitigation. 
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Upon conducting a comprehensive resource analysis, it was determined that the 

incorporation of the delay circuits into the original design resulted in a minimal increase 

of approximately 6% in the core components. This modest increment was deemed 

acceptable given the substantial benefit of enhancing the circuit's resilience against 

Single Event Transients (SETs). 

 

 Original Circuit Modified Circuit 

Core Components 4634 4917 

COMB Circuit 3992 4275 

Frequency 44.226 50.566 

Max Delay (ns) (Register 

to Register) 

22.428 19.348 

Max Clock-To-Out (ns) 7.387 3.912 

Max delay (Input to 

Output) 

5.132 3.907 

Min Clock-To-Out (ns) 2.178 2.218 
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4.2.2  Negligible Impact on Timing Delay 

The strategic insertion of delay circuits at specific, critical points within the circuit 

architecture was executed with precision, ensuring that these modifications did not 

introduce significant timing delays. As a result, there were no violations of the minimum 

timing requirements essential for the circuit's operation. This meticulous placement 

ensured that the overall timing integrity of the circuit was maintained. 

During the simulation phase, it was observed that the automated optimization processes 

inherently adjusted the circuit frequency upwards. This adjustment was seamlessly 

integrated into the simulation workflow, confirming that the circuit could handle the 

increased frequency without adverse effects on power consumption. This indicates a 

well-balanced design where the benefits of added delay elements for SET mitigation are 

realized without detracting from the circuit’s overall power efficiency. 

4.2.3  Power Analysis:  

In evaluating the power consumption of FPGA technologies, it is important to consider 

it from a system point of view. Generally, the overall power consumption should be 

based on static, dynamic, inrush, and configuration power. Few FPGAs implement ways 

to reduce static power consumption utilizing sleep modes. 

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic 
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Mode  Power Supplies / Clock Status  Needed to Start Up  

Active  On – All, clock Off – None  N/A (already active)  

Static 

(Idle)  

On–All 

Off – No active clock in FPGA  

Optional: Enter User Low Static (Idle) Mode by 

enabling ULSICC macro to further reduce power 

consumption by powering down FlashROM.  

Initiate clock source.  

No need to initialize 

volatile contents.  

Sleep  

On – VCCI 

Off – VCC (core voltage), VJTAG (JTAG DC 

voltage), and VPUMP (programming voltage) 

LAPU enables immediate operation when power 

returns. Optional: Save state of volatile contents in 

external memory. 

Need to turn on 

core. 

Load states from 

external memory. 

As needed, restore 

volatile contents 

from external 

memory. 
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Shutdown  

On – None 

Off – All power supplies 

Applicable to all ProASIC3E, all ProASIC3 nano, and 

the A3P030 and A3P015 devices, cold-sparing and 

hot-insertion allow the device to be powered down 

without bringing down the system. LAPU enables 

immediate operation when power returns. 

Need to turn on 

VCC, VCCI. 

 

Power consumption was scrutinized to ensure the modifications did not lead to excessive 

power usage, which could compromise the low power requirements crucial for 

spaceborne and other energy-sensitive applications. This involved both static and 

dynamic power analysis to capture the complete power profile of the modified circuit. 
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At 30 Deg Celsius  

 Active Sleep Static 

Total Power 8.705 0.104 8.220 

Static power 8.220 (94.4%) 0.104 8.220 

Dynamic Power 0.485 (5.6%) 0 0 

 

At 70 Deg.  Celsius (Worst) 

 Active Sleep Static 

Total Power 44.947 0.235 44.370 

Static power 44.370 (98.7%) 0.235 44.370 

Dynamic Power 0.577 (1.3%) 0 0 
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At 0 Deg (Typical) 

 Active Sleep Static 

Total Power 8.156 0.104 7.755  

Static power 7.755 (95.1%) 0.104 7.755  

Dynamic Power 0.401 (4.9%) 0 0 

 

Breakdown by Type 

 Power (mW Percentage 

Type Net           0.000 0.0% 

Type I/O           0.401 4.9% 

Type Core Static 6.555 80.4% 

Type Banks Static 1.200 14.7% 
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To offset any minor timing adjustments introduced by the delay circuits, the circuit's 

operating frequency was slightly increased. Remarkably, this frequency increment did 

not result in an appreciable rise in power consumption. Simulations demonstrated that 

the circuit could operate at the enhanced frequency without exceeding the predefined 

power budget. This outcome is particularly advantageous, as it signifies that the circuit 

can achieve improved performance metrics while simultaneously mitigating SET effects 

without compromising power efficiency. 
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4.3  Principal Objective Verification 

The final and most critical parameter was to determine the efficacy of the implemented 

mitigation strategies in achieving the principal objective of the thesis: reducing the 

impact of SETs without overburdening the system. 

4.3.1  SET Mitigation Effectiveness 

This was evaluated by simulating SETs on the modified circuit and comparing the 

results to the baseline circuit without mitigation. The key metrics included the 

frequency and severity of bit flips and other transient faults. The analysis aimed to 

confirm that the mitigation measures successfully reduced the occurrence and impact 

of SETs on sensitive nodes. 

The highest value of 550 picoseconds for the Single Event Transient (SET) impact 

width was selected for this study, as it necessitated the insertion of the greatest number 

of delay circuits. Delay circuits were strategically implemented at points where the SET 

radiation impact exceeded the minimum inverter delay threshold, resulting in the 

integration of delay circuits at 170 critical locations within the circuit. 

 

 

 

 

 



Experimental Analysis 
53 

4.3.2  Analysis of Delay Circuit Effectiveness: Box Plot 

Comparison 

The attached graph illustrates the comparative impact of SET radiation on the circuit 

before and after the insertion of delay circuits. Notably, the nodes experiencing delays 

above the minimum inverter delay threshold of 4200 picoseconds were effectively 

mitigated in the modified circuit. 

 

Before Delay Circuit Implementation: 

Significant impact of SET radiation was observed at several nodes, with delay values 

often exceeding the threshold, indicating susceptibility to transient radiation effects. 

17 Box Plot Comparison after and before inserting the delay component 
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The distribution before delay circuit insertion shows a higher median delay and a wider 

interquartile range, demonstrating greater variability and susceptibility to SETs. 

After Delay Circuit Implementation: 

The impact of transient radiation at several critical nodes was substantially reduced. 

The delay circuits successfully filtered out transient pulses, thereby enhancing the 

circuit's robustness against SETs. The distribution of delays after implementing delay 

circuits shows a lower median value and a tighter interquartile range compared to the 

non-delayed circuit. The median delay is significantly reduced, indicating a successful 

mitigation of SET effects. 

 The whiskers for the delayed circuit are shorter than those for the non-delayed circuit, 

suggesting that the range of delays experienced by the delayed circuit is more 

constrained and controlled. 

 

18 Cumulative Distribution Graph 
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The provided graph depicts the cumulative distribution of SET-induced delays in the 

circuit, comparing scenarios before and after the insertion of delay circuits. The x-axis 

represents the different nodes in the circuit, while the y-axis shows the delay in 

picoseconds. The blue line indicates the delayed circuit (after delay circuit insertion), 

and the orange line represents the non-delayed circuit (before delay circuit insertion). 

4.3.3  Key Observations 

• Overall Trend 

Both lines exhibit a similar trend initially, with minimal differences in 

delays up to approximately 300 nodes. This indicates that, for a 

significant portion of the circuit, the impact of SETs is either low or well-

managed in both scenarios. 

• Divergence Point 

The lines start to diverge noticeably after the 300-node mark. This 

divergence indicates the point where the impact of SETs begins to differ 

significantly between the delayed and non-delayed circuits. 

• Delayed Circuit Performance 

o The blue line (delayed circuit) shows a generally smoother and more 

gradual increase in delays, suggesting a more consistent handling of SETs 

across the nodes. 

o The presence of the delay circuits effectively mitigates the impact of 

SETs, leading to fewer instances of extreme delay spikes. 

• Non-Delayed Circuit Performance 
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o The orange line (non-delayed circuit) shows a sharper increase in delays 

beyond the 300-node mark, indicating higher susceptibility to SET-

induced delays. 

o This sharper increase is indicative of more frequent and severe SET 

impacts in the absence of delay circuits. 

• Peak Delays 

o At the upper end of the graph, the delayed circuit (blue line) 

demonstrates a plateau, suggesting that the maximum delay introduced 

by SETs is capped at a lower level compared to the non-delayed circuit. 

o The non-delayed circuit (orange line) shows more variability and higher 

peak delays, reflecting greater vulnerability to SETs. 
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Chapter 5 

5 Conclusion  

This thesis aimed to address the critical challenge of mitigating the impact of Single 

Event Transients (SETs) on digital circuits, particularly within the context of space 

applications where radiation-induced errors can significantly compromise system 

reliability. The approach involved integrating delay circuits strategically within the 

circuit design to counteract the effects of transient pulses caused by high-energy 

particles. 

5.1  Key Findings and Contributions 

5.1.1  Implementation of Delay Circuits 

        The study began by deriving the circuit from the base RTL VHDL files of the 

NEORV32 framework and developing a matrix multiplication test program in C, 

compiled into instruction memory data using the RISC-V GCC Toolchains for Linux. 
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        Delay circuits, comprising inverters and AND gates, were inserted at specific 

points where the SET impact was significant, as determined from detailed analysis 

reports. 

5.1.2  Resource Utilization and Performance 

        The resource analysis revealed that the inclusion of delay circuits resulted in a 

minimal 6% increase in core components, which was within acceptable limits given the 

substantial benefits in SET mitigation. 

        Timing analysis confirmed that the delay circuits did not introduce significant 

timing delays, nor did they violate minimum timing requirements. The slight increase 

in operating frequency, automatically adjusted during simulation, did not lead to 

additional power consumption. 

5.1.3  Effectiveness of SET Mitigation 

        The implementation of delay circuits effectively reduced the impact of transient 

radiation on critical nodes. The comparative analysis of the cumulative distribution 

graph and the box plot demonstrated a significant reduction in both the median delay 

and the number of severe outliers after the delay circuits were introduced. 

        These findings validated that the delay circuits provided a robust defence against 

SETs, resulting in a more stable and predictable circuit performance. 
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6 Future Work 

The successful mitigation of SETs using delay circuits has significant implications for 

the design of radiation-hardened electronic systems, particularly in space applications. 

This methodology provides a practical and efficient approach to enhancing circuit 

reliability in radiation-prone environments. 

In this research, we focused on testing the reliability and hardening of the entire circuit. 

However, in real-world applications, each process and application is unique, utilizing 

different components and configurations. Depending on the specific use case, future 

work could target different parts of the system selectively. Some components might be 

critical to the mission's success, while others may be less significant. By identifying and 

prioritizing critical components for targeted hardening, we can optimize resource usage 

and enhance overall system reliability more efficiently. This approach will allow for 

tailored mitigation strategies that address the specific needs of different applications 

and operational environments. 

Future work could explore the following areas: 

• Optimization Techniques: Further optimization of the delay circuit design to 

minimize resource usage and enhance performance. 

 

• Advanced Mitigation Strategies: Combining delay circuits with other 

mitigation strategies, such as redundancy and error correction codes, to 

further improve reliability. 

 

• Field Testing: Conducting field tests in actual radiation environments to 

validate the effectiveness of the delay circuits in real-world scenarios. 
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8 Appendix 

8.1 Extraction and Inserting Delay Circuit 

First Step- It extracts where to insert the delay circuit by checking if propagation value 

is greater than minimum delay of circuit to be inserted. 

Second Step- Finding corresponding component in Verilog circuit netlist and modify it 

to insert the desired circuit to mitigate the effect. 

 

import csv 
import re 
# Replace 'path_to_your_file.txt' with the path to your SET report file 
file_path = '/Users/adi/untitled folder 2/SET_report_552ps.txt' 
# Specify the path to your folder containing Verilog Netlist file 
folder_path = '/Users/adi/ts/neorv32_top_original.v'  # Update with your file 
path 
 
def extract_pdd_and_pulse(file_path): 
    pdd_pulse_data = [] 
 
    with open(file_path, mode='r') as file: 
        reader = csv.reader(file, delimiter=';') 
        for row in reader: 
            if len(row) > 1:  # Ensure the row has multiple elements 
                pdd_name = row[0].strip() 
                if pdd_name.startswith("neo"): 
                    max_pulse = row[-3].strip()  # Assuming the last value is 
the max pulse width 
                    pdd_pulse_data.append((pdd_name, max_pulse)) 
 
    return pdd_pulse_data 
 
def extract_signal_pdd(pdd_name): 
    # Find the last occurrence of '/' 
    last_inst_index = pdd_name.rfind('_inst') 
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    return pdd_name[last_inst_index+6:]  
 
def generate_inverter_chain_with_and(input_signal, num_inverters, 
final_output_signal): 
    verilog_code = "" 
    previous_signal = input_signal 
 
    # Generate the chain of inverters 
    for i in range(num_inverters): 
        current_signal = f"\intermediate_{i}_{final_output_signal}" 
        verilog_code += f"INVD \inverter_{final_output_signal}_{i} 
(.A({previous_signal} ), .Y({current_signal} ));\n" 
        previous_signal = current_signal 
 
    # Add an AND gate that takes the output of the last inverter and the 
original input signal 
    verilog_code += f"AND2 \\and_{final_output_signal}_gate (.A({input_signal} 
), .B({previous_signal} ), .Y(\{'Delayed_'+ final_output_signal} ));\n" 
 
    return verilog_code 
 
def generate_inverter_chain_with_and2(input_signal, num_inverters): # Signal 
declarations list 
    signal_declarations = [] 
 
    # Generate the declarations of  the inverters 
    for i in range(num_inverters): 
        current_signal2 = f"intermediate_{i}_{input_signal}" 
        signal_declarations.append(current_signal2) 
    signal_declarations.append(input_signal) 
    wire_declarations = " ,\\".join(signal_declarations) 
    wire_declaration_code = f" \{wire_declarations} ," 
    return wire_declaration_code 
 
     
def parse_vhdl_entity_names(folder_path,signal,max_pulse): 
    entities = set() 
    with open(folder_path, 'r') as file: 
            content = file.read()  # Read the whole file into a single string 
            if signal != None: 
             escaped_signal = re.escape(signal) 
             flexible_pattern = r'\\' +re.sub(r'_', r'[._]', escaped_signal) + 
r' ' # Putting both _ as . for search pattern 
             pattern = re.compile(flexible_pattern) 
          
            match = pattern.search(content) 
            # Find first occurance  
            if match:   
                 
              find_output_insert = content.rfind(';\n',0, match.start())+1 
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              find_output_signal_index = content.find('), .', 
match.start(),match.start()+40) 
              if find_output_signal_index != -1: 
                find_output_signal_index_start= 
content.rfind('(',find_output_signal_index-25,find_output_signal_index) 
                insertion_index1 = content.rfind('wire',0,match.start())+5 # 
Index to find where to declare 
                 
 
                if find_output_signal_index_start !=-1: 
                  
                 signal_name_chain = 
content[find_output_signal_index_start+1:find_output_signal_index] 
                 signal_name_chain2= signal_name_chain.replace("\\", "") # 
Removing spaces and tabs  
                 signal_name_chain2= signal_name_chain2.replace("\t", "") 
                 signal_name_chain2= signal_name_chain2.replace("\n", "") 
                 signal_name_chain2= signal_name_chain2.replace(" ", "") 
                 signal_name_chain2= signal_name_chain2.replace("\n", "") 
                 if signal_name_chain2:  
                 
                  delay_ps = float(max_pulse) 
                  num_inverters = round(delay_ps/4200)*2 # Adding filter for 
minimum gate date 
                  if num_inverters != 0: 
                    #print(delay_ps) 
                    #print(num_inverters) 
                    verilog_code = 
generate_inverter_chain_with_and(signal_name_chain , 
num_inverters,signal_name_chain2) # Generate Code of chain 
                    verilog_codeS = 
generate_inverter_chain_with_and2('Delayed_'+ signal_name_chain2 , 
num_inverters, signal_name_chain) # Generate Signal Declarations  
 
                    updated_content = content[:insertion_index1] + 
verilog_codeS +"\n" +content[insertion_index1:find_output_insert+1] + "\n"+ 
verilog_code + 
"\n"+content[find_output_insert+1:find_output_signal_index_start+1] 
+'\Delayed_' + signal_name_chain2 + ' '  + content[find_output_signal_index:]   
 
                    with open(folder_path, 'w') as file: 
                      file.write(updated_content) 
    return entities 
   
def perform_analysis(signal,max_pulse): 
    entity_names = parse_vhdl_entity_names(folder_path,signal,max_pulse) 
    return -1 
 
signals=[] 
data = extract_pdd_and_pulse(file_path) 
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# Assuming 'data' is the list of tuples with PDD names and max pulses extracted 
from the file 
for pdd_name, max_pulse in data: 
    #last_part = extract_last_part_of_pdd(pdd_name) To find which component 
signal belong to 
    signal= extract_signal_pdd(pdd_name) 
    perform_analysis(signal,max_pulse) 
 
    #signals.append((signal, max_pulse))    
# For parallelezing the code 
#Parallel(n_jobs=1,prefer="threads")(delayed(perform_analysis)(signal,max_pulse
)for signal,max_pulse in unique_signals_list)  
  
 

 


