
Politecnico di Torino

Class LM-32 (DM270)
A.y. 2023/2024

July 2024

Parallelizing The Maximum
Clique Computation for
Multi and Many-core

Architectures

Supervisor: Candidate:
Stefano Quer Salvatore Di Martino
Lorenzo Cardone



2



Contents

1 Introduction 5

1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Problems and Algorithms . . . . . . . . . . . . . . . . . . . . 8

1.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 9

2 GPU Architecture 11

2.1 Overview of GPU Architecture . . . . . . . . . . . . . . . . . 11

2.1.1 GPU Architecture . . . . . . . . . . . . . . . . . . . . 11

2.1.2 GPU Memory . . . . . . . . . . . . . . . . . . . . . . . 14

3 Clique Algorithms 17

3.1 Bron-Kerbosch Algorithm . . . . . . . . . . . . . . . . . . . . 17

3.2 The k-core decomposition and ordering . . . . . . . . . . . . . 22

3.3 Tomita’s Pruning Strategy . . . . . . . . . . . . . . . . . . . . 22

3.4 San Segundo: BitBoard MaxClique Algorithm . . . . . . . . . 27

3.5 McCreesh: Multithreaded Maximum Clique . . . . . . . . . . 29

3.6 San Segundo: BBMCPara . . . . . . . . . . . . . . . . . . . . 32

3.7 Tomita’s Re-NUMBER algorithm . . . . . . . . . . . . . . . . 34

3.8 PMaxSAT based Pruning Strategy: MoMC . . . . . . . . . . 35

3.9 LMC: Large MaxClique . . . . . . . . . . . . . . . . . . . . . 42

3.10 Multithreaded LMC . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Chang: Maximum Clique Branch-Reduce and Bound . . . . . 45

3.12 Van Copernolle: BBMCG . . . . . . . . . . . . . . . . . . . . 48

3.13 Almasri: Parallel MCE on GPUs . . . . . . . . . . . . . . . . 48

4 GPU parallel implementation 51

4.1 From MCE to MCP . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Parallel MCP for large and sparse graphs . . . . . . . . . . . 52

4.3 MCP Solver for large sparse graphs . . . . . . . . . . . . . . . 54

4.4 Warp-wise-parallel version . . . . . . . . . . . . . . . . . . . . 60

4.5 Pruning strategies . . . . . . . . . . . . . . . . . . . . . . . . 60

3



4 CONTENTS

5 Experimental Analisys 63
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Parallel CPU implementations . . . . . . . . . . . . . . . . . 64

5.3.1 BBMCPara . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 LMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 MC-BRB . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Experimental analisys . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Random Instances . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Real-world dataset . . . . . . . . . . . . . . . . . . . . 71

5.5 Warp-wise Parallel . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusions 77

7 Acknowledgements 79



Chapter 1

Introduction

Graphs are discrete mathematical structures designed to describe relation-
ships between elements. Graphs, also known as networks, are tipically used
to describe social networks, molecular structure and communication network
infrastructure. The graph analisys consist of extracting such information,
such as core, clique, and isomorphism. We spend our efforts in studying
the maximal cliques which are special kinds of graphs or subgraphs such
that every two vertices are connected by an edge. The maximum clique
problem has been deeply studied problem, and many algorithms and opti-
mizations able to compute the solution efficiently exist, These approaches
also exploit modern parallel architecture such as multi-threaded CPU and
GPU. The starting maximum clique algorithm is derived from the Bron-
Kerbosch algorithm algorithm employed for enumerating all the maximal
cliques in a graph. They have a multitude of applications in many fields,
such as social network analysis [14], bioinformatics [9], coding theories [5],
and economics [2]. In social network analisys, cliques can represent groups
of people in social network analysis such that they know each other, and in
economics can give an overview of the behavior of the stock market. They
can also represent structure similarities between amino-acids of protein in
biochemistry. Graphs of different applications have different topologies. We
analyze many of them and analyze the behavior of the algorithm depending
on their topology. For instance, social networks are usually sparse they can
have little clusters with respect the overall size. This kind of network is
often easily solvable by exploiting preprocessing strategies. Hard-to-solve
instances include the so-called association graphs [10], used to solve an-
other graph-related problem: the maximum common subgraph. This class
of graphs are little-medium size with a medium density of about 60%, but
the preprocessing procedure is ineffective. Another special kind of network
exists, the biological networks, that are overall sparse but locally dense.
Some algorithms are specifically designed to handle this kind of graph by
exploiting mathematical lemmas, allowing the algorithm to reduce the search

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1: An undirected graph of 4 vertices and 4 edges

vi

vj

Figure 1.2: An edge between two vertices vi and vj .

space. This document is structured as follows. Chapter 1 introduces the ba-
sics and notions of graphs. Chapter 2 discusses the studied architectures.
Chapter 3 covers the most important state-of-the-art exact maximum clique
solvers. Chapter 4 presents our parallel implementation. Finally, Chapter 5
contains the experimental results, Chapter 6 provides the conclusions.

1.1 Graphs

A Graph can be described by a pair of sets G = (V,E) which are respectively
the set of vertices and the set of edges between vertices as shown in Figure
1.1.

Each element of E is a pair of vertices (vi, vj) which means that there is
an edge that connects vi to vj , it is shown in Figure 1.2.

A graph can be directed or undirected, for an undirected graph the edge
for each (vi, vj) ∈ E there exist also (vj , vi) ∈ E so if (vi, vj) ∈ E(G) ⇐⇒
(vj , vi) ∈ E(G). A directed edge can be represented by an arrow starting
from vertex vi to vertex vj , it is shown in Figure 1.2.

A graph can be labeled, in this case, each vertex brings a label, instead
when weighted, each edge has a weight that can be a real number. We
focus on Cliques: which are undirected graphs or subgraphs where every
two vertices of the graph or subgraphs are connected by an edge.

A clique as shown in Figure 1.4 of size n contains n vertices. It can



1.1. GRAPHS 7

vi

vj

Figure 1.3: Directed edge.

Figure 1.4: A clique.

be maximal, if, no other adjacent vertices can be added to the clique. The
biggest clique is called the maximum clique, we refer to that as ω(G).

The neighborhood of a vertex v defined as Γ(G, v) is the set of vertex
adjacent to v.

Γ(G, v) = {vj ∈ V |(v, vj) ∈ E}

The degree of a vertex deg(v) is equal to the number of its neighbor (deg(v) =
|Γ(G, v)|). The degree of a graph ∆(G) instead is the maximum degree
among all vertices.

A random graph of size n and density probability p is a graph with n
vertices and the probability of an edge between two vertices p. This kind
of graph is usually computed and generated on the fly and used to test the
algorithm. A subgraph G′ induced by V ′ ⊆ V , written as G′ = G[V ′] is
a core of order k, or a k-core iff degG′(v) ≥ K for each v ∈ V ′. The core
number of a vertex v, denoted by k(v), is the highest order of a core that
contains v. The core number of a graph G = (V,E), denoted by k(G), is
the maximum core number among the vertices of G.

We also define the ego-network as N+[v] as the subgraph generated by
the higher-ranked neighbors of v concerning a given order.

Look at the Figure 1.5, if vertex are in the descent order {v1, v2, v3, v4, v5}
the N+[v3] for instance is given by the set {v1, v2}. A commonly used order
is the degeneracy order it is given by ordering the vertices by their core
number.



8 CHAPTER 1. INTRODUCTION

v1

v2 v3

v4 v5

Figure 1.5: A Complete graph.

1.2 Problems and Algorithms

The clique problem is a collection of problems that aims to find cliques in
a graph, there exist many related problems: The Maximal Clique Enumer-
ation (MCE), as the name suggests, aims to list all the maximal cliques
in a graph. The Maximum Clique Problem consists of finding a clique of
maximum size in a graph, it is a subproblem of MCE. We also have a k-
clique finding problem which is a decision problem that tells whenever there
is a clique of size k in a graph, and last the Maximum Clique Enumeration
problem that aims to find all the Maximum cliques in a graph. All those
problems are classified as NP-Hard so no algorithm can compute the exact
solution in polynomial time. Starting from the MCE problem, one of the
most used algorithms to solve that problem is the Bron-Kerbosch [3] Algo-
rithm, it is a Branch and Bound and Backtracking Algorithm, this algorithm
as explained in the following chapters is the base search procedure to solve
all the other problems. Through the years the algorithm has been studied
and optimized, the first optimization was the choice of the ”pivot vertex”
able to cut useless branches that do not belong to any maximal clique, next
we have the degeneracy vertex ordering able to reduce the dimension of each
level-one induced subgraph. The Bron-Kerbosch algorithm has been used
and optimized to solve the maximum clique problem, Tomita [18] designed
an efficient algorithm that can compute the maximum clique by cutting most
of the useless branches by employing greedy graph coloring. His algorithm
is used as a reference for other algorithms that are designed for specific
classes of graphs: Hard (Dense graph) and Large Sparse. Those kinds of
algorithms have a huge section of independent code so they are easily ex-
tended and brought to multicore CPU. Recently MCE has been efficiently
brought even to GPUs, by parallelizing the Bron-Kerbosch algorithm [1].
GPU Algorithms adopt many strategies to reduce the amount of memory
employed by each thread and use the second-level independent subtree tree
unrolling to get the job for each thread to be executed, in this way the load
between threads is more balanced. Another problem useful to compute the



1.3. PERFORMANCE EVALUATION 9

maximal clique is the Graph Coloring problem in which pairwise adjacent
vertices are assigned different colors or labels, a greedy version of this algo-
rithm can help to speed up the process of computing the maximum clique.
The maximum clique problem can be useful to compute also the solution of
the Maximum Common Subgraph Problem, it can be solved by computing
the maximum clique in the association graph. The association graph [10]
between two graph G and H is a graph A which has:

❼ Vertex set: V (A) = {(v, v′) ∈ V (G) × V (H) : (v, v) ∈ E(G) ⇐⇒
(v′, v′) ∈ E(H)} those vertices that preserve a loop on both the start-
ing graphs or does not preserve a loop on both the starting graphs.

❼ Two matching nodes (vertices of A) (u, u′) and (v, v′) are adjacent if
u ̸= v and u′ ̸= v′, and if they preserve both edges and non-edges, so
(u, v) ∈ E(G) ⇐⇒ (u′, v′) ∈ E(H).

1.3 Performance Evaluation

Various algorithms have been proposed to solve the maximum clique prob-
lem, but few of them have been brought to parallel machines. McCreesh [11]
wrote one of the fastest implementations for multithreaded CPU, based on
San Segundo and Tomita implementation, they perform work donation: in
which whenever the algorithm finds idle threads, the working thread donates
work to the idle thread to keep them busy, this strategy is very effective es-
pecially for a kind of family of graph, this family is known as DIMACS.
DIMACS graphs are a special kind of graph, randomly generated with some
characteristics, they were employed for the DIMACS Challenge, they are
usually small and dense, so the search tree extends also in-depth because,
in addition to having a big solution, it is very difficult to recognize useless
branches. The maximum clique solvers are divided into two main categories
depending on the size of the problem, the first one is the one we have talked
about so far, and the second refers to large and sparse instances. San Se-
gundo wrote one algorithm especially suited for large and sparse instances
called BBMCSP [13] this algorithm is a single thread algorithm, which has a
preprocessing strategy that allows cutting some vertices that do not lead to
any maximal clique, so it reduces the graph dimension, then it uses BBMC
with sparse bitset as search algorithm to find the best solution with a greedy
coloring procedure designed for bitsets. This algorithm was parallelized in
BBMCPara, he shows how effective was this kind of algorithm, it works
for a very large set of datasets, and we talk about some million vertices
and billions of edges. This implementation uses a sparse bitset encoding of
vertices, it consists of keeping track only of the active set of bits useful for
the computation, this implementation allows to use of less memory for each
thread. It is important to say that usually the development and test of the



10 CHAPTER 1. INTRODUCTION

effectiveness of a new pruning strategy is done in randomly generated hard
instances, and then the corresponding algorithm for real-world networks is
written based on the developed one for dense instances. Following this pro-
cedure other optimizations have been developed to solve the MCP, which
uses the Partial MaxSAT strategy to compute a better upper bound to cut
more vertices in the search tree, the algorithm is called MoMC (Mixed order
Maximum Clique) [7], it is a single thread and very fast used for little and
dense graph, next it was adapted to large and sparse graphs. LMC [6], it
uses a very light preprocessing strategy to reduce the number of vertices pro-
cessed by the search procedure. The last algorithm we cite is MC-BRB [4]
it is a new framework algorithm called Branch-Reduce and Bound, it still
applies the same pruning technique of the previously mentioned but with an
additional Reduce technique, which is particularly effective on sparse graphs
which is locally dense.



Chapter 2

GPU Architecture

This chapter briefly explains the differences between the CPU and GPU
Architecture, then explains the main concepts of the GPU architecture such
as threads, blocks, warps and a brief explanation of its memory hierarchy.

2.1 Overview of GPU Architecture

To better understand how to bring the maximum clique solver on GPUs we
need to differentiate the two architectures, indicating the main components
and explaining the existing memory hierarchy.

2.1.1 GPU Architecture

Before going into detail on how the implementation works on GPU is it
important to explain how the GPU Architecture works. CUDA is a library
that allows you to interface with the GPU, it provides the general functions
able to allocate memory and execute kernels on GPUs. The kernels are
CUDA Programs that will be executed on GPU. The GPU architecture is
devoted to programs able to execute most of its operations in parallel, the
architecture is a little bit different from the CPU.

The CPU and the GPU architectures are both composed of Cores, con-
trol unit L1, L2 Cache, and DRAM. By contrast, the GPU architecture has
many more cores than the CPU one but most of the cores have the same
control unit and L1 Cache, furthermore, the GPU does not have L3 Cache,
and the L2 one is shared among all cores.

Inside the GPU the execution of a single execution flow is represented
by a thread as for the CPU, but inside the GPU we can classify a group of
threads called block, a block represents a variable group of threads decided
by the programmer, usually number assigned are proportional to the number
of thread that the warp can manage, a warp is a group of threads in which
his length is fixed and depend by the GPU Architecture, an usual value is

11



12 CHAPTER 2. GPU ARCHITECTURE

DRAM

L3 Cache

L2 Cache L2 Cache

L1 Cache

Control
Core

L1 Cache

Control
Core

L1 Cache

Control
Core

L1 Cache

Control
Core

DRAM

L2 Cache

CPU GPU

Figure 2.1: Main difference between CPU and GPU Architectures [12]

32 threads. Threads inside a warp can execute a common path, if the path
of each thread diverges the paths are executed serially one after another. A
set of Blocks corresponds to a grid, the grid dimension is specified when the
kernel is launched and it is up to the programmer to decide its size.

Each block of threads, when the kernel is launched, is assigned to the
Streaming Multiprocessor (SM), which executes the block. The number of
SMs influences the number of concurrent blocks that the GPU can run, A
GPU which have more SMs can run many more blocks concurrently.

Blocks and grids can have more than one dimension, it is up to the
programmer to define the number of dimensions in which threads or blocks
are indexed. We can choose up to three dimensions.

For instance, if we launch a block size of (4,4) this means that we have
16 threads launched per block each one indexed (0, 0), (0, 1), (0, 2), ..., (3,
3). As just said also grid can be launched with multiple dimensions so again
if we launch a grid of size (2, 3) we are launching 6 blocks of threads each
one indexed from (0, 0), (0, 1), (0, 2), (1, 0), ..., (1, 2).

When a block is assigned to an SM it is subdivided into warps, each warp
is scheduled by the corresponding warp scheduler of the SM, Each streaming
multiprocessor has the same number of warp schedulers, in modern NVIDIA
cards an SM has 4 warp schedulers able to schedule 4 warps or 128 threads
at a time. Pay attention that as said before each thread in a warp keeps a
program counter and manages its execution flow, if we have branches and
the same thread does not get inside the branch threads are disabled until
the branch finishes, so the warp keeps also a mask of active threads.

All the application that involves the utilization of the GPU are pro-
grammable with CUDA the library has a programmable API written in
C/C++ Language. So our application has been written in C/C++;



2.1. OVERVIEW OF GPU ARCHITECTURE 13

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Multithreaded CUDA Program

SM 0 SM 1 SM 2 SM 3

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

First row of executed blocks

Block 4 Block 5 Block 6 Block 7

Second row of executed blocks

Figure 2.2: How a multithreaded CUDA program is handled by the GPU, we
see that each block is assigned to an SM, and all the blocks will be executed
in two cycles. Faster GPUs scale over the number the SMs, this is to give
an idea of how it works, because actually, SMs can handle more than one
block at a time, but if we exceed that limit they will be executed in order
after terminating the precedents, pay attention that the case shown in figure
each block of the row terminates together.



14 CHAPTER 2. GPU ARCHITECTURE

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Figure 2.3: Thread hierarchy, in green the entire grid, in yellow small squares
are thread, a group of thread represents a Thread Block. In figure a Thread
Block of (5, 5) in a grid of dimension (5, 2).

2.1.2 GPU Memory

The GPU card owns different types of memory on board they are both
inside or outside the chip: The main memory outside the chip is the Global
Memory also known as VRAM, this kind of memory is the largest one, it
can reach sizes of tens of gigabytes depending on the price of the GPU card.
We mention our testing GPU Card that has 8 GBs of Global memory. The
chip has more than one type of memory:

❼ L1 cache

❼ Shared Memory

❼ L2 Cache

❼ Constant Memory

❼ others that not will be used as texture cache.

The L1 cache and the Shared memory own the same memory hardware,
the amount of L1 cache available depends on how much Shared memory your
program will use. As said shared memory and L1 cache belong to the chip
they are placed in the Streaming Multiprocessor and it is shared between
threads of the same block, since it is on the chip it is much faster than the
global memory, and it is usually employed to store data that will be used as
soon as possible. It reaches dimensions of tens of Kilobytes up to hundreds.
The L2 cache is located outside the streaming multiprocessor and it is com-
mon to all the streaming multiprocessors its dimensions are larger than the
L1 because it is common to all SMs. The Constant memory has its cache



2.1. OVERVIEW OF GPU ARCHITECTURE 15

memory which is independent of the L2, it usually stores immutable data,
so data that cannot change during the runtime of the program. Last but not
least just mention texture memory is also resident in global memory that
has its cache usually employed for multidimensional data, it also provides
some specific functionality like hardware interpolation, etc.



16 CHAPTER 2. GPU ARCHITECTURE



Chapter 3

Clique Algorithms

As said before the maximum clique algorithm has been extensively studied
over the years since 1973. This chapter describes the evolution of the main
algorithm introducing the most important optimizations able to efficiently
compute the solution, starting from the enumeration problem.

3.1 Bron-Kerbosch Algorithm

Bron-Kerbosch is the most popular algorithm to find all the maximal cliques
in a graph. The algorithm has been analyzed, it is a Backtracking algorithm,
so it looks for any possible solution. We can try to explain the algorithm by
starting from the Algorithm that generates the powerset of a set:

Algorithm 1: PowerSet

Input : Set V , Set S, where S starts as ∅
Output: List all elements of the powerset of V

1 begin
2 Print S
3 for v ∈ V do
4 PowerSet(V \ v, S ∪ {v})
5 V ← V \ {v}
6 return

For example: given a set V = {a, b, c, d} the PowerSet of V will be:

17



18 CHAPTER 3. CLIQUE ALGORITHMS

{{∅},
{a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, d}, {a, c}, {a, c, d}, {a, d},

{b}, {b, c}, {b, c, d}, {b, d},
{c}, {c, d},

{d}}

The search tree, with the set S at each node, will be:

{∅}

{a}

{a, b}

{a, b, c}

{a, b, c, d}

{a, b, d}

{a, c}

{a, c, d}

{a, d}

{b}

{b, c}

{b, c, d}

{b, d}

{c}

{c, d}

{d}

The powerset algorithm is a generalization of the Bron-Kerbosch algo-
rithm, its output is a subset of the powerset.



3.1. BRON-KERBOSCH ALGORITHM 19

Powerset

Cliques

MaximalCliques

Let’s consider a graph G = (V,E) of just 4 nodes:

a

b

c

d

Now slightly modify the algorithm of the powerset by introducing the P
set that represents the set of potential vertices that can be in a clique, and
the set S that is the current solution:

Algorithm 2: Enumerate all cliques of Graph G

Input : Graph G, Set P , Set S, where P starts with V and S as ∅
Output: List all cliques of G

1 begin
2 Print S
3 for v ∈ P do
4 Cliques(G, P ∩N(G, v), S ∪ {v})
5 P ← P \ {v}
6 return



20 CHAPTER 3. CLIQUE ALGORITHMS

Following the algorithm the search tree will be slightly different, some
branch were cut.

{∅}

{a}

{a, b}

{a, b, c}

{a, b, c, d}

{a, b, d}

{a, c}

{a, c, d}

{a, d}

{b}

{b, c}

{b, c, d}

{b, d}

{c}

{c, d}

{d}

To print out just the leaf nodes where the maximum clique stays we need
to insert the print inside the termination condition P = ∅.

Algorithm 3: Enumerate all cliques of Graph G

Input : Graph G, Set P , Set S, where P starts with V and S as ∅
Output: List all cliques of G

1 begin
2 if P = ∅ then
3 Print S

4 for v ∈ P do
5 Cliques(G, P ∩N(G, v), S ∪ {v})
6 P ← P \ {v}
7 return

Dotted those nodes that do not will be printed out.



3.1. BRON-KERBOSCH ALGORITHM 21

{∅}

{a}

{a, b}

{b}

{b, c}

{b, c, d}

{b, d}

{c}

{c, d}

{d}

To further reduce the output to the maximal cliques we have to introduce
another set X the set of the vertex already served. This set should be
updated each time we already have explored a vertex. Furthermore, P = ∅
is not a sufficient condition to say that S is a maximal clique, so we require
that X is also ∅.

Algorithm 4: BronKerbosch: Enumerate all maximal cliques of
Graph G from [1]

Input : Graph G, Set P , Set S, Set X, where P starts with V , S
and X as ∅

Output: List all maximal cliques of G

1 begin
2 if P = ∅ ∧X = ∅ then
3 Print S

4 for v ∈ P do
5 BronKerbosch(G, P ∩N(G, v), S ∪ {v}, X ∩N(G, v))

6 P ← P \ {v}
7 X ← X ∪ {v}
8 return

Pay attention when we recur over the subtree we have to consider only
vertices already served but also those that are in common to chosen vertex
(v) so the following operation makes sense X ∩ (G, v). At this point the
search tree will print just the sets {a, b} and {b, c, d}.

To further reduce the search space is it possible to select at each re-
cursion level a ”piovot vertex”: the pivot is a chosen vertex in which its
neighborhood is removed from the branching vertices since a maximal clique



22 CHAPTER 3. CLIQUE ALGORITHMS

composed by the pivot and its neighbor will be found by just branching in
the pivot vertex, the pivot vertex is selected based on the dimension of
its neighborhood. In the maximum clique algorithm, this optimization is
replaced by the coloring pruning strategy that Tomita introduces, this is
further explained in the next sections. Is it possible to improve the BK
algorithm by computing a certain vertex order called ”degeneracy order”,
this order is coupled with another optimization, the ”first-level independent
subtree” commonly used even in the maximum clique algorithm, thanks to
this two optimization is it possible to parallelize the algorithm running it on
Multi-cores architectures and reduce the size of the P set computed in the
first level of the recursion tree.

Algorithm 5: BronKerbosch: First-level independent subtree [1]

Input : Graph G = (V,E)
Output: List all maximal cliques of G

1 begin
2 for vi ∈ V with respect to the degeneracy order do
3 P ← N(G, vi) ∩ {vi+1, vi+2, ..., v|V |}
4 X ← N(G, vi) ∩ {v1, v2, ..., vi−1}
5 BronKerbosch(G, P , {vi}, X)

6 return

3.2 The k-core decomposition and ordering

As for the Bron-Kerbosch algorithm the sparse versions of the maximum
clique search procedure make use of the k-core to compute the ordering and
an initial clique for reducing the input graph, this ordering is computed in
linear time by the Algorithm 6.

Vertices in V are initially ordered in ascending order with respect to
their degree, then the algorithm extracts the vertex vi with minimum degree
from V and removes it from the graph G updating the vertices degrees, the
algorithm loops until V is empty. The vertices in O are ordered concerning
the degeneracy order extracted for V , and the core number is exactly the
degree when the vertex has been extracted from V . Actually, it is not
required to remove a vertex from V at each loop. we just need to update
their degrees.

3.3 Tomita’s Pruning Strategy

One of the first and fastest algorithms to find the maximum clique was
written by Tomita (2003). How It has already been said it is based on a



3.3. TOMITA’S PRUNING STRATEGY 23

Algorithm 6: k-cores decomposition.

Input : Graph G = (V,E)
Output: Returns a vertex ordering O, an initial clique C0 and core

numbers

1 begin
2 O ← ∅
3 deg()← Compute the degrees of each vertex v ∈ V
4 Sort the vertices in increasing degree ordering.
5 for vi ∈ V in increasing degree ordering do
6 if deg(vi) + 1 = |V | − i then
7 C0 ← {vj ∈ V |j ≥ i}
8 for vj ∈ C0 do
9 append(vj , O)

10 core(vj) ← deg(vi)

11 break

12 append(vi, O)
13 core(vi) ← deg(vi)
14 for vj ∈ N(G, vi) ∩ {vi+1, vi+2, ..., v|V |} do
15 deg(vj)← deg(vj)− 1
16 Sort V and re-index vertex vj in V with respect to the

degree contained in deg() order.

17 return (C0, O, core())



24 CHAPTER 3. CLIQUE ALGORITHMS

pruning strategy with a greedy graph coloring which gives us an upper bound
on the size of the maximal clique found by branching on that vertices. The
algorithm is described in Algorithm 7.

Algorithm 7: MCQ: Find the maximum clique of a Graph G [18]

Input : Graph G
Output: Returns the maximum clique of G

1 begin
2 global Q = ∅
3 global Qmax = ∅
4 Sort vertices of V in descending order with respect to their

degree
5 for i = 1 to ∆(G) do
6 C[V [i]]=i

7 for i = ∆(G) + 1 to |V | do
8 C[V [i]]=∆(G) + 1

9 EXPAND(V, C) return Qmax

The procedure EXPAND described Algorithm 8, recalls the one of Bron-
Kerbosch, in which it loops over the vertices in P but instead of just recur-
ring, EXPAND executes the pruning strategy based on the color number,
After the return from the sublevel it checks if the incumbent is greater than
the maximum clique at this point it store the maximum clique. Keeping the
set X is useless because we explore the tree in a depth-first manner and we
keep track of the maximum clique. The coloring strategy has been refined
in the subsequent paper.

The pruning strategy procedure is described in Algorithm 9. From the
Tomita’s paper [18]: ”This procedure assigns in advance for each p ∈ R a
positive integer N [p] called the Number or Color of p with the following
property:

❼ If (p, r) ∈ E then N [p] ̸= N [r]

❼ N [p] = 1, or ifN [p] = k > 1, then there exist vertices p1 ∈ N(G, p), p2 ∈
N(G, p), ..., pk−1 ∈ N(G, p) inR withN [p1] = 1, N [p2] = 2, ..., N [pk−1] =
k − 1.

Consequently, we know that ω(R) ≤ Max{N [p]| p ∈ R}, and hence if
|Q|+Max{N [p]| p ∈ R} ≤ |Qmax| holds then we can disregard such R.

The value of N [p] for each p ∈ R is assigned step by step in the following
manner: Assume that vertices in R = {p1, p2, ..., pm} are arranged in this
order. First let N [p1] = 1. Subsequently, let N [p2] = 2 if p2 ∈ N(D, p1) else



3.3. TOMITA’S PRUNING STRATEGY 25

Algorithm 8: EXPAND: Find the maximum clique of a Graph
G [18]

Input : Graph G, Set R, Array C
Output: Returns the maximum clique of G(R)

1 begin
2 while R ̸= ∅ do
3 assign to p the last vertex of R
4 if Q+ C[p] > |Qmax| then
5 Q← Q ∪ {p}
6 Rp ← R ∩N(G, p)
7 if Rp ̸= ∅ then
8 copy C to C ′

9 NUMBER-SORT (R, C ′)
10 EXPAND(Rp, C

′)

11 else if |Q| > |Qmax| then
12 Qmax ← Q

13 Q← Q \ {p}
14 else
15 return

16 R← R \ {p}
17 return



26 CHAPTER 3. CLIQUE ALGORITHMS

N [p2] = 1, ..., and so on. After Numbers are assigned to all vertices in R,
we sort these vertices in ascending order with respect to their Numbers.”

Algorithm 9: NUMBER-SORT: Assign colors with a greedy strat-
egy to vertices in R [18]

Input : Graph G, Set R, Array C
Output: Returns the color number in C as ordered array

1 begin
2 maxno=1
3 //NUMBER
4 C1 ← ∅
5 C2 ← ∅
6 ...
7 Cm ← ∅
8 while R ̸= ∅ do
9 assign to p the first vertex in R

10 k = 1
11 while Ck ∩N(G, p) ̸= ∅ do
12 k = k + 1

13 if k > maxno then
14 maxno = k
15 Cmaxno+1 ← ∅
16 C[p] = k
17 Ck ← Ck ∪ {p}
18 R← R \ {p}
19 //SORT
20 i = 1
21 for k = 1 to maxno do
22 for j = 1 to |Ck| do
23 R[i] = Ck[j]
24 i = i+ 1

25 return

The time complexity of the procedure is O(|R|2). Also Tomita says
that [18] ”The quality of such sequential coloring depends heavily on how
the vertices are ordered. The last operation (sorting) is executed in O(|R|)
time”.



3.4. SAN SEGUNDO: BITBOARD MAXCLIQUE ALGORITHM 27

3.4 San Segundo: BitBoard MaxClique Algorithm

San Segundo presents another exact maximum clique algorithm implemen-
tation, based on bitset [17]. Bitset is the new set representation in memory
in which vertices in the set are represented by bits set to 1, on a set of a
word dimension we can represent at most 32 vertices so if the n− th bit is
set to 1, this means that the vn vertex is in that set. In this way, all the
operations performed on sets such as Unions or Intersections become bit-
wise operations between registers, speeding up that process. The algorithm
slightly changes, it is described in Algorithm 10.

Algorithm 10: BB-MaxClique: Find the maximum clique on a
graph G [17]

Input : Graph G, BitSet UBB, Set UL, Set Smax

Output: Returns the Set that represents the maximum clique

1 /* Initially UBB is a bit model for a set of vertices in the input
graph G = (V,E) and UL is a standard encoding of V */

2 begin
3 while U ̸= ∅ do
4 select a vertex v from UL in order
5 UBB ← UBB \ {v}
6 if |S|+ C(v) > |Smax| then
7 S ← S ∪ {v}
8 if UBB ∩NBB(G, v) ̸= ∅ then
9 BB-Color(UBB ∩NBB(G, v), UL, C

′, |Smax| − |S|+ 1)
10 BB-MaxClique(UBB ∩NBB(G, v), UL, C

′, Smax)

11 else if |S| > |Smax| then
12 Smax ← S

13 S ← S \ {v}

14 return

The operation between the potential vertices that can represent a clique
and the neighborhood of a vertex this time are bitwise (UBB ∩NBB(G, v)).
All the sets denoted by XBB are bitsets.

Also, the coloring procedure has been adapted and now presents bitwise
operation. The operation presented in Algorithm 11: (NBB(G(QBB), v)) is
the complement of the set given by the neighborhood of v.



28 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 11: BB-Color: Assign a color to a set of vertices UBB

[17]

Input : Graph G, BitSet UBB, Set UL, Set kmin

Output: Returns the colors of vertices in UBB

1 /* Vertices in the input candidate set UBB must be in the same
order as in the initial input graph */

2 begin
3 QBB ← UBB

4 k = 0
5 while UBB ̸= ∅ do
6 Ck ← ∅
7 while QBB ̸= ∅ do
8 select the first vertex v ∈ QBB

9 Ck ← Ck ∪ {v}
10 QBB ← QBB \ {v}
11 QBB ← QBB ∩NBB(G(QBB), v)

12 UBB ← UBB \ Ck

13 QBB ← UBB

14 if k ≥ kmin then
15 UL ← Ck

16 C[v] = k

17 k = k + 1

18 return



3.5. MCCREESH: MULTITHREADED MAXIMUM CLIQUE 29

3.5 McCreesh: Multithreaded Maximum Clique

Ciaran McCreesh presents a parallel version of the Maximum clique algo-
rithm, this version archives near linear and superlinear speed-ups, It has
been tested on Hard graphs (little up to about 30,000 vertices with variable
density), He solved some DIMACS challenges that required some days to be
solved. The parallel version is described in Algorithm 12.

Algorithm 12: A threaded algorithm to deliver the max clique [11]

Input : Graph G
Output: Returns the Set of integers that represent the maximum

clique

1 begin
2 shared Cmax ← ∅
3 shared q ← an empty Queue of (Set, Set)
4 permute G so that vertices are in non-increasing degree order
5 launch the populating thread do expand(G, q, ∅, V (G), Cmax)
6 launch multiple worker threads do
7 while there is work left do
8 (C,P )← dequeue(q)
9 expand(G, q, C, P , Cmax)

10 join all threads
11 return Cmax

It is based on a simple strategy in which a job is defined by the process
of coloring and performing bitset operation in a node in the recursion graph,
this process is called a thread job, now the algorithm maximizes the time in
which each thread is busy, so the algorithm whenever find an idle thread it
creates new work for the idle threads and keep them busy, instead if there
are no idle threads this thread keep working by recurring in the sub-level of
the tree. Some version uses also bitsets to speed up set operation. Then the
colorOrder procedure is the same as San Segundo, but the names of the sets
used are different, the McCreesh’s implementation is described in Algorithm
14.

Even if the speedup seems linear or superlinear hype-threading compli-
cates things. Hyper-threading makes the physical processor appear as two
logical processors, this kind of optimization makes our speedup increase by
only up to 30%, this number is taken from benchmarks.



30 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 13: expand: main search procedure for max clique [11]

Input : Graph G, Queue of (Set, Set) q, Set C, Set P , Set Cmax

Output: Returns the Set of integers that represent the maximum
clique

1 begin
2 populate ← true if we are the populating thread, and |C| = 1,

otherwise false
3 (colour, order) ← colourOrder(G, P )
4 for i← |P | down to 1 do
5 if |C|+ colour[i] > |Cmax| then
6 v ← order[i]
7 C ← C ∪ {v}
8 P ′ ← P ∩N(G, v)
9 if P ′ = ∅ then

10 if |C| > |Cmax| then
11 Cmax ← C

12 else
13 if the populating thread is done, and q is empty,

and there are idle workers then
14 populate ← true

15 if populate then
16 enqueue(q, (C, P ′))

17 else
18 expand(G, q, C, P ′, Cmax)

19 C ← C \ {v}
20 P ← P \ {v}

21 return



3.5. MCCREESH: MULTITHREADED MAXIMUM CLIQUE 31

Algorithm 14: colorOrder: vertex coloring [11]

Input : Graph G, Set P
Output: Returns two sets, one that represents the color number

and the other the name of the vertices

1 begin
2 color ← array of integer
3 order ← array of integer
4 P ′ ← P
5 k = 1
6 while P ′ ̸= ∅ do
7 Q← P ′

8 while Q ̸= ∅ do
9 v ← the first element of Q

10 P ′ ← P ′ \ {v}
11 Q← Q \ {v}
12 append k to color
13 append v to order

14 Q← Q ∩N(G, v)

15 k = k + 1

16 return (color, order)



32 CHAPTER 3. CLIQUE ALGORITHMS

3.6 San Segundo: BBMCPara

San Segundo presents BBMCPara a parallel version of another algorithm
BBMCSP that aims to find the maximum clique in large and sparse graphs.
BBMCSP uses the new representation of sparse bitsets, in which a bitset
contains just bitset blocks that have at least one bit set to 1, words with
value 0 are omitted to use less memory during runtime and make bitset
operations faster. BBMCSP uses also a preprocessing strategy that aims
to reduce the number of candidate vertices, both to speed up computation
and to reduce the amount of memory used by each thread. BBMCSP is
described in algorithm 15.

Algorithm 15: BBMCSP [13]: max clique computation for large
sparse graphs

Input : Graph G
Output: Returns the maximum clique

1 begin
2 Perform core analysis and compute K(G)
3 Smax ← INITIAL CLIQUE (G)
4 V ′ ← V \ {v ∈ V : K(v) < |Smax|}
5 Sort vertices in G′ = G[V ′] according to degeneracy
6 while |V ′| ≠ 0 do
7 select vertex w from V ′ in reverse order
8 if K(w) ≥ |Smax| then
9 INITIAL SEARCH (G′, w)

10 V ′ ← V ′ \ {v}
11 return

BBMCSP starts by performing the core analysis which consists of deter-
mining the k-core of the graph and the core number of each vertex: Then
it computes an initial clique with a maximum clique greedy algorithm this
initial clique will be used as a threshold to filter those vertices with a core
number greater than the initial clique size. Then for each vertex of V , it
calls the INITIAL SEARCH procedure to further process the graph.

The parallel version of BBMCPara uses the first level of the recursion
tree as a job for the thread. Benchmark results show that speedup is linear
with the number of threads. The Search and the color procedure remain un-
changed with respect to BBMC so will be not reported. As we can see from
the algorithm inside the search procedure during the first level subtree the
subgraph is further processed and reduced, and the main search procedure
(similar to BBMC) starts.



3.6. SAN SEGUNDO: BBMCPARA 33

Algorithm 16: BBMCSP [13]: max clique computation for large
sparse graphs

Input : Graph G
Output: Returns the maximum clique

1 begin
2 Uv ← N(G, v)
3 if |Uv| < |Smax| then
4 return

5 col ← Compute the size of greedy sequential coloring SEQ(Uv)
6 if col < |Smax| then
7 return

8 W ← Uv ∪ {v}
9 Perform core analysis and compute K(G[W ])

10 if K(G[W ]) < |Smax| then
11 return

12 U ′
v ←W \ {w ∈W : K(w) < |Smax|} \ {v}

13 L \ U ′
v in degenracy ordering

14 C(U ′
v)←W \ {c(w)|C(w)← K(w)∀w ∈ U ′

v ⊆W}
15 SPARSE SEARCH (U ′

v,{v}, Smax, C(U ′
v), L)

16 return



34 CHAPTER 3. CLIQUE ALGORITHMS

3.7 Tomita’s Re-NUMBER algorithm

Tomita’s NUMBER Algorithm subdivides the branching vertices into k in-
dependent sets Ci each vertex of the independent set has color number i,
the maximum color is given by the number of independent sets k it is as
already said an upped bound of the maximum clique, a good quality col-
oring provide an upper bound that is as near as possible to the chromatic
number, to further improve this bound Tomita designed another procedure
Re-NUMBER [19] that initially subdivide the branching vertices in kmin

independent sets when a branching vertices v cannot be added to any inde-
pendent set numbered from 1 to kmin where kmin is given by |Cmax| − |C|,
it try to re-number vertices in those independent set making space for the
new branching vertices, the algorithm is described in Algorithm 17.

Algorithm 17: Re-NUMBER [19] Try color v with color less equal
than kmin

Input : Graph G, Vertex v, Sets C1, C2, ..., Ckmin

Output: Returns true if v has been colored false otherwise

1 begin
2 for i from 1 to kmin − 1 do
3 if |Ci ∩N(G, v)| = 1 then
4 w ← vertex from Ci ∩N(G, v)
5 for j from i+ 1 to kmin do
6 if |Cj ∩N(G,w)| = 0 then
7 Ci ← Ci \ {w}
8 Cj ← Cj ∪ {w}
9 Ci ← Ci ∪ {v}

10 return true

11 return false

This procedure is recalled inside the NUMBER-SORT procedure, it
promises to improve the runtimes for locally dense graphs by at least an order
of magnitude. This procedure has been implemented also by San Segundo
in its BBMC framework, it promises to improve runtimes on locally dense
instances, the algorithm that owns this procedure is called BBMCR [16]. In
BBMCR this procedure is applied under different conditions.



3.8. PMAXSAT BASED PRUNING STRATEGY: MOMC 35

3.8 PMaxSAT based Pruning Strategy: MoMC

Li focuses on reducing the number of branches of the search tree, which
can be archived by using a dynamic vertex reordering strategy because a
static strategy can be effective for certain kinds of graphs. He will show
that combining these two strategies dynamic and static can result in more
effectiveness than using just one.

In DoMC0 the general algorithm remembers those previously described
it is used to compute the maximal clique for little and dense graphs it is
described in algorithm 18:

Algorithm 18: MC: max clique computation for dense graph from
[7]

Input : Graph G, Set P , Ordering O0, Set C, Set Cmax

Output: Returns the maximum clique Cmax

1 begin
2 if P = ∅ then
3 return C

4 B ← GetBranches(G[P ], |Cmax| − |C|, O0)
5 if B = ∅ then
6 return Cmax

7 A← P \B
8 Let B = {b1, b2, ..., b|B|}andb1 < b2 < ... < b|B|w.r.t.O0

9 for i = |B| downto 1 do
10 C1 ← MC (G, N (G, bi)∩({bi+1, ..., b|B|} ∪A), O0, C ∪ {bi},

Cmax)
11 if |C1| > |Cmax| then
12 Cmax ← C1

13 return Cmax

The algorithm GetBranchesd0 is relatively simple it builds the set of in-
dependent set Π until the size of Π reaches r then it applies the Re-NUMBER
procedure to further reduce the set of branching vertices Bd0. DoMC is the
second algorithm presented it uses incremental MaxSAT reasoning to de-
tect conflict and further reduce the set of branching vertices. So given a
graph G we first apply the independent set partitioning as the precedent
algorithm then it builds the PMaxSAT instance ϕ to detect conflicts. From
Li et al. [7] ”A literal is a propositional variable x or its negation x. A
clause is a disjunction of literal, and a CNF formula is a conjunction of
clauses. A truth assignment I satisfies a literal if its assignment is 1 (if lit-
eral is x), satisfies a clause c if it satisfies at least a literal in the clause, and



36 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 19: GetBranchesd0: Compute the set of branching
vertices [7]

Input : Graph G, Int r, Ordering O0

Output: Returns the maximum set B of branching vertices

1 begin
2 Bd0 ← ∅
3 Π← ∅
4 while V ̸= ∅ do
5 v ← the greatest vertex of V w.r.t. the ordering O0

6 V ← V \ {v}
7 if there is an independent set D in Π in which is not

adjacent to any vertex then
8 D ← D ∪ {v}
9 else

10 if |Π| < r then
11 create a new independent set D = {v}
12 Π← Π ∪ {D}
13 else
14 if there is a D in which v has only one adjacent

vertex u, and u can be inserted into another
independent set D′ then

15 D′ ← D′ ∪ {u}
16 D ← D ∪ {v}
17 else
18 Bd0 ← Bd0 ∪ {v}

19 return Bd0



3.8. PMAXSAT BASED PRUNING STRATEGY: MOMC 37

satisfies a CNF formula if satisfy all its clauses. A Partial MaxSAT instance
is a set of clauses in which some of them are declared to be soft and some
hard. Given a partial MaxSAT instance, the partial MaxSAT problem con-
sists in finding a truth assignment that satisfies all its hard clauses, and the
maximum number of soft clauses”. The MaxClique problem can be reduced
in a MaxSAT instance as follows: the vertices of the graph represent the
propositional variable, and a propositional variable is assigned true if it be-
longs to the maximum clique false otherwise. The Partial MaxSAT instance
contains a hard clause xi ∧ xj for each pair of non-adjacent vertices and a
soft unit clause for each vertex v ∈ V . Li and Quan(2010) [8], improved this
encoding by declaring a soft clause for each independent set in G, which is
the disjunction of variables for each vertex of the independent set. The con-
flicts are detected in the new IncMaxSAT that is called by GetBranchesd
procedure described in Algorithm 20.

Algorithm 20: GetBranchesd: Compute the set of branching ver-
tices [7]

Input : Graph G, Int r, Ordering O0

Output: Returns the maximum set B of branching vertices

1 begin
2 Bd0 ← GetBranchesd0(G, r, O0)
3 if Bd0 = ∅ then
4 return ∅
5 else
6 Ad0 ← V \Bd0

7 Bd ← IncMaxSAT (G, O0, Ad0, Bd0)
8 return Bd

IncMaxSAT, described in Algorithm 21, aims to find a subset of conflict-
ing soft clauses. Once the conflict has been detected the set of soft clauses
has to be weakened before detecting the next conflict, after the weakening
process the number of conflicts after weakening the soft clauses is reduced by
1. The weakening process is described in Algorithm 21 Lines: 19 - 20. The
weakening process is useful to remove the precedent conflict and make the
detection of the next conflict independent from the previously one. SoMC is
the other algorithm proposed, it is based on the assumption that branching
in a smaller vertex w.r.t the ordering in O0 is a much easier branching in a
vertex which is bigger w.r.t the ordering in O0. The function GetBranchess
implements this assumption: it looks for the greatest vertex in Bd and if in
Ad finds a vertex less than max in Bd moves that vertex back and returns
Bs which is Bd plus that vertex. This procedure is described in the following
Algorithm:



38 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 21: IncMaxSAT: Further reduce the set of branching
vertices [7]

Input : Graph G, Ordering O0, Set A, Set B
Output: Returns the maximum set B of branching vertices

1 begin
2 ϕ← the partial MaxSAT encoding og G without including the

soft clauses for the vertices in B while B ̸= ∅ do
3 b← the greatest vertex in B w.r.t. O0

4 add a soft unit clause {b} int ϕ and push {b} into an empty
stack S

5 while S ̸= ∅ ∧ empty clause is not derived do
6 pop a unit clause u from S
7 l← the only literal in u record u as the reason for the

value the variable in l satisfying l
8 foreach clause c that contains l do
9 remove ovelinel from c

10 if c became a unit clause then
11 push c into S

12 if c is empty then
13 B ← B \ {b}
14 foreach clause c′ in the same order they were

pushed into Q do
15 foreach removed literal l′ in c′ do
16 if the reason r for literal l′ is not in Q

then
17 push r into Q

18 restore all removed literals in their clauses
19 {{b}, c1, ..., cq} ← the set of soft clauses in Q
20 let zb, zc1 , ..., zcq be new variable

ϕ← (ϕ \ {{b}, c1, ..., cq}) ∪ ({b ∨ zb} ∪ {c1 ∨
zc1 , ..., cq ∨ zcq}) ∪ {zb + zc1 + ...+ zcq = 1}

21 break

22 if no empty clause is derived then
23 return B

24 return B



3.8. PMAXSAT BASED PRUNING STRATEGY: MOMC 39

Algorithm 22: GetBranchess: Compute the set of branching ver-
tices [7]

Input : Graph G, Int r, Ordering O0

Output: Returns the maximum set B of branching vertices

1 begin
2 Bd ← GetBranchesd(G, r, O0)
3 if Bd = ∅ then
4 return ∅
5 else
6 v ← the greatest vertex in Bd w.r.t. the ordering in O0

7 Bs ← {u ∈ V |u ≤ v w.r.t. O0}
8 return Bs

A lack point of DoMC0, DoMC, and SoMC is that they do not exploit
sufficiently the result of the previous search, to overcome this lack of incre-
mentality they have been incorporated into a more efficient representation
of the adjacency matrix, and an incremental upper bound. The adjacency
matrix is O(|V |2) space-consuming, so it cannot fit entirely in cache memory.
To use efficient cache memory is to explore the tree in order w.r.t O0, this
can be archived only by SoMC which uses static ordering of the branching
vertices. To overcome this limitation an optimization from MCS has been
adopted, it consists of the reconstruction of the set P, so that it appears
in the same order as the adjacency matrix. this optimization can be time-
consuming if it is performed in each level of the search tree, to it has been
adopted just in the first level, leading to increasing performance by 10-15%.
To use the result of the previous search an array has been adopted, called
vertexUB, to store the upper bound of the clique obtained by branching in
vertex vi, so if the clique found is s then if the vertexUB[vi] ≤ s the search
can be pruned. The vertexUB is determined by the following rules taken
from Li et al. [7]:

❼ Inheritance rule: If vertexUB[vi,O] is defined on a set Ui and V i ⊆
Ui, then vertexUB[vi,O] can be defined on Vi with the same value as
in Ui.

❼ Incremental rule: We define a function called IncUB(vi,O) as fol-
lows. If Vi ∪ N(G, vi) = ∅, then IncUB(vi, O) = 1. Otherwise, In-
cUB(vi, O) = 1 + max ∈ Vi ∪ N(G, vi) vertexUB[u], provided that
vertexUB[u] was already defined for each u ∈ Vi∩ N(G, vi) in the pre-
vious search. Obviously, vertexUB[vi] can be defined to be IncUB(vi,
O). In other words, vertexUB[vi,O] can be defined to be the maximum
vertexUB of its neighbors in Vi plus 1, because any clique containing



40 CHAPTER 3. CLIQUE ALGORITHMS

vi is formed by vi and some of its neighbors.

❼ Coloring rule: If Vi can be partitioned into r independent sets, then
vertexUB[vi, O] can be defined to be r.

❼ MaxSAT rule: If Vi can be partitioned into r independent sets and
t disjoint conflicting subsets of independent sets can be detected using
MaxSAT reasoning, then vertexUB[vi, O] can be defined to be r − t

❼ Branching rule: vertexUB[vi, O] can be defined to be |C1|−|C| after
BnB algorithm branches on vi with the growing clique C to obtain a
clique C1

❼ Compatibility rule: Let O and O′ be two different vertex order-
ings. Let vi be a vertex such that vertexUB[vi, O] has been de-
fined. If it holds that {u|vi < uw.r.t.O′} ⊆ {u|vi < uw.r.t.O}, then
vertexUB[vi,O

′] can be defined to be vertexUB[vi,O]

All this optimization leads to the following algorithms DoMC20, DoMC2,
and SoMC2, those algorithm has the procedure MC2 in common described
in Algorithm 23.

DoMC2 and SoMC2 are complementary algorithms both effective, so
they can be combined, then another algorithm is introduced MoMC, which
uses the procedure GetBranchesm it is based on a parameter α = |Bd|/|Bs|
to control the choice of using the GetBranchesd or GetBranchess, it is
described in Algorithm 24.

This algorithm (MoMC) might be parallelized following the guidelines
of McCreesh and Prosser to achieve lower runtimes. It has been tested on
little and dense graphs like DIMACS and compared with the current state-
of-the-art algorithms. In the end, it shows how it outperforms those kinds
of algorithms.



3.9. LMC: LARGE MAXCLIQUE 41

Algorithm 23: MC2: max clique computation for dense graph [7]

Input : Graph G, Set P , Ordering O0, Set C, Set Cmax, Ordering
O′

Output: Returns the maximum clique Cmax

1 begin
2 if P = ∅ then
3 return C

4 B ← GetBranches(G[P ], |Cmax| − |C|, O0)
5 if B = ∅ then
6 return Cmax

7 A← P \B
8 Let A = {a1, a2, ..., a|A|} and B = {b1, b2, ..., b|B|} in increasing

order w.r.t. O0

9 define a new vertex ordering O′ in P
10 for i = |A| down to 1 do
11 // compatibility rule and incremental rule
12 vertexUB[ai, O

′] ← min(vertexUB[ai, O],|Cmax| − |C|,
IncUB(ai, O

′))

13 if |C| < 1 then
14 reconstruct the adjacency matrix to make the vertices in

G[P ] consecutive in the matrix w.r.t. the ordering in O′

15 for i = |B| downto 1 do
16 // incremental rule
17 vertexUB[vi, O

′] ← IncUB(bi, Oi)
18 if vertexUB[bi, O

′] < |Cmax| − |C| then
19 if bi smaller than vertices in {bi+1, ..., b|B|} ∪A w.r.t. O

and vertexUB[bi, O] < |Cmax| − |C| then
20 // compatibility rule
21 vertexUB[bi, O

′] ← vertexUB[bi, O]

22 else
23 C1 ← MC2 (G, N (G, bi)∩({bi+1, ..., b|B|} ∪A), O0,

C ∪ {bi}, Cmax, O
′)

24 vertexUB[bi, O
′] ← |C1| − |C|

25 if |C1| > |Cmax| then
26 Cmax ← C1

27 return Cmax



42 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 24: GetBranchesm: Compute the set of branching
vertices [7]

Input : Graph G, Int r, Ordering O0

Output: Returns the maximum set B of branching vertices

1 begin
2 Bd ← GetBranchesd(G, r, O0)
3 if Bd = ∅ then
4 return ∅
5 else
6 v ← the greatest vertex in Bd w.r.t. the ordering in O0

7 Bs ← {u|u ∈ V, u ≤ v w.r.t. O0}
8 if |Bd|/|Bs| < α then
9 return Bd

10 else
11 return Bs

3.9 LMC: Large MaxClique

MoMC algorithm has been designed for little and dense graphs, it can be
adapted also for large and sparse graphs, by changing the memory graph
representation and performing some preprocessing to cut some vertices that
do not lead to the maximum clique. For this reason, a new algorithm was
introduced it is called LMC. The preprocessing is performed by a procedure
called Initialize it performs:

❼ Derive a vertex ordering for search

❼ Find an initial clique

❼ Reduce the input graph

This procedure is described in Algorithm 25.
Is it important to remark that the complexity of this procedure is O(|E|)

with respect to that one of BBMCSP which is O(∆(G)|E|), where ∆(G) is
the maximum degree of the graph.

The procedure Initialize is called not only when preprocessing the graph
but also for each vertex of the first level subtree (recursion tree). LMC Uses
an adjacency list to store all the graphs in main memory, then for each sub-
graph G[N(G, vi)∩ {vi+1, vi+2, ..., v|V |}] reduced by the Initialize procedure
it computes an adjacency matrix to speedup vertex access operations. The
main procedure is described in Algorithm 26.

This algorithm has been compared with BBMCSP and it is outperformed
most instances.



3.9. LMC: LARGE MAXCLIQUE 43

Algorithm 25: Initialize: A preprocessing for large and sparse
graph [6]

Input : Graph G, Int lb
Output: Returns an initial Clique C0, a core number of G, a

reduced graph G′ of G, and an initial vertex ordering O′

1 begin
2 Sort V in increasing degree ordering
3 cur core← deg(v1)
4 for i = 1 to |V | do
5 if deg(vi) > cur core then
6 cur core← deg(vi)

7 core number[vi]← cur core
8 if deg(vi) = |V | − i then
9 for j = i+ 1 to |V | do

10 core number[vj ]← cur core

11 break

12 foreach v ∈ (N(G, vi) ∩ {vi+1, vi+2, ..., v|V |} do
13 deg(v)← deg(v)− 1
14 Move v and re-index vertices {vi+1, vi+2, ..., v|V |} for

keeping the incresing degree ordering

15 C0 ← {vi+1, vi+2, ..., v|V |}
16 max core← the maximum core number in vertices of V
17 if |C0| > lb then
18 lb← |C0|
19 G′ ← G[{v ∈ V : k(vi) < lb}]
20 O0 ← the ordering in which the core number of each vertex is

computed
21 return (C0, max core, G′, O0)



44 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 26: LMC : A BnB algorithm for computing the max
clique [6]

Input : Graph G
Output: Returns the maximum clique

1 begin
2 (C0, k(G), G′, O0) ← Initialize(G, 0)
3 if |C0| = k(G) + 1 then
4 return C0

5 Cmax ← C0

6 V ′ ← the vertex set of G′

7 Order V ′ w.r.t the initial ordering O0

8 for i = |V ′| down to 1 do
9 P ← N(G, vi) ∩ {vi+1, ..., v|V ′|}

10 (C ′
0, k(G[P ]), G′′, O′

0) ← Initialize(G[P ], |Cmax| − 1)
11 if |C ′

0| ≥ |Cmax| then
12 Cmax ← C ′

0 ∪ {vi}
13 if k(G[P ]) + 1 ≥ |Cmax| then
14 Construct the adjacency matrix for G′′

15 C ′ ← SearchMaxClique(G′′, Cmax, {vi}, O′
0)

16 if |C ′| > |Cmax| then
17 Cmax ← C ′

18 return Cmax



3.10. MULTITHREADED LMC 45

Algorithm 27: SearchMaxClique: A BnB algorithm for computing
the max clique greater than |Cmax| [6]
Input : Graph G, Set Cmax, Set C, Ordering O
Output: Returns the maximum clique

1 begin
2 if |V | = 0 then
3 return C

4 B ←GetBranchesm(G, |Cmax| − |C|, O)
5 if B = ∅ then
6 return Cmax

7 A← V \B
8 Let B = {b1, b2, ..., b|B|} in increasing oredering w.r.t. O

9 for i = |B| downto 1 do
10 P ← N(G, bi) ∩ ({bi+1, bi+2, ..., b|B|} ∪A)

11 C ′ ← SearchMaxClique(G[P ], Cmax, C ∪ {bi}, O)
12 if |C ′| > |Cmax| then
13 Cmax ← C ′

14 return Cmax

3.10 Multithreaded LMC

LMC seems to be the fastest single-thread algorithm for Maximum Clique
computation, from the paper MoMC might be parallelized so even LMC
should be. Different attempts have been performed with good results. It
might be parallelized by performing in parallel the search at the first level
of the recursion tree (Algorithm 28).

The results show a near-linear speedup over the number of threads on
locally sparse instances.

3.11 Chang: Maximum Clique Branch-Reduce and
Bound

The most recently designed algorithm is MC-BRB (MaxClique Branch-
Reduce and Bound) it is designed to solve large sparse graphs but locally
dense. For those kinds of graphs, MC-BRB outperforms any other previous
algorithm. MC-BRB is the new main search procedure in which it maps
an instance of k-clique finding for a dense subgraph on a maximum clique
search for a large sparse graph. Chang also designed a greedy algorithm
able to find a near-maximum clique in polynomial time. The latter proce-
dure is called MC-EGO it both finds an initial clique and an upper bound



46 CHAPTER 3. CLIQUE ALGORITHMS

Algorithm 28: MLMC : A BnB algorithm for computing the max
clique

Input : Graph G
Output: Returns the maximum clique

1 begin
2 (C0, k(G), G′, O0) ← Initialize(G, 0)
3 if |C0| = k(G) + 1 then
4 return C0

5 Cmax ← C0

6 V ′ ← the vertex set of G′

7 Order V ′ w.r.t the initial ordering O0

8 for i = |V ′| down to 1 do in parallel
9 P ← N(G, vi) ∩ {vi+1, ..., v|V ′|}

10 (C ′
0, k(G[P ]), G′′, O′

0) ← Initialize(G[P ], |Cmax| − 1)
11 if |C ′

0| ≥ |Cmax| then
12 Cmax ← C ′

0 ∪ {vi}
13 if k(G[P ]) + 1 ≥ |Cmax| then
14 Construct the adjacency matrix for G′′

15 C ′ ← SearchMaxClique(G′′, Cmax, {vi}, O′
0)

16 if |C ′| > |Cmax| then
17 Cmax ← C ′

18 return Cmax



3.11. CHANG: MAXIMUMCLIQUE BRANCH-REDUCE AND BOUND47

used to reduce the memory requirements. The speedup is archived thanks
to its ”reduce” technique, this technique is applied when the graph is lo-
cally dense, and it can be applied when the degree of the subgraph is quite
the same large as the length of the set. The reducing technique discards
vertices from the solution and thanks to lemmas and theorems proves that
there exists a maximum clique of that dimension. The authors also say that
the algorithm can be further improved by adapting the PMaxSAT pruning
strategy of LMC. As said the reducing technique is composed of reduction
rules, those reduction rules exploit some lemmas, the reduction rules state
the following: Given an integer k the instance of MC-BRB search for the
existence of a k-clique on a subgraph induced by the first level subtree where
k is the dimension of the maximum clique found so far k = |Cmax|− |C|+1.

❼ Low Degree Reduction Rule: if the degree of the vertex deg(u) <
k − 1 means that the vertex u cannot belong to a maximum clique
greater than k so can be discarded from the possible vertices that can
form a larger clique.

❼ All Connection Reduction Rule: if deg(u) = |V (G)| − 1 then u
is a vertex that for sure belongs to the maximum clique so can be
removed from G and decrease k by 1.

❼ One Neighbour Missing Reduction Rule: if deg(u) = |V (G)|− 2
then given the only missing neighbour of u, u1 the latter does not
belong to the maximum clique instead u yes. So we can safely remove
both from the resulting graph and decrease k by one.

❼ Two Neighbours Missing Reduction Rule: if deg(u) = |V (G)|−3
then let u1, u2 the two not neighbors of u, there exist two conditions:
if (u1, u2) /∈ E(G) then u1 and u2 cannot belong to the maximum
clique so we can discard {u, u1, u2} and decrease k by 1. Otherwise if
(u1, u2) ∈ E(G) then the maximum clique includes either u or {u1, u2}
so the proposed technique suggest to discard {u, u1, u2} and adding a
super vertex obteined by contracting {u1, u2}, u1,2, the contraction
operation keeps the edges of u1 and u2, finally we can decrease k by 1.

❼ There is another ruleThree Neighbours Missing Reduction Rule:
It can be applied following the baseline of the precedent rule, then let
u1, u2, u3 the three missing neighbors the application depends on how
many edges the subgraph G[{u1, u2, u3}] has.

All those rules can be applied one after another to the potential set until
there are no changes. The algorithm has been parallelized over the first
level independent subtree, and archives linear speedup over the number of
threads. The algorithm performs less level of recursion with the result of
a more balanced approach (when running over locally dense graphs), this



48 CHAPTER 3. CLIQUE ALGORITHMS

kind of algorithm is much more difficult to parallelize with the technique
shown by McCreesh since it requires to modify the subgraph by contracting
vertices and substituting new ones, with the result of much heavy context
to donate.

3.12 Van Copernolle: BBMCG

The only parallel implementation for the maximum clique search existing
on GPU is explained in the paper ”Maximum Clique Solver on GPU using
bitsets”, the author M.Van Copernolle inspired by other work decided to
parallelize BBMC the algorithm of San Segundo on GPUs since the Max-
imum clique problem is very unbalanced, the search tree is unbalanced,
threads in a block that explores the tree cannot execute different path in
the search tree, all the different path can be executed serially, causing warp
divergence, since GPU threads are grouped in blocks, it decides to use two
levels of parallelism to allow to traverse the search space, Blocks of threads
are used to traverse the search tree in parallel, each block can take different
paths, threads inside the Block are employed to compute in parallel bitset
and reduce operation, this kind of parallelization reveals advantageous for
two reasons:

❼ The context is per Block instead of per thread with the result of less
memory requirements

❼ Reduced warp divergence: a group of threads inside the warp takes
the same path over the search tree.

The author shows a significant speedup with respect to the CPU single-
thread version.

3.13 Almasri: Parallel MCE on GPUs

Many attempts have been made to bring the Bron-Kerbosch algorithm to
GPUs, the best performing one is explained in the paper ”Parallelizing Max-
imal Clique Enumeration on GPUs”. The result shows a significant speedup
over the parallel CPU counterpart, proving that the GPU hardware can sig-
nificantly help in accelerating this kind of algorithm, Alsmari takes its idea
of parallelization from BBMCG, where it uses blocks to traverse the search
tree in parallel, it further implements the concept of work donation inspired
by the Multithreaded state-of-the-art maximum clique solver of McCreesh,
with a little difference: to keep each thread busy and reduce the context of
donation, it implements this helping strategy once the first level subtree is
exhausted, and instead of using a shared queue of work to donate, uses a
queue of idle blocks, where the work is donated to idle bloks once dequeued



3.13. ALMASRI: PARALLEL MCE ON GPUS 49

from the queue. It also shows that the problem of the MCE can gain a little
performance if the thread task is parallelized over the second level subtree,
in this way the work done by each block is more balanced. Since it pro-
vides also the source code, this will be our starting point for parallelizing
the Maximum Clique on GPU.



50 CHAPTER 3. CLIQUE ALGORITHMS



Chapter 4

GPU parallel
implementation

This chapter describes how the current parallelized GPU implementation
works, describing its implementation details and drawbacks.

4.1 From MCE to MCP

As seen in the previous section the Bron-Kerbosch algorithm can be modified
and adapted to the maximum clique algorithm. All the state-of-the-art
maximum clique solvers use the graph coloring to prune the search, this
is the main difference with respect to the Bron Kerbosh algorithm. The
maximum clique solvers are subdivided into two main categories, depending
on the size of the input problem.

❼ For dense and little networks MCP algorithm employs the adjacency
matrix representation of the input graph.

❼ For sparse and large networks MCP algorithms employs the edge list
representation of the input graph

The adjacency matrix is a graph representation in memory, it is a ma-
trix A where each element ai,j ∈ {0, 1}. This kind of data structure has
advantages and disadvantages, the main disadvantage is that it occupies
in memory O(|V |2) space the space can be reduced by a factor of 8 if we
use bit-vectors or bitstring. The advantages came in terms of performance
where the operation of checking whenever (vi, vj) ∈ E is O(1). Also, the
operation of accessing the neighborhood is O(1) because it is reduced to
access just the row of the selected vertex. The edge list instead is employed
when the graph is too big and its adjacency matrix does not fit in memory.
The adjacency list is a couple of vectors a, b where an element of the vector
a ai, is the offset of the vertex i in b. Its space complexity is O(|V |+ |E|). If

51



52 CHAPTER 4. GPU PARALLEL IMPLEMENTATION

we want to access the neighbor of a vertex i it can be done in O(1) but if we
want to check whenever an edge (vi, vj) ∈ E it requires time O(∆(G)). The
MCP solver for large and sparse networks also uses a preprocessing strategy,
which aims to reduce the input graph and determine a vertex ordering. The
preprocessing strategy is solved in three steps:

❼ Derive a vertex ordering usually degeneracy one as for Bron Kerbosh

❼ Determine an initial solution as big as possible ω0(G).

❼ Reduce the input graph based on the initial solution found.

These three steps can be done in linear time complexity so they are usu-
ally faster with respect to the main search procedure. The main search
procedure is a little bit different for little dense or large sparse networks.
In the MCP solver for the little and dense networks the algorithm receives
just the color pruning strategy, instead for the large and sparse network
the main search procedure is explicitly separated by levels of recursion, for
the first level subtree, it uses the same Bron-Kerbosch optimizations plus
additional pre-processing procedure, first we compute the greedy coloring of
the induced subgraph G′[N+(vi)] where G′ is the subgraph reduced by the
preprocessing steps, the greedy coloring aims to compute an upper bound of
the maximum clique if the upper bound is little that the current maximum
solution found so far, it will cut the corresponding branch, next it will per-
form k-core decomposition to both compute the upper an upper bound and
further reduce the induced subgraph G′. Finally, the same search procedure
for little and dense graphs is launched.

4.2 Parallel MCP for large and sparse graphs

As just said we started from the code of the paper ”Parallelizing Maximal
Clique Enumeration on GPUs”, so as for the Bron Kerbosh algorithm the
MCP solver computes an initial ordering: the algorithm to compute the
ordering has been already presented in the previous section in sequential
fashion order. It is already implemented in the code in its parallel version
is described in Algorithm 29.

The algorithm makes use of two general Queues Qbucket and Qcurrent,
those two queues are filled with vertices. The Qbucket stores in general ver-
tices whose degree is between a certain range (see the algorithm) instead
of Qcurrent stores the vertices with the same degree which will be removed
from the graph in the current iteration. We do not modify the graph, since
the only information needed is the degree we update the degree of neighbors
once the vertices have been removed, this operation must be performed in
an atomic transaction.



4.2. PARALLEL MCP FOR LARGE AND SPARSE GRAPHS 53

Algorithm 29: Parallel k-cores decomposition

Input : Graph G = (V,E)
Output: Returns a vertex ordering O, and the core number

1 begin
2 O ← ∅
3 deg()← Compute the degrees of each vertex v ∈ V
4 current core← min degree of vertex in V
5 Qbucket ← ∅
6 bucket level size← 0
7 todos← |V |
8 while todos > 0 do
9 if Qbacket = ∅ then

10 bucket level size← bucket level size+ 128
11 Qbucket ← {v ∈ V |current core ≤ deg(v) <

current core+ backet level size}
12 Qcurrent ← {v ∈ Qbacket|current core = deg(v)}
13 while Qcurrent ̸= ∅ do
14 Qbucket ← Qbucket \Qcurrent

15 todos← todos− |Qcurrent|
16 Qnext ← ∅
17 /* Warp-wise parallel */

18 for vi ∈ Qcurrent do in parallel
19 append({vi}, O)
20 core(vi) ← deg(vi)
21 /* Thread-wise parallel */

22 for vj ∈ N(G, vi) do in parallel
23 deg(vj)← deg(vj)− 1
24 if deg(vj) = current core then
25 Qnext ← Qnext ∪ {vj}
26 if current core ≤ deg(vj) <

current core+ bucket level size then
27 Q ← Qbucket ∪ {vj}

28 swap(Qcurrent, Qnext)

29 current core← current core+ 1

30 return (O, core(), current core− 1)



54 CHAPTER 4. GPU PARALLEL IMPLEMENTATION

Algorithm 30: Find Heuristic Clique

Input : Graph G = (V,E), int max core
Output: Returns an initial clique

1 begin
2 Qcurrent ← {v ∈ V |max core = deg(v)}
3 deg()← compute vertices degrees of G[Qcurrent]
4 while Qcurrent ̸= ∅ do
5 u← min degree vertex from Qcurrent

6 if |Qcurrent| = deg(u) + 1 then
7 C0 ← Qcurrent

8 break

9 Qcurrent ← Qcurrent \ {u}
10 for ui ∈ N(G, u) ∩Qcurrent do in parallel
11 deg(ui)← deg(ui)− 1

12 return C0

This algorithm has been extended to compute also the initial solution
ω0(G) (Algorithm 30):

This algorithm is an adaptation to the one used in the pre-processing
stage for LMC. After both the ordering is computed, and an initial clique is
found the input graph G is shrunk and ordered in degeneracy order.

4.3 MCP Solver for large sparse graphs

The main search procedure is then applied to G′ where G′ = G[{v ∈
V |core(v) + 1 ≥ |C0|}], Where C0 is the initial solution. The algorithm
is described in Algorithm 31.

The algorithm is running on GPU and starts with a parallel for over
GPU blocks. The intersection in Line 4 can be pre-computed in the prepro-
cessing stage and is embedded in the CSR (Con Sparse Row) representation
of G. Next, to allow the usage of bitset we compute the adjacency matrix of
the induced subgraph G[P ] this operation is done with a sub-level of paral-
lelism warp-parallel the algorithm has already been implemented and found
on the starting code. The Line 6 computes the branching vertices B that are
by definition B = {v ∈ P |color(v) > kmin}, the algorithm is described in
Algorithm 32. The algorithm 32 is really simple it performs coloring follow-
ing the algorithm of San Segundo where all the operations inside the bitset
are in parallel when each thread ith performs the corresponding operation
in the bitset block ith. Coming back to the Algorithm 31 after the coloring
procedure is performed if the set B is empty we cut the branch by color.



4.3. MCP SOLVER FOR LARGE SPARSE GRAPHS 55

Algorithm 31: Pseudo-code for the parallel MC algorithm. Re-
ported the first-level independent subtree.

Input: Graph G = (V,E), Set C0, Order O0

Output: Maximum clique Cmax

1 begin
2 Cmax ← C0

3 for vi ∈ V with respect to the order O0 do in parallel
4 P = Γ(vi) ∩ {vi+1, vi+2, ..., v|V |}
5 Compute adjacency matrix of G[P ]
6 B ← Color(G[P ], |Cmax| − 1)
7 if B = ∅ then
8 continue

9 (O, core())← blockParallelKCoreDecomposition(G[P ])
10 if max(core()) + 1 ≤ |Cmax| then
11 continue

12 P ′ = {u ∈ P |core(u) + 1 ≥ |Cmax|}
13 Sort P ′ based with respect to the order O
14 Compute adjacency matrix of G[P ′]
15 SearchMaxClique(G[P ′], P ′, {vi}, Cmax, O)

16 return Cmax

Algorithm 32: Color: Assign a color to a set of vertices P

Input : Graph G = (V,E), Int kmin

Output: Returns the set of branching vertices B

1 begin
2 Bitset B ← V
3 k = 1
4 while B ̸= ∅ and k ≤ kmin do
5 Bitset C ← B
6 while C ̸= ∅ do
7 select the first vertex v ∈ C
8 B ← B \ {v}
9 C ← C \ {v}

10 C ← C ∩N(G, v)

11 k ← k + 1

12 return B



56 CHAPTER 4. GPU PARALLEL IMPLEMENTATION

Next, we will perform the k-core decomposition: this procedure is described
in Algorithm 33 which by differences with respect to the Preprocessing stage
is shorter and uses just two queues Qcurrent and Qnext this algorithm uses
as the previous in preprocessing stage two level of parallelism the external
for by warps and the internal by threads inside the warp.

Algorithm 33: Block Parallel k-cores decomposition

Input : Graph G = (V,E)
Output: Returns a vertex ordering O, and the core number

1 begin
2 O ← ∅
3 deg()← Compute the degrees of each vertex v ∈ V
4 current core← min degree of vertex in V
5 todos← |V |
6 while todos > 0 do
7 Qcurrent ← {v ∈ V |current core = deg(v)}
8 while Qcurrent ̸= ∅ do
9 todos← todos− |Qcurrent|

10 Qnext ← ∅
11 /* Warp-wise parallel */

12 for vi ∈ Qcurrent do in parallel
13 append({vi}, O)
14 core(vi) ← deg(vi)
15 /* Thread-wise parallel */

16 for vj ∈ N(G, vi) do in parallel
17 deg(vj)← deg(vj)− 1
18 if deg(vj) = current core then
19 Qnext ← Qnext ∪ {vj}

20 swap(Qcurrent, Qnext)

21 current core← current core+ 1

22 return (O, core())

Coming back to the Algorithm 31 after the k-core decomposition proce-
dure is performed we can check if the max core which is an upper bound
of the maximum clique is less than the maximum clique found so far then
we can cut the branch by k-core. In our implementation, the P ′ set is
computed inside the k-core decomposition phase, furthermore, it is already
ordered with respect to the ordering O, but we have to make these steps
explicit in the algorithm. Finally the Search procedure in Line 15 takes
place.

The main recursive procedure is described in Algorithm 34. This proce-



4.3. MCP SOLVER FOR LARGE SPARSE GRAPHS 57

Algorithm 34: Our parallel MC computation.

Input: Graph G = (V,E), Set P , Set C, Shared Set Cmax, Ordering O
Output: Maximum clique Cmax

1 begin
2 if P = ∅ then
3 if |C| > |Cmax| then
4 Cmax ← C

5 return Cmax

6 B ← Color(P , |Cmax| − |C|);
7 if B = ∅ then
8 return Cmax

9 A← P \ (B = {b1, b2, ..., b|B|})
10 for bi ∈ B with respect to the ordering in O do
11 P ′ ← A ∪ (Γ(bi) ∩ {bi+1, bi+2, ..., b|B|})
12 SearchMaxClique(G, P ′, C ∪ {bi}, Cmax);

13 return Cmax

dure starts by checking if the P set is empty this is the stopping condition
that corresponds if the clique cannot further grow, if it is greater than the
maximum one, we overwrite the current maximum found so far and then
return to the previous level. Next, the procedure to compute the branching
vertices takes place in Line 6 it is the same as described in Algorithm 32 so
it not will be further commented. Next, the set A will be computed from P
and B, next with a bitset scan we loop over the set B searching for a bigger
clique than the incumbent C, so the set P ′ is computed and a recursive call
to SearchMaxClique is performed. The described algorithm performs the
search without the optimization of the state-of-the-art parallel maximum
clique solver proposed by McCreesh, this optimization is suited and effec-
tive for a dense graph or for a graph that has a clique of big dimensions,
McCreesh’s variant cannot be applied directly to the sparse case. Since
the adjacency matrix will be different for each first-level induced subgraph,
performing work donation could lead to higher runtimes because most of
the time donation time will be employed for copying the context between
threads or blocks. But since we would keep load balancing between threads,
we can demand the procedure of donation after all the induced subgraphs
are created and then cannot change, it will be reduced just by donating the
correct induced subgraph memory location. The changes in the algorithm
are described in Algorithm 35 and 36.

The donation starts in Algorithm 35 where the blocks that end the first
level subtree enqueue their blockIdx and go in a wait state. Please pay atten-
tion that the wait is not infinite they go in a waiting state for a short time.
The currently running threads in Algorithm 34 when the first level subtree



58 CHAPTER 4. GPU PARALLEL IMPLEMENTATION

Algorithm 35: Pseudo-code for the parallel MC algorithm. Re-
ported the first-level independent subtree.

Input: Graph G = (V,E), Set C0, Order O0

Output: Maximum clique Cmax

1 begin
2 Cmax ← C0

3 for vi ∈ V with respect to the order O0 do in parallel
4 P = Γ(vi) ∩ {vi+1, vi+2, ..., v|V |}
5 Compute adjacency matrix of G[P ]
6 B ← Color(G[P ], |Cmax| − 1)
7 if B = ∅ then
8 continue

9 (O, core())← blockParallelKCoreDecomposition(G[P ])
10 if max(core()) + 1 ≤ |Cmax| then
11 continue

12 P ′ = {u ∈ P |core(u) + 1 ≥ |Cmax|}
13 Sort P ′ based with respect to the order O
14 Compute adjacency matrix of G[P ′]
15 SearchMaxClique(G[P ′], P ′, {vi}, Cmax, O)

16 /* New Section below: */

17 while !QueueFull() do
18 Enqueue on idle blocks queue
19 while !WorkReady and !QueueFull() do
20 Wait()

21 if WorkReady then
22 WorkReady = false
23 Setup stack for block
24 P ′ ← Computed by the donor block
25 C ← Computed by the donor block
26 SearchMaxClique(G[P ′], P ′, C, Cmax, O)

27 return Cmax



4.3. MCP SOLVER FOR LARGE SPARSE GRAPHS 59

Algorithm 36: Our parallel MC computation with the donation.

Input: Graph G = (V,E), Set P , Set C, Set Cmax, Ordering O
Output: Maximum clique Cmax

1 begin
2 if P = ∅ then
3 if |C| > |Cmax| then
4 Cmax ← C

5 return Cmax

6 B ← Color(P , |Cmax| − |C|)
7 if B = ∅ then
8 return Cmax

9 A← P \ (B = {b1, b2, ..., b|B|})
10 for bi ∈ B with respect to the ordering in O do
11 /* Start new section: */

12 if first level subtree explored then
13 D ← {b ∈ B|b < bi with respect to the order O}
14 if blockList ← QueueDequeue(|D|) then
15 for dj ∈ D with respect to the order in O do
16 P ′ ← A ∪ (Γ(dj) ∩ {dj+1, dj+2, ..., d|B|})
17 Donate P ′ and C to jth block in blockList
18 Set WorkReady to true for jth block in blockList

19 break

20 /* End new section: */

21 P ′ ← A ∪ (Γ(bi) ∩ {bi+1, bi+2, ..., b|B|})
22 SearchMaxClique(G, P ′, C ∪ {bi}, Cmax);

23 return Cmax



60 CHAPTER 4. GPU PARALLEL IMPLEMENTATION

tries to dequeue |D| blocks from the queue if those blocks are available to
start the donation, it donates a work |C|+ 1 level subtree for each branch-
ing vertices in D. The donating threads set WorkReady variable for the jth
block dequeued from the blockQueue. At the end when all block goes out
from the first level subtree and enqueue their index on the blockQueue the
termination condition becomes false and all blocks terminate its execution.

4.4 Warp-wise-parallel version

The block parallel version is not the only developed parallel algorithm, as we
can see since most of our graphs are locally little small V (G[P ′]) is it possible
to go deep down to one level of parallelism, then reimplement all the work
done per block on warps. This solution can be enhanced since for a certain
graph the first level subtree can slow down the operation of Coloring and
k-core decomposition, then an enhanced approach that uses warps just from
the second level subtree has been developed the warp version allows for the
second level subtree inter block warp work donation as for the block parallel
version. and since warps are in general more than the maximum number
of blocks (about 2x) this solution can speed up in certain cases of over 2x
the previous solution, this is because the occupancy increases with respect
to the block parallel version. Since the bitset operation is constrained by
the fact that sometimes the bitset dimension is less than the number of
threads on the block, threads do not perform any job and remain inactive,
by employing warps we can increase the number of used threads by a factor
of two. However, this kind of parallelization strategy uses a greater amount
of memory than the block one. But the good news is that since the warp-
wise parallelism is from the second level subtree we can share the induced
subgraph adjacency between warps without spending time in recomputing
it per warp, so less memory usage with increased external parallelism.

4.5 Pruning strategies

As seen before there exists more than one pruning strategy. During the algo-
rithm development, all those pruning strategies have been implemented and
tested so compared. They can be always faster on CPU but unfortunately
not so simple on GPUs. Among the chosen pruning strategies we remember:

❼ NUMBER

❼ Re-NUMBER

❼ San Segundo Color

❼ Re-Color just used in BBMCR



4.5. PRUNING STRATEGIES 61

❼ Coloring + Reduce

All those pruning strategies have been adapted to the maximum clique
solver: NUMBER and Re-NUMBER use more memory than the San Se-
gundo’s coloring strategy because it stores all the computed independent
sets. Also, Re-Color needs to store the computed independent sets but as
bitsets so occupy less memory, since often for dense subgraph independent
sets are usually sparse they both waste a lot of memory and increase the
access time from memory. so the solution would be to use Watched Bitset
that keeps track by two indices of the non-empty block region of the bitset,
furthermore, to avoid further access to the global one we can use shared
memory to store neighborhoods of selected nodes, this mechanism increases
shared memory utilization so reduce L1 cache but should decrease the run-
times because of the fast access. The last pruning strategy is an adaptation
of the Reduce pruning strategy from MC-BRB. We cannot use all the Lem-
mas proposed by MC-BRB because most of them require modifying the
graph by contracting and removing nodes, but we can exploit some of them
to improve pruning, and discard at most vertex that does not belong to a
maximum clique. The lone drawback is that computing the degrees for each
node of the recursion tree requires access to the entire graph so can lower
the runtimes for memory speed issues.



62 CHAPTER 4. GPU PARALLEL IMPLEMENTATION



Chapter 5

Experimental Analisys

This chapter describes the setup used to test our parallelized algorithms,
it shows how the algorithms scale over the number of threads on the CPU.
Finally, test the developed GPU implementation by comparing it with the
existing parallelized state-of-the-art CPU Solvers explaining why and where
the developed implementation (GPU) can outperform the CPU one. The
experiments and the related software is available on Github1.

5.1 Experimental Setup

The experiments have been done with a machine with: Intel Core-i9 10900KF
with 64GBs of RAM the machine is equipped with an NVIDIA RTX 3070
GPU with 8GBs GDDR5 VRAM. All our tools were compiled with g++ and
nvcc, the NVIDIA toolkit installed is version 12.2. All the testing library is
written in Python and provides methods to collect statistics.

5.2 Dataset

All the tested instances were taken from the network repository [15] 2. The
dataset is listed in Table 5.1. All the statistics have been computed by a
tool written in C++, and collected by standard output by the OS python
library. The dataset has been chosen to represent the majority of network
types in our world, they all have different characteristics and properties that
allow us to show when the GPU approach is effective.

With another custom tool written in C++ random graphs have been
generated by varying density and number of nodes, It has generated random
graphs of 250, 1,000, 3,000, 10,000, and 100,000 nodes respectively. The
graph with 250 nodes has been tested with higher density to show how the

1https://github.com/salvatore-dimartino/mcp-gpu
2https://networkrepository.com

63



64 CHAPTER 5. EXPERIMENTAL ANALISYS

Instance |V | |E| density max. degree avg. degree |ω(G)|
co-papers-dblp 540,486 15,245,730 0.000104 3,299 56 337
web-uk-2002-all 18,520,486 298,113,763 2e-06 194,956 32 944

c-62ghs 41,731 300,538 0.000345 5,061 14 2
web-it-2004 509,338 7,178,414 5.5e-05 469 28 432

aff-orkut-user2groups 8,730,857 327,037,488 9e-06 318,268 75 6
rec-yahoo-songs 136,737 49,770,696 0.005324 31,431 728 19

soc-livejournal-user-groups 7,489,073 112,307,386 4e-06 1,053,749 30 9
socfb-konect 59,216,214 92,522,018 0 4,960 3 6

aff-digg 872,622 22,624,728 5.9e-05 75,715 52 32
soc-orkut 2,997,166 106,349,210 2.4e-05 27,466 71 47

soc-sinaweibo 58,655,849 261,321,072 0 278,491 9 44
wiki-talk 2,394,385 5,021,411 2e-06 100,032 4 26

bn-human-Jung2015 M87113878 1,772,034 76,500,873 4.9e-05 6,899 86 227
bn-human-BNU 1 0025864 session 2-bg 1,827,241 133,727,517 8e-05 8,444 146 266

soc-flickr 513,969 3,190,453 2.4e-05 4,369 12 58
tech-p2p 5,792,297 147,830,699 9e-06 675,080 51 178

bn-human-BNU 1 0025864 session 1-bg 1,827,218 143,158,340 8.6e-05 15,114 157 293
soc-flickr-und 1,715,255 15,555,043 1.1e-05 27,236 18 98
socfb-A-anon 3,097,165 23,667,395 5e-06 4,915 15 25

bn-human-Jung2015 M87126525 1,827,241 146,109,301 8.8e-05 8,009 160 220
bio-human-gene1 22,283 12,345,964 0.049731 7,940 1,108 1,335
bio-human-gene2 14,340 9,041,365 0.087942 7,230 1,261 1,300
soc-LiveJournal1 4,847,571 68,475,392 6e-06 22,887 28 321

web-wikipedia link it 2,936,413 104,673,034 2.4e-05 840,650 71 870
web-indochina-2004-all 7,414,866 194,109,312 7e-06 256,425 52 6,848

Table 5.1: The table shows the statistics about our dataset, i.e., number
of vertices, number of edges, density, maximum and average degree of the
nodes, and the size of maximum clique of the graph.

GPU approach behaves at those densities. Then for each chosen density and
number of nodes it has been generated 10 different instances.

5.3 Parallel CPU implementations

This section shows how the parallelized counterpart performs over the se-
lected dataset of real-world graphs.

5.3.1 BBMCPara

Starting with BBMCPara we run our dataset the following tables show the
actual runtimes by varying the number of threads you will see the corre-
sponding speedup. BBMCSP has been parallelized following the guideline
in its paper since it is targeted just for sparse graphs a linear parallelization
has been employed. As described in its paper BBMCPara uses the OpenMP
library for multithreading. Runtimes are reported in Tables 5.2 and 5.3.

5.3.2 LMC

This section shows how LMC performs by varying the number of threads,
Tables 5.4 and 5.5 show two important statistics runtime and the corre-
sponding speedup. LMC has been parallelized as shown in the previous



5.3. PARALLEL CPU IMPLEMENTATIONS 65

1 Threads 2 Threads 4 Threads
Instance Search Time Speed-up Search Time Speed-up Search Time Speed-up

aff-digg 498.929 1.0 305.82 1.631 161.96 3.081
aff-orkut-user2groups 959.511 1.0 515.918 1.86 320.924 2.99
bio-human-gene1 T.O. - T.O. - T.O. -
bio-human-gene2 T.O. - T.O. - 1767.08 -
bn-human-BNU 1 0025864 session 1-bg T.O. - T.O. - T.O. -
bn-human-BNU 1 0025864 session 2-bg 359.28 1.0 202.085 1.778 100.395 3.579
bn-human-Jung2015 M87113878 27.328 1.0 13.899 1.966 7.346 3.72
bn-human-Jung2015 M87126525 865.677 1.0 503.263 1.72 319.573 2.709
c-62ghs 0.012 1.0 0.008 1.495 0.005 2.326
co-papers-dblp - - - - - -
rec-yahoo-songs 728.392 1.0 375.84 1.938 194.15 3.752
soc-LiveJournal1 0.01 1.0 0.014 0.727 0.016 0.607
soc-flickr 2.057 1.0 1.398 1.472 0.763 2.696
soc-flickr-und 58.753 1.0 41.184 1.427 25.488 2.305
soc-livejournal-user-groups 496.203 1.0 257.73 1.925 161.903 3.065
soc-orkut 37.044 1.0 18.613 1.99 9.838 3.765
soc-sinaweibo 71.936 1.0 37.079 1.94 20.31 3.542
socfb-A-anon 6.597 1.0 3.352 1.968 1.811 3.643
socfb-konect 0.642 1.0 0.338 1.902 0.18 3.571
tech-p2p T.O. - T.O. - T.O. -
web-indochina-2004-all 0.136 1.0 0.079 1.725 0.037 3.641
web-it-2004 - - - - - -
web-uk-2002-all - - - - - -
web-wikipedia link it 0.021 1.0 0.021 1.003 0.022 0.99
wiki-talk 0.355 1.0 0.196 1.814 0.108 3.302

Table 5.2: Runtimes of BBMCPara algorithm over increasing number of
threads

8 Threads 10 Threads 20 Threads
Instance Search Time Speed-up Search Time Speed-up Search Time Speed-up

aff-digg 90.602 5.507 78.632 6.345 55.898 8.926
aff-orkut-user2groups 306.986 3.126 285.404 3.362 O.O.M -
bio-human-gene1 T.O. - T.O. - T.O. -
bio-human-gene2 795.261 - 510.788 - 289.05 -
bn-human-BNU 1 0025864 session 1-bg T.O. - T.O. - T.O. -
bn-human-BNU 1 0025864 session 2-bg 54.288 6.618 47.667 7.537 38.278 9.386
bn-human-Jung2015 M87113878 4.055 6.739 3.412 8.01 2.498 10.939
bn-human-Jung2015 M87126525 178.843 4.84 158.499 5.462 128.318 6.746
c-62ghs 0.004 3.098 0.004 2.908 0.025 0.493
co-papers-dblp - - - - - -
rec-yahoo-songs 104.557 6.966 92.986 7.833 81.467 8.941
soc-LiveJournal1 0.015 0.642 0.014 0.703 0.011 0.906
soc-flickr 0.511 4.026 0.419 4.908 0.225 9.155
soc-flickr-und 17.127 3.43 13.52 4.346 9.575 6.136
soc-livejournal-user-groups 129.463 3.833 123.021 4.033 120.697 4.111
soc-orkut 5.685 6.516 4.915 7.537 3.461 10.702
soc-sinaweibo 13.296 5.41 11.946 6.022 10.617 6.776
socfb-A-anon 1.029 6.409 0.856 7.709 0.587 11.23
socfb-konect 0.101 6.35 0.093 6.945 0.09 7.134
tech-p2p T.O. - T.O. - T.O. -
web-indochina-2004-all 0.021 6.602 0.017 8.142 0.014 9.838
web-it-2004 - - - - - -
web-uk-2002-all - - - - - -
web-wikipedia link it 0.021 1.017 0.023 0.934 0.024 0.902
wiki-talk 0.058 6.108 0.048 7.438 0.032 11.135

Table 5.3: Runtimes of BBMCPara algorithm over increasing number of
threads



66 CHAPTER 5. EXPERIMENTAL ANALISYS

aff-digg aff-orkut rec-yahoo-songs

0

2

4

6

8

S
p
ee
d
-u
p

1 Thread 2 Threads 4 Threads 8 Threads

Figure 5.1: Bar chart showing speedup over the number of threads

section, since the program is written in C the POSIX thread library has
been employed. Then following just a linear parallelization work can be a
little unbalanced between threads if the graph produces a deep search tree.

5.3.3 MC-BRB

Also, MC-BRB has been parallelized following the guideline of its article,
Both MC-EGO the algorithm running in the preprocessing stage, and MB-
BRB have been linearly parallelized. The parallel versions use the OpenMP
library. As the table shows it reaches a linear speedup over the number of
threads. Tables 5.6 and 5.7 show the runtimes over the number of threads.

5.4 Experimental analisys

This section is subdivided into two subsections the first one focuses on
random instances, we analyze the behavior of the algorithm in random
instances, and the following section tests the algorithm in the real-world
dataset.

5.4.1 Random Instances

All the algorithms have been tested under many conditions, this can be
archived by running our tool over random instances. Random instances
have been generated by us, and the results shown on the plotted line have
been interpolated to create a smooth curve. First of all, we ran our instances



5.4. EXPERIMENTAL ANALISYS 67

1 Thread 2 Threads 4 Threads
Instance Search Time Speed-up Search Time Speed-up Search Time Speed-up

aff-digg 95.55 1.0 51.93 1.84 31.75 3.009
aff-orkut-user2groups 127.98 1.0 65.52 1.953 36.12 3.543
bio-human-gene1 99.67 1.0 62.4 1.597 46.44 2.146
bio-human-gene2 52.07 1.0 37.02 1.407 28.47 1.829
bn-human-BNU 1 0025864 session 1-bg 306.85 1.0 159.33 1.926 82.31 3.728
bn-human-BNU 1 0025864 session 2-bg 266.27 1.0 131.97 2.018 69.07 3.855
bn-human-Jung2015 M87113878 141.14 1.0 71.86 1.964 39.36 3.586
bn-human-Jung2015 M87126525 143.64 1.0 72.51 1.981 37.21 3.86
c-62ghs 0.01 1.0 0.01 1.0 0.01 1.0
co-papers-dblp 0.0 - 0.0 - 0.0 -
rec-yahoo-songs 60.02 1.0 30.53 1.966 15.81 3.796
soc-LiveJournal1 0.05 1.0 0.03 1.667 0.01 5.0
soc-flickr 1.14 1.0 0.59 1.932 0.31 3.677
soc-flickr-und 12.77 1.0 6.82 1.872 3.69 3.461
soc-livejournal-user-groups 17.11 1.0 8.86 1.931 4.88 3.506
soc-orkut 12.93 1.0 7.08 1.826 3.75 3.448
soc-sinaweibo 10.43 1.0 7.73 1.349 4.11 2.538
socfb-A-anon 2.0 1.0 1.05 1.905 0.55 3.636
socfb-konect 0.09 1.0 0.1 0.9 0.1 0.9
tech-p2p 98.14 1.0 53.32 1.841 26.68 3.678
web-indochina-2004-all 36.88 1.0 17.66 2.088 9.8 3.763
web-it-2004 0.0 - 0.0 - 0.0 -
web-uk-2002-all 0.0 - 0.0 - 0.0 -
web-wikipedia link it 0.16 1.0 0.09 1.778 0.05 3.2
wiki-talk 0.23 1.0 0.12 1.917 0.06 3.833

Table 5.4: Runtimes of Multithreaded LMC algorithm over increasing num-
ber of threads

8 Threads 10 Threads 20 Threads
Instance Search Time Speed-up Search Time Speed-up Search Time Speed-up

aff-digg 25.1 3.807 23.24 4.111 13.71 6.969
aff-orkut-user2groups 24.05 5.321 22.45 5.701 21.25 6.023
bio-human-gene1 46.26 2.155 56.53 1.763 169.23 0.589
bio-human-gene2 19.0 2.741 17.05 3.054 27.21 1.914
bn-human-BNU 1 0025864 session 1-bg 43.81 7.004 37.53 8.176 31.52 9.735
bn-human-BNU 1 0025864 session 2-bg 35.82 7.434 30.21 8.814 24.36 10.931
bn-human-Jung2015 M87113878 22.47 6.281 19.24 7.336 16.89 8.356
bn-human-Jung2015 M87126525 19.16 7.497 15.86 9.057 12.87 11.161
c-62ghs 0.01 1.0 0.01 1.0 0.01 1.0
co-papers-dblp 0.0 - 0.0 - 0.0 -
rec-yahoo-songs 8.82 6.805 7.66 7.836 6.44 9.32
soc-LiveJournal1 0.01 5.0 0.01 5.0 0.01 5.0
soc-flickr 0.16 7.125 0.13 8.769 0.09 12.667
soc-flickr-und 2.1 6.081 1.69 7.556 1.3 9.823
soc-livejournal-user-groups 2.89 5.92 2.57 6.658 2.37 7.219
soc-orkut 2.19 5.904 1.89 6.841 1.68 7.696
soc-sinaweibo 2.4 4.346 2.58 4.043 2.5 4.172
socfb-A-anon 0.33 6.061 0.28 7.143 0.24 8.333
socfb-konect 0.12 0.75 0.12 0.75 0.12 0.75
tech-p2p 16.18 6.066 14.5 6.768 12.8 7.667
web-indochina-2004-all 5.84 6.315 4.91 7.511 4.57 8.07
web-it-2004 0.0 - 0.0 - 0.0 -
web-uk-2002-all 0.0 - 0.0 - 0.0 -
web-wikipedia link it 0.02 8.0 0.02 8.0 0.02 8.0
wiki-talk 0.03 7.667 0.03 7.667 0.02 11.5

Table 5.5: Runtimes of Multithreaded LMC algorithm over increasing num-
ber of threads



68 CHAPTER 5. EXPERIMENTAL ANALISYS

aff-digg aff-orkut rec-yahoo-songs

0

2

4

6
S
p
ee
d
-u
p

1 Thread 2 Threads 4 Threads 8 Threads

Figure 5.2: Bar chart showing speedup over the number of threads

1 Thread 2 Threads 4 Threads
Runtimes Speed-ups Runtimes Speed-ups Runtimes Speed-ups

Instance Init. Search Init. Search Init. Search Init. Search Init. Search Init. Search

aff-digg 35.051 539.181 1.0 1.0 17.938 266.951 1.954 2.02 9.856 138.247 3.556 3.9
aff-orkut-user2groups 280.512 0.169 1.0 1.0 172.695 0.173 1.624 0.979 107.774 0.294 2.603 0.576
bio-human-gene1 28.37 12.695 1.0 1.0 14.92 6.484 1.901 1.958 8.035 3.278 3.531 3.872
bio-human-gene2 16.081 7.147 1.0 1.0 8.666 3.64 1.856 1.964 4.874 1.827 3.299 3.911
bn-human-BNU 1 0025864 session 1-bg 214.506 35.35 1.0 1.0 111.58 17.735 1.922 1.993 59.721 9.009 3.592 3.924
bn-human-BNU 1 0025864 session 2-bg 193.042 1.793 1.0 1.0 94.094 0.856 2.052 2.095 50.095 0.437 3.853 4.1
bn-human-Jung2015 M87113878 58.166 0.022 1.0 1.0 30.568 0.014 1.903 1.619 16.843 0.011 3.453 2.046
bn-human-Jung2015 M87126525 46.963 0.468 1.0 1.0 25.373 0.237 1.851 1.973 14.718 0.135 3.191 3.461
c-62ghs 0.003 - 1.0 - 0.003 - 0.998 - 0.004 - 0.979 -
co-papers-dblp 0.01 - 1.0 - 0.011 - 0.953 - 0.01 - 0.997 -
rec-yahoo-songs 86.328 78.937 1.0 1.0 45.151 39.74 1.912 1.986 25.042 20.429 3.447 3.864
soc-LiveJournal1 1.204 - 1.0 - 1.116 - 1.079 - 1.048 - 1.149 -
soc-flickr 1.261 1.487 1.0 1.0 0.702 0.754 1.795 1.972 0.407 0.381 3.1 3.908
soc-flickr-und 10.715 17.529 1.0 1.0 5.768 9.039 1.858 1.939 3.308 4.584 3.239 3.824
soc-livejournal-user-groups 38.304 0.027 1.0 1.0 23.876 0.072 1.604 0.377 17.196 0.164 2.227 0.165
soc-orkut 18.393 0.022 1.0 1.0 12.894 0.057 1.427 0.393 11.031 0.138 1.667 0.162
soc-sinaweibo 24.541 0.09 1.0 1.0 23.212 0.198 1.057 0.454 22.363 0.48 1.097 0.187
socfb-A-anon 1.565 0.004 1.0 1.0 1.337 0.011 1.17 0.324 1.29 0.022 1.213 0.168
socfb-konect 4.809 - 1.0 - 4.786 - 1.005 - 4.698 - 1.024 -
tech-p2p 78.166 98.971 1.0 1.0 45.151 49.892 1.731 1.984 28.05 25.406 2.787 3.895
web-indochina-2004-all 0.49 - 1.0 - 0.505 - 0.971 - 0.507 - 0.966 -
web-it-2004 0.005 - 1.0 - 0.005 - 1.011 - 0.005 - 1.024 -
web-uk-2002-all 1.166 - 1.0 - 1.15 - 1.014 - 1.183 - 0.986 -
web-wikipedia link it 3.15 - 1.0 - 3.192 - 0.987 - 3.154 - 0.999 -
wiki-talk 0.441 0.086 1.0 1.0 0.315 0.043 1.399 1.981 0.242 0.023 1.825 3.697

Table 5.6: Runtimes of Multithreaded MC-BRB algorithm over increasing
number of threads



5.4. EXPERIMENTAL ANALISYS 69

8 Threads 10 Threads 20 Threads
Runtimes Speed-ups Runtimes Speed-ups Runtimes Speed-ups

Instance Init. Search Init. Search Init. Search. Init. Search Init. Search Init. Search

aff-digg 5.668 69.992 6.184 7.704 4.777 60.192 7.338 8.958 3.954 43.518 8.864 12.39
aff-orkut-user2groups 83.889 0.475 3.344 0.357 82.875 0.618 3.385 0.274 99.628 0.64 2.816 0.265
bio-human-gene1 4.901 1.776 5.788 7.149 4.478 1.443 6.336 8.797 4.242 1.377 6.688 9.22
bio-human-gene2 3.099 0.984 5.189 7.264 2.877 0.846 5.589 8.446 2.802 0.801 5.74 8.924
bn-human-BNU 1 0025864 session 1-bg 33.318 4.569 6.438 7.736 29.126 3.829 7.365 9.232 23.367 3.102 9.18 11.394
bn-human-BNU 1 0025864 session 2-bg 27.786 0.225 6.947 7.981 24.054 0.201 8.025 8.912 19.834 0.189 9.733 9.493
bn-human-Jung2015 M87113878 9.844 0.011 5.909 1.956 8.449 0.024 6.884 0.945 7.257 0.039 8.015 0.577
bn-human-Jung2015 M87126525 9.083 0.085 5.171 5.536 8.255 0.075 5.689 6.253 6.919 0.091 6.788 5.119
c-62ghs 0.004 - 0.964 - 0.004 - 0.97 - 0.004 - 0.965 -
co-papers-dblp 0.01 - 1.009 - 0.01 - 0.999 - 0.011 - 0.968 -
rec-yahoo-songs 15.443 10.462 5.59 7.545 13.598 8.601 6.349 9.177 12.299 6.868 7.019 11.494
soc-LiveJournal1 1.072 - 1.123 - 1.187 - 1.014 - 1.057 - 1.139 -
soc-flickr 0.263 0.194 4.788 7.665 0.229 0.155 5.495 9.568 0.201 0.113 6.284 13.122
soc-flickr-und 2.02 2.318 5.304 7.563 1.764 1.873 6.075 9.36 1.505 1.435 7.118 12.214
soc-livejournal-user-groups 13.8 0.282 2.776 0.096 13.687 0.36 2.798 0.075 13.961 0.468 2.744 0.058
soc-orkut 10.31 0.268 1.784 0.084 9.573 0.33 1.921 0.068 9.333 0.408 1.971 0.055
soc-sinaweibo 21.836 0.717 1.124 0.125 21.277 0.464 1.153 0.194 21.526 1.604 1.14 0.056
socfb-A-anon 1.218 0.042 1.285 0.086 1.259 0.055 1.243 0.066 1.282 0.083 1.221 0.044
socfb-konect 4.828 - 0.996 - 4.854 - 0.991 - 4.902 - 0.981 -
tech-p2p 20.877 13.019 3.744 7.602 18.743 10.644 4.17 9.298 17.682 9.411 4.421 10.516
web-indochina-2004-all 0.502 - 0.977 - 0.511 - 0.96 - 0.501 - 0.978 -
web-it-2004 0.005 - 0.994 - 0.005 - 0.982 - 0.005 - 1.024 -
web-uk-2002-all 1.187 - 0.983 - 1.168 - 0.998 - 1.182 - 0.986 -
web-wikipedia link it 3.205 - 0.983 - 3.131 - 1.006 - 3.308 - 0.952 -
wiki-talk 0.217 0.013 2.035 6.853 0.203 0.01 2.175 8.607 0.191 0.009 2.307 10.022

Table 5.7: Runtimes of Multithreaded MC-BRB algorithm over increasing
number of threads

aff-digg human-gene1rec-yahoo-songs

0

2

4

6

8

S
p
ee
d
-u
p

1 Thread 2 Threads 4 Threads 8 Threads

Figure 5.3: Bar chart showing speedup over the number of threads



70 CHAPTER 5. EXPERIMENTAL ANALISYS

on small and denser instances so a random graph of 250 nodes each one with
density varying from [0.8, 0.99].

Figure 5.4: Runtimes over edge probability for random graphs of 250 vertices

In Figure 5.4 Runtimes have been plotted over edge probability, runtimes
initially grow exponentially til they reach a maximum of about 0.94 of edge
probability then the problem becomes easier and decreases til the runtime
becomes instant. MC-BRB and LMC perform better under these condi-
tions (high density) Their pruning strategies such as MaxSAT and Reduce
framework are effective and cut more branches with respect to just using
coloring. The problem has been widely studied, when we increase the size
of the random instances the runtimes will change. for those small instances,
runtimes for density lower than 0.8 cannot be seen because the problem is
too easy. But increasing the size can make the problem harder increasing
runtimes.

Plots in Figure 5.5 show how all algorithms behave with bigger instances,
the graph size ranges from 1,000 to 100,000 vertices, varying density. We
terminate our test when runtimes go over the set timeout of 3,600 seconds.
From the plots we can see that MC-BRB and LMC behave badly with re-
spect to our GPU implementation this is because their pruning technique
becomes ineffective and all algorithms become equal, so the kind optimiza-
tion is the threads scaling factor of the GPU, so the speedup is given by the
hardware rather than the software optimization.



5.4. EXPERIMENTAL ANALISYS 71

(a) Instances of 100k vertices (b) Instances of 10k vertices

(c) Instances of 3k vertices (d) Instances of 1k vertices

Figure 5.5: Runtimes of our algorithms (on the y-axis) on random graphs
as a function of the graph density (reported on the x-axis). All times are
reported in seconds.

5.4.2 Real-world dataset

This section explores runtimes over the real dataset by comparing each ap-
proach. Following the result obtained in a random graph we can tell where
each version performs better. So we collect the related statistics like the
density of the induced subgraph in which the dense search procedure is
applied.

Table 5.8 shows The main properties of the graphs we can see that
the instances are ordered with respect to the induced subgraph density to
facilitate the reading of the table. The related runtimes are reported in Table
5.9. The runtimes are coherent with respect to the runtimes obtained in
random instances, we can see that with lower density the MaxSAT Pruning
strategy and the reduced one become less effective instead for higher density
it is the opposite (see bio-human-gene1). MC-BRB is much faster in dense
instances while LMC is a trade-off between dense and sparse, while our GPU
version performs better in sparse instances.

The last Table (Table 5.10) shows the speed-up with respect to the BBM-



72 CHAPTER 5. EXPERIMENTAL ANALISYS

Instance |V (G′)| |E(G′)| Cut vertices |V (G′′)| d(G′′)
L1 color k-core color Max. Avg. Max. Avg.

web-uk-2002-all - - - - - - - - -
c-62ghs 27,147 488,444 25,956 0 0 - - - -
web-indochina-2004-all 6,985 48,769,254 - - - - - - -
co-papers-dblp - - - - - - - - -
web-it-2004 - - - - - - - - -
rec-yahoo-songs 136,736 99,393,144 110,386 0 2,090,108 4,152 651 0.373239 0.128711
aff-orkut-user2groups 6,828,633 650,268,524 4,165,348 1,018 3,260 434 59 1.0 0.245209
aff-digg 138,836 38,128,250 105,303 0 44,283,740 2,169 417 0.507453 0.321143
soc-livejournal-user-groups 2,968,508 212,812,908 2,399,124 399 1,743 183 41 1.0 0.330844
soc-orkut 2,204,867 198,472,626 687,697 1 43,821 1,291 209 0.981481 0.345562
soc-sinaweibo 7,002,886 306,871,826 707,546 53 23,842 521 142 0.955556 0.363507
wiki-talk 15,807 1,588,498 13,937 0 5,667 366 130 0.697643 0.473348
bn-human-Jung2015 M87113878 189,786 140,358,954 127,431 0 35,425,870 2,217 837 1.0 0.545527
soc-flickr 13,093 2,841,634 10,551 0 102,737 625 293 0.708151 0.578541
bn-human-BNU 1 0025864 session 2-bg 247,953 213,379,384 165,034 0 1,958,461 3,265 1,071 1.0 0.580141
tech-p2p 165,511 108,048,864 157,859 0 415,196,791 2,229 972 0.803262 0.589305
bn-human-BNU 1 0025864 session 1-bg 246,815 227,442,558 162,418 0 6,660,746 4,187 1,182 0.989505 0.597659
soc-flickr-und 48,771 18,145,866 35,142 0 1,330,516 1,367 519 0.811057 0.604331
socfb-A-anon 390,144 29,024,572 349,993 5 122 261 81 0.944086 0.630807
socfb-konect 499,734 6,099,972 253,585 15 3 34 16 0.904762 0.697649
bn-human-Jung2015 M87126525 303,434 194,931,398 229,888 0 529,666 3,835 665 0.917156 0.707567
bio-human-gene1 4,551 13,174,682 2,491 0 15,082,028 2,701 2,203 0.971053 0.948887
bio-human-gene2 3,814 10,107,000 1,969 0 1,208,590 2,389 2,024 0.975569 0.959575
soc-LiveJournal1 474 211,150 148 0 36 392 388 0.994685 0.994568
web-wikipedia link it 938 876,240 67 0 23 892 892 0.999477 0.999477

Table 5.8: Runtime statistics: The table reports the main characteristics
of the graph G′ and G′′ = G′[P ′] obtained from the original graph G by
our algorithm 31. They give some hints on the efficacy of each step of our
procedure in simplifying the original graph during the MC computation.

Instance
Our BBMCPara LMC MC-BRB

|ω0(G)| Init Search Search |ω0(G)| Init Search |ω0(G)| Init Search |ω0(G)| Init Search
(Block) (Warp)

aff-digg 27 0.777 12.408 5.993 25 15.731 57.206 29 0.87 14.25 30 4.089 43.037
aff-orkut-user2groups 2 16.041 1.786 1.664 5 - O.O.M. 2 25.59 21.36 6 95.701 0.695
bio-human-gene1 1,327 0.472 466.889 271.383 1,268 4.717 T.O. 1,328 0.27 164.72 1,335 4.217 1.381
bio-human-gene2 1,292 0.441 50.028 46.633 1,229 2.659 292.425 1,290 0.18 28.32 1,300 2.751 0.79
bn-human-BNU 1 0025864 session 1-bg 221 2.508 31.765 27.427 276 106.205 T.O. 222 6.45 33.36 283 23.376 3.097
bn-human-BNU 1 0025864 session 2-bg 199 2.689 11.422 14.131 271 95.686 38.707 199 6.15 26.08 271 19.632 0.173
bn-human-Jung2015 M87113878 140 1.47 65.681 67.416 221 49.459 2.501 133 3.52 18.49 227 7.413 0.038
bn-human-Jung2015 M87126525 195 2.184 4.817 4.635 206 73.561 129.21 196 5.55 13.76 219 7.07 0.082
c-62ghs 2 0.059 0.002 0.002 2 0.081 0.006 2 0.01 0.01 2 0.004 -
co-papers-dblp 337 0.066 - - 337 0.247 - 337 0.11 0.0 337 0.011 -
rec-yahoo-songs 16 1.67 3.053 4.0 11 44.484 80.39 16 2.66 6.49 18 12.236 6.755
soc-LiveJournal1 320 0.335 0.098 0.104 316 20.61 0.009 320 2.43 0.01 321 1.072 -
soc-flickr 54 0.183 0.055 0.052 40 1.499 0.224 52 0.1 0.09 57 0.199 0.113
soc-flickr-und 74 0.488 1.119 0.7 68 9.007 9.303 74 0.63 1.27 96 1.484 1.397
soc-livejournal-user-groups 5 11.711 0.256 0.254 8 367.839 120.238 4 7.65 2.39 9 14.0 0.45
soc-orkut 18 3.404 0.238 0.234 46 75.43 3.649 17 9.24 1.73 46 8.934 0.521
soc-sinaweibo 8 6.323 0.256 0.237 41 532.532 10.669 8 20.48 2.42 44 20.847 1.655
socfb-A-anon 23 0.495 0.032 0.033 24 14.625 0.587 23 1.33 0.24 25 1.339 0.093
socfb-konect 6 0.864 0.006 0.007 6 57.679 0.089 6 7.76 0.12 6 4.801 -
tech-p2p 173 2.149 856.811 453.74 153 214.064 T.O. 172 12.92 13.24 175 17.615 9.733
web-indochina-2004-all 6,848 1.095 O.O.M. O.O.M. 6,848 27.29 0.026 6,848 1.87 4.58 6,848 0.499 -
web-it-2004 432 0.041 - - 432 0.068 - 432 0.03 0.0 432 0.005 -
web-uk-2002-all 944 0.657 - - 944 7.28 - 944 5.93 0.0 944 1.168 -
web-wikipedia link it 869 1.253 0.974 0.958 869 29.296 0.023 869 2.43 0.02 870 3.316 -
wiki-talk 24 0.228 0.02 0.013 16 4.504 0.043 25 0.13 0.02 26 0.186 0.008

Table 5.9: Runtime statistics: The table reports the preprocessing and the
runtime for all algorithms. The time-out (TO) is set to 3,600 seconds, i.e.,
one hour. The quantity of memory available is 8GBytes, and beyond that
limit, we have an out-of-memory error (OOM). For our algorithm, we report
data for both the block-based and warp-based versions.



5.5. WARP-WISE PARALLEL 73

CPara version.

Our LMC MC-BRB
Instance Init Search Search Init. Search Init Search

(Block) (Warp)

aff-digg 20.25 4.61 9.55 18.08 4.01 3.85 1.33
aff-orkut-user2groups - - - - - - -
bio-human-gene1 10.0 - - 17.47 - 1.12 -
bio-human-gene2 6.03 5.85 6.27 14.77 10.33 0.97 370.3
bn-human-BNU 1 0025864 session 1-bg 42.35 - - 16.47 - 4.54 -
bn-human-BNU 1 0025864 session 2-bg 35.58 3.39 2.74 15.56 1.48 4.87 223.88
bn-human-Jung2015 M87113878 33.64 0.04 0.04 14.05 0.14 6.67 66.04
bn-human-Jung2015 M87126525 33.68 26.82 27.88 13.25 9.39 10.4 1570.37
c-62ghs 1.37 2.75 2.52 8.1 0.6 22.84 -
co-papers-dblp 3.74 - - 2.25 - 23.16 -
rec-yahoo-songs 26.63 26.34 20.1 16.72 12.39 3.64 11.9
soc-LiveJournal1 61.58 0.09 0.09 8.48 0.9 19.23 -
soc-flickr 8.2 4.04 4.34 14.99 2.49 7.53 1.98
soc-flickr-und 18.47 8.31 13.28 14.3 7.33 6.07 6.66
soc-livejournal-user-groups 31.41 469.65 472.77 48.08 50.31 26.27 267.19
soc-orkut 22.16 15.34 15.59 8.16 2.11 8.44 7.01
soc-sinaweibo 84.22 41.73 45.07 26.0 4.41 25.54 6.45
socfb-A-anon 29.53 18.39 17.83 11.0 2.45 10.92 6.29
socfb-konect 66.73 14.17 12.4 7.43 0.74 12.01 -
tech-p2p 99.62 - - 16.57 - 12.15 -
web-indochina-2004-all 24.91 - - 14.59 0.01 54.73 -
web-it-2004 1.67 - - 2.27 - 15.1 -
web-uk-2002-all 11.08 - - 1.23 - 6.24 -
web-wikipedia link it 23.38 0.02 0.02 12.06 1.15 8.83 -
wiki-talk 19.77 2.18 3.4 34.65 2.15 24.28 5.33

Table 5.10: Speed-up of the three main strategies implemented with re-
spect to the BBMCPara algorithm. The table reports the speed-ups for the
initialization and search phases separately and the overall speed-up of the
entire algorithm (i.e., of the two phases together). For our algorithm, we
report data for both the block-based and warp-based versions.

5.5 Warp-wise Parallel

The last version presented is the warp-wise parallel, in which we go deep
into one level of parallelism explicitly using warps. Runtimes have been re-
ported in Table 5.9 And show that when the width of the induced subgraph
is smaller the block size times 32 becomes more effective. this approach
outperforms the previous version of about 2x in some instances. This divi-
sion increases the effectiveness of the work donation since more warps than
blocks participate in solving dense instances. To make more explicit the
effect of the warp-wise parallelism we test it also on random instances to see
the effect. We start from the random instances of 250 nodes and compare
just the warp and block parallel versions.

All random instances have been tested to see when this kind of optimiza-
tion is performant:



74 CHAPTER 5. EXPERIMENTAL ANALISYS

Figure 5.6: Runtimes over edge probability for random graphs of 250 vertices

Warp-wise parallel implementation performs well up to random with
10,000 vertices, we can see a speedup of about 2x but paying in memory to
increase the number of independent tasks run in parallel.



5.5. WARP-WISE PARALLEL 75

(a) Instances of 100k vertices (b) Instances of 10k vertices

(c) Instances of 3k vertices (d) Instances of 1k vertices

Figure 5.7: Runtimes of our algorithms (on the y-axis) on random graphs
as a function of the graph density (reported on the x-axis). All times are
reported in seconds.



76 CHAPTER 5. EXPERIMENTAL ANALISYS



Chapter 6

Conclusions

To summarize we describe the maximum clique problem and its related ap-
plication, we go through the entire story of the algorithm describing the
main optimizations able to significantly increase the performance, and fi-
nally, we describe an approach suitable for GPU and introduce a possible
optimization of this approach to maximize GPU occupancy. Many of the
current coloring strategies have been tested and studied its portability on
GPU, showing that Global Memory can affect the runtimes slowing the pro-
cess of discarding vertices. So pay attention and make a tradeoff of the
time spent to compute better coloring. The related GPU version has been
tested against the faster state-of-the-art solvers we show that the GPU out-
performs all CPU versions in some locally sparse instances, but we could
further improve its performance by using MaxSAT reasoning pruning strat-
egy proposed by LMC or the reducing technique proposed by MC-BRB. A
new implementation of the SAT on GPUs could improve the performance,
but be careful in implementing it, this implementation has to minimize the
memory access on Global Memory, because as seen in the ReColor pruning
strategy this can lead to wasting much time rather than gain that. Over-
all we can say that the parallel strategy proposed by BBMCG is effective
in speed-up this kind of backtracking algorithm on GPU, we show that it
is possible to go down one level of parallelism to take benefit from those
threads that keep inactive because of the low local degree of the graph. Fi-
nally is important to say that GPU architecture can be exploited to execute
this kind of algorithm with lower runtimes, but not all the optimization
available on CPU can fit well on this architecture. As said before better
speedups can be achieved by increasing the occupancy, and bitsets allow
parallel bit set operations, this is one of the main reasons for the incredible
speedup and reduced memory usage. Can be interesting to see how the GPU
behaves without the bitsets, with bitsets where most of the bits are set to 0
we can make the thread perform redundant work, this can happen when we
go into a deeper level of recursion. Without bitsets, we could have to deal

77



78 CHAPTER 6. CONCLUSIONS

with warp divergence and non-coalesced memory access that can slow down
the set operations.



Chapter 7

Acknowledgements

I would like to thank my family: Emanuele, Mary (Maria), Marika, Nikole,
Romeo and Marley, Salvatore (grandpa), Salvatrice (grandma), Maria (grandma),
Paolo (grandpa), my uncles: Corrado, Carmen, Laura, Salvatore, Paolo and
all my cousins: Greta, Julia, and Erika for supporting me over these years,
My supervisors for guiding me through the development of this thesis, and
the Politecnico of Turin for teaching me all the subject related to Computer
Science. Those years have been the most important of my life because I
learned a lot of beautiful things that gave me the basics to enrich my knowl-
edge. Finally, I would like to do a special thank my grandpa Salvatore for
giving me the possibility to start and continue through this path. Thank
you.

79



80 CHAPTER 7. ACKNOWLEDGEMENTS



List of Algorithms

1 PowerSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Enumerate all cliques of Graph G . . . . . . . . . . . . . . . . 19

3 Enumerate all cliques of Graph G . . . . . . . . . . . . . . . . 20

4 BronKerbosch: Enumerate all maximal cliques of Graph G
from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 BronKerbosch: First-level independent subtree [1] . . . . . . . 22

6 k-cores decomposition. . . . . . . . . . . . . . . . . . . . . . . . 23

7 MCQ: Find the maximum clique of a Graph G [18] . . . . . . 24

8 EXPAND: Find the maximum clique of a Graph G [18] . . . . 25

9 NUMBER-SORT: Assign colors with a greedy strategy to ver-
tices in R [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 BB-MaxClique: Find the maximum clique on a graph G [17] . 27

11 BB-Color: Assign a color to a set of vertices UBB [17] . . . . . 28

12 A threaded algorithm to deliver the max clique [11] . . . . . . 29

13 expand: main search procedure for max clique [11] . . . . . . . 30

14 colorOrder: vertex coloring [11] . . . . . . . . . . . . . . . . . 31

15 BBMCSP [13]: max clique computation for large sparse graphs 32

16 BBMCSP [13]: max clique computation for large sparse graphs 33

17 Re-NUMBER [19] Try color v with color less equal than kmin . 34

18 MC: max clique computation for dense graph from [7] . . . . 35

19 GetBranchesd0: Compute the set of branching vertices [7] . . 36

20 GetBranchesd: Compute the set of branching vertices [7] . . 37

21 IncMaxSAT: Further reduce the set of branching vertices [7] . 38

22 GetBranchess: Compute the set of branching vertices [7] . . 39

23 MC2: max clique computation for dense graph [7] . . . . . . . 41

24 GetBranchesm: Compute the set of branching vertices [7] . . 42

25 Initialize: A preprocessing for large and sparse graph [6] . . . 43

26 LMC : A BnB algorithm for computing the max clique [6] . . 44

27 SearchMaxClique: A BnB algorithm for computing the max
clique greater than |Cmax| [6] . . . . . . . . . . . . . . . . . . 45

28 MLMC : A BnB algorithm for computing the max clique . . . 46

29 Parallel k-cores decomposition . . . . . . . . . . . . . . . . . . 53

81



82 LIST OF ALGORITHMS

30 Find Heuristic Clique . . . . . . . . . . . . . . . . . . . . . . . 54
31 Pseudo-code for the parallel MC algorithm. Reported the first-

level independent subtree. . . . . . . . . . . . . . . . . . . . . 55
32 Color: Assign a color to a set of vertices P . . . . . . . . . . . 55
33 Block Parallel k-cores decomposition . . . . . . . . . . . . . . 56
34 Our parallel MC computation. . . . . . . . . . . . . . . . . . 57
35 Pseudo-code for the parallel MC algorithm. Reported the first-

level independent subtree. . . . . . . . . . . . . . . . . . . . . 58
36 Our parallel MC computation with the donation. . . . . . . . 59



Bibliography

[1] Mohammad Almasri, Yen-Hsiang Chang, Izzat El Hajj, Rakesh Nagi,
Jinjun Xiong, and Wen mei Hwu. Parallelizing maximal clique enumer-
ation on gpus, 2023.

[2] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. Mining
market data: A network approach. Computers & Operations Research,
33(11):3171–3184, 2006.

[3] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Communication of the ACM, 16(9):575–577, 1973.

[4] Lijun Chang. Efficient maximum clique computation and enumeration
over large sparse graphs. The VLDB Journal, pages 999–1022, 2020.

[5] Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms
for codes and colorings. IEEE Transactions on Information Theory,
44(1):382–388, 1998.

[6] Hua Jiang, Chu-Min Li, and Felip Manyà. Combining efficient prepro-
cessing and incremental maxsat reasoning for maxclique in large graphs.
In Proceedings of the Twenty-Second European Conference on Artificial
Intelligence, ECAI’16, page 939–947, NLD, 2016. IOS Press.

[7] Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of the
number of branches in branch-and-bound algorithms for the maximum
clique problem. Computers & Operations Research, 84:1–15, 2017.

[8] Chu-Min Li and Zhe Quan. An efficient branch-and-bound algorithm
based on maxsat for the maximum clique problem. Proceedings of the
AAAI Conference on Artificial Intelligence, 24(1):128–133, Jul. 2010.

[9] Noël Malod-Dognin, Rumen Andonov, and Nicola Yanev. Maximum
cliques in protein structure comparison, 2009.

[10] Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser, and Chris-
tine Solnon. Clique and constraint models for maximum common
(connected) subgraph problems. In Michel Rueher, editor, Principles

83



84 BIBLIOGRAPHY

and Practice of Constraint Programming, pages 350–368, Cham, 2016.
Springer International Publishing.

[11] Ciaran McCreesh and Patrick Prosser. Multi-threading a state-of-the-
art maximum clique algorithm. Algorithms, 6(4):618–635, 2013.

[12] NVIDIA. CUDA Programming Guide.

[13] San Segundo Pablo, Lopez Alvaro, Jorge Artieda, and Panos M. Parda-
los. A parallel maximum clique algorithm for large and massive sparse
graphs. Optimization Letters, 11:343–358, 2017.

[14] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique re-
laxation models in network analysis. European Journal of Operational
Research, 226(1):9–18, 2013.

[15] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository
with interactive graph analytics and visualization. In AAAI, 2015.

[16] Pablo San Segundo, Fernando Matia, Diego Rodŕıguez-Losada, and
Miguel Hernando. An improved bit parallel exact maximum clique
algorithm. Optimization Letters, 7:467–479, 03 2011.

[17] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez. An
exact bit-parallel algorithm for the maximum clique problem. Comput-
ers & Operations Research, 38(2):571–581, 2011.

[18] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound al-
gorithm for finding a maximum clique. In Cristian Calude, Michael J.
Dinneen, and Vincent Vajnovszki, editors, Discrete Mathematics and
Theoretical Computer Science, 4th International Conference, DMTCS
2003, Dijon, France, July 7-12, 2003. Proceedings, volume 2731 of Lec-
ture Notes in Computer Science, pages 278–289. Springer, 2003.

[19] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and
Mitsuo Wakatsuki. A simple and faster branch-and-bound algorithm
for finding a maximum clique. In Md. Saidur Rahman and Satoshi
Fujita, editors, WALCOM: Algorithms and Computation, pages 191–
203, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.


