
POLITECNICO DI TORINO
Master Degree course in Mechatronic Engineering

Master Degree Thesis

Urban Crowd Estimation via WiFi
Probe Analysis

Supervisors
Prof. Claudio Casetti
Prof. Paolo Giaccone

Candidate
Giuseppe Perrone

Academic Year 2023-2024

Acknowledgements

This work was supported by the Horizon-JU-SNS-2022 Research and Innovation Pro-
gramme under Grant Agreement No. 101095871 (TrialsNet project).
I would like to thank my supervisors, Claudio Ettore Casetti and Paolo Giaccone for their
invaluable support and guidance throughout the drafting of this thesis.
Thanks to my mentors, Diego and Riccardo, for their availability and enthusiasm; with-
out your help, I probably would have gone crazy.
Also, a special thanks to everyone who accompany me on this journey. All of this would
be meaningless without all of you.

2

Abstract

Nowadays, cities are places where data streams are continuously and ubiquitously ex-
changed between smartphones, IoT devices, and other modern technologies. The con-
stantly growing urban populations make it necessary to provide stakeholders like trans-
portation managers and security agencies with accurate methods for crowd-monitoring.
In this way, more efficient space construction processes can be designed, i.e., by optimiz-
ing resource allocation or enhancing security measures. Analyzing network traffic has
proven to be an effective method to estimate people’s presence in various specific areas.
This thesis aims to provide a complete understanding of WiFi-based crowd-monitoring
techniques, with their main advantages and drawbacks. We conducted an extensive ex-
perimental study of WiFi 802.11 probe requests, searching for new valuable information
to enhance systems’ performance and overcome their main limitations. The first phase of
the research interested the content of the frames, particularly the Information Elements
(IEs), fields that specify the characteristics of the source device. The findings were ap-
plied to ARGO, a network-based counting system developed in response to the Trialsnet
European project. The conducted studies resulted in a new crowd-counting algorithm.
It leverages additional fields of probe requests with respect to its predecessor and uses
the OPTICS clustering algorithm to categorize and group Probe Requests based on the
presumed source. The modifications applied resulted in an accuracy for crowd counting
ranging from 83% to 93%. The results demonstrate the effectiveness of our adjustments,
leading to an accuracy of up to 10 percentage points higher than the original. Addition-
ally, the cluster quality has improved, as evidenced by higher values for homogeneity and
completeness. In the second part of our work, we shift our focus to the time behavior
of probe requests. We have examined how their sending rate varies according to the
state of the channel, ranging from a non-congested state to a high-congested one. In
the latter case, we observed a significant difference in the rates with respect to the ones
recorded in isolated conditions. This analysis has shown that approaches used until now
are not suitable, as they do not consider the impact of the congestion of WiFi channels in
overcrowded environments. These observations have led to a new proposal for adapting
the performance in diverse, specific contexts. This can lead to a more flexible algorithm
but is feasible only when ground truth data are available, as the rate is tuned by min-
imizing the error relative to the effective ground truth. This research has shown that
WiFi-based monitoring techniques offer a valid solution for crowd-estimation problems.
The implemented system can provide accurate results, aligned with ground truth data.
Furthermore, the affordability of this framework and its low power consumption make

this system suited for daily monitoring applications, enabling a more efficient resource
allocation and preserving the privacy of people in the monitored areas.

2

Contents

1 Introduction 5

2 People Counting Solutions 7
2.1 Image-based Crowd-monitoring techniques 7

2.1.1 Video Surveillance systems . 7
2.1.2 Automated Video Surveillance Systems 8

2.2 Sensor-based Crowd-monitoring techniques 15
2.2.1 Infrared sensors . 16
2.2.2 Laser scanner in crowd counting 18

2.3 Network-based Crowd-monitoring techniques 19
2.3.1 Bluetooth-based Crowd-counting 19
2.3.2 WiFi-Based Crowd-counting . 20

2.4 Probe Request-based People Counting . 21
2.4.1 MAC address-based algorithms . 21
2.4.2 Information elements-based algorithm 23

3 Crowd-Monitoring Framework 27
3.1 TrialsNet Project . 27

3.1.1 Referenced Scenario . 28
3.2 Proposed Framework . 29

3.2.1 Hardware . 29
3.2.2 Sniffing Pipeline . 30

3.3 Device Counting . 31
3.3.1 Clustering algorithms . 32
3.3.2 DBSCAN . 33
3.3.3 OPTICS . 34

3.4 Anonymization Process for MAC addresses 35
3.4.1 Bloom-Filter . 35

3

3.4.2 Bloom Filters for privacy protection 37
3.4.3 Bloom Filter operations . 38

3.5 System’s power consumption . 39
3.6 Location . 41

4 ARGO - Ai-driven framewoRk for countinG peOple 43
4.1 Feature extraction . 43
4.2 Counting algorithm . 45

4.2.1 Fine-Tuning DBSCAN parameters 47
4.3 Performance evaluation . 49

4.3.1 Performance in Simulated Environment 50
4.3.2 Performance in Real Environment 51
4.3.3 Performances in Controlled Environment 54

5 Exploiting Device Fingerprinting 57
5.1 Limitations . 57
5.2 Low-resolution Clustering . 58

5.2.1 New Features . 58
5.3 Signature collision . 61

5.3.1 Improved Algorithm . 61
5.3.2 Parameter setting . 63

5.4 Performance Evaluation . 64
5.4.1 Performances in Controlled Environment 64
5.4.2 Performances in Real environment 66

6 Probe Timing Analysis 69
6.1 Inter-Burst Time . 69
6.2 Channel Occupancy and Throughput Reduction 73

6.2.1 Experimental set-up . 73
6.2.2 Analysis results . 74

6.3 Limitations of the ARGO Algorithm . 75

7 Conclusion 77
7.1 Future Works . 77

Bibliography 79

4

Chapter 1

Introduction

Crowd monitoring includes all the processes related to the observation and management
of groups of people in public spaces or events. It is essential in many domains:

• Where large mass gatherings occur, it can ensure public safety by preventing panic
and improving emergency response capabilities.

• In the commercial domain, knowing the flow of people can provide information
about the most frequented shops.

• In transportation, crowd-monitoring can identify the most used routes, improving
public transport efficiency and resource allocation.

This thesis aims to develop a framework that can be used for crowd-monitoring ap-
plications. In particular, we focus on a Network-based Crowd-Monitoring system due to
its significant potential and efficacy in large-scale implementations. The number of IoT
devices is constantly increasing: according to [1], there were approximately 12.5 billion de-
vices in 2010, and their number will reach 41.6 billion connected devices by 2025 [2]. The
ubiquitous presence of smart devices generates vast amounts of transmitted data around
us. Network-based crowd-monitoring systems utilize the transmitted data streams to
gather information about crowd size in a monitored area.

Our focus is specifically on WiFi-based crowd-monitoring systems. These frameworks
leverage the content of Probe Requests, i.e., frames standardized by IEEE and period-
ically broadcasted by any device with an active WiFi interface. Before Apple iOS 8,
we could use these messages to track the presence and movement of any device, as each
probe contained a globally unique identifier. However, to protect users’ privacy, vendors
started implementing MAC address randomization after 2014, randomizing the identifier
to prevent privacy issues. We aim to develop a WiFi-based system to infer the crowd size
within the area by analyzing these messages even with MAC address randomization.

5

Introduction

We conducted extensive research to understand the structure of probe requests: we
analyzed a vast dataset of probe requests to identify the principal information that could
be obtained from them. The obtained insights are applied to an existing WiFi-based
crowd-monitoring system [3] to enhance its accuracy. The results show that the WiFi-
based crowd-monitoring systems can address crowd-monitoring applications, providing
stakeholders with general knowledge about the crowd size without needing any sensitive
information.

The first Chapter of this work talks about the principal systems for crowd counting.
For each of them, we point out the main advantages and drawbacks. Chapter 3 talks
about the sniffing system used for this work: it is developed by [3] and can collect all
the probe requests transmitted by nearby devices. Chapter 4 analyses the WiFi-based
counting system used as reference, analyzing its performance. Chapter 5 talks about
the limitations of the previously presented algorithm and some applied improvements.
These chapters show how WiFi-based crowd-monitoring can preserve people’s privacy in
monitored areas, granting, at the same time, the needed information.

The last Chapter analyses the time behavior of probe requests: we focus on the rate of
the probes as a function of the source device, its phase, and the channel congestion. Here,
it becomes clear that the behavior of these messages is almost unpredictable; it depends
on many parameters, many of which are still unknown. Therefore, there is mention of a
potential approach for these systems that could be calibrated in specific circumstances
and could harness the best of this technology while minimizing errors to the greatest
extent possible.

6

Chapter 2

People Counting Solutions

The main topic of this Chapter is the current state of art for people counting systems,
which are frameworks able to estimate the number of people in a certain area. This
Chapter provides an overview of different systems analyzing each of them on the basis of
their performances, development cost, and compliance with privacy requirements imposed
by the European Union [4]. Section 2.1 talks about “Image-based crowd-monitoring
techniques”, i.e., video surveillance systems. Section 2.2 talks about all techniques which
do not involve the use of recorded images , i.e., LIDAR and some other types of radio
sensors, used to estimate the crowd size without exploiting any sensitive information.

2.1 Image-based Crowd-monitoring techniques

2.1.1 Video Surveillance systems

A video surveillance system aims to monitor the human activity in public or private
scenarios using a system composed by multiple cameras strategically positioned to capture
the whole environment.

The presence of a system of this type is justified by the necessity to ensure the
prevention of any emergency, utilizing a proactive approach rather than reactive. The
cameras capture images or videos of the monitored scenario and all the collected images
are shown in a central station. The connection with the central station can be done in
three different ways: analog, digital, and wireless.

A system of this type can collect a large amount of data which can be analysed through
computer vision techniques to reduce the human involvement in video monitoring.

7

People Counting Solutions

2.1.2 Automated Video Surveillance Systems

An automated system processes the input images of the camera giving an output that
depends on the application considered. This task is achieved through computer vision: a
field of artificial intelligence whose aim is to enable computers to interpret and understand
visual information from the real world. To address this issue many algorithms can be
utilized, they vary in the features extracted from the images and on the computed output.
Examples of computer vision algorithms used in crowd-monitoring can be found in [5],
where authors talk about:

• Face recognition.

• Object classification.

• Motion detection.

• Image segmentation.

All these algorithms leverage machine learning and deep learning techniques to train
models on large datasets. Starting from the trained model it is possible to recognize
patterns and make decisions based on the visual input received.

Figure 2.1: Video surveillance system architecture

8

2.1 – Image-based Crowd-monitoring techniques

Figure 2.1 shows the overall architecture of a Video-surveillance system. In the fol-
lowing Sections, we analyze some algorithms developed to address crowd-monitoring ap-
plications, pointing out the main pros and drawbacks for each of them.

Computer vision for Crowd-Counting

According the authors of [6], we can divide the methods for video surveillance-based
crowd monitoring systems in mainly three different classes:

• Counting by detection: Authors of [7] define this approach as a “Direct Tech-
niques”. The algorithm can recognize if an object is a person or not through a
classifier. The final output is the number of objects classified as “Person”.

• Counting by clustering: More flexible than Supervised learning approaches.
Counting by clustering focuses on the motion of the objects in the scene: different
trajectories may be clustered together and the total number of clusters provides the
objects’ count in the scene.

• Counting by regression: Explicit pedestrian detection is avoided to increase
the computational efficiency of the system. The algorithm learns how to map the
image’s features into the number of people in the scene. The first step of this
type of approach is the features’ extraction, i.e., area of the region [8, 9], edge
features [10–12] or texture features [13, 14]. The extracted features are correlated
to crowd size based on a regression model.

The high computational cost of the first two approaches makes them not suited for
real-time applications. In addition, the performances are not so good in case of not
moving objects and in case of occlusions in the crowd.

In the latest years, Convolutional Neural Networks have been largely employed in this
context. Despite the many advantages that these systems can offer, also in this case an
high computational cost is required.

Pedestrian detection-based approaches

Object classification is a class of algorithms which allows computers to divide objects in
different classes based on some characteristics of the image. Figure 2.2 shows some of the
possible algorithms, each has its own way to address classification problems.

In this type of approach, a classifier utilizes features extracted from an input video
to recognize people between the objects that are present in the scene. Different features
can be considered to address this problem.

9

People Counting Solutions

Figure 2.2: Algorithms of Object Classification

In [15], authors assume that the appearance of an object can be identified starting
from the local intensity gradient. The overall image is divided into smaller regions called
“cells”. For each cell, the algorithm computes the direction of gradient, and creates a
histogram of the orientations for each region. The histograms are then normalized for
better invariance to lighting conditions. The normalized histograms are called HOGs and
they constitute the feature vector of the image.

In [16], authors utilize low-level features i.e., gradient responses in different directions,
which are averaged to obtain a mid-level feature more informative. Authors call features
of this type shapelets since they are considered an accurate description of the shape of
an object.

10

2.1 – Image-based Crowd-monitoring techniques

In [17] three different kinds of features are used:

• Two-rectangle feature: the difference between
the sum of the pixels in two adjacent regions
(Figure 2.3 A-B).

• Three-rectangle feature: the sum of the pixels
within two outside rectangles subtracted from
the sum in a center rectangle (Figure 2.3 C).

• Four-rectangle feature: the difference between
the sum of pixels in one diagonal pair of rectan-
gles and the sum of pixels in the other diagonal
pair (Figure 2.3 D).

Figure 2.3: Rectangular features

These types of features are chosen in order to obtain a computational efficiency as
high as possible.

After features extraction a classifier utilizes the extracted data to categorize the ob-
jects in the scene between two classes, the “Person” class or the “Not Person” one. The
mainly used classifier for this approach are:

• SVM: This is a linear classification algorithm, which classifies points according to
where they are with respect to an hyperplane.

• Random Forest: the Decision Tree (DT) is a machine learning model character-
ized by a tree-like structure. It consists of nodes and edges, each of which symbolizes
a potential decision and its possible outcomes. Multiple DTs can be aggregated into
a Random Forest classifier. In this case, each singular tree is trained on a random
subset of the training data and features. The final prediction is based on the ma-
jority of the output of the individual trees.

The performance of the classifier, however, is extremely scenario-dependent: the proposed
architecture works quite well for sparse crowds but in a more crowded scenario, where
occlusions are more likely to occur, the results achieved are not good enough to justify
their extremely high computational cost.

Trajectory clustering-based approaches

These types of approaches relies on the assumption that motion features of the same
object, i.e., direction or velocity of the motion, are relatively uniform over time. Different
trajectories, characterized by similar features can be grouped to represent different moving
entities. This methodology has been adopted in [18] where authors modify the KLT

11

People Counting Solutions

tracker algorithm [19] to tackle the problem of occlusions in human crowds. The KLT
tracker is an Algorithm that aims to find the motion parameter of an object from image
I to a consecutive image J (Figure 2.4 - 1). Computed parameters are then utilized in
the clustering phase to identify how many moving objects are present.

The main problem of its standard version is related to occlusion in the crowd: the
algorithm is not able to track the features continuously. In case of occlusion, new trajec-
tories’ starting points need to be recreated. In the newly implemented version, features
are recreated at fixed time locations and trajectories are propagated forward and back-
ward in time in case of occlusions (Figure 2.4 - 2). These modifications increase the
computational efficiency and obtain trajectories that are longer and smoother than the
ones originally obtained with KLT tracker.

Figure 2.4: Features’ propagation for KLT tracker

All the found trajectories are then clustered together to identify similar patterns in
extracted data. Additional information can further reduce the complexity of the problem
i.e., two trajectories too distant cannot be considered as part of the same object if the
bounding box of the object is known. The number of clusters at the end of the process
coincides with the number of people in the crowd. The main problem of this strategy is
the assumption of motion coherency over time and space: false estimation may arise in
case of static people in the scene or in case of similar motion between two objects [20].

12

2.1 – Image-based Crowd-monitoring techniques

Feature-based regression approaches

Instead of isolating singular individuals and continuously tracking specific motion pa-
rameters, Feature-based regression approaches use a collective description of the crowd.
This collective approach helps simplify computational processes and allows for a reduced
resource demand. The first application of this system can be found in [21] but the general
pipeline remained approximately the same over the years (Figure 2.5).

Figure 2.5: Feature Regression Pipeline

After background subtraction, different highly informative parameters can be ex-
tracted from the foreground segment of the input image. Five key features are highlighted
in [11]:

• Size: Extension of the area of interest i.e., the pixel count used in [21] or the density
map introduced in [22].

• Shape: Length of the perimeter and orientation of the area of interest.

• Edge: the change of intensities over the pixel of the image.

• Texture: contrast and homogeneity of the image.

• Key-Points: any other possible point of interest i.e., corners and angles [23].

Features can be extracted either from the entire region of interest, in this case, we talk
about holistic regression, or from individual regions of the image, referred to as the local
regression approach. Histogram-based approaches can be used too: local information is
accumulated in histogram bins to construct a global feature.

The features extracted are given as input to a regression model which gives as output
the people count. Many studies used different types of models over the years, a review
of the used models is given in Table 2.1. However, all these strategies show poor perfor-
mances in the case of crowd images with high density and scale variation effects in the
images making the accuracy even lower.

13

People Counting Solutions

Implemented in: Regression model:
Crowd monitoring using image processing [21] Linear Regression

Counting people with low-level features and Bayesian regression [24] Gaussian processes Regression
Bayesian Poisson regression for crowd counting [25] Bayesian Poisson regression

Flow mosaicking: Real-time pedestrian counting without scene-specific learning [26] Polynomial regression
Feature mining for localised crowd counting [27] Kernel ridge regression

Table 2.1: Implemented regression model

CNN for crowd-counting

A neural network is a machine learning model which is inspired by the functioning of
the human brain. Exactly as its biological counter part, it is composed of interconnected
artificial neurons organized in different layers. Each layer can communicate with the
previous and the following ones, and this feed-forward process enables the network to
learn from complex data to make predictions or decisions. In recent years, researchers
focused on Convolutional Neural Network (CNN) for crowd-counting applications. The
interest for this technology is mainly due to its capability of automatically extracting the
most suited features to use in the counting phase [28]. A Convolutional Neural Network
is used to process data with a grid-like topology, i.e., images, and its general structure is
shown in Figure 2.6.

Figure 2.6: CNN general architecture

The image is given as input to the convolution layer which is the core block of the
overall architecture. It contains a set of kernels whose parameters are computed during
the training phase. Kernel are small matrices applied to input data for feature extraction.
Each kernel slides over the image and, for each possible input section, dot product is
calculated. This process is called Convolution and its output is called Activation map.
The final output of the layer is composed of all the activation maps generated through
this process. The activation maps are then given as input to the pooling layers.

Pooling Layers simplify received data performing an aggregation operation to reduce
their size i.e., taking the maximum or average value of each input window [29,30].

The number of layers inside a CNN defines its depth. Typically the first layers detect
the low-level features of an image, i.e., lines, while the latest layers detect more informative
high-level features i.e., shape and objects. The output layers are then responsible for

14

2.2 – Sensor-based Crowd-monitoring techniques

mapping these highly informative features to the desired output [31].

These systems showed their high potential starting from their first implementation
in [32]: a CNN can extract automatically all the features of interest, giving the most
suited weight to each of them. It is possible to introduce in the training phase different
images, i.e., trees and buildings, to reduce the false positive rate and it is possible to
counteract some of the major problems of the classical approach i.e., scale variations and
occlusion [33]. However, despite the very high performances achieved in Crowd Counting
by this approach, CNN cannot be used in many situations due to the extremely high
computation times and the requirements of a very large training dataset.

Video Surveillance consideration and drawbacks

Despite the high accuracy that these systems can achieve, they are all limited by some
problems related to the system’s architecture itself: i.e., scale variation effect and non-
uniform people distribution reduce the effectiveness of these algorithms; the monitored
area is quite small and, in case of multi-camera systems, processing the data become
more computationally expensive due to the data-integration problem [34]. The considered
scenario may introduce some problems too i.e., in an outdoor context changing lighting
conditions must be taken into account, and further limitations are introduced by the
interactions between the objects in the scene i.e., occlusions [5, 28, 35]. However, while
some of these effects may be counteracted, as done in [36] with the scale variation effected,
many other problems cannot be overcome at the moment: the large amount of data to
be transmitted requires an extremely high transmission rate and the hardware must
be able to maintain the computational time sufficiently low to avoid excessive delays.
Furthermore, collected images and video could contain many sensitive information which
can lead to privacy issues too [37]. All these reasons make these strategies prohibitive in
many real-life applications.

2.2 Sensor-based Crowd-monitoring techniques

Over the years, several other solutions have been proposed in order to address the prob-
lems afflicting systems described in Section 2.1. Rather than counting directly people
in the scene, it may be convenient to use some indirect information coming from other
types of sensors. In this way, it is possible to estimate the crowd size without necessarily
knowing any information classified as sensitive by the European Union [4, 38].

15

People Counting Solutions

2.2.1 Infrared sensors

Infrared sensors are able to detect and measure the infrared radiation emitted or reflected
by nearby objects. Their functioning depends on the specific type which is considered.

We can find two types of infrared sensors:

• Active Infrared Sensors: they can emit infrared radiation which will be reflected by
obstacles and collected back. The sensor can then estimate both the presence of a
nearby object and its distance.

• Passive Infrared Sensors (PIRs): they are extensively used in security. PIRs do not
emit any radiation but they will receive the ones emitted by nearby objects.

In crowd-monitoring applications, passive sensors are commonly employed. These sensors
can be integrated in camera-based systems to give extra data to be used in processing.

However, many researches have attempted to build a PIR-based monitoring system,
characterized by a low-cost architecture and very low power consumption.

Passive Infrared Sensor in Crowd counting

Passive infrared sensors (PIRs) are used for their capability to monitor a quite spread
area, without capturing any sensitive information. Their functioning is based on the
fact that any object emits infrared radiation, the higher its temperature the higher the
radiation which is emitted. PIRs are constructed with pyroelectric sensors that can detect
radiations emitted by a nearby object. When a person passes in front of a background, the
detected infrared radiation detected increases instantly. If the radiation change exceeds
a certain threshold, an output is generated.

These types of sensors are typically very cheap and their power consumption is very
low. Furthermore, their structure can be modified in order to detect not only presence
but motion too. A PIR-based motion detector is divided in two halves. The two parts
are interconnected and, if one of them detects a higher infrared radiation than the other,
an output is generated based on the sense of motion. An example of the structure of a
motion detector is shown in Figure 2.7 along with an example of its functioning.

The output can be a binary value, i.e., 1 if motion is detected 0 otherwise, or a signal,
in this case the sensor is able to provide more detailed information about the shape, the
dimension of the object, and the motion characteristics.

In general PIR sensors are more suited for human detection rather than people count-
ing; their characteristics, however, make them appetizing for this type of applications
too.

16

2.2 – Sensor-based Crowd-monitoring techniques

a) Building blocks of a PIR sensors, re-
produced from [39]

b) functioning of a PIR sensor. Repro-
duced from [40]

Figure 2.7

A very simple people-counting implementation can be seen in [41], where two binary
PIRs sensors are applied on both the side of a door: if one detects motion, the system
check whether motion is detected by the other one within a limited time window. If so,
the count of people in the room is adjusted on the basis of the sense of motion i.e., if the
person detected is entering or exiting. For this approach, however, the limitations are
quite intuitive: the system does not address the case of multiple people entering in the
room at the same time.

This problem was solved by [42]. Here, two shelves are appended on the ceiling on
each side of the door. Each shelf supports a system composed by 8 PIRs and an ultrasonic
sensor able to trigger the PIR array. A Convolutional Neural Network then uses the data
collected by the system to estimate the number of people entering the room. The results
in this case where quite good, with an accuracy of around 90%.

Some attempt were done to apply PIR-based systems in a more spread scenario, using
a whole room as location. These applications have shown multiple limitations: in [43] for
example authors used an array of thermal sensor to build the heat map of a room and to
detect number and position of the people in the monitored area. The map displays areas
with higher temperatures (ideally corresponding to the presence of people) compared to
cooler areas (floor or objects). The average accuracy of the proposed system was very
low, around 41%.

In [44] a system of PIRs array was built to detect the number of people in the room and
their direction of movement. The results were quite good but in the considered scenario
there were only 4 people in the room. The achieved results are not representative for
overcrowded situations as the accuracy is expected to decrease as the number of people
increase.

17

People Counting Solutions

Furthermore, the application in outdoor environments is unfeasible due to the short
transmission range of PIR sensors and due to the disturbances introduced by sunlight
and heating.

2.2.2 Laser scanner in crowd counting

A laser scanner is a device able to emit a laser beam whose reflection is then collected
back, as shown in Figure 2.8. Through the beams’ time-of-flight the sensor is able to
estimate the distance of the objects in the scene, which are then converted in a set of
(x,y,z) coordinates. The collection of point so obtained is called cloud-point.

The coordinates of all the points can be used to reproduce a 3D representation of the
whole environment. An example of a LiDar system and the produced output are the one
shown in Figure 2.8.

a) LiDar scanner’s scheme. Reproduced
from [45]

b) Environment reconstruction through a
LiDar scanner. Reproduced from [46]

Figure 2.8

The obtained reconstruction can provide more information with respect the classical
image-based systems, without being subject to any prospective distortion. An approach
which uses this architecture, is able to count the people in the area just by counting
the occupied spaces in the reconstructed image [47]. It is also possible to apply object
classification algorithms on the images to recognize the human beings in the scene: as
done by [48] which has shown the effectiveness of SVM algorithms in recognizing humans.

In these type of systems there is no collection of sensitive data and they are insensitive
to lighting condition. Pre-Processing of the data is less computational expensive with
respect to camera-based systems and very high accuracy can be achieved. The main
limitation of these systems is due to the hardware and maintenance costs. Very high
costs make these systems not adequate in many real-life application.

A less expensive approach is using a 2D-Lidar, as done in [49, 50], where the point

18

2.3 – Network-based Crowd-monitoring techniques

cloud consists of a 2D-image. The architecture required in this case is less expensive with
respect to the standard one, and learning the activity pattern is much easier with respect
to the 3D-case, yet depth information are lost. Performances achieved by 2D-Lidar are
then comparable with the one of classical camera-based systems.

2.3 Network-based Crowd-monitoring techniques

The widespread presence of mobile devices, constantly connected to wireless or mobile
networks, suggests the possibility of using information coming from these sources for
crowd-monitoring applications. The basic concept is that mobile devices continuously
send and receive signals to and from nearby base stations or wireless routers. These
signals can be potentially used to infer the crowd-size and other information related to
presence and movement of present people.

An approach of this type offers several advantages. Firstly, it is a cost-effective im-
plementation as it does not require additional infrastructure. Secondly, no user actions
are required for participation in monitoring; information is passively collected. Finally,
these techniques provide extensive coverage, as most people own and use mobile devices,
making possible the monitoring of large urban areas or mass events.

2.3.1 Bluetooth-based Crowd-counting

Bluetooth is a short-range communication technology used to facilitate data exchange
between devices. Bluetooth creates a Personal Area Network (PAN) known as a Piconet,
which is composed by one master device and up to seven slave devices. The master has
the role of managing the communication and synchronization among the devices, making
the data-exchange possible.

The starting of a Bluetooth-based communication between devices is composed of two
phases. The first phase is called inquiring, where a Bluetooth device actively searches
for some nearby potential slave node. The second one is called paging. In this part of
the connection process, the paging device establishes a connection with the target device.
Once the connection is established, the devices can begin exchanging data [51].

During connection process, many sensitive information are exchanged between master
and slaves i.e., the name of the device and the Bluetooth MAC Address, a globally unique
identifier of the device.

Information of this type could be used to uniquely identify nearby devices, making
possible the construction of a Bluetooth-based crowd-monitoring system.

One of the first systems adopting this technology in crowd-monitoring has been im-
plemented in [52]. In this system a Bluetooth scanner has been applied on the ceiling of

19

People Counting Solutions

a bus. The scanner periodically sends inquiry messages, searching for Bluetooth devices
in discoverable mode within the area of interest. According to the standard, a device
must then respond with a inquiry response, containing the globally unique identifier of
the device. The content of the inquiry responses are collected and correlated with the
information about the bus route. The correlation is performed off-line and gives as output
the origin/destination matrix of each discovered device.

A further attempt of implementation of Bluetooth-based crowd-monitoring has been
done in [53]. During a religious event, where 1.5 million people attended, a set of Blue-
tooth scanners has been employed to monitor the crowd. Scanners captured a series of
inquiring responses during the festival period, using the same approach previously dis-
cussed. It has been possible to reconstruct the general behavior of the crowd i.e., the
more crowded areas and the general direction of movement, by studying the data collected
from the scanners.

This technology has shown interesting results for crowd-monitoring applications, yet
it does not perform well for what concerns crowd-counting: counting accuracy depends
on the number of devices in discoverable mode, whose percentage is quite low, ranging
between 7% and 11% [54].

Furthermore the short range of Bluetooth communication (around 10 m for common
devices) introduces scalability challenges to monitor more wide areas.

2.3.2 WiFi-Based Crowd-counting

A standard WiFi network is composed of an Access Point (AP) and some stations con-
nected to it. The AP acts as a gateway between the connected devices and a wired
network, allowing the exchange of information between them. In order to be associated
to an AP, devices can adopt two ways: a passive discovery mechanism and an active one.

Devices adopting a passive discovery mechanism wait on each channel of the spectrum,
waiting for a Beacon message from the AP. If no Beacon frame is received within a
certain time-window, devices can switch to another channel repeating the process once
again. This methodology, however, is not efficient as it requires the device being passively
listening on each possible channel. This is why active scanning mechanisms has been
introduced to reduce the time required for connection.

During an active scanning phase, devices send a particular frame, called probe re-
quest. Probe requests are broadcasted to all the nearby devices and, if an AP is present,
it responds with a Probe response message. A device employing active scanning, peri-
odically sends probe requests in group of variable length. Each of these groups is called
“burst” [55].

20

2.4 – Probe Request-based People Counting

Probe request structure

Probe requests are IEEE 802.11 WiFi management frames. Their structure is specified
by [56] and it is shown in Figure 2.9.

Figure 2.9: Basic structure of a Probe request frame. Reproduced from [57]

Probe requests are composed of two sub-fields: the MAC header and the frame body.
The MAC header contains many information which are essential for the correct ad-

dressing and management of the frame i.e., destination address, source address, length
of the message. The fields composing the Frame body give some additional information
about settings and characteristics of the device.

In literature many researches focus their attention on PRs and their content, high-
lighting the possibility of using these information for crowd-monitoring applications. An
overview of PR-based crowd-monitoring is given in Section 2.4 along with a more detailed
description of the used fields.

2.4 Probe Request-based People Counting

2.4.1 MAC address-based algorithms

One of the most important information which can be obtained from probe requests is the
MAC address (Media Access Control address). It is contained in the MAC header and it
is a globally unique identifier assigned for communication in a local area network. The
structure of the MAC address can be seen in Figure 2.10.

Figure 2.10: Structure of a MAC address

The first 3 bytes of the MAC address represent the Organizationally Unique Iden-
tifier (OUI). This part identifies the manufacturer or organization that has produced

21

People Counting Solutions

the network device. These identifiers are assigned by IEEE to manufacturers, ensuring
uniqueness of each of them.

The NIC-specific subfield is used to uniquely identify the network interface card and
it is assigned by the manufacturer itself.

Given the uniqueness property of MAC-address crowd-counting is trivial: the number
of devices present in the area is equal to the number of different captured addresses. An
example of code for counting devices is presented in Algorithm 1.

Algorithm 1 Algorithm to compute crowd-size starting from MAC address
Require: .pcap file with the capture
Ensure: Number_of_devices Number of the devices in area

1: MAC_list← []
2: for packet in capture do
3: src←MAC_address(packet) ▷ Get the packet source address
4: if src in MAC_list then
5: continue
6: else
7: MAC_list← insert(src)
8: end if
9: end for

10: Number_of_devices← length(MAC_list)

In Line 1 an empty list is initialized. It is used to store the unique MAC addresses
seen within the area. Each packet of the capture is then analysed extracting the MAC
address of the packet’s source. If the MAC_address is already appeared in the area,
the algorithm analyses the next packet. If the MAC address has never been seen before,
it is saved in the MAC_list. Finally, once all packets have been processed, the algo-
rithm determines the number of unique devices in Line 10 by counting the length of the
MAC_list.

However, as many researches have evidenced, the transmission in clear of the packet’s
source address introduces a lot of privacy issues. It could be possible to track any move-
ment of any device by just searching for its MAC address [58]. For these reasons the MAC
address has been classified by [4, 38] as a sensitive information and many smart device
vendors started to implement a MAC address randomization mechanism to protect user’s
privacy.

With the introduction of MAC address randomization, the transmitted source address
is no more a global unique address, but it is substituted with a locally administrated one.
A locally administrated MAC address can be distinguished by a globally unique one by
watching the seventh bit of the first byte. If the bit is set to 1, the MAC address is a
randomized MAC address, which cannot be related to user’s identity.

22

2.4 – Probe Request-based People Counting

The first implementation of MAC address randomization was done in 2014 by Apple
iOS 8 and, since then, it has been implemented by more and more manufactures [59]. For
these reasons, an approach like Algorithm 1 cannot be used for crowd-monitoring as the
same device may change its MAC address every few probe requests [55].

2.4.2 Information elements-based algorithm

Information elements (IEs) are fields optionally located in the frame body of a probe
request. They encapsulate various pieces of information that are crucial for the commu-
nication between wireless devices and networks.

The fields’ structure is specified by [56] and each IEs plays a particular role in con-
versation. The structure of a generic information element is reproduced in 2.11. They
are composed of a type identifier, length, and data.

Figure 2.11: Structure of an Information Element field

The TAG number uniquely identifies the type of contained information. Each IE is
associated with a specific TAG number; for example, the TAG number of the SSID field
is 0. The length sub-field indicates the length in bytes of the data in the data sub-fields,
which contain the transmitted information.

Some types of IEs that can be found in Probe Requests are:

• SSID: It contains the list of preferred network of the source device. This could be
a specific SSID, in this case we talk about directed probe request, or a wildcard
SSID to query all nearby networks.

• Supported rate and extended supported rates: These fields provide a list
of the data rates which are supported by the device. With this information, the
network is able to check whether it can satisfy client’s data rates requirements.

• HT Capabilities (High Throughput Capabilities): Informs the network if the
client can support higher data rates and advanced features like MIMO (Multiple
Input Multiple Output).

23

People Counting Solutions

• VHT Capabilities (Very High Throughput Capabilities): It allows the net-
work to verify whether the client supports IEEE 802.11ac features.

• Extended Capabilities: It informs nearby networks about additional features
which are not included in other fields.

• Vendor Specific: This field is used by vendors to insert additional information
not defined in the IEEE standard. Information here contained can be used by
vendors to enhance performances, and ensure better interoperability within their
ecosystems.

Since transmitted data depends on the particular devices sending them, many researches
defined these fields as a device-dependent signatures [60–62].

Both [61] and [62], in particular, have shown that data carried by these fields remain
stable over time for the same devices, and some of them are contained in many of the
detected probe requests.

In [63], authors create a crowd-counting system, named as BLEACH, based on IE
signatures. They used a public dataset of probe requests [64], to train a logistic regression
model. The trained model uses the information elements and the time-behavior of the
bursts as input to compute the probability of different probe requests of being sent by the
same devices. However, as authors of [65] highlighted, the dataset used for the training
is quite old, being recorded in 2013. It does not take into account many modern devices
characteristics, i.e., MAC address randomization. Furthermore a supervised learning
approach, like the logistic regression is not flexible enough to take in consideration future
changes in probe requests structure.

Another crowd-monitoring technique, named iABACUS, has been developed by au-
thors of [66]. Also in this case, the aim of the algorithm was to identify whether two
probe requests can be sent by the same device. In the developed algorithm, authors
have employed the information elements received as a check i.e., only probe requests with
identical or highly similar capabilities can potentially be associated. In this way the
number of possible association is greatly reduced. The algorithm uses then information
coming from other fields to verify the likelihood of two probes of being sent by the same
source. This additional information comes from the sequence number field (SN). Origi-
nally sequence numbers were used to reassemble fragments of a MAC frame. They were
assigned by a counter variable, incremented by one whenever a frame is sent out. Due
to the monotonically increasing nature of this implementation, sequence numbers may
be used to easily detect messages coming from the same device, even with MAC address
randomization.

24

2.4 – Probe Request-based People Counting

iABACUS considers any possible couple of probe requests, computing a similarity
score for each of them. The score is inversely proportional to the difference between the
sequence numbers between the two probe requests. The more the two SNs are similar the
higher the score, hence they are more likely to belong to the same device. The algorithm
examines all the possible combinations of probe requests meanwhile inserting in the same
list probes with higher relation scores. However, the approach used by this algorithm
is quite out-dated: it worked quite well in in its first implementations (accuracy of over
90% in dynamic case) but nowadays it is unfeasible.

Many researches have evidenced that monotonically increasing sequence numbers can
lead to privacy issues as they make easier the recognition of a particular device [62,67]. For
this, nowadays many vendors does not implement a monotonically increasing sequence
numbers’ series, adopting a more random approach instead. More in details, authors
of [55] have noticed that, for each burst of probe requests, the sequence number of the
first one is chosen randomly, while others are obtained increasing the counter variable by
one or two from the previous SN.

Figure 2.12: Sequence numbers of consecutive PRs sent by a Samsung Note 20

To gain better insights into the behavior of SNs, we analyzed one of the .pcap files
in the dataset provided by [55]. We considered a Samsung Note 20 we extrapolated the
sequence number associated to each probe request. The obtained numbers are shown
in Figure 2.12 . Here, it is clear that the sequence has lost its monotonically increasing
characteristic, showing a more random behavior. The choice of using sequence number
as a discrimination element is then not applicable anymore.

25

26

Chapter 3

Crowd-Monitoring Framework

3.1 TrialsNet Project

TrialsNet is a European project that aspires to achieve a range of technical, performance,
and productivity goals that will have a significant impact on the existing 5G network
ecosystem. The objectives include trialing 6G applications, improving B5G networks to
support these applications, introducing societal benefits, large-scale deployment of B5G
networks, and achieving industrial and scientific impacts [68].

To achieve these goals, TrialsNet is conducting large-scale trials over three urban
domains in Europe: Infrastructure, Transportation, Security & Safety; eHealth & Emer-
gency and Culture, and finally Tourism & Entertainment.

To better describe and understand the specific requirements and challenges of the
projects, thirteen representative use cases are developed in four geographic clusters (Italy,
Spain, Greece, and Romania), involving an expansive range of users. The use cases

Figure 3.1: Use cases of Trialsnet project. Reproduced from [68]

27

Crowd-Monitoring Framework

so defined are depicted in Figure 3.1 and are currently being developed and tested in
various locations and contexts, across different sectors and working conditions. This cross-
functional application enables a complete and detailed evaluation of the Key Performance
Indicators (KPIs) and Key Value Indicators (KVIs) of 5GB/6G applications in various
contexts and situations.

3.1.1 Referenced Scenario

This thesis is developed in conjunction with the goals of the mentioned European Project,
to contribute to one of its use cases. The considered use case is “UC5: Control Room in
Metaverse”.

The goal of UC5 is to improve the efficacy of first responders to emergency events by
using the characteristics of advanced technologies such as Extended Reality, Metaverse,
and IoT. In particular, it has been observed that Italian law enforcement and emergency
services have their communication systems. However, there is a lack of fast and efficient
connections among the various groups. UC5 aims to address this gap as one of its primary
objectives.

In this particular scenario, law enforcement agencies are provided of a virtual room
within the Metaverse. Officers can access within the virtual hub from any location and,
from there, they can share information in their possession, i.e., they could visualize data,
maps, and other resources, and coordinate their decision. In this way, with more infor-
mation at their disposal, they could enhance their awareness about any emergency while
improving the decision-making process.

This thesis aims to describe and develop a sensor whose data can be easily transmitted
in the virtual environment. This projected system is a crowd-monitoring framework able
to estimate the size of the crowd within a monitored area. This would allow effective
crowd management and planning in various contexts. A sensor used in this application
have to satisfy a specific set of requirements:

• Precision Accuracy: To guarantee the correct evaluation of the situation by first
responders, the output provided by the framework must be as exact as possible

• Real-Time Processing: The operations performed by the framework must require
low computational time as they must provide information exactly when it is needed.

• Privacy Compliance: Confidentiality of personal data must be guaranteed, ac-
cording to the privacy regulations.

• Cost-Effectiveness: To monitor an extensive region, multiple sensors need to be
employed; to ensure appropriate deployment and maintenance, the system ideally

28

3.2 – Proposed Framework

ought to be affordable in terms of cost.

• Energy Efficiency: A low power consumption is required to reduce expenses
related to device management and power supply.

3.2 Proposed Framework

3.2.1 Hardware

One of the key aims of the proposed framework is to minimize hardware expenses. The
solution that proved to be the most suitable for the purpose is the one implemented
in [69].

The application uses a Raspberry Pi 4B as hardware. This solution has been chosen
for its affordable price and relatively high-quality components. This device is a Single-
Board Computer (SBC), i.e., a microcomputer built on a single circuit board, that has all
the necessary components for its proper functioning. Besides the initial setup, shown in
Figure 3.2, other components must be integrated to guarantee that the system functions
correctly.

Figure 3.2: A Raspberry Pi 4B. Reproduced from [69]

To capture the probe request messages, the Raspberry Pi must be set in “Monitor
mode”, an operational mode that enables to monitor the wireless traffic within a certain
range. “Monitor mode” is not supported by the built-in WiFi interface of the Raspberry
Pi 4B and, for this, the implementation of a WiFi USB dongle is required to collect all
the necessary data.

In addition, a LTE modem is necessary for post-implementation accessibility, to ver-
ify if the system is functioning properly, and to address any potential issue. The modem

29

Crowd-Monitoring Framework

enables the system to connect to 3G and 4G/LTE networks using a SIM card. Never-
theless, the LTE modem is not sufficient to guarantee post-implementation access to the
Raspberry Pi (RP) as it lacks of a static IP address. To allow remote accessing, a tunnel
SSH is established between the RP and an external server with a static IP address. In
this way, it is possible to connect remotely to the Raspberry Pi using the server as a relay.

Finally, since the final framework must be implemented outdoor, a waterproof case is
used. The image of the complete hardware of the system is shown in Figure 3.3.

Figure 3.3: Hardware of the proposed crowd-monitoring system

3.2.2 Sniffing Pipeline

The crowd-monitoring system’s overall pipeline is shown in Figure 3.4.
The system initialization begins with the configuration of the WiFi interface, executed

during system boot. The initialization process is performed using a script executed via
the “rc.local” file, where are specified all the operations the Raspberry must perform
when it is turned on. After this process, the default WiFi interface is disabled and the
new USB WiFi interface can be used in monitor mode.

After the configuration phase, the system is able to correctly receive probe request
messages broadcasted by other devices. They are monitored using Tshark software [70], a

30

3.3 – Device Counting

Figure 3.4: Sniffing Pipeline for Crowd-Counting

packet analyzer integrated into the Wireshark network analysis collection. Unlike Wire-
shark, which provides a graphical user interface (GUI) for packet analysis; Tshark func-
tions solely through command line. For this reason, it is suited for an application like the
one in our use case, where a graphical interface is unavailable. Tshark is used to capture
802.11 traffic within a time window of 4 minutes; after each capture, a new .pcap file is
generated and sent to the next stage of the pipeline. Meanwhile, a new capture process
can start once again.

When a new .pcap file is created, the probe requests within it are analyzed. These
messages fall into two different groups, treated differently by the algorithm:

• Probes with a globally unique MAC address: They undergo an anonymiza-
tion process as their addresses is considered sensitive information.

• Probes with a locally-administrated MAC address: An identifier is com-
puted for each probe request. Identifiers are clustered together and an estimate of
the number of devices in the area is computed.

Finally, the outputs of the branches are combined and the results are sent to a database
using UDP protocol. The database stores all the collected data for possible future anal-
ysis. To guarantee a more manageable data visualization, we used Grafana [71] to create
an interactive dashboard. It is an open-source platform able to collect the data from the
database displaying them in real-time. This solution can provide many insights about
system performances and facilitate the visualization of the crowd-size over time.

3.3 Device Counting

The counting process employs information from the Probe Requests to infer the number
of devices in the area.

31

Crowd-Monitoring Framework

To relate the number of devices to the number of people, an initial assumption is
made: each person carries a single device with them. This assumption appears to be the
most suitable in a scenario like our case study. Information is obtained from the IE fields
and then clustered together. The clustering approach seems particularly advantageous
for a WiFi-based crowd-monitoring system as it does not require any training phase.
Furthermore, since only the similarities across different frames are considered, the system
can easily adapt to future modification in the structure of Probe Requests frame.

Chapter 4 contains further information about feature extraction, while the remaining
part of this Section offers a comprehensive overview of the clustering algorithms used.

3.3.1 Clustering algorithms

Each object, whose state can be described by a finite-dimensional set of values, can be
represented by a point in the state-space. Clustering is a type of unsupervised machine
learning technique that groups the points in the state space according to how much similar
they are. Each group of similar elements, formed through this process, is called cluster.

(a) Unprocessed data (b) Output of the clustering process

Figure 3.5

As Figure 3.5 shows, after clustering the machine is able to recognize points with
similar characteristics as being part of the same group. For data processing applications,
a wide variety of clustering techniques can be employed. Nevertheless, for this framework
we have selected two specific algorithms: Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure
(OPTICS). These algorithms were selected due to their ability in handling cluster of
varying densities and their robustness against noise.

32

3.3 – Device Counting

3.3.2 DBSCAN

DBSCAN is a widespread clustering algorithm able to group points together according
to how close they are each other. Unlike conventional clustering processes, DBSCAN
allows the identification of clusters of any shape without requiring the user to specify
the number of clusters beforehand. Clusters are simply defined as high density regions
separated by areas of lower density.

To fully understand the mechanisms at the basis of this clustering process, we need to
introduce some basic definitions. DBSCAN algorithm divides points according to three
different classes:

• Core Points: they are the points that, inside their ϵ-radius, have at least N =
Min_points close points; they define the dense regions in the dataset.

• Border points: they are the points that lie within the ϵ-radius of a core-point but,
at the same time, do not have enough near points to be considered as core points.
They represents the boundaries of a cluster.

• Noise points: they are points that cannot be classified either as border or as core
points. They are then discarded as effect of noise.

Each point in the data is examined to verify if it meets the requirements to be considered
as a core point. If so, it is labeled as a core point, and the cluster expansion process
begins.

A point p is directly density-reachable from another point q if p is within the ϵ-radius
of q and q is a core point. Additionally, p is density-reachable from q if there is a chain of
points connecting them, where each point in the chain is directly density-reachable from
the previous one.

The expansion implicates considering, as part of the cluster, all points reachable from
the core points through density connections. The cluster expansion occurs recursively
until all reachable points have been included.

After expansion, DBSCAN algorithm identifies points that do not meet the core point
requirements but lie within the ε-radius of a core point. These points are classified as
border points and are assigned to the cluster of the nearest core point.

One of the main problems of this algorithm is that it struggles to identify clusters
of highly different densities. For this limitation, OPTICS is also employed in order to
compare the results of the two different clustering algorithms.

33

Crowd-Monitoring Framework

3.3.3 OPTICS

OPTICS is an algorithm developed to overcome the limitations of DBSCAN, specifically
its inability to manage datasets with clusters of variable densities. It examines how data
aggregates at different density scales, permitting the observation of both dense and less
dense clusters. Also in this case, it is important to have a good understanding of the key
concepts of the algorithm to understand how the OPTICS algorithm works with data
provided as input.

The notions of core, border, and noise points are the same as those introduced with
DBSCAN. Additionally, the concepts of core distance and reachability distance must be
introduced.

• Core Distance: Given ϵ and N = Min_point; the core distance of a point is
defined as the minimum distance from its N -th nearest neighbor within the ϵ-
radius. Core distance is used to determine the local density around the considered
point p. If p does not have at least N points within the ϵ radius, the core distance
is undefined or infinite.

• Reachability distance: The reachability distance of a point p from a point q is
the maximum between the core distance of q and the Euclidean distance between
q and p.

reachability distance(p, q) = max(core distance(q), distance(p, q)) (3.1)

It measures how reachable a point is from another densely populated region.

The OPTICS algorithm starts by selecting a randomly chosen point from the dataset
as the starting point. This point is classified as a “core point” and its reachability distance
is set to zero. After that, the algorithm examines all the points within its ϵ-radius. Each
neighbor that can be classified as a core point is called a “directly-reachable point”.
All directly reachable points are organized into a data structure on the basis of their
reachability distances. In the next steps of the process the algorithm examines all the
points in the data structure according to the same procedure, updating the reachability
distances stored in the data structure.

This process continues up to the moment in which all points in the dataset have
been examined, and the complete reachability structure is built. The final structure
encapsulates all the information by recording the reachability distances and the order in
which points are processed. Figure 3.6 shows the results of a clustering process executed
through OPTICS.

To extract clusters, the reachability plot can be examined. A reachability plot, shown
in Figure 3.6-B, is a graphical representation of the data structure computed during the

34

3.4 – Anonymization Process for MAC addresses

(a) OPTICS -Cluster identification (b) OPTICS - Reachability plot

Figure 3.6

execution of the algorithm. In this graph, the x-axis represents the indices of all the
processed points, while the y-axis indicates their reachability distances. As can be clearly
seen, the plot is characterized by peaks and valleys. Valleys identifies the clusters. In
valleys, points have low reachability distances, indicating that they lie within a densely
populated area.

3.4 Anonymization Process for MAC addresses

3.4.1 Bloom-Filter

A Bloom filter is a compact data structure that offers an effective way to store a wide set
of elements avoiding excessive wastes in terms of memory [72]. The key to this efficiency
lies in how elements are inserted into the filter.

Figure 3.7: Insertion of a new element in a Bloom Filter

35

Crowd-Monitoring Framework

The Bloom filter, denoted as BF ∈ {0,1}m, is composed of a m-length array of bits
and k hash functions. When a new element xj has to be stored into the Bloom filter,
each hash function maps it to an element i in the range {1, . . . , m} [73] and the bit at
position i is then set to 1. Through this insertion process, displayed in Figure 3.7, each
m-lenght element is converted in an element of smaller size.

One of the main drawbacks of this strategy is that any element added to the filter
loses its individuality, because it exists only as a component of the set. Nonetheless, a
trivial validation test can be used to determine whether an element is present in the set
or not. The element under examination is s processed by means of the hash functions
composing the Bloom Filter and the resulting bit positions are then checked out.

• If even a single bit in the computed position is set 0 the element is definitely absent
in the Bloom filter.

• Otherwise, the element is presumed to be present.

The uncertainty in the latter case is a consequence of the compacteness of represen-
tation of the stored elements. Hash collisions or overlapping positions among different
elements may cause an element to be erroneously indicated as present, hence producing
to a false positive result. The likelihood of obtaining a false positive can be estimated
through (3.2), derived from [74].

p ≈
(︂
1− e− n·k

m

)︂k
(3.2)

In this case n represents the number of element inserted within the Bloom Filter, and as
it increases the false positive rate increases too, according to the Equation above. For
this reason the Bloom Filter must be reset when it is near to saturation. Furthermore,
the length of the bit array and the number of hash functions are critical factors able to
heavily affect the performance of Bloom filters. Correctly choosing their values plays a
significant role in balancing the trade-off between space efficiency and detection accuracy.
To manage this trade-off some considerations must be made [75]:

• m must be big enough to store the desired number of elements. For this application
m = 10000 has been chosen.

• Considering a capture window of 4 minutes and the environment under considera-
tion, we do not expect more than 1000 devices per capture window. Therefore, we
set n = 1000 accordingly.

• Small values of k leads to a higher number of 0s in the BF . More elements can
then be stored inside the array.

36

3.4 – Anonymization Process for MAC addresses

• Higher values of k increase the probability of finding at least one 0 bit for an element
not present in the filter, reducing False positive rate.

Given these considerations, the optimal value of k can then be computed via (3.3).

kopt = n

m
log(2) ≈ 7 (3.3)

3.4.2 Bloom Filters for privacy protection

While in many applications the inherent presence of errors in querying is considered as a
drawback, authors of [76] have shown that this characteristic can be exploited to address
privacy-issues.

Before describing the role of Bloom Filter in privacy protection some key concepts
must be introduced.

• A “Hiding Set” for a Bloom filter BF (S) is a set V that contains all the elements
vi that are not stored in the filter, but when queried they return a false positive
result.

• An object x ∈ S, stored in BF (S), is said to be deniable if it can be confused with
an element vi part of the Hiding set. In particular it must exist an element vi ∈ V

such that:
∀j ∈ {1 . . . k}, ∃z ∈ {1 . . . k} s.t. Hj(x) = Hz(v).

Starting from these definitions a Bloom Filter is γ-deniable if a randomly chosen element
inserted is deniable with a probability of γ [76, 77]. In particular, using γ equal to 1
means that the presence of any element inserted in the Bloom Filter cannot be sure due
to the presence of possible false positives [3].

This solution implies that the anonymity of sensitive information is preserved, satis-
fying the requirements imposed by privacy regulations [4, 38].

γ can be estimated through (3.4), where m is the number of bit in the filter, n is
the number of elements inserted within, k is the number of hash functions and h is the
cardinality of the hiding set.

γ(BF(S)) =

⎛⎝1− exp

⎛⎝− hk

m
(︂
1− e− nk

m

)︂
⎞⎠⎞⎠k

(3.4)

In particular, for this application values of m = 10000 and k = 7 have been chosen
and h is estimated through (3.5).

37

Crowd-Monitoring Framework

⎧⎪⎨⎪⎩h = (|U | − n)
(︂
1− e− nk

m

)︂k

|U | ≈ 248
(3.5)

Starting from (3.4) and the application values previously discussed the value of n required
to obtain γ = 1 computed and, as can be seen from the plot represented in Figure 3.8, it
is obtained for nmin = 30.

Figure 3.8: γ-deniability in function of n

In order to preserve privacy then, 30 fake MAC addresses are inserted in the Bloom
Filters. The inserted MAC addresses represent the anonymization noise, which is used
to preserve users’ privacy as soon the Bloom Filter is created [3].

3.4.3 Bloom Filter operations

After the implementation of Bloom Filters, two main operations can be performed on the
stored elements [3]:

• Counting: it is possible to count the number of people passed through the mon-
itored area by counting the number of stored elements. The number of elements
inserted in the Bloom Filter can be simply obtained via (3.6).

c1 = −m

k
ln

(︃
1− t

m

)︃
(3.6)

38

3.5 – System’s power consumption

• Intersection: Considering two different Bloom Filters, BF1 and BF2; the move-
ment of one elements from one area to another is identified by performing inter-
section between the two filters. The intersection BF3 is obtained by performing a
bitwise AND operation between the two vectors. Once BF3 is obtained, the number
of elements contained within it can be calculated through (3.7), where tk are the
number of ones in the k-th filter.

c2 =
ln

(︂
m− t3×m−t1×t2

m−t1−t2+t3

)︂
− ln(m)

k × ln
(︂
1− 1

m

)︂ (3.7)

3.5 System’s power consumption

As previously said, one of the key requirement for the system is to have a low power
consumption. Reducing the power required for the system’s functioning helps in reducing
the costs related to operation and to have a system more sustainable for the environment.
To assess the amount of power required by this system during its operation the same smart
plug shown in Figure 3.9 is used.

Figure 3.9: Meross Smart Plug MSS310R IT. Reproduced from [78]

This kind of smart plug allows to track the usage history of the connected device,
monitoring the data associated to the real-time energy consumption. During regular
operation, we connected the Raspberry Pi to the smart plug; collecting the data about
voltage, current and power consumption over one hour. The obtained results are shown
in Figure 3.10

39

Crowd-Monitoring Framework

Figure 3.10: Current, Voltage and Power consumption of the proposed framework

40

3.6 – Location

In particular, the framework shows very low power-consumption during its function-
ing. The required power ranges between 5 watts, during the sniffing phase, and 6 watts
during the clustering process. This energy efficiency significantly contributes to the sys-
tem’s operational efficiency, minimizing operational costs and environmental impact.

3.6 Location

To verify whether the system can satisfy all requirements imposed by [68], an experi-
mental phase is planned. The experimental activities are scheduled to take place in the
events area of the Valentino Park; where the sensors were implemented on October 10th
2024. We have chosen to employ two sensors within the target environment. The first
sensor is housed in a box, while the second is on a pole. We have positioned the sensors
approximately 90 meters apart, allowing them to capture and relay data over a significant
area. Figure 3.11 depicts the moment when the sensors were installed.

Figure 3.11: Installation of sensors in the target area

41

42

Chapter 4

ARGO - Ai-driven framewoRk for
countinG peOple

In this Chapter, we analyze the counting system proposed by [77]. In the first two
Sections we study how the algorithm extrapolates the identifier of the devices starting by
the Probe Requests. After that the counting process is examined. Finally, the test phase
is the main topic of Section 4.3; here performances are evaluated in different scenarios to
assess the algorithm’s pros and cons.

4.1 Feature extraction

The developed algorithm leverages Information Elements (IEs) fields within probe re-
quest messages. These messages are part of the WiFi communication protocol, and they
are sent by devices aiming to connect to a wireless network. The core function of the
algorithm is to extract and analyze data from specific IE fields within probe request
messages to construct a unique signature for each message. This signature enables the
algorithm to differentiate devices and potentially identify them. The algorithm begins
by extracting the relevant IE fields from each probe request message. The focus is on
the HT Capabilities, VHT Capabilities, and Extended Capabilities fields as they can be
considered as a comprehensive representation of the throughput capabilities of the device.
They are series of bits that represent specific features/flags or capabilities of the device.
Figure 4.1 shows the HT capabilities field of an iPhone 11, here the value of each bit
represents the presence or absence of one specific feature.

The algorithm examines all the packets in the .pcap file. Each probe request is con-
verted into a vector of three entries, each representing a specific field. The conversion is
performed through a simple algorithm, shown in Algorithm 2.

43

ARGO - Ai-driven framewoRk for countinG peOple

Figure 4.1: HT capabilities field of iPhone 11

For each frame, ARGO initializes three counters to zero. They store information
related to the content of the fields we are interested in. The algorithm analyzes all the
fields in the examined frame, searching for the VHT, HT, and Extended Capabilities
fields. For each of them, the respective value is updated by adding a value which depends
on data. The added value is equal to the number of bits set to one in the considered field.

Algorithm 2 Algorithm to compute the probe requests model identifiers.
Require: .pcap file with the capture

1: ids_list ← empty_list
2: for packet in capture do
3: HT_counter ← 0 ▷ HT parameter initialization
4: VHT_counter ← 0 ▷ VHT parameter initialization
5: Extended_counter ← 0 ▷ Ext parameter initialization
6: for field in packet do ▷ Parsing packet’s field
7: if field contains HT info then
8: HT_counter ← HT_counter + value ▷ Updating the HT value
9: else if field contains VHT info then

10: VHT_counter ← VHT_counter + value ▷ Updating VHT value
11: else if field contains Extended info then
12: Extended_counter ← Extended_counter + value ▷ Updating Ext value
13: end if
14: end for
15: ids_list ← insert(HT_counter, VHT_counter, Extended_counter) ▷ ID creation
16: end for

44

4.2 – Counting algorithm

After the packet has been processed, the three counters are combined to form a unique
vector which is the frame’s identifier. All vectors so obtained are stored in “ids_list” that,
by the end of the algorithm’s execution, contains the set of all the computed identifiers.

4.2 Counting algorithm

The approach implemented by ARGO, described for the first time in [77], has been driven
by the results of the analysis of [61,62]. These studies have highlighted how IE-fields can
be useful to distinguish different devices in an area. In particular, [62] talks about stability
and entropy concepts, related to these fields.

• Stability: It refers to the consistency of these IEs over time. Authors observe that
IEs remain stable for over 90% of devices, reflecting their intrinsic capabilities.

• Entropy: It measures the amount of identifying information provided by each
element. Authors show how these fields are characterized by high entropy too.

The flowchart shown in Figure 4.2 summarizes the process for identifying and clustering
devices based on their MAC addresses and probe request messages.

Figure 4.2: Counting Algorithm

45

ARGO - Ai-driven framewoRk for countinG peOple

The procedure examines all unread packets; if there are none, the process goes to
the DBSCAN clustering step. However, if unread packets are detected, the algorithm
evaluates whether the MAC address of the frame is a globally unique one or not.

For packets with globally unique MAC addresses, the algorithm adds the MAC address
to the Bloom Filter, described in Chapter 3, and examines the next unread packet.
Contrariwise, if the MAC address is not globally unique, an identifier is created using
the conversion rule previously described in Algorithm 2. Once all packets have been
processed, the algorithm can employ DBSCAN to cluster the collected identifiers. In this
way we obtain a number of clusters which reflects the number of device model in the area.

The clustering phase is avoided in case of a poor number of frames with locally ad-
ministrated MAC addresses. In fact, since clustering may be computationally expensive,
it is verified that at least 2% of frames have locally unique MAC addresses. If this is not
verified just the count of globally unique probes is provided as output.

The approach implemented through ARGO is similar to the one presented in [61].
However, authors of [61] do not consider cases in which multiple devices of the same
model are present simultaneously. In this case, only counting the number of clusters is
not enough to infer the number of people, resulting in underestimating the crowd-size.
For this reason, such an approach is unfeasible for highly crowded environments.

The main contribution of ARGO is to provide a way to solve this issue. In particular,
assuming to know the probe requests’ sending rate and that it is constant over time, the
number of devices within the cluster can be computed through (4.1).

N = K

L · T
(4.1)

Where:

• K is the total number of messages sent. This value represents the overall quantity of
messages transmitted by all devices in the cluster during the specified time period.

• N is the number of devices. This indicates how many devices are sending messages.

• L is the sending rate (messages per unit of time) for each device. This represents
the frequency at which each individual device sends messages.

• T is the time interval considered. This is the period over which the total number
of messages sent is measured, hence the capturing window.

The main problem with this strategy is that in many cases, the sending rate of probes
is not known. In this case a further assumption is done: IEs carry information about
devices’ throughput capabilities, hence devices with similar signatures must share similar
sending rate [77].

46

4.2 – Counting algorithm

A model.json file is created. The file stores information about the devices analyzed
in [55]. This file includes details about each device’s signature and the sending rates of
the probe request, as shown in Table 4.1. According to [55], the sending rate is influenced
by the state of activity of the device. Therefore, the file contains multiple rates to adapt
to any possible scenario, such as when the devices are in locked phase, awake or active.

Apple iPhone14Pro Apple iPhone13Pro OnePlus Nord5G Xiaomi Mi9Lite
Locked Rate 0.08 0.11 0.22 -
Awake Rate 0.44 0.67 3.90 -
Active Rate 0.38 0.84 0.54 0.24
Mean Rate 0.22 0.39 0.43 0.26
Model ID [0, 149, 16981] [0, 147, 16981] [4052911066, 142, 972] [2442297858, 141, 843]

Table 4.1: Device Information

For each cluster identified by DBSCAN, the most similar device in “model.json” is
identified, and its sending rate L is used. Through (4.1), the number of devices N can
then be computed. The default rate used is the average rate, calculated as the mean
of the active and locked rates. Nevertheless, anyone of the other rates can be used to
obtain a more precise estimate of the number of devices if additional information about
the scenario are available.

At the end, the number of total devices is computed as the sum of the elements with
a globally unique MAC address and the number of devices derived from the clustering
algorithm.

4.2.1 Fine-Tuning DBSCAN parameters

DBSCAN requires the tuning of different parameters to function effectively. These pa-
rameters significantly influence the algorithm’s performance, carefully selecting them is
crucial for a precise crowd-size estimation. The parameters that need to be tuned are:

• ϵ-radius: it defines the maximum distance within which two data points are con-
sidered neighbors.

• Min_points: it is the minimum number of points required to form a dense region.

• Metric: it is the distance metric used to calculate the distance between points.

Since the probe requests are represented as points in a three dimensional state space, the
Euclidean distance is a suitable metric to measure the distance (and the dissimilarity)
between points. In this case, it would reflect how much two probe requests are different
based on their content. A smaller Euclidean distance would indicate that two probe
requests have similar IEs values, suggesting they may have originated from the same

47

ARGO - Ai-driven framewoRk for countinG peOple

source. For what concerns ϵ-radius and Min_points parameters, an example of their
influence on the output is shown in Figure 4.3. Here, the clustering algorithm is applied
to the same data using three different couples of parameters, showing results very different
from one to the other.

Figure 4.3: Number of devices detected for different Parameters

Considering the high stability and entropy values of the IE fields, the ϵ-radius is
chosen to be small to achieve a finer grouping between devices.

To select the Min_points parameter different consideration have been done:

• Analyzing the captures in [55] revealed that some devices can send probes with
varying Information Elements (IEs). Setting a higher value for the Min_points
parameter can help mark these irregular probes as outliers. Contrariwise, Using
a too-low Min_points value may lead to overestimating the number of devices by
counting the presence of the aforementioned outliers.

• Setting the Min_points parameter too high can lead to miscalculating the number
of devices too. Since at least N = Min_Points probes requests with similar IEs
are required to form a cluster; devices with a low sending rate may not satisfy this
threshold, leading to underestimating the total number of devices present.

Author of [79] conducted some experiments in a controlled environment to fine-tune the
parameters values.

Precisely, they employed the sensor described in Chapter 2 to obtain a sequence of
sniffing of probe requests in a room at the Politecnico di Torino. They used the sniffer

48

4.3 – Performance evaluation

for twenty minutes, obtaining ten captures, each lasting two minutes. The ground truth
established by manually counting the number of people in the room.

The most suited ϵ-radius and the Min_points parameter are chosen to maximize the
accuracy with respect to ground truth. The best results are obtained for ϵ-radius = 4
and Min_samples = 15 and they can be seen in Figure 4.4 [79].

Figure 4.4: Performance of the Algorithm after parameter selection

These results underline the significance of having extra context information. At the
beginning of the sniffing phase, the lesson was not started yet. In this context, using the
mean rate was a good approximation since some people were using their phone while other
were not. After Capture 7, when the lesson in the room started, using the mean_rate
was no more a good choice as students turned off their devices. In fact, by using the
locked_rate, performances increased. The overall accuracy obtained by the framework
after parameter selection was 91%.

4.3 Performance evaluation

To evaluate the performance of the algorithm, we used several testing methods across
different contexts and scenarios:

• Simulated environment: a Probe Request Generator [3, 77] is used to produce
a set of .pcap file. The advantage of creating traces with a simulator is that the
ground truth is known, although the temporal behavior of the simulated devices
does not reflect the real pattern, as the standardized channel access mechanism is

49

ARGO - Ai-driven framewoRk for countinG peOple

not emulated yet.

• Real environment: In this case two scenarios are considered for the test: an
indoor test and a open door scenario. The indoor location has been chosen in order
to be as isolated as possible to limit the possibility of capturing messages coming
from the outside. For the outdoor tests, the results obtained by the sensors in
Valentino park are examined.

• Controlled environment: authors of [80] recorded a set of captures in anechoic
chamber, which have been used as a basis for the task in “CONFRONT” chal-
lenge [81]. We used the challenge to test the algorithm and to obtain a clear and
precise idea of its performances.

By combining diverse testing environments, the evaluation provides a grasp of the
algorithm’s strengths, weaknesses, and possible areas for improvement.

4.3.1 Performance in Simulated Environment

Probe Request Generator

The Probe Request Generator is a software tool designed to simulate WiFi traffic gener-
ated by mobile devices in real-world environments [77]. Its primary function is to create
probe request packets, simulating realistic frames that comply with the IEEE 802.11
standard and emulate different device throughput capabilities.

The generator operates based on a state-machine model. It is designed as a scheduling
queue where device creation and deletion, phase changes and packet transmission are
scheduled according to their starting times. The model uses probability distributions
derived from real-world data to define the initial state of a device, transitions between
states (i.e., from locked to awake to active), and the sending rate of probes. This approach
allows the generation of realistic probe request traces that accurately reflect the behavior
of actual devices in various usage scenarios.

The main advantage of this tool is that it has at its disposal a set of devices with
known characteristics i.e., the same studied by authors in [55]. It can then simulate an
environment where an arbitrarily chosen number of these devices is present.

Performance evaluation

The PR simulator creates an environment with an arbitrarily chosen number of devices,
reproducing the presence of all the devices examined by the authors of [55]. A set of
.pcap traces is generated, each including probes sent by different devices. This approach
permits the evaluation of the algorithm’s performance in various contexts, such as highly

50

4.3 – Performance evaluation

crowded or sparsely populated environments. Table 4.2 shows the description of all the
datasets used for evaluation.

Dataset Description
A Contains only one device.
B 60 devices all belonging to one single model.
C 6 devices with different models.
D 70 devices of various models.
E 120 devices of various models.

Table 4.2: Description of Datasets

We run ARGO on all the presented datasets. Table 4.3 summarizes the results
achieved. As can be seen from the detection accuracy, the results are promising across
all considered scenarios. However, it is crucial to consider the several limitations of this
evaluation method before extrapolating any consideration about performances. Firstly,
while the detection accuracy is good, it is essential to note that in real-world scenarios,
devices may change the value of some fields in their Information Elements (IEs). The
simulator does not implement this behavior, which assumes more static and predictable
patterns instead: while the initial results are encouraging, they represent a controlled
and idealized environment.

To fully grasp the actual performance of the algorithm, further testing and perfor-
mance evaluations are required. Conducting more experiments in real environments is
needed: here, devices display natural variations in their IEs, providing a more accurate
representation of the capabilities and limitations of ARGO.

capture_file ground truth total_devices detection accuracy
A 1 1 1.00
B 60 52 0.87
C 6 7 0.83
D 70 58 0.83
E 120 110 0.92

Table 4.3: Results table with detection accuracy

4.3.2 Performance in Real Environment

To extensively evaluate the performance of ARGO in realistic settings, two types of real-
world applications are considered: a closed environment within a room at the Politecnico
di Torino and an open environment in a public park. Using this dual approach, we

51

ARGO - Ai-driven framewoRk for countinG peOple

can verify the algorithm’s robustness and accuracy under different conditions that mimic
actual usage scenarios.

Indoor Environment

We employed the sensors described in Chapter 2 within a room at Politecnico di Torino
to obtain a set of captures with the probe requests sent by the devices in the target area:
30 captures were collected, each 2 minutes long. To verify if the algorithm can follow
the increasing trend of the ground truth, we commenced the test 10 minutes before
the beginning of the lesson. We have deployed one sensor for the experiment, positioned
centrally within the room; manual counting of people within the area furnished the ground
truth. It is worth noting that the ground truth only considers people within the room,
while the sniffers can also receive some undesired messages from outside the desired area.
A power threshold on the received message was used to filter out packets with a too low
received signal strength in capture analysis. In this specific use case, we set the power
threshold to −100 dBm to cover the whole room, excluding the outside. Figure 4.5 shows
the performances achieved by ARGO in this scenario.

Figure 4.5: Estimated vs Actual Device Count in a Room 14

Despite of some peaks, the algorithm follows quite well the trend of the ground truth,
with an accuracy higher than 70%. The peaks in figure can be due to a not optimal
isolation of the area of interest and to a instability of the IEs sent by some devices. For
this reasons, it is reasonable to have a not precise clustering results. Finally, Figure 4.5

52

4.3 – Performance evaluation

depicts the results supplied by the Information Technology (IT) Department, referenced
as AreaIT. The provided data show the number of devices within the room connected to
WiFi. A remarkable observation is the difference between the framework’s output and the
number of devices effectively present. The challenge lies in distinguishing and identifying
one particular device between a group of similar ones. This task becomes increasingly
complex when multiple devices show comparable or common characteristics, potentially
leading to an underestimated result.

Outdoor Environment

To gauge information about the algorithm’s reliability, we have analyzed the captures
from one of the sensors installed in Valentino Park, in Turin. We have considered captures
obtained for a week, from May 30th to June 5th. we chose that week because the weather
was nice and it also included a public holiday. We hope to observe a peak in attendance
during that day, along with a reasonable trend in results.

Figure 4.6 shows the obtained output. Each point in the graph represents the num-
ber of devices identified in 10 minutes by the ARGO algorithm. The computed results
demonstrate a noteworthy compliance with the day-night trends, with notable peaks
during afternoon hours, compatible with expectations. Additionally, there is higher at-
tendance on the public holidays of June 1st and 2nd compared to weekdays. Considering
both observations, these statements validate the plausibility of the algorithm’s results in
an outdoor environment such as a public park.

Figure 4.6: Captures in Real life, from May 30th to June 5th

53

ARGO - Ai-driven framewoRk for countinG peOple

4.3.3 Performances in Controlled Environment

The CONFRONT challenge [81] (Challenge ON wifi FRame fingerprinting for people
cOunting aNd Tracking) is a competition aimed at comparing and improving people
counting and tracking techniques using WiFi frame data. The challenge is structured
into three tasks (A, B, and C) that assess participants’ ability to identify and count
devices present in a WiFi network, even in complex situations where devices randomize
their MAC address.

Task Description Output
A In task A, challengers use a file derived from amal-

gamating individual device captures executed by [61].
The precise count of devices is known.

The required outcome is a CSV file composed by two
columns: the IDs of the samples and their respective
labels. Discarded samples must be labeled with -1.

B In task B, challengers use a file derived from amal-
gamating individual device captures executed by [61].
In this case the number of devices in capture is not
known.

The expected result is a CSV file with two columns:
the IDs of the samples and their corresponding labels.
Discarded samples must be marked with label -1.

C In task C, challengers use a file derived after sniffing
a collection of devices within an anechoic chamber.

The expected output is the count of devices detected
along with the number of discarded samples.

Table 4.4: Description of Tasks

Table 4.4 provides a description of the tasks along with the output the challengers
must provide. The challengers are then classified on the basis of a score, ranging from 0
to 300. The final score is given as:

s = sA + sB + sC (4.2)

Where sA, sB, sC are the scores achieved for each task, computed in the following
manner:

• Task A and Task B: for these tasks the score is computed as:

si = Vi × di% ∀ i ∈ {A, B} (4.3)

Where di% is the percentage of discarded samples and V is the V-measure, a metric
used to evaluate the quality of clustering by assessing both the homogeneity and
completeness of the clusters. It is computed as:

V = (1 + β)× homogeneity× completeness
(β × homogeneity) + completeness (4.4)

The parameter β represents the trade-off between the importance given to homo-
geneity versus completeness and, in this case, it is set to 1.

• Task C: it is computed by the product of the percentage error in counting devices
(ec%) and the percentage of discarded samples (dc%).

sc = e%× dc% (4.5)

54

4.3 – Performance evaluation

Each score ranges between 0 and 100 and assesses the ability of challengers in device
recognition.

Table 4.5 shows the results achieved by the algorithm along with the ground truth
provided by the challenge organizers.

Dataset Ground truth Score ARGO
A 9 99.37
B 15 16.96
C 22 70.58

Table 4.5: Scores for different datasets

While results in Task A and C are good in terms of performance; task B shows
how this algorithm need some improvement yet. In particular both completeness and
homogeneity values are quite low for task B (around 17%). This result give many insight
about the weakness of the algorithm and the way of solving them. The chosen IEs are
not sufficient, it is necessary to chose further identification elements.

55

56

Chapter 5

Exploiting Device Fingerprinting

In this Chapter, we analyse the limitations of the ARGO algorithm. Along with each
main drawback, we present a possible solution. In this way, we can enhance the algo-
rithm’s accuracy in detecting devices through 802.11 Probe Requests. Aiming this, we
have included additional features for clustering, refined the signature generation, and em-
ployed a new clustering algorithm (OPTICS). Finally, we test ARGO 2.0 and the applied
modification in Section 5.4, to verify their effectiveness in real and controlled scenarios.

5.1 Limitations

The test phase presented in the previous Chapter has highlighted some lacks in the
algorithm that we have to address to improve the performance of our framework. The
main problems are:

• Low-resolution clustering: The features employed in ARGO, derived from spe-
cific Information Elements (IEs) within probe request messages, are not always
sufficient to distinguish between different devices. This leads to a not precise device
count.

• Signature collision: the trivial signature generation algorithm used by ARGO is
susceptible to misclassification errors. If two devices have similar bit configurations
in their IE fields, they might be incorrectly identified as the same device, leading
to inaccurate results.

• Label’s assignment: when multiple devices of the same model are in the mon-
itored area, ARGO can only estimate the total device count for each cluster; no
individual label can be assigned to each probe, impeding the tracking of specific
devices within the group.

57

Exploiting Device Fingerprinting

In the following Sections, we examine the first two problems while we postpone the
discussion related to the last problem in the following Chapter.

5.2 Low-resolution Clustering

Table 5.1 shows the comprehensive results achieved by ARGO in the CONFRONT chal-
lenge. In particular:

• Completeness measures how precisely the algorithm can cluster together the data
points of a single ground truth class.

• Homogeneity evaluates whether each cluster contains data points from a single
ground truth class.

Task A Task B Task C
Completeness 1.000000 0.174659 N/A
Homogeneity 0.987631 0.164925 N/A
Score 99.377718 16.965223 70.588235
Number of Devices Identified 8 14 17
Number of Real Devices 9 15 22

Table 5.1: Comparison of trials A, B, and C

As seen in Table 5.1, ARGO has achieved low scores in both metrics in Task B. This
suggests that ARGO’s clustering is not aligned with the ground truth. In this case, a
low completeness value indicates that the algorithm divides elements of the same ground
truth class across multiple clusters. Additionally, a low homogeneity value means that
clusters contain mixed data points from different classes.

After having analyzed the .pcap file for these tests, the reason for these low scores
becomes clear: despite many frames having identical field content for the IEs used, the
probe messages differ in other field contents. This analysis shows that additional fields
must be considered to grasp a better understanding of the device’s identity.

5.2.1 New Features

To enhance the cluster quality produced by Argo, we examined a set of captures obtained
by our sensors in Valentino Park. We considered a month of captures starting from
November 1st to December 1st. For any .pcap file, we analyzed all the probes with a
locally unique MAC address. The other Probe Requests are discarded for this analysis,
as ARGO does not consider them in the clustering phase. We analyzed over 30000 probe
requests and, for each, we store the list of the present IEs.

58

5.2 – Low-resolution Clustering

Figure 5.1 shows the results of this analysis and reports the found IEs, in the format
IE_Counter. The counter variables takes into account that in some probes, multiple fields
of the same type can be present. The y-axis show the occurrence rate of each specific IE.

Figure 5.1: Occurrence rates of different Information Elements

All the found IEs can provide further information to be applied in clustering phase.
However some of them need to be excluded due to the following considerations:

• SSID: It contains the list of the device’s preferred networks. Due to the potential
privacy issues, in modern devices the list is often empty, with no information to be
used.

• Supported Rates and Extended Supported Rates: We decided to exclude
these fields as many devices share the same supported rates. Their use could damage
the clustering functioning, lowering the clusters’ quality.

• DS parameter Set: It contains only the current channel used by the Basic Service
Set (BSS), no information on the source device can be extrapolated.

• Interworking: It contains various information that help Wi-Fi devices understand
and interact with external networks. No information on the source device are
contained.

59

Exploiting Device Fingerprinting

• Other minor IEs: there are several other IEs with low occurrence rates. We
decided to exclude them as their rate of occurrence is too low to make them useful
in categorize devices.

We decided to use the information provided by the Vendor Specific Information Ele-
ment. This element contains information about the device vendor and can be useful to
distinguish between devices built by different manufacturers.

These considerations are compatible with the results of the analysis conducted by [61].
They have analyzed probe requests sent by different devices operating in diverse condi-
tions: with the screen turned on (Mode A) and turned off (Mode S). This study aims to
find the Information Elements (IEs) carrying the most significant amount of information.
A Random Forest algorithm is employed to measure the Gini importance of each IE.

The Gini importance is a metric used in decision tree-based machine learning algo-
rithms. It measures the feature’s capability to guess the outcome of a random input. For
each node in the forest, the feature that splits the node is the one that reduces the most
Gini impurity, i.e., the probability of incorrectly classifying a randomly chosen element.
The Gini importance for a variable is the sum of the impurity reductions at all nodes
where that variable is used for splitting, normalized by the total impurity reductions of
all variables. A variable with high Gini importance is frequently used to create effective
splits in the tree and significantly contribute to reducing impurity.

Table 5.2 shows the Gini Importance of the different IEs in the different phase for the
source device, i.e., mode A and mode B.

IE ID Name Gini Importance (A) Gini Importance(S)

0 SSID 0.088 0.004
1 Supported Rates 0.056 0.124
3 DS Parameter Set - -
45 HT Capabilities 0.175 0.247
50 Extended Supported Rates 0.024 0.024
107 Interworking 0.001 0.019
127 Extended Capabilities 0.340 0.251
191 VHT Capabilities 0.073 0.014
221 Vendor Specific 0.162 0.197
255 Element ID Extension 0.081 0.120

Table 5.2: Information Elements in the Dataset with A and S Importance Values

We decided to continue using the VHT capabilities field despite of its low Gini Im-
portance. This because it contains the information related to IEEE 802.11ac features
of the source device. We expect the importance of this feature to grow as the use of

60

5.3 – Signature collision

this standard becomes more widespread. The effectiveness of our choice can be seen by
the increase of the occurrence rate of this field over the years: in 2022 this field was
present only in the 11.1% of the probes [61] while nowadays, according to our analysis,
its occurrence rate increases to over 30%.

The IEs used by ARGO are not the optimal set in terms of possible performance.
However, with the newly included information, we aim to improve the categorization of
devices based on the sent frames.

5.3 Signature collision

The signature generation algorithm employed by ARGO is prone to misclassification
errors. Specifically, the algorithm just counts the number of bits set to 1 in each field.
This can cause some problem: even a minimal difference in field content, such the one
shown in Figure 5.2 where a single bit is in a different location, could lead two devices
with similar field content to be erroneously recognized as the same. This can lead to an
inaccuracy in counting and result in a non-optimal performance.

Figure 5.2: Feature misclassification problem

In the newly-presented version, we have employed a more robust conversion process:
rather than simply using the count of non-null bits, ARGO 2.0 now considers the values
of the bytes within the IE fields. For two randomly chosen 24-bit sequences, the new
conversion process reduces the signature collision probability from 11.24% to approxi-
mately 0.21%. The more robust behavior with respect to minor variations in IE fields
could enhance the accuracy of device clustering, particularly in scenarios where devices
have similar but not identical IE field values.

5.3.1 Improved Algorithm

The new signature generation process employed by ARGO 2.0, shown in Algorithm 3,
improves algorithm’s performance in terms of accuracy and resilience in probe request
identification.

61

Exploiting Device Fingerprinting

Algorithm 3 Algorithm to compute the probe requests device model identifiers
Require: .pcap file with the capture
Ensure: identifiers_list source model identifiers list

1: identifiers_list← []
2: for packet in capture do
3: rate← frame_rate(packet) ▷ Get the frame rate
4: if rate! = 1.0 then
5: Continue
6: end if
7: HT ← 0 ▷ HT parameter initialization
8: V HT ← 0 ▷ VHT parameter initialization
9: Extended← 0 ▷ Ext parameter initialization

10: V endor ← 0 ▷ Vendor data initialization
11: packet_fields← extract_all_fields(packet)

▷ Extract all the Information Elements
12: for key, value in packet_fields do
13: if key == HT info then
14: HT ← process_value(value) ▷ HT value
15: else if key == V HT info then
16: V HT ← process_value(value) ▷ VHT value
17: else if key == Extended info then
18: Ext← process_value(value) ▷ Ext value
19: else if key == V endor info then
20: V endor ← process_value(value)

▷ Vendor value
21: end if
22: end for
23: identifier ← (HT, V HT, Extended, V endor)
24: identifiers_list← insert(identifier)

▷ Identifiers list update
25: end for
26: return identifiers_list

The conversion algorithm begins by verifying whether each packet’s frame rate is equal
1.0 Mb/s, discarding the frames which do not meet this requirement. This initial check
is crucial because our observations revealed that some devices, such as Apple iPhones,
occasionally transmit probe requests at varying throughputs, specifically 6.0 Mb/s for
3% of the time and 1.0 Mb/s for the remaining. These frames differ not only in the bit
rate but also in the presence or absence of some capabilities information. We opted to
exclusively consider the probe requests sent at the standard throughput, thus enhancing
the outliers-invariance of our counting algorithm.

After the first check, the algorithm proceeds by examining each probe request packet.

62

5.3 – Signature collision

For each of them, it initializes to 0 a set of counters that stores the converted content of
the used IEs: the HT capabilities, VHT capabilities, Extended Capabilities, and Vendor-
specific fields of the packet.

Each IE is recognized within the frame by an identifier. Starting from Line 11, the
algorithm extracts all the fields within the probe request, searching for the desired IDs,
i.e., ID ∈ {45,127,191,221}. For each field, if it corresponds to HT information, ARGO
2.0 converts the field content with the procedure described in Section 5.3 and stores the
output in the HT variable. The conversion process continues for all the fields extracted,
updating the values of VHT, Extended, and Vendor variables.

The identifiers are then clustered together. Initially, ARGO utilized the DBSCAN
clustering algorithm in its first version; however, in this version, an attempt was made
using OPTICS. This decision was pivoted by the results achieved in [60]. Here, the
clustering executed with OPTICS shows better performance when compared to DBSCAN.
This is probably due to its better capabilities in handling clusters with varying densities.

Finally, after the clustering phase, the counting process proceeds similarly to Chap-
ter 4. For each cluster, we can find the model with the most similar identifier whose
probe requests’ sending rate is known. Knowing the sending rate and the number of
probe requests, it is possible to use (4.1) to infer the number of devices in the cluster.
The final count of devices is obtained by summing the number of devices identified and
the ones with global MAC addresses.

5.3.2 Parameter setting

For this new version, we need to fine-tune the clustering algorithm parameter. For the
OPTICS algorithm, the ϵ-radius does not need to be explicitly specified; it is estimated
instead during the algorithm’s execution based on data density and point distances. This
adaptability allows OPTICS to obtain better knowledge about the data structure without
explicit user input. Thus, the only parameter to be tuned is the Min_points parameter.
The same captures used for fine-tuning DBSCAN are employed here, allowing a perfor-
mance comparison between the two algorithms in optimal conditions. After tuning, the
best performance are obtained for Min_points = 10

Figure 5.3 shows the outputs provided by both counting algorithm versions. The
first image shows the outputs of the algorithms, while the second shows their accuracy.
The results provided by the ARGO 2.0 are slightly better than the ones achieved by its
predecessor, with a consistently higher accuracy. The following Sections show the new
algorithm tested on different scenarios, to gauge information about the performance that
new version achieves in diverse contexts.

63

Exploiting Device Fingerprinting

Figure 5.3: Parameter selection and accuracy comparison

5.4 Performance Evaluation

The evaluation process follows the same methodology previously described in the Chap-
ter 4. In particular Real-word environment and Controlled environment are considered.
Notably, simulated environment testing was not feasible due to limitations of the Probe
Request Generator, which does not includes Vendor Specific IE in the probes generation.

5.4.1 Performances in Controlled Environment

We uses the dataset and evaluation method provided by CONFRONT challenge [81] to
test the second version of the algorithm. In particular the reliability of their ground
truth is guaranteed by the use of an anechoic chamber. Using these datasets we can give
a precise evaluation about the quality of the cluster produced by the algorithm.

Table 5.3 shows a comprehensive summary of the outcomes of Tasks A, B, and C

64

5.4 – Performance Evaluation

achieved by both the versions of ARGO. Key evaluation metrics, i.e., completeness, ho-
mogeneity, overall score, and the number of identified versus real devices, are detailed for
each task.

ARGO Task A Task B Task C
Completeness 1.000.000 0.174659
Homogeneity 0.987631 0.164925
Number of Devices Identified 8 14 17
Number of Real Devices 9 15 22
Score 99.3777 16.9652 70.5882
ARGO 2.0 Task A Task B Task C
Completeness 0.987631 0.942033
Homogeneity 0.966179 0.916066
Number of Devices Identified 9 15 22
Number of Real Devices 9 15 25
Score 97.6787 92.8868 87.9138

Table 5.3: Summary of tasks A, B, and C for ARGO versions 1 and 2.

As reported in Chapter 4, the output provided by ARGO is not aligned with the
ground truth; showing low values for homogeneity and completeness. This is due to
the characteristics of density-based clustering algorithms: they focus on finding groups of
points closely packed together and greatly separated from other groups by less dense areas.
In case of partially overlapping clusters this type of algorithm can lead to misclassification
problems showing then poor performance.

On the opposite side, the results achieved by ARGO 2.0 are very good in terms of these
metrics. The introduction of the new feature and the new signature generation process
has allowed to capture additional aspects of the data; this has lead to an higher distance
among points in the state-space as a consequence. These changes in the distribution of
data points have given a series of benefits with respect to the previous version of the
algorithm:

• Better separation: The improved methodology grant a more accurate data seg-
regation into clusters. These clusters almost perfectly reflect the original classes,
ensuring each represents a distinct device model.

• More effective clustering: Since each cluster is far from the others, there is less
overlap and misunderstanding among various classes. The higher distance between
different groups leads to a higher completeness score, i.e., the points of each ground
truth class are frequently assigned to a single cluster

• Lower dispersion: The new approach reduces the scattering of points of the same

65

Exploiting Device Fingerprinting

ground truth class across multiple clusters. Data points of the same class are more
frequently grouped, leading to more homogeneous clusters.

5.4.2 Performances in Real environment

To assure a possible comparison among the two versions in real environment, we use the
same captures used for testing the first version of algorithm. The two graphs in Figure 5.4
represents the people count provided and the accuracy achieved by each version of ARGO.

Figure 5.4: Comparison between vers._1 and vers._2 of ARGO

Figure 5.4 effectively shows how the performance of the newly presented version are
way better with respect to ARGO. In particular, the older version shows very high peaks

66

5.4 – Performance Evaluation

in the output, with a quite unstable accuracy. Differently ARGO 2.0 has shown a more
stable trend, with a reduced number of peaks. This lead to a better tracking of the
ground truth’s behavior and to an accuracy constantly higher.

Each one of the used tests, has shown that WiFi-based crowd-counting could provide
good performance while preserving users’ privacy. The proposed framework can estimate
the number of devices within the monitored area with high accuracy, especially compared
to its low costs and power consumption.

To obtain further information to enhance the performance of these systems, the next
Chapter presents a study of the temporal behavior of probe requests.

67

68

Chapter 6

Probe Timing Analysis

In this Chapter a study on the time behavior of probe requests is performed in order to
further enhance the performance of WiFi-based crowd-monitoring systems. In particular,
Section 6.1 examines the ∆t time interval between two groups of probe requests. This
analysis aims to verify whether we can employ the IBT as a temporal signature for the
clustering algorithm. Section 6.2 talks about the influence that the state of the channel
has on the effective probe request throughput. Moreover, in this Chapter we highlight
one of the main limitation of probe request when used for crowd-monitoring system, i.e.,
the lack of ground truth, as no further research is possible without having a large and
reliable dataset to be analyzed.

6.1 Inter-Burst Time

According to the research developed by [55], devices send probe requests in groups. Each
of them is called “burst” and all the probes within the same one share the same MAC
address. Thanks to this behaviour, bursts are easy to identify.

While authors were more interested in how the content of the probe request varies
according to the state of the analyzed device, we focus on how the device’s state influences
the sending rate of probe requests. By analyzing the dataset of singular devices provided
by [55], we created histograms to represent the distribution of IBT in each condition.

More in detail, we used bins of 0.5 seconds each, allowing a detailed view of the
time distribution within each phase. Figure 6.1 shows the results of this analysis for an
Apple iPhone 14. We performed the same analysis for all the other devices under test.
Figure 6.2 shows the collection of the results for all analyzed devices. Different colors
show the various rates of occurrences of the bins, while we represent on the x-axis all
examined devices and phases in the format phase_device.

69

Probe Timing Analysis

Figure 6.1: Histogram of IBTs of Apple iPhone 14 Pro

The minimal time interval between two burst does not appear to be related to the
device vendor; while the maximum Inter-Burst Time depends on the actual state of the
device, i.e., devices in locked state are more likely to wait longer times than devices in
an active state to send a new group of Probe Requests.

We decided to use a different binning approach to explore low-scale time intervals
more deeply: we divided the period from 0 to 5 seconds using 100 points on a logarithmic

Figure 6.2: Inter-Burst Time for different devices, Linear Binning

70

6.1 – Inter-Burst Time

scale, performing the same analysis using these new bins. Figure 6.3 shows the heat map
obtained.

Figure 6.3: Inter-Burst Time for different devices, Logarithmic Binning

This analysis has emphasized that the minimum ∆t that devices have to wait before
sending a new burst of probes is related to the specific device. At first, we thought to use
this information to differentiate bursts based on the source device. If two bursts have a
too-low intercurrent time interval between them, they are presumably sent by different
source devices. However, we no longer proceed this way due to the lack of ground truth:
in a real-world context, we cannot verify whether a single MAC address is being used by
one device or another. The impossibility of such verification makes further researches in
this direction unfeasible.

Considerations drawn by [82] pivoted a further analysis of probe requests’ time behav-
ior. The authors show how active scanning requires a higher level of hardware engagement
with respect to passive scanning, leading to a higher power consumption for the devices.
It is reasonable to assume that there should be a balance between the number of probe
requests within a burst and the burst’s sending rates. In particular, we expected to see
the IBT increase as the number of frames within each burst increases. In this way, devices
could reduce the power consumption due to active scanning.

71

Probe Timing Analysis

To verify this, we used the dataset provided by [55], and for each device, we com-
puted the mean IBT, along with the number of frames within each burst. Moreover, we
computed the Pearson correlation coefficient between the two variables using (6.1).

rxy =
∑︁n

i=1(xi − x̄)(yi − ȳ)√︁∑︁n
i=1(xi − x̄)2 ∑︁n

i=1(yi − ȳ)2 (6.1)

Where:

• xi, yi are the values of the two variables in the observation i.

• x̄, ȳ represents the means of the two variables.

• n is the number of the observation, in this case the number of devices.

The computed coefficient, denoted as rxy, is a measure of the linear relationship between
two continuous variables, i.e., the Inter-Burst Time and the number of frames per burst.
Pearson coefficient can have values ranging from -1 to +1, where higher values identify a
stronger positive correlation among variables. The analysis shows a positive correlation
among the two variables, with a correlation factor of 0.4.

Figure 6.4: Average inter-frame time versus frame count per message

Figure 6.4 shows the graphical representations of data used in this analysis. Each
point represents a singular device, with its mean IBT and the number of frames sent for
each burst. The relationship is non-linear, and the variance among data is very high.
Therefore, the computed Pearson coefficient can only provide us with an idea of the
correlation without any chance of drawing any definitive conclusion.

72

6.2 – Channel Occupancy and Throughput Reduction

6.2 Channel Occupancy and Throughput Reduction

All analyses conducted so far focus on devices in isolated conditions. However, it may be
valuable to verify whether the channel state influences the actual throughput of probe
requests. We expect that the actual rate of probes decrease as the channel occupancy
increases, due to the increased packet collision rate.

6.2.1 Experimental set-up

The congestion of the WiFi channel can occur in overcrowded environments, thus we
emulated this scenario through the use of a flooding technique.

A flooding attack is a type of cyber attack where a system, a network, or a server
is inundated with an excessive amount of traffic or requests, aiming to overload the
available resources and make them inaccessible to legitimate users. We used a Python
script, modified from [83], that performs DoS attacks on 802.11 networks with customized
flooding packets, in this case probe requests. To execute the analysis, we employed two
Raspberry Pi 4B: the first one was used in monitor mode to sniff all the probe requests
in the area, meanwhile the other one executed the flooding attack.

To understand the influence of the congestion of the channel, we sniffed the 802.11
WiFi probe requests traffic in a room 3 times to have a general baseline, which could
give us an idea of the nominative operation characteristics. An increasing quantity of
traffic has then been generated through the second Raspberry Pi 4B, aiming to occupy
the channel for the longest time possible. Table 6.1 summarizes the details about the
generated flood traffic in each test.

Test Flood messages Frame lenght [B] Channel Occupancy [s]
1 97 48 0.06
2 720 48 0.27
3 2385 48 0.92
4 8958 48 3.4
5 15685 48 6
6 23482 48 9
7 47674 48 18
8 61643 48 23
9 64744 48 25
10 21 000 285 69
11 34086 285 82

Table 6.1: Information about the generated flood messages

The variation that affects the baseline in the number of probe requests received can

73

Probe Timing Analysis

give us an idea of the effect of the channel congestion.

6.2.2 Analysis results

Figure 6.5 shows the results of this analysis. On the x-axis, we printed the percentage
of time that the channel was occupied by our flood messages, while the y-axis shows the
number of effective probe requests detected by the sniffing Raspberry Pi.

Figure 6.5: Channel occupancy effect on transmission rates

As it can be seen from the Figure, the actual throughput exponentially depends on
the occupancy percentage of the channel. The maximum probe request throughput was
obtained in a non-congested situation, while it constantly decreases as the congestion
increases. The congestion seems to no longer affect the throughput after a certain occu-
pation threshold, around 20%.

This could be due to the channel access standards imposed by IEEE 802.11. In the
IEEE 802.11 standard, a back-off mechanism is used to ensure fair access to the channel
among all devices. Before accessing the channel, any device first listens if it is free [84]. If
the channel is busy, the device waits a random back-off time before attempting to transmit
again. This process helps to reduce collisions, leading to more stable throughput levels
once the occupancy reaches a certain threshold.

74

6.3 – Limitations of the ARGO Algorithm

The current clustering-based approaches are not feasible in an overcrowded environ-
ment. The rates that relate the number of probes with the number of devices, obtained
in isolated conditions, are not significant in channel highly congested, as only a 1% oc-
cupancy rate leads to a reduction of the effective throughput by 50%.

6.3 Limitations of the ARGO Algorithm

The approach implemented with ARGO is very high-performing in a poorly congested
environment: the number of clusters identified is a good approximation for the number
of people in the area. Furthermore, as we do not employ sensitive information for its
functioning, these systems can be very effective for daily monitoring applications.

In the case of an overcrowded environment, however, the number of clusters is no
longer a good approximation because of the presence of multiple models of the same type.
In this case, ARGO obtained the number of devices by dividing the number of probes
by some reference rates. This idea is valuable when no other information is available.
However, it is based on two non-verified assumptions:

• The Probe Requests’ sending rate is constant for each device.

• As the probe request shares information about the device throughput characteris-
tics, devices with similar content in IEs share comparable throughput.

The first assumption can be presumed true for transit environments where channel con-
gestion does not occur frequently. To test this theory, we used one of the sensors employed
in Valentino’s Park.

Figure 6.6: Traffic generated by an IoT device over time

75

Probe Timing Analysis

In particular, we analyzed the rate of an IoT device in the area, which does not employ
MAC address randomization. We monitored the amount of probe request traffic generated
by this device over one day. Figure 6.6 shows the result of the analysis. Despite some
oscillations, the trend line of this graph shows an almost flat behavior. We can observe
a minor diminution of the mean rate in the afternoon hour, but it can be considered
negligible with respect to the mean rate. In this case, using reference rates seems to be
a good approximation in cases where no other information is available.

The second hypothesis instead revealed a false assumption: analyzing the rate of the
devices studied by [55], we noticed that smartphones with similar characteristics, i.e.,
Apple iPhones, show very different mean sending rates. Considering this, the framework
could provide an estimate for the crowd-size very different from the ground-truth data.

Furthermore, the used mean rate cannot reflect the devices’ behavior in highly con-
gested environments. As reported in Section 6.2, the probes’ sending rate is not constant
over time, but it is a nonlinear function of the occupancy of the channel. When numer-
ous devices are present, the sending rate of probes may decrease exponentially. Using the
standard approach in this context may be dangerous as it may lead to an underestimation
of the crowd size, generating errors in the decision process of stakeholders like first aiders.

To tackle this issue we proposed using an adaptive, situation-dependent rate that
varies according to the number of devices in the monitored area. Initially, a tuning period
would be necessary. During the frameworks’ tuning, the actual number of people present
is known and the optimal rate can be computed. The computation can be performed by
minimizing the difference with respect to the ground truth. The error can be quantified
by any chosen error metrics, such as the MSE (Mean Square Error). Once this value is
determined, the system will become autonomous in counting devices.

Our proposed solution loses its flexibility in an overcrowded environment as it can
be used only for the situations for which it is tuned. However, it could work even in
conditions of high congestion, leading to a more precise crowd-counting in more complex
scenarios.

76

Chapter 7

Conclusion

With this Thesis, we aimed to develop a WiFi-based crowd-monitoring system. The
developed system must infer the crowd-size in the monitored area by clustering together
802.11 Probe Request messages. In the first phase of the research, we examined the
content of Probe Request messages using a large number of probe requests collected by
sensors deployed in Valentino’s Park, in Turin. We applied these findings to ARGO [79],
a network-based counting system. The analysis led to a new crowd-counting algorithm
that utilizes additional fields of probe requests and the OPTICS clustering algorithm to
classify and group requests based on the presumed source. The modifications improved
crowd counting accuracy, which ranges from 83% to 93%, and enhanced clustering quality.

In the second phase, we studied the temporal behavior of Probe Requests, examining
how their sending rate varies according channel congestion and other variables, such as
the vendor and the phase of the device. These observations led to a proposal for adapt-
ing performance to specific contexts, potentially resulting in a more flexible algorithm.
However, this is feasible only with ground truth data, as the rate is tuned by minimizing
the error relative to the actual ground truth.

To sum up, this Thesis shows how WiFi-based crowd-monitoring techniques offer a
valuable approach to crowd-counting applications. Using Probe Request messages allows
to build not only a privacy-preserving system that does not use sensitive information,
but also, operates efficiently without requiring costly hardware and consuming minimal
power.

7.1 Future Works

The principal limitations encountered in this work are related to the lack of ground truth.
Although it is possible to count the number of people within a room using a sniffing

77

Conclusion

system, it is not possible to perfectly isolate the monitored area. Using thresholds on the
admissible signal strength can help up to a certain point, but perfect isolation cannot
be achieved. The main focus for future research should be to obtain a ground truth as
accurate as possible. Without precise reference, further development could be considered
only as a speculation without any possible validation test. Furthermore, in creating
labeled datasets, different contexts should be considered, ranging from highly populated
scenarios to sparsely populated ones.

An extensive study on the probe requests should be done for what concerns their time
behavior: from our analysis, their behavior depends on many variables, i.e., their source
device, the channel congestion, and the state of the device itself. However, due to the
limited number of devices at our disposal, we could not guess any general behavior for
what regards temporal patterns.

At the end of Chapter 6 we also suggested a new method for adapting the algorithm’s
performance in overcrowded environments. This strategy needs to be developed and
verified. Future enhancements should implement this mechanism and test its efficacy
in real-world scenarios. By solving these issues, WiFi-based crowd monitoring systems
can be further enhanced as they can lead to more accurate, reliable solutions for crowd
estimation and management.

78

Bibliography

[1] V. Sivaraman, H. H. Gharakheili, C. Fernandes, N. Clark, T. Karliychuk, Smart
iot devices in the home: Security and privacy implications, IEEE Technology and
Society Magazine 37 (2) (2018) 71–79.

[2] V. Upadrista, V. Upadrista, The iot standards reference model, IoT Standards with
Blockchain: Enterprise Methodology for Internet of Things (2021) 61–86.

[3] R. Rusca, A. Carluccio, C. Casetti, P. Giaccone, Privacy-preserving wifi-based crowd
monitoring, Transactions on Emerging Telecommunications Technologies 35 (3)
(2024) e4956.

[4] European Parliament, Council of the European Union, Regulation (EU) 2016/679
of the European Parliament and of the Council.
URL https://data.europa.eu/eli/reg/2016/679/oj

[5] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, A review of video surveillance systems,
Journal of Visual Communication and Image Representation (2021).

[6] Z. Zhang, M. Wang, X. Geng, Crowd counting in public video surveillance by label
distribution learning, Neurocomputing (2015).

[7] Z. Fan, H. Zhang, Z. Zhang, G. Lu, Y. Zhang, Y. Wang, A survey of crowd counting
and density estimation based on convolutional neural network, Neurocomputing 472
(2022) 224–251.

[8] N. Paragios, V. Ramesh, A mrf-based approach for real-time subway monitoring, in:
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, Vol. 1, IEEE, 2001, pp. I–I.

[9] J. Wen, Z. Zhong, Z. Zhang, L. Fei, Z. Lai, R. Chen, Adaptive locality preserving
regression, IEEE Transactions on Circuits and Systems for Video Technology 30 (1)
(2020) 75–88.

[10] K. Chen, S. Gong, T. Xiang, C. Change Loy, Cumulative attribute space for age
and crowd density estimation, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2013, pp. 2467–2474.

[11] D. Ryan, S. Denman, S. Sridharan, C. Fookes, An evaluation of crowd counting

79

https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj

Bibliography

methods, features and regression models, Computer Vision and Image Understanding
130 (2015) 1–17.

[12] A. B. Chan, N. Vasconcelos, Counting people with low-level features and bayesian
regression, IEEE Transactions on image processing 21 (4) (2011) 2160–2177.

[13] H. Idrees, I. Saleemi, C. Seibert, M. Shah, Multi-source multi-scale counting in
extremely dense crowd images, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2013, pp. 2547–2554.

[14] Z. Zhao, H. Li, R. Zhao, X. Wang, Crossing-line crowd counting with two-phase
deep neural networks, in: Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII
14, Springer, 2016, pp. 712–726.

[15] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: 2005
IEEE computer society conference on computer vision and pattern recognition, Ieee,
2005.

[16] P. Sabzmeydani, G. Mori, Detecting pedestrians by learning shapelet features, in:
2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007,
pp. 1–8.

[17] P. Viola, M. J. Jones, Robust real-time face detection, International journal of com-
puter vision 57 (2004) 137–154.

[18] V. Rabaud, S. Belongie, Counting crowded moving objects, in: 2006 IEEE computer
society conference on computer vision and pattern recognition, IEEE, 2006.

[19] B. Lucas, T. Kanade, An iterative image registration technique with an application
to stereo vision, 1981.

[20] G. J. Brostow, R. Cipolla, Unsupervised bayesian detection of independent motion in
crowds, in: 2006 IEEE computer society conference on computer vision and pattern
recognition, IEEE, 2006.

[21] A. C. Davies, J. H. Yin, S. A. Velastin, Crowd monitoring using image processing,
Electronics & Communication Engineering Journal (1995).

[22] W. Ma, L. Huang, C. Liu, Crowd density analysis using co-occurrence texture fea-
tures, in: 5th International Conference on Computer Sciences and Convergence In-
formation Technology, IEEE, 2010, pp. 170–175.

[23] A. Albiol, A. Albiol, J. Silla, Statistical video analysis for crowds counting, in: 2009
16th IEEE International Conference on Image Processing (ICIP), IEEE, 2009, pp.
2569–2572.

[24] A. B. Chan, N. Vasconcelos, Counting people with low-level features and bayesian
regression, IEEE Transactions on image processing (2011).

[25] A. B. Chan, N. Vasconcelos, Bayesian poisson regression for crowd counting, in: 2009

80

Bibliography

IEEE 12th International Conference on Computer Vision, 2009.
[26] Y. Cong, H. Gong, S.-C. Zhu, Y. Tang, Flow mosaicking: Real-time pedestrian

counting without scene-specific learning, in: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[27] K. Chen, C. C. Loy, S. Gong, T. Xiang, Feature mining for localised crowd counting.,
in: Bmvc, 2012.

[28] M. A. Khan, H. Menouar, R. Hamila, Revisiting crowd counting: State-of-the-art,
trends, and future perspectives, Image and Vision Computing 129 (2023) 104597.

[29] S. Mostafa, F.-X. Wu, Chapter 3 - diagnosis of autism spectrum disorder with con-
volutional autoencoder and structural mri images, in: A. S. El-Baz, J. S. Suri
(Eds.), Neural Engineering Techniques for Autism Spectrum Disorder, Academic
Press, 2021, pp. 23–38.

[30] Q. Ke, J. Liu, M. Bennamoun, S. An, F. Sohel, F. Boussaid, Chapter 5 - computer
vision for humanâmachine interaction, in: M. Leo, G. M. Farinella (Eds.), Com-
puter Vision for Assistive Healthcare, Computer Vision and Pattern Recognition,
Academic Press, 2018, pp. 127–145.

[31] K. Santosh, N. Das, S. Ghosh, Chapter 2 - deep learning: a review, in: K. Santosh,
N. Das, S. Ghosh (Eds.), Deep Learning Models for Medical Imaging, Primers in
Biomedical Imaging Devices and Systems, Academic Press, 2022, pp. 29–63.

[32] C. Wang, H. Zhang, L. Yang, S. Liu, X. Cao, Deep people counting in extremely dense
crowds, in: Proceedings of the 23rd ACM international conference on Multimedia,
2015, pp. 1299–1302.

[33] L. Deng, Q. Zhou, S. Wang, J. M. Górriz, Y. Zhang, Deep learning in crowd counting:
A survey, CAAI Transactions on Intelligence Technology (2023).

[34] K. Nakamura, H. Zhao, X. Shao, R. Shibasaki, Human sensing in crowd using laser
scanners, Laser Scanner Technology (2012) 15–32.

[35] V. Tsakanikas, T. Dagiuklas, Video surveillance systems-current status and future
trends, Computers & Electrical Engineering (2018).

[36] V. K. Sharma, R. N. Mir, C. Singh, Scale-aware cnn for crowd density estimation and
crowd behavior analysis, Computers and Electrical Engineering 106 (2023) 108569.

[37] F. Nilsson, Intelligent network video: Understanding modern video surveillance sys-
tems, crc Press, 2008.

[38] Preliminary verification. collection, analysis and processing of data, through the
installation of equipment, for marketing and market research purposes.
URL http://www.garanteprivacy.it/home/docweb/-/docweb-display/docwe
b/9022068

[39] Il pir motion detector â un sensore di movimento per arduino e raspberry pi.

81

http://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
http://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
http://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
http://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
https://www.meccanismocomplesso.org/pir-motion-detector/

Bibliography

URL https://www.meccanismocomplesso.org/pir-motion-detector/

[40] A. Shokrollahi, J. A. Persson, R. Malekian, A. Sarkheyli-Hägele, F. Karlsson, Pas-
sive infrared sensor-based occupancy monitoring in smart buildings: A review of
methodologies and machine learning approaches, Sensors 24 (5) (2024) 1533.

[41] I. Udrea, N. D. Simion, C. G. Alionte, V. Ionut, V. F. K. Gheorghe, S. Petrache,
Counting versus detection in an fm application that deals with rooms reservation,
Journal of Eastern Europe Research in Business and Economics, Norristown, PA,
USA (2022).

[42] P.-R. Tsou, C.-E. Wu, Y.-R. Chen, Y.-T. Ho, J.-K. Chang, H.-P. Tsai, Counting
people by using convolutional neural network and a pir array, in: 2020 21st IEEE
International Conference on Mobile Data Management (MDM), IEEE, 2020, pp.
342–347.

[43] M. Kuki, H. Nakajima, N. Tsuchiya, Y. Hata, Multi-human locating in real environ-
ment by thermal sensor, in: 2013 IEEE International Conference on Systems, Man,
and Cybernetics, IEEE.

[44] J. Yun, D. Kim, D. M. Kim, T. Song, J. Woo, Gan-based sensor data augmentation:
Application for counting moving people and detecting directions using pir sensors,
Engineering Applications of Artificial Intelligence 117 (2023) 105508.

[45] Optical encoders and lidar scanning.
URL https://www.renishaw.com/it/optical-encoders-and-lidar-scannin
g--39244

[46] Goetting ist partner von velodyne lidar.
URL https://www.goetting.de/news/2018/goetting-partner-von-velodyne#
main

[47] S. T. Kouyoumdjieva, P. Danielis, G. Karlsson, Survey of non-image-based ap-
proaches for counting people, IEEE Communications Surveys & Tutorials 22 (2)
(2019) 1305–1336.

[48] J.-S. Yoon, S.-H. Bae, T.-y. Kuc, Human recognition and tracking in narrow indoor
environment using 3d lidar sensor, in: 2020 20th International Conference on Control,
Automation and Systems (ICCAS), IEEE, 2020, pp. 978–981.

[49] M. Bouazizi, C. Ye, T. Ohtsuki, 2-d lidar-based approach for activity identification
and fall detection, IEEE Internet of Things Journal 9 (13) (2021) 10872–10890.

[50] F. Luo, S. Poslad, E. Bodanese, Temporal convolutional networks for multiperson
activity recognition using a 2-d lidar, IEEE Internet of Things Journal 7 (8) (2020)
7432–7442.

[51] J. Bray, C. F. Sturman, Bluetooth 1.1: connect without cables, pearson Education,
2001.

82

https://www.meccanismocomplesso.org/pir-motion-detector/
https://www.renishaw.com/it/optical-encoders-and-lidar-scanning--39244
https://www.renishaw.com/it/optical-encoders-and-lidar-scanning--39244
https://www.renishaw.com/it/optical-encoders-and-lidar-scanning--39244
https://www.goetting.de/news/2018/goetting-partner-von-velodyne#main
https://www.goetting.de/news/2018/goetting-partner-von-velodyne#main
https://www.goetting.de/news/2018/goetting-partner-von-velodyne#main

Bibliography

[52] V. Kostakos, T. Camacho, C. Mantero, Wireless detection of end-to-end passenger
trips on public transport buses, in: 13th International IEEE Conference on Intelligent
Transportation Systems, IEEE, 2010, pp. 1795–1800.

[53] M. Versichele, T. Neutens, M. Delafontaine, N. Van de Weghe, The use of bluetooth
for analysing spatiotemporal dynamics of human movement at mass events: A case
study of the ghent festivities, Applied Geography 32 (2) (2012) 208–220.

[54] N. Abedi, A. Bhaskar, E. Chung, Bluetooth and wi-fi mac address based crowd
collection and monitoring: Benefits, challenges and enhancement, in: Australasian
Transport Research Forum 2013 Proceedings, Australasian Transport Research Fo-
rum, 2013, pp. 1–17.

[55] R. Rusca, F. Sansoldo, C. Casetti, P. Giaccone, What WiFi probe requests can tell
you (2023).

[56] Ieee standard for information technology–telecommunications and information ex-
change between systems local and metropolitan area networks–specific requirements
part 11: Wireless lan medium access control (mac) and physical layer (phy) specifi-
cations, IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) (2012) 1–2793.

[57] Chapter 4. 802.11 framing in detail.
URL https://www.oreilly.com/library/view/80211-wireless-networks/05
96100523/ch04.html

[58] M. Cunche, I know your mac address: targeted tracking of individual using wi-fi,
Journal of Computer Virology and Hacking Techniques 10 (2014) 219–227.

[59] C. Matte, M. Cunche, Spread of mac address randomization studied using locally
administered mac addresses use historic, Ph.D. thesis, Inria Grenoble Rhône-Alpes
(2018).

[60] M. Uras, R. Cossu, E. Ferrara, O. Bagdasar, A. Liotta, L. Atzori, Wifi probes sniffing:
an artificial intelligence based approach for mac addresses de-randomization, in: 2020
IEEE 25th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), IEEE, 2020, pp. 1–6.

[61] L. Pintor, L. Atzori, Analysis of wi-fi probe requests towards information element fin-
gerprinting, in: GLOBECOM 2022-2022 IEEE Global Communications Conference,
IEEE, 2022, pp. 3857–3862.

[62] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, F. Piessens, Why mac address
randomization is not enough: An analysis of wi-fi network discovery mechanisms, in:
Proceedings of the 11th ACM on Asia conference on computer and communications
security, 2016, pp. 413–424.

[63] A. K. Mishra, A. C. Viana, N. Achir, Bleach: From wifi probe-request signatures to
mac association, Available at SSRN 4673079.

83

https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html
https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html
https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html

Bibliography

[64] M. V. Barbera, A. Epasto, A. Mei, V. C. Perta, J. Stefa, Signals from the crowd:
uncovering social relationships through smartphone probes, in: Proceedings of the
2013 conference on Internet measurement conference, 2013, pp. 265–276.

[65] T. Bravenec, J. Torres-Sospedra, M. Gould, T. Fryza, Uji probes revisited: Deeper
dive into the dataset of wi-fi probe requests, IEEE Journal of Indoor and Seamless
Positioning and Navigation (2023).

[66] M. Nitti, F. Pinna, L. Pintor, V. Pilloni, B. Barabino, iabacus: A wi-fi-based auto-
matic bus passenger counting system, Energies 13 (6) (2020) 1446.

[67] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins, E. C. Rye,
D. Brown, A study of mac address randomization in mobile devices and when it
fails, arXiv preprint arXiv:1703.02874 (2017).

[68] Trialsnet EU project.
URL https://trialsnet.eu/

[69] K. Gebru, M. Rapelli, R. Rusca, C. Casetti, C. F. Chiasserini, P. Giaccone, Edge-
based passive crowd monitoring through wifi beacons, Computer Communications
192 (2022) 163–170.

[70] D.2. tshark: Terminal-based wireshark.
URL https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.
html

[71] Grafana.
URL https://grafana.com

[72] D. Guo, J. Wu, H. Chen, Y. Yuan, X. Luo, The dynamic bloom filters, IEEE Trans-
actions on knowledge and data engineering 22 (1) (2009) 120–133.

[73] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey, In-
ternet mathematics 1 (4) (2004) 485–509.

[74] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey, In-
ternet mathematics 1 (4) (2004) 485–509.

[75] A. Carluccio, Privacy-preserving people flow monitoring with bloom filters, available
at https://webthesis.biblio.polito.it/28442/ (2023).

[76] G. Bianchi, L. Bracciale, P. Loreti, “better than nothing”: Privacy with bloom filters:
To what extent?, in: International Conference on Privacy in Statistical Databases,
Springer, 2012, pp. 348–363.

[77] R. Rusca, A. Carluccio, D. Gasco, P. Giaccone, Privacy-aware crowd monitoring and
wifi traffic emulation for effective crisis management, in: 2023 International Con-
ference on Information and Communication Technologies for Disaster Management
(ICT-DM), IEEE, 2023, pp. 1–6.

84

https://trialsnet.eu/
https://trialsnet.eu/
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://grafana.com
https://grafana.com
https://webthesis.biblio.polito.it/28442/

Bibliography

[78] Meross presa smart wifi, presa intelligente italiana, smart plug con monitoraggio en-
ergia 16a 3840w, funzione timer, compatibile con amazon alexa, smartthings, google
assistant, app controllo remoto.
URL https://www.amazon.it/intelligente-controllo-compatibile-Assista
nt-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&link
Code=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=1591327452402204
1585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=100
8141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&
gad_source=1&th=1

[79] D. Gasco, Enhancing crowd-monitoring through wifi fingerprint analysis, available
at https://webthesis.biblio.polito.it/28445/ (2023).

[80] L. Pintor, L. Atzori, A dataset of labelled device wi-fi probe requests for mac address
de-randomization, Computer Networks 205 (2022) 108783.

[81] Confront â challenge on wifi frame fingerprinting for people counting and tracking.
URL https://sites.unica.it/net4u/confront-challenge-on-wifi-frame-f
ingerprinting-for-people-counting-and-trackingconfront/

[82] Y. Choi, S. Choi, Energy-aware wlan scanning in integrated ieee 802.16 e/802.11
networks, Computer Communications 32 (15) (2009) 1588–1599.

[83] dos-tester-802.11.
URL https://github.com/oz9un/dos-tester-802.11

[84] M. Natkaniec, A. R. Pach, An analysis of the backoff mechanism used in ieee 802.11
networks, in: Proceedings ISCC 2000. Fifth IEEE Symposium on Computers and
Communications, IEEE, 2000, pp. 444–449.

85

https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://www.amazon.it/intelligente-controllo-compatibile-Assistant-meross/dp/B07GSVQBMY/ref=asc_df_B07GSVQBMY/?tag=googshopit-21&linkCode=df0&hvadid=700878162198&hvpos=&hvnetw=g&hvrand=15913274524022041585&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-540207773169&mcid=7d75eaf95a1e3d39b769efb0950fb3ce&gad_source=1&th=1
https://webthesis.biblio.polito.it/28445/
https://sites.unica.it/net4u/confront-challenge-on-wifi-frame-fingerprinting-for-people-counting-and-trackingconfront/
https://sites.unica.it/net4u/confront-challenge-on-wifi-frame-fingerprinting-for-people-counting-and-trackingconfront/
https://sites.unica.it/net4u/confront-challenge-on-wifi-frame-fingerprinting-for-people-counting-and-trackingconfront/
https://github.com/oz9un/dos-tester-802.11
https://github.com/oz9un/dos-tester-802.11

	Introduction
	People Counting Solutions
	Image-based Crowd-monitoring techniques
	Video Surveillance systems
	Automated Video Surveillance Systems

	Sensor-based Crowd-monitoring techniques
	Infrared sensors
	Laser scanner in crowd counting

	Network-based Crowd-monitoring techniques
	Bluetooth-based Crowd-counting
	WiFi-Based Crowd-counting

	Probe Request-based People Counting
	MAC address-based algorithms
	Information elements-based algorithm

	Crowd-Monitoring Framework
	TrialsNet Project
	Referenced Scenario

	Proposed Framework
	Hardware
	Sniffing Pipeline

	Device Counting
	Clustering algorithms
	DBSCAN
	OPTICS

	Anonymization Process for MAC addresses
	Bloom-Filter
	Bloom Filters for privacy protection
	Bloom Filter operations

	System's power consumption
	Location

	ARGO - Ai-driven framewoRk for countinG peOple
	Feature extraction
	Counting algorithm
	Fine-Tuning DBSCAN parameters

	Performance evaluation
	Performance in Simulated Environment
	Performance in Real Environment
	Performances in Controlled Environment

	Exploiting Device Fingerprinting
	Limitations
	Low-resolution Clustering
	New Features

	Signature collision
	Improved Algorithm
	Parameter setting

	Performance Evaluation
	Performances in Controlled Environment
	Performances in Real environment

	Probe Timing Analysis
	Inter-Burst Time
	Channel Occupancy and Throughput Reduction
	Experimental set-up
	Analysis results

	Limitations of the ARGO Algorithm

	Conclusion
	Future Works

	Bibliography

