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Abstract  

The intersection of agriculture and energy production offers unique opportunities for 

optimizing land use through innovative solutions. This thesis explores the development of a 

dual-camera system combining a thermal camera and an RGBD camera for monitoring plant 

health, focusing on water stress assessment which is a crucial factor for optimizing 

agricultural productivity. By integrating these advanced technologies, the project aimed to 

provide real-time measurements of water stress in crops, particularly in lettuce. 

 

The research involved the design and implementation of a system that integrates the Optris 

Xi400 thermal camera with the Intel RealSense D457 RGBD camera. The successful 

integration of these technologies enabled simultaneous capture of thermal and visual data, 

which was used for real-time Crop Water Stress Index (CWSI) calculations. A key 

achievement of the project was the effective application of the YOLOv8 model for plant 

segmentation, enabling accurate and real-time analysis of crop conditions. 

 

Results demonstrated that the system successfully visualized CWSI values, providing 

actionable insights into plant health and water stress levels. This approach not only supports 

efficient water management but also contributes to the broader goals of the SYMBIOSYST 

project, which aims to harmonize agricultural practices with photovoltaic energy production 

for sustainable land use.  
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Preface 

The intersection of agriculture and energy production presents unique opportunities to 

optimize land use for both crop cultivation and photovoltaic (PV) energy generation. The 

SYMBIOSYST project aims to capitalize on these opportunities by developing innovative 

agri-PV solutions that harmonize these traditionally separate sectors. Launched in January 

2023, SYMBIOSYST is a Horizon Europe Innovation Action that involves 18 partners from 

six European countries, including the United Kingdom, and will run until December 2026. 

The project demonstrates various PV solutions in open field and greenhouse agriculture 

across four scenarios in three countries, emphasizing sustainability, social acceptance, and 

technological advancement. 

 

A critical component of SYMBIOSYST is ensuring that PV installations do not negatively 

impact crop yields while promoting sustainable farming practices. This involves adopting 

advanced monitoring and control systems, digitalizing farming tools, enhancing water 

management, mitigating climate change impacts, and engaging local organizations to ensure 

biodiversity and community benefits. 

 

In the context of this ambitious project, my research focuses on developing a dual-camera 

system to monitor plant health, specifically targeting water stress levels. Water stress is a 

significant factor affecting crop productivity, and early detection is crucial for timely 

intervention. By integrating computer vision technologies with thermal imaging, this system 

aims to provide real-time, precise monitoring of plant water stress, thus contributing to the 

overall goals of SYMBIOSYST. 
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Introduction 

Researchers and engineers have been dedicating approximately six decades to the pursuit of 

enabling machines to perceive and comprehend visual information.  

 In particular, the advancements in Computer Vision (CV) have found significant 

applications in the field of robotics and environmental monitoring, enhancing their 

capabilities and enabling groundbreaking solutions. In the domain of robotics, computer 

vision has ushered in a new era of automation and intelligence. Robots equipped with 

advanced vision systems can navigate complex environments autonomously, recognize 

objects, and interact with the surroundings. 

 

Additionally, in the realm of environmental monitoring, computer vision plays a crucial role 

in collecting and analyzing data for ecological studies and climate research. Not only 

unmanned aerial vehicles (UAVs) equipped with high-resolution cameras and computer 

vision algorithms can monitor vast ecological landscapes, detect changes in vegetation, and 

assess environmental health, but also agricultural autonomous robots (AMRs) have the 

potential to tackle numerous challenges faced by farmers, ranging from labor shortages to 

precision farming requirements. These advancements have significantly improved our ability 

to understand and address environmental challenges, including deforestation, climate change, 

biodiversity conservation and, water shortage.  

 

Nevertheless, there remains significant work ahead in the advancement and seamless 

integration of diverse sensors essential for endowing autonomous robots with robust 

perception capabilities. These capabilities are crucial for observing crops and conducting 

precise measurements, thereby offering critical decision support to agronomists in the 

agricultural sector. This endeavor entails not only selecting the optimal technologies for 
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environmental monitoring but also crafting effective methodologies for data analysis to attain 

predefined objectives. 

 

The core objective of this thesis is to explore the potential of integrating two advanced camera 

systems—the Optrix Xi400 thermal camera and the Intel RealSense D457 RGB camera—

mounted on a mobile robot to advance the state-of-the-art in object recognition, localization, 

and inspection for crop monitoring. 

In particular, by combining computer vision with thermal imaging, the system developed in 

this research provides real-time monitoring of plant water stress, thereby contributing to the 

overall goals of SYMBIOSYST. 

 

This project involves a series of interrelated tasks aimed at achieving several key goals: 

• Integration and alignment: Focuses on the successful integration and alignment of the 

thermal and RGB cameras to ensure that they work together effectively. This 

alignment is critical for accurate and synchronized data capture, which is the 

foundation for subsequent analysis. 

• Calibration process: Involves a meticulous calibration process to ensure that the data 

from both cameras are accurately synchronized, enabling precise image fusion and 

analysis. 

• Image segmentation: Following calibration, the project will implement advanced 

image segmentation techniques on RGB images to facilitate the fusion of these 

images with thermal data. This step is crucial for creating a comprehensive dataset 

that combines visual and thermal information for improved object recognition and 

inspection. 

• Data acquisition: To train the machine learning models effectively within the specific 

domain of agricultural applications, a dedicated dataset was constructed. This 
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involved data acquisition to build a robust dataset tailored for the training of the 

neural network. 

• Assessment of water stress levels: The ultimate aim of these efforts is to develop a 

robust system capable of assessing water stress levels in plants, which is vital for 

optimizing agricultural practices. 

• Machine Learning application: By leveraging the combined data from both camera 

systems and applying machine learning techniques for image segmentation and 

analysis, the project seeks to contribute valuable insights into plant health and water 

management strategies. 

 

The thesis is organized as follows: 

• Chapter 2: Theoretical background 

This chapter provides an analysis of the theoretical background, reviewing existing 

technologies and methodologies relevant to our study. 

• Chapter 3: State of the art - Visual robotic systems in agricultural context 

This chapter discusses the state of the art in visual robotic systems within the 

agricultural context. 

• Chapter 4: System definition 

Here, the system definition is presented, detailing the primary components of the 

system, including data acquisition sensors and the overall hardware setup design. 

• Chapter 5: Methodology 

This chapter describes the developed methodology, outlining the steps taken to 

implement the system. 

• Chapter 6: Results 

In this final chapter, the obtained results are detailed and explained, providing an 

evaluation of the system's performance and effectiveness based on the conducted 

experiments and analyses. 
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A graphical representation of the steps followed in this project is shown in the following 

Figure. 

 

 
Figure 1 - Project explanation  
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Chapter 1.  

Theroretical background 

In this chapter, an overview of the theoretical aspects essential for the development of the 

research project is provided. The chapter begins by introducing the field of computer vision, 

a multidisciplinary domain focused on enabling computers to interpret and understand visual 

information from the world. 

Following this, the chapter explores the fundamentals of machine learning, a branch of 

artificial intelligence that allows systems to learn from data and improve their performance 

over time without explicit programming. 

The discussion then moves on to Deep learning, a subfield of Machine Learning that employs 

deep neural networks to extract complex features from data. Deep Learning has driven 

significant advancements in computer vision, enabling more sophisticated applications for 

image recognition, classification, and analysis. 

Finally, the chapter introduces YOLOv8 (You Only Look Once version 8), one of the most 

advanced architectures for object detection and segmentation. YOLOv8 is designed to deliver 

high-speed and high-accuracy object detection capabilities, making it a powerful tool for 

real-time applications. In the research project, YOLOv8 was employed for image 

segmentation tasks due to its efficiency and precision in detecting and segmenting objects 

within images. 

Through this theoretical overview, the chapter aims to lay the groundwork for understanding 

the technical and methodological choices made in the research project. 
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1.1 Computer Vision 

Computer vision pertains to the realm of endowing machines with the capability to perceive 

visual data. It employs a combination of cameras and computational systems to detect, 

monitor, and analyze objects, aiming to replicate or surpass human visual perception using 

automated systems. It involves retrieving, interpreting, and comprehending valuable 

information from images, typically through algorithmic processing. 

 

From a perspective rooted in biological science, computer vision endeavors to construct 

computational models mirroring the intricacies of the human visual system. Conversely, from 

an engineering standpoint, the objective of computer vision is to fabricate autonomous 

systems capable of executing tasks similar to those performed by the human visual system, 

often surpassing its capabilities in various scenarios. Many tasks within the realm of vision 

involve extracting three-dimensional and temporal information from dynamically changing 

two-dimensional data, typically captured by one or more cameras, with a broader aim of 

comprehending such dynamic scenes [1]. 

 

 
Figure 2 - Example application of computer vision system [2] 
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The pursuit of these dual objectives is closely intertwined. Insights gathered from the 

properties and behaviors of the human visual system frequently inspire engineers in the 

design of computer vision systems. Hence, algorithms developed within the domain of 

computer vision can offer valuable perspectives on the workings of the human visual system.  

 

1.1.1 History and evolution 

The history of computer vision traces back to the 1950s when neurophysiologists conducted 

experiments involving the presentation of various images to a cat, aiming to observe 

corresponding neural responses. Remarkably, the findings revealed that the cat’s brain 

exhibited initial reactions to distinct features, particularly hard edges and lines. Scientifically, 

this discovery meant that the initial stages of image processing involved the recognition of 

elementary shapes, such as straight edges, marking a significant milestone in the 

understanding of visual cognition [3].  A widely acknowledged figure in the field of 

Computer Vision is Larry Roberts, credited as a pioneering force. During his doctoral studies 

around 1960 at MIT, Roberts explored the potential of deriving three-dimensional geometric 

data from two-dimensional perspective views of objects, particularly blocks or polyhedra [4].  

By the 1970s, the first commercial use of computer vision involved interpreting handwritten 

or typewritten text through optical character recognition, enabling text interpretation for the 

visually impaired. Consequently, extensive research efforts were directed towards what are 

termed as "low-level" vision tasks, such as edge detection and segmentation. A significant 

breakthrough occurred with the framework introduced by David Marr around 1978 at MIT. 

Marr's approach, characterized by a bottom-up methodology, revolutionized the 

comprehension of scenes within the field [5]. 

The advent of the Internet in the 1990s facilitated the availability of vast amounts of online 

images for analysis, leading to the development of facial recognition programs. 
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Consequently, the increase in data volume fueled advancements in machines capable of 

identifying specific individuals across photo and video media. 

Today, a convergence of factors revitalizes enthusiasm for computer vision. The 

omnipresence of mobile devices sporting built-in cameras floods society with a big amount 

of visual content. Simultanooeously, the accessibility and affordability of computing power 

facilitate widespread experimentation and implementation. Moreover, specialized hardware 

designed explicitly for computer vision tasks is becoming more prevalent, further fueling 

advancements. By comprehending the fundamental principles of visual cognition, 

researchers developed sophisticated algorithms that enable computers and systems to extract 

meaningful information from digital images, videos and other visual inputs [6].  

For instance, the emergence of cutting-edge algorithms like convolutional neural networks 

capitalizes on both hardware and software capabilities, amplifying the potential for 

sophisticated visual processing. 

One of the driving factors behind the growth of computer vision is the amount of data we 

generate today that is then used to train and make computer vision better. These 

advancements have yielded remarkable effects in the field of computer vision. In less than a 

decade, object identification and classification accuracy levels surged from 50 to 99%.  

Moreover, contemporary systems exhibit greater precision than the human eye in swiftly 

detecting and reacting to visual inputs. 

 

1.1.2 How it works and applications 

The landscape of computer vision resembles that of solving a puzzle. Just as pieces together 

scattered puzzle tiles to form an image, neural networks for computer vision operate on a 

similar principle. They discern the myriad elements constituting an image, identify edges, 

and then model subcomponents. Subsequently, through filtering and layer-by-layer actions 

within the network, they assemble all elements akin to completing a puzzle. 
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Computers lack the final image, typically depicted on the puzzle box, but are instead fed 

hundreds, or thousands, of related images for training to recognize specific objects. 

 

To recognize a cat, instead of programming computers to search for whiskers, tails, and 

pointed ears, programmers input millions of cat photos. This method enables the model to 

autonomously learn to distinguish the various features comprising a cat. 

 
Figure 3 - Animal recognition [7] 

The realm of computer vision transcends human visual capabilities across various domains, 

from facial recognition to analyzing gameplay actions during soccer matches. 

The combination of deep learning and computer vision has revolutionized the field, enabling 

machines to "see" and interpret visual data with unprecedented accuracy and efficiency. 

Hence, Deep learning is very effective for computer vision being faster and easier to develop. 

Therefore, it allows to develop or choose a preconstructed algorithm and train it with 

examples of objects it must detect.  

 

Applications of computer vision span across various domains and are seamlessly integrated 

into everyday products.  

In the realm of self-driving cars, computer vision facilitates real-time analysis of 

surroundings, enabling vehicles to navigate roads, recognize traffic signs, and detect 
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obstacles and pedestrians. For example, Tesla's self-driving cars employ multiple cameras to 

assess their environment, allowing for advanced functionalities like autopilot. These 360-

degree cameras use computer vision to identify and categorize objects around the vehicle [8]. 

Facial recognition technology utilizes computer vision to authenticate users on consumer 

devices, tag individuals on social media, and aid law enforcement agencies in identifying 

criminals. In manufacturing, computer vision is used for AI-powered inspection systems, 

predictive maintenance, quality control, and automation. It helps in detecting machinery 

breakdowns and product defects, and in automating assembly processes, especially for 

delicate items like electronics. Computer vision aids in medical diagnostics by enhancing 

image analysis in fields like pathology, radiology, and ophthalmology. For example, it is 

useful to detect cancerous moles in skin images and identifying symptoms in medical scans 

[9]. 

 

Machine learning uses algorithm-based models to help computers learn context through 

visual data analysis. Once provided with sufficient data, the model can see the "big picture" 

and differentiate between various visual inputs. Instead of being programmed to recognize 

and distinguish images, the machine uses AI algorithms to learn autonomously. 

 

Convolutional neural networks assist ML models in "seeing" by breaking images down into 

pixels. Each pixel is labeled, and these labels are used to perform convolutions, a 

mathematical process that combines two functions to produce a third. Through this process, 

CNNs can process visual inputs. To interpret images like a human, neural networks execute 

convolutions and check the accuracy of the output through numerous iterations. Similar to 

how humans discern distant objects, a CNN starts by identifying basic shapes and edges, then 

fills in the data gaps and iterates its output until it accurately predicts the result. 

 

In the next section, a more detailed view of ML and its evolution will be presented.  
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1.2 Machine learning 

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on developing 

algorithms capable of improving automatically over time and making predictions based on 

data [10]. 

When thinking of AI and ML, we tend to imagine something very contemporary, something 

that has appeared recently. The truth is that the history of machine learning is a rich and 

evolving narrative, tracing back to the mid-20th century when foundational ideas about 

artificial intelligence began to take shape. The history of machine learning is marked by 

significant milestones and the contributions of pioneering researchers. 

Alan Turing's seminal work in the 1950s laid the theoretical groundwork, proposing that 

machines could simulate any process of formal reasoning, a concept that would later underpin 

the development of machine learning algorithms [11]. In 1952, Arthur Samuel coined the 

term "machine learning" with his development of a checkers-playing program that improved 

through experience [12]. The 1960s saw Frank Rosenblatt's introduction of the Perceptron, 

an early neural network capable of binary classifications, which laid the groundwork for 

future neural network research [13]. The 1980s marked a significant leap with the rediscovery 

of the backpropagation algorithm by Geoffrey Hinton and colleagues, enabling the efficient 

training of deep neural networks [14]. The 1990s brought forth support vector machines [15] 

and ensemble methods like boosting, which improved model robustness and accuracy. The 

21st century witnessed a data explosion and advances in computational power, facilitating 

the rise of deep learning. Landmark achievements such as AlexNet's triumph in the 2012 

ImageNet competition [16] and AlphaGo's victory over a human Go champion in 2016 [17] 

demonstrated the immense potential of deep learning and reinforcement learning. More 

recently, transformer-based models like BERT and GPT have revolutionized natural 

language processing, enabling machines to understand and generate human-like text with 

unprecedented accuracy [18].  
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As machine learning continues to advance, ethical considerations and the pursuit of fairness 

and transparency have become paramount, ensuring that these powerful technologies are 

developed and deployed responsibly. This historical journey reflects the continuous 

innovation and interdisciplinary collaboration that drive the field of machine learning 

forward. 

Throughout history, machine learning techniques have been applied to various computer 

vision tasks, revolutionizing the field and enabling groundbreaking advancements. From 

early attempts at pattern recognition to the development of sophisticated deep learning 

models, machine learning has played a crucial role in enhancing computer vision capabilities. 

Tasks such as image classification, object detection, segmentation, and facial recognition 

have benefited from the application of machine learning algorithms. These techniques have 

enabled computers to interpret and understand visual data with increasing accuracy and 

efficiency, paving the way for applications in areas such as medical imaging, autonomous 

vehicles, surveillance systems, and augmented reality. By leveraging the power of machine 

learning, researchers and practitioners continue to push the boundaries of what is possible in 

computer vision, driving innovation and shaping the future of technology. 

 

1.2.1 Machine learning paradigms 

Machine learning is broadly categorized into three main types: supervised learning, 

unsupervised learning, and reinforcement learning.  



 23 

 
Figure 4 - Types of Machine Learning [19] 

 

Supervised learning involves training models with labeled data, enabling them to perform 

classification and regression tasks. In contrast, unsupervised learning seeks to uncover 

patterns and relationships within unlabeled data, often through clustering methods. 

Reinforcement learning, on the other hand, focuses on enhancing model performance through 

continuous interaction with an environment and learning from the outcomes of its actions. 

The following sections will explore each type in detail, discussing their methodologies and 

applications. 

 

Unsupervised learning  

Unsupervised learning is a method used to identify patterns and relationships in unlabeled 

data, often employed to form groups or clusters. 
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Figure 5 - Unsupervised learning algorithm [20] 

 

The system is characterised by the lack of labels given to the learning algorithm. Moreover, 

input data does not have a known result. It is used when we want to find natural groups in 

data or whenever datasets are large, and it is expensive to assemble all data [20].  

Example problems are clustering, dimensionality reduction and association rule learning. 

 

Consider an email marketing campaign. Your dataset might include details about recipients, 

such as their past purchasing behavior, the last time they visited a website, and their average 

purchase amount. Without predefined customer groups, you can use unsupervised learning 

to analyze this behavioral data and automatically cluster customers into distinct groups. A 

key advantage of this approach is that it doesn't require prior knowledge of the group's 

structure - the clusters are generated based on the data itself. Once these groups are formed, 

you can label them with business-relevant terms and decide which customer segments to 

target in your email campaign. 

 

Clustering is the task of grouping a set of objects in such a way that objects in the same group 

(called a cluster) are more similar to each other than to those in other groups [21]. These 

classes should have high intra-class similarity and low inter-class similarity. Clustering 

methods are typically organized by the modelling approaches such as centroid based and 

hierarchal. All methods are concerned with using the inherent structures in the data to best 
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organize the data into groups with the bigger similarities. The most important division in 

clustering is between hierarchical algorithms and partitional algorithms. Hierarchical 

clustering is characterised by the creation of a hierarchical decomposition of the set of objects 

using some criterion. An advantage of this kind of clustering is the fact that there is no need 

to specify the number of classes, but it does not scale well and the interpretation of results is 

subjective based on different criteria of division. Partitional clustering, differently from 

hierarchical clustering, sets the number of clusters in advance and puts each data in one of 

the clusters given. 

 

 
Figure 6 - Hierarchical and non-hierarchical Clustering 
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Supervised learning  

Supervised learning is a fundamental approach in data science used to develop models that 

can predict outcomes based on labeled datasets. Essentially, labeled data consists of various 

features (variables) paired with a corresponding output that the model aims to predict. 

 

 
Figure 7 - Supervised learning algorithm [20] 

 

The system receives input data, called training data, with known labels or results.  

Example problems are classification and regression. 

For instance, consider an ML model designed to identify whether fruits are apples or bananas. 

In this scenario, the label would be either "apple" or "banana," while the feature set might 

include attributes such as weight, length, width, and other relevant measurements of the 

fruits. 
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Figure 8 - Example of Linear Classifier [22] 

 

Due to the presence of labels, it is possible to correct an algorithm in order to perform better 

on data. This kind of learning is characterized by two phases: the learning phase and the 

testing phase. The learning phase consists of a training process that prepares the model by 

making predictions and corrects the outliers with the cost function whenever the predictions 

are wrong. The training process continues until the model achieves a desired level of accuracy 

on the training data. The testing phase uses unseen data in order to measure the performances 

of the algorithm. An example of classifier is the linear classifier. It makes a classification 

considering a linear combination of the characteristics. The decision boundaries, which are 

the region of a problem space in which the output label of a classifier is ambiguous, in the 

feature space are linear (red, green and blue lines in Figure 8). This type of classifier works 

better when the problem is linearly separable. 
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Reinforcement learning 

Reinforcement learning is a method that uses a reward-based system to provide training 

feedback. The learning process occurs as a machine, or Agent, that interacts with an 

environment and tries various strategies to achieve a specific goal. The Agent receives 

rewards or penalties based on whether it reaches a desirable or undesirable state [23]. 

 
Figure 9 - Reinforcement learning algorithm [24] 

Through this feedback, the Agent learns which actions lead to positive outcomes and which 

should be avoided. Success is measured using a score (often referred to as Q, hence the term 

Q-learning), allowing the Agent to iteratively improve its performance to achieve higher 

scores. Substantially, it acquires knowledge through trial and error carrying out actions with 

the goal of maximizing rewards, essentially learning through practice to attain the best 

possible results. 

 

A practical example of reinforcement learning is controlling a car on a winding road. The 

Agent monitors its current state by measuring speed, direction relative to the road, and 

distances to the road's edges. It can then take actions like steering, accelerating, or braking to 

alter its state. 

Rewards are given for desired behaviors, such as staying in the middle of the road and 

completing the course, while penalties are imposed for crashing or moving too slowly. 



 29 

Effective reinforcement learning strikes a balance between short-term and long-term 

rewards, helping the car to both avoid collisions and reach its destination. 

It is a good technique to use for automated systems that have to make a lot of small decisions 

without human guidance. Examples of applications of reinforcement learning include 

robotics, autonomous driving, gaming. 

 

Comparison between Supervised, Unsupervised and Reinforcement learning  

As shown before, Supervised learning and Unsupervised learning have many substantial 

differences which make them useful or not, based on the data you have to consider. In 

supervised learning, you train the machine using well-labelled data. This means that some 

data is already tagged with the correct answer. As a matter of fact, by making the algorithm 

learn from the training data you can predict outcomes from unforeseen data with highly 

accurate and trustworthy methods. Unsupervised algorithms, on the contrary, are used against 

not labelled data, giving less accurate results. Another important difference lies in the 

variables and number of the given classes. While in the supervised learning model input and 

output will be specified, just as the number of classes, in the unsupervised learning only input 

data will be provided and the number of classes will not be known. Due to all these 

observations, it is possible to notice that unsupervised learning, therefore Clustering, has big 

limits. The main drawback is that you cannot get precise information regarding data sorting. 

In other words, since clustering is based on the similarity between data, it tries to draw 

inference from the data such as finding patterns or clusters causing ill posed problems. 

Reinforcement learning differs from supervised learning in a way that in supervised learning 

the training data has the answer key with it. This means that it does not require labeled data, 

nor does it use an unlabeled dataset like unsupervised learning. Instead, it continuously 

optimizes outcomes based on past experiences and creates new data with each attempt. In the 

absence of a training dataset, it is bound to learn from its experience. 
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1.3 Deep learning architectures for object detection 

Deep learning is a subset of machine learning that involves the use of neural networks with 

multiple layers to learn intricate representations of data. It has gained widespread popularity 

in recent years due to its ability to automatically discover and extract features from raw data, 

leading to remarkable advancements in various fields, particularly computer vision. 

 
Figure 10 - Machine learning & Deep learning 

 

For example, if humans are asked to say if a particular image is showing a car or not, they  

first need to identify the unique features or features of a car (shape, size, windows, wheels,  

etc.) extract the features and give them to the algorithm as input data.  

A machine learning model imitates this behaviour so that, after an initial phase in which  

the network selects automatically some features, then performs the classification of the  

images basing on such features. That is, while in machine learning, a programmer must 

intervene directly in the action, in the case of a Deep Learning (DL) model, the feature 

extraction step is completely unnecessary. The model would recognize these unique 

characteristics of a car and make correct predictions. [25] 
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If the first huge advantage of deep learning lays in the lack of the help of a human, the  

second advantage that made it so popular is that it is powered by massive amounts of data.  

The “Big Data Era” of technology will provide huge amounts of opportunities for  

innovations in deep learning. Deep learning models tend to increase their accuracy with the  

increasing amount of training data, instead of traditional machine learning models which  

stop improving after a saturation point. 

 

It is important to highlight how Deep learning has revolutionized computer vision, a field 

dedicated to enabling machines to interpret and understand visual information from the 

world. Traditional computer vision methods relied heavily on manual feature extraction, 

which was time-consuming and limited by human intuition. Deep learning, particularly 

through Convolutional Neural Networks (CNNs), has automated this process, allowing for 

the discovery of intricate patterns and features directly from raw images. This automated 

feature extraction is especially beneficial in computer vision, where the diversity and 

complexity of visual information make manual feature engineering impractical and often 

insufficient [26]. 

 

To give a brief insight about Convolutional neural networks (CNNs), CNN stand as a crucial 

milestone in the history of machine learning, particularly within the realm of computer vision. 

Discovered and developed by Yann LeCun and his colleagues in the 1980s and 1990s, CNNs 

made significant contributions to understanding neural networks and their application to 

visual processing [27]. Specialized in grid-like data, such as images and videos, CNNs are 

designed to recognize spatial patterns using convolutional filters and pooling layers. Their 

ability to capture local and hierarchical features makes CNNs highly effective in object 

recognition, feature detection, and image classification [26]. The rise of CNNs has 

revolutionized the field of computer vision, enabling human-level performance across a wide 

range of visual tasks. Their importance in computer vision is evident in the success of 
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practical applications like facial recognition, video surveillance, autonomous driving, and 

many others. In summary, CNNs represent a fundamental tool in the machine learning 

arsenal, empowering machines to comprehend and interpret the visual world with 

unprecedented precision and capability. 

 

1.3.1 Deep Learning architectures applications in Computer Vision 

Due to the paramount importance of deep learning in the field of computer vision, several 

advanced architectures and methods have been developed for tasks such as image 

classification, object detection, and image segmentation. This section will explore these 

architectures, highlighting their innovations and impact on the field. 

 

Image classification is one of the most fundamental tasks in computer vision, where the goal 

is to assign a label to an input image. Deep learning models, especially CNNs, have become 

the standard for image classification due to their ability to learn hierarchical representations 

of visual data.  

For instance, AlexNet's victory in the 2012 ILSVRC highlighted the power of deep learning 

in this domain, reducing the top-5 error rate from 26% to 15.3% [26]. 

Following architectures like VGGNet and ResNet have improved upon this, achieving even 

lower error rates and demonstrating the robustness of deep learning for image classification 

tasks [28]. 

 

Object detection involves identifying and localizing objects within an image. Deep learning 

has significantly advanced this field with models like YOLO (You Only Look Once), SSD 

(Single Shot MultiBox Detector), and Faster R-CNN. YOLO, introduced by Redmon et al., 

offers real-time object detection by framing detection as a single regression problem, 

simplifying the process and increasing speed [29]. Faster R-CNN, developed by Ren et al., 
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introduces the Region Proposal Network (RPN) to generate high-quality region proposals, 

enhancing detection accuracy and efficiency [30]. These models are crucial for applications 

like autonomous vehicles, robotics, and security systems, where quick and accurate object 

detection is essential. 

 

 
Figure 11 - Examples of object detection results using the Faster R-CNN [30] 

 

Image segmentation involves partitioning an image into meaningful segments, often at the 

pixel level. This task is crucial for applications requiring precise object delineation, such as 

medical imaging, scene understanding, and augmented reality. U-Net, introduced by 

Ronneberger et al., has become a leading architecture for biomedical image segmentation 

due to its ability to perform well with limited training data and its innovative use of skip 

connections to capture both contextual and spatial information [31]. Mask R-CNN, 

developed by He et al., extends Faster R-CNN by adding a branch for predicting 



 34 

segmentation masks alongside bounding boxes, enabling instance segmentation and 

enhancing the ability to separate overlapping objects in an image [32]. 

 
Figure 12 - Cell tracking challenge segmentation using U-Net [31] 

The diversity of deep learning architectures available for computer vision tasks is a testament 

to the field's rapid evolution and the range of challenges it addresses. From image 

classification techniques like AlexNet, VGGNet, and ResNet, which have set benchmarks in 

recognizing objects, to advanced object detection methods such as YOLO, SSD, and Faster 

R-CNN, each architecture offers unique strengths tailored to different aspects of visual 

recognition tasks. Similarly, segmentation methods like U-Net and Mask R-CNN have 

revolutionized image analysis by enabling detailed object delineation and instance 

segmentation for applications ranging from medical imaging to scene understanding. 

 

The choice of a particular deep learning model depends on various factors including the 

specific task requirements, the need for accuracy versus speed, and the nature of the data. For 

real-time applications where both speed and efficiency are crucial, models like YOLO stand 

out due to their ability to perform object detection in a single pass, achieving high 

performance with rapid inference times. 
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In the following chapter, we will delve deeper into the YOLO architecture, exploring its 

evolution from the original version to the latest advancements. We will discuss how YOLO’s 

unique design features make it an ideal choice for real-time object detection in practical 

scenarios, and how it was selected for the specific needs of the project. 

 

1.4 YOLO 

Now, let's delve into YOLO (You Only Look Once) in detail, as it was chosen as the neural 

network for this project.  

 

YOLO is renowned for its real-time object detection capabilities and speed of 

implementation, making it an ideal choice for applications that require fast and accurate 

detection. Its unique approach to framing object detection as a single regression problem 

allows YOLO to predict bounding boxes and class probabilities directly from full images in 

one evaluation, significantly enhancing processing speed and efficiency.  

 

Being an object detection model, YOLO has an object detection model architecture which 

comprises three main components: the backbone, neck, and head. 
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Figure 13 - Modern object detector architecture [33] 

• Backbone: it is typically a pre-trained Convolutional Neural Network (CNN) that 

processes an input image to extract feature maps at various levels (low, medium, and 

high). These feature maps capture essential information about the image, such as 

edges, textures, and shapes. 

 

• Neck: the neck component integrates these feature maps using techniques like the 

Feature Pyramid Network (FPN). Path aggregation blocks in the neck combine the 

information from different feature maps to ensure that both high-resolution and low-

resolution details are utilized effectively. 

 

• Head: this component is responsible for classifying objects within the image and 

predicting their bounding boxes. It can consist of one-stage or dense prediction 

models, such as YOLO or Single-shot Detector (SSD). Alternatively, it can feature 

two-stage or sparse prediction algorithms like the R-CNN series [34]. 
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The YOLO (You Only Look Once) framework, introduced by Joseph Redmon et al. in their 

CVPR 2016 paper [35], revolutionized real-time object detection by proposing an innovative 

end-to-end approach. Unlike earlier methods, which relied on sliding windows with 

classifiers running numerous times per image, or more sophisticated two-step processes 

involving region proposals followed by classification, YOLO simplified the task by 

accomplishing detection in a single network pass by simultaneously identifying all bounding 

boxes in an image. This single-pass strategy enabled YOLO to predict detection outcomes 

directly through regression. 

 
Figure 14 - YOLO versions timeline [36] 

Over the years, several versions of YOLO have been developed, each introducing 

refinements and enhancements to improve performance and accuracy as shown in Figure 14. 

Each version of YOLO builds upon its predecessors, introducing new techniques and 

optimizations that address limitations and enhance capabilities. 

 

YOLOv1 revolutionized object detection by simultaneously identifying all bounding boxes 

in an image. It does this by dividing the input image into an S × S grid and predicting B 

bounding boxes for each grid cell, alongside confidence scores for C different classes. 

Each bounding box prediction includes five values Pc, bx, by, bh, and bw: 
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• Pc (confidence score): it indicates the model's confidence that the bounding box 

contains an object and the accuracy of the box itself. 

• bx and by: they represent the coordinates of the box's center relative to the grid cell. 

• bh and bw: they represent the height and width of the box relative to the entire image. 

The output of YOLO is a tensor of dimensions S × S × (B × 5 + C) [36]. 

 

Figure 15 - YOLOv1 model [33] 

This tensor can be optionally processed with non-maximum suppression (NMS) post-

processing technique which allows to reduce the number of overlapping bounding boxes and 

improve the overall detection quality by filterin out redundant and irrelevant bounding boxes, 

keeping only the most accurate ones. 
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Figure 16- Non-Maximum Suppression (NMS) application on an image [36] 

YOLOv1 achieved an average precision (AP) of 63.4 on the PASCAL VOC2007 dataset, 

which is a dataset that contains 20 classes (C = 20); a grid of 7 × 7 (S = 7) and at most 2 

classes per grid element (B = 2), giving a 7 × 7 × 30 output prediction. 

By framing object detection as a single regression problem, YOLOv1 was able to achieve 

significant improvements in speed and efficiency, laying the groundwork for the subsequent 

advancements in the YOLO series. 

 

While YOLO is known for its fast object detection capabilities, it does have certain 

limitations. One significant drawback is its higher localization error compared to state-of-

the-art methods like Fast R-CNN [33]. This can be attributed to several factors: YOLO's 

restriction to detecting a maximum of two objects of the same class within each grid cell, 

which limits its ability to accurately predict objects that are close to each other; its difficulty 

in predicting objects with aspect ratios that were not present in the training data; and the fact 

that YOLO learns from coarse object features due to the down-sampling process, which can 

reduce detection accuracy. 

YOLO models have consistently evolved to balance speed and accuracy, adapting to new 

benchmarks and expanding their applications.  
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Each version introduced innovative techniques to enhance performance, from anchor boxes 

in YOLOv2 to anchor-free models in later versions like YOLOX and YOLOv8.  

The progression from DarkNet to frameworks like PyTorch and PaddlePaddle reflects the 

adaptability and continuous improvement of YOLO models, making them suitable for a wide 

range of real-time object detection tasks.  

YOLOv8, with its segmentation mask capabilities, represents the latest in this series, 

emphasizing efficient, high-speed detection with strong performance metrics.  

I have provided a synthesis of the evolution of all the versions with their improvements and 

features in the table below. 

 
Table 1 - YOLO versions characteristics synthesis 

Version 
Release 

Date 
Key Features Improvements Performance Framework 

YOLOv1 2015 Single-stage detection 
Simplified detection 

pipeline 
Real-time detection DarkNet 

YOLOv2 2016 

Batch normalization, 

high-res classifier, 

anchor boxes 

Better convergence, 

reduced overfitting, 

high-res performance 

Detects over 9000 

categories 
DarkNet 

YOLOv3 April 2018 

Multi-scale feature 

extraction, logistic 

regression 

Improved accuracy and 

speed, anchor boxes 

with three sizes 

60.6% mAP at 20 

FPS 
DarkNet 

YOLOv4 April 2020 

Bag-of-freebies, bag-

of-specials, mosaic 

augmentation 

Enhanced accuracy and 

speed balance, 

DropBlock 

regularization 
 

Optimized for 

various applications 

 
 

DarkNet 

YOLOv5 June 2020 Developed in PyTorch 
User-friendly, frequent 

updates 

50.7% AP on MS 

COCO at high 

speed 

PyTorch 
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Version 
Release 

Date 
Key Features Improvements Performance Framework 

Scaled-

YOLOv4 
2021 

Scaling techniques, 

YOLOv4-tiny and 

YOLOv4-large 

Optimized for different 

hardware 

High accuracy with 

scalable 

performance 

PyTorch 

YOLOR May 2021 

Multi-task learning for 

classification, 

detection, pose 

Unified network, 

efficient past experience 

usage 

55.4% mAP on MS 

COCO at 30 FPS 
PyTorch 

YOLOX July 2021 

Anchor-free, MixUP 

and Mosaic 

augmentations 

Simplified training, 

separate classification 

and regression 

50.1% mAP on MS 

COCO 
PyTorch 

YOLOv6 
September 

2022 

Anchor-free, industrial 

application models 

Balance speed and 

accuracy for industrial 

use 

52.5% AP on MS 

COCO 
PyTorch 

YOLOv7 July 2022 

E-ELAN, model 

scaling, re-

parametrization 

State-of-the-art 

performance, reduced 

parameters and 

computation 

55.9% AP on MS 

COCO at 50 FPS 
PyTorch 

YOLOv8 
January 

2023 

Anchor-free, 

segmentation masks, 

mosaic augmentation 

Fast Non-maximum 

Suppression, efficient 

detection 

53.9% AP on MS 

COCO with 640-

pixel images 

PyTorch 

 

1.4.1 YOLOv8 

Ultralytics YOLOv8 represents the latest advancement in the YOLO series, building on the 

strengths of its predecessors while introducing new features to enhance performance and 

flexibility. As a state-of-the-art (SOTA) model, YOLOv8 is designed for exceptional speed 

and accuracy, making it ideal for various tasks, including object detection, tracking, instance 

segmentation, image classification, and pose estimation [37]. 
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Its advanced capabilities make it suitable for a wide range of applications, from industrial 

use cases to academic research. 

 
Figure 17 - Performance comparison of YOLO object detection models [37] 

As it is possible to notice in Figure 17, the left plot illustrates the relationship between model 

complexity and detection accuracy. Model complexity is measured by the number of 

parameters, while detection accuracy is represented by COCO mAP50-95 (mean Average 

Precision at IoU thresholds ranging from 50% to 95%). Each model version is represented 

by a distinct color. The right plot highlights the tradeoff between inference speed and 

accuracy for the same models. Inference speed is measured as latency on an A100 TensorRT 

FP16, and accuracy is again represented by COCO mAP50-95. Each model version and its 

size variants are distinguished by different colors and markers, respectively. 

 

The decision to use YOLOv8 for this project is driven by its superior instance segmentation 

capabilities, which are essential for applications requiring precise object localization and 

detailed analysis. Instance segmentation involves identifying and segmenting individual 

objects within an image, providing detailed masks or contours along with class labels and 

confidence scores for each object. This feature is particularly useful when precise knowledge 

of object shapes is necessary. By combining high accuracy with comprehensive object shape 

information, YOLOv8 is particularly well-suited for the project needs. 
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1.4.2 Challenges and limitations 

It is of paramount importance to highlight the significant challenges and limitations 

segmentation algorithms in computer vision face, impacting their performance and reliability 

in real-world applications. 

 

One of the primary challenges is dataset bias. Segmentation algorithms are highly dependent 

on the quality and diversity of the training data. If the dataset used for training is biased, 

containing images with limited diversity in terms of lighting, background, object types, and 

environmental conditions, the algorithm will likely perform poorly on real-world data that 

deviates from this narrow scope. This limitation makes it difficult to generalize models across 

different scenarios, leading to reduced accuracy and reliability. 

 

Occlusions occur when objects in an image are partially or fully blocked by other objects, 

making it challenging for segmentation algorithms to accurately identify and delineate the 

boundaries of the occluded objects [38]. This is particularly problematic in dynamic 

environments where objects frequently overlap, such as crowded urban areas or dense foliage 

in agricultural settings. Occlusions can significantly degrade the performance of 

segmentation algorithms, leading to incomplete or incorrect segmentation. 

 

Changes in environmental conditions, such as lighting, weather, and seasonal variations, pose 

another significant challenge. Segmentation algorithms trained under specific conditions may 

struggle to adapt to new or changing environments. For instance, shadows, reflections, and 

varying light intensities can alter the appearance of objects, leading to misclassifications. 

Similarly, weather conditions like rain, fog, and snow can obscure object features, making 

accurate segmentation difficult [39]. 
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These are just some examples of the challenges that computer vision problems may face. 

Hence, these collectively impact the performance of segmentation algorithms, limiting their 

effectiveness and generalizability in diverse real-world applications. Addressing these issues 

requires robust dataset collection, advanced preprocessing techniques, and the development 

of algorithms capable of adapting to varying conditions.  

By systematically tackling these challenges, researchers and practitioners can enhance the 

performance of computer vision systems and achieve more accurate and reliable results in 

practical scenarios. 
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Chapter 2.  

State of the art - Visual Robotic 

systems in agricultural context 

In the realm of agriculture, cutting-edge research is actively focused on advancing robotic 

systems integrated with sophisticated sensors designed to gather comprehensive crop data. 

These systems leverage state-of-the-art computer vision techniques and machine learning 

algorithms to address specific challenges. Among these, there are tasks such as object 

recognition, assessing plant health, classifying different plant species, diagnosing plant 

diseases, and optimizing plant life cycles. This chapter explores the current landscape of 

visual robotic systems in agriculture, highlighting their transformative potential in enhancing 

agricultural efficiency, sustainability, and precision farming practices. 

 

2.1 Robotics 

Robotics is the interdisciplinary field encompassing the design, construction, operation, and 

utilization of robots [40]. This field merges principles from engineering, computer science, 

and technology to create machines capable of autonomously or semi-autonomously 

performing tasks. Robots are designed to execute diverse functions, ranging from repetitive 

actions to intricate tasks requiring high precision and adaptability. 
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The origins of robotics can be traced back to ancient civilizations [40], but its modern 

development gained momentum during the Industrial Revolution with the advent of electrical 

engineering techniques enabling the operation of machines via small motors. 

 
Figure 18 – Agricultural robot 

Since the 2000s, there has been notable progress in the development of digitally programmed 

industrial robots equipped with artificial intelligence. In particular, the agricultural sector has 

witnessed a significant transformation with the advent of advanced robotics. From land 

preparation to harvesting, robotic systems have streamlined various farming processes, 

enhancing efficiency and productivity. These technological advancements have enabled 

farmers to manage large-scale operations with precision and reduced labor costs. 

 

2.2 Sensor-equipped robots  

In contemporary agriculture, two primary types of robots are commonly utilized: 

Autonomous Mobile Robots (AMRs) and Unmanned Aerial Vehicles (UAVs). These robots 

play crucial roles in tasks such as fruit picking, precision spraying, and soil management.  
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AMRs, as their name suggests, operate autonomously within agricultural environments, 

employing a diverse range of sensors to navigate and perform tasks effectively [41]. 

 

Unmanned Aerial Vehicles (UAVs) have significantly revolutionized precision agriculture. 

For instance, the DJI AGRAS MG-1P, developed by DJI, represents a notable advancement 

in aerial capabilities for agriculture. This octocopter is specifically designed for the precise 

application of liquid fertilizers, pesticides, and herbicides over large agricultural areas, 

utilizing omnidirectional radar systems for safe and efficient operation [42]. 

Moreover, UAVs equipped with uncooled thermal cameras can be used to gather detailed 

thermal images of crops. However, these uncooled thermal cameras can lead to lower 

precision due to the microbolometer not being stabilized to a constant temperature [43]. This 

can affect the accuracy of thermal images, but new calibration algorithms based on neural 

networks have been developed to improve measurement accuracy significantly. 

 
Figure 19 – (a) Unmanned aerial vehicle; (b) and uncooled thermal camera [43] 

On the other hand, Autonomous Mobile Robots (AMRs) are ground-based robots designed 

to autonomously perform various agricultural tasks. These robots integrate a range of sensors 

tailored for agricultural applications, including visual cameras for navigation and object 

recognition, GPS for precise positioning, LIDAR for mapping environments, and ultrasonic 

sensors for collision avoidance. 
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For example, the Cäsar robot developed by Raussendorf GmbH in Germany exemplifies 

AMR capabilities. It utilizes Real-Time Kinematic (RTK) technology for precise navigation 

and features ultrasonic sensors for collision avoidance during tasks such as soil fertilization, 

pest control, harvesting, and transportation [42]. 

 
Figure 20 - Cäsar robot [42] 

Another significant example is the Greenbot, equipped with a Four-Wheel Steering (4WS) 

system and collision detection sensors, enabling continuous fertilizing, plowing, and seeding 

operations safely in agricultural fields. 

 

2.2.1 Visual plant inspection 

Computer vision systems are integral to modern agricultural robots, enabling tasks such as 

plant detection, plant health assessment, and crop monitoring. For example, the eAGROBOT 

utilizes RGB cameras and artificial intelligence algorithms (K-means and neural networks) 

to identify pests in cotton and groundnut crops. It achieves high precision in disease 

identification, with accuracy ranging from 83% to 96% [42]. 

 

Additionally, the AgBot robot is still in the research stage but shows promise in agricultural 

applications [42]. Designed for use on corn farms, the AgBot applies fertilizers and 
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herbicides using a Two-Wheel Drive (2WD) system and features four distinct reservoirs for 

different types of herbicides and fertilizers. It employs a low-cost RGB camera and the Haar 

feature-based cascade classifiers machine learning algorithm to detect specific weed species 

such as Giant ragweed, Redroot pigweed, and Cocklebur. However, the low-cost camera used 

proved unsuitable for external use, indicating the need for further research and 

improvements. 

 
Figure 21 – (a) VINBOT; (b) VineRobot [42] 

Further advancements in agricultural robotics include projects funded by the European 

Union’s Seventh Framework Program, such as VINBOT and VineRobot. VINBOT uses 

Convolutional Neural Networks (CNN) to detect grapes, compute the area of grape 

occupation in images, and estimate their respective weight in kilograms [42]. VineRobot 

monitors parameters such as grape yield, vegetative growth, vineyard water status, and grape 

composition, using various advanced techniques [42]. 

 

Thermal imaging has been used for years in agriculture and has also found significant 

applications in mobile robotics. For instance, in forest management, thermal imaging 

combined with deep learning has been employed to detect tree trunks for tasks such as 

inventory and autonomous navigation. A recent study used deep learning models on a dataset 

of visible and thermal images to improve the accuracy of trunk detection, highlighting the 

potential of thermal imaging to enhance robotic perception systems in forestry [44]. 
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Figure 22 - Robotics platforms used to acquire forest images [44] 

Both RIPPA and Ladybird robots use hyperspectral and thermal cameras along with 

RTK/GPS/INS systems to manage weeds and enhance crop health through targeted herbicide 

spraying. The spectral data helps in assessing plant health and administering appropriate 

treatments [42]. 

 
Figure 23 - (a) RIPPA, (b) Ladybird [42] 

2.2.2 Water stress assessment 

Among the various tasks that robots can perform in agriculture, water stress assessment is 

crucial for evaluating plant health and conserving water resources. The key value used to 

assess the plant's condition is the Crop Water Stress Index (CWSI). 
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This vaue is based on the concept that the temperature of plant leaves increases when they 

are under water stress. CWSI values range from 0 (no stress) to 1 (maximum stress), 

providing a clear indication of the water status of crops. This index is especially useful for 

irrigation management, allowing farmers to optimize water usage and improve crop yield and 

quality. 

 

Related to this aim, the study conducted in commercial vineyards in Douro Superior, 

Portugal, during the 2019 and 2020 seasons focuses on using the VineScout, a ground robot 

developed under the H2020 EU project, to assess and map vineyard water status using 

thermal infrared radiometry. The robot recorded canopy temperature (Tc) values with an 

infrared radiometer, alongside environmental data (air temperature, relative humidity, and 

atmospheric pressure) and NDVI measurements with a multispectral sensor. These data were 

used to develop spatial-temporal variation maps, helping to reduce water consumption and 

implement efficient irrigation strategies. The promising results indicate the need for further 

studies to enhance the accuracy and robustness of predictive models for sustainable 

viticulture [45]. 

 
Figure 24 – (a) Vinescout VS-3 autonomous ground vehicle used to monitor grapevine water status; (b) Detail of the crop 

sensing unit used for on-the-go measurement of water status [45] 
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Another way to compute the water stress level of plants is through the use of of multispectral 

imagery. Hence, the research conducted at CphFarmHouse in Denmark aimed to develop a 

widely applicable methodology for the early detection of water and nitrogen stress through 

the use of low-altitude multispectral imagery [46]. Multispectral reflectance systems were 

utilized to measure crop reflectance, which increased significantly due to water and nitrogen 

deficiencies. The study focused on the Normalized Difference Vegetation Index (NDVI) and 

the Photochemical Reflectance Index (PRI), which showed significant differences between 

control and stress treatments. These findings suggest that multispectral images can be another 

effective tool for rapidly estimating the physiological status of plants, highlighting spatial 

variation in vertical farms. 

 
Table 2 - Robotic applications 

Task Robot 
Final 

Application 
Sensors 

Sensors Used to 

Perform the Task 

Computer 

Vision 

Algorithm 

Land 

Preparation 
Cäsar 

Soil 

fertilization 
RTK, ultrasonic 

RTK for navigation, 

ultrasonic for 

collision avoidance 

None 

Sowing Lumai-5 Wheat sowing 
Speed, angle, 

pressure 

Speed, angle, and 

pressure sensors for 

sowing accuracy 

None 

Disease 

Identification 
eAGROBOT 

Pest 

identification 

in crops 

RGB camera 
RGB camera for 

image acquisition 

K-means, Neural 

Networks 

Weed Control 
RIPPA, 

Ladybird 

Weed 

management 

Hyperspectral, 

thermal, 

RTK/GPS/INS 

Hyperspectral and 

thermal cameras for 

weed detection 

None 
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Task Robot 
Final 

Application 
Sensors 

Sensors Used to 

Perform the Task 

Computer 

Vision 

Algorithm 

Harvesting Vegebot 
Lettuce 

harvesting 
RGB cameras 

RGB cameras for 

lettuce identification 
R-CNN 

Harvesting Noronn AS 
Strawberry 

harvesting 
RGB-D camera 

RGB-D camera for 

strawberry detection 
R-CNN 

Yield 

Estimation 
Shrimp 

Apple yield 

estimation 

RGB cameras, INS, 

GPS 

RGB cameras for 

image capture, INS 

and GPS for location 

MLP, CNN 

Vineyard 

Monitoring 

VINBOT, 

VineRobot 

Grape yield 

and health 

monitoring 

RGB, NIR, 

thermography 

RGB and NIR 

cameras for 

monitoring, 

thermography for 

health assessment 

CNN, 

Chlorophyll-

based 

fluorescence, 

machine vision 

Water Stress 

Assessment 
VineScout 

Vineyard 

water status 

mapping 

Thermal infrared 

radiometer, 

environmental 

sensors, 

multispectral 

Thermal infrared 

radiometer for Tc, 

environmental 

sensors (Tair, RH, 

AP), NDVI for 

mapping 

Partial Least 

Squares (PLS) 

regression 

 

The analysis of various agricultural robots in the table highlights the extensive use of RGB 

and RGB-D cameras for object detection, segmentation, and classification tasks. These 

cameras have been consistently employed across different robotic systems, such as Vegebot 

for lettuce harvesting and the Noronn AS robot for strawberry harvesting. The similarity in 

their application underscores the reliability and effectiveness of RGB and RGB-D cameras 

in visual recognition tasks within agricultural environments. The computer vision algorithms 

typically used for these purposes include well-established techniques like Region-based 
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Convolutional Neural Networks (R-CNN), K-means clustering, and artificial neural 

networks, which have proven successful in accurately identifying and classifying objects. 

 

Furthermore, the integration of thermal imaging in agricultural robots has opened new 

avenues for health assessment and weed detection. For instance, the RIPPA and Ladybird 

robots leverage hyperspectral and thermal cameras to assess plant health and manage weeds 

through targeted herbicide spraying. This use of thermal imaging extends beyond simple 

detection, providing valuable data for making informed decisions about crop health and 

management. By analyzing thermal signatures, these robots can detect stress in plants, 

identify specific weed species, and ensure precise application of treatments, thereby 

enhancing overall agricultural productivity and sustainability. 

 

All things considered, while RGB and RGB-D cameras remain fundamental in agricultural 

robotics for object detection and classification, the incorporation of thermal imaging 

introduces advanced capabilities for health assessment and targeted interventions. These 

combined technologies represent significant strides in the development of intelligent 

agricultural systems, paving the way for more efficient and sustainable farming practices. 
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Chapter 3.  

System Definition 

In this chapter, we will explore the primary components of the system designed for our study, 

focusing on both the data acquisition sensors and the design of the overall hardware setup. 

The objective of this thesis is to develop an easily installable sensor system for agricultural 

robots capable of measuring plant water stress in real time. To address this objective, we 

conducted an analysis of the available technologies and decided to use these specific sensors. 

This chapter is divided into two main sections: the first section addresses the technical 

specifications and functionalities of the two types of cameras used in the system, while the 

second section delves into the design and configuration of the entire hardware setup. 

 

3.1 Cameras 

3.1.1 Intel Realsense camera D455/D457 

RGB-D cameras, also known as depth cameras, are highly beneficial in agriculture when 

mounted on agricultural robots or tractors. These cameras provide detailed crop information, 

assisting farmers in making better-informed decisions and optimizing their farming practices. 

Unlike standard RGB cameras that only capture color information, RGB-D cameras also 

capture depth information through infrared sensors. These sensors measure the distance 

between the camera and each pixel, generating a depth map. This depth map can then be used 

to create a 3D model from the captured two-dimensional image, offering valuable insights 

for various agricultural applications [47]. 
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These cameras are also very useful in robotics and autonomous devices like drones; 

so these features make them suitable for use onboard an agricultural vehicle. 

In 2015, Intel introduced advanced RGB-D sensors with improved subpixel disparity 

precision, enhanced lighting capabilities, and outdoor functionality. Building on this 

technology, Intel developed the RealSense D400 series, which uses stereo vision for depth 

measurement [48]. This system includes a left imager, a right imager, and an optional infrared 

projector. The projector emits an invisible infrared pattern, and the depth is calculated by 

correlating features between the two images to determine pixel-wise depth values. 

 

Among this family of sensors, an example of a stereo camera can be the Intel Realsense 

D455 or D457. 

 
Figure 25 - Intel Realsense D457 

 

In particular, the Intel RealSense is a USB-powered camera that includes depth 

sensors and an RGB sensor. This camera has attracted increasing interest since it is 

cost-effective and can work under different ambient light conditions. 

 

3.1.2 Optris Xi 400 thermal camera 

Thermal remote sensing is a sophisticated imaging technology that converts the infrared 

radiation emitted by objects into visible images, known as thermograms or thermal images. 
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This method, which can be implemented through portable hand-held devices or advanced 

systems mounted on planes and satellites, is non-invasive, non-contact, and non-destructive. 

It is used to analyze the thermal properties of objects and environments, making it a valuable 

tool for various fields where heat changes are significant [49]. 

As explained in the state of art, the technology is employed for numerous agricultural tasks 

including monitoring plant health in nurseries and greenhouses, scheduling irrigation, 

detecting diseases, estimating fruit yields, evaluating the maturity of fruits, and identifying 

bruises on produce. 

Among the thermal cameras, the Optris Xi 400 is a specialized thermal imaging camera 

designed for condition monitoring and early fire detection.  

 
In the project, the Optris Xi 400 camera was selected for its ability to measure the temperature 

of crops, which is crucial for assessing their water stress levels. This measurement data is 

used to apply the Crop Water Stress Index (CWSI) formula using Python, enabling real-time 

determination of plant hydration needs. 

 

3.1.3 Cameras characteristics and comparison 

RGB-D cameras, like the Intel RealSense D455 and D457, capture both color (RGB) and 

depth information. These cameras provide a comprehensive view of the scene by combining 
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high-resolution visual images with depth data, which can be used for tasks such as 3D 

mapping and object detection [50]. 

For this project, the Intel RealSense D455 and D457 cameras were used to collect RGB and 

depth data. The project initially started with the D455, but due to a hardware issue, it was 

replaced with the D457. While the depth data from these cameras was collected, it was not 

directly utilized for the final analysis of crop water stress. Instead, the primary focus was on 

the RGB images to visually assess plant conditions.  

 

The table below shows the characteristics of each camera allowing an easy comparison and 

a synthesis of their characteristics [50], [51]. 

 
Table 3 - Comparative Table: Optris Xi 400, Intel RealSense D455/D457 

Feature Optris Xi 400 Intel RealSense D455 Intel RealSense D457 

Camera Type 
Thermal Infrared 

Camera 

Depth Camera with 

RGB and IR Sensors 

Depth Camera with 

RGB and IR Sensors 

Resolution (Thermal) 382 x 288 pixels 
1280 x 720 pixels 

(Depth) 

1280 x 720 pixels 

(Depth) 

Resolution (RGB) 1280 x 720 pixels (VIS) 
1920 x 1080 pixels 

(RGB) 

1920 x 1080 pixels 

(RGB) 

Frame Rate (Thermal) 80 Hz 30 fps (Depth & RGB) 30 fps (Depth & RGB) 

Frame Rate (RGB) 30 Hz 30 fps (RGB) 30 fps (RGB) 

Temperature Range -40°C to 900°C Not Applicable Not Applicable 

Depth Range Not Applicable 0.4 m to 10 m 0.4 m to 10 m 

Depth Accuracy Not Applicable 
±2% of measured 

distance 

±1% of measured 

distance 
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Feature Optris Xi 400 Intel RealSense D455 Intel RealSense D457 

IR Camera Resolution 
640 x 480 pixels (for 

VIS) 
640 x 480 pixels 640 x 480 pixels 

RGB Camera 

Resolution 
1280 x 720 pixels 1920 x 1080 pixels 1920 x 1080 pixels 

Field of View (Depth) 
80° x 54° (Wide), 53° x 

38° (Narrow) 
87° x 58° 87° x 58° 

Field of View (RGB) 65° 69.4° x 42.5° 69.4° x 42.5° 

Pixel Size (80° x 54° 

Lens) 

3.4 mm at 0.8 m 

distance 
N/A N/A 

Pixel Size (53° x 38° 

Lens) 

2.1 mm at 0.8 m 

distance 
N/A N/A 

Measurement Width 

(80° x 54° Lens) 
~1.3 m at 0.8 m distance N/A N/A 

Measurement Width 

(53° x 38° Lens) 
~0.8 m at 0.8 m distance N/A N/A 

Focus Mechanism 

Manual Motorized 

Focus (Software 

Control) 

Fixed Fixed 

IP Rating IP66 N/A IP65 

Environmental 

Operating Range 
-40°C to 50°C Not Specified Not Specified 

Connectivity USB 3.0, PoE USB 3.1 Type-C USB 3.1 Type-C 

Dimensions (L x W x 

H) 

135 mm x 80 mm x 80 

mm 

130 mm x 50 mm x 30 

mm 

130 mm x 50 mm x 30 

mm 

Weight ~1.2 kg 145 g 145 g 
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For the project’s purpose, it is important to highlight the difference between thermal and 

RGB-D camera in terms of resolution. Hence, the D455 and D457 cameras provide high-

resolution RGB images at 1920 x 1080 pixels, which are crucial for detailed visual 

inspections of crops. In contrast, the Optris Xi 400 thermal camera offers a thermal 

resolution of 382 x 288 pixels, vital for detecting small temperature differences in the crop 

canopy and essential for accurate water stress analysis. This difference in resolution is 

significant for the implementation and data fusion process, presenting a challenge due to 

the varying resolutions. 

 

The D455 and D457 cameras, with a range from 0.4 to 10 meters, allow for precise spatial 

measurements and 3D modeling of the crop canopy. The Xi 400, on the other hand, excels at 

close-range measurements, functioning optimally at distances from 0.3 to 0.8 meters. 

 

Lens options play an important role in the functionality of these cameras. The Xi 400 offers 

different lenses, such as an 80° x 54° lens for broader views and a 53° x 38° lens for higher 

resolution. For the project, the narrower 53° x 38° lens was chosen to maintain high 

resolution and minimize distortion while measuring temperatures at close distances. 

Meanwhile, the RGB cameras perform well at longer distances, up to 10 meters. 

 

In terms of environmental protection, the D457 camera has an IP65 rating, making it resistant 

to dust and capable of withstanding low-pressure water jets, suitable for both outdoor and 

greenhouse conditions. Although the D455's IP rating isn't explicitly stated, it is designed for 

similar outdoor applications. The Xi 400 surpasses both with an IP66 rating, ensuring it is 

dust-tight and can endure powerful water jets, providing superior protection in harsh 

environments. 
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To sum up, the Intel RealSense D455/D457 cameras were utilized for their high-resolution 

RGB imaging and depth data capabilities, though the depth data was not used for the final 

analysis. Their main role was to provide visual assessments of crop conditions. In contrast, 

the Optris Xi 400 was crucial for its high-resolution thermal imaging and broad temperature 

range, which were directly used for calculating CWSI and assessing crop water stress. 

 

By integrating the visual data from the RealSense cameras with the thermal data from the 

Optris Xi 400, the project achieved a comprehensive analysis of crop conditions, which was 

fundamental for effective irrigation management. 

 

3.2 Hardware setup 

In the realm of computer vision and multimodal sensor fusion, the design and configuration 

of camera setups are crucial for achieving optimal data acquisition and system performance. 

Various strategies have been explored in the literature to align different sensors for specific 

applications. 

 

For instance, Spremolla et al. (2020) describe a hardware setup where an RGB-D sensor and 

a thermal camera are mounted side-by-side using a rigid support structure. This configuration 

allows for simultaneous capture of RGB, depth, and thermal images, which is essential for 

applications like person tracking where data from multiple modalities must be synchronized 

and fused effectively [52]. 

 

Similarly, Vidas et al. (2017) present a prototype that features a hand-held RGB-D camera 

mounted in conjunction with a thermal infrared camera. Their setup emphasizes the 

importance of geometric and temporal calibration between the sensors to ensure accurate 3D 

thermal mapping of building interiors. Their work illustrates that the alignment of the sensors 
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and the management of timing irregularities are key considerations in multimodal sensor 

configurations [53]. 

 

These examples reflect common practices in the field, where sensors are often mounted side-

by-side or in a fixed arrangement to facilitate the integration of various types of data, such as 

RGB, depth, and thermal information. 

3.2.1 Design of the setup 

In our project, the team designed a unique camera configuration to meet the specific needs 

of our agricultural robotics application. After an in-depth review of existing methods and a 

thorough assessment of our project's requirements, we opted for a vertical stacking 

arrangement for the cameras. 

 

Our specific setup includes: 

• Camera 1: Optris xi 400 Thermal Camera placed at the top. 

• Camera 2: Intel RealSense D455/D457 positioned directly below Camera 1. 

 
Figure 26 - Setup project design 

 

By aligning the cameras in this manner, we aim to achieve several key advantages: 

• Improved spatial coherence: The vertical arrangement allows the cameras to share a 

common optical axis, which helps maintain spatial coherence between the thermal 
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and RGB-D data. This is particularly important because the Optris xi 400 thermal 

camera has a smaller resolution compared to the Intel RealSense D455/D457. If the 

cameras were positioned horizontally, the disparity in resolution could lead to 

challenges in real-time data synchronization and integration. By stacking the cameras 

vertically, we avoid potential misalignments and ensure that the thermal and RGB-D 

images correspond more accurately in the same scene. 

• Effective data integration: The vertical setup facilitates better alignment of the fields 

of view for simultaneous image capture. This alignment is crucial for the effective 

fusion of RGB-D and thermal data, allowing us to combine high-resolution RGB-D 

images with the thermal data captured in a complementary manner. 

• Compact and functional design: This configuration supports a more compact and 

streamlined design for the robot’s turret. By stacking the cameras, we reduce the 

overall footprint of the camera system, which is beneficial for mounting on the mobile 

agricultural robot. The design also incorporates an adjustable mechanism that allows 

the setup to be tilted, providing flexibility for different viewing angles and operational 

scenarios (Figure 27). 

 

 
Figure 27 -  Cameras rotation mechanism 
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This vertical stacking configuration thus effectively supports our application’s goal of 

capturing high-resolution images for the monitoring and analysis of plants in both outdoor 

fields and indoor greenhouses. 

3.2.2 Realization of the setup 

To bring our camera configuration design to life, we utilized 3D printing technology to create 

an initial prototype. This prototype served as a crucial first step in our development process, 

allowing us to conduct experiments and evaluate the effectiveness of our design before final 

production. 

 

The 3D printed prototype was crafted to test the feasibility of the design and to make 

necessary adjustments. This iterative process involved creating a physical model of the 

camera mount, which was then used for a series of tests to assess its performance in real-

world conditions. 

 

 
Figure 28 - 3D printed prototype of the cameras configuration 



 65 

The prototype allowed us to: 

• Verify design concepts: The initial prototype enabled us to validate the design 

concepts and ensure that the theoretical models translated effectively into a physical 

structure. 

• Test functionality: We used the prototype to test the mechanical features of the setup, 

including the tilt adjustment mechanism and camera alignment, to confirm that the 

design met our operational requirements. 

• Identified future improvements: Through testing, we gained insights into potential 

areas for future improvements. Although we did not yet make these changes, the 

feedback we collected will guide future refinements to optimize the camera mount 

for our application. 
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Chapter 4.  

Methodology 

This section outlines the systematic approach used to gather, annotate, and integrate datasets 

crucial for training an object recognition model focused on agricultural applications. It begins 

with dataset acquisition and annotation using Roboflow. 

Training utilized transfer learning with YOLOv8 on Google Colab's GPU, optimizing model 

performance across various plant types and environments.  

A critical aspect of this study involves sensor and data fusion. Calibration of RGB and 

thermal cameras within the ROS framework ensured precise data fusion for real-time 

agricultural monitoring and analysis. 

By detailing these methodologies, this section underscores their significance in ensuring the 

accuracy and validity of the study's findings. 

 

4.1 Dataset acquisition, annotation, creation  

The first step in the project involved acquiring and preparing datasets for training the object 

recognition model. Various types of plant data and imagery were worked with, including 

close-up shots of individual leaves, images of entire plants, and specific plant varieties such 

as vineyards, broad beans, and lettuce. 

The creation of the datasets, annotation of individual images, and the split into training, 

validation, and test sets was done using Roboflow. Roboflow is a tool that provides extensive 

support for image annotation. It streamlines the process by offering an intuitive interface for 

labeling and organizing images. However, it is necessary to manually refine the mask 

contours of each image to ensure accuracy and precision. This manual refinement is crucial 
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for achieving high-quality annotations, which in turn enhances the performance of the object 

recognition model. 

 

Initially, publicly available online datasets of plant images were searched for. Several 

datasets of leaves were found and combined to create a comprehensive dataset of individual 

leaves. A similar process was applied to vineyard images, creating a specific dataset for vine 

leaves. After annotation, the datasets were uploaded and used for training the neural network. 

 

 
Figure 29 - Leaf Dataset on Roboflow 

Throughout the months, several field experiments were conducted to verify and test the 

progress of the project, ensuring it was heading in the right direction. 
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Figure 30 – Experiments timeline 

 

On field acquisition 1, fieldwork was conducted to collect real-world images using an RGB 

camera. Despite it being the off-season for many plants, images of vine leaves in a vineyard 

were successfully captured. During this session, it was discovered that the D455 camera had 

a hardware issue causing a purple hue due to sunlight interference. Nevertheless, the images 

were used to test the pre-trained network on the vine dataset, which produced promising 

results. 

 
Figure 31 - Grapevine dataset on Roboflow 
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Figure 32 - Vine segmentation test through YOLOv8 (HW error of camera D455) 

The process was repeated for various types of plants, including individual leaves. 

Experiments for single leaves were conducted both in laboratory settings and in the fields to 

ensure a diverse and robust dataset. 

 

Figure 33 - Leaves segmentation test with YOLOv8: (a) laboratory, (b) field 

During field acquisition 2, another field was visited to collect images of broad bean plants, 

which grow in bush-like formations. Using a cart-mounted camera, data was captured and 

photos and videos were saved. A new dataset was then created from these images, which 

were carefully annotated and used to train the neural network. 
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Figure 34 - Setup images acquisitions on field 

In response to the unresolved hardware issues with the D455 camera, a decision was made 

to procure a new D457 camera to prevent future development problems in the project. 

 

During field acquisition 3, images of lettuce plants in a greenhouse were collected at another 

university near Barcelona. Additional online images of lettuce had been found by this time, 

enabling the testing of a dual-camera system with a network trained on this expanded dataset. 

This test was successful and validated our approach. 
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Figure 35 – Greenhouse test:(a) Lettuce realtime segmentation with YOLOv8; (b) corresponding thermal image realtime 

Finally, during field acquisition 4, a final field test of the dual-camera system on lettuce plants 

was conducted. Various types of lettuce were discovered and new images were captured to 

further enrich and improve the dataset, with the aim of enhancing the system's performance. 

 
Figure 36 - Lettuce segmentation  with YOLOv8 (field experiment 4) 

Throughout this process, the datasets were meticulously divided into training, validation, and 

testing sets to ensure a balanced and effective training regimen for the neural network. This 

iterative process of acquiring, annotating, and training on diverse plant datasets was crucial 

in building a robust and comprehensive dataset, thereby improving the accuracy and 

reliability of our object recognition model. 
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4.2 Training YOLOv8 

Once the datasets were prepared, YOLOv8 neural network was trained using Google Colab's 

GPU resources, which are available for free. Leveraging the computational power of Google 

Colab allowed for efficient and effective training of the neural network. The training process 

primarily relied on transfer learning, which involves using pre-trained weights and fine-

tuning them on our specific datasets. 

 

The training process involved several steps: 

 

1. Uploading the dataset: First, the annotated datasets were uploaded from Roboflow to 

Google Colab. 

 

2. Transfer Learning: the pre-trained weights available online were used to initialize the 

YOLOv8 model. This method leverages the pre-existing knowledge encoded in these 

weights, providing a strong starting point for our training process. 

 

3. Custom training: the training script used was: 

 
Figure 37 - Code script explanation 

This script performs custom training on the YOLOv8 model for the segmentation task 

where: 

o task=segment: specifies that the task is segmentation. 

o mode=train: indicates that the model is in training mode. 
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o model=yolov8m-seg.pt: it uses pre-trained weights for the YOLOv8 medium-

sized segmentation model. 

o data={dataset.location}/data.yaml: it points to the dataset configuration file, 

which includes paths to the training and validation data. 

o epochs=150: specifies the number of training epochs. 

o imgsz=640: sets the input image size for the model. 

 

4. Fine-tuning the model: During training, the number of epochs were primarily adjusted 

to optimize performance. Given the transfer learning approach, this iterative process 

involved monitoring the loss functions and evaluation metrics to ensure the model 

was learning effectively without extensive parameter adjustments. 

 

5. Evaluating the performance: The evaluation was done using: 

o mode=val: to validate the model using the validation dataset, ensuring it 

generalizes well to unseen data. 

o mode=predict: to test the model's performance on new images, verifying its 

practical application in real-world scenarios. 

 

Using transfer learning significantly accelerated the training process, as the model started 

with a strong foundation provided by the pre-trained weights. The use of Google Colab’s 

GPU resources was instrumental in speeding up the training process, allowing for more 

iterations and better model optimization. Each iteration of training helped improve the 

model's accuracy, making it well-suited for our object recognition and segmentation tasks in 

agricultural environments. 
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4.3 Camera calibration 

Calibration is a fundamental step in any vision-based system, especially when working with 

multiple sensors like RGB and thermal cameras. Calibration ensures that the data captured 

by different sensors can be accurately aligned and interpreted in a unified manner. This 

process is critical for applications requiring precise image fusion, such as our agricultural 

monitoring system where we combine RGB and thermal data to calculate metrics like the 

Crop Water Stress Index (CWSI). 

 

Calibrating the cameras was a crucial and challenging part of the project. The goal was to 

calibrate both the RGB and thermal cameras to ensure accurate and synchronized data 

capture. This process was particularly difficult because finding a checkerboard pattern that 

is visible to both RGB and thermal cameras is not straightforward. Environmental factors 

like lighting and heat sources further complicated the visibility and accuracy of the 

checkerboard pattern. Despite these challenges, successful calibration is essential for 

achieving high-quality, reliable data from multi-sensor systems. 

 

To streamline data acquisition and processing, the cameras were operated through the Robot 

Operating System (ROS). This integration helped manage the complexity of the calibration 

process and ensured that the captured data could be effectively used for precise image fusion 

and analysis. 

 

4.3.1 Calibration process 

To address these challenges, a series of steps were taken involving custom calibration scripts 

and specific environmental conditions: 
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• Custom calibration scripts in ROS: 

ROS (Robot Operating System) scripts were developed to handle the calibration 

process, which streamlined data acquisition and processing from both cameras. 

The ROS framework facilitated the synchronization and real-time data handling 

necessary for effective calibration. 

 

• Checkerboard design and setup: 

A thick cardboard with an A4-sized black and white checkerboard pattern was chosen 

to be used after some tests with other kind of materials. 

The natural sunlight served as a powerful and immediate heat source, making the 

checkerboard visible to both RGB and thermal cameras. 

 

Figure 38 - Calibration process: images acquisition in the sun 

• Calibration procedure: 

the checkerboard was positioned in the field of view of both cameras under natural 

sunlight. The custom ROS scripts captured images from both cameras 

simultaneously. The images were processed to detect the checkerboard corners, and 

the data was used to compute the homography matrix (H). 
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Figure 39 - Checkerboard pattern detection 

• Homography matrix (H): 

The homography matrix is essential for transforming and aligning one image to match 

the other. This matrix ensures that the corresponding points in the RGB and thermal 

images overlap correctly, enabling accurate data fusion and analysis. 

 

Through this meticulous calibration process, accurate alignment between the RGB and 

thermal cameras was achieved, laying the foundation for reliable and precise image fusion. 

This calibration was pivotal for the subsequent steps in the project, ensuring that the data 

captured by both cameras could be effectively used for real-time agricultural monitoring and 

analysis. 
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4.4 ROS - System Implementation 

The implementation of the camera systems through ROS involved several crucial steps and 

coding tasks to ensure real-time data processing and integration.  

After the calibration process, various tests were conducted to verify the accuracy of the 

homography matrix (H) obtained from the calibration. 

Initially, scripts were written to perform an overlay of the topics generated by the two 

cameras, specifically overlaying the thermal image onto the RGB image. This step was 

essential to confirm that the homography matrix was functioning correctly and that the 

images were properly aligned. 

 

Figure 40 - Testing ROS topics Overlay with H matrix 

Once ensured that the overlay made sense and the matrix H was accurate, a ROS node for 

further processing proceeded to be developed. This node was designed to interpret the pixel 

data based on the segmentation provided by the YOLOv8 network. Specifically, the 

YOLOv8 network detects and segments the plant in the RGB image. The ROS node then 

maps the corresponding thermal image pixels based on this segmentation mask. 

Subsequently, additional tests were performed to ensure the ROS node could correctly 

identify the segmented pixels in the RGB image and match them with the corresponding 

thermal pixels. This real-time processing enabled the accurate calculation of the average 

temperature value and the Crop Water Stress Index (CWSI) for the plants. 
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Figure 41 - Testing Pixel Selection for Mean Temperature Computation 

The implementation ensured that the system could perform these tasks efficiently on a robotic 

platform, making it a powerful tool for agricultural monitoring and analysis. To conclude, 

through this implementation, YOLOv8 effectively detects and segments plants in RGB 

images. Subsequently, custom ROS code maps this segmented data onto thermal images, 

enabling real-time computation of average temperature and Crop Water Stress Index (CWSI). 
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Chapter 5.  

Results 

This section presents the quantitative and qualitative results from experiments that cover a 

range of datasets and real-time field tests. The focus is on demonstrating the performance of 

YOLOv8 model across various datasets and assessing the effectiveness of the real-time Crop 

Water Stress Index (CWSI) calculation system in practical agricultural scenarios. 

 

5.1 Quantitative analysis 

The advanced YOLOv8 framework was employed for image segmentation tasks, utilizing 

transfer learning techniques to adapt pre-trained models to specific datasets. This section 

presents the training and validation results of the YOLOv8 segmentation models, showcasing 

their performance across different datasets. 

  

Each model's effectiveness was assessed through several key metrics, which are explained 

below: 

• Box loss: This metric evaluates the alignment between predicted bounding boxes and 

the ground truth boxes. Lower box loss values signify better performance in terms of 

accurately locating and sizing objects within images. 

• Segmentation loss (Seg loss): This loss quantifies the accuracy of the predicted 

segmentation masks. A lower segmentation loss indicates that the model is more 

effective at defining the boundaries of objects. 
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• Recall (B): Recall for bounding boxes measures the proportion of actual objects that 

were detected by the model. A higher recall value reflects the model's ability to detect 

a larger proportion of the objects present in the dataset. 

• Precision (B): Precision for bounding boxes assesses the proportion of correctly 

identified bounding boxes out of all the bounding boxes predicted by the model. 

Higher precision indicates that the model's predictions are more accurate, with fewer 

false positives. 

• Mean Average Precision at 50% overlap (mAP50(M)): This metric evaluates the 

mean average precision for object classification at an Intersection over Union (IoU) 

threshold of 50%. It provides an overall measure of the model's accuracy for 

classifying objects at this level of overlap. 

• Mean Average Precision across IoU thresholds from 0.5 to 0.95 (mAP50-95(M)): 

This metric assesses the mean average precision across multiple IoU thresholds, 

ranging from 0.5 to 0.95. It offers a comprehensive evaluation of the model's 

performance across different levels of overlap between predicted and ground truth 

bounding boxes. 

 

The training and validation processes were conducted using several custom datasets, 

followed by evaluation on unseen test images.  

 

5.1.1 Grapevine Dataset 

The YOLOv8m-seg model, trained and validated over 150 epochs, achieved the 

following results: 
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Figure 42 - Training and Validation results for Grapevine 

 

• Model: YOLOv8m-seg 

• Training and validation: 150 epochs 

• Metrics: 

o mAP: 91.2% 

o Precision: 101.9% 

o Recall: 95.0% 

 

 
 

 

Figure 43 - Vine segmentation: validation pictures results 

The model achieved high precision and recall, indicating strong performance in detecting and 

segmenting vine leaves. The following image displays the training and validation results and 

showcases the model's predictions on unseen test images, demonstrating its effectiveness. 
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Figure 44 - Examples of vine segmentation prediction on unseen data 

5.1.2 Lettuce Dataset 

Similarly, the YOLOv8m-seg model, also trained and validated for 150 epochs, demonstrated 

strong performance: 

 
Figure 45 - Training and Validation results for Lettuce 
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• Model: YOLOv8m-seg 

• Training and validation: 150 epochs 

• Metrics: 

o mAP: 98.4% 

o Precision: 98.3% 

o Recall: 100.0% 

 

 

 

 

 

The model performed exceptionally well on the lettuce dataset, achieving near-perfect recall. 

This demonstrates its ability to accurately detect and segment lettuce plants. The results for 

the training, validation, and test phases are presented below. 

 

Figure 47 - Examples of lettuce segmentation prediction on unseen data 

  

Figure 46 - Lettuce segmentation: validation pictures 
results 
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5.1.3 Leaves Dataset 

Utilizing the YOLOv8n-seg (Nano) model, trained for 150 epochs, yielded outstanding 

results: 

 
Figure 48 - Training and Validation results for Leaves 

 

• Model: YOLOv8n-seg 

• Training and validation: 150 epochs 

• Metrics: 

o mAP: 100.0% 

o Precision: 117.0% 

o Recall: 99.2% 

 

 

 

 

 

 

 

Figure 49 - Leaf segmentation: validation pictures results 
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Using the YOLOv8n-seg (Nano) model for the leaves dataset, the model achieved perfect 

mAP and very high precision and recall. This model, despite having fewer parameters, was 

highly effective for this specific task. 

 

Figure 50 - Examples of leaf segmentation prediction on unseen data 

 
Table 4 - YOLOv8 results 

Dataset Model Training & Validation Epochs mAP Precision Recall 

Grapevine YOLOv8m-seg 150 91.2% 101.9% 95.0% 

Lettuce YOLOv8m-seg 150 98.4% 98.3% 100.0% 

Leaves YOLOv8n-seg 150 100.0% 117.0% 99.2% 

 

The results from these experiments highlight the effectiveness of the YOLOv8 segmentation 

models across various scenarios. By selecting appropriate model sizes and utilizing transfer 

learning techniques, strong performance was achieved on different datasets, demonstrating 

the versatility and capability of YOLOv8 for object detection and segmentation tasks. 
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5.2 Qualitative analysis 

The Crop Water Stress Index (CWSI) serves as a pivotal measure for assessing plant water 

stress, a crucial factor for optimizing irrigation practices and enhancing crop yields.  

The CWSI is determined based on the temperature differences between the plant canopy and 

reference surfaces under varying environmental conditions.  

 

 

The primary components involved in the CWSI calculation are: 

• T_canopy: The average temperature of the plant canopy. 

• T_wet: The temperature of a reference surface that is fully wet, which simulates the 

maximum leaf transpiration under the given environmental conditions. 

• T_dry: The temperature of a reference surface that is completely dry, representing 

minimal leaf transpiration under the same conditions. 

 

𝐶𝑊𝑆𝐼 =  
𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡

𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡
 

 

This formula quantifies the water stress level of plants by comparing the current temperature 

conditions to those of fully wet and fully dry reference surfaces. The resulting CWSI value 

helps in understanding plant water stress, guiding irrigation decisions to improve crop health 

and yield. 

 

In practical terms, a good CWSI value typically ranges between 0.1 to 0.3, indicating 

moderate stress levels where irrigation may need adjustment but plants are generally 

managing. A good CWSI value is usually below 0.1, suggesting minimal water stress and 

optimal conditions for crop growth and development. 



 87 

 

Understanding the CWSI value allows farmers and agricultural specialists to make informed 

decisions regarding irrigation scheduling, ensuring efficient water use and maximizing crop 

productivity while minimizing water waste. 

 

5.2.1 Real-time CWSI calculation and visualization 

The system designed for real-time CWSI calculation employs a dual-camera setup: one 

camera captures the RGB image of the plant, while the other captures the thermal image. The 

YOLOv8 network detects and segments the plant in the RGB image, and custom ROS (Robot 

Operating System) code processes this segmented data to map the corresponding pixels in 

the thermal image. This real-time processing allows for the calculation of the average 

temperature value of the plant canopy as well as the CWSI for the plants. 

 

In practice, the system achieves the following: 

• Detection and segmentation: YOLOv8 detects and segments the plant in the RGB 

image, identifying the area of interest for CWSI calculations. 

• Temperature mapping: The segmented plant data from the RGB image is used to map 

corresponding pixels in the thermal image to obtain the average temperature of the 

plant canopy. 

• CWSI calculation: The CWSI is computed using the average temperature of the plant 

canopy along with the temperatures of the wet and dry reference surfaces. 

• Real-time display: The ROS-based application generates a real-time output 

displaying the CWSI value and the average canopy temperature (T_canopy) on the 

segmented plant image. Additionally, it overlays the thermal image with the RGB 

image to provide a visual representation of the temperature distribution and water 

stress. 
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The effectiveness of this real-time system is demonstrated through the results obtained in a 

practical field scenario, in particular related to the lettuce. 

A qualitative assessment was conducted on lettuce, initially measuring Twet and Tdry using 

a separate ROS node for wet and dry lettuce mean computation (Figure 51). 

 

 
Figure 51 – Lettuce mean temperature: (a) T_dry, (b) T_wet 

 

Figure 52 - Segmented Lettuce with Real-Time CWSI value 

Figure 52 shows the segmented lettuce along with the real-time CWSI value and the average 

temperature of the plant canopy. The visual output includes the CWSI calculation overlayed 
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on the segmented plant image, providing an immediate assessment of the plant's water stress 

condition. The result shows how CWSI value indicates minimal water stress, falling within 

an optimal range, demonstrating effective functionality. 

 

The real-time CWSI calculation and visualization system showcases its capability to detect 

plant water stress and provide actionable insights. The combination of YOLOv8’s 

segmentation capabilities with the thermal imaging data allows for precise temperature 

measurements and effective CWSI calculations. The system’s real-time output, which 

includes both the CWSI value and the average canopy temperature, offers valuable 

information for making irrigation decisions. 

 

The visualization provided by the overlay of thermal and RGB images facilitates an intuitive 

understanding of plant water stress. By displaying the CWSI value directly on the segmented 

plant image, the system offers a clear and immediate assessment of plant health. Additionally, 

the thermal image overlay enhances the ability to visually interpret temperature variations 

and identify areas of stress. 

 

The qualitative results affirm that the system not only performs accurate CWSI calculations 

but also delivers effective real-time visualization for practical agricultural applications.  
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5.3 Further developments 

While the initial results from the system are promising, several avenues for improvement 

exist to enhance its performance, robustness, and applicability. The following sections 

outline potential improvements or tests for future development: 

 

• Dataset improvement with application on different crops 

Expanding the dataset to include a diverse range of crop types is essential for enhancing the 

model's generalizability and robustness. By incorporating various crops into the dataset, the 

system can be adapted to different agricultural contexts and plant species, leading to more 

versatile and effective applications in agricultural monitoring. This broader dataset will help 

the model learn a wider array of features and conditions, improving its performance across 

different types of crops and environmental scenarios. 

 

• Automatic calibration each time the cameras are moved 

One critical area for improvement involves the calibration process of the thermal and RGB 

cameras. Currently, the extrinsic calibration between the cameras is delicate and can be easily 

disrupted by even minor movements or rotations. For instance, during transportation, as 

shown in Figure 53, the calibration can become imperfect, leading to misalignment between 

the thermal and RGB images. Implementing an automatic calibration process that adjusts 

each time the cameras are repositioned would ensure accurate data capture, minimize the 

need for manual adjustments, and enhance the efficiency of the system. This feature would 

not only simplify the setup process but also maintain high-quality image overlays for 

consistent CWSI calculations. 
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Figure 53 - Mask & thermal image overlay 

Figure 53 demonstrates the overlay of the thermal image with the mask of the RGB image 

of the plant. This visual comparison of the temperature distribution across the plant canopy 

highlights the importance of accurate calibration for effective CWSI data interpretation. 

 

• Parallelization of the average temperature calculation 

To improve the real-time performance of the system, it is beneficial to parallelize the 

calculation of the average temperature when multiple masks need to be processed 

simultaneously. By distributing the computational workload across multiple processing units, 

the system’s processing time can be significantly reduced. This enhancement would lead to 

faster CWSI calculations and enable more efficient real-time analysis, thus improving the 

system's overall responsiveness. 

 

• Code optimization 

Further optimization of the code can enhance the system’s overall efficiency and 

performance. This includes refining the algorithms used for object detection and temperature 

measurement, reducing computational overhead, and ensuring smooth integration with the 

robotic platform. Code optimization efforts should focus on streamlining processes, 

minimizing resource consumption, and improving the system's responsiveness to changes in 

environmental conditions. 



 

• Creation of a turret or robotic arm for camera mounting 

To enhance the versatility and deployment of the system, the development of a turret or 

robotic arm for mounting the thermal and RGB cameras is proposed. The existing mobile 

robot platform provides a foundation for this enhancement, allowing for the integration of a 

new turret or robotic arm mechanism to support various camera configurations and automate 

adjustments of camera angles and positions. 

 
Figure 54 - Agricultural robot design with turret 

Figure 54 shows a conceptual design for the turret or robotic arm mounted on the existing 

mobile robot platform. This design illustrates how the turret or arm would facilitate 

automated image capture and enhance the system’s capabilities for autonomous field 

operations. 

 

• Experimenting with thermal camera for YOLO-based segmentation 

A potential experiment involves using the thermal camera directly, ensuring it is properly 

focused, and training the YOLO (You Only Look Once) model with thermal images for 

object segmentation. By doing so, the system could effectively identify and segment specific 

crops, such as lettuce, based on their thermal signatures. This approach could leverage the 
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unique thermal patterns of plants, potentially improving segmentation accuracy and 

robustness in various environmental conditions. 

 

By addressing these areas for improvement, the system can be enhanced to better meet the 

demands of agricultural monitoring and analysis, leading to more effective water stress 

assessments and improved crop management practices. 



Conclusions 

In this thesis, an approach to the problem of advanced agricultural monitoring through 

integrated dual-camera systems was developed. The reason why this approach deserves 

special attention lies in the chance it gives to contribute to the overall goals of SYMBIOSYST 

by developing a real-time system able to monitore plant water stress. 

Therefore, the successful integration of a dual-camera system combining a thermal camera 

with an RGBD camera was achieved. This integration enabled simultaneous data acquisition, 

significantly boosting the system's ability to analyze the environment comprehensively. By 

merging visual and thermal data, the dual-camera setup provided richer information for 

subsequent processing tasks. 

Furthermore, the thesis optimized plant segmentation using the YOLOv8 model. Through 

extensive development, YOLOv8 facilitated real-time object detection and segmentation, 

essential for precise agricultural monitoring and analysis. 

One standout achievement was the successful real-time calculation of the Crop Water Stress 

Index (CWSI) for segmented lettuce. This test demonstrated the correct real-time 

functionality of the system, providing valuable insights into plant health and water stress 

levels using thermal data from the integrated camera system.  

To conclude, this project demonstrated the feasibility and effectiveness of using integrated 

dual-camera systems for advanced agricultural monitoring. The achievements in system 

ideation, camera integration, object detection, CWSI computation, and real-time processing 

collectively contribute to a robust solution for monitoring plant water stress levels. Future 

work will focus on refining the system, expanding its applicability to different crops, and 

further optimizing the processing algorithms to ensure even greater efficiency and accuracy. 
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