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Abstract

The field of autonomous navigation for unmanned ground vehicles (UGVs) is in
continuous growth and increasing levels of autonomy have been reached in the
last few years. The task becomes, however, more challenging when the focus is
the exploration of planet surfaces, such as Mars. In those situations, UGVs are
forced to navigate through unstable and rugged terrains which, inevitably, open
the vehicle to more hazards, accidents, and, in extreme cases, complete failure
of the mission. This thesis tackles the problem of terrain traversability analysis
in the context of planetary exploration rovers, delving particularly into Mars
exploration. The aim of the research is the development of a hybrid architecture,
which enables the assessment of terrain traversability evaluating the results of both
an appearance-based approach and a geometry-based approach. The coexistence of
the two methodologies has the objective of balancing each other’s flaws, reaching
a more robust and complete understanding of the operating environment. The
appearance-based method employs semantic segmentation, operated by a deep
neural network, to understand the different classes of terrain present in the scene.
Predictions are refined by an additional module that performs pixel-level terrain
roughness classification from the same RGB image. The rationale behind this
choice resides in the will to be able to assign different costs, even to areas belonging
to the same terrain class, while including an analysis of the physical properties of
the soil. This first cost map is then combined with a second one yielded by the
geometry-based approach. This module evaluates the geometrical characteristics of
the surrounding environment, highlighting categories of hazards that are not easily
detectable by semantic segmentation. The proposed architecture has been trained
using synthetic datasets and developed as a ROS2 application to be easily integrated
into a higher-level framework for autonomous navigation in harsh environments.
Simulations have been performed, showing the ability of the method to assess
online traversability analysis.
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Chapter 1

Introduction

1.1 Context overview

Space exploration has been one of the biggest goals of humankind, starting from
the 50s to present days, pushing further and further the boundaries of what it is
possible to achieve. Among the many routes through which this field branches, a
topic always under the spotlight is planetary exploration.
Beginning from the race to the Moon, undertaken by the United States and the
Soviet Union during the years of Cold War, the will to explore celestial bodies,
different from the Earth, has never faded away and, after the Moon has been
conquered, the focus rapidly moved towards the red planet, Mars. It is exactly in
this context that this thesis work puts its bases, presenting a possible framework
for the terrain traversability analysis of a planetary exploration rover autonomously
navigating through the Martian surface.

Figure 1.1: NASA mars rover Perseverance.
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Introduction

Mars represents the next step in the challenges faced by humans, it holds a lot
of new possibilities:

• more reasonable, such as the quest for new information, to make our knowledge
about the universe advance, or for the resources which could be found on the
planet;

• more "fictional", such as finding extraterrestrial life or creating human bases
on its surface (1.2).

However, it is still not even possible to easily achieve human presence in missions,
as stated by Michelle Rucker, lead of NASA’s Human Mars Architecture Team,
and reported in [1]. Tree are the main reasons behind this impossibility:

• Distance, Mars in its closest possible position is at 55 million km from the
Earth and the most favourable window to embark on this mission happens every
26 months, or if it is looked for the absolutely best possible conditions every
15 years. Other than this inconvenient, an important role to actually travel
the distance will be determined by the propulsion system of the employed
spaceship. To be able to reach the planet quicker and more often, a new
technology, most likely based on nuclear thermal propulsion or nuclear electric
propulsion, would be required, but it is not available yet.

• Living conditions, supposing to have the vehicle capable of completing the
traverse, another open question resides in the way human beings will react
to living for several months on a spaceship with very limited space and low
gravity.

• Landing, once the spacecraft has entered the orbit of the red planet, a new
important obstacle to be faced is encountered, the act of landing on its surface.
A novel deceleration system must be employed, to decrease the thrust of the
vehicle and allow a safe landing. It would also be necessary to be prepared to
resist to sand storms, once on the planet, and have all the equipment needed
by the astronauts, already there before their arrival.

2
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Figure 1.2: NASA martian base in the movie The Martian by Ridley Scott.

Being, still, so far from safe human missions, is of paramount importance to obtain
as many information as possible on the planet, without the need of having a human
operator involved and that’s why mars rovers have been created. The environment
of the planet is extreme: high radiations, really low temperatures, powerful storms;
as a consequence, the machines sent to navigate through those harsh conditions
need to be really robust and durable. For this reason, the development process of
a rover is really long and requires a lot of resources.
Having depicted this setting, it is clear how fundamental is to grant that the
navigation of the vehicle is as safe as possible and, being still not possible to control
them in real time from the Earth, the key to obtain such safety is enclosed into
the performances of its autonomous navigation. Autonomous control systems have
improved exponentially due to the corresponding drastic growth of computational
power of machines. As a result, the space missions have employed more and
more those systems to achieve better performances, demanding increasingly more
advanced technologies. At first, analog control has been replaced by digital control,
then, the higher level of operations’ complexity has required the introduction of
machine learning techniques. This necessity has lead, eventually, to what is the
current state of the art, a wide use of deep learning models, computer vision, neural
networks and more.

1.1.1 General description of the project
This thesis work perfectly fits into the described landscape revolving around terrain
traversability analysis, a topic characterized by significant contributions from the
aforementioned technologies. This process features the study of the environment
around the rover with the aim of gaining an understanding of the surroundings,
finalized to the achievement of a safe and aware navigation without the need of
human intervention. The information retrieved during this procedure are essential
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in the avoidance of hazards which could damage the vehicle and endanger the
correct progress of the mission.
The data can be acquired from several sources and represent diverse characteristics
of the terrain. What will be presented, in this thesis, is the acquisition of information
from a single source, a RGBD camera, with the aim to combine color and depth
data in order to have a more complete understanding of the context. For what
concerns the RGB images, the samples undergo a semantic segmentation process,
trying to distinguish the different terrain classes in every picture. The objective
of this operation is the employment of this knowledge in the assignment of a
traversability cost, assessing which kind of soil is more suitable to be navigated
and which one, instead, should be avoided if possible. The assignment of the costs
is empirical and determined by the context and the kind of rover supposed to
employ this framework, depending on the structural characteristics of the vehicle
and the mission it is designed for. To increase further more the variables taken
into account in the determination of the cost, another criteria is evaluated over the
RGB images: a second classification process is operated to estimate the roughness
values of the terrain depicted in each sample. The two obtained cost maps are then
fused together to yield the final result of this section of the framework. To realize
this, two different neural networks are required, which need to undergo a training
process to gain the skills needed to perform the predictions. To fulfill this task and
get to the final result, two different datasets have been employed:

• AI4Mars, a NASA dataset of real images used for the preliminary phases of
the development.

• Synthetic set, a dataset of artificial images of a martian landscape used to
achieve the goal of creating a unique set to train both networks. The creation
of those samples has become necessary to retrieve all the needed information
to train the roughness classification, due to the lack of depth data in real
images sets.

4
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Figure 1.3: Example of semantic segmentation predicted mask over-imposed to
the corresponding RGB image.

As introduced previously, the method studied in this work is a Hybrid approach,
meaning that diverse information are integrated together. Other than the RGB
images, also depth images have been employed to asses traversability. In this
case, the evaluation is based on the analysis of the geometrical features of the
terrain. The traversability cost is here assigned as a function of how intense are the
geometrical alterations in the area covered by the range sensor. A lower cost will
be assigned to surfaces more plane and clear, while regions with abrupt changes in
the slope of the terrain or presenting obstacles will receive higher costs.
Once the cost maps, obtained with the two approaches, have been computed,
the aim of the hybrid approach is to combine them to obtain a final, overall,
traversability map. The final product will be used by a path planner to make
terrain-aware decisions, trying to avoid a series of possible hazards which made
several missions fail.
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1.2 Project structure
This thesis work is articulated into seven chapters, guiding throughout the process
which leads to the complete framework for the analysis of terrain traversability:

• In Chapter 2, a comprehensive background of the history of planetary
exploration, revolving around Mars, is presented to have an overview of the
steps and events leading to the introduction of Unmanned Ground Vehicles as
main actors of the aforementioned explorations. The evolution in complexity
and technology of the rovers is displayed, using some of the most relevant
Martian missions as representative examples. The chapter, then, ends with
a brief summary of the fundamental building blocks of the machine learning
tasks involved in the development of the framework.

• In Chapter 3, a review of the literature available on the core topics of the
research is provided. In this list, the papers employed in the different stages of
the work are reported and analyzed, leading to the choices made with respect
to the structure of the framework itself and the most interesting approaches.

• In Chapter 4, the process to get to the final framework is eviscerated. All
the steps in the development of the different modules of the framework are
presented, explained in detail and a general description of their implementation
is provided. At the end of the chapter the overall structure, joining together all
the previously described blocks, is displayed and the communications between
them are detailed.

• In Chapter 5, the phases of the whole development are contained together
with the corresponding results achieved. Starting from the early tests of
the singular modules, displaying the improvements obtained through those
experiments, to the final simulation tests, providing a complete report of
the different trials on the finished framework. In the end, an analysis of the
performances obtained and a retrospective on the achieved goals is finally
performed .

• In Chapter 6, to end this thesis work, the conclusions on all the research
done and enclosed in the previous chapters are drawn and some possible future
improvements to the presented result are proposed.
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Chapter 2

Background

In this chapter will be presented an overview of the context in which this thesis
work locates and of the theoretical concepts needed to understand properly the
topics covered in the development of the framework. Starting from a comprehensive
introduction on the history of the exploration of the red planet, some of the most
important rovers’ missions on its surface are presented and both their achievements
and the reasons behind some of their failures are displayed. To finish the chapter,
after a dive into the next steps of the evolution in rovers’ technology, an outline of
the main theoretical themes over which the foundations of the presented framework
are laid is provided.

2.1 Mars exploration history
The history revolving around Mars has its roots in the second half of the 16th

century when Danish astronomer Tycho Brahe was the first ever to map accurately
the movement of Mars across the sky. After him, the next historic progress we
encounter is the first ever observation of Mars through a telescope made by Italian
astronomer Galileo Galilei in 1610, followed by even more precise observations
made by the Dutchman Christiaan Huygens. He was able to see a darker spot on
the planet’s surface which is attributed to be the region Syrtis Major. After these
events, the studies about the red planet kept increasing until, during 1840, the
first ever map of Mars (fig.2.1) was published by Johann Heinrich von Mädler and
Wilhelm Beer. The next step in the history related to this planet is again a map,
but the one published by Italian scientist Giovanni Schiaparelli in 1877 (fig.2.2).
The latter needs to be particularly highlighted since is the one on which current
nomenclature is based of and is also the one which provided to create the first ever
fake news about Martian life, this was due to a mistranslation of the word "canali"
into canals instead of channels, implying some kind of artificial.

7
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Figure 2.1: First map of mars published
byJohann Heinrich von Mädler and Wil-
helm Beer. Figure 2.2: Mars map by Giovanni Schi-

aparelli.

The misunderstanding was definitively set aside when the Greek astronomer Eugene
Antoniadi in 1909 observed that those "canals" where nothing but an optical illusion.
The same Antoniadi is the one remebered to have published the most detailed
maps of mars prior to space exploration (fig.2.3).

Figure 2.3: One of the mars maps published by Eugene Antoniadi.

The next big leap in space exploration and in particular planetary exploration, was,
obviously, the beginning of the era of space travels.
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The reasons behind the interest in the exploration of Mars are not only the
same fueling space exploration in general, so the interest in understanding how the
universe works, how celestial bodies were formed and how the Earth origined, but
also more tactical reasons. Mars, among the other planets, has been proved to be
the one with the best conditions in terms of compatibility of atmospheric structure,
visibility, durability of machines and possible renewable sources to extend mission’s
life. Obviously, as a consequence of the progresses made in those years, the next
logical step has been to send remotely controlled objects, which would have allowed
more control over the explorations. It was realized, for the first time, in 1998 with
the Sojourner Rover. The machine couldn’t travel on the surface but was capable
of sending 16500 images to Earth. This feat was the one which contributed to
rekindle, even more, the interest in the study and exploration of the 4th planet of
our Solar System, which lead in 2001 to a series of new historical missions:

• Mars Odyssey in 2001 (named after the Stanley Kubrick’s masterpiece),
the currently longest surviving continually active spacecraft in orbit around a
planet other than Earth. Its mission is to search present or past evidences of
water and ice, study the geology and radiation of the planet and serve as a
relay for communications between the rovers and Earth.

• Mars Exploration Rover in 2004 with the famous twin rovers Spirit and
Opportunity, which were capable of operating for far longer than what was
initially intended for them. Spirit ended its mission officially in 2011, after
being stuck in an irrecoverable way in a sand trap for two years (fig.2.4).
Opportunity kept working until 2019 when NASA declared its mission to
be over since the rover had been damaged during a sandstorm and was not
possible to contact him ever since. Opportunity (fig.2.5), in particular, reached
outstanding results since was able to find elements of water, source of potential
microbial life.

• Mars Science Laboratory in 2012, with the purpose of studying the habit-
ability of the red planet, including its climate and geology, and collecting data
to understand if Mars ever had the right environmental conditions to support
microbial life and to have more information for a future human mission. The
first of the two rovers, which are part of this mission, is Curiosity (fig.2.6); a
car sized rover which is carrying the most advanced instruments for scientific
studies ever sent to the Martian surface and its exploring mission, at the end
of 2012, has been extended indefinitely. Its companion is the Perseverance
rover (fig.2.7), landed in 2021, with its helicopter drone Ingenuity, recently
declared no more operational due to a reported damage in one of its blades.
Its mission is, again, to search for clues of microbial life, but also to drill some
samples of rock and regolith and store them for a possible return to Earth.
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Figure 2.4: Reproduction made by
NASA scientists of how Spirit was stuck
in sand.

Figure 2.5: Opportunity rover.

Figure 2.6: Self portrait of Curiosity
rover.

Figure 2.7: Self portrait of Persever-
ance and its companion Ingenuity.
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2.2 Rovers’ evolution

The exploration of Mars has witnessed a captivating evolution of robotic rovers,
driven by advancements in mechatronic engineering and space technology, with a
particular emphasis on the transformation of navigation capabilities. The start of
this journey, as we already mentioned, took place in 1997 with the deployment of
the Sojourner rover, marking the first successful attempt into remotely operated
Martian exploration. The evolution of Mars rovers has since been characterized
by significant progresses in autonomous navigation, transforming these machines
from basic mobility platforms into sophisticated, self-reliant scientific instruments
capable of executing complex tasks.

The technological advance of Mars rovers has been strongly tied to the iterative
process of learning, with each mission building upon the successes and improving
from the failures of its predecessors. The twin rovers Spirit and Opportunity,
exemplified a leap forward in autonomous navigation capabilities. They showcased
improved autonomy, allowing them to navigate the Martian terrain with greater
independence. Spirit and Opportunity’s onboard systems were equipped with
advanced algorithms and sensors, enabling them to make real-time decisions about
their path, avoiding obstacles and optimizing travel efficiency [2]. This shift towards
increased autonomy significantly reduced reliance on Earth-based teleoperation,
enhancing the rovers’ ability to adapt to new challenges on the Martian surface.
A crucial milestone in autonomous navigation was achieved with the Mars Science
Laboratory presentation of the Curiosity rover. Curiosity represented a paradigm
shift, not only in size and scientific capabilities, but also in the rover’s ability to
autonomously traverse the Martian landscape. The navigation system incorporated
advanced algorithms and hazard avoidance mechanisms, allowing it to identify
and navigate around obstacles in real-time. Curiosity’s autonomous capabilities
paved the way for more efficient exploration, allowing the rover to cover greater
distances and respond dynamically to the diverse characteristics of the Martian
terrain [3]. The latest advancement in autonomous navigation is represented by
the Perseverance rover, equipped with cutting-edge mechatronic technologies [4],
including an advanced mobility system that enables more precise and agile move-
ments. The rover’s autonomous navigation system, guided by powerful onboard
software (SPOC) [5] and enhanced sensors, grants it the skills to make informed
decisions about traversing challenging terrains. This increased level of autonomy is
crucial for achieving mission objectives, as Perseverance can efficiently navigate
to specific points of interest and execute scientific experiments without constant
Earth-based intervention.

Looking forward, the evolution of autonomous navigation in Mars rovers remains
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a focal point for future missions. The European Space Agency’s (ESA) Ros-
alind Franklin rover (fig.2.8), yet to be launched, embodies the next frontier in
mechatronic engineering applied to planetary exploration. With a new suite of
instruments designed for autonomous operations, including advanced hazard de-
tection and avoidance capabilities, it promises to push further the boundaries of
what is achievable in Martian surface exploration. In particular, it is set to be
able to improve the behaviour of the rover in situations which were hazardous for
its predecessors (e.g. Spirit and its accident). This, in practice, will be granted
by a new locomotion mode, called "wheel walking", allowing the articulation of
motion around the axes and adjusting the rover height and angle with respect to
the surface. This motion is supposed to give very good traction in soft soils and
high slopes, such as dunes. With its stereo vision system, it will be capable of
identify obstacles and slopes and also take into account wheel slippage [6]. The
goal is to have the rover traversing autonomously and safely for approximately 100
m per sol (martian day).

Figure 2.8: Rosalind Franklin rover.
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2.3 Terrain traversability analysis
The topic of autonomous navigation is strictly linked with the topic of traversability
analysis. For what concerns off-road environments, class which comprises planetary
exploration, it revolves around the traversability of the terrain. The agent, in these
kind of settings, needs to analyze the traversability of the surrounding surface and
plan an optimal and landscape-aware path according to it. The causes of this need
have to be found in the conditions, these kind of environments, impose on the
vehicles, the driving surface is uneven, not consistent and can present obstacles
and potential hazards which could be cause of damages leading, in extreme cases,
to the complete failure of the mission. Terrain analysis is defined as the problem of
estimating the difficulty of driving through a terrain for a ground vehicle [7]. In
order to accomplish this task, it is needed the use of several areas of machine learning
which make the UGV (Unmanned Ground Vehicle) capable of autonomously obtain
all the information it needs to fulfill traversability analysis and be as aware as
possible of what surrounds it, when planning the path to follow.
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2.4 Deep learning and computer vision
2.4.1 Deep learning
In the first half of the 20th century, science fiction familiarized the world with the
concept of artificially intelligent robots and by the 1950s a generation of scientists
had already assimilated the concept of AI into their minds [8]. One of these
illustrious minds was Alan Turing, the first to suggest and mathematically explore
the possibility of artificial intelligence. His belief was that, if humans were capable
of using available information to reason and solve problems, why couldn’t machines
do the exact same thing. He went beyond just having the intuition, in fact, in his
1950 paper "Computing Machinery and Intelligence" he presented a proposal on
how to build intelligent machines and test their reasoning.
The first artificial intelligence program, called Logic Theorist, was presented in 1956
and was meant to mimic the problem solving skills of a human. It was a milestone
in the history of the field since, after it, everyone was finally convinced that AI
was achievable. When we talk about Machine learning, term coined in 1962 by
Arthur Samuel an employee of IBM, we are discussing about a branch of artificial
intelligence which is aiming at imitating the learning capabilities of the human
brain to learn by gradually improving the accuracy of what it is required to do. This
is done through an iterative process, called training, during which a neural network,
a machine learning model that is built using principles of neuronal organization,
is continuously trying to decrease the difference between its predictions and the
actual outputs of a given dataset. The two main uses of machine learning are:

• Classification of data based on models which have been developed.

• Predictions of future outcomes based on these models.

With the exponential increase in computers’ capabilities and the research for ways
to process inputs with more and more complex architectures, technology was
pushed to the point where simple machine learning models were not sufficient to
work with these data and were not capable to extract the needed features. For
these reason a new branch of AI grew in popularity, Deep Learning. As Russian-
American computer scientist Lex Fridman defined, deep learning can be considered
as "scalable machine learning", so it starts were machine learning is, but focuses
on the use of multi-level architectures, which were developed to process deeper
features from information given as input.
As mentioned earlier, the whole learning aspect revolves around the use of neural
networks which can be briefly described as structures made of linked neurons,
their building blocks. These neurons are grouped into layers and each layer is
characterized by a specific number of neurons and activation functions. They are
special kinds of functions which are used to derive an output from a set of input
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values fed to a node (or a layer) with the purpose to add non-linearity to the
network. They change depending on the application the network is defined for,
but they are always needed. Otherwise, even a network with lots of neurons and
layers could be easily described as 1 neuron which would not be capable to extract
deep features from the inputs we provide it. The first layer of a network is called
input layer, the last one is called output layer, while the in-between layers are
all called hidden layers. When the network is made by more than three layers
it can be defined as a Deep Neural Network (DNN). Deep learning, other than
allowing to work with more complex and unstructured data like text and images,
also automates feature extraction. In deep learning models is the network itself
to decide which features are most important to fulfill its task, which in machine
learning is instead established manually by a human expert.

Figure 2.9: Comparison between simple neural networks and deep neural networks’
architectures.

2.4.2 Computer vision
When discussing about terrain traversability analysis, the information needed to
study the surroundings can come from several sources which could be internal
sensors of the rover, e.g. accelerometers or wheel slippage, but also external to the
vehicle and gathered from sensors like lidars or cameras. Whenever the information
is derived from any kind of visual inputs, we are talking about a really important
and diverse field of artificial intelligence which is called Computer Vision. What
we are doing, when working with a CV task, is, in practice, enabling computers to
see and to take actions or make recommendations based on what they are seeing.
To be able to complete these tasks, the neural network is fed with a large quantity
of visual data and it keeps running analyses on those information until it discerns
distinctions and, ultimately, recognizes images. The aim of the field is to be able to
disentangle symbolic information from image data using models constructed with
the aid of geometry, physics, statistics, and learning theory.
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In the current landscape of research and industry, computer vision is vastly applied
and is employed in a wide range of fields. Among the most important ones it is
possible to find:

• Space exploration, to mention just a couple of the uses in this area we
may think of autonomous navigation of rovers, but also docking operation of
spacecrafts.

• Automotive, most of the ADAS systems in the field are based upon computer
vision and visual inputs.

• Medical applications, the analysis of medical imagery highly relies on
computer vision and, in some cases, they even surpassed human performances.

• Industrial production lines, applications like object detection, measure-
ments or autonomous navigation of carts are widespread in modern facilities.

• Agriculture, it could seem a bit strange, but some really important tasks
can benefit from the contribute of computer vision applications in this area.
Some examples being, analysis of the terrain, either its health status or its
composition, or harvesting operations which are becoming more and more
automatic.

2.4.3 Convolutional neural networks
The main actors, when it comes to computer vision applications, are Convolutional
Neural Networks, or CNNs. This kind of networks, inspired by the organization
of the animal visual cortex, as suggested by the name, relies on the use of partic-
ular layers called convolutional layers, which, how it is easily deducible, operate
convolution on their inputs. These layers are needed in image processing due to
the extremely high number of features coming from even a single RGB image;
considering that, with normal resolution, average dimensions would be 3x512x512
we would have 786432 features to analyze. Convolutions are advantageous in this
sense since are operations able to produce a filtered image with reduced dimensions.
Convolution, in image processing, is a kind of local averaging technique which
uses a, so called, filter as weight pattern. A filter, or kernel, is a smaller matrix,
compared to the input image (a widely used size is 3x3 for example), which is used
as a sliding window to compute the, previously mentioned, weighted local average
in portions of the image. Each step, a window of pixels is considered and the
output of this operation will be a single pixel of the new filtered matrix, its value
is obtained by taking the one of the central pixel and adding the weighted values
of all its neighbors together. After sliding the filter over the whole picture, the
output of the convolution is obtained and it consists of a new filtered image, with
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smaller dimensions, containing the extracted features. Every layer can have several
different filters and they are what will be trained during the training procedure for
convolutional layers.

Figure 2.10: Convolution operation.

Other than convolutional layers, the characteristic architecture of CNNs contains
activation layers and pooling layers. The first one is used to break linearity of the
filtered feature map and the latter to reduce, with a pooling operation, the spatial
size of the map. The process is usually repeated several times to extract deeper
and deeper features.

Figure 2.11: Example of the architecture of a CNN.

Among the variety of tasks which can be addressed using this kind of neural
networks, this thesis work focuses mainly on Semantic segmentation and roughness
classification of the acquired images.
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2.4.4 Semantic segmentation
Semantic segmentation is, again, a computer vision task with the aim of assigning
to each pixel of an image a label corresponding to a certain class. It falls in the
wider category of Image Segmentation, in which are present also Instance and
Panoptic segmentation, so the analysis process of an image, section by section,
and the classification of the information contained in each portion. All the three
mentioned processes use different criteria for the classification of each pixel in the
image, taking advantage of information like color, contrast, placement within the
picture and other attributes.
Semantic segmentation, in particular, creates a, so called, segmentation map. In
this map every pixel is assigned to a specific class and is accordingly color coded,
resulting, in this way, in an understanding of the whole scene represented by the
image. The classes can be various and they are related to the particular task the
segmentation is used for; it could be used to recognize foreground and background
pixels, specific categories of objects like cars, buildings and so on or, as it will
be seen in the following chapters, to differentiate the semantic characteristics in
terrain images highlighting the different kinds of terrain a vehicle is surrounded by.
One of the most commonly used and efficient architectures, for deep neural networks
used to achieve semantic segmentation, is the encoder-decoder model (fig.2.12).

• Encoder: is defined as the portion of the network responsible for the processing
of the input data. Followed by the extraction of the high level and abstract
features, called hierarchical features, and the capture of contextual information,
like relationships between different objects in the image. It is done involving a
series of convolutional layers reducing the spatial dimensions while increasing
the depth of feature maps.

• Decoder: consists of the portion of the network devoted to retrieve, from
the compact and abstract representation generated by the encoder, an output
that has the same spatial dimensions as the original input. This process is
necessary to recover the spatial information lost during the downsampling of
the encoder and obtain back a high resolution output which enables pixel-wise
classification. These operations are done using some kind of upsampling of
the feature maps through techniques like transposed convolution.

The connection between these two elements is, also, of paramount importance since
acts as bridge between the high-level abstract features learned by the encoder and
the spatially detailed features needed by the decoder. Additionally, it is common to
find, in these kinds of model, further links between corresponding layers of encoder
and decoder, called skip connections. They serve as a way, for the decoder, to access
the features from the lower levels of the encoder which could help in improving
performances of the network with respect to the vanishing gradient problem. The
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latter, is a phenomenon, which can be encountered during the training procedure
of deep neural networks, consisting in the gradients, used to update the network,
becoming extremely small, so almost vanishing.

Figure 2.12: Encoder Decoder convolutional network used for semantic segmen-
tation [9].

2.4.5 Regression
Discussing about semantic segmentation, it was mentioned the assignment of
label values to each pixel of an image. Those labels are discrete numbers used
as a code to assign not a value, but a class and, in fact, these kind of tasks are
called classification problems. When, instead, the aim is to predict a continuous
number, or value, the type of the problem, which is being considered, is regression.
The objective of a regression task is to analyze the input data and to map them
into a continuous space which could represent many different kind of quantities,
temperatures, coordinates etc. The choices of architecture of the neural network,
loss function, and evaluation metrics can be various and depend on the specific
characteristics of the considered regression task.
In the field of computer vision, focus of this thesis work, several applications benefit
from regression tasks among which we may find:
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• Depth estimation from monocular RGB images.

• Pose estimation of an object (e.g. a robotic manipulator).

• Prediction of facial key-points.

• Prediction of a physical characteristic of the terrain in an image [10] (as will
be mentioned later on).

Figure 2.13: Examples of monocular depth estimation solving a regression
problem[11].
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Chapter 3

Literature review

In this chapter, as suggested by the title, a dive into the literature published over the
years regarding the topic of terrain traversability analysis and correlated subjects,
fundamental for the development of the framework, is presented. After exploring
the problem’s definition, the different paths followed by previous researchers are
described and the choices behind the structure and the methodologies employed in
this framework are defined.

3.1 Problem’s description
Discussing about the field of robotic applications, side to side with indoor robots
operating in structured environments, like companies’ facilities, it can be found
the field of outdoor robotics. The interest and need of deploying robots in off-road
natural and unnatural environments is growing more and more as time goes by.
Several are the applications which benefit from the use of UGVs to, either, aid
human operators or even substitute them; among those, just to mention a few it is
possible to find:

• Forestry, UGV equipped with advanced sensors and autonomous navigation
algorithms can traverse really challenging terrains and obtain invaluable
information. They can be employed for tasks like forests’ mapping, surveillance,
monitoring and many more [12]. An example of that is identifiable in [13],
where a laser scanner, on an unmanned ground vehicle, is adopted to obtain a
map of a such complex environment to the precision of signaling the position
of single trees.

• Mining, in this field the use of UGVs has mainly two functions. The first one
is propelling the exploration, in both subterranean and subaqueous operations,
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while the second one is promoting a safe environment in which machines and
humans work closely minimizing risks and reducing accidents [14].

• Search and rescue operations, when dealing with post-disasters intervention
and, in particular for Urban Search and Rescue (USAR), ground robots have
proved to be a very useful tool to take advantage of. Among the multiple
benefits, the use of this kind of robots can produce, it can be mentioned a
faster localization of potential victims, shorter rescue times, less risk for the
human operators and faster assessment of damages to buildings [15]. Even
though the vast majority of those vehicles work in a remotely controlled way,
more and more research is being published to study the implementation of
increasing levels of autonomy [16] [17].

• Planetary exploration. As previously, and extensively, mentioned in chapter
2, the use of UGVs in planetary exploration is fundamental. Being space
exploration characterized by extreme conditions, high risks, really dilated
times and enormous costs it is still not suitable for a growing presence of
human operators and it finds a great aid in the employment of rovers. Those
vehicles present advanced scientific instrumentation, allowing a broad range
of possible missions to fulfill [18], and cutting-edge algorithms for autonomous
navigation, making them able to traverse diverse planetary surfaces and be
more and more independent from human intervention [5] [19].

A key point which links all of these, really different, fields is the need of the vehicles
to adapt to the underlying terrain and, precisely, due to the wide range of working
environments which the robot can face, it is possible to identify three common
problems which need to be addressed to make operations feasible [20]:

1. Assessment of terrain traversability.

2. Planning optimal motion paths with respect to given criteria.

3. Suitable adaptation of the kinematic configuration of articulated robots as
function of terrain traversability

Even if the three topics are highly interdependent, due to their complexity they are,
usually, studied individually. In this thesis work the research focuses, in particular,
on the first one, terrain traversability analysis.

Terrain traversability analysis aims, in practice, at allowing the rover to navigate
in environments of varying complexity ensuring the achievement of the vehicle’s
mission’s goals and its safety. It grants the UGV the avoidance of hazards that can
potentially lead to damages to the vehicle or, in extreme cases, even its complete
failure. In the same paper mentioned previously [20], other than a panoramic view
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on the research in the field, referenced in the next paragraphs, a quite detailed
definition of the term traversability is presented and is here reported to better
understand the context and main components of the problem. Traversability is,
there, defined as the capability of a ground vehicle to reside over a terrain region
under an admissible state wherein it is capable of entering given its current state.
This capability is quantified by taking into account a terrain model, the robotic
vehicle model, the kinematic constraints of the vehicle and a set of criteria based
on which the optimality of an admissible state can be assessed.
The mentioned terrain model includes perception information about the materials
and terramechanic properties of the terrain, the interaction of the latter with the
navigating vehicle and the geometric characteristics of the soil itself.
The approach to the traversability problem has been, firstly, considered as a binary
problem, so only setting apart traversable and non traversable areas, while later on
has been characterized as a continuous problem, being also able to differentiate
between different degrees of traversability.
When discussing about the approach to actually evaluate terrain traversability,
it is possible to divide them in several categories relative to the key concepts
characterizing the methods. The first subdivision comes from the source of data
gathered by the sensors in use on the UGV:

• Proprioceptive sensory data processing, using internal data of the robot (e.g.
IMU, wheel slip sensors, collision sensors).

• Exteroceptive sensory data processing, taking advantage of data coming from
the environment which surrounds the vehicle.

Proprioceptive data can be, of course, useful in the traversability analysis, but
almost uniquely as refining information used to better an, already done, evaluation.
This is due to the necessity of having already traversed, or being in the act of
traversing, an area of terrain in order to retrieve information from this kind of
sensors and, as it can be easily imagined, in order to ensure safety of the vehicle,
the analysis must have been assessed before actually driving on that region.
For this reason literature focuses mostly on exteroceptive data and, among the
different possibilities, two categories of approaches constitute the building blocks
of the state of the art, Appearance-based approaches and Geometry-based
approaches.
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Figure 3.1: Approaches to terrain traversability analysis [20].
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3.2 Appearance based approach
For what concerns the appearance based method, every operation in the realm
of image processing, with either the aim of classification or regression of terrain
characteristics, is included.
The possibilities are multiple and diverse, ranging from semantic segmentation
of terrain images, to identification of the different classes of terrains the vehicle
could encounter [21], to regression of terrain characteristics from visual information.
Those data could range from RGB images [10] to other properties in the visual
spectrum, like gray level [22], or even using multispectral images [23].

3.2.1 Semantic properties’ analysis
Discussing about classification, the most important process, in the field of au-
tonomous navigation, must be semantic segmentation, which was previously intro-
duced in chapter 2.
The use of semantic information is fundamental in building, for the UGV, a terrain
aware path which is informed of the various types of terrain surrounding it and
which, among those, are the most dangerous for its navigation. The understanding
of the different semantic classes, is central in order to avoid potentially hazardous
situations which can verify even in geometrically safe terrains. A plain area, from
a geometric point of view, can surely be safe in terms of obstacle avoidance, but
could easily still be dangerous for the rover itself. To provide just a couple of
examples, it could be a sandy region, which is well known to expose the vehicle to
many risks, or a region with sharp rocks, even if really small, which could damage
the wheels of the rover.

In semantic segmentation, the main actors are convolutional networks [21]; in
this section it will be presented, with some additional details, one of the possible
architectures which may be used to tackle this problem, UNet. It has been chosen
to provide this more detailed description since it is the one employed, in this thesis
work, to handle the appearance-based side of the approach.
UNet has been originally created, and presented in [24], with the aim of being
employed on biomedical images, but its versatility allows it to perform at the same
level in many different domains (e.g. [25]). UNet is a fully convolutional network,
proposed in 2015, to improve the performance of what was the current state of
the art, as an example, in the paper, is cited the network winner of the 2012
EM segmentation challenge at ISBI [26]. Among the drawbacks of the previous
architectures fixed by the introduction of UNet, it is possible to find:

• Slowness of the strategy due to the need of running the network separately for
every patch of the images considered, with a lot of redundancy when patches
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Figure 3.2: Architecture of UNet[24].

overlapped.

• Unavoidable trade-off between localization accuracy and contextual infor-
mation. To improve the latter larger patches were needed, requiring more
max-pooling layers which have a detrimental effect on accuracy and vice versa.

The new network, called in this way for its almost symmetric structure, is built
upon the one presented in [27], but with a series of modifications which made
possible to obtain a more precise segmentation even when working with very few
images. The pooling operators, after the contracting path (the encoder), have been
substituted by upsampling operators, the upsampled output is combined with high
resolution features and then passed to a final convolution layer to build a more
precise output.
In plain terms, the structure of the network is pretty usual with a contracting
path and an expansive path, or decoder. At each depth level we have, on the
left side, the repeated application of two 3x3 convolutions followed by a ReLU
activation function with a downsampling operation executed by a 2x2 max pooling
layer, which doubles the number of feature channels. On the right side instead,
after an upsampling operation, there is a 2x2 convolution halving those feature
channels, the concatenation of the feature map from the corresponding layer in the
contracting path and two 3x3 convolutions, both activated by a ReLU. In the last
layer of the decoder, it is possible to see in fig. 3.2 that it is also added a final 1x1
convolution before the output is created.
The connections between the two sides of the network are called skip connections,
this particular way of using them is called concatenated skip connections [28]. It is
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a way to enhance the performances of deep neural network by passing information
from previous layer to subsequent ones. Many are the possible benefits of using
those connections, other than just an improvement in the overall performances of
the network, it can be obtained a more efficient training, better memory usage and
a decreased risk of overfitting.

The structural innovations proposed with the introduction of UNet constitute
a major change in what was the landscape of semantic segmentation and, from
this basis, a series of other variations, with pros and cons, have been proposed.
During the following years, until present days, further enhancements have been
presented to try to improve even more what was achieved. To mention only a few,
following the same encoder-decoder structure, with the aim of obtaining more sharp
edges and try to decrease the number of pooling layer used, DeepLab architecture
was proposed [29], to fix the speed problem of its predecessor FastFCN [30] was
introduced and then, to increase even more the results obtained by it, a new version
of DeepLab, DeepLabV3 [31] was presented.
A step aside from fully convolutional networks has been researched in recent years,
represented by the employment of transformer networks for semantic segmentation.
Transformer networks, are originally designed for natural language processing tasks,
but have demonstrated significant progresses in modeling contextual relationships
within images with the consequence of the investigation of transformer-based
segmentation models [32] [33].

3.2.2 Terrain properties’ analysis
Other than the identification, from a semantic perspective, of the terrain classes
UGVs can face during their navigation, another crucial factor must be taken into
account in this analysis, the presence of non-geometric hazards [34]. In this category
can be acknowledged all the risks related to the physical properties of the terrain,
slippage, roughness, sinkage, water content and many more. Several approaches
presented in the research landscape have the characteristic of evaluating such
parameters taking advantage of in-situ measurements, either using some kind of
precomputed terramechanics model [35] [36], or even with the aid of additional
scientific instrumentation [37]. These methods, even having high performances and
accuracy, are effective only on traversed terrains being almost useless in case the
rover faces a new terrain resulting, in those cases, ineffective in the detection of
such hazards.
This possibility moves the focus on the research for a method which fixes it, so an
approach able to adapt or to be, in some way, independent from previous knowledge.
That’s the reason why a number of other techniques proposed in literature are
centered around vision systems and the estimation of terrain properties from images.
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This problem, however, contrary to the extreme ease with which humans and some
kinds of animals intuitively solve it, based on experience, it’s far from being a
trivial challenge for machines.
Among the different methods and extracted characteristics, some interesting ones
focus on:

• Slippage and sinkage prediction from images, these parameters can be of
great importance in avoiding, for examples very soft sandy terrains or slippery
surfaces. In [34] an architecture able to compute semantic segmentation and
also infer those mechanical characteristics of the terrain has been proposed.
The approach in the prediction of the properties is linked with the output
of the segmentation network, being the probabilities of the different terrain
types for each pixel the weights used in the computation of the final value of
the mechanical parameters associated to every semantic class. Some a priori
information on the mechanical interactions between the wheels of the rover
and the considered soil need, however, to be known to compute those values.

• Water content from terrain images, fundamental to avoid muddy and po-
tentially hazardous soils. In both [22] and [38] the water content of terrain
samples from images is estimated, but neither of these is centered on applying
the method for traversability analysis purposes and further more to be applied
in planetary exploration. The parameter is estimated taking advantage of
surface gray level measurements in the first approach and values in red, green
and blue channels of the images in the latter, but both of them require, again,
some kind of prior knowledge. Respectively, soil surface gray level sensitivity
and images of every type of terrain with specific percentages of moisture.

• Roughness level of each pixel in terrain images, of meaningful relevance in
detecting areas where rover’s wheels could have the right grip or face risks
and even get damaged. The method is proposed in [10] where the parameter’s
value is estimated from only RGB images. The prior knowledge needed, in
this case, is the availability of a dataset presenting roughness masks of the
terrain images, but the authors also developed a method to retrieve it just from
the knowledge of depth information, easily acquirable from many different
sensors. This is the starting point chosen to be the basis of the approach
followed in this thesis work, due to the more available reproducibility and
the benefits that, such a system, could give to planetary exploration. As an
illustrious example, it is possible to look, in fig 3.3, at the damages that NASA
Curiosity wheels have reported traversing the rugged terrain of Mars surface,
which could, hypothetically, be reduced including the knowledge of terrain’s
roughness in its traversability analysis.
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Figure 3.3: One of the six aluminum Curiosity’s wheels with visible gaps caused
by navigating over rugged surfaces.
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3.3 Geometry based approach
Most of the previous works on the topic of terrain traversability analysis are founded
on a geometry based approach, so revolving around the capability of the UGV of
estimating the geometric characteristics of the environment surrounding it and,
from the gathered data, evaluating traversability of the terrain which the rover
can, geometrically, navigate. This kind of method is, therefore, able to detect
both positive obstacles, like rocks or bumps, and negative ones, like holes or harsh
depressions, to understand where the terrain changes its slope and where, instead
is possible to find more plane, and traversable, surfaces. The key concept in all
the approaches in this category resides in the creation of a terrain model. From
data gathered by sensors like lidars or stereo cameras, elevation maps can be built,
according to which a series of features is derived. An elevation map (fig. 3.4), or
digital elevation model (DEM) is a representation of the terrain surface, derived
typically from range data, which describes the geometric conformation of the soil
at different geographic positions. It can be obtained through a series of procedures
starting with point cloud or depth map generation, depending on the available
sensors, creation of a grid based representation and, in the end, a combination of
interpolation and smoothing to fill possible gaps and reduce noise.

Figure 3.4: Example of an elevation map[39].

It is possible to divide the majority of geometry based methods into three groups
depending on the way traversability features are obtained [20]:

• Signal processing, not as popular as the other two, focuses on the use of
the elevation map as input is some kind of processing operation. In [40] for
example, traversability features are extracted using Fourier analysis, while in
[41] has been followed an approach based on wavelet decomposition.

• Convolution with kernel, the term convolution must not be taken literally
in this case, but it is indicating the way in which the features are computed.
In these methods the vehicle is approximated by a 2D kernel and the terrain
map is iteratively processed with this window, centered each time at the total

30



Literature review

set of positions and potential orientations of the vehicle. The rectangle is, in
this case, representing the UGV and features are extracted only in the area
interested by it.

• Statistic processing, has been the most popular and explored approach.
Starting, again, from the data acquired by sensors, e.g. point clouds, elevation
maps are built and then statistical analysis of the distributions of terrain
features is used in order to determine traversability coefficients. In [42], for
example, traversability of each grid cell is evaluated as the product of having
permissible slope and roughness, in [43] is, instead derived globally as product
of pre normalized measures of slope, roughness and obstacle presence. The
cost of each grid cell was, then, assigned by local least-square plane fitting.
A very advanced member of this category is also the method based from [44]
and defined in [45]. This approach creates, as already seen previously, an
elevation map from data of range sensors, but arranges it in a robot-centric
fashion. The terrain map is associated with the pose of the robot and, at
any time, constitutes a local representation of the surrounding terrain. The
advantages of this approach reside in the focus on keeping always the highest
level of accuracy closer to the robot, so in the most important area for the
autonomous navigation of it, while decreasing the importance of what the
rover has left behind.

Figure 3.5: Local robot-centric map from the approach presented in [45].
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3.4 Hybrid approach

After having reviewed the two main branches of terrain traversability analysis it
is needed to point out some non-negligible flaws of both of them. If, for example,
it is chosen to follow a pure appearance-based approach, it will be certainly
possible to plan the rover’s path being certain to give priority to more traversable
classes of terrains, but would be impossible to judge the geometric conformation
of the soil. Obstacle detection and avoidance would not be taken in consideration
too, unless a specific class for every possible positive and negative obstacle is
created. With these conditions, even the most traversable class of terrain possible
could, in reality be extremely dangerous for the UGV opening the vehicle to risks
which could, potentially, lead to disastrous consequences. Same thing can be said
for an exclusively geometry-based approach. Considering the case of having an
hypothetical perfect geometric evaluation of its surroundings, the rover will always
choose, when possible, to traverse a flat surface, but without any knowledge of the
materials of that surface. Considering the domain of interest of this thesis work,
planetary exploration, the vehicle would have no mean to differentiate between a
safe flat surface or a sandy terrain which, as mentioned in previous chapters, can
be really hazardous for rovers.
These are the reasons which pushed research in the direction of hybrid approaches
and determined the choice of one of them as the method employed in this work.
In some of the earlier researches on the theme, like [46] and [47], the approach
was to use the geometric portion mainly for positive or negative obstacle detection
while the appearance side to provide additional information. Respectively, the
type of obstacle detected to see if it can be penetrated by the rover, like a bush,
or not, like a rock, and to give a first, color based, classification of terrain types.
Another interesting procedure is the one presented in [48], where the two sources
of data are combined together to be the input of a fully convolutional network
classifying every pixel directly based on its traversability. The type of hybrid
approach it has been decided to follow is, instead, pursuing a more balanced use of
the two methods, both of them are employed in order to compensate each other
imperfections combining the traversability cost maps they create into a final one,
taking into account a wider range of features. In figure 3.6 it is possible to see the
whole architecture of the method, presented in [49], with the different modules
and how they are connected together. For what concerns the semantic portion,
the obtained mask needs to be translated from the 2D pixel coordinates into 3D
world coordinates and represented on a 2D robot-centric cost map. The costs of the
different terrains’ classes are assigned empirically based on how much they affect
traversability for the specific application considered. For the geometric approach,
instead, the previously mentioned strategy, presented in [45], is used to create
the second cost map which will be, then, combined with the first one through a
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weighted sum of the two traversability indices.

Figure 3.6: Complete architecture of the hybrid approach of [49].

In this work a similar approach to the latter is followed, readjusting the two methods
to our choices and adding the visual evaluation of the physical properties of the
terrain into the framework.
The structure described right above has been the main inspiration for the proposed
framework, each of the methods has been re-adapted to match the ideas to be
implemented and the limitations derived by the developing context:

• For what concerns the appearance-based section, as mentioned extensively,
an additional module evaluating physical characteristics of the terrain in the
acquired images is added.

• For the geometry-based approach a simpler strategy is followed, building a
traversability map estimating the slope of the terrain through the information
gathered from a point cloud. The initial project was to employ the method,
by Fankhauser, mentioned in the last paragraph, but the plan was changed
taking into consideration the significant complexity of the approach and the
unavailability of the architecture in ROS2, which will be employed in the
implementation of the framework.
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Methodology

In the following chapter a complete overview of all the components which charac-
terize the proposed architecture is presented. After a first analysis of the datasets
required to achieve terrain traversability analysis, a detailed description of the
different modules employed to satisfy each task is provided and their combinations
and interactions are reported.

4.1 Datasets
In the development of this thesis work one of the earliest, and most important,
stages was the research and choice of an appropriate dataset. Being the studied
approach focused on the domain of planetary exploration it was needed to find a
set of images and, more importantly, of labels, coming from a reliable source and
validated by scientific experts. To try to be aligned with the direction of current
space exploration, the spotlight, as can be foresaw from the content of previous
chapters, has been directed towards Mars and, thus, the necessity of obtaining a
dataset of images and masks of its surface. When working with deep learning vision
systems, like it is done for semantic segmentation and roughness classification,
another requirement arises, the need of a large scale set. These same demands
led to the creation of AI4Mars [50], the first large-scale dataset for training and
validation of terrain classification models for Mars. It is particularly highlighted
the size of this set due to the effect it can have on the performances of deep
learning models. The dimension of the dataset plays a crucial role relatively to
the learning capabilities of the network. A large and diverse dataset will enhance
the generalization skills towards unseen data, improving the robustness of the
training and having potential benefits also towards overfitting. A characteristic
of deep neural networks, especially of convolutional ones, is the significantly high
number of parameters, increasing even more the importance of generalization since,
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with a higher number of samples, the model has more opportunities to adjust the
parameters based on diverse examples. It is, though, needed to mention also that,
even if the importance and benefits of a large scale set have been just stated, its
size cannot be increased arbitrarily. In fact, it is needed to find the right balance
between dataset size and other key factors. Mentioning just a couple of them, it is
worth considering that as the number of samples increases also the computational
resources needed to manage it increase and, moreover, the aforementioned benefits
derived from the enlargement decrease their rate proportionally, to the point where
it is more detrimental than beneficial to keep increasing its size.
Despite AI4Mars satisfying all the requirements for the semantic segmentation
aspect of the architecture, being considerably large and coming from NASA JPL (Jet
Propulsion Laboratory), so an extremely reliable source, it lacks a vital information
for the whole appearance-based method, the roughness masks. This data, as
mentioned previously, can be retrieved from the knowledge of depth masks which,
again, are, currently, not available in the dataset.
For this reason, in order to train the complete appearance-based side, another
dataset was needed. The images in this set are, however, synthetically generated
through the use of a simulated environment and are coupled with both semantic
masks and depth masks at pixel level.

4.1.1 AI4Mars
As mentioned in [50], the motivation behind the necessity of a large-scale- high-
quality label dataset of Mars terrain images comes from the desire of obtaining
terrain-aware mobility for planetary exploration rovers. Even if the autonomous
navigation system of NASA rovers, AutoNav, has been employed, at various
degrees, from the missions of Spirit and Opportunity it remains, also in its latest
implementation on Perseverance, purely based on geometric information to assess
traversability. This means that the teleoperated drives of those vehicles will
comprehend also semantic evaluations made by human experts, while autonomous
ones lack this capability. To try to fill this gap, researchers at JPL in [5] proposed a
new machine learning-based terrain classifier for Mars named SPOC (Soil Property
and Object Classification). It uses a deep convolutional network to identify terrain
types and terrain features. The results obtained were encouraging, but to be able
to obtain the necessary reliability levels for on-board algorithms standard a high
quality dataset was needed.
The dataset includes the majority of existing high resolution images of Mars’ surface.
It gathers samples from several UGVs from MSL and MER missions taken with
both NAVCAM and MASTCAM, two of the cameras in the equipment of the rovers.
The set is split into four different label categories corresponding to the main types
of terrain present on the red planet:
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• Soil, one of the best terrain classes from the perspective of traversability. It
comprises consolidated soil whose surface has sufficient cohesion such that
significant slip conditions are not experienced by the rover. It can, often,
present small gravel and sometimes also light wheel tracks left by the vehicle.

• Bedrock, hard surface of relatively flat and embedded rocks. It is usually
drivable, but can, sometimes, be rugged. It includes all the surfaces in which
height variations are under 30cm.

• Sand, similar to its terrestrial equivalent. It is covered with powdery and
slippery dust making this class challenging to drive through, opening the
vehicle to the risk of beaching. It is usually characterized by ripples and can
also present deep wheel tracks left by the UGV.

• Big rock, the most non traversable, but also rare, class among these four.
It contains all the rocks or rocky surfaces which height is bigger than 30cm,
making it impossible for the rover to navigate over them.

Figure 4.1: Representative examples of the four terrain classes [50].

Due to the remarkable volume of data to be labelled, the process was completed
making use of volunteers’ work through the platform Zooniverse. Citizen scientists
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were administered a tutorial providing detailed information on each class and
some illustrative examples. From a web interface for image annotation they were
able to label images, randomly presented, until no more were available. Due to
the volunteer nature of the process, to account for labelling inconsistency, many
images were labeled several times and merged together to obtain a satisfying
overall quality and reliability. For what concerns the test set, instead, to have
a standard to compare results with, a smaller number of images, approximately
1% of the size of the training set, has been handled by experts. In order to
have a balanced representation of all the classes, images were chosen sampling
the principal different locations containing all the major terrain classes. It was,
also, manually cleaned from low quality images, really similar ones and images
in which the rover occupies significant regions of the picture. To each terrain
class have been assigned three experts focused on the generation of high confi-
dence labels and not on the maximization of the label coverage, implying that it is
not uncommon to find, in this set, images with just small portions of terrain labeled.

As previously mentioned, AI4Mars is the first dataset which has been consid-
ered in this thesis work for the earlier development stages. Other than the four
terrain classes, labeled with integers from 0 to 3, the set presents also pixels labeled
with 255, used for sections which weren’t assigned to any of the previous categories.
For every image, two additional masks, other than the semantic segmentation one,
are provided. They both contain additional information, employed to pre-process
the images before creating the dataset object to be used in the scripts. The first
ones, collected in the mxy directory, provide a mask of the rover, if present in the
images, it can be used to signal the interested pixels and not consider them when
operating semantic segmentation of the terrain. It has, instead, being applied to
directly discard the images in which the rover explicitly appears, avoiding additional
processing operations, given that it will not affect the learning capabilities being
the dataset’s size so large. The second kind of masks are range masks: during the
creation of AI4Mars the labelers have been instructed to ignore, throughout the
labeling process, features which where beyond 30m. These masks signal, in a binary
manner, everything which falls out of the range limit and can be used to either
mask out an entire area in which is not useful to operate semantic segmentation or,
as did in this work, to merge those pixels with the ones out of the four classes. The
ensemble of them has been casted into the new category of "No label" corresponding
to the number four. In this way a more simple setup with just one semantic mask
to take into account and an additional class, identifying unlabeled and out of range
pixels, is obtained.
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Figure 4.2: Darker area in the picture represents an example of the pixels cut off
by the range mask (over 30m)[50].

As it is possible to see in figure 4.3, the big rock class is significantly less represented
than the others. The main reasons behind this can be identified in big rocks being
rare objects to find on Mars’ surface and, even when encountered, occupying rather
small portions of the images. It is common, in semantic segmentation, to have
small objects as minority classes in the dataset, but it is a concerning event, in this
particular case, being the object of this phenomenon the most dangerous and non
traversable class of terrain. Being that much relevant, some kind of expedient needs
to be employed to try and, at least, mitigate the impact of this class unbalance.
Many are the possibilities, ranging from data augmentation of the samples in which
the category is represented, to the choice of an appropriate loss function able to
manage this phenomenon.
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Figure 4.3: Percentages of the classes in an example of training/validation and
test split.

4.1.2 Synthetic dataset

AI4Mars had on its side the large-scale and high quality of the labelling, but, as
previously mentioned, lacked a portion of the information needed to fully train the
appearance-based method. The first possibility which has been taken into account
is the quest for a second, real, dataset coupled with depth data, necessary to build
roughness ground truths. Unfortunately it was not possible to find an alternative
which satisfied all the requirements needed and this conclusion led to the decision
of creating a synthetic dataset, instead.
The generation of artificial images presents the advantages of having the opportunity
to modify a lot of parameters, pose of the camera, texture used for each material,
but more importantly to couple the RGB data with what was needed. In this way,
it has been possible to obtain a series of samples correlated with semantic masks,
with perfect precision, and relative depth mask, as required. To realize this, it has
been used a simulation software called Oaisys, presented in 2021 in [51], based on
the popular 3D computer graphics software tool set Blender.

39



Methodology

4.1.3 Oaisys
Oaisys (Outdoor Artificial Intelligent SYstems Simulator), has been created to
satisfy the open demand for high-quality synthetic data for planetary exploration
tasks and to allow all the detailed operations required in the generation of those
information. Among the most important features, provided by the software, it
is possible to include the capability of a parametric development of the entire
environment and the generation of high fidelity meta data. It is, in fact, possible
to retrieve, for example, multilevel semantic masks or instance annotations, of
paramount importance in many vision-based tasks in the field. The parametric
nature of the set up is, moreover, capable of the creation of large amount of novel
and diverse data, being able to use random deformations of the base surface, control
the distribution of many objects and regulate atmospheric conditions like lighting
and air dustiness.

Condensing the working principles of the simulator, a basic mesh, called stage, is
created to be the ground surface, deforming it to obtain many different landscapes.
On the stage, a series of materials is created using PBR (Physically Based Render-
ing) textures and is spread on the basic mesh. The textures can also be combined
together randomly, using a noise shader, to create original materials which make
the environment more natural. Every texture is assigned a specific semantic id
making always possible to retrieve semantic information, even from the created
combinations. On the generated terrain is possible to position objects, defined
through blender based meshes and covered with appropriate textures, and scatter
them around. For the scattering process a series of noise maps is available in the
simulator to randomly spread them on the stage. After having defined terrain
materials and objects, the simulator sets up the lighting of the scene either by
selecting at random a sample among a series of HDR images, provided by the user,
or by employing the sky simulator of Blender. The camera pose is decided either
sequentially, from a .csv file, or randomly, inside intervals configured by hand which
define position and angle of both the sensor and the invisible target, working as
objective to point the sensor towards. It is possible to define how many terrain
batches are rendered and how many samples to take from each batch. For every
batch the values for the stage deformation, materials and object distributions are
changed, while for every sample the camera angle and lighting conditions will vary.
From every instance it is then possible to collect, other than the RGB image, all
the necessary meta data, in our case the semantic mask and the depth mask.
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Figure 4.4: Example of functioning flow of Oaisys [51].

In order to obtain synthetic images as close as possible to AI4Mars ones, a couple
of adjustments have been made before creating the dataset:

• Images’ resolution has been defined equal to the real word samples, 1024 pixels
by 1024.

• Sensor’s position has been configured to be at the same height of the sensors
used to create the images present in AI4Mars. The publicly available images
are all from the MSL Mars mission of Curiosity, which, from the data presented
in [52], has its NAVCAM at 1.99m and its MASTCAM at 1.97m. For this
reason it has been configured to position the sensor at 2m with a random
variation of 0.1m. To maintain the height constant, in the specification of the
ranges of possible spawning positions of the camera the z value is kept at 0
while it is introduced variability in the x and y axis to try to increase diversity
in the acquired images.

• Textures representing 2 terrain types of AI4Mars, soil and sand, have been
selected and spread across the stage. For what concerns the bedrock class,
instead, to obtain a similar effect to what we see in fig. 4.1, two ad-hoc blender
objects have been created to reproduce groups of slabs of rocks placed over
the terrain, and are positioned around in the simulation. The last semantic
class, the big rock class, has been similarly obtained with other two types of
objects, with different sizes and random rotations, scattered over the terrain.
The sizes of the blender objects have been selected to satisfy the dimensions’
constraints described in the AI4Mars dataset.
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• The landscape preset "mounds", determining the overall shape of the envi-
ronment, has been chosen, among the available ones, and to be closer to the
martian landscape it has been tuned down to avoid having too many and too
exaggerated elevations. An even more accurate work can be done by creating
a configuration file from scratch, considering the morphological features of
Mars to model, more accurately, the base mesh deformations and obtain an
environment more resemblant of the red planet.

• To try to obtain a lighting condition more resemblant of the Martian surface,
some of the parameters relative to the sun in the environment have been fixed
to have its position always similar.

• Camera movements have been limited, allowing a bigger range on the horizontal
axis, while accepting smaller motions on the vertical axis and on the proximity
of the target to frame. This has been done with the purpose of trying to limit
the depth of the images with the aim of having as much pixels as possible
occupied by terrain. In this way, it has been tried to maximize the useful
information retrieved from the samples maintaining a certain coherence with
the AI4Mars dataset.

Figure 4.5: Sample of the created synthetic images in which all terrain classes
are present.

42



Methodology

4.2 Model structure
In this section it will be given an overall view of the structure of the complete model
employed for this thesis work. After that, every section of the architecture will be
detailed more to highlight the choices made and the motivation behind them. It is
possible to see, in figure 4.6, a diagram which shows the full organization of the
developed system.

Figure 4.6: Complete model structure.

On the far left are positioned the two, exteroceptive, sources of data needed to
complete all the operations, RGB images and depth data. They respectively come
from a standard RGB camera and a depth sensor, either comprised in a RGBD
camera or in a stereo camera, and are the starting point for the two methods
which compose the hybrid approach. The appearance-based one encloses two
sub-modules, one operating semantic segmentation and a second one, instead, in
charge of classifying, from the same pictures, pixel-wise roughness levels. The cost
map obtained from semantic information is, therefore, refined using the roughness
mask to create the final traversability cost map of the appearance-based section. In
the geometry side, instead, the point cloud data, obtained from the image and its
relative depth information, are used to evaluate the normal vectors of each point and
compute the angles between the latter and the vertical axis. From this information
the slope of the terrain in each point is estimated assigning a traversability cost
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relative to its value. To integrate the two sides together, to balance the lacks
of each approach with the capabilities of the other, the appearance-based one is
projected onto robot level and the produced output is, in the end, fused with the
geometric one to obtain the hybrid traversability cost map to be fed to the path
planner.

4.2.1 Semantic segmentation module
Dataset preprocessing

For what concerns the appearance-based approach, all the scripts have been coded
in python language. The first thing done was the processing of the data into a
dataset object. As anticipated, before the choice to switch to a synthetic dataset
was made, semantic segmentation has been tested on AI4Mars. Four scripts have
been implemented to perform segmentation: the one in which the dataset class is
defined, the one in which the network class is created, the main script in which the
training process is performed and a last one containing all the functions useful in
the other ones. During the creation of the class RealMarsDataset, a preprocessing
on the images was done generating the dataframes used as inputs by the class. In
those operations, as mentioned previously, the images were read from their folders
and their names, checking the relative rover mask, added in the training and test
dataframes, only if the check gave a negative result. All the samples in which the
vehicle appears explicitly have been, instead, discarded a priori to avoid additional
complications. From the aforementioned dataframes, the paths of the directories
containing images, segmentation masks, range masks and the transformations to
apply to the samples, the datasets are created. The process has three main phases:

1. Image, mask and range mask are read from the repositories based on the names
present in the dataframes, converted into numpy arrays and the appropriate
data types.

2. The function merge_mask is applied to the segmentation and range masks.
This process focuses on joining together the pixels labeled with 255 and the
ones which, in the range mask, fall behind the 30m threshold. All of them are
assigned to the same class, "No label", corresponding to number 4.

3. The last step is the application of the transformations to images and segmen-
tation masks. All the samples are resized to smaller dimensions, 256 pixels
by 256, to have lighter computations without losing too many details. Then,
the normalize function from the albumentations library is used to ensure that
the samples are correctly converted from the range of RGB images, 0 to 255,
to the range 0-1. In the end, they are turned into tensors to be in the right
format to be processed by the neural network.
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Network implementation

The other main actor involved in semantic segmentation is the actual deep learning
model. As discussed in previous chapters, the chosen one is UNet, a deep fully
convolutional network. The implemented architecture is the same as the one
displayed in figure 3.2 and has been implemented through PyTorch[53], a machine
learning framework based on the Torch library. An instance of the class is defined
based on its input channels, its output channels and the number of initial features
to consider. The input channels, by default and in this specific case, are set to 3,
being the red green and blue channels of the input images, the output channels are
set to 5, which corresponds to the number of classes we are trying to classify each
pixel between. The initial features, instead, are the output channels of the first
double convolution block and, for the considered implementation, this parameter
is set to 64. The network, summarizing its working principles, will take as inputs
RGB images and yield as a result a tensor with the same dimensions of the original
images. In correspondence to each image entry, the tensor contains the predicted
probability that the pixel belongs to each class.

Training procedure

In the main script, where the training procedure takes place, as first thing, it
can be found the definition of the setup. The learning rate has been chosen at a
starting value of 10−3, it is, then, controlled by a learning rate scheduler in charge
of decreasing it gradually to avoid the possibility of having the loss curves being
stuck in a plateau. To obtain a satisfactory decrease in the loss functions, the batch
size has been selected to a quite small value, eight, given that UNet works better
with smaller batch sizes, as discussed in [24]. The training, validation and test
datasets, and relative dataloaders are then created from one of the functions in
the aforementioned utilities script. This process, given the paths of the directories,
the transformations to apply and the percentage of the training-validation split,
generates the dataframes, uses them to obtain the dataset objects and, from those,
creates the dataloaders. They are fundamental in the training procedure to allow
the network the access to the elements of the dataset and to perform the subdivision
in batches. It is worth mentioning that only the train loader will have its samples
shuffled before each training epoch to provide higher generalization of the data.
Once those data have been obtained, the frequencies of each class in the ground
truths of the three sets are computed and are employed in the computation of the
weights needed by the loss functions:
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TrainWeights = 1
FreqTrain

· 1
numClasses

(4.1)

V alWeights = 1
FreqV al

· 1
numClasses

These weights are necessary, as mentioned earlier, to address a problem present
in section 4.1.1 regarding the unbalanced nature of the dataset. To handle the
low representation percentage of the big rock class, among the different listed
possibilities, it has been chosen to select an appropriate kind of loss function,
weighted cross entropy (eq.4.2). This function is exactly like the standard,
multi-class, cross entropy but with the possibility to assign a weight to each class.
These weights have the aim to increase more the contribution of specific classes
to the value of the loss, focusing more, as a consequence, the learning process on
these classes.

CEW = −
nØ

i=1

numClassesØ
c=1

wc · yi,c · ln (pi,c) (4.2)

The automatically computed weights can, if needed, be refined manually to fine
tune the learning process more and try to obtain the best performances possible.
For these reason a specific function has been created allowing the possibility to
easily tune more the weights either by reducing or increasing their magnitude.

The successive section of the script presents the definition of the training function,
the process which encloses all the operation regarding the learning phase which are
executed during each epoch. Here, batch by batch, the data, inputs and ground
truths, are extracted from the training loader and fed to the neural network to
obtain predictions for the semantic segmentation. The latter are then used, together
with gts, to compute the value of the loss function for that particular batch. These
operations are all executed employing the automatic mixed precision package of
PyTorch library, which allows the simultaneous use of both standard float datatype
and lower precision floating point, when feasible, with the aim of speeding up
computations as much as possible. With the value of the loss, computed in the
previous step, the optimizer is updated in the process called backpropagation. This
is the technique in which resides the core of the training procedure, it propagates
the value of the error, evaluated through the loss function, from the output layer to
the input layer of the network, updating the weights of each of them based on the
gradient of the error with respect to the weights. The objective of this procedure
is the minimization of this difference, which materializes in the maximization of
the learning capabilities of the model.
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The next two parts of the script are the ones containing the main portion of
the code. In the first one all the actors involved in the training process are set up,
the model and the training and validation loss functions are created. The optimizer
is initialized, in this case as an instance of the Adam optimizer, a popular optimiza-
tion algorithm presented in [54]. It is a stochastic gradient descent method based
on adaptive estimation of first-order and second-order moments. The advantages, of
using such an optimizer, can be found in its capabilities, highlighted by its creators,
being it computationally efficient, with little memory requirement, invariant to
diagonal rescaling of gradients, and well suited for problems that are large in terms
of data/parameters. Another important component which is initialized in this
phase is the learning rate scheduler, in particular the step learning rate scheduler
provided by PyTorch. Its function is to gradually modify the learning rate by a
specific amount decided by the user, in this case decreasing it by the 30% every
2 epochs. Adjusting dynamically the learning rate a more efficient exploration of
the loss landscape is possible, avoiding situations like plateaus, leading to better
training outcomes.

Figure 4.7: Learning rate decay using a step learning rate scheduler.

The last important components defined in this section are the evaluation metrics,
fundamental in the assessment of the performances of the model; a detailed de-
scription of them and the motivations behind their employment will be presented
in section 4.3.
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The second main part of the script is the portion containing the actual train-
ing loop. Inside of it, during every epoch, the training function is re-executed,
computing the values of the loss for the training dataset and updating the weights
through the optimizer. The current state of the latter and of the network are then
saved in a checkpoint, in order to be able to recover from where the last session
ended, either to do additional training epochs or just to be able to reload the state
into the model to have available the trained result. In the end, the model is set
into evaluation mode to perform metrics evaluation on both training and validation
samples and the cycle will start back from the beginning of the successive iteration.

Shift to synthetic dataset

The next step, as comprehensively discussed previously, has been the decision
to permanently shift from real to synthetic images. To have a unique formu-
lation, which could be employed both in semantic segmentation and roughness
classification, avoiding the necessity of the creation of two separated sets, some
adjustments to the previous dataset class were needed. The most important detail
to highlight is the need to add, to the segmentation mask, the information relative
to the roughness ground truth. In this way it has been possible to use the same
dataset for both operations, just switching which channel of the mask we consider
when retrieving the ground truth. Another fundamental requirement has been the
deletion of the fifth class No label. This has become necessary as a consequence
of the conditions imposed in the creation of the dataset itself. To have image
samples effective for both semantic segmentation and roughness classification, the
camera has been oriented in such a way to include as much terrain data as possible
in a certain distance range, avoiding to collect information relative to areas so
far that are not useful to analyze. This resulted in the creation of a set lacking
even a pixel dedicated to the sky, which was the only area labeled with that class
without employing a range mask as done in AI4Mars. Being it not represented, it
results in a division by zero in the weight computation and, inevitably, in some
obstacles with the evaluation of the metrics. To avoid any sort of problem the
easiest and most practical modification to perform is to directly remove the class
and train the network over four categories instead of five. The only criticality
which could be faced as a consequence of this choice arises in the possibility of
the method’s validation with the real images. Being the presence of that class
consistent throughout AI4Mars it could cause some problems in segmentation of
images in which the sky appears, unable to be recognized by the synthetically
trained model. The problem is though mostly visual since, for what concerns
traversability the performances of the network for completely inaccessible areas
are irrelevant. In order to obtain easily understandable samples to compare the
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performances of the network, this aesthetic flaw would be corrected through the
use of the provided range masks. Applying them to the predictions it would be
possible to cut off completely the area interested by this potential problem and
compare only the relevant data of the ground truth and prediction. The same
process could be possibly used also for completely new samples in the presence of
depth information which could substitute the range masks in the task of isolating
only a region of interest which excludes the sky.

For what concerns the semantic segmentation scripts for the synthetic set, apart
from the aforementioned discrepancies, everything has been coded in the same way
to have the obtained results as comparable as possible.

Figure 4.8: Sample of semantic segmentation performed on one of the images of
the test set.

Semantic segmentation cost map

The last piece missing from the puzzle is the creation of the traversability cost
map relative to semantic information obtained from the predictions of the network.
Being able to retrieve the data regarding the different classes of terrain surrounding
the vehicle, it has been necessary to assess a method to translate them into a
traversability cost. The way in which the function creating this cost map has been
designed is centered around two main choices:

• A priori assumptions, in order to assign a cost to a certain terrain type
some kind of evaluations need to be made. In this particular case the costs
must been empirically decided based on both the experiences of prior planetary
exploration missions and the specific structural characteristics of the vehicle
applying the framework. For the case of rovers navigating on Martian soil, it
has been experienced that the more dangerous classes are sand, in which as
mentioned earlier some vehicles found their end, and the untraversable big
rocks.
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• Cautious approach, in order to make the evaluations "uncertainty-aware" the
cost map is designed to take into account also the confidence of the predictions
of each pixel in a specific class.

These two concepts have been integrated together in the creation of the cost map.
Instead of assigning a cost to each class, a cost reduction has been coupled with
every category. This reduction is then multiplied by the confidence of the prediction
allowing the result to be lower when the classification is not so certain. In this way,
even among the same class, if some areas have been predicted with lower confidence
the resulting cost assigned will be higher, increasing as possible the safety in the
choices the UGV will make.

Figure 4.9: Sample of cost map based on semantic segmentation.
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It can be clearly seen in the figure above how the cost assignment follows the
described guidelines, each class has a different cost, with the higher values to sand
and big rocks. Moreover, mostly at the borders between different terrain types, it
is also possible to notice a higher cost, consequence of the lower confidence in the
prediction.

4.2.2 Roughness classification module
The next component of the appearance-based section is the roughness module. The
first idea for the realization of such component has been to perform a pixel level
regression of roughness values of the terrain in the gathered image samples. This
task goes beyond the ways in which, normally, this parameter is estimated making
no use of sensors evaluating the geometric characteristics of the soil. As for the
semantic segmentation, the key actor of the module is a neural network. In [10]
it is presented with the objective of regression instead of classification, meaning
that the output of the network will be a mask with the same dimensions of the
RGB image containing, for every pixel, the predicted roughness value. As will be
further explained in the next paragraphs, requiring an evaluation of the predictions’
uncertainty to build the cost map and being the resulting data used only as a
refining measure over the semantic segmentation one, for what concerns the task in
exam, the exact determination of the roughness value of each pixel is not necessary.
For this reason it has been, ultimately, decided to resort to roughness classification.

Roughness ground truths

The starting point for the realization of the module has been the creation of the
roughness ground truths. As mentioned previously, the information obtained from
the simulator are limited to the depth maps retrieved for every image, the next
step is the creation, from the available data, of equivalent roughness maps. The
method presented in [10] has been followed with some adjustments which will be
highlighted.
It can be summarized into four steps:

1. Point cloud creation, here is introduced the first deviation from the paper.
Differently from the approach described in the aforementioned research, the
cloud is obtained from the python library Open3D, proposed in [55]. It is
created starting from both the depth map and RGB image, to use as much
data as possible. The final result is achieved in two steps, at first an RGBD
image is created through the function create_from_color_and_depth and
it is, then, used to create the point cloud taking advantage of the method
create_point_cloud_from_rgbd_image.
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2. Plane fitting, the method proposed in the paper evaluates plane fitting on a
dataset of images constituted by close ups of terrain surfaces which, in 3D,
correspond approximately to the size of the wheel of the robot employed for
the testing. Being the images of the synthetic set really different, having
decided to use them for both appearance-based modules, it has been limited
the area represented in the samples controlling the way the pictures are taken.
Another adjustment made, differently from the paper, is the application of
the plane fitting algorithm on limited sections of the image in an iterative
process until all the pixels have been covered. It has been decided to follow
this approach to try and obtain a roughness mask as precise as possible to
be sure that the surface irregularities are all highlighted in the ground truths.
In the utilized method the RGB image is divided into a series of patches,
which dimension is modified depending on the depth values. After deciding
the extremes of the patch size, selected at 8 and 30 pixels after a couple of
experiments, its value, starting from the lowest for furthest points, increases as
closer ones are considered. The aim of this process is to have always the size
allowing to capture as much roughness variations as possible. For each patch,
a corresponding point cloud is created and plane fitting is applied, trying to
find the coefficients of the plane that best approximates the studied surface.
The set up of the fitting procedure is slightly different from the one which
can be found in the paper, since open3d uses a different algorithm, RANSAC
instead of K-nearest-neighbour. It is also possible to tune three important
parameters in the used segment_plane method:

• distance_threshold, maximum distance from the plane a point can
have to be still considered an inlier. It has been imposed to a value of
0.01 given that it grants a satisfactory level of accuracy.

• ransac_n, number of initial points to be considered in the first iteration
to fit the initial plane. It has been chosen to a value of 9, which is a
reasonable number given the dimensions of the patches considered and
the quantity of possible noise in data points of each patch. The minimum
possible value would have been 3, being it the minimum number of points
to define a plane.

• num_iterations, number of times the algorithm is reiterated to reach
the final result. It has been selected to 10000 to be sure to have, again, a
good accuracy level.

3. Roughness computation, once the plane coefficients for a patch have been
obtained, the following formula for the computation of the roughness level of
each point, presented in the paper [10], is employed to retrieve the value.
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ri = |−d − a · xi − b · yi − c · zi|√
a2 + b2 + c2

(4.3)

4. Roughness map definition, the roughness value computed in the previous
step, is assigned to the relative pixel in the image making use of the correspon-
dence between the point’s index, in the unstructured point cloud, retrieved by
the points method, and the index of the pixel in the 2D numpy array defining
the map. A post-processing operation is done on the obtained map cutting
the roughness values at mm scale, imposing every lower roughness value to be
equal to 1mm. This operation is done in order to keep only the relevant data
which are useful to consider in the regression process. The resulting array is
then saved and will constitute the roughness ground truth of every sample in
the two datasets.

Figure 4.10: Sample of RGB image and relative roughness ground truth measured
in ms.

Dataset creation

The next step, after the creation of the roughness maps has been completed, is
to perform the adjustments to the dataset class, mentioned in paragraph 4.2.1.
To make it contain also the newly obtained data, an additional layer to the
segmentation mask has been added.
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Architecture of the module

The original architecture of the model used in [10] (summarized in figure 4.11),
translated from its presented implementation in Caffe [56] to PyTorch terms, is
composed of six layers, respectively:

1. First 3x3 convolutional layer, a standard convolutional layer with a 3x3
kernel followed by the application of batch normalization and activated by a
ReLU.

2. First up-projection layer, first of the two belonging to this category. The
up-projection type needs to be defined as a new class since it is the result
of the combination between different layers. In particular, its input is firstly
processed by an upsampling layer with scale factor equal to 2, then the output
of this step is fed both to a 5x5 convolutional layer, followed again by batch
normalization and ReLU activation, and to a simple 3x3 convolutional layer.
The outputs of the two branches are handled differently, the first one is
processed by a following 3x3 convolutional layer with batch normalization and
its final result will be elementwise summed with the second output. The last
operation is a ReLU activation applied to the previously computed sum.

3. 1x1 convolutional layer, a standard convolutional layer with a 1x1 kernel
followed by the application of batch normalization and activated by a ReLU.

4. Second up-projection layer, a second instance of the up-projection class.

5. Second 3x3 convolutional layer, same structure as the first one.

6. Final convolutional layer, last convolution applied to the processed data,
followed by a ReLU activation which yields the final output of the module.
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Figure 4.11: Architecture of roughness regression module[10].

The segmentation network in the regression task, as described in the paper, it is
used in order to take advantage of its feature extraction capabilities to derive the
relevant features which constitute the input of the module. It serves as a kind of
encoder working as a preprocessing filter, yielding the data in a form which can
be directly the input of the module. This means that the interested section of the
segmentation network, from the start of the encoder to the second pooling layer,
is copied and turned into a separate class defined in the script Encoder_filter. It
will be, therefore, preloaded with the final checkpoint, saved after the end of the
segmentation training, to gain the aforementioned feature extraction capabilities.

Cost map incident

As previously mentioned, the aim of the whole regression process is, as for the
semantic segmentation, the creation of a relative cost map. To complete this task,
it has been decided to follow a similar approach to what done for the segmentation
map, assigning a traversability cost based on the roughness level, re-normalizing the
values in the range 0 - 1, and then multiplying the obtained preliminary cost map
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by the predictions’ confidence. This process would allow the cost to be balanced
by the uncertainty in the predictions, to have a more cautious assignment. The
necessity of deriving in some way the confidence of the regressed values made arise
a problem: a standard regression network does not return in any way a measure
of the uncertainty for its predictions. The state of the art, for what concerns
uncertainty prediction, is represented by the use of Bayesian Neural Networks[57].
They introduce stochasticity in the network’s architecture allowing to retrieve the
mean, to be considered as point estimate, and the variance, representing instead
the uncertainty, of the predictions.
Being, for the purpose of this research, more important to have a measure of the
latter than to have a continuous regressed roughness estimation, classification has
been preferred. These are the main reasons which motivated, as anticipated in
the very beginning of section 4.2.2, the decision to operate roughness classification
instead of regression.

Roughness classification

The accuracy level achieved by classifying roughness into several classes is more
than enough to be able to refine the result obtained from semantic segmentation
and, moreover, as already seen for the previous appearance-based task, this kind of
networks are capable of yielding a kind of uncertainty measure of their predictions,
returning, for every pixel, the probability it belongs to each of the classes it is
trying to differentiate among.
To perform roughness classification the first adjustment needed revolves around
the dataset creation, a classification ground truth is required to train the network.
To obtain such data, a series of roughness classes needs to be defined a priori.
The decision process is governed by both a trial and error procedure and a task-
related choice, linked to the environment depicted in the images and the navigation
capabilities of the rover. It has been decided to keep the number of classes limited,
trying to avoid increasing the complexity of the problem past a required level and,
for this reason, four roughness levels have been defined:

1. LV0, or "Negligible roughness", between 1 and 4 mm. This level is not
representing in any way a danger to the traversability capabilities of the
vehicle being the surface very smooth.

2. LV1, or "Low roughness", between 4mm and 3cm. Is reasonable to think that
this class starts to have some kind of effect on the navigation of the UGV, but
even the higher end should be easy enough to be handled.

3. LV2, or "Medium roughness", between 3 and 10 cm. This class has a relevant
impact on the vehicle which, on the higher values, will face a significantly
rugged terrain or even some examples of positive obstacles.
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4. LV3, or "High roughness", above 10cm. The last level represents the most
hazardous roughnesses for the rover, it may be either really hard and dangerous
or even impossible to traverse this class. It is found usually on the borders
of instances of the big rock class or at the edges of some drastic changes of
terrain slope, like steep hills.

Figure 4.12: Example of classification ground truth.

Once that the classes are defined, starting from the ground truth obtained from the
previously seen method, each pixel is assigned to a roughness level in the dataset
creation, obtaining the classification mask. The network too has to be changed
resorting again to the same UNet implementation used for semantic segmentation,
re-adapting also the training scripts to make them suitable for the new task.
The strategy employed in the training process has been the same, using again a
weighted cross-entropy loss, due to the significantly unbalanced dataset obtained,
and a step learning rate scheduler to gradually decrease the learning rate as the
procedure goes on.

Training procedure

The training script is similar to the one described for the semantic segmentation
network, with a few changes due to the slight differences of this task. The first
step has been the definition of the hyperparameters’ setup of the procedure. Due
to the similarities of the two processes, the chosen values are the same as seen
previously in the classification of terrain classes. The training, validation and test
datasets and dataloaders are, then, created using the same functions employed also
for segmentation purposes. The main difference, can be found in the selection of
the ground truths which, for this task, are positioned as an additional layer of the
previously created masks. Afterwards, the loss function is defined, right before the
definition of the training function. The chosen criteria is again the same weighted
cross-entropy discussed in previous sections, to be able to cope with the problem
of classes unbalance in dataset creation. The training function, contains all the
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operations done each iteration of the procedure, asks for the same inputs as for the
segmentation case, but uses a different ground truth in the loss evaluation.
The first main section of the code is the one in which all the actors involved in
the training loop are set up. Here, the network instance is created, the training
and validation loss functions are initialized, followed by the Adam optimizer. At
last, for both training and validation set, all the metrics employed also for seman-
tic segmentation are initialized, to try to have the most complete view over the
performances of the network during the training procedure.

The second main section of the script is the one containing the training loop.
Here, during each epoch, the train function is called, to compute predictions,
evaluate loss values and update the weights accordingly. Then, a checkpoint is
saved, to be able to restore the training procedure from where it ended and to
use the trained network without repeating every time the process. In the end,
the metrics and loss values for both training and validation sets are stored in the
relative arrays, to keep track of the progresses. The model, from the evaluation
mode needed to compute the metrics, is restored to training mode and the cycle
starts back from the beginning.

Figure 4.13: Sample of roughness module’s output.

Roughness classification cost map

As per the semantic segmentation module, the final objective to achieve is the
creation of a traversability cost map. In this case the map will be based on the
roughness of the terrain surrounding the rover, having a higher value for rougher
areas and a lower value for smoother portions of the soil. It has been previously
mentioned that this evaluation is needed to refine the result already obtained from
the segmentation network. The aim is, not only, to have a better understanding
of the soil the vehicle will traverse, but mostly to increase the level of detail in
the cost assignment to sections belonging to the same terrain class. The strategy
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adopted is exactly the same detailed in section 4.2.1, the only difference resides in
the considerations made for cost assignment. In this case the cost value depends
on the increasing roughness and, again, takes into account the uncertainty in the
classification as a form of additional safety measure.

Figure 4.14: Sample of roughness classification cost map.

Appearance based cost map

Once the two cost maps, coming from the different appearance-based modules, have
been elaborated it is needed to combine them together. This task is completed
through the use of a weighted sum of the maps, a widely employed approach,
assigning weights proportionally to the importance that, empirically, is desired to
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assign to each of them. In this particular case, as extensively mentioned previously,
the roughness analysis is considered as a refining measure to have a more complete
and accurate comprehension of the terrain classified in each semantic category. For
this reason, the weight corresponding to this cost map will be smaller than the
one chosen for the other one. After some testings, the most appropriate values
have been set to be 0.7 for the semantic segmentation cost map and 0.3 for the
roughness classification one. This weighting, strategy grants an increased detail
level in the cost assignment, as desired, without giving too much importance to the
roughness classification which could, in some cases, have a detrimental effect given
the overall lower performances due to the higher degree of the task’s complexity.

Figure 4.15: Combination process of the cost maps.

Figure 4.16: Sample of appearance based final cost map.

The weights’ values are always chosen to sum up to 1 in order to be able to have a
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result which still is included in the range 0 to 1.

4.2.3 Geometry based module
In section 3.4, the geometry-based side of the approach, intended to be followed,
in this thesis work was introduced. As already mentioned, the initial idea was
to follow the method described in [45]. Being the package implemented for ROS
and, therefore, not available for ROS2 projects it couldn’t be employed in this
work. To find a solution to this problem, an alternative way to assess the geometric
characteristics of the terrain surrounding the vehicle had to be defined. The chosen
approach is conceptually simpler than the initial one, but is still able to gather the
information needed to make an efficient evaluation. From the range sensor used
to obtain point cloud data, the approach is able to estimate, for every point, the
slope of the terrain allowing the rover to understand the morphology of the soil.
This empowers the vehicle with the ability of detecting both positive and negative
obstacles, represented by abrupt changes in the slope.

Figure 4.17: Example of a slope computation method[58].

Structure of the approach

The method, conceptually similar to the above figure, is articulated into four steps:

1. Creation of the point cloud, this process is completed using the library
Open3D. The important preliminary steps to obtain the correct point cloud to
process are two transformations, since the initial result obtained will be in the
camera frame, but oriented according to the Open3D default settings. The
first transformation is needed to rotate the axes of the frame and obtain the
default orientation of the camera in Oaisys, which has the x axis to the right,
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the y axis upwards and the z axis inwards. The second transformation will
be used to go from the coordinates of the cloud in the camera frame to the
coordinates in the base-link frame (coincident with the world frame, being the
approach in use robot-centric), a term used to indicate the frame which has
its origin in the center of the rover and its xyz axes respectively to the right,
forward and upwards.

Figure 4.18: Sample of a transformed point cloud.

2. Normal vectors estimation, the transformed cloud object from the pre-
vious point can benefit from a method called estimate_normals. Differently
from figure 4.17, this method, for each point in the cloud, uses a hybrid
search algorithm, combining K nearest neighbour and radius search, to find
neighbouring points to employ in the principal axis computation through co-
variance analysis. As reported in the Open3D documentation, the covariance
analysis algorithm produces two opposite directions as normal candidates.
Without knowing the global structure of the geometry, both can be correct.
This is known as the normal orientation problem. Open3D tries to orient
the normal to align with the original normal if it exists, otherwise, it does
a random guess. To manually help the process, it is has been employed the
orient_normals_to_align_with_direction method. Passing it the vertical axis
z = [0,0,1], as shown in figure ?? and ??, allows to isolate only the outgoing
normal vectors, needed in the computations of the approach. At the end of
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the process, the point cloud is enriched with an additional field containing the
corresponding estimated normal vectors for all its points.

3. Slope computation, once the normal vectors are available the angle between
the latter and the vertical axis represents the slope of the terrain in that
specific point of the cloud. It can be obtained taking advantage of the dot
product formula, being z the vertical axis and n the estimated normal vector:

z · n = ∥z∥∥n∥ cos(∠(z, n))
then, it is possible to retrieve the angle as:

cos−1(∠(z, n)) = ∥z∥∥n∥
z · n

(4.4)

4. Cost map creation, as per the appearance-based method, also in the
geometry-based one a traversability cost map needs to be outputted. The
costs have been, again, assigned from 0 to 1 accordingly to the slope of the ter-
rain. A slope with, either positive or negative, higher magnitude represents a
geometric deformation of the terrain and a proportionally higher traversability
cost. To determine the cost assignment, a function has been employed to make
the cost start from 0, in correspondence of a completely horizontal surface,
and achieve the maximum value of 1, untraversable, for terrain portions with
a slope greater than a certain threshold (t) value. To obtain a result which
highlights more higher slopes a second key value, called soft threshold (tsoft),
has been determined to separate a first, more gentle, portion of the function
from a second, steeper, section, as shown in eq.4.5. The two values have been
set to 30◦, for the soft threshold, and 70◦, for the threshold. They can be
tuned depending on the setting in which the rover is expected to navigate
and the structural characteristics of the vehicle. The selected values are just
a generic example employed in this particular case. The same evaluation is
done considering the cases in which the normal is inclined in the opposite
direction, resulting in angles between 360◦ and 360 − t◦, while for possible
cases of angles between t◦ and 360 − t◦, obtainable only for points with faulty
normal estimation, the cost is always kept at 1 as an additional safety measure.

costgeom(θp) =



2
π

· θp if θp < tsoft[rad]
1

t[rad] · θp if tsoft[rad] ≤ θp ≤ t[rad]
1 if t[rad] < θp < 2π − t[rad]
1 − (θp−(2π−t[rad]))

t[rad] if 2π − t[rad] ≤ θp ≤ 2π − tsoft[rad]
1 − (θp− 3

2 π)
π
2

if 2π − tsoft[rad] < θp ≤ 2π

(4.5)
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Figure 4.19: Sample of the geometry based cost map.
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4.3 Evaluation metrics
In this section another really important topic concerning the training process of
the neural networks employed will be covered, the evaluation metrics. They are
fundamental in the understanding of the next chapter in which play a crucial role
in all the experiments, performed during the development of the framework. They
constitute a reliable measure in the assessment of the performances of the networks
and represent the main indicator used to determine the satisfaction degree of a
training procedure.
Having used, for the two the appearance-based modules, the same network, being
both of them aimed at a classification task, the same metrics have been considered.

4.3.1 Loss function
The loss function, employed during the training procedure of a network, is the first,
and one of the most effective, metrics to assess the quality of the training. Studying
the curve of the function’s values over the epochs, it is possible to see how much the
learning capabilities of the network are effective. It represented by the magnitude
of the loss decrease, in the graph, as the network trains. It is also possible to
determine the correctness of the hyperparameters’ setup and the constitution of the
dataset, researching in the function’s curve symptoms of either over or under fitting.
These two phenomena, to be noticed, need the direct availability of a comparison
between the loss curves of both the training and validation set, to see whether
the validation loss is consistently above the training loss in the various phases,
respectively the early stages for underfitting and the later stages for overfitting, of
the training process.

Figure 4.20: Example of correct losses’ behaviour during training.
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As mentioned in section 4.2.1, the loss function employed during the training
procedure of both the two networks is a multi-class weighted cross entropy. It is
a slightly modified version of a widely employed loss function for classification,
with the adjustment of having the possibility to assign a weight to each class. As
already covered, this is particularly useful in cases of unbalanced datasets, category
in which the case of study falls perfectly, with the aim of amplifying the learning
effect of the less represented classes.

4.3.2 Additional metrics
Other than the loss function, among the many possible choices, six metrics have
been selected to be evaluated during the training procedure to prove the effectiveness
of the learning process. All of them are implemented using the torchmetrics library,
allowing to obtain metrics objects which can benefit from a series of useful methods.
In particular the employed metrics are:

• Accuracy, measures, in multi-class classification, the percentage of correct
predictions over the total number of predictions made for every class. In the
equation 4.6 it is possible to see the formula used in accuracy computation,
where, for N pixels of the ground truth belonging to class c, yci represents
the exact label value, ŷci represents the predicted label and the result of the
equality is either 1 in case of correct prediction or 0 otherwise. The metric is
computed for both training and validation sets and is updated for every batch
of every epoch, yielding, at the end of each iteration, its average value. Pixel
accuracy on its own is, however, not enough to assess the performances of the
network and, for this reason, other metrics with different characteristics have
been employed too.

Accc =
qN

i=1 1 · (yci = ŷci)
N

(4.6)

• F1 score, is the name chosen for the value of the harmonic mean of precision
and recall, eq.4.7, enclosing the positive sides of both of them. Precision
measures the quantity of true positive predictions (cases in which an element
is correctly predicted in a specific class) over all the positive predictions (all the
times an element has been predicted in this same class). Recall, on the other
side, for every class, is the ratio between the true positive predictions over the
total amount of positive samples (the total number of elements belonging to a
certain class). The F1 score is able to balance both of them providing a single
metric that reflects a model’s ability to correctly identify positive instances,
while minimizing false positives and false negatives.
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F1c = 2 · precisionc · recallc
precisionc + recallc

(4.7)

• Jaccard index, or Intersection over Union, is a metric, ranging from 0 to
1, considered as one of the most meaningful for image segmentation tasks
[59]. It consists of the ratio between the intersection and the union of two
sample sets (eq.4.8), in the specific case of semantic segmentation or image
classification represented by the ground truths and predicted masks. It has
been employed, as the previous metrics, class-wise to have as output a vector
of values. Similarly to the F1 score, IoU too is capable of considering both
false positives and false negatives making it more sensitive to segmentation
quality than pixel accuracy, it is also able to consider the spatial distribution
of the misclassifications, contrarily to accuracy. This means that, for example,
if an object, like a rock in this specific setting, is slightly shifted from its true
location, IoU can still capture the degree of overlap and provide a meaningful
evaluation.

J(A, B) = |A ∩ B|
|A ∪ B|

(4.8)

All the measures seen until this point have been relative to the different classes,
but to have a more comprehensive evaluation it has been decided to consider also
some overall metrics.

• Dice score, which is another name for the aforementioned F1 score, is
computed in the same way, but in an overall manner. This is done with the
aim of having a global view over both precision and recall.

• Mean IoU, as for the previous metric is linked with one of the earlier entries
in this list, the Intersection over Union or Jaccard index. It represents the
average value of the metric over all the classes in the classification task. As
for its per class version, is one of the most important and widely used metrics
for this kind of tasks and ranges from 0 to 1.

• Confusion Matrix, for multi-class classification is a NxN matrix, C, con-
taining in its entries, Ci,j , the percentages of observations known to be in class
i, but predicted to be in class j. As it is reported in the documentation of the
library torchmetrics:

– Ci,i, represents the number of true positives for class i.
– qN

j=1,j /=i Ci,j, represents the number of false negatives for class i.
– qN

i=1,j /=i Ci,j, represents the number of false positives for class i.
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– The sum of the remaining cells in the matrix represents the number of
true negatives for class i.

Figure 4.21: Confusion matrix sample of the segmentation task.

In the above paragraph, throughout the metrics’ presentation, a series of terms has
been used with respect to the predictions made by the network. When speaking
about multi-class pixel level classification, it can be easier to understand them
when viewed in the context of the classification ground truth and the predicted
mask, as can be also seen in figure 4.22:

• True Positive, the area of intersection between Ground Truth(GT) and
segmentation mask(S). Mathematically, this is logical AND operation of GT
and S.

• False Positive, the predicted area outside the Ground Truth. This is the
logical OR of GT and segmentation minus GT.

• False Negative, number of pixels in the Ground Truth area that the model
failed to predict. This is the logical OR of GT and segmentation minus S.
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Figure 4.22: Example of what is analyzed by segmentation metrics.
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4.4 ROS architecture
The Robot Operating System is an open source software development kit for
robotics applications [60]. In simpler terms, it is the ecosystem that enables all the
pieces presented in the previous sections to work together and create the pipeline
needed to carry out the desired results from the data acquired by the rover sensors.
ROS is the basis for most robotic research from single-student projects to multi-
institution collaborations or large-scale competitions and, considering its extremely
active global community of millions of developers and users and its complete open
source nature, embodies the qualities of a perfect tool to build the architecture
formulated in this thesis work.

The fundamental principles of ROS are built upon few key concepts:

• Packages, as mentioned in [61],are the most basic units of the ROS software.
They contain the ROS runtime process (nodes), libraries, configuration files,
and so on, which are organized together as a single unit. Packages are the
atomic build and release item in the ROS software.

• Nodes, are independent modules capable of interacting with each other making
use of the ROS communication properties to exchange data. They constitute
all the code which is executed while the system is running, if projected into
the specific case of this work, for example, each approach will be implemented
in a separate node.

• Messages, define the information sent and received during nodes’ communi-
cations. Depending on the kind of data, specific type of messages exists, or
can even be created ad-hoc if not already available for a specific task.

• Topics, constitute the channels over which data are continuously exchanged.
They are like a tunnel in which a certain kind of message travels through.
With respect to this channel a node can send something, being defined as a
publisher on that topic, or receive something, being instead a subscriber to
that topic.

• Services, differently from the communication established between nodes
using topics, services are employed to define a kind of client-server interaction
between processes. A service can be called from as many clients as desired
and is used, usually, to either make computations or change some settings.

• Launch files, are a tool available in ROS and ROS2 which allows to startup
and configure a number of executables containing ROS nodes simultaneously.
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All of the presented building blocks, exception made for services, are employed in
the ROS architecture defined for the presented framework, as can be seen from the
figure below.

Figure 4.23: Complete ROS architecture.

The proposed ROS structure comprises 3 different nodes which will be started at
once thanks to a launch file. They create the complete data flow which from the
input data, coming from the rover, leads to the output of the final traversability
cost map. In ROS and ROS2, which is the one specifically employed in this work,
it is possible to create packages for nodes coded either in C++ or Python. To
keep a coherence with all the work presented up until this point and to be able to
use the same libraries, all the nodes, which will be listed, and the launch file are
completely implemented in Python.

4.4.1 Nodes’ implementation
The information, coming from the camera on the UGV, will be sent to the two nodes
in charge of the hybrid traversability analysis which will process them creating
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the two, already discussed, traversability maps. The outputs of the nodes will
go through an approximate time synchronizer, inside the final node, before being
employed for the creation of the hybrid cost map. This last node will be in charge
of the remaining processing operations on the maps and their combination, to get
to the final desired result.

In the following paragraphs each part of the graph will be individually presented
more in depth going through both the coding implementation, the logic behind the
choices made and the interactions with the other elements of the pipeline.

Source data publishing

As can be seen in the far left of fig. 4.23, the data needed by the two approaches
come from two sources, the camera and the rover itself. For what concerns the
appearance-based side, the only RGB image is required and travels inside an Image
message, from the sensor_msgs package. The geometry-based approach needs
instead few more information, requiring also the corresponding depth image and
the transformation matrix describing the pose of the camera with respect to the
vehicle. The latter is not retrieved in the same way as for the images, but thanks
to the use of a Buffer and TransformListener from the tf2_ros package, it can be
obtained whenever its needed sending a lookup request, using the lookup_transform
method of the Buffer object.

ApproximateTimeSynchronizer

Time synchronizers are a category of message filters, from the message_filters
package, with the aim of synchronizing messages. The filter used in this node is
an Approximate time synchronizer, which differs from the standard one since it
considers a time range in which the message is accepted as synchronized. This kind
of filters just checks the timestamps of the messages linked with it and, when they
are acceptable, executes a callback, whose content is defined by the user.
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Figure 4.24: Data synchronizers.

Their aim is to synchronize all the inputs and then forward them to the successive
steps. This phase is needed in order to be sure that the data processed together
are actually meant to be together, since the two approaches could yield results not
exactly at the same rate. They are employed inside two of the nodes in fig.4.23,
the geometry based one and the final node. The first synchronizer is used to make
sure that the three inputs of the node are consistent with each other, to avoid
producing unexpected results. The second one, instead, ensures that the two cost
maps of corresponding time instants, the relative pixel-grid correspondence, and
the depth flags’ matrix passed to the final node, are meant to be together, checking
their timestamp. In figure 4.24, the steps operated in the filter node can be seen in
detail, firstly the timestamps of the messages, received through Subscriber objects,
are read and if considered synchronized, by how the ApproximateTimeSynchronizer
is defined, the callback is executed. In this callback, all the intended processing
operations are done being sure to work with the correct data.
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Appearance-based node

This node, together with the geometry-based one, represents the implementation
of the hybrid-approach discussed in the previous sections. Here, the two neural
networks are employed to predict a semantic segmentation and a roughness clas-
sification masks, used to obtain the maps to combine into the appearance-based
traversability cost map.

Figure 4.25: Appearance-based approach implementation.

The node class, defined for this case, has 8 attributes used to store all the data
needed to complete the execution of the method. Among them can be found the
device, either processor or GPU, to operate the network inference, the two networks’
models for segmentation and classification, the weights to sum the two cost maps,
the transformation object to apply to the received image to be handled by the
networks, the subscriber to retrieve the images coming from previous steps and
the publisher to propagate the resulting cost map to the next phase. Additionally,
in the same __init__ method as the attribute definition and initialization, the
checkpoints containing the state of the networks after being trained are loaded, in
order to work with trained instances and use them only for inference.
Since to employ the method the input RGB image needs to be available, the whole
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approach is implemented in the subscriber’s callback, activated when the latter,
acquired by the camera, is passed to the node:

• app_callback, as soon as the Image message, from the sensor_msgs package,
is received, its content is extracted and restructured into a three-dimensional
array with a bi-dimensional layer for each of the three color channels. This
process is required due to the fact that the data travel as a flattened mono-
dimensional array, while the dimensions of the image are contained in the
height and width fields of the message. To this new object the transformation
is applied, to resize it, normalize its values in the range 0-1 and turn it into a
tensor object. Then, a fourth dimension is added to the previous result, since
the networks are used to work with four dimensional batches of images’ tensors.
Finished all this pre processing, the inference of the networks is evaluated and
the two cost maps are retrieved. The semantic segmentation traversability
map and the roughness classification one are then combined using one of
the most common strategies, a weighted sum of the two is computed. This
allows to be able to manually determine which traversability estimation we
want to value more, assigning a higher weight in the sum. In this particular
application, as anticipated in previous sections, the roughness classification
is employed as a refinement measure with respect to the prediction of the
semantic segmentation network, thus resulting in a higher cost for the semantic
cost map and, instead, a lower one for the roughness traversability evaluation.
As presented in [49], and visible in the figure 4.26, a way to find the pixel
corresponding to each cell in the grid map could follow a projection process
based on the availability of an elevation map of the surroundings of the rover.
Being the proposed framework substantially different from the one described
in [49], for what concerns the geometry-based approach, a different strategy is
employed. As will be described in the next points, it is a conceptually simpler
method relying on a particular characteristic of the Open3D library, used in
the geometry-based side, but obtaining an equivalent result.

Figure 4.26: Projection process exposed in [49].

Therefore, satisfied with the obtained cost map, some final operations are
executed before publishing the result to be used in the next steps. Since the
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message type to be used is the OccupancyGrid, from the nav_msgs package,
the costs need to be translated from the 0-1 range into the accepted format
for these messages, a 0-100 range of integers where 0 means free and 100
completely occupied and so untraversable. Last step consists in the flattening
process of the map, into a list of integers, and the creation and publishing of
the message.

Geometry-based node

This second node works in parallel with the appearance-based one to yield the
traversability cost map depending on the geometric evaluation of the landscape.
The node, is in charge of generating the point cloud data and applying the method
presented in section 4.2.3, operating a traversability analysis relative to the terrain
slope.

Figure 4.27: Geometry-based approach implementation.

Differently from the implementation previously described, this node has 18 at-
tributes, due to the higher number of operations to be executed. Being the
transformation data from the camera frame to the world frame broadcasted from
the simulation, the node needs some way to be able to access those data whenever
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it needs to. The solution to this task, as briefly mentioned in the data sources’
paragraph, is represented by the definition of two of those attributes: a Buffer, from
the tf2_ros.buffer library, to store the data during a certain specified time interval,
and a TransformListener, from tf2_ros.transform_listener library, in charge of
accessing the buffer and reading the transformations from it. To retrieve the correct
transformation matrix other two attributes are defined, two strings representing
the IDs of the coordinate frames involved in the transformation. Other attributes
must be reserved to the intrinsic parameters of the camera acquiring the images
and the PinholeCameraIntrinsic object, used in the creation of the point cloud.
Among the remaining ones can be found a preliminary transformation matrix to
obtain the default camera orientation, as anticipated in 4.2.3, the subscribers to
receive the RGB and depth images, an ApproximateTimeSynchronizer to be sure to
have the correct images to process, and the three publishers which will propagate
the geometry-based traversability cost map, the pixel-grid correspondence and the
depth flags’ matrix to the next step in the pipeline. For what concerns this last
matrix, it has the same dimensions of the RGB and depth images, employed in
the process, but its entries are either 0 or 1 depending on the satisfaction of a
depth check. It’s purpose is, in fact, to signal to the final node which pixels in the
acquired sample are below a certain depth threshold, which must be defined as
another attribute of this node.
As was for the appearance-based one, the totality of the method is enclosed in a call-
back, specifically the synchronizer’s callback, activated as soon as the corresponding
RGB and depth images get to the node:

• geom_callback, here the geometry-based method is implemented. From the
two messages, belonging to the type Image from the sensor_msgs package, the
data of the RGB and depth images are retrieved and restructured into numpy
arrays with the right dimensions, using the node’s method restructure_image.
Additional processing operations need to be applied on the depth image, to
have the values in ms, being forced to travel in mms in the Image message.
From these depth data the matrix of depth flags is built, starting from a
matrix of zeros and changing all the pixels under the depth threshold to
1. The value of the latter has been set to 10ms with the aim of building a
cost map as informative as possible. As can be seen in fig.4.19, the data get
sparser and sparser as the depth increases, with a detrimental effect also on
the employed traversability estimation methods, therefore being less accurate
and informative for the completion of the task. The two images are converted
into Image objects of the Open3D library and employed to generate a RGBD
image. In the creation of the latter it can be specified the depth threshold
to consider, with the depth_trunc parameter, to easily account for it in the
geometry based method. The consequence of this choice will be a point cloud
with less points, resulting also in lighter computations. The RGBD image,
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together with the camera object, attribute of the node, is given as input to
the create_from_rgbd_image method which will, finally, yield the point cloud
object.
Once the preprocessing on the data is done, the approach, as it was previously
presented, is applied. A lookup request for the transformation matrix is sent.
In case the desired transformation matrix is not available yet in the buffer, the
request process is inserted into a retry mechanism, built within a while loop.
It will try again a certain amount of times, in case the correct transformation
is broadcasted in the meantime, if it never arrives an exception is raised. Once
a positive result is obtained, the first operation to be done is the definition of
the 4x4 transformation matrix itself. This kind of matrices are constituted as
follows:

T =


r0,0 r0,1 r0,2 t0
r1,0 r1,1 r1,2 t1
r2,0 r2,1 r2,2 t2
0 0 0 1

 (4.9)

where ri,j entries define the rotation component of the transformation, while
tis describe the translation.
This data need to be restructured from the content of the broadcasted messages
of the type TransformStamped, from the geometry_msgs package, which carry
the information separating the translation data, kept as they are, and the
rotation data, in the shape of the equivalent quaternion to the rotation matrix.
To this aim, a restructure_tf function has been designed. For what concerns
the t vector, no operation is needed other than extracting it from the message.
For the R matrix instead, the following formula had to be implemented to
retrieve the matrix entries from the quaternion elements:
being q = (q0, q1, q2, q3) = (qw, qx, qy, qz), in terms of the content of the message,
then

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2 (q1 q2 − q3 q0) 2 (q1 q3 + q2 q0)
2 (q1 q2 + q3 q0) q2

0 − q2
1 + q2

2 − q2
3 2 (q2 q3 − q1 q0)

2 (q1 q3 − q2 q0) 2 (q2 q3 + q1 q0) q2
0 − q2

1 − q2
2 + q2

3

 (4.10)

The transformation matrix representation is essential to the reference frame’s
transformation needed to be applied to have the geometry-based traversability
cost map in the coordinates of the target frame. This frame, as mentioned
previously is the robot’s base-link, but will be equivalently referred to also
as the world frame. Obtained the matrix, the transform method of the point
cloud object is applied two times to go firstly in the default camera frame and
successively in the world frame.
The next steps in the geometry-based approach are the estimation of the
normal vector of each point, the manual selection of the only outgoing vectors,
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as anticipated in previous sections, and the computation of the corresponding
slopes, angles between the normal vector and vertical axis. From the slopes
the geometry-based traversability grid map is created and, together with it, a
correspondence between the pixels of the rgb image and the cells’ coordinates
is derived. For the same reason explained in the above section, the cost map
is casted into an equivalent version comprehending integers in the range 0-100.
These data are flattened out and inserted into an OccupancyGrid message, in
which other information must, in this case, be added. It must be specified,
the id of the frame in which the map is represented, the cells’ resolution in
meters, the width and height of the grid in terms of cells and the complete
pose of the origin of the map itself. For what concerns the correspondence data
and the depth flags’ matrix, they become the content of two Image messages
with appropriate dimensions and encoding. Finally, all three messages are
published towards the next phases of the process.

Final node

The last node in the pipeline is the one in charge of gathering all the results and
elaborate the final traversability cost map combining them.

Figure 4.28: Final node of the architecture.
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For what concerns the implementation of the ROS2 node, 10 attributes are defined.
They are designed to store, among them, the four subscriber objects employed
to receive the data needing synchronization (the two cost maps, the pixel to grid
correspondence and the depth flags’ matrix) and the ApproximateTimeSynchronizer
itself. Two other attributes need to be defined to accomplish the transformation
process of the appearance-based map, still in the image plane, a transformation
object which will be used to resize to the correct dimensions of the cost map and
the interpolation radius, required in the last phase of the operations leading to the
wf appearance-based cost map. The last three attributes of the node are reserved
to store, the two weights for the combination of the cost maps and the publisher in
charge of handling the final hybrid result.
As for the other nodes, all the procedures are articulated in the implemented call-
backs, in this case, similarly to the previous geometry-based node, the synchronizer’s
callback:

• final_cmap_callback, being a filter’s callback if and only if all the necessary
data are arrived and synchronized the complete process is executed. The
first thing done is to extract the content of all the input messages. For what
concerns the appearance-based cost map, the pixel-grid correspondence and
the depth flags’ matrix, the data field of the messages are retrieved and
restructured into a matrix. From the geometry-based cost map message, in
addition to the aforementioned process, the parameters characterizing the grid,
frame id, cells’ resolution, position and orientation of the origin are gathered
too from its content.
To start back from where was left in the appearance-based node, the next
step of the node’s execution is, from the 2D image plane cost map, to obtain
the relative grid map in the world frame. As anticipated previously, this
is accomplished taking advantage of a specific characteristic of the Open3D
library, the fact that the points’ array, yielded by the point cloud object, is
a mono-dimensional array ordered from the point corresponding to the top
left pixel of the RGB image to the pixel at the bottom right. Knowing this
correlation it is possible to restructure the array obtaining a correspondence
between pixels and points’ coordinates, which allows to derive the relation
between pixels and cells of the grid map to which each point belongs in
the geometry-based map. Being both the geometry and appearance based
approaches applied on the same RGB image, this correspondence can be
employed to create the grid version of the appearance-based cost map, without
the need of elaborating a projection process, like the one in fig.4.26. Since
the geometry based approach works with full resolution images, while the
appearance-based side resizes them to be processed by the networks, the
correspondence must be resized too to match the dimensions of the 2D image
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plane cost map. The only addition to this, comes from the depth threshold
imposed in the geometry-based node, to be sure to build the appearance grid
map only for pixels in the allowed range the depth flags’ matrix is resized too
in the same way. After the resizing, a for loop is employed to select, for each
pixel with corresponding positive depth flag, the relative cost in the map and
assign it to the matching grid cell. Being the image taken by a camera, the
perspective of the device causes the majority of the pixels to be dedicated
to the closest portion of the grid map. The assignment of multiple points to
the same cells, is taken into account by the computation of the average cost
for the cells populated by more than one point. Another consequence, of the
aforementioned condition, is the anticipated increasing sparsity in the map as
the points get further from the camera. This phenomenon could be already
seen in the geometry-based map in fig.4.19, but is even more evident in the
appearance-based one, as can be noticed in the figure below.

Figure 4.29: Appearance-based grid map sample.

To overcome this condition, which will cause incorrect behaviours in the
combination of the cost maps, an interpolation process has been developed.
For all the points at zero in this cost map and not in the geometry based one,
an interpolation window with tunable dimensions is considered. All the pixels
in the window are checked and their value is summed to the central one. The
average, computed with respect only to the nonzero pixels, is evaluated and
will become the new cost of the initial pixel. The process is repeated until the
number of candidates is down to zero. In the case of an unsuccessful iteration,
the size of the window is increased by five pixel to include more points and
have a higher probability of finding a nonzero value. This can be re-iterated, if
necessary, for a maximum of five times to avoid making the process too heavy.
Even if the method is very simple, the result, which can be seen in the next
figure, appears to be more than acceptable and coherent with what expected.

81



Methodology

Figure 4.30: Appearance-based grid map sample post interpolation.

Now that all the data needed to elaborate the final hybrid traversability
cost map are available, a combination of the two maps is computed through
a weighted sum. The newly obtained result represents the fusion of the
contributes coming from the two approaches, which try to compensate the
possible flaws of each other. This map is, then, converted in the 0-100 range,
flattened again and published inside a last OccupancyGrid message. All
the characterizing information, retrieved from the geometry based map, are
specified again for the final one, to be used by the other actors involved in the
autonomous navigation system.
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Figure 4.31: Hybrid terrain traversability cost map sample.
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Chapter 5

Developments and Results

In this chapter, an overview of the main development phases is presented, high-
lighting, at first, the most important steps and the motivations which led to the
final setup and, in the end, the actual simulation’s tests to verify the performances
of the framework.

5.1 Preliminary tests
The majority of the effort in the creation process was directed towards the
appearance-based approach. After having defined the network to employ, the
first step had been to test its effectiveness on the available AI4Mars dataset, lim-
iting to the semantic segmentation side due to the unavailability of the other
necessary information.

Figure 5.1: Plot of the losses during a training with AI4Mars.

As can be seen in the figure above, exception made for some peaks in the validation
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loss curve, which can normally verify sometimes, the observed losses behaviour is
symptom of a successful training procedure and such conclusion is confirmed by
the values exhibited in the confusion matrix:

Figure 5.2: Last confusion matrix of the AI4Mars training.

As an effect of the weighted cross entropy, it is possible to notice two details: the
first one is that, at least from the confusion matrix point of view, the unbalance
of the big rock class had been compensated and the second one is that, on the
contrary, the most represented class is the one with the lowest performances.

However, the assumption just made couldn’t completely be verified observing the
predictions of the network on test set’s samples. As anticipated in section 4.1.1,
due to the nature of the dataset itself, the test set presents a lot of images with just
minor portions of the terrain labeled and even some completely unlabeled samples.
The network, instead, tried to predict as much as it could resulting in cases like
the ones which can be seen below:

Figure 5.3: Test set sample with missing labeled terrain portions.
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Figure 5.4: Test set sample completely unlabelled.

Setting aside the issues of the dataset, the result of the training was a signal of the
correct functioning of the network, which allowed to proceed to the next phase,
the switch to the synthetic set.

Its first version was a small dataset of about 200-300 images, to be divided in the
three sets. Being in the initial steps of its creation, a smaller size was preferred due
to the high time request to rebuild from scratch bigger collections, situation which
frequently occurred due to the repeated modifications needed by the configuration
file. As could be easily imagined, the smaller dimension had a visible effect also on
the performances of the training process:

Figure 5.5: Last confusion matrix of the first synthetic training.

even if the values in the matrix were not bad, from a dataset with perfect labeling
it is normal to expect really high fidelity in the networks’ predictions. This appears
even clearer looking at a sample of the predictions made on the test set, it is
possible to see in the figure below that the result is far from being acceptable. The
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smaller size of the dataset was, evidently, affecting the generalization capabilities
of the network and the initial textures, employed for the different materials, were
only worsening the quality of the predictions.

Figure 5.6: Sample of network’s prediction on the test set.

The next important step was, therefore, the creation of a second version of the
dataset with a size suitable for the training of a segmentation neural network. From
approximately 300 images it was doubled to about 600, increasing significantly the
performances at the end of the training.

Figure 5.7: Last confusion matrix of the second synthetic training.

Comparing this result with the previous one, is clear how this second version of
the set increased the aforementioned generalization capabilities. The network was
able to predict with really good outcome all the terrain classes, overcoming the
problem of having the most represented class showing worse results encountered
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with AI4Mars. Looking at a prediction sample on the test set, is even more
visible how, just modifying one parameter, the quality of the predictions changed
dramatically obtaining almost a pixel perfect reproduction of the ground truth.

Figure 5.8: Sample of network’s prediction on the test set.

In both of these two earlier versions, all the original five segmentation classes are
present, but like already mentioned previously, a further change in the dataset
resulted necessary when roughness estimation had to be involved. The presence of
the sky, corresponding to the NULL/over 30m class, resulted in a lot of problems
in the creation of the roughness ground truths. The easiest way to solve it was
the generation of a third version of the synthetic set in which the orientation of
the camera had been controlled to have the sky always out of the frame. Also the
sand texture of this new version had been slightly changed, since the dataset was
continuously updated trying to find the most resembling appearance possible to
the real Martian soil.

Figure 5.9: Last confusion matrix of the third synthetic training.
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As could be imagined the performances of the network remained at least at the
same degree, even improving the previous version in some cases, most likely due
to the segmentation task becoming simpler having lesser classes among which
differentiate.

Figure 5.10: Sample of network’s prediction on the test set with new sand texture.

As said earlier, this third version’s purpose was the creation of roughness ground
truths to be used in the roughness classification process. Even if the semantic
segmentation performances were remarkable the opposite verified for roughness
classification.

Figure 5.11: Plot of the losses during a first training of the roughness classification
network.

In the above figure, it is possible to notice that, not only the decrease in the losses
value is lower, even with respect to the AI4Mars training, but the validation loss
was almost consistently above the training loss, showing clear signs of overfitting.
This poor behaviour reflected, obviously, also in the quality of the predictions made
on the test set:

89



Developments and Results

Figure 5.12: Samples of networks’ roughness predictions on the test set.

The main reasons behind the low quality of the training are, again, to be found in
the dataset employed. Its first iteration was extremely unbalanced, far more than
what verified for semantic segmentation, being almost entirely constituted by pixels
belonging to the Negligible roughness class, as can be also seen in the ground
truths and predictions above. Another problem which required to be handled can
be noticed in the first picture, where strange rectangular artifacts appeared in the
textures and altered the results.

To fix as much as possible both of the previously listed flaws, a fourth and final
version of the synthetic dataset was created. The modifications introduced were
significant and affected the overall appearance of the simulated landscape itself.
Starting from the more general and moving towards the more punctual changes, the
preset employed to generate the environment was modified, as mentioned in section
4.1.3, trying to obtain smoother hills and depressions, realizing a morphology
more similar to what observed in the real images of Mars’ surface. The next step
was the complete deletion of one of the textures, specifically the bed rock one,
substituted with custom blender objects more representative of the scattered stone
slabs constituting that class. The advantage obtained from this choice was not only
aesthetic, but also functional from the roughness point of view. Those objects, in
fact, can be modified more easily than a whole texture, and present a more rugged
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and geometrically complex surface than the previous employed material. The big
rock class was also reworked, switching the smoother rocks used initially for more
realistic ones created, again, ad hoc. As can be seen in the next figure, these
changes resulted in a still unbalanced, but more uniform situation, significantly
differing from the starting point.

Figure 5.13: Frequencies of the roughness classification dataset.

The last changes introduced were more subtle and oriented to both fixing the
problem of the rectangular artifacts and trying to optimize as possible the images
acquired. To achieve the first goal, it was needed to modify the size and dispStrength
parameters of the two remaining textures since the artifacts appeared only at the
borders of their repeated patches. Those parameters control respectively the
dimension of the texture tile positioned on the terrain portion dedicated to that
material and how much the displacement map affects the geometry of the texture.
After some empirical tests, a trade-off has been found with the consequence of the
artifacts seeming to be vanished, or at least appearing really rarely.
This fourth version of the set confirmed the quality of the semantic segmentation
network, even improving what obtained before, as can be noticed in the following
figures.
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Figure 5.14: Last confusion matrix of the fourth synthetic training.

Figure 5.15: Sample of network’s prediction on the test set with new materials.

For what concerns the roughness classification, it must be highlighted how the
overfitting problem has been solved:
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Figure 5.16: Plot of the losses during the training of the accepted roughness
classification network.

the validation loss stays , almost entirely, below the training loss, behaviour which
was never achieved in the previous case. Looking at the confusion matrix, in
the figure below, the achieved performances appear not as good as was for the
segmentation, but it needs to be taken into consideration the significantly higher
level of the task’s difficulty. It has been asked, to this network, to predict a physical
property of the soil just by looking at a picture, which ,even if instinctively simple
for human beings, is much more harder, from a deep learning point of view, than
differentiating between the various terrain classes.

Figure 5.17: Last confusion matrix of the new roughness classification training.

For this reason, the most important result to take into account is the quality of
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the predictions, to be sure that the results can be considered acceptable.

Figure 5.18: Sample of network’s roughness prediction on the test set with new
materials.

As can be seen in the above figures, the performances in the predictions can easily
be considered acceptable. Even if the network is far from achieving a pixel level
accurate reproduction of the ground truth, its main goal is accomplished. The
different areas of the images have the correct depth levels, the only flaw which can
be highlighted is a general over estimation of the roughness in some areas, mainly
between medium and high roughness. Although this is, by all means, a defect, two
points must be considered which help in understanding why the obtained quality
has been accepted as satisfactory:

1. Roughness estimation is just a refinement measure for the semantic segmenta-
tion prediction. This means that the contribution of the roughness cost map
to the final appearance based result is lower and used mainly to increase the
detail level among areas belonging to the same terrain class.

2. The flaw which has been just pointed out, is only increasing the costs assigned
to certain areas. This is, of course, not to be considered correct but, given
the already mentioned high degree of task’s complexity, can be accepted since
will only cause to have an even more cautious planning. In particular, if it
is considered that happens mainly between the highest and most dangerous
roughness levels.
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5.2 Final tests
5.2.1 Simulation setup
The idea at the core of this testing phase consists in simulating an actual working
situation for the framework, in order to be able to evaluate its current performance
level and online applicability. The setup of these test has been realized through the
use of oaisys, in fact, as mentioned in [51], two approaches can be used to define the
pose of the sensor acquiring the images inside the simulation: randomly selecting
the characterizing values of position and orientation from given intervals, as done
in the creation of the dataset to stimulate a higher variability in the samples, or by
providing through the configuration a .csv file containing all the poses to be selected
in a batch. In the aforementioned paper, this methodology is only cited without
detailing the definition of the configuration file, which is provided, in the available
material, only to be employed with the other approach. In order to adjust the
configuration file to have the sensor following the desired behaviour, the section to
be modified is the one called SENSOR_SETUP, in particular the GENERAL
subsection. As can be seen in figure 5.19, this section of the previously employed
cfg file is reported. The main detail to be noticed is in the movementType and
SensorMovementType fields defining in which way the simulator will handle the
setup of the sensor. The argument randomEuclideanTarget, signals to oaisys that
the already discussed method of setting up position and orientation of the camera
at random from given intervals and forcing it to frame a target object has been
chosen.
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Figure 5.19: Interested section in the previous oaisys cfg files.

In the figure 5.20 instead, the modified portion of the cfg file can be seen. All the
lines related to position and orientation of both the sensor and the target have
been deleted and there is a new argument, deterministic, for those two fields, to
highlight the difference of the applied approach. The other relevant change is the
SensorMovementPose field of the file, used to specify to the simulator where to
find the poses’ information.

Figure 5.20: Interested section in the modified oaisys cfg files.
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Inside the .csv file, the poses must be reported on different rows and present eight
entries each. The way to arrange the entries has been obtained, again, from the
implementations inside the code of the simulator and respectively must be: an
integer working as a kind of id, three floats to define the position of the sensor
on the x, y and z axis and other four floats to define the orientation through a
characterizing quaternion.
Some other slight adjustments have been made to the oaisys code itself, in order to
have the hovering constraint still employed also in this other approach, keeping the
sensor always at the same distance from the terrain, simulating the motion of a
vehicle.

5.2.2 Tests’ description
What has been described in the previous section is the baseline from where the
simulation tests started. A .csv file, containing a series of consecutive poses, has
been created to replicate the rover’s motion in the environment. A starting location
is randomly selected and the y coordinate is increased by a certain amount to
represent the motion of the vehicle. A picture is acquired each time the navigation
is completed gathering the new data to employ for the next step of the UGV. What
has been done, in this case, is the generation of all the data and, afterwards, the
sequential publishing of those information as "product" of the sensors the rover
should have. The ROS2 architecture, has the goal of elaborating the data, yielding
the hybrid traversability cost map relative to each sample. Those maps are then
combined together to build an overall, "global", cost map updating each time the
portion of the map involved. The update, in order to preserve as much data as
possible from the previous samples, relieving the system from some additional
computations, will focus only on filling out newly discovered cells due to the
navigation and updating previously known cells if and only if the new cost re-
sults to be higher than the previous one, trying to follow always a cautious approach.

To verify the actual usability of the product of the ROS2 pipeline, at the end of the
provided samples an additional node has been created to retrieve the complete map
and apply a path planning algorithm on it, which should elaborate the optimal
path based on the data provided by the traversability analysis.

Path planning

The algorithm chosen for these tests is one of the most widely employed plan-
ning algorithm, the A* algorithm. Presented for the first time in [62], the A*
represents an enhanced version of Dijkstra’s Algorithm, specifically tailored for
single-destination optimization by incorporating elements of the Greedy Best First
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Search. Unlike Dijkstra’s algorithm, which determines the shortest-path tree from
a given source to all potential destinations, the A* focuses solely on identifying
the shortest path between a designated source and target. It achieves this by
prioritizing paths that appear to bring the search closer to the goal and is able to
effectively deal with obstacles.

Figure 5.21: Image from [63] showing a comparison between the three algorithms.

It can be seen in the figure above, how the A* is able to take the best from both its
"components". It is capable of finding the correct path as the Dijkstra’s algorithm,
but also narrowing the amplitude of the map explored as the Greedy Best First
Search does, providing the best trade off between the two.
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5.3 Simulation tests
Three are the main concepts around which the simulation tests revolve: the overall
map creation, the overall map update and the path planning algorithm results.
The map has been designed to be sufficiently large to store all the published cost
maps and is made entirely of unknown cells, which will be filled out as the data come
in. Being a global container, it is required that all the grid maps are represented
with the same resolution. After the preliminary stages, a value of 10cm for the
side of the cells has been chosen since its minimum value in all the samples fell
behind this threshold. As for the previous cases, the map will be inserted into
an OccupancyGrid message, sent to the node in charge of the path planning and
retrieved from RViz displays. The zero of this overall map is set to coincide with
the zero of the first sample considered, which will be the starting point of the
motion of the rover. It will also be the origin of the fixed frame, odom visible in
figure 5.22, first one of the three frames displayed in the visualization. The other
two represent, respectively, the base-link, of the rover, following, for this reason, its
motion and the camera mounted on it.
The next, and most important, aspect of these last tests, is the update of the map.
Every time a new sample is acquired and processed, it must be used to update the
content of the overall map. Before doing this, a premise on the motion of the rover
must be considered. Being the cost map re-projected into a bi-dimensional plane,
the slope of the navigated terrain must be accounted in the evaluation of the cells
to move forward. What has been done is the computation, in the geometry-based
node, where terrain slope is retrieved, of the average slope of the supposed step
size between the current and the next sample. Once that value is obtained, the
step size is multiplied by the cosine of that slope to return the projected step in
the 2D grid map, needed for the updates. The value is sent to the final_node
and employed to compute, each time, the starting point from where the updatable
region begins. The criterion applied for the actual update operation, as described
in section 5.2.2, touches only unknown cells, discovered by the current sample, and
known cells which new cost is higher than the previous one.
The obtained result, is a map which grows every processed sample without losing
its overall coherence, as can be seen in an example of what displayed in RViz after
some iterations:
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Figure 5.22: Updated overall map.

The final point to be covered is the planning algorithm. The additional node in
charge of the planning operations is subscribed to a topic where an OccupancyGrid
message is sent only when the complete map is available, since, currently, the
only aim of its application is to show the possible usage of the produced data
for autonomous navigation. Once the message arrives to the node, its content is
extracted and the path planning A* algorithm is applied to compute the optimal
path between two tunable points of the map. The result of the algorithm is then
processed to create a Path message, from the nav_msgs package, and sent out to
be displayed on the visualized map through RViz.
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5.4 Performances’ evaluation
From the start of this thesis work, it has been stated that the final goal of the
framework would have been an effective terrain traversability analysis of harsh and
unstructured environments, to be employed in a navigation system ensuring the
safety of the vehicle. From the results of the tests, carried out in the previous
sections, it is possible to confirm that the desired result has been achieved suc-
cessfully. The obtained grid map is the tangible proof of the assessment of terrain
traversability as a result of a hybrid approach involving both semantic, physical
and geometrical information.
Another important reached objective, to be pointed out, is the high level of detail
in the result yielded by this framework, in comparison with other similar solutions,
e.g. the hybrid architecture presented in [49].

Another side to be taken into account revolves around the execution time re-
quested to get to the final result. Being the environment in exam free from dynamic
obstacles, as could be other vehicles or pedestrians in a structured urban environ-
ment, in which the online performances play a key role, the time requested could be
considered as less relevant, but cannot be totally ignored. From the measurements
done on two different sets portraying two different simulated environments, the
time needed from the acquisition of the images to the publishing of the final hybrid
traversability cost map ranges between 2 to 6 seconds, as is defined more in detail
in table 5.1 and can be visually seen in figure 5.23. It must be considered that
the UGV on which the framework is implemented could heavily affect in both
directions this estimate, depending on the hardware equipped. However, evaluating
the available information from the simulation tests and considering the speed of
the currently fastest Martian rover, Perseverance, being 0.161 km/h (or 0.1 mph),
it can be considered as a completely reasonable time request.

Number of
samples in the set

Min completion
time [s]

Max completion
time [s]

Avg completion
time [s]

60 2.6 6.04 3.083
80 2.25 6.2 2.935

Table 5.1: Completion times
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Figure 5.23: Behaviour of the completion time over the sets’ samples. The second
set has been cut to the 60th sample to be compared with the first one

The last aspect to be discussed is the result of the path planning algorithm applied
on the retrieved cost map from the framework. As expected, the planner is able to
correctly plan the optimal path, from the starting point to the desired destination,
following the best path relative to the costs displayed by the map. This behaviour
ensures that the UGV navigates safely through the environment it is placed in and
reaches the desired target point, avoiding possible obstacles or hazardous areas
encountered throughout its navigation. In the figure below the success of the
path planning can be seen, represented by the green line visible clearly on the
traversability cost map:
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Figure 5.24: Display of the planned path using the hybrid traversability map.

Figure 5.25: Close up of the planned path showing obstacle avoidance
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Chapter 6

Conclusions and future
improvements

6.1 Conclusions
In the first chapter, the problem of terrain traversability analysis in the context of
planetary exploration was outlined and the proposal of a framework to handle this
task, following a hybrid approach, was theorized. In the remaining chapters all the
key steps of the development phases of the, aforementioned, architecture have been
presented and detailed, from the theoretical research, studying the state of the art
which lead to the definition of the two methods constituting the hybrid-approach,
to the implementation and validation phases of the ROS2 package created. In
conclusion is, therefore, possible to state that the presented framework, even if still
highly improvable, is able to correctly operate a traversability analysis of the terrain
surrounding the rover. The cost map, obtained as final product of the pipeline, as
shown in section 5.3, contains all the necessary data to be processed by a path
planning algorithm, like the one employed in the same section, fundamental in any
autonomous navigation system. As introduced in chapter 1, and further explored
in chapters 2 and 3, these information are essential in guaranteeing the safety of
the vehicle during its navigation. With respect to the hybrid framework proposed
in [49], a novel improvement has been presented, for what concerns the appearance-
based side, enriching the level of detail in the first cost map by obtaining physical
information about the terrain through roughness classification. This adjustment
empowers the vehicle with the capability of evaluating from an additional point of
view the environment, making even more robust the framework. This is achieved
trying to decrease the possibility of complete failure in the traversability analysis
by increasing the number of employed criteria without rising too much the required
workload.
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6.2 Future improvements
As mentioned in the section above, the framework, even if correctly working, could
be highly improved. Being limited both in time and resources to spend on the
project a list of all the considered adjustments and changes to the architecture,
which could possibly further refine and improve its performances, is reported.
To have a more readable list, they will be divided into bullet points, each one
dedicated to a section of the work:

• Dataset: For what concerns the dataset creation, many could be the improve-
ments, the easier one being an increase in its size and variety, either by simply
adding more images or by applying some data augmentation technique. The
aim of this process would be an enhancement in the generalization capabilities
of the networks, leading to more accurate predictions on unseen images. A
more significant and challenging improvement, instead, could be represented
by the creation of a hybrid real-synthetic set of images, to try to reach a point
where the method, trained on this set, can be validated on real samples. It
would address the problem of being forced to wait for a large and accurate
set of real world images to employ the framework on a physical vehicle. The
difficulty in this approach comes from two sides, the first one is the need of
obtaining a more accurate simulated environment to gather the pictures from,
finding the closest possible settings to the real Martian landscape. The second
and more challenging aspect, is that to train the roughness classification net-
works at least the relative depth images are needed. This additional requisite,
being non dependent on the developer represents an obstacle which can be
overcome only by the publication of new data from the space agencies.

• Appearance-based approach: Similarly to the first point there could be a
lot of further improvements, deriving from the exponential rate at which deep
learning research progresses. A deeper investigation phase on the more suitable
convolutional network could, in fact, reveal a different and more powerful
network, with respect to UNet, e.g. Transformer networks. Another possible
improvement, considered in the development of the framework, but never tried
seriously, is the creation and employment of a dedicated multitask learning
model. Similarly to the HydraNet used in the autonomous navigation system of
Tesla vehicles [64], able to address simultaneously both semantic segmentation
and roughness classification. As stated in [65], a properly designed and
implemented multitask learning model presents numerous advantages like
improved data efficiency, reduced overfitting through shared representations,
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and fast learning by leveraging auxiliary information. Other than just joining
together the tasks removing the need for two networks, it can potentially
upgrade the learning capabilities of the appearance-based side obtaining better
and more accurate predictions.

Figure 6.1: Tesla’s HydraNet, a single network managing four different tasks[64].

• Geometry-based approach: The geometry-based side could benefit mainly
from one adjustment. It consists in a switch of the approach as a whole from
the mere slope evaluation, to a more refined, complex and high-performance
method, like the one presented in [45], which was initially considered for this
work. That approach, for example, would also yield better performances in
the creation of a global map accounting for drift and uncertainties of the
state estimation. As anticipated in section 4.2.3, the main issue regarding
it revolved around the need of translating the available package into ROS2
nodes, being it created for ROS, but other adjustments would be required to
adapt it from legged robots to wheeled rovers.

• ROS2 architecture and simulation: Regarding the ROS2 package, all
adjustments will pertain to one main improvement in relation to the tests
presented in section 5.3: evaluating the framework in a navigation simulator.
This would require the use of the nav2 package in charge of managing the
autonomous navigation and, as starting point, the implementation of a simu-
lated Martian soil to traverse in a software like Gazebo or Unity. Differently
from what mirrored in this work, the vehicle would actually navigate through
the environment using the data obtained from the framework as a way to plan
the optimal path to follow with the aim of reaching some kind of target point.
To have the system correctly functioning the blender file generated by oaisys
must be employed as surface to traverse, maintaining, in this way, the correct
terrain textures and objects the networks are trained to classify.
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