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Summary

In recent years, growing amounts of research have been devoted to the field of au-
tonomous vehicles, reaching exceptional results and foreshadowing the advent of
an era when cars will be capable of navigating the roads completely on their own.
The body of research presented in this thesis falls within the scope of this techno-
logical revolution, as it explores the possibility of generating custom risk scenarios
for the simulation based training of autonomous driving systems. To this end
we first introduce a custom, effective event classification system based on gravity
measures developed by the traffic research community. We apply this scheme to a
benchmark road network developed in the Simulation of Urban Mobility SUMO,
obtaining a dataset of configurations that lead, in probability, to collision events.
The dataset is then used to train a Wasserstein conditional generative adversarial
network that generates the required risk scenarios. We discuss in detail the strate-
gies needed to obtain an effective generator and show how the imbalances in the
classes’ distribution within the dataset can be mitigated. Furthermore, we demon-
strate that it is indeed possible to obtain a converging generator and perform a
statistical assessment of its performance to prove its effectiveness.
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Chapter 1

Introduction

Over the past decade, significant progress has been made towards the realiza-
tion of autonomous driving vehicles. Automotive manufacturers have progressed
to remarkable achievements, providing systems capable of advanced autonomous
features such as independent navigation within urban environments. Recently,
SAE level 3 conditional automated driving systems have been certified, allow-
ing the automated driving function control over multiple driving tasks. How-
ever, a fallback-ready user is still required and a number of limitations hinder
the autonomous capabilities characterizing SAE levels 4 and 5. As the required
complexity of such systems grows, the issues raised by development and testing
correspondingly increase. Manufacturers differ in the strategies they employ to
address these problems; although live data collection from either selected vehicles
or whole fleets remains the fundamental strategy employed to train autonomous
systems. This method, albeit successful, implies a dependence on live data and
it is unclear whether systems trained on a limited number of scenarios possess
the generalization capabilities required to perform adequately on unseen situa-
tions. Considerations of this kind form a compelling argument in favour of the
adoption of simulated environments for the training and testing of autonomous
driving systems. Indeed, simulation based training would enable developers to
have full control in defining repeatable, completely customized development and
test scenarios. Furthermore, simulation based training would lessen the implicit
bias present in systems trained on limited regions, as it grants access to world
scale infrastructure data. In this direction, open source simulators such as Sim-
ulation of Urban Mobility SUMO and CARLA [22, 7] represent ideal candidates
for an integrated system capable of satisfying the outlined requirements. Overall,
both frameworks allow researchers to simulate traffic conditions in realistic urban
environments. Sumo’s development began in the early 2000s, when the need for
an open source microscopic road traffic simulator arose in the context of the traf-
fic research community. During the past 20 years, SUMO has been successfully
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Introduction

employed to study the large scale dynamics of traffic systems, becoming an im-
portant tool for road networks optimization [21, 24] and the natural candidate for
the objectives previously outlined.

The purpose of this thesis work is to provide a scalable framework for the genera-
tion of criticality scenarios within SUMO for the training of autonomous vehicles.
Therefore, we have divided the research into three main areas. We first propose
a comprehensive scenario classification system and then define a benchmark road
network and use the developed system to categorize the observed SUMO outputs.
This task is repeated to build a dataset of initial conditions that, once imple-
mented in SUMO, should lead to the observed event. The third and final part
of the research focuses on the development of a Generative Adversarial Network
capable of generating initial conditions based on user-specified gravity levels.

Crucially, the seminal challenge in the development of this work has been the
definition of a sensible classification approach. Indeed, an acceptable scheme must
posses a number of properties such as, for example, independence to the network’s
geometry, sufficient granularity and differentiation between agents. The answer
to these issues is discussed in Chapter 3, where we present an approach based on
current research concerning fatality rates in traffic collisions.
We then apply the proposed scheme to a benchmark road network topology im-
plemented in SUMO. In Chapter 2 we introduce the Simulation of Urban Mobility
and present an in depth discussion of the selected parameters and specify the ar-
chitecture employed in the simulations. Consisting of a four way intersection and
independent pedestrian crossings, our proposal is designed to be computationally
efficient while retaining the necessary level of complexity to generate realistic sce-
narios.
Chapter 4 recounts the implementation of the generative model, explaining in
detail the theory underlying Generative Adversarial Networks and their training.
Furthermore, we discuss the definition of suitable losses and regularization schemes
that have proved crucial to reach effective models. Generating synthetic initial con-
ditions presents unique challenges, as the data must adhere to strict requirements
to be considered realistic. Present work shows how imposed constraints can be
learned by the generating agent by means of strongly regularizing losses, and a
general approach is proposed to allow the application of the framework to road
networks of arbitrary complexity.
Chapter 5 conveys the experimental results that validate the proposed approach,
providing a statistical analysis of the effectiveness of our methods and discussing
the impact of parameters specification on the observed results. The findings from
this chapter provide valuable insights into the strengths and limitations of the
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framework, contributing to the broader body of research on critical scenario gen-
eration for autonomous vehicle training. Finally, Chapter 6 outlines future research
directions, discussing possible generalizations and extensions of this research.
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Chapter 2

Simulation of Urban
Mobility

Simulation of Urban Mobility, hereby known more succinctly as SUMO, is a mi-
croscopic road traffic simulation. Its development began in 2001 to support the
traffic simulation community with an open-source tool where algorithms could be
implemented [4]. At the time many other simulations were available, but the al-
most non-existent comparability of the implemented models and algorithms caused
major drawbacks. Issues in portability, reproducibility, and general maintenance
of the simulators proved the necessity of a unified framework. The major part of
SUMO’s development is undertaken by the Institute of Transportation Systems
at the German Aerospace Center [25] (Deutsches Zentrum für Luft- und Raum-
fahrt, DLR), with several external partners supporting different extensions to the
simulation suite. In the following sections, we will begin by illustrating the fun-
damental components of the simulation. The internal dynamics of the system will
be discussed in Section 2.1. Lastly, we will focus on the road network designed
and developed for the simulations.

2.1 The suite

Currently, the integrated SUMO suite consists of more than 150 tools. They
cover topics ranging from traffic network analysis, demand generation, and demand
modification to output analysis. This brief section provides an overview of the
main components of the suite that have been employed in the development of the
present work.

17



Simulation of Urban Mobility

2.1.1 Sumo

Sumo is the simulation itself; it is a microscopic, space-continuous, and time-
discrete traffic flow simulation [22, 4]. It is the core component of the suite, written
in C++ and command-line operated, although a graphical user interface is available,
called “sumo-gui”. To simulate a well-defined scenario, SUMO requires as minimal
inputs a road network file and a set of routes. In this limited scenario, no agent
(vehicle, pedestrian, or cyclist for example) is present and the simulation describes
no evolution for the duration of the selected time frame. The road network file
conveys the part of a map related to traffic, the roads, and the intersection the sim-
ulated vehicles run along or across. On an abstract level, it represents the directed
graph underlying the map. In SUMO’s language, intersections are known as junc-
tions and roads or streets as edges. Aggregating these two core components leads
to a complete representation consisting of streets (edges) as collections of lanes,
traffic light logic referenced by junctions (including right-of-way regulations) and
connections between lanes at junctions. Consequentially, the allowed paths for
each agent within the simulation are described in the route file. The editing of
a road network can be completed using either the “netconvert” or the “netgen”
tools. Netconvert is a command line conversion tool compatible with a plethora of
allowed network formats, including OpenStreetMap, VISUM, and OpenDRIVE.
It allows the user to import existing road networks from real-world scenarios by
converting them into XML files compatible with the simulation. Netgen, on the
other hand, allows the user to define completely custom networks via a drag-and-
drop graphical user interface. In the present work we employed netgen to develop
a custom geometry to serve as a benchmark for the proposed framework. In order
to populate the road network with agents, sumo requires the specification of traf-
fic demand. Specifically, trips are defined as vehicle movements from one place to
another denominated by the starting and arriving edges and the departure time.
The collection of edges traversed by the agent is called route, and is the fundamen-
tal characterization required by sumo to generate agent’s movements. Currently,
the sumo-package contains four applications for generating routes. Duarouter is
the tool responsible for importing routes or their definitions from other simulation
packages and to compute shortest paths using Dijkstra’s algorithm. Furthermore,
in combination with the simulation it can compute the dynamic user assignment
formulated by C. Gawron. Moreover, if statistical data is available, the usage
of “jtrrouter” may be used to specify flows and turning preferences at junctions.
Indeed, jtrrouter is widely employed in the context of large scale demand model-
ing studies, where networks having the scale of whole cities may be considered.
Whenever origins and destinations are the only available data, od2trips is used
to convert origin-destination matrices into trips. The fourth tool, “dfrouter”, is
employed to compute routes from given observation point measures. In this thesis
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work the demand generation for the custom benchmark road network has been
specified using duarouter. Details will be addressed in the following sections.

2.2 Agent models

Once the actors have been specified, their dynamics are computed by the simula-
tion following prespecified agent models. In this direction, the simplest behavioral
models provided by sumo are the ones that apply to pedestrians. Indeed, the
framework allows the specification of three different pedestrian models: ”noninter-
acting”, ”striping”, and ”jupedsim”. In the noninteracting mode, pedestrians walk
bidirectionally along normal edges and “jump” across intersections, so that no in-
teraction between pedestrians and vehicles or other pedestrians takes place. They
may either be configured to complete a walk in a fixed amount of time or to move
along the edges at a fixed speed. Although essential and unrealistic, this mode
boasts high execution speeds and can therefore be of use if the individual pedes-
trian dynamics are not important. The default pedestrian’s agent model in sumo is
striping. In this scheme, the model assigns 2D coordinates within a lane (sidewalk,
walkingarea, or crossing) to each pedestrian. These coordinates are defined rela-
tive to the leftmost side of the start of the lane and are updated at every step of the
simulation. We will see that this coordinate system differs from the one employed
for vehicles, which has, in general, only 1D coordinates within their respective lane.
However, pedestrians advance within the lane along the shortest path towards the
next junction in the network. The fact that walking areas are not unidirectional
implies that the natural direction of the lane may not be the walking direction of
the pedestrian. In this mode, pedestrian take the shortest path to the end of the
lane, implying that their x coordinate either monotonically increases or decreases.
As soon as the end of the lane has been reached, the pedestrian is placed on the
next lane. The crucial difference between the striping and noninteracting modes is
the presence of collision avoidance mechanisms. To achieve this result, lanes where
pedestrians are allowed are subdivided into sections of constant width. The width
of the sections is a user-configurable parameter having a default value of 0.65m.
Using this strategy, the problem of collision avoidance reduces to maintaining suf-
ficient distance within the same stripe. Whenever a pedestrian comes too close to
another pedestrian within the same stripe it moves in the y-direction (laterally) as
well as in the x-direction to change to a different stripe. The y-coordinate changes
continuously which leads to situations in which a pedestrian temporarily occupies
two stripes and thus needs to ensure sufficient distances in both. The selection
of the preferred stripe relies on a direction of motion algorithm preferring evasion
to the right for oncoming pedestrians and the expected distance the pedestrian
will be able to walk in the stripe without a collision. During a generic simulation
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step, each pedestrian moves as fast as possible while still avoiding collisions. The
updates are computed in a single pass for each walking direction with the leading
pedestrian being updated first and the other following based on their position in
the queue. As a consequence of the above movement rules, pedestrians tend to
walk side by side on sidewalks of sufficient width. They wait in front of cross-
ings in a wide queue and they form a jam if the inflow into a lane is larger than
its outflow. This is the agent model that this thesis work employs to describe
pedestrians. Finally, the model jupedsim [19] concludes this brief overlook of the
main pedestrian agent models supported by SUMO. Developed by the Jülich Re-
search Center, it is based on advanced social force models and has been coupled
to SUMO. It differs fundamentally from the two default modes provided by the
simulator as it implements various decision-making processes in the agents’ route
choice such as the Generalized Centrifugal Force Mode or the Social Force Mode,
aimed at replicating real-world dynamics. Although certainly more complex and,
possibly, representative we have refrained from using it in our benchmark. This
choice is sensible, to provide realistic dynamics the jupedsim model requires the
specification of parameters that should be derived from a real-world counterpart
of the selected network.

2.2.1 Car Following Models
On the topic of vehicles, sumo implements a variety of car-following and lane chang-
ing models. Concerning car following, SUMO bases its description on a seminal
paper by Wagner et al. [29], where evidence is given to support the theory that a lin-
ear model based on three parameters is capable of describing car-following behavior
with great accuracy. Moreover, SUMO supports a variety of car-following mod-
els, all sharing three fundamental parameters: τ , actionStepLenght, and Reaction
time. Reaction time refers to the time a driver takes to process information and
react accordingly. Usually, this value corresponds to the simulation’s step length;
the decision-making frequency can be modified by setting the actionStepLength
parameter. Indeed, actionStepLength is used to decouple the simulation’s step
length from the frequency of driver decision making and thereby delay or quicken
reactions based on the selected step length. The parameter τ is intended to model
a driver’s desired minimum time headway in seconds. In practice, drivers attempt
to maintain a minimum time gap between the rear bumper of the vehicle that pre-
cedes them and their own. Larger instances of τ lead to safer driving when used
in conjunction with short actionStepLengths, for drivers are able to immediately
react to variations in their relative positions within the lane. Conversely, when τ is
set to a value smaller than the reaction time unsafe driving is promoted, as drivers
are prone to high decelerations or even collisions. By default, car following models
will adapt their driving speed to limit necessary braking to a maximum configured
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by the decel attribute. Various models deal differently with the threshold defined
by the attribute: the default Krauss model, for example, sets it as a hard limit,
whereas for other models such as ”IDM” the bound is less strict. In the presented
work we employed Krauss’s model to describe the car following behavior of the
simulation’s vehicles. Developed by Krauss in 1997 [20], the microscopic, space-
continuous car-following model that takes his name is based on the notion of safe
speed. Safe speed refers to motor vehicle drivers choosing speed at the speed limit
in law to ensure safe driving according to circumstances, road conditions, and traf-
fic conditions. To ensure driving safety on the lane, the velocity of vehicles ought
to be controlled within the bounds specified by safe speed. In the original paper,
the author considers uniform acceleration and deceleration amongst different ve-
hicles, however, SUMO implementation developed by Thomas Mayer and Daniel
Krajzewicz differentiates between individual agents. Indeed, the default SUMO
model allows for user-specified acceleration and deceleration. This fact is of cru-
cial importance when considering the aim of the presented work: to provide an
effective framework for the generation of event-correlated initial conditions. From
a mathematical viewpoint, the safe speed in Krauss’s model takes the form:

vsafe = vl(t) + g(t)− v − l(t)tr

vl(t)+vf (t)
2b

+ tr

. (2.1)

Where vl(t) is the speed of the leading vehicle at time t, g(t) is the gap to the
leading vehicle in time t, tr is the driver’s reaction time and b is the maximum
deceleration of the vehicle. Notably, vsafe may be larger than the maximum speed
allowed on the road or even larger than the vehicle is capable to reach due to its
acceleration. In this case, the actual safe speed is computed as:

vactual = min{vmax, v + adt, vsafe}.

Where in this instance dt is the step duration of the simulation.

2.2.2 Lane-Changing Model
In the brief overview concerning car following models, we have purposely avoided
discussing the dynamics underlying lane-changing in SUMO. Indeed, lane-changing
is a topic of notable complexity and would be material for a thesis on its own [9].
Furthermore, the road network developed and in the context of our simulations
does not implement such mechanics (multi-lane roads are not considered), so that
this subsection is included purely for the sake of completeness. The lane-changing
model in SUMO has been under continuous development since the start of the
project in 2001 [citare SPRINGER-SUMO] and it is one of the most crucial aspects
of the simulation. Differently from other microscopic lane-changing models, sumo’s
one explicitly differentiates among four different motivations for lane-changing:
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• strategic change,

• cooperative change,

• tactical change and

• regulatory change.

At runtime, a strategic change occurs whenever a vehicle has to change its lane in
order to be able to reach the next edge in its route. In practice, this happens every
time the current lane of the vehicle is not directly connected with the next edge
of the route. The standard sumo terminology refers to the current lane as dead
lane. Notably, this is somewhat of a misnomer, as the lane does not have to be a
dead end to be considered a dead lane: for example, a right-only turn lane is dead
from the perspective of a vehicle that needs to go left or straight. Nevertheless, to
compute an effective trajectory in the network, vehicles need to choose a sequence
of lanes to follow. SUMO’s model allows for a reasonable amount of flexibility in
this context as generally, for extensive networks, a variety of possible trajectories is
possible. At its core, the strategic lane change algorithm is based on the maximiza-
tion of the drivable distance without changing lanes while minimizing the number
of necessary lane changes. In this respect a measure of urgency exists to rank the
competing necessities (lane change versus maximization of driving distance), that
correlates with a variety of variables including the remaining distance to the dead
end, the distance to the end of the lane, the occupation of the ultimate target lane
and the occupation of the intermediate target lane. Cooperative changes differ
substantially from strategic lane changes as they have the sole purpose of helping
other vehicles reach their desired lane. In the current implementation, whenever
a vehicle is stationary in the lane and blocking subsequent drivers, it may change
lane to clear a gap for vehicles behind it if this decision does not conflict with its
strategic reasons. Tactical lane-changing refers to maneuvers in which a vehicle at-
tempts to avoid following a slow leader. It requires the overtaking vehicle to strike
a balance between the necessity of keeping the overtaking lane clear and the ex-
pected speed gains once the slow vehicle has been surpassed. The implementation
of this procedure is strongly dependent on the overtaking rights of each vehicle
and on the typology of lanes considered. Crucially for the simulation of realis-
tic scenarios, legislation concerning overtaking speeds and rights varies amongst
countries and has to be therefore considered carefully when defining the network’s
implementation. Finally, regulatory lane-changing takes place whenever a vehicle
is occupying the designated overtaking lanes. Technically, the obligation to clear
the overtaking lane could be framed as cooperative behavior described by coopera-
tive lane-changing, however, cooperative lane-changing is highly customizable and
the necessity for a strict implementation of user-independent regulated dynamics
was met by the developers.
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2.2.3 Intersection Dynamics

The final component of the simulation is the algorithm ruling intersection dynam-
ics. As for the previous lane-changing, car-following, and pedestrian models, this
section should be considered as a brief primer to the complexities of the actual im-
plementation. The reader interested in a deep explanation may find it in [10]. We
have already had the opportunity to consider the fundamental entities of SUMO
scenarios; each road network consists of incoming and outgoing edges, where an
edge represents a road with one or more lanes. Each lane possesses a unique iden-
tifier (id) which is derived from the edge identifier and the numerical index of the
lane starting with 0 at the rightmost lane. The lanes of incoming edges are called
incoming lanes, whereas the lanes of outgoing edges are known as outgoing lanes.
When two edges intersect, we denote the intersection point as lane intersection.
The purpose of this section is to clarify the structure of these junctions and the
dynamics of the agents interacting with them. Within an intersection, lie so-called
“internal lanes”, which connect the incoming with the outgoing lanes. Once a ve-
hicle reaches the intersection, it proceeds along these internal lanes just as it would
on regular lanes within edges. At most intersections, including the one considered
by this thesis work, vehicles wait at the end of their incoming lane at the border
of the intersection until they can cross conflicting streams of traffic. However,
SUMO also allows for more complex schemes in which left-turning vehicles can
wait in the middle of the intersection. This is modeled by splitting internal lanes
at the halting position and introducing an intersection within the intersection.
Vehicles using these internal lanes always pass the entry link to the intersection
and then wait at the internal intersection instead. The right-of-way computation
for internal intersections follows the same principles as that of regular intersec-
tions. SUMO’s policy in the computation of the intersection dynamics is to try to
avoid collisions between agents. Nevertheless, the behavior of a class of vehicles at
an intersection can be controlled via the specification of Junction Model Parame-
ters. They include the possibility for a given vehicle to ignore other vehicles that
have right-of-way with a given probability. This value also applies to the default
pedestrian model. Also, it is possible to ignore other vehicles and pedestrians
that have already entered a junction with a different given probability parame-
ter:”JmIgnoreFoeProbability”. Via careful specification of these parameters, it is
possible to circumvent the non-colliding limitations imposed by the simulation to
produce accidents. Chapter 5 will discuss how these parameters have been set and
their impact on the obtained results.
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Figure 2.1. Graphical representation of the intersection at the core of the bench-
mark road network. In blue the intersection, in black the incoming vehicle-re-
served lanes, and in gray the pedestrian sidewalks.

2.3 Proposed Network
As the aim of this thesis work is to present an effective framework for the gener-
ation of initial conditions leading to collision events in SUMO, the choice of an
appropriate benchmark road network has been central. Ideally, an acceptable road
network should abide by a series of requirements. The first is obvious, as it should
be sufficiently expressive, that is, it should be capable of generating a variety of
intra-vehicular and inter-agent collision events. A good testing benchmark should
also be computationally inexpensive from a simulation viewpoint, as a great num-
ber of simulations have to be computed to generate a representative dataset, whilst
being non-trivial. Under the limitations implied by these constraints, we propose
the road network depicted in Figure 2.1. It consists of 4 edges incoming into a 4
way regulated intersection. Each edge has a length of 1000m from its start to the
center of the intersection and contains 4 lanes. The external ones are sidewalks
reserved for pedestrians and allow for movement in either direction, whereas the
two central lanes follow the left-driving convention. Notably, the fact that each
line is reserved for a single direction implies that no lane-changing behavior will
be present. At the intersection, each vehicle-reserved lane can proceed onto each
one of the three outgoing lanes belonging to the other edges. Pedestrians, on their
part, can cross the intersection by traversing the pedestrian crossings that divide
the edges from the intersection’s center. During a routine simulation, we generate
both pedestrian and vehicle demand and let the system evolve in time. Vehicles
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Figure 2.2. Collision event in the unfolding of a standard sumo simulation.
The vehicle incoming from the bottom lane violates the right of way and
collides with the vehicle already within the intersection. In navy blue the
spectating pedestrians.

and pedestrians approach the four-way intersection in lines and await their turn
to cross. A certain probability of ignoring the junction’s right of way is given (as
introduced in the previous section), consequently causing collisions. As the aim
of this introductory Chapter is to provide an overview of SUMO and its main
features, we refrain from discussing the implementation of vehicle and pedestrian
demand employed in the simulation, for it will be extensively analyzed in Chapter
5.
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Chapter 3

Classification

During the unfolding of a simulation, vehicles and pedestrians may be involved in
several accidents. Pedestrians may collide while crossing a lane with an incoming
vehicle that has been unable to break effectively and vehicles may crash into each
other whenever the intersection’s rights of way have been violated. To effectively
provide a distinction between scenarios a classification system must be provided.
This is the objective of the present chapter, where a gravity-based event classifica-
tion scheme is proposed. Section 3.1 presents the relevant literature background,
while Section 3.3 recounts the adaptation employed in the present work.

3.1 Measuring collision gravity
To correctly frame the problem of collision events between agents it is necessary
to provide a common measure of gravity. In this work whenever we consider grav-
ity we are implicitly referring to the damage experienced by either pedestrians or
drivers, based on the typology of collision. For example, when considering the col-
lision event between an incoming vehicle and a standing pedestrian, we refer to the
gravity of the scenario by considering the pedestrian’s point of view. Conversely,
in vehicle-vehicle collisions we consider gravity from the perspective of drivers (or
passengers). In this direction, the first step that needs to be taken is the definition
of an objective measure of gravity. This is not as trivial a task as it may seem,
for a person may have more coexisting injuries at the same time, all of different
gravity. It is, therefore, necessary to first define a measure of gravity for the single
injury, and then an aggregate one to consider the situation from a holistic point
of view. The former issue has been a central point of contention for six decades
ever since 1969 [28] when the development of what is today known as the Abbre-
viated Injury Scale (AIS) began within the Association for the Advancement of
Automotive Medicine. In the past decades several modifications and adjustments
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AIS-Code Injury Example
1 Minor superficial laceration
2 Moderate fractured sternum
3 Serious open fracture of humerus
4 Severe perforated trachea
5 Critical ruptured liver with tissue loss
6 Maximum total severance of aorta
9 No further specified

Table 3.1. AIS-Codes in increasing gravity.

have been provided with major updates in 1976, 1980, 1985, 1990, 1998, 2005,
2008, and 2015. Crucially, the AIS represents the threat to life associated with
the injury rather than the comprehensive assessment of the severity of the injury.
Table 3.1 provides the denominations associated with the AIS, with exemplifying
features that may give an approximate idea of the kind of lesion associated with
each level. For example, a patient suffering from both a fractured sternum and a
perforated trachea is said to be suffering from one AIS-Code 2 and one AIS-Code
4 lesion. Level 9 can be attributed whenever crucial information regarding the
lesion is missing. Although reasonably effective in giving indications concerning
individual injuries, the AIS code is not sufficient whenever a single gravity measure
is necessary to evaluate a situation, as it is far too detailed to be of practical use.
Particularly in the case of life-threatening injuries, we are not interested in a com-
plete classification of the patient’s injuries. On the contrary, we would like to assign
just one global measure that characterizes the gravity of the situation. This can
be achieved easily by considering the maximum AIS-Code assigned to a patient,
thus defining the Maximum Abbreviated Injury Scale (MAIS). The MAIS code
is the de facto standard employed by the traffic research literature to categorize
injuries. It is constantly employed by regulatory bodies to provide insights on the
overall safety of their road networks [11] and can be used to formulate probabilistic
models of collisions of gravity. Contrary to the AIS-Code, the MAIS provides a
unique number, measuring the immediate criticality of the assessed situation. In
the following section, we will discuss how the MAIS can be used as a regression
target to produce probabilistic models that correlate dynamical variables such as
kinetic energy to the outcome of a collision.

3.2 Probabilistic Models
Intuition suggests speed to be the principal predictor of collision events. Experi-
mental analysis supports this assumption, demonstrating that lower mean traffic
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speeds in response to speed limit result in reduced likelihood of crashes. [1] The
severity of crash outcomes has also been studied in correlation with the speed of
the colliding parties. Interestingly, crash reconstruction research suggests that the
estimated or measured impact speed of a vehicle is not an effective predictor of
collision gravity in vehicle-vehicle collisions. Indeed, this is to be expected, as
even identical vehicles can behave differently based on a variety of factors includ-
ing their relative positions at collision time. The solution to this issue has been
well known since the 1970s [23], when the idea of considering a vehicle’s delta-v
instead of its speed was proposed for the first time. In physical terms, the delta-v
∆V for a collision is the magnitude of the difference between a body’s velocity
after the collision and the one it had before the collision took place. In this field,
it is customary to model the crash between two vehicles as an inelastic collision
where only momentum is conserved. Vehicles are modeled as point masses in R2,
so that given v1, v2 respectively the velocities of each vehicle before the impact and
m1, m2 their masses, it is possible to require:

(m1 + m2)vafter = m1v1 + m2v2,

where vafter is the common velocity of the two bodies after the collision. To reduce
the computational burden at a minimum, we select as the frame of reference the one
implied by the orthonormal basis coherent with v1. We can then write explicitly:

m1

A
v1
0

B
+ m2

A
v2 cos(ϕ)
v2 sin(ϕ)

B
= (m1 + m2)vafter.

Where ϕ is the angle between the two vehicles. Via trivial manipulations it is
possible to show that ∆V1 and ∆V2 satisfy:

∆V1 = ∥vafter − v1∥2 = m2

m1 + m2

ñ
⟨v1, v2⟩

∆V2 = ∥vafter − v2∥2 = m1

m1 + m2

ñ
⟨v1, v2⟩.

(3.1)

Figure 3.1 conveys a graphical representation of an collision of the kind just
described. The set of equations in 3.1 shows that ∆V can be computed for either
vehicle in the collision. From now onward we refer to ∆V meaning ∆V2. Although
seemingly arbitrary this choice is inconsequential for the present work, as the vehi-
cles considered in the simulations share the same mass. As researchers point out,
empirical difficulties arise when trying to compute real-world delta-vs. However,
in a simulated scenario, all the required variables are known with certainty, so that

1Exploration of vehicle impact speed – injury severity relationships for application in safer
road design, Literature review of pedestrian fatality risk as a function of car impact speed
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Figure 3.1. Schematic representation of the results in Equation(3.1). After the
inelastic collision, the vehicles proceed forward as one with ∆V as in (3.1)

.

no uncertainty-induced error needs to be considered and the computations can be
carried out with ease. Furthermore, it is important to recognize the limitations
that the simplistic approach implies, as the delta-v of an individual crash depends
on additional factors such as:

• relative masses of the vehicles,

• section of the target vehicle hit,

• vehicle construction materials,

• brake application and skidding,

• rotation induced momenta and

• post impact collisions.

Although significant, these factors do not hinder an effective analysis of collision
scenarios between vehicles, as they all can be neglected except for one. Indeed,
established literature [18, 23] employs ∆V as a predictor in a logistic regression
problem where the target variable is the probability of experiencing MAIS3+ in-
juries for the colliding vehicle’s driver. This, admittedly simplistic, approach has
yielded considerable results and has been the starting point for a variety of sub-
sequent models, that add to the covariate parameters from the previous list. This
has been the case for the work proposed in [18], where the authors show that
by categorizing collisions based on the relative positions of the colliding vehicles,
probabilities of MAIS3+ injuries are obtained that sensibly fit empirical data. On
the other hand, the study of vehicle-pedestrian collisions admits simpler analysis,
as the physics of the collision in itself are different. Crucially, the large difference in
masses between the bullet vehicle and the target pedestrian implies that collisions
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Figure 3.2. Lognormal curves with ∆V as predictor for MAIS3+ injury occur-
rence. The curves differentiate between near, far, front and rear end collisions.
The image has been borrowed from [referenzaa]

can be modeled without the delta-v principle. Instead, the impact speed of the
colliding vehicle is a sufficient predictor of gravity, and other factors such as the
collision angle or the vehicle’s construction materials can be ignored. 2 The final
concept to be defined before discussing the resulting models is the idea of critical
impact speed. The critical impact speed is the minimum bullet vehicle’s speed that
causes a MAIS3+ level injury to the target driver with a probability greater or
equal to 10%. As the previous paragraph argued, speed is not a good predictor
of impact gravity (in the MAIS3+ sense) for vehicle-vehicle collisions. However,
for a specific set of assumptions detailed in the previous derivation, it is possible
to develop a satisfactory fitting. In the following section, the necessity for such a
metric will be discussed and analyzed in detail.

2Strictly speaking the statement is false, as different combinations of materials and geometries
have been proven to be correlated with higher injury probabilities. Nevertheless, the action of
safety regulations bodies has imposed strict constraints in the design of vehicles so that for
real-world scenarios the assumption of independence can be tolerated

31



Classification

3.3 Proposed Classification Scheme
Although effective, the lognormal fitting provided in Figure 3.2 cannot be directly
employed to derive a metric of gravity for the purposes of this work. The fun-
damental issue hindering its direct adoption is the fact that the distributions are
continuous. This implies that the distinction mechanism is excessively fine, as
collisions with ∆V differing by negligible amounts are mapped to different proba-
bilities. Instead, we would like a more coarse classification scheme, still capable of
retaining the general gravity of the situation, without focusing on negligible dif-
ferences. To this extent, we make effective use of the lognormal fittings provided
in Figure 3.2, by specifying for each type of collision three threshold values that
coincide with selected probability levels. For example, assuming a vehicle-vehicle
frontal collision, we propose to discretize the lognormal curve so that for values of
∆V ≤ 7.0m/s the collision is classified as minor, with 7.0m/s < ∆V ≤ 12.5m/s
as serious and finally with ∆V > 12.5m/s as grave. With this choice we are en-
forcing upper bounds to the MAIS3+ injury probability for each kind of collision.
Indeed, a minor collision is an event having a MAIS3+ injury probability lower
or equal to, for example, 10%, a serious one has an upper bound of 50%, and
finally the term grave is reserved for the remaining values. Clearly, it is possible
to customize and extend this scheme to every possible collision scenario generated
within a SUMO simulation by selecting different probability thresholds for each
possible collision event. Following the work in [18], we can distinguish between
four possible events in vehicle-vehicle collisions based on the relative impact po-
sition of the two agents and one for vehicle-pedestrian collisions (as the relative
positions of the incoming vehicle and the standing pedestrian can be neglected),
thus giving rise to fifteen different classes. Furthermore, it is possible to extend
this scheme to include emergency braking events that SUMO considers dangerous.
In this direction it is possible to follow the same principles outlined in the present
paragraph by subdividing the emergency braking event into three classes based on
the velocity of the braking vehicle. Indeed, the higher the velocity of an incoming
vehicle that has initiated an emergency braking maneuver, the higher the collision
risk. Nevertheless, in the present work we refrain from implementing our classifi-
cation technique to construct a representative dataset, because they can be easily
generated by manually setting each vehicle’s velocity so that the following vehicle
has substantially higher speed than the leading one.

3.3.1 SUMO’s implementation
As we have hinted in previous paragraphs, real-world estimation of the predictors
needed by the lognormal fitting is, in general, a complex task. For example, in
collisions between vehicles the assumptions underpinning the use of the ∆V as a
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Agents Typology Low Medium High

Frontal [0, 7.0] (7.0, 12.5] (12.5, ∞)

Lateral driver [0, 5.5] (5.5, 8.0] (8.0, ∞)

Vehicle-
Vehicle

Lateral [0, 6.0] (6.0, 11.0] (11.0, ∞)

Rear [0, 10.0] (10.0, 15.0] (15.0, ∞)

Pedestrian All [0, 8.0] (8.0 12.5] (12.5∞)

Table 3.2. Tabular representation of the classification scheme proposed in
the previous section. The numerical intervals correspond to the discretization
employed in our simulations.

regression parameter can be easily violated. Furthermore, estimating the ∆V is
in itself an arduous task, as it requires a ballistic analysis of the collision event.
On the contrary, the task is considerably simpler for events between pedestrians
and vehicles, as in this case the problem can be reduced to the estimation of the
colliding vehicle’s speed. In the context of the simulations computed by SUMO,
however, these difficulties subside because we can access detailed data regarding
the position and velocity of every agent within the simulation for every dt. The
estimation of ∆V becomes then a trivial geometrical problem and the classifica-
tion that we have advocated for can be employed effectively. Motivated by the
straightforward implementation of the proposed scheme, we have analyzed the
classification results of 9902 events based on the road network presented in the
previous Chapter 2 and on randomly generated demand for pedestrians and vehi-
cles. Based on the selected SUMO stochastic parameters, which will be discussed
in depth in Chapter 5, it is possible to appreciate how the proposed road net-
work favors a subset of specific typologies of events. Indeed, among the possible
plethora of collisions that the proposed classification system admits, the bench-
mark devised by the presented research has produced events belonging to just 6
classes (not considering the emergency braking). This is to be expected, as it
is a direct consequence of the combination of parameters and geometry of the
benchmark. Moreover, this phenomenon is akin to what can be observed in real-
world situations, where it is possible to appreciate a clustering of similar accidents
depending on the contingent characteristics of the road network.
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Chapter 4

Generative Adversarial
Networks

This Chapter describes the learning methodologies devised in the development of
the present work. The discussion begins with an introductory primer concerning
the field of Machine Learning in Section 4.1. We then move to characterize the
family of algorithms known as Artificial Neural Networks in Section 4.2, analyzing
their structure and learning methods. Finally, Section 4.3 introduces the theory
of Generative Artificial Networks and details how they have been implemented in
the context of this thesis work.

4.1 A brief introduction to Machine Learning
The term Machine Learning was first used in 1959 by IBM engineer Arthur Samuel
to denote statistical algorithms capable of learning from data. In its essence, Ma-
chine Learning postulates the existence of a random variable X, whose realiza-
tions xi=1,...,N (the data), constitute the observable states of the system of interest.
Coupled to each realization xi=1,...,N , a response variable yi=1,...,N , realization of
the random variable Y may be present. Based on the presence and the nature of
Y , we can distinguish three scenarios:

• Supervised Learning, where the computer is presented with inputs xi=1,...,N

and associated outputs yi and the goal is to learn a map f : X → Y .

• Reinforcement Learning, where a computer program interacts with a dy-
namical system. In this context, the model tries to maximize a feedback
reward provided by the system itself.
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• Unsupervised Learning, where realizations xi=1,...,N of the random variable
X are known and characterizations of interest are sought.

In the first two instances, the ML model aims to learn the mapping f : X → Y
between the space of the data X and the target space Y that minimizes a given
error. The third scenario differs substantially, as the aim of the ML model becomes
to retrieve regularities from data, rather than map fitting. In the next subsections,
we will briefly describe the main features of each approach, to then focus on a
family of learning algorithms known as Deep Neural Networks,

Training set

Test set

Model Evaluation

Validation set

Hyperparameters selection

Figure 4.1. Development pipeline of a supervised learning architecture. Hyper-
parameters for the selected model are specified and the model itself is trained on
the training set and evaluated on the validation set. Once a satisfactory set of
hyperparameters is found, the model is evaluated on the test set.

4.1.1 Supervised Learning
Supervised learning aims to fit mathematical models to minimize an error norm
on data that contains both the input realizations drawn from X and the response
variable Y . The set is known as training set. In the mathematical model, each
training sample is represented by a vector known as feature vector, and the training
data is represented as a matrix, whose rows are the individual data points and the
columns are generally known as features. Through iterative parameter optimiza-
tion of an objective function, supervised learning algorithms learn a function that
is used to predict the associated outputs. Ideally, an optimal function allows the
algorithm to correctly determine the output for inputs that were not a part of the
training data. Within the field of Supervised learning, it is possible to differentiate
between those Y having continuous and discrete support. In the first scenario, we
define the problem as classification, in the latter we call it regression. A classical
example of classification can be found in deciding whether or not an email belongs
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to the spam folder or not. Conversely, a standard example of regression learning
may be finding the mapping between a London borough and the corresponding
house prices. The development of a standard supervised learning pipeline starts
with a clear definition of the task to be addressed: whether to consider the clas-
sification of handwritten text or the sentiment analysis of tweets, clearly stating
the problem of interest is crucial. Once the task has been defined, it is possible
to analyze the requirements that the dataset must fulfill to address the task and
train the model. The problem of generating a representative training set is cen-
tral in machine learning, as corrupt, missing, or incoherent data can disrupt the
algorithms’ learning process. Once the dataset has been constructed, the input
feature representation of the mapping is discussed. Statistical analysis concerning
correlated features, dimensionality reduction, and feature engineering are methods
generally employed to define the feature vectors to be used in the learning pro-
cess. Based on the complexity of the task and the available data, the structure
of the learned mapping is determined. In this direction, a plethora of possible al-
gorithms are available, such as classification trees, support-vector machines, deep
neural networks, random forests, and many more. Crucially, the functional space
implicitly spanned by the chosen method must attain similar complexity to the
target mapping. Otherwise, there is no hope for the learning algorithm to perform
satisfactorily on the specified task. To effectively train the model, an error metric
must be specified and a hyperparameter selection strategy implemented such as
grid search. The final step once the algorithm has been trained is to evaluate its
performance on a test set that is completely independent of the training set. Fig-
ure 4.1 conveys a schematized version of this procedure. Supervised learning has
been used to effectively solve a variety of different problems, ranging from bioin-
formatics to database marketing, and is an exceptional tool whenever classification
or regression are required.

agent environment

(st, at, st+1)

rt

action at

Figure 4.2. Schematized representation of the reinforcement learning paradigm.
An agent interacts with an environment via actions at and receives the tuple
(st, at, st+1) and a reward rt of being in the previous state st.
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4.1.2 Reinforcement Learning

In reinforcement learning an agent interacts with an environment through actions
to obtain rewards. The interactions between the agent and the environment are
generally divided into periods of uniform time called episodes. Upon completion
of each episode, the agent modifies its behavior based on the rewards obtained by
its previous strategy and another episode starts until either the maximum num-
ber of allowed episodes is reached or the agent learns the optimal strategy. From
a mathematical point of view, reinforcement learning interfaces with the field of
optimal control, concerned with how an intelligent agent ought to take actions
to maximize a cumulative reward. Due to its generality, reinforcement learning
is studied by many disciplines, including game theory, control theory, operations
research, information theory, simulation-based optimization, multi-agent systems,
and statistics. Interestingly, in the operations research literature reinforcement
learning is known as approximate dynamic programming, as it is considered an
approximate solution method to the Bellman optimality equation. Basic appli-
cations of the reinforcement learning paradigm model the system of interest as a
Markov decision process, where a set of states S, a set of actions A, a transition
probability Pa(s, s

′) = P(St+1 = s
′ |St = s, At = a) and an instantaneous reward

Ra(s′
, s), obtained after the transition from s to s′. In this framework, an agent

interacts with the Markov process at every discrete time t by receiving the current
state st and the reward from the previous transition rt. It then chooses an action
At ∈ A. Once the action has been sent to the environment, a new state st+1
is reached and a consequent reward rt+1 associated with the tuple (st, At, st+1)
obtained. Figure 4.1.1 schematizes this iterative process. The objective of the
reinforcement learning algorithm is therefore to learn a policy π : S × A → [0, 1],
such that π(s, a) = P(At = a|st = s) that maximizes the expected cumulative re-
ward. During the past decade, the reinforcement learning paradigm has collected
an outstanding number of successes in real-world applications, including optimal
option pricing for financial derivatives and superhuman skill in complex strategic
games such as chess or go. Its crucial advantage when compared with analytical-
based methods is the fact that no explicit model of the system is needed at learning
time. The agent is completely agnostic to the hidden dynamics of the system, that
is embedded in the simulation. Therefore, the only impacting aspect of the envi-
ronment experienced by the agent is (st, At, st+1, rt), which can be used to train
learning algorithms that implement the policy π to recognize the actual value of
being in a given state st. In this direction, the reinforcement learning problem
behaves somewhat like a noisy version of the supervised learning paradigm, with
the fundamental difference being that the reward rt is but a perturbed estimate
of the actual value of being on a given state st.
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4.1.3 Unsupervised Learning

This brief overview of the main areas in machine learning concludes with unsuper-
vised learning. In unsupervised learning, in contrast with both reinforcement and
supervised learning, algorithms learn patterns exclusively from unlabeled data.
To this extent, a further subdivision is possible between generative and clustering
models. Cluster analysis is the task of grouping a set of objects in such a way
that objects belonging to the same class (i.e. cluster) share similar characteris-
tics specified by the analyst. The notion of clustering does not possess a specific
intrinsic definition, as different application cases imply diverse unifying features.
Indeed, this is reflected in the vast amount of different clustering algorithms, each
giving a different definition of cluster and its properties. For example, in hier-
archical clustering data points are clustered by a specified distance connectivity
(generally Euclidean). Moreover, centroid models such as the k-means algorithm
represent each cluster by a single mean vector (the centroid), and each point is said
to be part of the cluster specified by the nearest centroid. Model-based clustering
such as Gaussian mixture models, on the other hand, maps the data with a fixed
number of Gaussian distributions initialized at random and then trained using the
expectation-minimization algorithm. Finally, density-based clustering methods,
such as DBSCAN, only connect points that satisfy a given density criterion, in the
original variant defined as a minimum number of other data points (neighbors)
within a given radius. A cluster consists then of all the density-connected ob-
jects (that can form clusters of arbitrary shape, in contrast with Gaussian mixture
models) plus all the objects that are within this object’s range. Once the clus-
tering has been completed, some intrinsic and extrinsic evaluation measures exist
to compare the quality of a given clustering. Intrinsic evaluations provide a met-
ric computed within each cluster, whether external scores compute comparisons
between clusters. Interestingly, internal evaluation measures suffer from the issue
that they represent a clustering objective. For example, given a specific intrinsic
score to be minimized (or, equivalently, maximized), one would like to develop an
efficient algorithm to compute a clustering that minimizes said score. Similarly,
extrinsic evaluation scores suffer from similar issues, as we would like to compute
a clustering that assigns each data point to the “correct” cluster. The issue is that
if we had had the “correct” label for each point then we would not have employed
unsupervised learning algorithms. Therefore neither extracluster nor intracluster
evaluations can ultimately judge the actual quality of a clustering, and human
evaluation, although highly subjective, is still needed.
Generative models, on the other hand, aim at learning a representation of the
underlying probability distribution that generates the dataset X. Formally, a gen-
erative model is a model of the conditional probability of a given observable X
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given Y : P (X|Y = y). In this direction, the terminology is quite adequate be-
cause once a representation of the conditional probability is known, it is possible
to draw realizations from the random variable X|Y , i.e. to generate samples from
the distribution. It is important to notice that the problem of learning a target
distribution X is, in general, of greater complexity than classification or regression
as defined by supervised learning. This is caused by several different factors, the
most prominent of which is known as the curse of dimensionality. The expression
curse of dimensionality, in this context, denotes the breaking down of traditional
statistical methods caused by the topology of high dimensional spaces. Indeed,
traditional generative methods such as Gaussian mixture modeling or Generalized
Linear Models have proven unable to provide adequate results when applied to
high dimensional problems such as image generation. Therefore, new methodolo-
gies have been developed during the last decade to effectively solve the problem
of data generation in arbitrary spaces. Those methodologies rely on deep neural
networks trained via backpropagation to provide sensible estimates of the proba-
bility distribution generating the data. We will discuss in detail artificial neural
networks and deep learning in the following Section 4.2 to present the methodology
employed by this thesis for data generation. The success of deep neural networks
for data generation is ubiquitous: from custom image generation as provided by
DallE-4, to Large Language Models such as ChatGPT 4o, deep learning has proven
to be an exceptional generative framework capable of effectively dealing with the
problems posed by high-dimensional data spaces.

4.2 Artificial neural networks

Amongst the plethora of machine learning algorithms, artificial neural networks
occupy a prominent stage. Their lineage can be traced back to the early 1960s,
when Frank Rosenblatt, in his book [27] outlined the fundamental aspects of the
field that would be known as deep learning. In his seminal work, Rosenblatt
presents all the components of a working feedforward artificial neural network.
Inspired by simplistic models of the brain, he sought to imitate its dynamics via
a directed acyclic graph (DAG): a peculiar type of graph where it is impossible
to end up on a starting vertex by following the arcs that leave it. Following his
brain analogy he calls each node of the network neuron so that each arc of the
network represents a synopsis in his simplified model. Rosenblatt denotes this
particular species of feedforward artificial neural network multilayer perceptron.
In his definition, multilayer indicates that neurons can be organized in successive
layers, called hidden layers, based on their incoming connections, while perceptron
highlights his neurological analogy. Although seminal, Rosenblatt’s work did not
provide a general working learning algorithm for supervised feedforward multilayer
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4.2 – Artificial neural networks

perceptrons. Indeed, the first working stochastic gradient descent algorithm for
multilayer perceptrons was published in 1967 by Shun’ichi Amari [2]. Shun’ichi’s
contribution demonstrated the feasibility of optimization-based training and con-
stitutes a fundamental milestone in the history of artificial neural networks. Since
1967, a wide range of different architectures have been proposed, classified as ei-
ther feedforward or recurrent based on the presence of cycles in the underlying
network model. The purpose of this section is to introduce the main features
defining feedforward artificial neural networks from a mathematical perspective.
In its mathematical formulation, the theory of artificial neural networks requires
elements of Linear Algebra, Real Analysis, Probability, and Optimization theory
that are not covered in this brief introduction. Indeed, the reader should con-
sider this section to serve as necessary background to understand the Generative
Adversarial Network developed in this thesis work.
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Figure 4.3. Graphical representation of Rosenblatt’s first multilayer perceptron.
From the left: Input layer consisting of two neurons, the hidden layer of 4
neurons, and the final output layer consisting of 2 neurons. Shun’ichi’s work
surpassed Rosenblatt’s proposed training algorithm allowing the development of
more general architectures.

4.2.1 Architecture
This paragraph provides a formal mathematical definition of a feedforward artificial
neural network employing concepts from graph theory. In doing so we identify the
network with its computational and topological structure, therefore enabling the
definition of the training dynamics object of the following paragraphs.

Definition 4.2.1. An artificial feedforward neural network is a composite para-
metric function fw : Rn → Rm, whose composition structure can be represented
as a weighted directed acyclic graph G = (W ,N ) whose nodes, called neurons,
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represent the action of a function σi : R→ R called activation function.

Remark 4.2.2. We denote with W−i the set of indexes of the nodes entering ni.
Remark 4.2.3. Definition 4.2.1 is of notable generality, as it encompasses arbi-
trary network topologies. Most applications employ strict compartmentalization
between inputs and outputs through hidden layers, as shown in Figure 4.2.
Remark 4.2.4. In Definition 4.2.1 the neurons represent the functions that consti-
tute the composition, whereas the learning parameters wi are represented by the
connections between neurons.

Although any activation function σi may be chosen for any node ni of the
network, applications privilege a variety of well-behaving functions, the most im-
portant of which are the objects of the following definitions.

Definition 4.2.5. We call Rectified Linear Unit the function f : R → [0,∞) of
the form:

f = max{0, x}. (4.1)

Definition 4.2.6. We call Leaky Rectified Linear Unit the function f : R→ R of
the form:

f = max{0, x}+ α min{0, x} (4.2)

Definition 4.2.7. We call Sigmoid the function f : R→ [0,1] of the form:

f = 1
1 + e−x

(4.3)

Definition 4.2.8. We call Hyperbolic tangent the function f : R→ (−1,1) of the
form:

f = tanh(x) = ex − e−x

ex + e−x
. (4.4)

Having completed an initial characterization of the defining features of an artificial
feedforward neural network, it is now possible to understand its behavior in terms
of its computational graph. First, input data x ∈ Rn is fed to the input neurons
of the network, i.e. neurons that do not have any incoming connection. Let us
then consider a generic neuron ni ∈ N , equipped with an activation function σi.
During a forward passage, the selected neuron receives as input the weighted sum
of the outputs of his incoming neighbors:Ø

j∈W−i

wjσj(nj),

42



4.2 – Artificial neural networks

and outputs the value of its activation function computed in the sum:

Ø
j∈W−i

wjσj(nj)→ σi

 Ø
j∈W−i

wjσj(nj)
.

This process is repeated for each non-input node in the network until the last
node is reached. Remarkably, the fact that the network is defined by a DAG
implies that this procedure is indeed well-defined, as no infinite loops are possible.
Figure 4.4 describes graphically this process. It is important to comprehend that
the choice of activation functions is crucial as it implicitly defines the functional
space to which the resulting function belongs. For instance, if we want to choose
exclusively identity functions such that σi(x) = x,∀ni ∈ N , we would be limiting
our network to compositions of identities, therefore forfeiting non-linearities. This
important fact shall be made clear by the following example.
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Figure 4.4. Mathematical representation of a hidden layer’s output: each com-
ponent xi of the input vector x is multiplied by the corresponding weight wi,j

that represents the arc between neurons i and j. The weights denoted by the
vector b represent bias weights: nodes having no incoming connection that are
not associated with inputs.

A linear example Let us consider the simplest possible neural architecture
consisting of one input node and one output node. In this scenario, only one weight
is present, as only one arch is present. The resulting approximating function will
therefore take the form:

f = σi(wix).
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If we take σi to be the identity over R we see that the function f belongs to the
set of linear functions

f = wix.

Furthermore, using our formalism it is trivial to add another input node represent-
ing a unitary input. By doing so we refer to the case depicted in Figure 4.2.1, with
two weights that expand the functional space to comprehend all affine functions
from R to R. Formally, this second weight is known as bias, as it corresponds to
a neuron having no incoming connection and constant value 1.

f = w1x + w2.

Until this point, we have limited the exposition to the definition and description
of a neural network’s structure and forward passage. It has been shown how the
choice of activation functions impacts the functional space to which the approx-
imation belongs. However, we have not yet mentioned how much approximators
can be trained to minimize some kind of error metric on a given data set. This is
the object of the following section.
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Figure 4.5. Graphical representation of the neural network developed in the
example. Two input neurons n

(0)
1 and n

(0)
2 converge to the output node n

(1)
1 .

The first input node n
(0)
1 represent the actual data, while n

(0)
2 represent a con-

stant bias of magnitude 1. With their combination with the identity activation
function, we obtain an affine function.

4.2.2 Deep Learning
The term deep learning was proposed in 1986 by Rina Dechter [6] to describe the
algorithms used to train deep neural networks. The adjective “deep” refers to
the use of multiple layers in the network through which the input data is trans-
formed. Formally, deep learning systems can be identified by a metric known as
credit assignment path (CAP) depth. The CAP describes the causal connections
between inputs and outputs. Feedforward neural networks have CAPs that are
equal to the number of hidden layers plus one (the output layer) because their
computational diagram is a DAG. There is no universally accepted CAP number
to discern between shallow and deep learning; however general consensus of the
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research community defines CAP equal to two as the threshold between the two.
In this section, we will focus on the quintessential deep learning algorithm used to
train feedforward deep neural networks known as backpropagation. To this aim,
we will begin by placing the problem within the field of supervised learning by
defining a dataset within the realm of Probability Theory and then introduce the
stochastic gradient descent method used to update the network’s parameters.

Definition 4.2.9. We call dataset D = {(x1, y1), ..., (xi, yi)} the union of a collec-
tion of realizations xi drawn from a random variable X, known as instances, with
realizations yi drawn from a random variable Y known as targets.

Intuitively, the objective of our machine learning problem is to find a mapping
fw : X → Y that associates to each instance drawn from the random variable X
a value y that is the best possible w.r.t. some kind of error, hereby known as loss
function. We will begin by giving the definition of a loss function and then proceed
to understand how it can be used to train a feedforward network.

Definition 4.2.10. A loss function L : Rn → R is a function that quantifies the
difference between two or more values.

The choice of the correct loss function is crucial, as it completely determines
the mapping learned by the feedforward network. A variety of losses are available
based on the considered task:

Definition 4.2.11. The Mean Absolute Error, MAE is the average of the R1

Euclidean distance between the network’s outputs f(x|w) and the targets y.

MAE = E
è...y − fw(x)

...
1

é
= 1

n

Ø
i

---fw(xi)− yi

---.
Definition 4.2.12. The Mean Squared Error, MSE is the average of the R2 eu-
clidean distance between the network’s outputs f(x|w) and the targets y.

MSE = E
è...y − fw(x)

...2

2

é
= 1

n

Ø
i

1
fw(xi)− yi

22
.

Both MAE and MSE are well-known losses used in regression problems. For
classification purposes, the Categorical Cross Entropy Loss is generally used.

Definition 4.2.13. The Categorical Cross Entropy loss is the cross entropy be-
tween two probability distributions q and fw sharing the same support S:

H(q, f) = −E
è
log(fw(x))

é
q(y|x)

= −
Ø
S

q(y|x)log(fw(x))
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Notably, by training a network with the Categorical Cross Entropy loss we are
trying to learn the probability distribution q(y|x), that is the conditional proba-
bility distribution of of having output y given input x. In fact, the Categorical
Cross Entropy loss is a direct measure of the difference between two probability
distributions. Unfortunately, in practice we do not know q(x, y), therefore even
the direct computation of the loss in this form is an intractable problem. In the
following sections, we will see in detail how such computations can be carried out
effectively to train a feedforward neural network to learn probability distributions.

4.2.3 Bias-Variance Tradeoff
Before delving into the intricacies of training algorithms for feedforward artifi-
cial neural networks, it is important to understand the fundamental tradeoff that
characterizes machine learning models. In general, as the number of learnable
parameters in a model increases it becomes more flexible being capable of learn-
ing complex mappings to minimize losses on the training data set. The model is
therefore said to have achieved lower bias. However, this increased flexibility tends
to cause higher variance to the model fit parameters whenever new data is added
to the training set. In this context, it is possible to enunciate the bias-variance
problem as the dichotomy that arises whenever we try to minimize both variance
and bias that prevent supervised learning algorithms from generalizing effectively
beyond the data used for training. In the following, we will define the expected
generalization error for a generic machine learning model and then proceed to
show an example of bias-variance decomposition. This is foundational material to
support the architectural decisions made in defining the model proposed by this
thesis work.
Definition 4.2.14. The expected generalization error Ef with respect to L is the
expected value of the loss function l for a function fw over all possible values x, y:

El
f = E(x,y)∼P (x,y)

5
L(y, fw(x))

6
.

In practice, Ef is approximated by computing the sample mean of the loss over
a given test set. In this direction we would like El

f to be as small as possible.
The following theorem shows how, even in the simple case of regression with Mean
Squared Error loss, an irreducible error is unavoidable.
Theorem 4.2.15. Consider a supervised learning problem where y = f̂(x) + ε,
where ε is a random variable of mean zero and variance σ2. Then, the expected
generalization error of the approximating function f trained in dataset D with
respect to the MSE loss can be decomposed as follows:

EMSE
f = E

5...y − f(x; D)
...2

2

6
=
1
BiasD

è
f(x; D)

é22
+ VarD

è
f(x; D)

é
+ σ2 (4.5)
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Where:
BiasD

è
f(x; D)

é
= ED

è
f(x; D)− f̂(x)

é
= ED

è
f(x; D)

é
− Ey|x[y(x)],

and
σ2 = Ey

è
(y − f̂(x))2

é
.

Proof. The proof is a straightforward expansion of the expected generalization
error EMSE

f = E
5...y − f(x; D)

...2

2

6
. For the sake of notational simplicity, in the

following proof whenever we write f we mean f(x; D).

E
5...y − f

...2

2

6
= E

è
y2 − 2yf + f 2

é
= E[y2]− 2E[yf ] + E[f 2]

We then reason separately for each term:
E[y2] = E

è
(f̂ + ε)

é
= E[f̂ 2] + 2E[fε] + E[ε2]
= f̂ 2 + 2f̂E[ε] + E[ε2]
= f̂ 2 + σ2

Then for E[yf ]:
E[yf ] = E[(f̂f + εf)]

= f̂E[f ] + E[ε]℧
= f̂E[f ].

Finally, putting it all together:

E
5...y − f

...2

2

6
= σ2 + f̂ − 2f̂E[f ] + Var[f ] + E[f ]2 = σ2 + Var[f ] +

1
E[f ]− f̂

22
,

thus proving the statement. ■

Theorem 4.2.15 explicitly conveys the tradeoff between bias and variance in the
context of supervised learning. Indeed, by augmenting the number of learnable
parameters in the model, the bias term tends to zero. However, the variance term
increases, thus limiting the generalization capabilities of the model. Crucially,
even if a zero variance zero bias model was possible, the minimal generalization
error would still be nonzero and coincide with ε’s variance. For this reason σ2 is
called irreducible error. Therefore, when developing a learning architecture, it is
paramount to try and understand the complexity of the learning task to actually
test models that strike an effective balance in the bias-variance tradeoff. In the
following section we will show how considerations of this kind have shaped the
development process of the generative adversarial network presented in this thesis.
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4.2.4 Loss Optimization
Having defined the general architecture of feedforward artificial neural networks,
we shall now consider the problem of updating the parameters w ∈ W to minimize
the expected generalization loss as presented in the previous paragraph. In this
context, the fundamental technique employed to minimize El

f is called Stochastic
Gradient Descent SGD. To be effectively applicable, SGD requires the estimation
of the loss’s gradients, which can be obtained via a process widely known as back-
propagation. This brief exposition will focus on the standard machine learning
scenario where the output of the function to differentiate (i.e. the loss) L is a
scalar and we are interested in its dependence on the set of learnable parameters.
By iteratively updating those parameters to minimize the observed loss, we can
therefore produce models that learn the underlying mapping between instances
and target variables.

Back-propagation The core property required in Definition 4.2.1 is the compo-
sition structure of the activation functions that constitute the neural network. In
this foundational exposition we have required this structure to be isomorphic to a
Directed Acyclic Graph, so that given a chosen neuron in the network, a random
walk starting in it would always end up, in a finite number of steps, on the output
nodes. This property is crucial as it allows the use of the celebrated chain rule to
compute the gradient of the loss function with respect to the trainable weights w.
Indeed, given a composite scalar function of the form discussed above J : Rn → R,
with gθ : Rm → Rn so that J(gθ) : Rm → R, we can decompose its gradient using
the following equality:

∇θJ(gθ) = ∂g

∂θ
∇gθ

J(gθ).

Naturally, the equality can be extended also for vector functions with the aid of
Jacobian matrices of appropriate dimensions. In Figure 4.6 we consider the case of
a simple network consisting of two input neurons, one hidden layer of 3 neurons,
and one output neuron, and show the dependence on infinitesimal variations of the
learnable parameters of the final approximating function. For the trivial case of
activation functions coinciding with the identity σi(x) = x, an explicit computation
is straightforward given the functional form:

fw(x) =
 3Ø

j=1
w

(2)
j1

A 2Ø
i=1

w
(1)
ij xi

B ,

for the last set of weights, it holds:

∂fw(x)
∂w

(2)
j1

= ∂

∂w
(2)
j1

 3Ø
j=1

w
(2)
j1

A 2Ø
i=1

w
(1)
ij xi

B =
 2Ø

j=1
w

(1)
ij xi

 ,
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Figure 4.6. Symbolic computation of the network’s gradient via the recur-
sive use of back-propagation.

whereas for the first layer, we have:

∂fw(x)
∂w

(1)
ij

= ∂

∂w
(1)
ij

 3Ø
j=1

w
(2)
j1

A 2Ø
i=1

w
(1)
ij xj

B = w
(2)
j1 xi.

The resulting gradient lives in R9 and we will see how it can be used to com-
pute the gradient of a given loss L. From an algorithmic point of view, it can
be easily proved that the back-propagation algorithm has optimal computational
complexity, in the sense that there is no competing algorithm that can compute
the gradient faster (in the O()̇ sense) [12]. The fundamental property that ren-
ders back-propagation applicable on large-scale networks is the fact that partial
derivatives can be decomposed recursively by taking into consideration the acti-
vation of the neural network’s neurons. This is performed by specialized software
such as Pytorch or Tensorflow [26, 1], where back-propagation is used to compute
gradients up to machine precision.

Stochastic Gradient Descent Back-propagation is an optimal algorithm for
the recursive computation of a function’s gradient. However, it does not give any
indication concerning the magnitude of weight updates to be performed in order
to minimize some kind of loss L. To this extent, the family of gradient descent
algorithms is the seminal class of iterative methods employed to reach the minima
of functions. The most basic element of this family is known as the gradient descent
algorithm, which in the case of a deep neural network involves iteratively updating
the weights vector w with a small step in the direction of the gradient of the loss
L. In supervised learning, this means computing the images of the training inputs
xi through fw to obtain the training loss L(y, fw(x)). Through back-propagation,
the gradient of the loss with respect to the weights w is then computed, and the
weights are updated via the following rule:

w ← w − ε∇wL(y, fw(x); D),
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Figure 4.7. Different behaviors of gradient descent. On the left is the convex
scenario, where the induced dynamics converge to the global minimum for ev-
ery possible combination of initial parameters. On the right, 4 trajectories of
the gradient descent dynamics for different initial conditions in the case of the
Himmelbalu function. Notably, each trajectory reaches a different parameters
configuration. In blue contour lines of the functions, in light gray the vector field
induced by the gradient, and in solid gray the trajectories.

where ε is the learning rate, an optimization hyperparameter that controls the
magnitude of the step in the minimizing direction. A series of considerations are
now in order concerning the convergence properties of this method to the (local)
minima of the loss. Indeed, the first crucial point that needs to be made is that we
have no guarantee of gradient descent’s converging properties for general functions.
The fundamental issue is that the convergence behavior can be hindered by the
presence of local minima that act as wells where the algorithm remains confined,
as shown in Figure 4.7. A classical sufficient condition used to avoid this scenario
and to guarantee convergence is to invoke convexity of the loss. In this case, we
have the existence and uniqueness of the minimum that can therefore be reached
in the limit as ε→ 0. Unfortunately, for real-world problems with complex losses
there is no guarantee of convexity so the issue of local minima must be addressed.
Nevertheless, the fundamental reason that negates the adoption of naive gradi-
ent descent for loss optimization is of a computational nature. To employ vanilla
gradient descent in the training of a neural network would require staggering com-
putational burdens for each iteration of the method, as the loss’ gradients would be
computed over the whole dataset D. A more sensible alternative is to approximate
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Supervised Training of deep artificial neural networks

Algorithm parameters: network’s weights w, ε ∈ (0,1] ;
Loss L, labels y;
foreach epoch do

foreach mini-batch δ ∈ D do
Compute forward pass of δ through the network fw;
Compute the loss L(y, fw(x); δ)

end foreach
Compute stochastic estimate of the gradient ∇wL(y, fw(x); δ);
Adjourn weights;
w ← w − ε∇wL(y, fw(x); δ)

end foreach

the gradient of the loss with a single sample:

w ← w − ε∇wL(yi, fw(xi); i). (4.6)

This method evidently constitutes a stochastic approximation of the vanilla gradi-
ent descent and is therefore known as Stochastic Gradient Descent SGD. Notably,
it is possible to prove under the reasonably mild assumption that SGD converges
to vanilla gradient descent, with all the convergence considerations previously dis-
cussed. Indeed, when ε decreases at an appropriate rate and L is convex conver-
gence in probability is guaranteed to the global minimum of the function [15]. In
practice, SGD is employed by considering for each iteration only a subset δ of the
dataset D known as mini-batch. This can be done efficiently with parallelization
techniques and speeds up convergence to the true gradient. Algorithm 1 describes
the iterative algorithm used to train a neural network with SGD. In machine learn-
ing fashion, each iteration over the dataset is known as a epoch. For each epoch,
for each mini-batch δ ∈ D the outputs fw(x) of the neural network and the associ-
ated loss L(y, fw(x); δ) are computed. The loss’ gradient ∇wL(y, fw(x); δ) is then
estimated and the prescribed update performed. This procedure is repeated until
either the algorithm converges to a minimum or the maximum number of epochs
is reached. The following paragraph exemplifies this procedure w.r.t. a classical
learning problem.

A linear example continued In paragraph 4.2.1 we demonstrated how the
formal definition of neural networks given in Definition 4.2.1 can be used in its
generality to describe affine functions. Here we convey how to train such functions
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Figure 4.8. Snapshot from the training of the simple linear regressor. On the
left: contour plot of the MSE loss estimated over the sampled point in dark
blue shown on the right. In gray it is possible to appreciate the vector field
corresponding to the estimated gradient for w1 = 1, w2 = .6 and ε = .1. On
the right, in solid blue the current approximation, and in solid blue the data
point used to estimate the gradient. The line segment’s magnitude is the MSE.
In black the minimizing fit, with w1 = 1 and w2 = 0.

to provide a fit to the data in the sense of simple linear regression. Recall that
for a 2 input layer consisting of one bias (i.e. the affine intercept), one data
input having no hidden layer and one output neuron with identity activation, the
resulting approximating function takes the form:

fw(x) = w1x + w2.

We now consider a dataset D = {(x1, y1), ..., (xn, yn)}, where xi ∈ R and assume yi

to be independent realizations drawn from omoschedastic normal random variables
Y . We now consider as a loss the MSE:

E [L(y, fw(x))] = E
è...y − fw(x)

...2

2

é
= 1

n

nØ
i=1

(fw(xi)− yi)2 =
nØ

i=1
(w1xi + w2 − yi)2.

To minimize the training loss we now consider standard SGD where the estimate
of the loss gradient is computed for each data point. Figure 4.8 conveys a graphical
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Figure 4.9. Comparison between Stochastic Gradient and vanilla gradient
descent for w1 = 1, w2 = 0.6. On the left The estimate of the loss L ob-
tained via single sample. On the right, the actual loss computed w.r.t. the
whole dataset D. In both cases the black arrow indicates the newly reached
combination of parameters
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With a sensible choice of the learning rate ε, it is possible to show that training
will converge to the well-known slope and intercept of the simple linear regression.

The previous example concludes the introductory section on the main features
of artificial feedforward neural networks in supervised learning. In the following
pages, we will focus on the method for synthetic data generation known as Adver-
sarial Generative Networks, which is the chosen algorithm for the synthetic data
generation aspect of this thesis work.

4.3 Generative Adversarial Networks
Generative modeling refers to the class of machine learning techniques that gener-
ate synthetic data by learning the probability distribution underlying training
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instances. To this end, several different algorithms have been developed and
employed, with varying degrees of success. From Gaussian Mixture Models to
SMOTE, synthetic data generation has been a central area of interest for the ma-
chine learning community. It has therefore been natural for researchers to study
possible deep learning-based strategies to address this class of problems. As the
numerous generative AI tools that have sprouted in recent years prove, the use of
deep learning to train generative neural networks has proven exceptionally effec-
tive, allowing for the training of models capable of passing a standardized version
of the celebrated Turing’s test [16]. The central position in this field is occupied
by Generative Adversarial Networks (GANS). GANS are the most prevalent AI
technique being used today [17] and have proven capable of mastering tasks rang-
ing from music generation to augmenting the resolution of blurred images. In its
simplest implementation, a GAN consists of two competing artificial feedforward
neural networks. One is known as the generator, and its objective is to generate
artificial data. The second network is known as the critic, whose objective is to
discern between synthetic and real samples. The networks repeat a generate/dis-
criminate cycle until the critic is unable to discern between artificial and training
samples. We will discuss the training algorithm in detail in the following sections,
after some useful definitions that are the object of the following paragraph.

4.3.1 Initial definitions
In the following pages, we will delve into the theory of Generative Adversarial Net-
works from the perspective of artificial feedforward neural networks, following the
concepts highlighted in the previous sections. Admittedly, this choice is limiting,
as it ignores architectures whose computational structure can not be represented
by a directed acyclic graph, such as recurrent neural networks and long short-term
machines. Nevertheless, it suffices in characterizing effectively the architecture
developed in the present work.

Definition 4.3.1. We call critic a feedforward artificial neural network cθ : Rn →
R, whose trainable parameters are indexed by the pedix θ.

In this context, we assume cθ to be a mapping between Rn to R. This choice
may appear limiting because images may be thought as three-dimensional tensors
in R3,m,n. However, this is not the case, as we consider Rn to be the isomorphic
space with n = m∗n∗3 via the standard flattening map. The purpose of the critic
is to discriminate between artificial and training data. In general, the performance
of the discriminator is crucial in training the generator.

Definition 4.3.2. We call generator a feedforward artificial neural network gw :
Rn → Rn, whose trainable weights are indexed by the pedix w.
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The generator takes as input a set of values in Rm and outputs the generated
sample in Rn. Usually, the input to the generator is a vector of realizations from
random Gaussian noise z ∼ N (0,1). The two networks compete in a two-player
game, where each participant tries to maximize a measure of its performance known
as utility function. Before detailing the standard training procedure employed to
train GANs, a brief overview of some elementary concepts of strategic game theory
is needed. In strategic form games, for each player i belonging to the finite set V ,
a set of actions Ai is available. In this introduction Ai coincides with a subset of
the real numbers. The set:

χ =
Ù
i∈V

Ai

is denoted configuration space. The vector describing the current action selected
by each player is x ∈ χ and is called action profile or configuration. Furthermore,
each player i ∈ V is equipped with a utility function, also known as reward or payoff
or value function, denoted with

vi : χ→ R.

The utility function identifies the payoff ui(x) that player i gets when each player
j plays action xj ∈ Aj. The following definition formalizes these concepts.

Definition 4.3.3. A strategic form game is a triple G = (V , {Ai}i∈V , {ui}i∈V),
where V is the set of players, Ai the set of strategies available to each player and
ui : χ→ R the utility function for player i ∈ V .

Following standard notation

x−i = xV\{i}

denotes the vector obtained from action profile x by removing its i−th entry and,

vi(xi, x−i) = vi(x),

denotes the utility (or value) obtained by player i when selecting action xi while
the remainder chooses x−i. These concepts are fairly general, as they encompass
games having an arbitrary number of players. In games in strategic form, each
player i ∈ V acts rationally in choosing the action xi that maximizes their utility
vi(xi, x−i). Indeed, the player’s i utility depends on the actions x−i selected by
the other players j ∈ V \ i. Therefore, assuming that player i is aware of the set
of actions chosen by the other players x−i, and that these actions will not change,
the rational behavior for player i would be to choose an element from the set:

argmax
xi∈Ai

vi(xi, x−i),
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which is defined as the best response set. This concept can be naturally generalized
by defining the set-valued best response (BR) function:

Bi(x−i) = argmax
xi∈Ai

vi(xi, x−i),

that formalizes the idea that players choose actions to maximize their utilities
knowing the actions played by other participants in the game.

Definition 4.3.4. A Nash equilibrium (NE) for the strategic game G is an action
configuration x∗ ∈ χ such that

x∗
i ∈ Bi(x∗

i ), ∀i ∈ V . (4.7)

In a Nash equilibrium, no player has any incentive to unilaterally deviate from
their current action, because the utility obtained with the current action is the best
possible given the current actions selected by other players. In general, there might
be one, several, or no NE for a given game in strategic form. In the following
section we will consider the problem of training a GAN within the framework
provided by strategic game theory. We will discuss how a two-player game can be
constructed where the actions of each player consist in providing a set of weights
(i.e. a feedforward artificial neural network) and how the unique Nash equilibrium
of the game can be iteratively reached. But first, we conclude the present section by
considering the most common losses employed when trying to learn a distribution.

Definition 4.3.5 (Kullback-Leibler). Assume X, Q random variables over the
same support S. The Kullback-Leibler (KL) divergence between the two distribu-
tions is:

DKL (X∥Q) = EX

C
log2

A
Px

Qx

BD
. (4.8)

A direct consequence of Jensen’s inequality is that, given X, Q, DKL (X∥Q) ≥ 0:

DKL (X∥Q) = EX

5
−log2

3
Qx

Px

46
≥ −log2EX

5
Qx

Px

6
= 0.

From the KL divergence, it is possible to define another distance, called Jensen-
Shannon divergence.

Definition 4.3.6 (Jensen-Shannon). Assume X, Q random variables on the same
support S. The Jensen-Shannon (JS) divergence is:

JSD(X∥Q) = 1
2DKL

3
X
...X + Q

2

4
+ 1

2DKL

3
Q
...X + Q

2

4
. (4.9)

As we have seen, the KL divergence has a lower bound of 0, a property that
the Jensen-Shannon divergence inherits directly. With these last definitions, it is
possible to begin an outline of the theory behind the training of GANs.
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Minibatch stochastic gradient descent training of generative ad-
versarial networks

Algorithm parameters: generator weights w, critic weights θ,
ε ∈ (0,1] ;

foreach epoch do
for k do

Sample minibatch of m noise samples {z(1), ..., z(m)} from
prior Pz;
Sample minibatch from D: {x(1), ..., x(m)}
Update the discriminator by ascending the stochastic
gradient:

θ ← θ + ε∇θ
1
m

mØ
i=1

è
log(cθ(x(i)) + log

1
1− cθ

1
gw(z(i))

22é

end for
Sample minibatch of m noise samples {z(1), ..., z(m)} from prior
Pz. Update the generator gw by descending the stochastic
gradient:

w ← w − ε∇w
1
m

mØ
i=1

log
1
1− cθ(gw(z(i))

2

end foreach

4.3.2 Adversarial training
In the original paper from 2014 [13], the authors propose an adversarial framework
based on a two-player strategic game. Under the assumption of the existence of
a generating distribution PX over the data X, it is possible to define a prior on
the input noise Pz. In this original formulation, the critic cθ is constructed to
output the probability that the data input comes from X rather than gw(z). The
critic is then trained to maximize the probability of assigning the correct label to
both training instances and samples from gw. The generator gw is simultaneously
trained to minimize log(1 − cθ(gw(z)). The two networks, therefore, play a two-
player minimax game having value function v(cθ, gw):

minwmaxθv(cθ, gw) = Ex∼PX
[log(cθ(x)] + Ez∼Pz [log(1− cθ(gw(z))]. (4.10)

Algorithm 2 details how the game is structured. For the selected number of epochs,
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the critic cθ is trained first for k iterations, as training to completion cθ in the inner
loop would result in overfitting and would be computationally prohibitive. We then
optimize gw for one step. Ideally, this approach results in cθ being maintained close
to optimality, as long as gw changes smoothly. In the following paragraph we will
see, following results presented in [13], how this game has a global optimum and
how the resulting approximation learned by the networks coincides with a Nash
equilibrium of the game under the assumption of infinite capacity. Under this
assumption, subscripts are redundant so we will refer to the critic cθ and generator
gw as c and g respectively.

Proposition 4.3.7 (Global Optimality). Consider a fixed g, the optimal critic
c is

c∗
g(x) = PX(x)

PX(x) + Pg(x) . (4.11)

Proof. Following Equation 4.10, the training criterion for c given g is to maximise
v(c, g):

v(c, g) =
Ú

x
pX(x)log(c(x))dx +

Ú
z

pz(z)log (1− c(g(z))) dz

=
Ú

x
pX(x)log(c(x)) + pg(x)log (1− c(x)) dx.

The monotonicity of the integral implies that the maximum value of V (c, g) coin-
cides with the maximum of its argument. It is well known that ∀(a, b) ∈ R2 \ (0,0),
the mapping y → alog(y) + blog(1 − y) has maximum in [0,1] at a

a+b
. The dis-

criminator does not need to be defined outside the union of the two supports:
Supp(pX) ∪ Supp(pg) and therefore the proof is complete. ■

Notably, the training objective for c is equivalent to maximizing the log-likelihood
for estimating P (Y = y|x), where Y is the Bernoulli random variable indicating
whether x comes from the data PX or the generator g. Formally:

C(g) = max
D

V (g, c)

= Ex∼PX

è
log(c∗

g(x))
é

+ Ez∼Pz

è
log(1− c∗

g(z))
é

= Ex∼PX

è
log(c∗

g(x))
é

+ Ex∼Pg

è
log(1− c∗

g(x))
é

= Ex∼PX

C
log

PX(x)
PX(x) + Pg(x)

D
+ Ez∼Pz

C
log

Pg(x)
PX(x) + Pg(x)

D
.

(4.12)

Theorem 4.3.8. The global minimum of the training criterion 4.12 is achieved if
and only if Pg = PX . At that point C(g) = −log4.
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Proof. Checking that if PX = Pg, then C(g) = −log4 is trivial. To see that this is
the global minimum (achieved at PX = Pg) for C(g) we observe that:

Ex∼PX
[−log2] + Ex∼Pg [−log2] = −log[4].

By subtracting this expression from C(g) = V (c∗
g, g) we obtain:

C(g) = −log(4) + DKL

A
PX

-----PX + Pg

2

B
+ DKL

A
Pg

-----PX + Pg

2

B
,

where by KL we denote the kullback-Leibler divergence. Equivalently, recognizing
the Jensen-Shannon divergence between the model’s distribution and the data-
generating process:

C(g) = −log(4) + 2JSD(PX |Pg).

From the non-negativity of the Jensen-Shannon divergence, and the fact that it is
zero if the two distributions are equal, we obtain the claim. ■

It is now natural to ask whether the procedure highlighted in Algorithm 2
converges to the optimum Pg = PX . This is the object of the final, fundamental
theorem of this theory.

Theorem 4.3.9 (Convergence). Assume c and g have arbitrary representation
capacity in the probability space of PX . Assume that at each step of Algorithm 2,
the critic c is allowed to reach optimum given g and that Pg is updated as to
maximise:

C(g) = Ex∼PX

è
log(c∗

g(x))
é

+ Ex∼Pg

è
log(1− c∗

g(z))
é

,

then Pg converges to PX .

Proof. By considering V (c, g) = U(Pg, c) as a function of Pg, it is possible to
notice that U(Pg, c) is convex in Pg. The subderivatives of a supremum of convex
functions include the function’s derivative at the point where the maximum is
attained. This is equivalent to computing a gradient descent update for Pg at
the optimal c given the corresponding g. supD U(Pg, c) is convex in Pg with a
unique global optimum as proven in the previous Theorem 4.3.9, therefore with
sufficiently small steps Pg will converge to PX , thus concluding the proof. ■

The theoretical analysis conveyed in the previous paragraph gives reasonable guar-
antees concerning the convergence of the adversarial learning paradigm. Indeed,
our analysis proves the existence and uniqueness of the Nash equilibrium of the
game (Theorem 4.3.8) and how it can be reached (Theorem 4.3.9). Moreover, it
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characterizes the optimal value to be expected once the game has reached equilib-
rium and it is therefore, at least in principle, an exceptionally powerful scheme.
However, various issues arise in this context that make the training procedure un-
stable. Indeed, we have assumed from the start of the mathematical proofs that
c and g can achieve arbitrary complexity, i.e. that the sequence of Pg can span
the probability space where PX is located and that cg is capable of discerning
until optimality. Unfortunately, these assumptions may be difficult to replicate in
actual implementations, as the issue of complexity in representations for artificial
neural networks is a non-trivial field of research. In this direction, the standard
method employed to augment the representation capabilities of both critic and
generator is to add neurons to the networks. Although a reasonable effort, a cri-
terion for the choice of the architecture of either critic or generator does not exist,
so the researcher is forced to deal with an iterative procedure trying to optimize
the networks’ architecture itself before the actual training. The second, and most
important, issue arising from the schema of Algorithm 2 is the well-known [3, 13]
problem of the vanishing gradients. Early in learning, when g provides a poor ap-
proximation of PX , c can easily reject samples with high confidence because they
are trivially different from the training data. This implies that log (1− cθ(gw(z)))
can tend to 0, thus hindering the learning process for the generator. In the original
paper [13], the authors suggest to train for a few initial iterations of the generator
g maximizing log(cθ(gw(z)), which should provide stronger gradients at the begin-
ning of the learning process. Although effective, this trick needs to be tailored to
the specific problem at hand, thus increasing the overall complexity of the training
scheme. A solution to this issue is to modify the underlying value function of the
game. This is the approach highlighted in the following section.

4.3.3 Wesserstein GANs
In its essence, the problem addressed by generative adversarial networks is the
learning of a target probability distribution PX . To this extent, a parametric
model, the generator gw, is specified and a suitable distance metric is defined.
Although not immediately obvious, this is exactly the scenario depicted by Al-
gorithm 2 and enlightened by Theorem 4.3.8, where the equivalence between the
adversarial game and the minimization of the Jensen-Shannon divergence is proven.
Crucially, the Jensen-Shannon divergence is not the only metric that can be de-
fined to discern between probability distributions. Indeed, various possible metrics
can be defined, each having a different impact on the convergence of sequences
of probability distributions (in our case the sequence of generators obtained by
considering the weights associated with each epoch {gwi

}i∈N). In formal terms
a sequence of probability distributions {pi}i∈N on a metric space S, it is said to
converge under a metric ρ if and only if there exist a distribution p∞ ∈ S such
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that ρ(pn, p∞) → 0 as n → ∞. The distance ρ is the fundamental discriminant
in this context, as a given sequence {pi}i∈N may converge under some ρ but not
under other, more strict, metric ρ′. In formal terms, we say that the topology
induced that the distance ρ is weaker than the one induced by ρ′ when the set of
converging sequences under ρ is a superset of that under ρ′. It is therefore crucial
to understand how strictly different common metrics act, as their implementation
may hinder considerably the learning process. Indeed, in order to optimize the set
of parameters w we would like to construct our generator to make the mapping
w → gw continuous. Continuity implies that if the sequence of parameters {wi}i∈N
converges to a fixed point w∞ ∈ R⋉, then the sequence of mappings {gwi

}i∈N also
converges to the limit distribution. Nevertheless, it is essential to remember that
the notion of convergence is dependent on the topology induced by the metric, so
that the weaker the induced topology, the easier will be to reach a parameter com-
bination w∞. In the next paragraphs, we present the theory first published in [3],
as their learning algorithm constitutes the skeleton of the method employed in our
research. The following sections are organized as follows: firstly I will outline the
main theoretical results in favor of a learning algorithm based on the computation
of the metric known as Wasserstein distance between pdata and gw, instead of the
procedure denoted by Algorithm 2. We will then consider two additional terms to
the above-mentioned distance enforcing functional and physical constraints. Fi-
nally, the chapter will conclude with an exposition of the specific implementation
developed by this thesis work.

Definition 4.3.10. We call Wasserstein or Earth-Mover (EM) the distance be-
tween two probability distributions pt, pg:

W (Pt, Pg) = inf
γ∈Π(Pt,Pg)

E(x,y)∼γ [∥x− y∥] , (4.13)

where Π(Pt, Pg) denotes the set of all joint distributions γ(x, y) whose marginals
are Pt, Pg.

Intuitively, γ(x, y) denotes how much mass has to be transported from x to y in
order to transform one distribution into the other. The EM distance is then the
cost of the optimal transport of said mass. We are now interested in the properties
that the generator gw should satisfy in order for W (Pg, PX) to be continuous and
differentiable almost everywhere.

Theorem 4.3.11. Let pr be a fixed distribution over a compact metric set X . Let
Z be a random variable defined over Z. Let gw : Z × Rd → X be a parametric
function. Let Pw be the distribution of gw. Then:

• If gw is continuous in w, so is W (Pr, Pw).
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Minibatch stochastic gradient descent training of Wasserstein gen-
erative adversarial networks

Algorithm parameters: generator weights w, critic weights θ,
ε ∈ (0,1], clipping parameter c, batch size m.;

foreach epoch do
for k do

Sample minibatch of m noise samples {z(1), ..., z(m)} from
prior Pz;
Sample minibatch from D: {x(1), ..., x(m)}
Update the discriminator cθ

θ ← θ + α∇θ
1
m

mØ
i=1

è
cθ(x(i))− cθ(gw(z(i)))

é
then clip the updates:

θ ← clip(θ,−c, c)

end for
Sample minibatch of m noise samples {z(1), ..., z(m)} from prior
Pz. Update the generator gw:

w ← w − α∇w
1
m

mØ
i=1

cθ(gw(z(i)))

end foreach

• If g is locally Lipschitz and continuous in w, then W (Pr, Pw) is continuous
and differentiable almost everywhere.

• The first and second statements are false for the Jensen-Shennon and KL
divergences.

Proof. We consider two parameter vectors w, w′ ∈ Rd. To prove the theorem we
will find a bound on W (Pw, Pw′). The main idea is to use the coupling γ. Indeed,
the distribution of the random variable (gw(z), gw′(z)), which has γ ∈ Π(Pw, Pw′).
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From the definition:

W (Pw, Px′) ≤
Ú

X ×X
∥x− y∥dγ

= E(x,y)∼γ [∥x− y∥]
= Ez [∥gw(z)− gw′(z)∥] .

If g is continuous in w, then the convergence of w → w′ in the Rd euclidean norm
implies the pointwise convergence ∥gw − gw′∥ → 0. We have hypothesized X to
be compact, so that the distance of any two elements in it must be bounded by
some constant M : ∥gw − gw′∥ ≤ M for all w and z uniformly. By the bounded
convergence theorem we have therefore:

W (Pw, Pw′) ≤ Ez [∥gw(z)− gw′(z)∥]→w→w′ 0,

and by the triangular inequality:

|W (Pr, Pw)−W (Pr, Pw′)| ≤ W (Pw, Pw′)→ 0.

Thus the continuity of W (Pr, Pw) is proven. Now we consider the differentiability.
We assume g to be Lipschitz, so that for a pair (w, z) we have a constant L(w, z)
and an open set U(w, z) so that ∀(w′, z′) ∈ U it holds:

∥gw(z)− g′
w(z)∥ ≤ L(w, z)(∥w − w′∥+ |z − z′∥).

Requiring z′ = z we have in expectation:

Ez [∥gw(z)− gw′(z)∥] ≤ L(z, w)Ez [L(z, w)] ,

∀(w′, z′) ∈ U . At this point, we can consider the restriction Uw = {w′|(w′, z) ∈ U},
and as U was supposed ope, so has to be Uw. The following bound comes then
naturally:

|W (Pr, Pw)−W (Pr, Pw′)| ≤ W (Pw, Pw′) ≤ L(w)∥w − w′∥,

for all w′ ∈ Uw. This implies that W (Pr, Pw) is indeed locally Lipschitz, and there-
fore locally continuous and Radamacher’s theorem implies differentiability almost
everywhere. To prove the final statement it suffices to consider a counterexample
provided in [3]. ■

In the following corollary we see that optimization-based learning by minimizing
the EM distance is sensible.

Corollary 4.3.12. Assume gw to be an artificial neural network parametrized by
w and Pz a prior over z such that Ez∼Pz [z] <∞. Then gw is continuous in w and
W (Pr, Pw) is differentiable almost everywhere.
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The proof can be found in [3]. This Corollary proves that the EM distance is
naturally amenable to gradient-based optimization methods, as it achieves differ-
entiability almost everywhere in contrast with the Jensen-Shannon and KL met-
rics. The final piece of the picture is a characterization of the relative strengths
of the topologies induced by each distance. Ideally, we would like to show that
the Wasserstein distance induces the strongest topology amongst the considered
metrics because this would in turn imply that the convergence in EM is stronger
than each of the others. This is the object of the following theorem.
Theorem 4.3.13. Let P be a probability distribution over a compact space X and
{Pn}n∈N be a sequence of distributions on X . Then the following holds:

DKL(Pn∥P )→ 0 =⇒ JSD(P, Pn)→ 0 =⇒ W (P, Pn)→ 0. (4.14)
Furthermore, Pn → P in distribution.

This exactly confirms our hopes, as Theorem 4.3.13 from [3] exactly proves
that the EM distance induces the strongest topology out of all the considered met-
rics. We shall now discuss how to approximate this metric in practice to effectively
train the generator and discriminator.
Although the theoretical properties of the Wasserstein metric prove that it is the
best available choice between JS and KL, the definition given in [3] is highly in-
tractable. On the other hand, a celebrated result known as Kantorovich-Rubenstain
duality [8] states that

W (Pr, Pw) = 1
K

sup
∥f∥L≤K

Ex∼PX
[f(x)]− Ex∼Pw [f(x)] ,

where the supremum is over all the k-Lipschitz functions f : X → R. Therefore, if
we have a parametrized family of functions, such as cθ and gw, that are all Lipschitz
for some K, we would be solving the problem

max
θ∈Θ

Ex∼PX
[cθ(x)]− Ez∼Pz [cθ(gw(z)] ,

and if the supremum is attained for some combination of parameters θ this process
would yield a calculation of the EM distance modulo a multiplicative constant
K. Furthermore, we could differentiate W (Pr, Pg) with respect to the generator’s
parameters w and therefore apply gradient descent methods to train the generator
itself. The following theorem proves this intuition.
Theorem 4.3.14. Let Pr be a probability distribution over X . Let Pw be the
probability distribution of gw. Then there is a solution f : X → R to the problem:

max
∥f |≤1

Ex∼Pr [f(x)]− Ex∼Pw [f(gw(x))] ,

and we have:
∇wW (Pr, Pw) = −Ez∼Pz [∇wf(gw(z))] .
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Proof. We begin by defining:

V (f̂ , w) = Ex∼Pr

è
f̂(x)

é
− Ex∼Pw

è
f̂(x)

é
= Ex∼Pr

è
f̂(x)

é
− Ez∼p(z)

è
f̂(gw(x))

é
,

where f̂ lies in F =
î
f̂ : X → R, f̂ ∈ Cb(X ), ∥f̂∥L ≤!

ï
and w ∈ Rd. The com-

pactness of X guarantees, via the Kantorovich-Rubinstein duality that there is an
f ∈ F that attains the value:

W (Pr, Pw) = sup
f̂∈F

V (f̂ , w) = V (f, w).

If we now define X∗(w) = {f ∈ F : V (f, w) = W (Pr, Pw)}, we know that X∗(w)
is non-empty. Using an envelope theorem:

∇w(Pr, Pw) = ∇wV (f, w),

for any f ∈ X∗(w) when both terms are well defined. Now let f ∈ X∗(w), which
exists since X∗(w) is non-empty for all w, then:

∇wW (Pr, Pw) = ∇wV (f, w)
= ∇w

è
Ex∼Pr [f(x)]− Ez∼p(z) [f(gw(z))]

é
= −∇wEz∼p(z) [f(g(w(z))] .

With fine technical arguments based on a clever application of Fubini’s theorem
(that we do not provide in this context), it is possible to conclude the proof by
showing that the operator ∇ commutes with the expected value:

−∇wEz∼p(z) [f(g(w(z))] = −Ez∼p(z) [∇wf(g(w(z))] .

Details can be found in [3]. ■

Theorem 4.3.14 is the crown achievement reported in [3]. It proves that gans
can be trained using the EM distance and that in so doing we can expect to
obtain better results than the ones guaranteed by training via Jensen-Shannon
minimization. The main difference between the vanilla implementation of a gener-
ative adversarial network’s training algorithm and its Wasserstein counterpart can
be appreciated under the game theoretical lens that we outlined in the previous
sections. In the vanilla game the critic cθ : Rn → [0,1] outputted a probability
that served as a measure of its confidence in the nature of the input samples. The
generator gw on its part was trained to produce convincing samples to fool the
critic. The final form of the game’s value function was therefore:

mingmaxcV (cθ, gw) = Ex∼PX(x)[log(cθ(x)] + Ez∼Pz [log(1− cθ(gw(z))].
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Minibatch stochastic gradient descent training of Wasserstein gen-
erative adversarial networks with gradient penalty

Algorithm parameters: generator weights w, critic weights θ,
ε ∈ (0,1], regularization parameter λ, batch size m.;

foreach epoch do
for k do

Sample minibatch of m noise samples {z(1), ..., z(m)} from
prior pσ;
Sample minibatch from D: {x(1), ..., x(m)}
Sample x̂ from x(i): x̂ = ϵx + (1− ϵ) gw(z(i))
Update the discriminator cθ

∇θ
1
m

mØ
i=1

è
cθ(x(i))− cθ(gw(z(i)))

é
+λEx̂∼px̂

è
(∥∇x̂cθ(x̂)∥2 − 1)2

é

end for
Sample minibatch of m noise samples {z(1), ..., z(m)} from prior
Pz. Update the generator gw:

w ← w − α∇w
1
m

mØ
i=1

cθ(gw(z(i)))

end foreach

In a Wasserstein gan the fundamental change happens in the value function for
the game:

textmingmaxcV (cθ, gw) = min
w

max
∥cθ∥≤1

Ex∼PX
[cθ(x)]− Ex∼Pz [cθ(gw(x))] .

In this context, we are not bounding the critic to a mapping between Rn and [0,1].
On the contrary, the critic is allowed to take arbitrary values (up to Lipschitz
compliance), so that the higher the output’s module, the more certain the critic
is of the provenience of the input data. In practice, the fundamental constraint to
be enforced is the belonging of the critic to the class of Lipschitz functions. In the
original per on Wesserstein GANs the authors suggested the method of gradient
clipping to avoid the violation of this assumption. Algorithm 3 details the training
process. The idea of clipping the gradients, although of simple implementation,
can be detrimental as the choice of the clipping parameter affects strongly the con-
vergence of the training procedure. With permissive values, the critic may initially
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4.3 – Generative Adversarial Networks

converge faster, without reaching convergence. On the other hand, less permissive
choices may hinder the convergence, requiring unacceptable amounts of epochs. A
solution to this problem was found by [14]. As they note, the Wasserstein GAN
optimization process is difficult because of the interactions between the weight
constraint and the cost function, which result in either vanishing or exploding
gradients without a sensible choice of the clipping parameter. Their proposal to
enforce Lipschitz constraints is based on the fact that a differentiable function is
1-Lipschitz if and only if it has gradients with norm 1 almost everywhere. They
directly constrain the gradient norm of the critic’s output with respect to its input.
The final loss for the critic becomes:

max
θ∈Θ

Ex∼PX
[cθ(x)]− Ez∼Pz [cθ (gw(z))] + λEx̂∼Px̂

è
(∥∇x̂cθ(x̂)∥2 − 1)2

é
, (4.15)

where λ controls the strength of the regularizing action and x̂ = ϵx+(1−ϵ)gw(σ(i))
with ϵ ∈ (0,1). This method is now known as gradient penalty and has proven ex-
ceptionally effective in stabilizing the learning dynamics of Wasserstein gans.
Wasserstein GANs trained via gradient penalty offer a reliable framework for syn-
thetic data generation. They can be applied to a variety of different problems, with
satisfactory results. However, their flexibility is limited when considering data that
has to comply with strict constraints. In scenarios of this kind, the generator usu-
ally learns an unsatisfactory approximation of the data distribution, producing
outputs that fail to comply with the limits imposed by the system. An example
of this behavior can be appreciated in the context of physically informed neural
networks, that are used by researchers to emulate physical phenomena. With a
loss in the form of Equation 4.15, the generator fails to produce data compliant
with the physical phenomenon of interest. To address this final limitation, the gen-
eral approach pioneered by the research community has been to add a regularizing
term to the global value function of the game:

v(c, g) = max
θ∈Θ

Ex∼PX
[cθ(x)]− Ez∼Pz [cθ (gw(z))] + λEx̂∼Px̂

è
(∥∇x̂cθ(x̂)∥2 − 1)2

é
−

µEz∼p(z) [H(gw(z))] .

(4.16)

This is the general form of the adversarial game employed in this thesis work.
The novel term Ez∼p(z) [H(gw(z))] behaves like a regularizing term of strength
mediated by the parameter µ, as the generator is now required to maximize the
linear combination:

Ez∼Pz [∇wcθ(gw(z))] + µEz∼Pz [∇wH(gw(z))] .

In this context the operator H : Rn → R is supposed differentiable almost ev-
erywhere and represents the hypersurface whose gradient coincides with the con-
straints to be enforced.
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Minibatch stochastic gradient descent training of conditional
Wasserstein GANs with gradient penalty and physical constraints

Algorithm parameters: generator weights w, critic weights θ,
ε ∈ (0,1], regularization parameter λ, batch size m.;

foreach epoch do
for k do

Sample minibatch of m noise samples {z(1), ..., z(m)} from
prior pσ;
Sample minibatch from D: {x(1), ..., x(m)}
Sample x̂ from x(i): x̂ = ϵx + (1− ϵ) gw(z(i)|q(i))
Update the discriminator cθ

θ ← θ −∇θ
1
m

mØ
i=1

è
cθ(x(i)|q(i))− cθ(gw(z(i)|q(i)))

é
+ ...

+ λEx̂∼px̂

è
(∥∇x̂cθ(x̂)∥2 − 1)2

é

end for
Sample minibatch of m noise samples {z(1), ..., z(m)} from prior
Pz. Update the generator gw:

w ← w − ϵ

C
∇w

1
m

mØ
i=1

1
cθ(gw(z(i)|q(i))) + µH(gw(z(i)|q(i)))

2D

end foreach

Equation 4.16 concludes the introductory section on Generative Adversarial Net-
works and their training. We will now discuss how these concepts can be fruitfully
employed to generate synthetic initial conditions for the benchmark SUMO sce-
nario considered in this work.

4.3.4 Conditional Wasserstein GANs

Until this point, we have discussed the problem of learning a probability distri-
bution in the general case where a target distribution Y is approximated by the
sequential refining of the generator gw. In the applications, however, we would
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4.3 – Generative Adversarial Networks

like to specify a class and draw samples that belong to the class itself, rather
than obtaining an arbitrary realization. Indeed, our current exposition describes
gw(z) → Rn, where z is drawn from the normal distribution having mean 0 and
variance 1. By computing the image of z though gw we obtain a realization (sup-
posing that convergence has been reached) from Y . Let us suppose now that the
support of Y is the space of all the possible grayscale images having size 28 × 28
pixels representing handwritten digits. In our current implementation, when we
compute gw(z) we have no control over which number (i.e. image depicting the
number) will be generated. This issue is of importance because we would like to
be able to specify the class to which a given sample should belong. Fortunately,
solving this issue is straightforward, as it is sufficient to consider, rather than sim-
ply z, the concatenation of z and a one hot encoded label q corresponding to the
class of interest. Formally, the global value function of the game changes slightly:

v(c, g) = max
θ∈Θ

Ex∼PX
[cθ(x|q)]− Ez∼Pz [cθ (gw(z|q))] + λEx̂∼Px̂

è
(∥∇x̂cθ(x̂|q)∥2 − 1)2

é
−

µEz∼p(z) [H(gw(z|q))] .

(4.17)

In Equation (4.17) the notation x|q is to be understood as the “concatenation of
white noise z and the one hot label for class i q”. Notably, the insertion of the term
q does not affect the general training algorithms developed by the theory as can be
seen in Algorithm 5, for it can be considered as a projection operator that forces
the mapping gw to some kind of specific submanifold belonging to the support of
Y . With this final remark, the theory of Wasserstein GANs is now complete. We
will address in the following Chapter the implementation that has been devised in
the context of this thesis work.
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Chapter 5

Experimental Results

This Chapter is subdivided into two sections. In Section 5.1 the implementation
pipeline is explained in detail. We discuss the generation of both pedestrian and
vehicular demand and the associated parameters employed in the subsequent simu-
lations. Furthermore, we define the data acquisition scheme employed in this work
and the dataset generation process. Section 5.2 defines the employed architec-
ture and compares its effectiveness in generating risk scenarios with the standard
baseline defined by the demand generation procedure.

5.1 Setup
The main objective of the present work is to present an effective framework for the
generation of configuration files (i.e. initial values) that, when fed to SUMO, will
cause (on average) pre-specified collision events. To this extent, an ML pipeline
has been developed to train a Generative Adversarial Network to generate such
files. Crucially, the fundamental building block of any learning-based algorithm
is data. The present Section deals with the assumptions and techniques devised
to build the dataset used in the training of the proposed GANs. Simulations
take place in the road network described in Chapter 2, with 4 lanes leading to
a central regulated intersection. Pedestrians can walk in any direction alongside
each lane and can cross the intersection at designated crossings. As previously
mentioned, standard SUMO simulations do not allow for collision events between
agents. Indeed, the simulation itself has been developed with the explicit aim of
avoiding such events to simplify its internal dynamics. However, SUMO allows for
a notable amount of freedom when specifying the parameters of the models that
govern each agent’s dynamics, so that it is actually possible to generate a variety
of risk scenarios, including collisions and emergency braking. To this extent, in the
present work we have employed the default pedestrian (striping) and Krauss’s [20]
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Vehicle parameters
acc=7.0 dec=5.0 mSpeed=18.0 mGap=2.5 σ=0.5 JmIgProb=0.6

Table 5.1. Parameters specified for each vehicle. Σ refers to the standard
deviation of the normal distribution from which each vehicle’s velocity is drawn.

car-following models. Table 5.1 reports the chosen parameters for the latter. As
it is possible to appreciate, we are considering realistic vehicles, with acceleration
and deceleration compatible with real-world counterparts. Indeed, a maximum ac-
celeration has been set equal to 7m/s2, with a corresponding braking deceleration
of 4m/s2. It is important to remark that 7m/s2 is the maximal acceleration that
a vehicle can reach, in practice the limitations imposed by the car-following model
imply that vehicles rarely reach the maximal acceleration. Similar considerations
can be repeated for the maximal deceleration. In the proposed road network ac-
cidents take place at the intersection, where vehicles may collide with each other
or with pedestrians. As we have discussed in Chapter 2, the behavior of vehicles
at intersections can be modeled by specifying the likelihood for a vehicle to ignore
the right of way implied by the intersection itself. Whenever such an event hap-
pens, the incoming vehicle collides either with a pedestrian or with another vehicle.
The gravity of said event can be measured using the classification system detailed
in Chapter 3. On the topic of demand generation, we employ a custom script
that balances the number of generated vehicles on every incoming lane, sampling
from a Poisson distribution and feeding it to the duarouter method. A similar
approach has been used to generate pedestrian demand, using the randomTrips
utility provided by SUMO that generates a random number of pedestrians for each
simulation.
We can now outline the pipeline developed to generate the dataset. The process
starts with the generation of pedestrian and vehicular demand. The simulation is
then run and the logfiles (containing the logs of the events that happened during
the simulation itself) are extracted. A script is then called that checks whether or
not the simulation contains collision events and, if present, saves the timesteps at
which they happened and stores an XML file containing the positions, angle, and
velocity of each agent. By computing the ∆V for each vehicular collision event and
the incoming vehicle’s velocity for pedestrian collisions, we can then assign a label
to each configuration. Crucially, this process is repeated for every event within
the simulation, so that from a single simulation, multiple XML snapshots can be
recovered. The process is repeated a prescribed number of times and the resulting
data is stored. Once the process has ended, the user is then presented with a labels
folder containing json files and a folder of XML files representing the snapshots
previously saved. Notably, each snapshot consists of a different number of vehicles
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Figure 5.1. Class distribution for the final 9902 samples dataset. Crucially,
almost half of the data leads to a collision of medium gravity between
vehicles on the driver’s side.

and pedestrians, so the problem of varying data length arises. We propose to spec-
ify a common threshold for the number of vehicles and pedestrians that need to
be present for a snapshot to be saved. For example, given an XML file containing
the positions, angles, and velocities of each agent, we convert it to a tensor only
if the number of pedestrians (and vehicles) is greater or equal to a given value.
Moreover, if the number of each kind of agent exceeds the threshold t, we store
only the t closest to the intersection. This is an effective strategy, for a locality
assumption can be upheld. Indeed, we are saving the state of the simulation at ∆t
seconds before the event takes place, so it is reasonable to assume that only those
vehicles close to the intersection will influence directly the dynamics of the system.
It is important to remark that in this seminal work, we are limiting the scope of
the network to the generation of collision events. This limitation is justified by
the fact that the generation of emergency braking scenarios in SUMO is straight-
forward as it is only required to specify high velocities and short intervehicular
distances. At simulation time, the car following the model will invariably reduce
the speed of the chasing vehicle, thus giving rise to emergency braking events.
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Figure 5.2. Plot of a sampled tensor from the dataset. Each point represents
either a vehicle (solid hue), or a pedestrian (lighter hue), and it is colored based
on their velocity. On the left: the rescaled data. On the right: original data.

5.1.1 Dataset
To generate the dataset we made use of an SSH server equipped with an Intel Xeon
Processor (Skylake). The resulting data consists of 10556 individual configurations
leading each to one of the six possible events. The subsequent filtering, with a fixed
number of 50 vehicles and 50 pedestrians, leads to a final dataset comprising 9902
labeled tensors. The bar plot in Figure 5.2 conveys the relative class distribution.
Crucially, the dataset is highly unbalanced. This is to be expected: the com-
bination of each vehicle’s parameters, the topology of the road network, and the
right-of-way regulations inevitably favor specific events over all possible ones. This
phenomenon is akin to what happens in real-world road networks, where a clus-
tering of accidents sharing common characteristics is commonly observed. From a
learning perspective, however, this phenomenon constitutes a notable hindrance.
Indeed, research shows [5] that extreme imbalances between classes, such as the
ones present in our study, can disrupt significantly the approximation learned by
the generator. A standard strategy that can be helpful in mitigating those effects
consists of a biased sampling of the training data, which will be discussed in the
Section reserved for our training methods.

5.1.2 Preprocessing
As previously noted (see Chapter 2), SUMO employs various coordinate systems.
In our implementation, we have saved the positions, velocities and angles of each
vehicle and pedestrian. In principle, the adimensional positions for each agent can
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Figure 5.3. On the left: generated data for the "vehicle vehicle lateral driver
medium" class. On the right: averaged losses by mini batch for each epoch of the
critic (orange) and generator (blue).

vary between −1000 to 1000, whereas the velocities and angles all span different
orders of magnitude so normalization is necessary. To this end we performed a
minimax rescaling over the whole dataset, bounding each feature between 1 and
−1. This preprocessing technique has proven crucial in aiding the GAN to progress
in its learning dynamics. Furthermore, the coordinate system employed by SUMO
for pedestrians and vehicles shifts the x and y coordinates with respect to the
center of the pathway/lane. Although in principle of limited impact, this small
translation has proven significant in developing the regularization therm H(gw)
specified in the previous Chapter. In this direction, with the idea of simplifying
H, we have translated the coordinate system so that x and y represent the distance
from the axis passing through the lanes (and not each lane’s central axis).

5.1.3 GAN

The development of the Generative Adversarial Network at the core of the pre-
sented work has progressed incrementally. We first began by considering a reduced
version of the dataset comprised of just over 2000 instances to gauge the required
complexity. The initial architecture of the network consisted of two vanilla feedfor-
ward deep artificial neural networks, one for the generator and one for the critic.
Nevertheless, by training the network on this arbitrary subset of the generated
data we were not able to produce satisfactory results. Indeed, the critic would
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inevitably overfit the training data leading to diverging losses. As our understand-
ing of the complexities of the learning problem increased, we consequently shifted
from the vanilla generator to a more complex architecture, that is depicted in Fig-
ure A.1. This architecture has been trained on the whole dataset and the results
described in the following Section refer to this topology.

5.1.4 Training

Arguably, the most delicate aspect of this work has been devising a stable training
procedure. In this direction, the first step has been the implementation of a biased
sampling method to try and mitigate the dataset’s imbalance. By assigning to each
of the 9902 instances the relative frequency of its class in the dataset and sampling
with probability proportional to the inverse of such weight we can sample mini-
batches from the dataset that have uniform class distribution. In so doing we can
mitigate the effects of the class imbalance observed in the data and stabilize the
networks’ training. To optimize each network’s weights we have employed Adam
optimizer with learning rate lr = 0.00005 prescribed in [3, 12, 13] and a coeffi-
cient λ = 10 for the gradient penalty term, coupled with a scheduler to reduce the
learning rate (Lr scheduler) by 10% each epoch. For each iteration of the genera-
tor’s training, we update the critic for 20, following the suggestions found in [13].

Figure 5.4. Example of the regularization term’s ac-
tion on 30 agents: the term H computes the cumu-
lative squared distances (in light blue) of each agent
from the center of its lane.

Initial tests using this strat-
egy have shown promising re-
sults, demonstrating how the
network could at least partially
infer the structure underlying
the data. It is paramount to
recall the finality of the syn-
thetic data: that it is to be
transformed into a set of con-
figuration files for a simula-
tor. In particular, the genera-
tor needs to output a set of ve-
locities and positions that must
comply to physical constraints:
they must belong to a set of ac-
ceptable values. This strict re-
quirement has been the central
issue in the development and
training of the presented archi-
tecture and the fundamental motivation leading to the adoption of the regularizing
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term Ez∼Pz [H(gw(z))] originated in the physics literature. In the presented imple-
mentation we defined H as the cumulative squared distance of each point repre-
senting an (agent) from the center of its closest lane (see Figure 5.1.4), weighted by
a constant α = 0.01. In so doing we effectively have managed to train the network
to comply with the constraints enforced by the simulator. Figure 5.1.4 conveys
the convergence of the training procedure and the resulting generated scenario. It
is possible to notice how the generator’s loss falls below the critic’s, demonstrat-
ing how the learning procedure has produced a generator capable of consistently
fooling the critic itself.

5.2 Results

As we have previously discussed, the generator’s output consists of a 2D matrix
whose features represent the positions and velocities of each agent within the road
network. To effectively perform a simulation based on the generated data we con-
vert the output to a series of 3 configuration files, including only the agents that
comply with SUMO’s constraints. Notably, the training procedure devised in the
context of the present work has proven effective in guaranteeing that, normally,
all vehicles and pedestrians are correctly placed. Once the files have been written,
the simulation is run and the log file is stored. To validate the performance of
our network we perform a statistical analysis on the simulation’s output on two
aggregation levels: one general and the other specific. For the general case, we
ask the network to generate configurations that lead to events belonging to the
same macro collision class: either vehicle-vehicle or vehicle-pedestrian. The simu-
lation’s log files are then stored and the empirical likelihood of the vehicle-vehicle
(or vehicle-pedestrian) collision event is estimated within a 95% Wilson confidence
interval. The Wilson test is a binomial proportion confidence interval, i.e. a confi-
dence interval for the probability of success calculated from the outcome of a series
of success–failure experiments (Bernoulli trials). In this context, the number of
Bernoulli trials coincides with the total number of collision events recorded during
the unfolding of the simulations and the success probability with the fraction of
events coinciding with the class specified. The choice of Wilson’s test over other
possible alternatives, such as Clopper-Pearson or the standard Wald interval is
motivated by its intrinsic robustness. The idea behind this first evaluation task is
to assess whether the network is capable of consistently generating initial condi-
tions leading to a macro area of events. For the specific evaluation, on the other
hand, we first select a specific class of event that we would like the simulator to
generate (a low-gravity collision between a pedestrian and a vehicle for example).
We then run a predetermined number of simulations, generating for each configu-
ration file using the network. For each simulation, we store the log files and classify
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Figure 5.5. On the left: plot of the 95% confidence interval for selected
classes. GAN’s values are in black, whereas control is in blue. Probabilities
are the gray dots. On the right: plot of probabilities (gray dots) and con-
fidence intervals (95%) for the general test. It is possible to appreciate the
partial success obtained by the generator.

the happened events. Once the total number of iterations has been reached, we
compute the empirical fraction of events of the requested type over all the events
generated and compare it with the baseline from the dataset. To ensure statistical
significance the comparison is carried out by computing 95% Wilson confidence
intervals for each of the classes present in the dataset. Before presenting the results
of the evaluation procedure it is paramount to recount that for every generated
initial configuration, a simulation is run in order to classify each happened event.
Therefore, to avoid impractical computation times, the number of iterations for
each evaluation has been defined accordingly.

5.2.1 Discussion
We performed a statistical evaluation of our method comparing its results with
the events of another dataset generated using the same parameters of the one used
to train the network, with the only exception of having a number of vehicles and
agents fixed at 50. The rationale behind this choice is to provide an effectively un-
biased benchmark that estimates the specific collision events distribution resulting
from said parameters. This novel dataset is comprised of 2740 different instances
spanning the same 6 collision classes of its fellow used at training time. The re-
sults of the first test we proposed are depicted on the right side of Figure 5.5. For
this case, we have asked the network to generate either a collision event between
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Random GAN
Vehicle-Vehicle 0.712 0.83
Vehicle-Pedestrian 2.028 3.09

Table 5.2. Comparison of control and GAN generated collision events grouped
by macro classes. The GAN proves to be significantly more effective in generating
pedestrian collision scenarios.

vehicles or vehicle-pedestrian for 100 times each. In the case of vehicle-vehicle
collisions, we reported a total of 365 generated events, with a 22.5% incidence of
inter-vehicular collisions. The resulting 95% Wilson confidence interval overlaps
with the one observed in the dataset, thus implying that a statistically significant
difference between the two groups (dataset and generated) is not supported by
the data. The opposite is true for the complementary case of vehicle-pedestrian
collisions. Indeed, in this scenario the estimated probability of having a collision
event between a pedestrian and a vehicle has been estimated at 79%, significantly
higher than the 74% of the control. Furthermore, the Wilson confidence intervals
between the two groups do not overlap, thus testifying in favour of a statistically
significant difference between the success probability of each group. On the topic
of the more detailed test, we have performed, for each class, 50 simulations and
computed the same statistics of the previous test. The left side of Figure 5.5
depicts selected results. The comparison between the two groups, for the classes
vehicle-vehicle lateral low, vehicle-vehicle lateral driver low, and vehicle-pedestrian
medium, proves that the generative model outperforms significantly the random
generation method. Indeed, for each of these three classes, the confidence inter-
val derived from the empirical results of the network does not overlap with the
randomly generated scenarios, thus proving the model’s effectiveness. For the
other three classes the network is not capable of consistently outperforming the
control group. Indeed, the empirical likelihood does not outperform the one esti-
mated from the control group, indicating that further refinements are still required.
The complete results of the second, more specific testing procedure are depicted
in Table 5.3. Finally, we considered as our last performance evaluation metric
the number of events generated per macro class (vehicle-vehicle collision/vehicle-
pedestrian collision) over a fixed number of 100 simulations conditionally on the
same generation procedure outlined for the first statistical test proposed. In detail,
we sampled uniformly at random a collision class of the kind vehicle-vehicle (or
vehicle-pedestrian for the other 100 simulations) for each of the 100 simulations
and asked the network to generate the corresponding collision scenario. Then we
computed the total number of collision events witnessed over the total number
of simulations and compared it with the control group. Table 5.2.1 recounts the
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Random GAN
p lb ub p lb ub

V-V lateral driver low 0.067 0.063 0.071 0.171 0.127 0.227
V-V lateral low 0.021 0.018 0.022 0.062 0.040 0.092
V-V lateral driver medium 0.165 0.159 0.171 ∗ ∗ ∗
V-P low 0.425 0.417 0.433 0.182 0.145 0.225
V-P medium 0.225 0.218 0.232 0.468 0.416 0.522
V-P high 0.090 0.085 0.095 ∗ ∗ ∗

Table 5.3. Wilson confidence intervals and associated probabilities.

results of the evaluation procedure. As it is possible to appreciate, over a fixed
number of simulations the GAN surpasses the control, proving significantly more
effective in generating collision events, up to more than 1.5 times the baseline for
pedestrian collision events.

5.2.2 Influence of class imbalance on the learned generator
As Table 5.3 conveys, the learned model fails the statistical tests for both the class
vehicle-vehicle lateral driver medium and vehicle-pedestrian high. We suggest
that a cause of the network’s difficulty in generating such events may be found in
the sampling strategy employed at training time. Indeed, by sampling the classes
uniformly we avoid overfitting the critic which in turn leads to the divergence of the
losses. At the same time, however, by removing the inherent bias of the dataset,
we are providing the model with an implicit bias regarding the variance within
each class. Nevertheless, the topic of learning from unbalanced data in GANs is
still a flourishing area of research and it is complex to generalize findings among
datasets. Furthermore, as we have seen in the introductory exposition detailed in
Chapter 4, the convergence of a generative architecture is strongly dependent on
the loss. In turn this implies that findings that we might consider valid for a given
error measure might not be generalizable to other losses. A discussion on these
difficulties may be found in [5].
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Chapter 6

Conclusions

This thesis work aimed to present a scalable framework for the generation of crit-
icality scenarios within the Simulation of Urban MObility SUMO. To this end, we
began with the definition of a benchmark road network consisting of four incoming
lanes joined at a regulated intersection. Incoming vehicles from each lane can vio-
late the right of way of both pedestrians and vehicles thus causing collision events.
Such events may differ substantially based on several factors so the necessity for
a classification system arose naturally. In this direction, we propose a literature-
based methodology that employs the MAIS3+ score, which is the globally accepted
metric in the context of collision gravity estimation. We employed the proposed
scheme to construct a representative dataset, and trained a generative adversar-
ial network to generate initial conditions leading, in probability, to the observed
risk events. An extensive statistical evaluation of the obtained model has been
performed, proving that the GAN-based approach consistently generates a vari-
ety of collision scenarios, therefore demonstrating the capabilities of the approach
pioneered by the present work.

6.1 Future research
A variety of possible research directions branch from this thesis work. Starting
with the proposed road network, a possible generalization of this research may
consider different topologies, with the addition of multiple lanes or traffic lights.
The typology of vehicles may also be expanded to allow for trains, buses, and
cyclists to be included, thus requiring a more detailed classification scheme. On
the other hand, it is possible to consider the present topology as fixed. In this
case, a natural path to follow would be the generation of a balanced benchmark
dataset to assess the performances of different GAN architectures and stabilize
their training.
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Appendix A

A.1 GAN

Figure A.1. On the left: generator, on the right: critic.
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A.2 Wilson score intervals
The problem of evaluating the performance of the generative network proposed in
the presented work has been addressed from a statistical viewpoint. In particular,
we have provided Wilson score 95% confidence intervals to understand whether
the data generated by the GAN had significantly different properties from the
control. The Wald score intervals are approximate binomial proportion confidence
intervals for the probability of success calculated from the outcome of a series of
success-failure experiments. That is, an interval estimate of a success probability
p when only the number of experiments (collision events) n and the number of
successes ns (the required collision class) are known. In this direction, a Wison
interval can be derived by starting with the normal approximation of the binomial:

zα = p− p̂

σn

,

where zα is the standard normal interval corresponding to the desired confidence
1− α, p is the actual probability and p̂ is the one estimated from the trials.

σn =
ó

p(1− p)
n

,

therefore, by combining these two formulas we obtain a quadratic formula in p
whose two solutions are the upper and lower bounds of the confidence interval:A

1 + z2
α

n

B
p2 −

A
2p̂ + z2

α

n

B
p + p̂2 = 0,

indeed:
p ∈ (w−, w+) = 1

1 + z2
α

n

A
p̂ + z2

α

2n
± zα

2n

ñ
4np̂(1− p̂ + z2

α

B
.
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