
Politecnico di Torino
Master’s Degree in

Physics of Complex Systems

Master’s Degree Thesis

Training Gaussian Restricted

Boltzmann machines using

Expectation Propagation

Supervisor: Candidate:

Anna Paola Muntoni Roberto Puntorieri

July 2024

Abstract

This thesis investigates a new training technique for Restricted Boltzmann Ma-

chines (RBMs), a type of stochastic neural network employed in unsupervised

learning. Specifically, the focus of this work is on RBMs with a Gaussian prior

distribution for the hidden units, leading to a training technique that depends

exclusively on the visible units provided as input. The method relies on Expecta-

tion Propagation (EP), a Bayesian inference technique designed to approximate

intractable distributions. As a testing ground, we analyze its performance on

the MNIST dataset, a large database of handwritten digits commonly used for

training and testing machine learning algorithms.

First, we begin by detailing the historical background and the foundational

concepts of RBMs, followed by a similar exposition for EP. Secondly, we present

the mathematical steps employed for implementing the EP formalism to RBMs.

Afterward, we train our model on the digits 0 and 1 of the MNIST dataset,

leveraging many independent copies of the approximation to improve the efficacy

of the algorithm. After identifying the optimal conditions for efficient training

and achieving satisfactory results, we employ the exploration of the dataset

space achieved at convergence to cluster the dataset. A similar analysis is then

performed for the more complex case of digits ranging from 0 to 4.

Finally, we investigate the potential of integrating a population dynamics

scheme into RBM training, allowing multiple independent copies of the system

to evolve and interact with each other, exchanging information to explore the

solution space more effectively.

1

Acknowledgments

I am deeply grateful to my supervisor Anna Paola Muntoni for her constant

support and guidance throughout this thesis. Her kindness and patience have

been incredibly valuable to me, as she always took the time to listen and provide

helpful feedback. I would also like to thank all the PhD students, Francesco,

Leonardo, and Mattia, for their hospitality and companionship during these

months. A special thanks goes to Francesco for his support and assistance, not

only during the thesis period but throughout my entire Master’s program.

2

Contents

1 An Introduction to Restricted Boltzmann Machines 8

1.1 Historical Background . 8

1.2 Definitions . 12

1.2.1 Boltzmann Machines and Restricted Boltzmann Machines 12

1.2.2 Bayesian Inference . 13

1.3 Types of Units . 14

1.3.1 Binary Units . 15

1.3.2 Softmax units . 15

1.3.3 Continuous Data Modeling Units 15

1.4 Binary Vector RBMs . 16

1.5 Unsupervised Learning for Markov Random Fields 17

1.6 Unsupervised learning for RBMs 19

1.7 Different training algorithms for approximating the RBM log-

likelihood gradient . 20

1.7.1 Contrastive Divergence 20

1.7.2 Persistent Contrastive Divergence 21

1.7.3 Parallel Tempering . 21

2 Expectation Propagation: Theory and Fundamentals 23

2.1 Introduction . 23

2.2 Preliminaries . 24

2.2.1 Exponential Families . 24

3

2.2.2 Kullback-Leibler divergence 25

2.2.3 Assumed-density Filtering 25

2.3 Understanding Expectation Propagation 26

3 Experimental Evaluation and Results 29

3.1 The MNIST Database . 29

3.2 Training the RBM . 30

3.3 Results of the training . 36

3.3.1 Case of a single copy (K=1) 36

3.3.2 Leveraging additional independent copies 38

3.3.3 Max Gradient and Correlation Analysis for different val-

ues of M and K . 42

3.4 Clustering . 44

3.4.1 Introduction to Clustering 44

3.4.2 Results from Clustering 45

3.4.3 Adding more digits . 49

4 Integration of Population Dynamics in RBM Training 55

4.1 Introducing Unequal Copy Probabilities 55

4.2 Results Obtained . 56

4.2.1 Method 1 . 56

4.2.2 Method 2 . 58

5 Conclusion 60

5.1 Future developments . 61

4

List of Figures

1.1 (a) Schematic representation of a Hopfield neuron. (b) Neuron

image by Santiago Ramón y Cajal 10

1.2 (a) Schematic representation of a recurrent neural network. (b)Pictorial

representation of the synaptic connections in the brain 11

1.3 Boltzmann machine example . 12

1.4 Restricted Boltzmann machine example 13

3.1 Sample of handwritten digits from the MNIST dataset 30

3.2 Multiple 28×28 images learned with K = 1,M = 100, T = 10000

at different time steps. 37

3.3 Temporal evolution of ρsec . 38

3.4 Study of correlations in the case K = 1 for images of size 28 × 28

learned with M = 100, T = 10000 and initialized by m
(0)
h = rand(M). . 38

3.5 K = 100 images of size 28 × 28 learned with M = 100, T = 10000

initialized by m
(0)
h = rand(M). 40

3.6 Weights W learned by each of the K = 100 independent copies, using

images of size 28 × 28, with M = 100 and T = 10000, initialized by

m
(t=0)
h = rand(M). 40

3.7 Gaussian mixture of K=100 independent copies of size 28×28 learned

with M = 100, T = 10000 initialized by m
(0)
h = rand(M). 41

3.8 Study of correlations in the case K = 100 for images of size 28 × 28

learned with M = 100, T = 10000 and initialized by m
(0)
h = rand(M). . 41

5

3.9 Variation of maximum gradient, ρav and ρsec for M=5,10,15,20,25 and

K=10,40,70,100 in the case of 14 × 14 resized images and m
(t=0)
h =

rand(M). 42

3.10 Variation of maximum gradient, ρav and ρsec for M=25,50,100,200 and

fixed K=50 in the case of 14×14 resized images and m
(t=0)
h = rand(M).

The algorithm terminated upon reaching ρav, ρsec ≥ 0.99. 43

3.11 Variation of maximum gradient, ρav and ρsec for K=10,50,100 and

fixed M=100 in the case of 14 × 14 resized images and m
(t=0)
h =

rand(M). The algorithm terminated upon reaching ρav, ρsec ≥ 0.99. . 44

3.12 14× 14 images with their corresponding most similar EP copy found,

in the case of M = 100,K = 70, T = 10000,m
(t=0)
h = zeros(M). 45

3.13 Clustering results for 14 × 14 images of digits 0 and 1, partitioned

into NM = 2 clusters (labeled in green and red) with M = 100,K =

70, T = 10000,m
(t=0)
h = zeros(M). The grid shows 5x5 examples of

the performed clustering. 46

3.14 Confusion matrix for 2 clusters, based on 14 × 14 images of digits 0

and 1, with M = 100,K = 70, T = 10000,m
(t=0)
h = zeros(M). 47

3.15 Results obtained by partitioning EP copies into 5 clusters for 14× 14

images with M = 100,K = 70, T = 10000,m
(t=0)
h = zeros(M). 48

3.16 Results obtained by partitioning EP copies into 5 clusters for 14× 14

images with M = 100,K = 70, T = 10000,m
(t=0)
h = rand(M). 49

3.17 K = 100 images of size 14 × 14 learned with M = 100, T = 10000

initialized by m
(0)
h = rand(M) . 50

3.18 K = 100 images of size 14 × 14 learned with M = 100, T = 10000

initialized by m
(0)
h = zeros(M) . 51

3.19 Gaussian mixtures of K=100 independent copies of size 14×14 learned

with M = 100, T = 10000 in the case of m
(t=0)
h = zeros(M) (a) and

m
(t=0)
h = rand(M) (b). 52

3.20 14× 14 images with their corresponding most similar EP copy found,

in the case of M = 100,K = 100, T = 10000,m
(t=0)
h = rand(M) for

the digits 0,1,2,3,4. 52

6

3.21 Clustering results for 14×14 images of digits 0,1,2,3 and 4, partitioned

into NM = 6 clusters with M = 100,K = 100, T = 10000,m
(t=0)
h =

rand(M). 53

3.22 Confusion matrix for 6 clusters, based on 14 × 14 images of digits

0,1,2,3 and 4, with M = 100,K = 100, T = 10000,m
(t=0)
h = rand(M). . 53

4.1 Variation of maximum gradient, ρav and ρsec for images of size 14×14

with M = 10,K = 100,m
(t=0)
h = rand(M) obtained using a population

dynamics scheme (first method). 57

4.2 5x5 grid showing 25 copies learned applying a population dynamics

scheme (first method) for images of size 14×14 with M = 20,K = 100,

at t = 180. 57

4.3 5x5 grid showing 25 copies learned applying a population dynamics

scheme (first method) for images of size 14×14 with M = 20,K = 100,

at t = 200. 58

4.4 Variation of maximum gradient, ρav and ρsec for images of size 14×14

with M = 10,K = 100,m
(t=0)
h = rand(M) obtained using a population

dynamics scheme (second method). 59

4.5 5x5 grid showing 25 copies learned applying a population dynamics

scheme (second method) for images of size 14× 14 with M = 20,K =

100, at t = 500. 59

7

Chapter 1

An Introduction to Restricted

Boltzmann Machines

1.1 Historical Background

The roots of Restricted Boltzmann machines (RBMs) can be traced back to sys-

tems consisting of interacting binary variables, initially proposed as toy models

of condensed matter systems in statistical physics.

One of the most remarkable examples is the Ising model, originally introduced

by Wilhelm Lenz as a model for ferromagnetism, and first solved in its one-

dimensional case by Ernst Ising in his PhD Thesis [1].

The Ising model consists of binary variables, also called "spins", that can be in

two possible states (+1 or -1). Spins are arranged in a lattice and can inter-

act with their neighboring spins. This interaction between two adjacent sites

i, j is represented by the matrix element Jij and each spin can also be coupled

with an external magnetic field hi. The energy of a configuration of N spins

σ = {σ1, ..., σN} is given by the renowned Hamiltonian function:

H(σ) = −
∑
<ij>

Jijσiσj −
∑
i

hiσi

8

where < ij > denotes that the sites i and j are nearest neighbors.

Despite its simplicity, the Ising model does not only predict crucial aspects

of ferromagnetism but it can also be successfully applied to a wide class of

systems and problems (e.g. the lattice gas and the condensation transition, the

helix–coil transition and other order-disorder phenomena in biological systems).

During the 1980s, these type of models consisting of interacting binary vari-

ables made their debut in the domains of neuroscience and artificial intelligence.

In particular, the Hopfield model, first described by Shun’ichi Amari in 1972 [2]

and popularised by John Hopfield in 1982 [3] , emerged as a prominent example

within this context.

The Hopfield network was inspired by the functioning of the human brain and it

consists of interconnected "neurons" (see Fig. 1.1), where each neuron is repre-

sented by a binary unit si that can be either "on" (+1) or "off" (-1), depending

on whether the unit’s input exceed a certain threshold Ui. The connection be-

tween two neurons i and j is represented by the "synaptic weight" Tij , which

can be positive or negative, indicating an excitatory or inhibitory connection,

respectively.

9

(a) (b)

Figure 1.1: (a) Schematic representation of a Hopfield neuron and the synaptic

weights through which neurons interact, resembling biological axon-synapse-dendrite

connections. (b) Neuron illustration by Santiago Ramón y Cajal, The pyramidal neu-

ron of the cerebral cortex, 1904 Ink and pencil on paper, 8 5/8 x 6 7/8 in. Credit:

Cajal Institute (CSIC), Madrid

The Hopfield network exhibits similarities with the way the brain stores

and retrieves information (see Fig. 1.2). Indeed in the brain memories are not

stored in isolated locations but are distributed across a network of neurons,

and similarly Hopfield networks are capable of storing patterns (’memories’) of

activation and retrieving them under noisy conditions.

10

(a) (b)

Figure 1.2: (a) Graphical example of a recurrent neural network modeling the func-

tioning of the brain. Credits: How are memories stored in neural networks?|The Hop-

field Network (b) Pictorial representation of the synaptic connections in the brain.

Credits: [Andriy Onufriyenko]/[Moment] via Getty Images

Inspired by the Hopfield network, in 1983 Hinton et al. [4] proposed the

Boltzmann Machine (BM), describing it as a network of coupled binary units

able to learn the underlying constraints of a domain simply by being shown

examples from the domain. The network adjusts its connections to create a

model that can generate instances with the same (approximated) probability

distribution of the examples shown. BMs proved capable to successfully com-

plete pattern tasks on small-scale examples, but the learning algorithm was

prohibitively slow. A special case of BM, called the Restricted Boltzmann ma-

chine1 (RBM), brought BMs back into the spotlight thanks to a fast training

algorithm (specific for RBMs) called the Contrastive Divergence algorithm, pro-

posed by Hinton et al. in 2002 [6]. Later, Hinton et al. showed that combining

RBMs on top of each other was an effective method for learning deep represen-

tations [7].

In the following section, we are going to analyze the key features and the math-

ematical formalism underlying Restricted Boltzmann Machines.
1RBMs were originally introduced within the framework of the theory of language and

symbolic computation under the name Harmonium by Paul Smolensky [5]

11

https://www.youtube.com/watch?v=piF6D6CQxUw&list=LL
https://www.youtube.com/watch?v=piF6D6CQxUw&list=LL

1.2 Definitions

1.2.1 Boltzmann Machines and Restricted Boltzmann Ma-

chines

A Restricted Boltzmann machine (RBM) is a probabilistic graphical model 2

utilized to learn the core features of an unknown target distribution by means

of the samples generated by the distribution under investigation.

As their name implies, RBMs are a special case of Boltzmann machines

(BMs). Therefore, before exploring in detail RBMs, it is fundamental to under-

stand the basic concepts behind the BM.

A BM is a parameterized generative model that represents a probability

distribution. It consists solely of one type of units, whose interactions can be

depicted by undirected weighted edges.

Figure 1.3: Graphical representation of a BM example.

Learning a BM means, given a training dataset composed of some observa-

tions, adjusting the BM parameters until the learned probability distribution

fits the target distribution as well as possible. Regrettably, in practical machine

learning problems, BMs learning algorithms become prohibitively slow due to

the vast number of potential connections that emerge.

RBMs tackle this issue by imposing an additional constraint on the topology

of the network: the units must form a bipartite graph so that two distinct lay-
2i.e., a probability distribution over a multidimensional space, defined via an interaction

graph

12

ers can be distinguished, the visible and the hidden layer, composed of visible

and hidden units, respectively. Consequently, according to the definition of a

bipartite graph, interactions between nodes belonging to the same layer are pro-

hibited. The visible units correspond to the components of an observation (e.g.

the pixels of a digital image), whereas the hidden units capture the complex

relationships among the input variables (e.g. in an image, the hidden units typ-

ically represent higher-level features or patterns emerging from the pixel-level

representation).

Figure 1.4: Graphical representation of an RBM example.

1.2.2 Bayesian Inference

Frequently, in our problems, the information we have to deal with is partial

or affected by uncertainty and noise. Therefore, due to the intrinsically un-

certain nature of this kind of problems, we need to investigate them within a

probabilistic framework.

Statistical inference is the process that allows us to infer the properties of the

distribution under investigation by analyzing the limited data at our disposal.

In particular, in the context of RBMs, Bayesian inference provides a powerful

framework for parameter estimation.

Bayesian inference is a method of statistical inference, probably the most

intuitive, that utilizes Bayes’ theorem to update our prior belief about unknown

parameters in light of new evidences (the observed data).

13

Mathematically, Bayes’ theorem can be expressed as follows:

P (H | E) =
P (E | H) · P (H)

P (E)
∝ P (E | H) · P (H)

where:

• P (H) is referred to as the prior probability, where H denotes a specific

hypothesis (i.e. a set of parameters) describing the model under investi-

gation.

• P (E) is usually called the marginal likelihood and it is the normalization

constant. Here, E stands for "evidence" and denotes the new observed

data that were not considered when calculating the prior probability.

• P (H|E) is called the posterior probability and it gives us the updated

probability of H, after observing E.

• P (E|H) is called the likelihood, indicating how likely the data are under

the assumption that the hypothesis is true.

By incorporating prior distributions over RBM parameters, Bayesian methods

enable the integration of prior knowledge and the quantification of uncertainty.

This approach contrasts with traditional maximum likelihood estimation by

offering a full posterior distribution of parameters, allowing for more robust

model training and improved generalization. Techniques such as variational

inference further enhance computational efficiency, making Bayesian inference

feasible for large-scale RBM applications.

1.3 Types of Units

In this section, we will explore the various types of units that can be used when

training RBMs. Depending on the nature of the problem we are facing, choosing

the appropriate unit type is very important since it has great influence on how

the model interprets and generates data.

14

1.3.1 Binary Units

Binary units, which are suitable when working with binary data, are commonly

modeled using the Bernoulli distribution. The activation function3 for these

units is the logistic sigmoid function σ(x) ∈ [0, 1], such that:

P (x) = σ(x) =
1

1 + e−x
=

ex

ex + e0
(1.1)

1.3.2 Softmax units

In we have NU possible states, we can generalize the binary case using:

Pu(xu) =
exu

NU∑
u=1

exu

(1.2)

This is referred to as a "softmax" unit and it is useful when the data can assume

many possible discrete values.

1.3.3 Continuous Data Modeling Units

To deal with real-valued data, binary units are not the most suitable option.

In this case, one can opt for Gaussian units, which use a Gaussian distribution

N (µ, σ) as prior, where µ and σ represent the mean and the standard deviation,

respectively. This type of unit represents continuous values effectively, and the

activation function typically employed for these units is the linear one: f(x) = x.

Another option for continuous data is binomial units, which are characterized

by noisy integer values ranging from 0 to N . These units can be obtained,

as shown in [8], by creating N identical copies of a binary unit, each sharing

identical weights and biases. Additionally, if we maintain the same weights and

biases for each copy but introduce a fixed offset to the biases, we obtain the so-

called rectified linear units (ReLU). For example, in [9] Hinton and Nair showed
3Activation functions are mathematical functions applied to the input values of a unit to

determine its output. These functions introduce non-linearity into the model, which allows

the neural network to learn more complex patterns.

15

that employing ReLU units for training RBMs on the NORB (NYU4 Object

Recognition Benchmark) dataset, yielded improved feature learning compared

to using binary units.

1.4 Binary Vector RBMs

RBMs were originally devised with binary visible and hidden units.

For instance, let us consider a training dataset comprising binary images. As

previously mentioned, the RBM’s visible units correspond to pixels, whereas the

hidden neurons extract relevant features from the observations.

Given N visible units v = (v1, ..., vN) and M hidden units h = (h1, ..., hM), the

energy of a joint configuration (v,h) is given by:

E(v,h) = −
N∑
i=1

aivi −
M∑
j=1

bjhj −
N∑
i=1

M∑
j=1

vihjWij (1.3)

where, ai and bj represent the biases of the i-th visible unit and the j-th

hidden unit, respectively, while Wij denotes the weight modeling their interac-

tion.

This energy contributes to the joint probability distribution P (v,h) which has

the form of a Boltzmann (or Gibbs) distribution:

P (v,h) =
1

Z
e−E(v,h)

where

Z =
∑
v,h

e−E(v,h)

is the normalization factor, also referred to as the partition function in statistical

physics.

By summing over all possible hidden layer configurations h, one can retrieve

the marginal distribution over the visible layer v:

P (v) =
1

Z

∑
h

e−E(v,h)

4"New York University"

16

Notice also that since for an RBM two variables of the same layer have no

connections, the conditional distributions P (h|v) and P (v|h) factorize nicely:

P (h|v) =
N∏
i=1

P (hi|v) , P (h|v) =
N∏
i=1

P (hi|v) (1.4)

1.5 Unsupervised Learning for Markov Random

Fields

Both BMs and RBMs are probabilistic graphical models, specifically undirected

graphical models also known as Markov random fields5 (MRFs) [10]. There-

fore, prior to discussing the specific learning algorithms for RBMs, it is essential

to examine unsupervised learning within the more general context of MRFs.

Unsupervised learning is a machine learning method in which algorithms learn

(significant aspects of) an unknown distribution P (x) using sample data. Given

a graphical model whose structure is known and whose associated energy func-

tion is parameterized by θ, our objective is to tune these parameters to accu-

rately model the desired but unknown distribution. Let us start by considering

a training dataset D = (v(1), ...,v(ND)) composed of ND independent and iden-

tically distributed (i.i.d.) data samples v(i). Typically, to derive the parameters

for our statistical model, one employs maximum-likelihood estimation. Specif-

ically, in the context of MRFs, training corresponds to find the parameters θ

that maximize the likelihood:

L(D|θ) =
ND∏
i=1

Pi(v
(i)|θ)

Thanks to the monotonic behavior of the logarithmic function, maximizing the

likelihood is equivalent to maximize the log-likelihood:

lnL(D|θ) = ln

ND∏
i=1

Pi(v
(i)|θ) =

ND∑
i=1

lnPi(v
(i)|θ)

5The key property of an MRF is the Markov property (w.r.t. the graph), which states

that each random variable is conditionally independent of all the other variables in the graph,

given its neighboring variables.

17

In turn, maximizing the log-likelihood corresponds to minimizing the Kullback-

Leibler (KL) divergence6 between the target probability distribution P (x) and

its approximating distribution.

In general, as shown for example in [11], the probability distribution of every

MRF can be expressed in the form of a Gibbs distribution. However, obtaining

the maximum likelihood parameters analytically is typically not feasible for such

a distribution. Therefore, optimization methods such as gradient ascent on the

log-likelihood need to be employed. This corresponds to iteratively update the

parameters θ as follows:

θ(t+1) = θ(t) + η
∂

∂θ(t)
(lnL(D|θ(t)))

where η is the learning rate that determines the size of the steps taken in

the direction of the gradient during each iteration.

Since RBMs are a type of MRFs with hidden variables, it is interesting to

look at MRFs in which, for a given data sample d, the set of variables x(d) =

(v(d),h) is divided into visible variables v(d) = (v
(d)
1 , ..., v

(d)
n) corresponding to

the components of the d-th observation, and hidden variables h = (h1, ..., hm),

which are assumed to be discrete and capture the dependencies between visible

variables. Therefore, focusing on a single data sample v(d):

lnL(v(d)|θ) = lnP (v(d)|θ) = ln
1

Z

∑
h

e−E(v(d),h) = ln
∑
h

e−E(v(d),h)−ln
∑

v(d),h

e−E(v(d),h)

And if we exploit the fact that the conditional probability can be written as

follows:

P (h|v(d)) =
P (v(d),h)

P (v(d))
= ��

1
Z e

−E(v(d),h)

��
1
Z

∑
h

e−E(v(d),h)

when we compute the derivative we ultimately obtain:

∂

∂θ
(lnL(v(d)|θ)) = −

∑
h

P (h|v(d))
∂E(v(d),h)

∂θ
+
∑

v(d),h

P (v(d),h)
∂E(v(d),h)

∂θ

(1.5)
6Further insights on KL divergence can be found in section 2.2.2.

18

Therefore, the derivative of the log-likelihood with respect to the parameters

θ is equal to the difference between two expectations: the expected values of

the energy function under the conditional distribution of the hidden variables

given the training examples (often referred to as the positive phase), and the

expected values of the energy function under the model distribution (the so

called negative phase). In general, the direct computation of these sums results

in an exponential computational complexity with respect to the number of vari-

ables in the MRF. To reduce this computational complexity, the expectations

can be approximated using samples drawn from the corresponding distributions

through Markov chain Monte Carlo (MCMC) techniques7.

1.6 Unsupervised learning for RBMs

Since RBMs can be seen as MRFs associated with a bipartite undirected graph,

we can apply the same formalism previously discussed for MRFs. As shown

in the previous section, see (1.5), the gradient of the log-likelihood of an MRF

can be written as the difference of two expectations. For RBMs the first term

of (1.5) can be computed efficiently because it factorizes nicely thanks to the

property (1.4). Instead, for the second term in (1.5) the computation remains

intractable even if we try to utilize the same kind of factorization. The detailed

calculations are shown in [11].

For example, given a single training example vd, the derivative (w.r.t. the

weights Wij) of the log-likelihood can be written as:

∂

∂Wij
(lnL(v(d)|θ)) =

∑
h

P (h|v(d))hjv
(d)
i −

∑
v(d)

P (v(d))
∑
h

P (h|v(d))hjv
(d)
i

(1.6)

For the full training set D = (v(1), ...,v(ND)), it is possible to show that the

mean of this derivative is:

1

ND

ND∑
d=1

∂ lnL(v(d)|θ)
∂Wij

∝ < vihj >data − < vihj >model (1.7)

7More information on MCMC techniques can be found in the Appendix.

19

Similarly, it can be demonstrated that calculating the derivatives with respect to

the bias parameters ai and bj also requires determining the difference between

a moment from the data and the corresponding moment from the model distri-

bution. In general, computing this latter moment is an NP-hard problem. This

expectation can be approximated using samples from the model distribution,

which can be obtained through methods such as Gibbs sampling8. However,

the computational cost of this Markov chain Monte Carlo (MCMC) approach

is too high for efficient learning algorithms. Therefore, common RBM learning

techniques, as described in Section 1.7, incorporate additional approximations

to mitigate these costs.

1.7 Different training algorithms for approximat-

ing the RBM log-likelihood gradient

1.7.1 Contrastive Divergence

The Contrastive Divergence (CD) algorithm is an MCMC-based method pro-

posed by Geoffrey Hinton in 2002 [6] for training RBMs. Differently from Gibbs

sampling, in which we have to run a Markov chain starting from a random

configuration and wait until equilibrium is reached, in the CD algorithm we

initialize our chain with a data sample v(0) from the training set and after k

alternating steps (typically k = 1) we obtain the sample v(k). At each step t,

leveraging the bipartite structure of RBMs, we can sample the hidden config-

uration h(t) from P (h|v(k)) and then we can sample v(t) from P (v|h(t)). As

a result, for a single training example v(0) the gradient, described in equation

(1.5), with respect to the weights takes the form:
8More information on Gibbs sampling can be found in the Appendix.

20

CDk(W,v(0)) = −
∑
h

P (h|v(0))
∂E(v(0),h)

∂W
+
∑
h

P (h|v(k))
∂E(v(k),h)

∂W

(1.8)

=
∑
h

P (h|v(0))v(0)hT −
∑
h

P (h|v(k))v(k)hT (1.9)

Finally, we iterate this procedure for multiple training examples to refine the

model parameters further.

1.7.2 Persistent Contrastive Divergence

The CD algorithm typically suffers from limited mixing in the Gibbs sampling

process because it starts the Markov chain from a training sample and does not

run it for enough steps to reach equilibrium. Therefore, when performing the

sampling we only explore a neighborhood of the data samples and the regions

that are far away from the original data are typically never seen.

In order to address this mixing issue, Tieleman introduced in 2008 [12] the Per-

sistent Contrastive Divergence (PCD) algorithm. The key novelty introduced by

PCD is that instead of starting a new Markov chain each time we want to draw

a sample, it maintains a set of "persistent" chains that are updated throughout

the training process so that the initial state of the current Gibbs chain is equal

to the last state obtained from the previous update step.

1.7.3 Parallel Tempering

The final algorithm for training RBMs that I will briefly introduce is called

Parallel Tempering (PT) [13], also known as the "replica exchange method".

To improve the efficiency of MCMC simulations, PT algorithm runs in parallel

multiple replicas {(vr,hr), r = 1, ..., NR} of the system, each drawn from the

Gibbs distribution at a different temperature Tr:

PTr
(v,h) =

1

ZTr

e−
E(v,h)

Tr (1.10)

21

with: 1 = T1 < T2 < ... < TNR
Notice that at high temperatures (Tr >> 1)

the chain mixes well since the distribution tends to a uniform one. In order

to make use of these well mixed chains that we find at high temperatures,

at each time-step two neighbouring Gibbs chains with temperatures Tr and

Tr+1 may exchange their "particles" (vr,hr) and (vr+1,hr+1) with an exchange

probability based on Metropolis ratio:

min{1,
PTr (vr+1,hr+1)PTr+1(vr,hr)

PTr (vr,hr)PTr+1(vr+1,hr+1)
} (1.11)

This approach enables the system to explore the energy landscape more

effectively and it ultimately leads to a more efficient and robust training process

for RBMs with respect to CD and PCD. In the end, the samples from the replica

at T = 1 are used for training the RBM, as they correspond to the desired target

distribution.

In the next chapter, we will explore an alternative and promising inference

algorithm called Expectation Propagation (EP), which is the method employed

in my thesis for training RBMs.

22

Chapter 2

Expectation Propagation:

Theory and Fundamentals

2.1 Introduction

Expectation Propagation (EP) is a technique used in Bayesian inference for ap-

proximating unknown probability distributions with tractable ones.

Originally introduced in the field of statistical physics with the name of Ex-

pectation Consistent by Opper & Winther in their two seminal papers [14, 15]

and later popularized by Thomas Minka in his doctoral thesis [16], EP aimed

to address a major drawback of Bayesian methods, namely, their computational

expense1. To accomplish this, Minka in his work unified and generalized two

previous techniques: assumed-density filtering (ADF)[17] and loopy belief prop-

agation (LBP)[18].

In the upcoming section, prior to delving into the details of EP, we will first

examine some of its foundational concepts.
1Typically, the computation of the exact posterior requires solving high-dimensional inte-

grals that lack an analytical solution.

23

2.2 Preliminaries

2.2.1 Exponential Families

EP makes extensive use of exponential families due to their unique properties

and versatility in representing probability distributions.

An exponential family of distributions is a parametric set of probability distri-

butions that can be written in the following form:

P (x|θ) = e

∑
α

θαfα(x)−Φ(θ)

where:

• x represents the observed data

• θ is the parameter vector that identifies the various distributions within

the family

• fα(x) is a function from the space of possible values of x to the real

numbers.

• Φ(θ) is the log partition function ensuring the normalization of P (x|θ)

Interestingly, many of the most common distributions (e.g. the Gaussian

distribution, the Poisson distribution and the Bernoulli distribution) can be

written in exponential form.

The importance of exponential families lies in their numerous properties that

simplify standard computations. For example, when we multiply or divide two

exponential distributions, we generate a new distribution belonging to the same

exponential family (although normalization might be compromised). Moreover,

the coefficients of the resulting product or quotient distribution are simply equiv-

alent to the addition or subtraction of the input coefficients.

24

2.2.2 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence quantifies the “distance” between two

probability densities and it is formally defined (for discrete variables) as follows:

DKL[P (x)||Q(x)]
.
=
∑
x

P (x)log
P (x)

Q(x)

where P (x) is the target probabilistic distribution and Q(x) the approximated

one. In case the variables are continuous, one has to replace summation with

integration.

The minimization of KL divergence DKL[P (x)||Q(x)] is one of the key passages

of the EP algorithm. In particular, if the approximate distribution Q(x) is con-

strained to a member of the exponential family, minimizing the KL divergence

corresponds to a moment-matching problem, as shown for example in [19].

2.2.3 Assumed-density Filtering

Assumed-density filtering (ADF) is a general technique utilized not only in

Bayesian networks but also in other statistical models to calculate approximate

posterior distributions. ADF has been introduced independently in the fields

of statistics [20], artificial intelligence [21], and control literature [22]. More

precisely, the term "Assumed-density filtering" is the one used in control theory,

whereas in other fields ADF is also known as "online Bayesian learning"[17] or

"weak marginalization"[20].

Let us now introduce the ADF algorithm. Consider a set of observed data

D = (v(1), ...,v(ND)) from which we seek to infer a hidden vector x. We start by

postulating the prior P (x) and the likelihood P (D|x), enabling us to compute

the posterior P (x|D) via Bayes’ theorem:

P (x|D) =
P (D|x)P (x)

P (D)

However, even when the prior P (x) is tractable and the likelihood P (D|x) =
ND∏
a=1

P (v(a)|x) is factorized (since D is a set of independent observations), the

25

computation of the posterior can be hard depending on the form of the likeli-

hood functions.

In order to estimate the posterior distribution, ADF iteratively update a trial

probability distributionQ(x) based on incoming evidence. If the prior is tractable,

it is reasonable to initially choose Q(x) of the same family of the prior P (x) or

even more simply P (x) = Q(x). Considering the latter case, given the first set

of data v(1) the posterior will be modified as follows:

P a=1(x|D) =
Q(x)P (v(1)|x)∫
x
Q(x)P (v(1)|x)

The new approximated distribution Qnew(x) can be computed by minimizing

the KL divergence DKL[P
a=1||Qnew] and this, as anticipated before, corre-

sponds to the matching of the first two moments of the distributions.

Once Q = Qnew has been updated, the moments are propagated, in the sense

that when we observe v(2) and compute the partial posterior P a=2(x|D) ∝

Q(x)P (v(1)|x), the information about the first set of data v(1) is absorbed in

the expectations of Q(x). The procedure continues in this way until all the ND

observations are made.

The main drawback of the ADF algorithm is that it has the undesirable prop-

erty of being strongly sensitive to the order in which the data are observed. As

we will see later on, EP overcomes this issue by revisiting each approximation

term multiple times.

2.3 Understanding Expectation Propagation

Essentially, EP can be seen as an iterative refinement of ADF, offering the

advantage of being order-independent with respect to observations. Indeed,

since in ADF the approximations do not have any required order, we have the

freedom to go back and refine them according to our preferences.

Let us now provide a detailed description of the EP algorithm.

Consider a set of random variables, denoted as x, and let P (x) represent a

distribution formed by the multiplication of various "compatibility functions"

26

Ψi(x):

P (x) ∝
∏
i

Ψi(x)

EP aims to provide tractable approximations to complex probability func-

tions of this form. For instance, consider a set of ND independent observations

D = (v(1), ...,v(ND)) of an unobserved random variable x with a prior distribu-

tion P0(x). According to Bayes’ rule, the posterior distribution over x is given

by:

P (x|D) =

P0(x)
ND∏
i=1

Pi(v
(i)|x)

P (D)
∝ P0(x)

ND∏
i=1

Pi(v
(i)|x) = P0(x)

ND∏
i=1

Ψi(x)

To make this posterior distribution tractable, EP approximates each com-

patibility function Ψi(x) with an appropriately chosen function ϕi(x) from the

exponential family. Thus, the approximate posterior distribution is represented

as:

Q(x;θ) =
1

ZQ
P0(x)

ND∏
i=1

ϕi(x)

where ZQ is a normalization factor and θ is the set of parameters identifying

the approximated distribution.

In order to determine the functions ϕi(x) that provide the closest approximation

to the factors Ψi(x), we iterate through these steps until all functions ϕi(x) have

converged:

• Select the factor ϕi(x) to update

• Compute the so called cavity distribution of the i-th variable, which is

given by the product of all the Gaussian approximating factors, except for

the i-th factor:

Q\i(x;θ\i) ∝ Q(x;θ)

ϕi(x)

• Compute the tilted (also known as leave-one out-distribution) of the i-th

variable, which is the product of all the Gaussian approximating factors

27

except for the i-th variable which is replaced by the exact prior Ψi(x).

Therefore, the tilted distribution is simply obtained by multiplying the

cavity distribution for the i-th variable by the i-th exact prior:

Q(i)(x;θ\i) = Q\i(x;θ\i)Ψi(x)

• Find the parameters θ∗ minimizing the KL divergenceDKL[Q
(i)(x;θ\i)||Q(x,θ)]

through moment matching of the two distributions:

< xi >Q(i)=< xi >Q

< x2i >Q(i)=< x2i >Q

(2.1)

• Update ϕi(x) as:

ϕi(x) = Zi
Q(x,θ∗)

Q\i(x,θ\i)

Once all the approximated factors have been computed, we get:

P (x) ≈ Q(x;θ) =
1

ZQ
P0(x)

ND∏
i=1

ϕi(x)

28

Chapter 3

Experimental Evaluation and

Results

In this chapter, I will show the results obtained when implementing the EP algo-

rithm on RBMs specifically trained on the MNIST database. Before describing

the implementation, I will provide an overview of the MNIST dataset and the

mathematical derivation for the specific model under investigation.

3.1 The MNIST Database

The MNIST (Modified National Institute of Standards and Technology) database

[23] is a large database of 70,000 handwritten labeled digits (between 0 and 9),

where each digit has been size-normalized and centered in a fixed-size 28x28

pixel grayscale image. Here, L=28 denotes the dimension of each side of the

square image matrix. The dataset is split into 60,000 images for training and

10,000 images for testing. Each image is represented as a 28x28 matrix whose

elements can assume values ranging from 0 (black) to 1 (white). Because of

its simplicity, yet with some variability, the MNIST dataset is well-suited for

testing the efficacy of various machine learning models, including RBMs.

29

Figure 3.1: Sample of handwritten digits from the MNIST dataset

3.2 Training the RBM

Let us start by considering an RBM trained on the MNIST dataset consisting of

M Gaussian hidden units h = (h1, ..., hM) and N visible units v = (v1, ..., vN).

Each hidden unit is initialized with a univariate Gaussian prior N (hµ;mµ, σµ),

where mµ is the mean and σµ the variance. Two different initialization methods

were employed during the training:

• mµ = 0, σµ = 1 ∀µ referred to as "Hopfield initialization"

• mµ = rand(), σµ = 1 ∀µ referred to as "random initialization", where

rand() is a function that generates random values uniformly distributed

between 0 and 1.

30

In contrast, each visible unit vi is modeled using a two-component Gaussian

mixture distribution ψi(vi) of the form:

ψi (vi) ∝ ρe−
(vi−µ1)

2

2σ2 + (1− ρ) e−
(vi−µ2)

2

2σ2 (3.1)

where:

• ρ is the probability associated with the first Gaussian component of the

mixture

• µ1 and µ2 are, respectively, the means of the first and the second Gaussian

components

• σ2 is the variance shared by both Gaussian components

The visible units of the RBM correspond to the pixels of our images, while

the hidden units attempt to model the interactions among the pixels. The

advantage of considering Gaussian priors is that they are able to capture the

continuous variations in pixel intensities found in the MNIST dataset. Moreover,

when working with Gaussian distributions, operations such as marginalization

and conditioning, can be performed analytically and efficiently. Furthermore,

Gaussian priors allow for more stable gradient ascent during training because

they provide a continuous and differentiable activation function, which helps

in maintaining smooth gradients and can lead to faster convergence and better

performance when trying to capture the underlying data distribution. Then,

the joint distribution of the visible and hidden units reads:

P (v,h|W) =
1

Z(W)
e
∑

i,µ viWi,µhµ
∏
i

ψi(vi)
∏
µ

N (hµ) (3.2)

where, Z(W) =
∫
dNvP (v)

∫
dMh e

∑
i,µ viWiµhµ−

(hµ−mµ)2

2σ2
h is the partition func-

tion ensuring the normalization of the joint probability distribution.

As illustrated in Chapter 1, our aim is to find the weights Wiµ maximizing

the likelihood (which is the same of maximizing the log-likelihood l) so that we

can update the weights according to:

W t+1
i,µ =W t

i,µ + η
∂l (D;W)

∂Wiµ

∣∣∣∣
t

(3.3)

31

Let us consider a set of ND images D = (v(1), ...,v(ND)) then the likelihood is

given by the following expression:

L(D;W) =
∏
m

P (v(m)|W) =
∏
m

∫
dMhP (v(m),h|W) =

=
1

Z(W)

∏
m

∫
dMhe

∑
i,µ v

(m)
i Wiµhµ−

(hµ−mµ)2

2σ2
h (3.4)

Note that in the last step, we discarded the product
∏
i,m

ψi(v
(m)
i) since it

does not depend on W and therefore it is not involved in the likelihood maxi-

mization. Then, by rewriting the expression in the exponent in vector form and

manipulating it, one obtains:

∑
i,µ

v
(m)
i Wi,µhµ −

∑
µ

(hµ −mµ)
2

2σ2
µ

= v(m)TWh− 1

2
(h−m)TΣ−1

h (h−m) =

= −1

2
hTΣ−1

h h+ (v(m)TW +mTΣ−1
h)h

(3.5)

Where:

Σ−1
h =


1
σ2
1

0 . . . 0

0

. . . 0

0 . . . 0 1
σ2
M

 (3.6)

is the M ×M precision matrix for the vector h of the hidden units. Eventually,

it is possible to show that the likelihood can be reexpressed in the following

form:

L(D;W) =
1

Z(W)

∏
m

e
1
2v

(m)TWΣhW
T v(m)+mTWT v(m)

(3.7)

while the partition function can be rewritten as:

Z(W) =

∫
dNvP (v) e

1
2v

TWΣhW
T v+mTWT v (3.8)

32

Then, the log-likelihood reads:

l(D;W) ∝ logL(D;W) =

=
1

ND

∑
m

[
1

2
v(m)TWΣhW

Tv(m) +mTWTv(m)

]
− logZ (W) =

=
1

2

∑
i,j

∑
µ,ν

fijWiµΣ
h
µνWjν +

∑
µ

∑
i

mµWiµfi − logZ (W)

=
1

2

∑
i,j

∑
µ

fiWiµΣ
h
µµWjµfj +

∑
µ

∑
i

mµWiµfi − logZ (W) (3.9)

where

fi =
1

ND

∑
m

v
(m)
i = ⟨vi⟩D (3.10)

fij =
1

ND

∑
m

v
(m)
i v

(m)
j = ⟨vivj⟩D (3.11)

represent the empirical frequency counts for the i-th visible variable and for

both the i-th and j-th visible variables, respectively. Notice that in the last step

we simply exploited the fact that Σh
µν = 1

σ2
µ
δν,µ.

Finally, maximizing with respect to the weights we get:

∂l (D;W)

∂Wiµ
=
∑
j

Σh
µµ

[
⟨vivj⟩D − ⟨vivj⟩EP

]
Wjµ +mµ [⟨vi⟩D − ⟨vi⟩EP] (3.12)

Once again, the derivative of the log-likelihood with respect to the weights can

be expressed as the difference between two moments: the moments of the data

and the moments from the model distribution, with the latter being calculated

using EP. Therefore, following the EP procedure detailed in 2.3, we approximate

the factorized target distribution:

P (v|W) =

∫
dhP (v,h|W) =

1

Zv
e

1
2v

TWΣhW
T v+mTWT v

∏
i

ψi(vi) (3.13)

using an approximating distribution Q(v) of the form:

Q(v) =
1

ZQ
e

1
2v

TWΣhW
T v+mTWT v

∏
i

ϕi(vi) (3.14)

where each ϕi(vi) approximates the corresponding exact prior factor ψi(vi).

Given the Gaussian nature of the priors, the optimal choice for ϕi(vi) is Gaus-

sian, specifically: ϕi(vi) ∼ N (ai, bi).

33

Then, in order to compute the approximated marginal distribution Q (vi)

for the i-th visible variable, we need to express the marginal tilted distribution

Q(i)(vi) ∝ e
1
2v

TWΣhW
T v+mTWT vψi(vi)

∏
j ̸=i

ϕj(vj) (3.15)

in terms of the cavity distribution

Q\i(vi) ∝
Q(v)
ϕi(vi)

∝ e
1
2v

TWΣhW
T v+mTWT v

∏
j ̸=i

ϕj(vj) (3.16)

Then, we obtain the desired form:

Q(i)(vi) ∝ ψi(vi)Q
\i(vi) ∝ ψi(vi) e

− (vi−µv
i)2

2Σv
ii (3.17)

where, µv
i ,Σ

v
ii are the mean and covariance of the cavity marginal Q\i (vi),

respectively. Then, the fully approximated marginal distribution for the i-th

visible variable is given by:

Qi (vi) ∝ Q\i (vi)ϕi (vi) (3.18)

Subsequently, it is possible to show that the mean d and covariance matrix Cv

of the fully approximated distribution Q(v), can be expressed in terms of the

mean av and the precision matrix D−1
v of the multivariate Gaussian distribution

ϕ(v) = (ϕ1(v1), ..., ϕN (vN) as follows:

C−1
v = D−1

v −WΣhW
T (3.19)

d = Cv

(
D−1

v av +Wm
)

(3.20)

where, D−1
v is given by:

D−1
v =


1
b1

0 . . . 0

0

. . . 0

0 . . . 0 1
bN

 (3.21)

Eq. 3.19 is the starting point of our algorithm. Once d and Cv have been

computed, we can incorporate them in the subsequent equations, determining

34

the parameters of the cavity marginal Q\i (vi) in terms of the parameters of the

fully Gaussian distribution:

µv
i =

di − aiCv(i,i)
bi

1− Cv(i,i)
bi

(3.22)

Σv
ii =

Cv(i, i)

1− Cv(i,i)
bi

(3.23)

At this point, we proceed to calculate the moments and the partition function

for the tilted distribution:

⟨vi⟩Q(i) =
1

ZQ(i)

[
ρm1e

− (µi−µ1)
2

2(Σii+σ2) + (1− ρ)m2e
− (µi−µ2)

2

2(Σii+σ2)

]
(3.24)

Var (vi) =
1

ZQ(i)

[
ρΣ1e

− (µi−µ1)
2

2(Σii+σ2) + (1− ρ) Σ2e
− (µi−µ2)

2

2(Σii+σ2)

]
(3.25)

ZQ(i) = ρe
− (µi−µ1)

2

2(Σii+σ2) + (1− ρ) e
− (µi−µ2)

2

2(Σii+σ2) (3.26)

Once all these quantities have been calculated, it is possible to compute the

average ai and the variance bi of the i-th Gaussian factor ϕi(vi), as follows:

bi =

(
1

⟨v2i ⟩Q(i) − ⟨vi⟩2Q(i)

− 1

Σii

)−1

(3.27)

ai = bi

[
⟨vi⟩Q(i)

(
1

bi
+

1

Σii

)
− µi

Σii

]
(3.28)

Finally, the desired EP moments we were looking for are given by:

⟨vi⟩EP = µv
i (3.29)

⟨vivj⟩EP ∝ Σv
ij + µv

i µ
v
j (3.30)

The procedure can be iterated by inserting the updated values of ai and bi into

Eq. 3.19 for computing the new values of ⟨vi⟩EP and ⟨vivj⟩EP until convergence.

These moments are then plugged into Eq. 3.12 and the weights are updated

according to Eq. 3.3 for the desired number of steps.

35

3.3 Results of the training

In this section, I will present a detailed analysis of all the results obtained from

training an RBM on the MNIST dataset using EP. Initially, we will consider

the case of a single copy, where the term "copy" refers to a unique initialization

of the parameters a and b used in EP. Subsequently, we will utilize and then

combine the results coming from multiple independent copies (with K being the

number of copies), each initialized differently, to more effectively capture the

complexity of the dataset.

3.3.1 Case of a single copy (K=1)

By implementing the mathematical framework outlined in 3.2, it is possible to

compute the mean vector d of the distribution Q(v), which approximates the

target model distribution. This vector is reshaped into an L × L matrix for

plotting, revealing the digits learned by the algorithm. For instance, using a

single copy (K=1), for training images of size 28 × 28, with M = 100 hidden

units, the learning process produced the following images:

36

(a) m
(t=0)
h = rand(M)

(b) m
(t=0)
h = zeros(M) (Hopfield model)

Figure 3.2: Multiple 28 × 28 images learned with K = 1,M = 100, T = 10000 at

different time steps. (a) corresponds to the images learned with initialization

m
(t=0)
h = rand(M), while (b) shows the images initialized with m

(t=0)
h = zeros(M).

Regrettably, as shown by the images above, when training an RBM with a

single copy, the model converges to single different digit types (0 or 1) at various

epochs, failing to capture the intricate variations within these classes1. To assess

quantitatively the accuracy of the estimations, the following parameters were

employed:

1. The Pearson correlation ρav between the mean ⟨vi⟩D of each visible unit

and the mean ⟨vi⟩EP of the Gaussian mixture model computed by means

of EP.

2. The Pearson correlation ρsec between the expectation value of the product

⟨vivj⟩D between the i-th and the j-th visible units and the expectation

value ⟨vivj⟩EP of the Gaussian mixture model computed by means of EP.

A reasonable approximation should yield correlation coefficients that are nearly
1As we will see in the following section, the correlation ρsec, a fundamental parameter to

estimate the accuracy of the tests, oscillates too much in the case of a single copy.

37

equal to one. For K = 1, the correlations obtained are unsatisfactory and

oscillate too much between subsequent epochs:

Figure 3.3: Temporal evolution of ρsec

(a) ρav (b) ρsec

Figure 3.4: Study of correlations in the case K = 1 for images of size 28× 28 learned

with M = 100, T = 10000 and initialized by m
(0)
h = rand(M).

3.3.2 Leveraging additional independent copies

One way to overcome the drawbacks of using a single copy is to run the algorithm

for K independent copies of the approximation, each one differently initialized

according to:

38

a_repl = [randn (N) f o r _ in 1 :K]

b_repl = [rand (N) f o r _ in 1 :K]

In this case, the full distribution is simply given by the Gaussian mixture of

all the K independent Gaussian distributions:

Q(v) =

K∑
k=1

πk N (k)(v|d(k),Cv
(k)) (3.31)

where πk denotes the probability associated with the k-th independent copy

and must satisfy:
K∑

k=1

πk = 1 and πk ≥ 0. By assuming that each copy is

equally probable we can simply write πk = 1
K ∀k. In Ch. 4, we will relax the

assumption of equal probabilities and introduce a more refined approach where

the probabilities πk will be written in terms of the entropy of the Gaussian

distributions.

Finally, by integrating Gaussian mixture techniques into the training algo-

rithm, we can compute:

< vi >Mixture =

K∑
k=1

πk < vi >k (3.32)

< vivj >Mixture =

K∑
k=1

πk < vivj >k (3.33)

This approach enables the model to capture with more accuracy the subtle

discrepancies among the handwritten digits. For instance, by setting the initial

condition m
(t=0)
h = rand(M) and considering K = 100 independent copies, the

following results were obtained (see Figs. 3.5, 3.6, 3.7).

39

Figure 3.5: K = 100 images of size 28 × 28 learned with M = 100, T = 10000

initialized by m
(0)
h = rand(M).

Figure 3.6: Weights W learned by each of the K = 100 independent copies, using

images of size 28×28, with M = 100 and T = 10000, initialized by m
(t=0)
h = rand(M).

40

Finally, the Gaussian mixture computation yielded the following result:

Figure 3.7: Gaussian mixture of K=100 independent copies of size 28 × 28 learned

with M = 100, T = 10000 initialized by m
(0)
h = rand(M).

As shown in the image above, it is clear that the algorithm now demonstrates

enhanced accuracy in capturing simultaneously the digit 1 and the digit 0. This

observation is further supported by the results obtained for the correlation co-

efficients depicted below:

(a) ρav (b) ρsec

Figure 3.8: Study of correlations in the case K = 100 for images of size 28 × 28

learned with M = 100, T = 10000 and initialized by m
(0)
h = rand(M).

41

3.3.3 Max Gradient and Correlation Analysis for different

values of M and K

Let us now investigate the model by examining the behavior of the maximum

gradient, defined as max_grad = maxi,µ

∣∣∣∂l(D;W)
∂Wiµ

∣∣∣, along with the parameters

ρav and ρsec across various combinations of M and K values. Understanding the

behavior of these parameters during training is crucial for optimizing the train-

ing process and gaining insights into the convergence dynamics and numerical

stability of the RBM trained using EP.

Figure 3.9: Variation of maximum gradient, ρav and ρsec for M=5,10,15,20,25 and

K=10,40,70,100 in the case of 14× 14 resized images and m
(t=0)
h = rand(M).

42

As shown above, even a small number of copies (K) is sufficient to achieve

good dynamics. However, with K = 10 independent copies, there is a more pro-

nounced peak in the maximum gradient around t = 10, along with higher fluctu-

ations for the correlation coefficients. This indicates greater instability during

the training process. Indeed, large gradients can lead to unstable updates,

causing the parameters to change too drastically between different iterations.

Moreover, we can also notice that even with a small number of hidden units

(M), the model performs well, effectively capturing and learning the underlying

patterns in the data. We can further explore the dynamics by considering the

effects of keeping K fixed while varying M (see Fig. 3.10), and vice versa (Fig.

3.11)

Figure 3.10: Variation of maximum gradient, ρav and ρsec for M=25,50,100,200 and

fixed K=50 in the case of 14×14 resized images and m
(t=0)
h = rand(M). The algorithm

terminated upon reaching ρav, ρsec ≥ 0.99.

43

Figure 3.11: Variation of maximum gradient, ρav and ρsec for K=10,50,100 and fixed

M=100 in the case of 14 × 14 resized images and m
(t=0)
h = rand(M). The algorithm

terminated upon reaching ρav, ρsec ≥ 0.99.

3.4 Clustering

In light of the results presented in 3.3.3, we can now select the regimes that

ensure efficient training without excessive computational costs, upon which we

will apply and test clustering techniques. The idea is to exploit the mixture

model obtained to classify data and get the labels of the dataset.

3.4.1 Introduction to Clustering

In the realm of unsupervised learning, clustering essentially consists in grouping

a set of unlabeled examples in such a way that objects in the same group, or

cluster, are more similar (according to a specific criterion chosen) to each other

with respect to those in other groups.

There exist various clustering algorithms that exploit different distance measures

to estimate the similarity between the examples. Each method carries its own

set of strengths and weaknesses, depending on the specific application context.

44

3.4.2 Results from Clustering

From now on, all results presented have been obtained using the system at

convergence, where both ρav and ρsec are greater than or equal to 0.99. The

clustering procedure utilized can be divided into two major steps:

1. For each digit of the dataset compute its likelihood given the parameters

of a specific copy k learned by EP at convergence. Thereafter, each digit

is associated with the EP copy which maximizes the likelihood (basically

we have found the closer copy to the digit under investigation). Once this

first step of clustering is completed, we are left with thousands of images

clustered into K ′ sets, depending on the copies. For example, in the case

of 14× 14 images with M = 100,K = 70, T = 10000 in the Hopfield case

one obtains:

Figure 3.12: 14× 14 images with their corresponding most similar EP copy found, in

the case of M = 100,K = 70, T = 10000,m
(t=0)
h = zeros(M).

2. We can further cluster by grouping together all similar independent EP

copies. Additionally, we will also test the capability of the algorithm to

distinguish between slanted and upright 1s, and between larger or narrower

0s from the standard ones.

The algorithm employed for this second type of clustering was K-medoids

which works by identifying a set of NM data points, called "medoids," in such

45

a way that the overall distance between each data point and its nearest medoid

is minimal.

To quantify the distance between two copies, the normalized scalar product

between the averages calculated by EP was utilized. This yields a K×K matrix,

commonly referred to as the "similarity matrix". Then, by simply subtracting

this matrix from the identity matrix one recovers the so-called "distance matrix"

which serves as input for the k-medoids algorithm. The other required parameter

for the K-medoids clustering is the number of clusters into which we want to

partition the dataset.

To differentiate between just 0s and 1s, we considered two clusters (NM =

2). Then, in this case, for 14 × 14 images with M = 100,K = 70, T =

10000,m
(t=0)
h = zeros(M), the following results were obtained:

Figure 3.13: Clustering results for 14 × 14 images of digits 0 and 1, partitioned

into NM = 2 clusters (labeled in green and red) with M = 100,K = 70, T =

10000,m
(t=0)
h = zeros(M). The grid shows 5x5 examples of the performed cluster-

ing.

46

As shown in the examples above, the applied clustering method effectively

distinguishes between 0s and 1s, achieving an accuracy of 99.68%. Accuracy,

in this context, refers to the percentage of correct classifications relative to the

total number of instances.

Additionally, to visually assess the algorithm’s performance across the entire

MNIST dataset, we employ a confusion matrix, shown in Fig.3.14. Each cell

in the matrix provides the count of data points where the model’s predicted

label corresponds to the true label. The diagonal terms represent the correctly

classified instances, which are the cases where the predicted label matches the

true label. Instead the off-diagonal terms represent the misclassified instances.

The color intensity of each cell ranges from dark purple (low counts) to bright

yellow (high counts), providing a visual cue of the model’s prediction accuracy

for each class.

Figure 3.14: Confusion matrix for 2 clusters, based on 14 × 14 images, with M =

100,K = 70, T = 10000,m
(t=0)
h = zeros(M). The color intensity represents the number

of instances in each category, with darker colors indicating fewer instances and brighter

colors indicating more instances.

We can further investigate whether the clustering algorithm is also capable of

capturing the subtle differences between slanted 1s and upright 1s, as well as be-

47

tween 0s of varying sizes, with some being larger and others narrower. Through

various experiments, it was observed that five clusters (NM = 5) yielded the

best results, as illustrated in 3.15.

Figure 3.15: Results obtained by partitioning EP copies into 5 clusters for 14 × 14

images with M = 100,K = 70, T = 10000,m
(t=0)
h = zeros(M).

However, the clustering is still not optimal, since there are certain 1s featur-

ing a bar below, look for example at the 1s in position (3, 2) and (4, 4), which

are grouped together with the 1s without this lower bar. Additionally, the qual-

itative differences between the blue and red 0s are difficult to understand by

looking at the pictures only.

Regrettably, the case with "rand()" initialization does not show significant

improvements compared to the Hopfield case, and the model still fails to distin-

guish 1s with a bar below, despite the generally good clustering results:

48

Figure 3.16: Results obtained by partitioning EP copies into 5 clusters for 14 × 14

images with M = 100,K = 70, T = 10000,m
(t=0)
h = rand(M).

3.4.3 Adding more digits

Let us now have a look at the algorithm’s performance when considering more

digits, for example in the case of 0, 1, 2, 3 and 4, all together.

In the case of K = 100 independent copies, M = 100 hidden units and T =

10000 epochs, the following images were learned by each single copy:

49

Figure 3.17: K = 100 images of size 14 × 14 learned with M = 100, T = 10000

initialized by m
(0)
h = rand(M)

Instead, the following results were obtained in the Hopfield case:

50

Figure 3.18: K = 100 images of size 14 × 14 learned with M = 100, T = 10000

initialized by m
(0)
h = zeros(M)

51

Subsequently, applying Gaussian mixture techniques once more yields:

(a) m
(t=0)
h = rand(M) (b) m

(t=0)
h = zeros(M)

Figure 3.19: Gaussian mixtures of K=100 independent copies of size 14× 14 learned

with M = 100, T = 10000 in the case of m(t=0)
h = zeros(M) (a) and m

(t=0)
h = rand(M)

(b).

Finally, by applying the two clustering steps presented in 3.4.2, we obtained

the results depicted in Figs. 3.20 and 3.21 using the rand() initialization and

considering NM = 6 clusters.

Figure 3.20: 14× 14 images with their corresponding most similar EP copy found, in

the case of M = 100,K = 100, T = 10000,m
(t=0)
h = rand(M) for the digits 0,1,2,3,4.

52

Figure 3.21: Clustering results for 14× 14 images of digits 0,1,2,3 and 4, partitioned

into NM = 6 clusters with M = 100,K = 100, T = 10000,m
(t=0)
h = rand(M).

Figure 3.22: Confusion matrix for 6 clusters, based on 14×14 images of digits 0,1,2,3

and 4, with M = 100,K = 100, T = 10000,m
(t=0)
h = rand(M).

53

Despite achieving a high Pearson correlation coefficient of approximately

99% during training, our clustering method does not work perfectly, with an

overall accuracy of 74.55%. In particular, the algorithm struggles to correctly

cluster the digit 2 which is frequently misclassified into clusters associated with

other digits, as illustrated by the confusion matrix in Fig. 3.22. Moreover,

different values of NM were tested but the best outcomes were observed when

NM = 6. This might seem unusual since we are considering only 5 digits.

However, by looking at the orange and the yellow clusters in Fig. 3.21, it is

evident that the clustering algorithm better distinguishes between thick and

thin 0s compared to other digits.

54

Chapter 4

Integration of Population

Dynamics in RBM Training

In this final chapter, we will present the results achieved by integrating a pop-

ulation dynamics scheme into the training process of an RBM.

Population dynamics is a mathematical framework originally introduced in

the context of mean field equations by Abou-Chacra et al. in 1973 [24]. This

formalism was further developed by Mezard and Parisi in 2001 [25] within the

spin glass theory. For a detailed explanation, refer to [26], which also inspired

the development of our methodology.

4.1 Introducing Unequal Copy Probabilities

In our previous training, we assumed that each copy was equally probable, with

a probability πk = 1
K ∀k of occurring. Now, we will relax this assumption of

equal probability.

Let us consider again our full distribution given by a Gaussian mixture of

all K independent Gaussian distributions:

Q(v) =

K∑
k=1

πk N (k)(v|d(k),Cv
(k)) (4.1)

55

We will now express the probability of each copy in terms of entropy. In infor-

mation theory, entropy quantifies the unpredictability or information content

associated with outcomes drawn from a distribution. High-probability events

have low entropy, while low-probability events have high entropy.

For a continuous random variable x with probability density P (x), the en-

tropy is defined as: S(x) = −
∫
P (x) logP (x)dx. In the specific case of a mul-

tivariate Gaussian distribution N (x;µ,Σ), where x is a D-dimensional vector,

the entropy is given by:

S =
1

2
log(|Σ|) + D

2
(1 + log(2π)) (4.2)

Here, the negative sign indicates that high probability events have less entropy.

For our purposes, we can neglect the second term, which is constant, and focus

only on the relative entropy values. In the context of Eq. 4.1, the entropy

associated with the k-th copy is: S(k) = 1
2 log(|C

(k)
v |). Afterward, we can in-

troduce a modified version of the entropy S̃(k) = 1
2 log(det(C

(k)
v)) − max

k′
S(k′)

which will enter in the expression of the probabilities (Eq. 4.3) and will enhance

numerical stability. The probability of each copy is then written as a normalized

exponential function, also known as the softmax function:

πk =
eS̃

(k)∑
k′
eS̃(k′) (4.3)

4.2 Results Obtained

4.2.1 Method 1

In the previous simulations, we had K distributions that evolved independently

of one another and contributed with the same weight to the full probability

distribution. Now, we introduce an auxiliary Gaussian distribution and a tem-

porary one that will allow us to model the interactions between the copies. The

details of this implementation are provided in the Appendix (see Alg. 1).

As shown in Fig. 4.1, after approximately t ≈ 100 epochs, the gradient

begins to oscillate significantly.

56

Figure 4.1: Variation of maximum gradient, ρav and ρsec for images of size 14 × 14

with M = 10,K = 100,m
(t=0)
h = rand(M) obtained using a population dynamics

scheme (first method).

For high correlations (ρ ≃ 1) and vanishing maximum gradient, all copies

converge to the same distribution, given by the superposition of the 0 and 1

digits (as illustrated in Fig. 4.2). Conversely, when the maximum gradient

explodes and correlations decrease, all the copies at different epochs converge

to a single digit type: either 0 or 1 (see Fig. 4.3).

Figure 4.2: 5x5 grid showing 25 copies learned applying a population dynamics scheme

(first method) for images of size 14× 14 with M = 20,K = 100, at t = 180.

57

Figure 4.3: 5x5 grid showing 25 copies learned applying a population dynamics scheme

(first method) for images of size 14× 14 with M = 20,K = 100, at t = 200.

4.2.2 Method 2

In this second approach, we integrate the "classical" method, where all the

copies evolve independently and contribute to the full distribution according to

Eq. 4.3, with the population dynamics scheme discussed in the previous sec-

tion. Detailed steps of the algorithm are provided in the Appendix (see Alg.

2). Initially, we perform EP_step_max iterations before updating the gradient.

However, unlike the previous method, we introduce a population dynamics in-

teraction at EP_step_/2 iterations, as described earlier. This approach allows

for some independent "classical" iterations before estimating the gradient, while

still enabling interaction among the different copies. The aim is to achieve a

balance between independent training and collaborative interaction among the

copies.

As illustrated in Fig. 4.4, the maximum gradient, ρav and ρsec obtained

exhibit a similar behaviour to those from the previous method (see Fig. 4.1).

However, unlike before, the copies do not converge anymore to the same distri-

bution, as shown in Fig. 4.5.

58

Figure 4.4: Variation of maximum gradient, ρav and ρsec for images of size 14 × 14

with M = 10,K = 100,m
(t=0)
h = rand(M) obtained using a population dynamics

scheme (second method).

Figure 4.5: 5x5 grid showing 25 copies learned applying a population dynamics scheme

(second method) for images of size 14× 14 with M = 20,K = 100, at t = 500.

59

Chapter 5

Conclusion

In this thesis, we explored a new training method for RBMs using the EP

algorithm to approximate the moments of the model distribution involved in

likelihood maximization. Our main goal was to test the accuracy and perfor-

mance of this model on the MNIST dataset, with a specific focus on the digits

0 and 1.

We began by discussing the theory behind RBMs and EP, followed by a de-

tailed presentation of the mathematical framework necessary to apply EP to a

Gaussian RBM. This Gaussian variant of RBM assumed a Gaussian prior distri-

bution for the hidden units and a two-component Gaussian mixture distribution

for the visible ones.

Initially, we obtained unsatisfactory results in the case of a single copy (K =

1), evidenced by low correlation values even after T = 10000 epochs. The main

reason for this outcome was the model converging to single different digit types

(0 or 1) at various epochs. For this reason we tested the model with multiple

independent copies (K = 100), leveraging a Gaussian mixture technique to

incorporate the contribution of each copy. This approach significantly improved

digit recognition accuracy, demonstrating the method’s effectiveness.

Next, we examined the model’s performance for different values of M (num-

ber of hidden units) and K. It was observed that even with relatively small val-

60

ues of K and M, the model performed adequately. Increasing K and M yielded

slightly better results, although this has also a computational cost to take into

account. We then selected the regimes (at convergence) ensuring efficient train-

ing without excessive computational costs and conducted some clustering tests

on the dataset.

Subsequently, we extended our experiments to include digits from 0 to 4.

This added complexity allowed us to test the EP algorithm in more challenging

scenarios. The results were promising; however, the learned digits did not per-

fectly replicate the original ones, thus negatively affecting the accuracy of the

clustering .

Lastly, we explored an alternative approach by integrating a population dy-

namics scheme into training, facilitating enhanced exploration of solution space

and achieving more efficient and accurate training.

5.1 Future developments

Clearly, there remains a significant amount of research to be conducted in this

area. Future studies could expand my thesis work by including broader sets of

digits or focusing on different digit pairs beyond 0 and 1. Investigating how well

the model performs with different digits could better uncover the strengths and

limitations of this approach. Moreover, the integration of more sophisticated

population dynamics schemes into the training process presents an exciting op-

portunity for advancement in the field. Finally, although MNIST is widely used

as a benchmark, training RBMs using EP on different datasets with greater di-

mensionality, variability, or noise levels could provide a more realistic assessment

of its robustness and scalability.

61

62

Appendix

Algorithm 1: Population Dynamics scheme 1 implemented

for t ∈ 1 : T do

for EP_step ∈ 1:EP_step_max do

for k ∈ 1 : K do

// Draw N random indices uniformly from 1 to K:

idx = rand(1:K, N)

// Copy selected values from current parameters

(a_cur,b_cur) to auxiliary ones (a_aux,b_aux):

for i ∈ 1 : N do
a_aux[i] = a_cur[i, idx[i]] ; b_aux[i] = b_cur[i, idx[i]]

// Compute temporary parameters (a_temp,b_temp) using

(a_aux, b_aux) as arguments for the EP algorithm;

// Compute covariance matrix Cv using a_temp, b_temp;

// Compute entropy S[k] according to:

S[k] = 0.5log(det(Cv))

// Calculate probabilities π[k] associated to the k-th copy

using entropy S[k];

// Draw K indices ktemp according to the distribution π;

// Copy selected values from temporary parameters (a_temp,

b_temp) to current ones (a_cur, b_cur);

// Compute ⟨vi⟩EP and ⟨vivj⟩EP , using a_cur and b_cur;

// Calculate π using the updated a_cur and b_cur;

// Compute Gaussian mixture using the updated π;

// Compute the gradient and update the weights W;

63

Algorithm 2: Population Dynamics scheme 2 implemented

for t ∈ 1 : T do

// Population dynamic interaction after half of EP_step_max

steps

if EP_step==div(EP_step_max, 2) then

for EP_step ∈ 1:EP_step_max do

for k ∈ 1 : K do

// Draw N random indices uniformly from 1 to K:

idx = rand(1:K, N)

// Copy selected values from current parameters

(a_cur,b_cur) to auxiliary ones (a_aux,b_aux):

for i ∈ 1 : N do
a_aux[i] = a_cur[i, idx[i]] ; b_aux[i] = b_cur[i, idx[i]]

// Compute temporary parameters (a_temp,b_temp)

using (a_aux, b_aux) as arguments for the EP

algorithm;

// Compute covariance matrix Cv using a_temp,

b_temp;

// Compute entropy S[k] according to:

S[k] = 0.5log(det(Cv))

// Calculate probabilities π[k] associated to the k-th

copy using entropy S[k];

// Draw K indices ktemp according to the distribution π;

// Copy selected values from temporary parameters

(a_temp, b_temp) to current ones (a_cur, b_cur);

else

// Normal run of the EP algorithm

// Compute ⟨vi⟩EP and ⟨vivj⟩EP , using a_cur and b_cur;

// Calculate π using the updated a_cur and b_cur;

// Compute Gaussian mixture using the updated π;

// Compute the gradient and update the weights W;

64

Bibliography

[1] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für Physik,

vol. 31, pp. 253–258, 1925.

[2] S. Amari, “Learning patterns and pattern sequences by self-organizing nets of

threshold elements,” IEEE Transactions on Computers, vol. C-21, pp. 1197–1206,

1972.

[3] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities.,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 79, pp. 2554–2558, Apr. 1982.

[4] G. E. Hinton and J. Sejnowski, “Optimal perceptual inference,” 1983.

[5] P. Smolensky, “Information processing in dynamical systems: Foundations of har-

mony theory,” Parallel Distributed Process, vol. 1, 01 1986.

[6] G. E. Hinton, “Training products of experts by minimizing contrastive diver-

gence,” Neural Comput., vol. 14, p. 1771–1800, aug 2002.

[7] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[8] Y. W. Teh and G. E. Hinton, “Rate-coded restricted boltzmann machines for

face recognition,” in Advances in Neural Information Processing Systems, vol. 13,

pp. 908–914, 2001.

[9] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine learn-

ing (ICML-10), pp. 807–814, 2010.

[10] D. Koller and N. Friedman, Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

65

[11] A. Fischer and C. Igel, “Training restricted boltzmann machines: An introduc-

tion,” Pattern Recognition, vol. 47, no. 1, pp. 25–39, 2014.

[12] T. Tieleman, “Training restricted boltzmann machines using approximations to

the likelihood gradient,” in Proceedings of the 25th international conference on

Machine learning, pp. 1064–1071, 2008.

[13] G. Desjardins, A. C. Courville, Y. Bengio, P. Vincent, and O. Delalleau, “Parallel

tempering for training of restricted boltzmann machines,” 2010.

[14] M. Opper and O. Winther, “Gaussian processes for classification: Mean-field al-

gorithms,” Neural computation, vol. 12, no. 11, pp. 2655–2684, 2000.

[15] M. Opper and O. Winther, “Adaptive and self-averaging thouless-anderson-palmer

mean-field theory for probabilistic modeling,” Physical Review E, vol. 64, no. 5,

p. 056131, 2001.

[16] T. P. Minka and R. Picard, A family of algorithms for approximate bayesian

inference. PhD thesis, USA, 2001.

[17] M. Opper and O. Winther, “A bayesian approach to on-line learning,” in On-line

learning in neural networks, pp. 363–378, Cambridge University Press, 1999.

[18] K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate

inference: An empirical study,” arXiv preprint arXiv:1301.6725, 2013.

[19] S. Wang, “Expectation propagation algorithm,” 2011.

[20] S. Lauritzen, “Propagation of probabilities, means and variances in mixed graph-

ical association models,” Journal of the American Statistical Association, vol. 87,

pp. 1098–1108, 1992.

[21] X. Boyen and D. Koller, “Tractable inference for complex stochastic processes,”

1998.

[22] P. S. Maybeck, Stochastic models, estimation, and control. Academic press, 1982.

[23] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten

digits.” Website. http://yann.lecun.com/exdb/mnist/.

[24] R. Abou-Chacra, D. Thouless, and P. Anderson, “A selfconsistent theory of lo-

calization,” Journal of Physics C: Solid State Physics, vol. 6, no. 10, p. 1734,

1973.

66

http://yann.lecun.com/exdb/mnist/

[25] M. Mézard and G. Parisi, “The bethe lattice spin glass revisited,” The European

Physical Journal B-Condensed Matter and Complex Systems, vol. 20, pp. 217–233,

2001.

[26] M. Mezard and A. Montanari, Information, physics, and computation. Oxford

University Press, 2009.

67

	An Introduction to Restricted Boltzmann Machines
	Historical Background
	Definitions
	Boltzmann Machines and Restricted Boltzmann Machines
	Bayesian Inference

	Types of Units
	Binary Units
	Softmax units
	Continuous Data Modeling Units

	Binary Vector RBMs
	Unsupervised Learning for Markov Random Fields
	Unsupervised learning for RBMs
	Different training algorithms for approximating the RBM log-likelihood gradient
	Contrastive Divergence
	Persistent Contrastive Divergence
	Parallel Tempering

	Expectation Propagation: Theory and Fundamentals
	Introduction
	Preliminaries
	Exponential Families
	Kullback-Leibler divergence
	Assumed-density Filtering

	Understanding Expectation Propagation

	Experimental Evaluation and Results
	The MNIST Database
	Training the RBM
	Results of the training
	Case of a single copy (K=1)
	Leveraging additional independent copies
	Max Gradient and Correlation Analysis for different values of M and K

	Clustering
	Introduction to Clustering
	Results from Clustering
	Adding more digits

	Integration of Population Dynamics in RBM Training
	Introducing Unequal Copy Probabilities
	Results Obtained
	Method 1
	Method 2

	Conclusion
	Future developments

