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Abstract

Throughout history, humanity has recurrently faced epidemics of infectious diseases,
which have spread both within and between populations. From ancient pandemics
like the Antonine Plague to the contemporary COVID-19 pandemic, understanding
and controlling the spread of diseases has always been crucial. Mathematical mod-
eling of epidemics plays a key role in this understanding. Over the years, epidemic
modeling has evolved, incorporating interdisciplinary elements, particularly from
network science. Health interventions, including non-pharmaceutical measures and
pharmaceutical solutions like vaccines, have historically been crucial in mitigating
disease spread. During the COVID-19 pandemic, for example, measures such as
social distancing, lockdowns, mask usage, hygiene, and vaccinations were key in
controlling the virus spread.
This thesis proposes a mathematical framework to model three distinct health
interventions—social distancing, mask usage, and vaccination—on activity-driven
networks (ADN), a mathematical framework that models the dynamic nature of
individual contacts and the heterogeneity in sociability. We studied analytically
how these interventions affect epidemic thresholds using the SIR model as an
example, and validated them through numerical simulations. Two mechanisms for
intervention adoption were considered: random and activity-based, focusing on
nodes with the most or least number of contacts. Our findings highlight that pro-
tecting the most active nodes significantly enhances mitigation strategies. Among
the three interventions, vaccines showed the best results, especially when targeted
at these individuals. However, vaccines are not always available at the outbreak,
therefore the use of alternative interventions remain crucial. Additionally, we exam-
ine the combination of interventions. In the first case study, we simulate scenarios
where essential workers cannot reduce contacts, emphasising the importance of
vaccinating and protecting these individuals. In the second case, we explore how
the overlap in groups adopting interventions affects their effectiveness, showing that
distributed adoption across the population leads to better results. Overall, this
thesis combines mathematical evaluation and the interplay of health interventions
in an activity-driven, time-varying network, enhancing the effectiveness of epidemic
control strategies.
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Chapter 1

Introduction

Throughout its history, humanity has recurrently faced epidemics of infectious
diseases, spreading both within and between populations. From ancient pandemics
like the Antonine Plague, also known as Galen’s Plague (165 AD-180 AD) [1], which
decimated the Roman Empire and significantly impacted its society, potentially
hastening its decline[2], to the contemporary COVID-19 pandemic caused by SARS-
CoV-2. In this context, studying and modeling epidemics from a mathematical
standpoint is crucial, as it helps us control their spread and limit their impact on
our societies.

Since the introduction of the SIR model in 1917[3], there has been a continuous
effort to mathematically model epidemics. The SIR model is a type of compart-
mental model, with SIR standing for Susceptible, Infected, and Recovered (or
Removed). Over the years, epidemic modeling has evolved significantly, becom-
ing an interdisciplinary field that incorporates elements from various disciplines,
especially network science[4].

In the late 1990s, a study conducted between Stockholm University and Boston
University aimed to reconstruct the network of sexual partners during the AIDS
epidemic in Northern Europe [5]. This study showed that the distribution of
contacts in the network followed a power law distribution. Here power law, or
scale-free feature, means that the relationship in the population distribution of
contacts is consistent across scales. For instance, for every four people who meet
four others, there is one who meets eight, and this pattern holds true at larger scales
as well. Scale invariance results in a heavy-tailed probability distribution, where
rare events have a non-zero probability of occurring. The difference in network
topology is significant; Pastor-Satorras and Vespignani [6] demonstrated that in
networks with such contacts structure (i.e., degree distribution), the epidemic
threshold tends to zero as the population grows. This finding marked a major shift
from the approaches previously used in epidemic modeling, as networks increasingly
gained a central role in epidemiology. This led to the emergence of a new subfield
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Introduction

known as network epidemiology.
The ultimate goals of effective epidemic modeling are to understand the mech-

anisms behind disease spread, predict their evolution, and propose strategies to
control and mitigate them. In this context, modeling health interventions aimed at
controlling disease spread is crucial. Health interventions include a range of non-
pharmaceutical measures (e.g., social distancing, quarantine), behavioral changes
(e.g., wearing face masks, hand hygiene), and pharmaceutical solutions such as
vaccines. Historically, health interventions have played a critical role. For example,
during the 2003 SARS outbreak, people adopted preventive behaviors such as
wearing face masks and avoiding crowded places [7, 8, 9] . Significant behavioral
reactions were also observed during the 2009 A/H1N1 influenza pandemic [10, 11],
the 1918 Spanish flu pandemic[12, 13], measles [14] , and HIV [15, 16] among other
diseases. During the COVID-19 pandemic, social distancing, strict lockdowns, mask
usage, hygiene measures, and vaccinations were key in slowing down the spread of
the new virus [17, 18, 19, 20, 21]. Therefore, it is crucial to model appropriately
health interventions, determining not only which measures are implemented but
also the most effective strategies for their application. This includes identifying the
optimal timing, scale, and combination of interventions to maximize their impact
on controlling and mitigating the an epidemic.

In this thesis, we propose a mathematical framework to model three different
health interventions: social distancing, mask usage, and vaccination. These in-
terventions are studied on a specific type of time-varying network that considers
the important topological property of scale invariance: activity-driven networks
(ADN)[22]. These networks evolve over time, modeling the temporal dependency
of each individual’s contact network, and assign an activity level to each individual.
Activity is a measure of an individual’s sociability within the network and is as-
signed based on power law distributions. Temporal dependency plays an important
role as the network’s mutation time is comparable to the pathogen’s transmission
time

More in details, in this thesis we studied how the adoption of the three health
interventions affects the epidemic thresholds, first proposing an analytical solution
to the problem using the SIR compartmental model, and then verifying its accuracy
through numerical simulations that reproduce the described framework. We consider
two mechanisms for adopting health interventions: one random, and one activity-
based, where individuals who are most (or least) socially inclined decide whether
to adopt the interventions. We find that, due to the topology of scale-invariant
networks, individuals in the heavy tails (i.e., those with the most contacts), are
key drivers in virus transmission. These individuals act as super spreaders, and
identifying and protecting them significantly improves the effectiveness of mitigation
strategies.
In the analysis of all three health interventions taken individually, different adoption
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types have shown a hierarchy in terms of effectiveness in reducing spread. Random
adoption performs better than adoption given to less active individuals but worse
than when adoption is among the most active. Specifically, the use of face masks
manages to prevent the spread of less infectious pathogens but only slows down
others. Social distancing, taken to the extreme of total elimination of contacts
(though unrealistic), has the potential to stop even more infectious pathogens;
however, this comes with the social and economic cost of extreme isolation measures.
Vaccines have consistently shown better results across all adoption types among the
three interventions, especially when concentrated among super-spreaders. However,
vaccines have the disadvantage of not always being available at the onset of an
epidemic.

In addressing the limitations of individual health interventions, we then studied
their combinations.
We focused on two specific case studies to investigate the interplay of health
interventions. In the first case study, we simulated a scenario where individuals
with more contacts cannot limit their social activity even during a lockdown, as
they are essential for the basic needs of the population, such as healthcare workers
and those involved in the transportation and distribution of goods. We quantified
the effects of the other two health interventions (mask usage and vaccination)
applied to these individuals to compensate for their inability to reduce contacts,
and we identified the most effective strategies, confirming the higher effectiveness of
vaccination. This finding highlights the importance of protecting essential workers,
or more generally, individuals who cannot reduce their contacts, in contexts like
the COVID-19 pandemic. Prioritizing these individuals in the vaccination rollout
and providing them with personal protective equipment is crucial for their safety,
overall public health, and effective epidemic control.

In the second case study, we evaluated how the combined effectiveness of two
interventions changes as the overlap between the groups adopting them increases.
Indeed, during the COVID-19 pandemic, we observed that many individuals
adopted a range of protective measures, while others did not protect themselves
at all. This phenomenon is due to the multifaceted nature of health intervention
adoption, which is influenced by personal beliefs, exposure to information, personal
experiences, and several other factors. To achieve this, we assigned two health
interventions to two different groups of individuals. The groups ranged from being
completely disjoint to having varying levels of overlap, up to the scenario where
one group applied both health interventions while the other applied none. The
simulations show that the response improves as the number of adopting individuals
increases, i.e. as the overlap decreases. Although the number of health interventions
remains constant, distribution across the population leads to better results.

We structured the thesis as follows:
In the second chapter, we discuss the cornerstone of epidemic modeling, namely
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compartmental models, how they can be used to describe pathogen transmission,
and evaluate epidemic thresholds under the assumption of homogeneous mixing of
network nodes, introducing some fundamental quantities for epidemic description.

In the third chapter, we first introduce the heterogeneous mixing. We then
present time-varying activity-driven networks, how to model epidemic processes on
them, and evaluate thresholds first without any health interventions and then with
social distancing, replicating results obtained in previous studies. We solve the
problem analytically for random adoption by individuals and activity-dependent
adoption, using these methods as the basis for modeling the other two health
interventions.

The results are then divided into two chapters. In the fourth chapter, we present
the modeling of mask usage in the proposed framework, showing the solutions to
the problem and validating thresholds for both random and activity-dependent
adoption. We then introduce vaccinations and show the analytical solution for the
combination of all three health interventions under random adoption.

In chapter five, we present the two case studies. In the first, we analyze a scenario
where the majority of the population below a certain activity threshold limits their
interactions by applying social distancing, while those above the threshold may
receive or not a vaccine. We simulate and compare the effects of different adoption
levels by the more active individuals while keeping conditions for the less active
constant. We repeat these simulations replacing vaccination with mask usage
and considering the possibility of inconsistent mask usage. We then evaluate the
percentage reduction in infection peaks and the final fraction of total infections,
comparing the results of the three combinations.

In the second part, we introduce a new parameter describing the overlap of
two health interventions in population adoption. We analyze two combinations
of health interventions: vaccines/social distancing and vaccines/mask usage. For
both cases, we simulate different combinations of adoption and overlap, and finally,
evaluate the percentage reduction in infection peaks and total infections.

The final chapter summarizes the results and outlines potential future work, such
as relaxing further approximations, comparing with empirical data, and introducing
feedback loop between epidemic and behavior. The appendices provide detailed
descriptions of the algorithmic methods developed in the programming language
Julia for this thesis, offering a comprehensive overview of the technical aspects of
the research.
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Chapter 2

Modeling epidemics

2.1 Compartmental models in epidemiology

First studies describing the dynamics of epidemics through compartmental models
were published in 1916-17 by Ross and Hudson [3], and in 1927 by Kermack and
McKendrick[23].
The aim of compartments is to contain the individuals of a population at different
stages of contagion that can be experienced during the spreading of an epidemic.
One of the most simple compartmental models is organized as follow:

• Susceptible compartment contains the healthy individuals who may be
infected;

• Infected compartment contains the infected individuals who can transmit
the disease to the susceptibles;

• Recovered (or Removed) compartment contains the individuals who healed
from the disease and can no longer be infected.

The compartmental structure usually gives the name to the model under study.
Therefore, the one just described is generally referred to as the SIR model from
the initial letters of the compartments (Susceptible-Infected-Recovered).
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(a) SIS scheme (b) SIR scheme

Figure 2.1: Schemes of Compartmental models. In 2.1a, the scheme of the
SIS model is shown, where infected individuals become susceptible to the disease
again after recovering. In 2.1b, the scheme of the SIR model is shown, where
infected individuals transition to a recovered state and cannot be infected again.

Other compartments can be introduced, for example for the deceased (D), the
vaccinated (V ), and for people in a latent state (or exposed, E), and also different
compartments for two or more competing disease can be used. The combination of
compartments and the tuning of the transition rates can give birth to an infinite
spectrum of models (as in the figure from article Abrams et al. [24]) representing
different populations and different pathogens.

Figure 2.2: compartmental model proposed for early phase of the Belgian
COVID-19 epidemic [24]

The total population in general is a function of time N(t), and the sum of the
populations inside the compartments has to respect the constraint to be equal to
the total population N(t). The population is considered constant if births and
deaths are excluded from the model, loosing time dependence N(t) ≡ N .
The number of individuals inside of a compartment are time dependent and
are labelled with capital letters, S(t), I(t), R(t). The population density of a
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compartment is indicated with the corresponding lowercase letter and it is equal to
the compartment population divided by N

s(t) = S(t)
N

i(t) = I(t
N

r(t) = R(t)
N

(2.1)

and the constraint becomes s(t) + i(t) + r(t) = 1.
Individuals can flow from a compartment to the other according to transition rates
and interaction. In compartmental models the transitions, in general, are of two
elementary types:

• spontaneous transition of an individual from a compartment to another.
Examples are the healing of an infected (I → R) or the passage from a latent
to an infectious condition in the SEIR model (E → I);

• transitions involving interactions of individuals of two different compartments.
This is the case of susceptibles that, interacting with infected become infectious
themselves in the SIR model (S + I → 2 I).

Transitions of the first type are ruled by a transition rate only (i.e., recovery
rate). The second type process depends on a rate, but also on the topology of
contacts between individuals of different compartments. The simplest possible
approximation for the contacts between compartments is the homogeneous mixing,
in which the probability of interaction is directly proportional to the product of
the two individual density involved in the process. The constant characterizing
the proportionality is k, in the next chapter it will be called the average degree of
the network, and it indicates how many other people an individual will meet on
average during the unit of time.

The transition of the individuals between the compartments can be seen as a
flow. Let’s consider the SIR model as an example. Focusing on the I compartment
it presents an inflow that is a transition of the second type described, and an
outflow of the second type. The inflow is characterized by the infection rate called
λ and average degree k, the outflow by the recovery rate µ. In the literature, the
product of λ and k is usually referred as β. In the development of this thesis
the two variables will be left separate. Defined all these elements it is possible to
write the equation for the discrete time evolution of the population density of the
compartment:

i(t+ ∆t) = λks(t)i(t)∆t− µi(t)∆t (2.2)

In these conditions it is possible to write the equations for each compartment. To
show the treatment of these equations and what are the solutions, in the next
section we focus on the specific example of the SIR model without death and births,
which will be used as a basis for the rest of the thesis.
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2.2 SIR model
As mentioned before, the SIR model is one of the most famous compartmental
models and its simplicity makes it a good candidate to explore the interplay of
health intervention. Before introducing the complexity of our approach, we briefly
review the dynamics with homogeneous mixing, starting with the system of dif-
ferential equations describing the evolution of the number of individuals in each
compartment.

ds(t)
dt

= − s(t)i(t)kλ

di(t)
dt

=s(t)i(t)kλ− µi(t)

dr(t)
dt

=µi(t)

(2.3)

where it has been possible to take the continuous limit taking into account the
time steps to be small and the thermodynamic limit for the total population N ∞.
At early stages it is possible to make other two assumptions useful for the solution
of the differential equations. First assumption is I(0) ≪ N → i(0) ≪ 1, meaning
that we have a little number of infected at the beginning of the outbreak. The
second is that at the beginning the R compartment is almost empty, i.e., very few
individuals recovered from the disease. Joining this with the previous approxi-
mation brings to S(t) = N − I(t) ≈ N → s(t) ≈ 1, meaning that almost all the
population is in the Susceptible compartment. These conditions take the name of
early stage approximation. The ODE system becomes under this approximation:

ds(t)
dt

= − [1 − i(t) − r(t)]ki(t)λ ≈ i(t)kλ

di(t)
dt

=[1 − i(t) − r(t)]ki(t)β − µi(t) ≈ i(t)(kλ− µ)

dr(t)
dt

=µi(t)

(2.4)

The solution for i(t) is an exponential function of the form:
i(t) ≈ i(0)et(kλ−µ) (2.5)

Looking at a typical plot of the dynamics of compartments in Fig. 2.3, this solution
refers to the early stage, highlighted in grey. The solution for i(t) can grow and
become an outbreak only if the sign of the exponential is greater than zero. This
suggests the definition of the fundamental quantity R0:

R0 = kλ

µ
(2.6)
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Figure 2.3: Compartment dynamics for SIR model highlighting the early
stage of the contagion. In early stage the approximation N ≈ S(t) and the
dynamics of compartments is described by (2.3)

R0 is called the basic reproduction number of the infection and it is the expected
number of secondary new cases generated by an infected individual in a population
infinitely susceptible, as in the early stage approximation. The condition, in this
model, for the disease to spread becomes R0 > 1, only when λk > µ.
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Chapter 3

Social Networks

3.1 Time-varying activity based social network
model

In the previous chapter the theme of network has intentionally not received the
attention it deserves. To keep equation easy it has been only mentioned in the
presentation of k, the average degree of the network. Up to now homogeneous
mixing hypothesis has been used, but many observed real social networks exhibit a
very heterogeneous topology [25, 22, 26].
The word average, suggests the presence of distributions. In fact, homogeneous
mixing can be interpreted as a system with a distribution of the connections
among the nodes heavily peaked around the average, with variance tending to
zero, making k ≈ ⟨k⟩ a good first approximation. Empirical evidence shown many
epidemiological networks to be heavy-tailed distributed, with variances different
from zero and the existence of nodes with a really high number of connection. This
makes the average not a good variable for the study of spreading anymore. To
intuitively justify the last sentence, let take the Latin proverb Omnes viae Romam
ducunt, translated as "all roads lead to Rome". The rise of the Roman Empire
fuelled the development of a dense network of roads connecting Rome to the vast
empire. If a traveler, during the empire, starting from his city (a node), would
choose the street to take (link) randomly, and after reaching the new city choose
the new direction again randomly, at each steps is more likely to be nearer to Rome.
Mathematically can be shown that the probability of reaching a node is directly
proportional to its degree [27], again interpretable as the more connected you are,
the easier it is to find you. Making a little transformation calling the cities as
individuals, the roads as their interactions, and the traveler as a virus, the more
sociable individuals will be easily reached, and being heavily connected become a
so called "super-spreader" [28]. The fluctuations of the degree distribution start to
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play the main role in the dynamic of the spreading properties.
Up to now the networks were static in time. In some real networks the dynamic
processes evolve much faster than the topology, this is the example of internet,
were a virus can spread in a network almost static. This is not the case of human
interactions were social contacts happen at the same time scale of disease spreading.
So, a more realistic representation is a network that varies in time. Another limit
of the static network is the fact that a node with a certain degree will always have
that degree, but human interact in different way depending on their personalities,
situations and many other factors. The idea here is to represent this variability
assigning to every node an activity potential. The activity potential is, to some
extent, a measure of sociability of a person: the higher the activity potential, the
more likely the node will create links. The activity potential a is a probability rate
and its distribution has been empirically measured from three different dataset in
Ref. [22]: the collaborations "Physical Review Letters", the messages on Twitter,
and costarring in cinema recorded on Internet Movie Database (IMDb). The results
show heterogeneity in the activity, confirming again the necessity of relaxation of
the homogeneous approximation.
Based on these observations, Ref. [22] has proposed a new model to represent the
time-varying nature of contacts, named the activity driven model. Before explaining
how it works, we introduce all its fundamental parameters and ingredients. First of
all, N is the number of nodes. The probability distribution of the activity potential
chosen is a power law, whose boundaries are ϵ < a < 1, and the exponent is α. The
left boundary is chosen in order to avoid future divergences in the calculation. The
distribution takes the form:

P (a) = 1 − α

1 − ϵ1−α
a−α (3.1)

and the activity are assigned to the nodes through the inverse transform sampling
(see Appendix A for more details).
Another parameter is ∆t, the time step in which the network changes. Each node
has the possibility to create m nodes at each time step.
Once all the parameters are presented, the time evolution of the network in the
model is generated through the iteration of this sequence of steps:

• At each time step t the network starts with N completely disconnected nodes;

• Each of the nodes i has a probability ai∆t to become active and randomly
generate m links connecting to m other vertices. Non-active nodes are not
necessarily isolated, can still receive connections from active nodes;

• At the next time step t+ ∆t all the edges in the network are deleted, going
back to the situation with all isolated vertices. From this sequence follows
that every interaction has a constant duration of ∆t
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The model just proposed is random because of the way the link are selected and
Markovian because deleting the edges there is no way for the nodes to have memory
of the previous time steps. The dynamic of the network is fully encoded in the
activity distribution F (a).

3.2 SIR model on activity driven networks
Studying the dynamic of the outbreak, one can sum the contacts of every time
step, generating an aggregate static network. The results for epidemic thresholds
from the previous section are not valid for this aggregate network, this because at
some time a node could not be active and do not spread the disease. In fact in this
framework, the infected node can only attempt the contagion before the elimination
of the nodes at the end of the time step, while the recovery is attempted before
the network of the following time step is generated.
It is possible to more precisely quantify the epidemic threshold by working on
time and activity rates. The epidemic dynamics is evaluated taking into account
a mean-field approach and with the assumption that every node with the same
activity behave in a statistical similar way. In this settings, we can write the
system of equation describing an SIR model unfolding on activity driven networks.
The belonging to a class will be indicated by a subscript, while the time in the
superscript, I t

a. The λ is the probability rate of infection between susceptible and
infected, per contact, while µ is the probability rate for an infected to spontaneously
recover and pass to the R compartment.
As always the threshold is defined by the solution of the equation for the I
compartment at early stages. Suppose at the beginning I(0) ≪ N −→ I t

a ≪ Na and
also R(0) = 0, giving the approximation St

a = N t
a − I t

a −Rt
a ≈ N t

a, the number of
infected individuals of class a at the time t+∆t is given by (3.4). The first two term
on the right-hand side of the first line equation are pretty standard representing
the infected in the a class at previous time and the recovered at previous time.
The third term represent the interaction between an activated susceptible and all
the possible infected, in fact the infected is inside the integral that spans over all
the distribution. The fourth term is the case in which the active one is one of
the infected of the network, regardless of his activity class, and the susceptible is
receiving a link, in fact in this term the activity a appear inside the integral.

I t+∆t
a = I t

a − µ∆tI t
a + λm∆taSt

a

Ú
da
I t

a

N
+ λm∆tSt

a

Ú
da
aI t

a

N
(3.2)

Applying the early stage approximation St
a ≈ Na

I t+∆t
a = I t

a − µ∆tI t
a + λm∆taNa

Ú
da
I t

a

N
+ λm∆tNa

Ú
da
aI t

a

N
(3.3)
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Only terms involving an interaction with St
a are relevant, because can transform to

element of I t+∆t
a at the next time step. In the second line is applied the early stage

approximation. In order to evaluate the total sum of infected, and being F (a) a
continuous distribution, integrals over the spectrum of a are applied on both sides
of the equation:Ú

daI t+∆t
a =

Ú
daI t

a − µ∆t
Ú
daI t

a + λm∆t
Ú
daaN t

a

Ú
da′ I

t
a′

N
+

+ λm∆t
Ú
daN t

a

Ú
da′aI

t
a′

N
(3.4)

= I t − µ∆tI t + λm∆t ⟨a⟩ I t + λm∆tΘt (3.5)

with Θt having the form

Θt =
Ú
da′aI

t
a′

N
(3.6)

and interpretable as the mean field probability of an infected to activate and meet
a susceptible.
The subscript a is now absent because the integral give the whole I compartment.
The average come from the integral noticing that the N at the denominator do not
depend on a′ and Nt

a

N
= F (a) being the activity distribution.

Bringing the I t term on the lefthand side, dividing by ∆t and taking the continuous
time limit

∂tI
t = −µI t + λm ⟨a⟩ I t + λmΘt (3.7)

Another equation is needed to find the solution. Looking at the expression of Θ, it
suggest the creation of another equation multiplying by a both sides of (3.3) and
then again integrating over aÚ

da aI t+∆t
a =

Ú
da aI t

a − µ∆t
Ú
da aI t

a + λm∆t
Ú
da a2N t

a

Ú
da′ I

t
a′

N
+

+ λm∆t
Ú
da aN t

a

Ú
da′ aI

t
a′

N
(3.8)

Θt+∆t = Θt − µ∆tΘt + λm∆t
e
a2
f
I t + λm∆t ⟨a⟩ Θt (3.9)

Repeating the same process as for the equation in I the differential equation is
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obtained also for Θ
∂tΘt = −µΘt + λm

e
a2
f
I t + λm ⟨a⟩ Θt (3.10)

The two differential equations lead to a system that can be written in Jacobi matrix
form as C

∂tI
t

∂tΘt

D
=
C
−µ+ λm ⟨a⟩ λm
λm ⟨a2⟩ −µ+ λm ⟨a⟩

D C
I t

Θt

D
(3.11)

The solutions are a linear combination of two exponentials in time multiplied by
the eigenvalue of the matrix, so the greater of the two is the one leading the trend
of the function. In this way, a pandemic can spread only if the bigger eigenvalue is
greater than 0. To find the the eigenvalue solve the eigenvalue equation

det(J − IΛ) = 0 (3.12)

det

A
J + Iµ
λm

− Λ − µ

λm

B
= 0 (3.13)

det(J ′ − Λ′) = 0 (3.14)
with

J ′ =
C

⟨a⟩ 1
⟨a2⟩ ⟨a⟩

D
(3.15)

and
Λ′ = Λ − µ

λm
(3.16)

The transformation is not strictly necessary but simplify the calculation when the
health intervention are introduced. In this case the solution of (3.14) is

(⟨a⟩ − Λ′)2 −
e
a2
f

= 0 (3.17)

Λ′2 − 2 ⟨a⟩ Λ′ +
1
⟨a⟩2 −

e
a2
f2

= 0 (3.18)

Λ′
(+,−) = ⟨a⟩ ±

ñ
⟨a2⟩ (3.19)

Λ(+,−) = −µ+ λm
3

⟨a⟩ ±
ñ

⟨a2⟩
4

(3.20)

remembering the condition Λ+ > 0

− µ+ λm(⟨a⟩ +
ñ

⟨a2⟩) > 0 (3.21)
λ

µ
>

1
m(⟨a⟩ +

ñ
⟨a2⟩)

(3.22)

R0 = λ

µ
m(⟨a⟩ +

ñ
⟨a2⟩) > 1 (3.23)
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A first easy approach to verify the validity of this threshold is to see it has as
limiting case the homogeneous mixing approximation. Remember it is charac-
terized by a narrow distribution peaked around the average degree. In this case
the homogeneous mixing can be reached if all the vertices have a ≈ 1, a narrow
distribution for a peaked around 1, with ⟨a⟩ = 1 and ⟨a2⟩ = 1. The expression
for the threshold become R0 = λ

µ
2m. At every time step all the nodes generate m

edges causing the average degree to be equal to ⟨k⟩ = 2m, making this expression
equal to the one found for the homogeneous mixing in (2.6).
This is not a good validation, first of all because it is only valid for a limiting case,
but also because although the m partner are chosen randomly at each time step,
the odds of the presence of a node that receives multiple links also in a few time
steps is not zero.

To validate the threshold then, we use simulations. The algorithm simulates the
progression at each time step in the SIR activity-driven, time-varying network. The
Julia programming language have been chosen being a good compromise between
high performance running speed and developing time. The simulation models a
large population of N = 105, starting with a small percentage of infected nodes
(i(0) = 1%). The model runs until there are no infected individuals remaining
in the population. The parameters are chosen, and the simulation is repeated
100 times. Then, only the λ parameter is changed, and the 100 simulations are
repeated. The initial λ is set to 0, resulting in R0 = 0, which does not break the
threshold. Successive λ values are selected such that some are expected to be below
the epidemic threshold and some above it. At the end of every simulation the
total fraction of recovered is saved. This number indicated with r∞, indirectly
tell if the outbreak has spread or not. In 3.1, a plot of the average value of r∞
versus λ shows a phase transition around the R0 = 1 value. It is important to note
that each point on the plot represents a different disease. Diseases characterized
by values of R0 < 1 show a mean value of r∞ tending to zero, around the value
R0 = 1 starts to grow, and for large values of R0 the epidemics effectively affects
the population, and are more likely to spread. The figure shows two axes: one with
λ values (upper) and the other with corresponding R0 values (lower) derived using
(3.23). Although the R0 plot better emphasizes the phase transition around the
value of 1, we chose to only plot λ during our simulations. This approach allows us
to compare the same diseases experiencing different health intervention strategies
on the same abscissa. This will become more evident in the next sections. The
combination of parameters used in the simulation has the goal of making possible
that the R0 = 1 condition is verified for values of λ < 1.

Another statistical variable that emphasizes the phase transition is the variance
of r∞. Specifically, around the phase transition, a maximum in the threshold value
is observed. Intuitively, at small λ values, the pandemic never starts, and at larger
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Figure 3.1: Phase transition plot of r∞. The plot displays the final epidemic
size (r∞ = R∞/N) with 95% confidence intervals for different values of λ. Values of
λ are indicate in the above x-axis with the corresponding R0 value below. Vertical
dashed line indicates the analytical threshold derived from (3.23). Results are
obtained by 102 stochastic simulation for each point and with the following model
parameters: µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of
infected seeds), while for the power law distribution the minimum value ϵ = 10−3,
maximum equal to 1, and characteristic power α = 2.1

values, it always spreads. Around the threshold, some simulations result in a spread
while others do not, causing the variance of r∞ to increase. In the plot in 3.2, the
variable used is the normalized relative variance σr∞/σ

max
r∞ , ensuring that the y-axis

scale always ranges between 0 and 1. Its maximum is around the threshold value
analytically predicted, confirming the presence of a phase transition.

In the next section we modify the framework just defined to show how we can
introduce health interventions.

3.3 Health interventions
Two parameters λ and µ summarise the biological features of a disease in the
mathematical model, but the spreading is not only influenced by these. The health
intervention can be also modelled with the aim of slowing down or do not even
start the pandemic. Different ways of modelling health intervention exist, in this
section three will be introduced being also the explored during the simulations:
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Figure 3.2: Phase transition plot for the relative variance. The plot
displays the normalized relative variance σr∞/σ

max
r∞ for different values of lambda.

The simulation data are the same of the plot in figure 3.1

• activity reduction

• use of face mask

• vaccination

Before explicit how the health intervention is modeled, another important degree
of freedom has to be mentioned. We have to put a degree of freedom on who is
going to adopt health interventions, also in this case three will be used:

• perfect adoption

• random adoption

• adoption based on activity

It is called perfect adoption when every individual in the model adopts the health
intervention.
The random adoption introduce a number between 0 and 1, being the fraction of
individual, chosen randomly, adopting the measure. There will be a fraction for
each compartment, in our case w is the fraction referred to susceptible and p the
one referred to infected. Notice that the perfect adoption can be seen as a the
particular case with p = w = 1.

17
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The adoption based on activity, is a strategy that assigns the health intervention
to individuals with a activity below (or above) a certain threshold activity value.
In this first approach the health intervention will be presented with perfect and
random adoption condition.
The activity reduction, at this starting point affects λ indirectly, in fact we have
assumed in the homogeneous mixing the probability to meet an individual from a
compartment to be equal to the size of the compartment. The activity reduction
can be translated in a discount factor to this probability. It is possible to give
different discount to individuals of different compartments in order to simulate
realistic scenarios such as infected activity reduction (γ) to be more effective than
that of susceptible individuals (Ψ). The discount factor are always number between
0 and 1, and it is the more effective the more approaches zero, e.g. a reduction of
60% in activity for the infected translate in a γ = 0.4 in the model.

β → [wΨ + (1 − w)][pγ + 1 − p]λ
perfect adoption p = w = 1
β → Ψγλ

(3.24)

The adoption of face mask affects β in a more direct way but it has similar effects
on the final expression for the reduction. The face mask is modeled always as a
discount factor and it reduce the probability to contract the infection during the
contact. An effectiveness of the face mask of the 30% translate in the model in
a αm = 0.7 multiplicative factor. Developing the multiplications is important to
notice that the discount factor can appear with a 0, 1 or 2 exponent representing
respectively if none uses face mask, only one of the two individuals uses it, and if
both use the face mask. In this case the fraction of adopters are rs for susceptibles
and ri for infected and the expression for beta modifies in this way

β → [rsαm + (1 − rs)][riαm + ((1 − ri)]λ
perfect adoption rs = ri = 1
λ → α2

mλ

(3.25)

Different ways of modeling the vaccination campaign have been studied during
the years, using game theory ideas or introducing compartments for vaccinated.
In this thesis the vaccination is a "one shot" money toss. The money tosses
become two in case of random adoption. Introduce two probability, one is the
probability (ρ) to get vaccinated, the other is the probability(the effectiveness
of the vaccine ϕ ), if vaccinated, to become immune and go directly in the R
compartment (or a Rv this choice does not affect the evolution) or to stay in the
original compartment. After this setup the simulation starts with. Being at the
beginning the infected population small, the vaccination has a relevant impact
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most of all on the susceptible compartment modifying in this way the assumption
S ≈ N to S ≈ N −R ≈ N −Nρϕ = N(1 − ρϕ). This again can be interpreted as
a discount factor for β

λ → (1 − ρϕ)λ
perfect adoption ρ = 1
λ → (1 − ϕ)λ

(3.26)

3.4 Social distancing in activity driven time-varying
network

The results of this section are mainly from Ref. [29] In this paper the health
intervention are also called behavioural changes and are evaluated the effects of
the social distancing on the activity driven time-varying network. As written in
the previous section, social distancing is modeled as a discount factor of the rate of
infection, moreover the adoption can be random or based on the activity.
In this section we report the starting equation, skipping to the results for the
thresholds, and show the same plot replicated with our algorithm. This part of
the work has been useful to test the correct functioning of the algorithm, before
proceeding with the new analysis that will be shown in the next chapter.

Starting from the random adoption, the fraction of susceptible nodes adopting
the activity reduction will be indicated with w and apply a reduction of ψ, while
the fraction of infected is indicated with p and the experienced reduction with γ.
Remember the condition to be between zero and one values is valid for all four
parameters. The equation for the infected at time step t+ ∆t for the infected with
activity a, this time reads at early stage

I t+∆t
a = I t

a − µ∆tI t
a + λm∆taSt

a(wψ + 1 − w)
Ú
da
I t

a

N
+

+ λm∆tSt
a

Ú
da(pγ + 1 − p)aI

t
a

N
(3.27)

Assuming the early stage approximation St
a ∼ N t

a, obtaining:

I t+∆t
a = I t

a − µ∆tI t
a + λm∆taN t

aψw

Ú
da
I t

a

N
+ λm∆tN t

aγp

Ú
da
aI t

a

N
(3.28)

with ψw = 1 − w(1 − ψ) and γp = 1 − p(1 − γ).
The first two terms on the right hand side are the very same of the standard case
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as in the previous section. The third term representing an active susceptible that
activates and meet an infected, is now multiplied by the new factor ψw, and the
fourth term, representing the infected node activation case presents the γp factor.
Proceeding, the calculations are similar to those shown above and the complete
discussion is given in the appendix. Reporting only the result for the threshold

λ

µ
>

2
m ⟨a⟩ (ψw + γp) +m

ñ
⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩

(3.29)

R0 = λ

µ

m ⟨a⟩ (ψw + γp) +m
ñ

⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩
2 > 1 (3.30)

In the limiting cases of no one adopting the health intervention, w = p = 0, or a
zero activity reduction ψ = γ = 1, the expression of R0 becomes again equal to the
one found in the standard case in (3.23) as expected.
Now, with four new playing variables, becomes interesting to plot phase spaces of
R0. In the case of perfect adoption, everyone is adopting the health intervention,
with p = w = 1, the variables reduce to two, ψ and γ, and the phase space is shown
in figure 3.3. The scale of the two axis is logarithmic and the other variables are
chosen in order to represent a disease with R0 ≈ 3 when no health intervention are
applied. The variation is highlighted by a scale from white to red, with the with
the areas with R0 = 1. The areas colored with a light grey are the one representing
combination of health intervention stopping the disease to spread, namely R0 < 1.
In case of imperfect adoption the structure of the model suggests to plot the phase
space also for the fraction of adopters couple p and s. The two phase space are
reported in figure 3.4, notice the different scales between the two plot. In the first
is reported also the threshold line for the perfect adoption showing how is it the
best possible scenario to avoid the beginning of the outbreak. In the second is
analyzed the symmetric case with equal reduction both for infected and susceptible,
ψ = γ = 0.1, with a plot showing a decrease in the R0 values in the right top
direction, the one of the perfect adoption, as expected.

The simulation for validating the threshold have been ran for three different
combination of adoption 3.5. The point have been chosen looking at the phase
space w vs p, in fact only one of them is far enough inside the "red area" of the
phase space to highlight a great diffusion. As said before the two type of plots are
replicated, and now makes more sense the decision to use the λ on x-axis, it better
shows the effects of different combination of health intervention on the specific
disease. In the case of R0 on x-axis plots it is more difficult to highlight this effect.
In the plot for the relative variance, the strong health intervention make the end
of the lines not flat because of the proximity to the high variance threshold also
for the maximum value λ = 1.Also the maximum is not always exactly on the
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Figure 3.3: Activity reduction perfect random adoption phase space.
Plot of the analytical value of the basic reproductive number R0 obtained in (3.23)
in the case of perfect adoption p = w = 1, as a function of γ and ψ. Parameters
used: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a maximum value of R0
equal to 3 in case of no adoption.

predicted one, but this is because of the density of points simulated around the
predicted threshold.
The chosen values are the same as for the simulation without health intervention
with the new two parameters ψ = 0.1 and γ = 0.8.

The other way to distribute the health intervention is to base it on the activity
distribution. In particular, if the activity of a vertex is lower to a threshold one
the node will reduce her activity. The two threshold can be different based on
the compartment type as before, and the reduction too as in the previous case.
The two threshold have to be number between 0 and 1, but this time not really
comfortable. Indicating with us and ui the threshold for the susceptible and infected
compartment respectively, their relation with the fraction of adopters is

w =
Ú
H(us − a)F (a) da =

Ú us

ϵ
F (a) da (3.31)

p =
Ú
H(ui − a)F (a) da =

Ú ui

ϵ
F (a) da (3.32)

with H(x) being the Heaviside function, equal to one when its argument is greater
than zero and zero when is lower.
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(a) Activity Reduction phase space:
γ vs ψ imperfect adoption

(b) Activity Reduction phase space:
w vs p imperfect adoption

Figure 3.4: Activity reduction imperfect random adoption phase spaces.
Plot of the analytical value of the basic reproductive number R0 obtained in
equation (3.23) in different scenarios. In panel a) R0 as a function of γ and ψ with
p = 0.8 and w = 0.75. In panel b) R0 as a function of p and w with ψ = γ = 0.1.
Parameters used in both figures: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a
maximum value of R0 equal to 3 in case of no adoption. A solid red line indicates
the threshold R0 = 1, and the dashed black line the threshold in case of prefect
adoption.
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Figure 3.5: Activity reduction random adoption phase transition plot.
The plots display on the left the final epidemic size (r∞ = R∞/N) with 95%
confidence intervals for different values of λ or R0 in case of non-perfect adoption
for different values of p and w. Values of λ are plotted above with the corresponding
R0 values below. Vertical dashed line indicates the analytical threshold derived from
(3.29). The plots on the right display the normalized relative variance σr∞/σ

max
r∞

above as a function of λ and below as a function of R0. Results are obtained by
102 stochastic simulation for each point and with the following model parameters:
µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds),
ψ = 0.8 and γ = 0.1, while for the power law distribution the minimum value
ϵ = 10−3, maximum equal to 1, and characteristic power α = 2.1

The equation for the evolution of the infected compartment modify in this way

I t+∆t
a = I t

a − µ∆tI t
a + λm∆ta [1 + (ψ − 1)H(us − a)]St

a

Ú
da
I t

a

N
+

+ λm∆tSt
a

Ú
da [1 + (γ − 1)H(ui − a)] aI

t
a

N

I t+∆t
a = I t

a − µ∆tI t
a + λm∆ta [1 + (ψ − 1)H(us − a)]N t

a

Ú
da
I t

a

N
+

+ λm∆tN t
a

Ú
da [1 + (γ − 1)H(ui − a)] aI

t
a

N
(3.33)

23



Social Networks

where the expression inside the square brackets is equal to the reduction or to 1
when the the threshold of activity is crossed or not, and the St

a ≈ Na approximation
have been applied between the lines. The procedure to evaluate the threshold is
the same as before with the only difference that in this case the expression of the
auxiliary variable Θ has a dependence on the Heaviside function

Θt =
Ú
da [1 + (γ − 1)H(ui − a)] aI

t
a

N
(3.34)

because of this the second integral have to be taken on
s
da a [1 + (γ − 1)H(n− a)]

in order to build the equation for Θ.
The total calculation is shown in the appendix B. The threshold in this case reads

λ

µ
>

2/m
2 + (ψ − 1) ⟨a⟩ϵ,us

− (γ − 1) ⟨a⟩ϵ,ui
+ λm

ñ
F(us, ψ, ui, γ)

(3.35)

R0 = λm

µ

2 + (ψ − 1) ⟨a⟩ϵ,us
− (γ − 1) ⟨a⟩ϵ,ui

+ λm
ñ

F(us, ψ, ui, γ)
2 > 1 (3.36)

where the function inside the square root has the form

F(us, ψ, ui, γ) =[(1 − ψ) ⟨a⟩ϵ,us
− (1 − γ) ⟨a⟩ϵ,ui

]2−

+4[(ψ − 1)γ
e
a2
f

ϵ,us
+ (γ − 1)

e
a2
f

ϵ,ui

+ 1] (3.37)

and the script ⟨x⟩ϵ,u indicates the expected value up to u, namely

⟨x⟩ϵ,u =
Ú u

ϵ
da xF (a) (3.38)

Observing that ⟨x⟩ϵ,1 = ⟨x⟩, it is possible to recover the perfect adoption threshold.
The phase space plot in 3.6 shows the fundamental role of the more active nodes
selected from the tail of the distribution in the spreading of the disease. Only if
the top right part of the phase space is zoomed is possible to appreciate a crossing
of the threshold Also the threshold simulations highlight this difficulty to stop the
spreading, in fact all three the combination of parameters give about the same phase
transition in figure 3.7 In this section have been introduced the main methods for
the validation of the thresholds in the time-varying activity driven social network
framework. In the next chapter will be studied the health intervention introduced
in the previous chapter.
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Figure 3.6: Activity reduction imperfect adoption based on nodes’ ac-
tivity phase space. Analytical value of the basic reproductive number R0 as a
function of p and w as obtained in (3.35) in the case of adoption dependent of the
nodes’ activity, with γ = ψ = 0.1. The plot on the right highlights a small region
of the phase space on the left. Parameters used in both figures: ϵ = 10−3, m = 2,
α = 2.1, µ = 10−2 and setting a maximum value of R0 equal to 1.2 in case of no
adoption. A solid red line indicates the threshold R0 = 1.
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Figure 3.7: Activity reduction with adoption based on nodes’ Activity
plot. The plots display on the left the final epidemic size (r∞ = R∞/N) with
95% confidence intervals for different values of λ in case of non-perfect adoption
dependent of nodes’ activity for different values of p and w. Vertical dashed line
indicates the analytical threshold derived from (3.35). The plots on the right
display the normalized relative variance σr∞/σ

max
r∞ as a function of λ. As in the

case of non-perfect random adoption in 3.5, results are obtained by 102 stochastic
simulation for each point and with the following model parameters: µ = 10−2,
N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds), ψ = 0.8
and γ = 0.1, while for the power law distribution the minimum value ϵ = 10−3,
maximum equal to 1, and characteristic power α = 2.1
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Chapter 4

Modeling Health
Interventions on Activity
Driven Network

4.1 Model the use of face masks in activity driven
time-varying social network

4.1.1 Random adoption of face masks case

After we have introduced the approach to model epidemics and evaluate the
epidemic threshold in activity driven time-varying networks, we start to model the
second health intervention presented in the second chapter: the use of face masks.
Face mask are categorized as non pharmaceutical intervention (NPI), and in this
thesis we take the assumption of a respiratory virus as SARS-CoV-2. In this section
we will study the random adoption case and then the activity based adoption one.
In (3.25) have been shown how the use of face mask can affect the transmission
rate λ. Now in the activity driven framework, we start with the random adoption
considering same parameters:

• αm is the reduction caused by the face mask, namely 1 minus the effectiveness
of the face mask in reducing transmission;

• rs is the fraction of susceptible using face mask;

• ri is the fraction of infected using face mask;
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Starting from this, the equation for the time evolution of the infected becomes:

I t+∆t
a = I t

a − µ∆tI t
a + rsαλm∆taSt

a

Ú
da
I t

a

N
riαm + rsαλm∆tSt

a

Ú
da
aI t

a

N
riαm+

+(1 − rs)λm∆taSt
a

Ú
da
I t

a

N
riαm + (1 − rs)λm∆tSt

a

Ú
da
aI t

a

N
riαm+

+rsαmλm∆taSt
a

Ú
da
I t

a

N
(1 − ri) + rsαmλm∆tSt

a

Ú
da
aI t

a

N
(1 − ri)+

+(1 − rs)λm∆taSt
a

Ú
da
I t

a

N
(1 − ri) + (1 − rs)λm∆tSt

a

Ú
da
aI t

a

N
(1 − ri)

(4.1)

In the right hand side pf (4.1), after the usual terms µ∆tI t
a, we imagine that the

face mask can both reduce susceptibility of S and infectiousness of I, therefore
this assumption gives us four different combination terms. In particular the first
row represent S and I both wearing mask, the second row S not wearing and I
wearing, third row S wearing and I not, last both not wearing. In all the lines the
there are two terms, the first term representing when S activates and I receives
the link, and the second term vice versa.
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Again we apply the early stage assumption when St
a ∼ N t

a

I t+∆t
a = I t
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a + αsαiλm∆taN t

a

Ú
da
I t

a

N
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a

Ú
da
aI t

a

N
(4.3)

with αs = 1 − rs(1 − α) and αi = 1 − ri(1 − α)

After collecting similar factors, the problem reduce to the one shown in the
previous chapter with a multiplicative factor αsαi applied to the transmission rate.
Therefore, the solution can be directly taken from the standard problem without
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health intervention remembering to multiply by αsαi the terms presenting λ:

λ

µ
= 1
αsαim

1
⟨a⟩ +

ñ
⟨a2⟩)

2 (4.4)

R0 = λ

µ
mαsαi

3
⟨a⟩ +

ñ
⟨a2⟩

4
> 1 (4.5)

The expressions for αs and αi become equal to 1 in case no one is adopting the
health intervention, which reduces the expression for R0 to the one without face
masks presented in (2.6). It is interesting to notice the symmetry of R0 with respect
to the fraction of susceptible rs and infectious ri adopting face masks. This is
possible because the factor αm (i.e., the effectiveness of the face mask) is the same
independently if the individual is a susceptible or an infected. Said differently, we
are assuming that the face masks equally reduces susceptibility and infectiousness.
In the case of equal fraction of adopters, rs = ri = r → αs = αi = αr = 1−r(1−αm),
the expression for R0 presents a square in αr

λ

µ
= 1
α2

rm
1
⟨a⟩ +

ñ
⟨a2⟩)

2 (4.6)

R0 = λ

µ
mα2

r

3
⟨a⟩ +

ñ
⟨a2⟩

4
> 1 (4.7)

To explore the space of effectiveness of face masks in reducing epidemic spread,
we plot the phase space of R0 as function of rs and ri for three different values
of effectiveness in 4.1. These values are 10% for the first row plot, 30% in second
row, and 50% in the third row. The phase spaces on the left have a combination
of parameters with an R0 = 3 without health intervention rs = ri = 0, and on
the right a maximum R0 = 1.2. The R0 = 3 is the same combination used in
the phase space activity reduction with random adoption and have been chosen
to evidence that the use of face mask only is not sufficient to cross the threshold
also with perfect adoption, in case of low values of effectiveness of the face mask.
Then on the right we chose to plot the phase space with R0 = 1.2 representing
a less transmissible disease, in order to make evident the shape of the transition
boundary.
We choose also to run simulation for the evaluation of the phase transition for the
three values of effectiveness 4.2. The other parameters are the same of the previous
cases, including the fraction of adopters.The plots show the r∞ mean value and
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(a)

(b)

(c)

Figure 4.1: Face mask random adoption phase space. Analytical value of
the basic reproductive number R0 as a function of susceptible adoption fraction
rs and infected adoption fraction ri as obtained in (4.7) in the case of random
adoption, with a) αm = 0.9, b) αm = 0.7, c) αm = 0.5. Parameters used in both
figures: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a maximum value of R0
equal to 3 in case of no adoption on the left, and 1.2 in case of no adoption on the
right. A solid red line indicates the threshold R0 = 1.
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its relative variance in function of the λ. In the plots is possible to appreciate the
symmetry of the problem, in fact it is not possible to distinguish the two lines in
which rs and ri values are swapped in the r∞ plot. It is also interesting to see how

Figure 4.2: Phase transition plot for different values of effectiveness in
random adoption face mask. The plots display on the left the final epidemic
size (r∞ = R∞/N) with 95% confidence intervals for different values of λ in case
of non-perfect random adoption different values of rs and ri. Vertical dashed line
indicates the analytical threshold derived from (4.7). The plots on the right display
the normalized relative variance σr∞/σ

max
r∞ as a function of λ. The plots on the

first line refer to the case of 10% of effectiveness (αm = 0.9), 30% (αm = 0.7)
for the second line, 50% (αm = 0.5) for the third line. Results are obtained by
102 stochastic simulation for each point and with the following model parameters:
µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds),
while for the power law distribution the minimum value ϵ = 10−3, maximum equal
to 1, and characteristic power α = 2.1

the threshold value λt, the one crossing the threshold, depends on the fraction of
infected adopting the health intervention, keeping all other parameters fixed. We
plotted for four different combination of effectiveness of face mask and adoption
fraction in 4.3. These are the combination of αm equal to 0.5 or 0.9 (effectiveness
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of 50% and 10%) and susceptible adoptions rs of 80% and 10%. The lines look like

Figure 4.3: Variation of the threshold value λt with respect to infect adoption ri

hyperbolic functions as expected looking at (4.4).

In the next section we replicate the adoption based on node activity in the case
of face mask.

4.1.2 Adoption based on activity of face masks

We study here the adoption based on activity, in the case of face mask. We
decided to solve analytically the problem in both case of upper limit and lower limit
threshold. Indeed, it can be a possible scenario that only more active population,
to mitigate their inability to reduce activity, decide to wear face mask. Although
that is the most probable case, we wanted to do a general analytical discussion and
therefore we also considered the case in which the activity threshold is an upper
limit and only those below the threshold wear the mask
Starting from the case in which only nodes lower than a certain activity adopts the
health intervention, the general case sees two different thresholds: us for susceptible
and ui for infected. The other parameters remain the same as the random adoption
case.
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The starting equation for this problem is

I t+∆t
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We are interested in the evaluation of the epidemic threshold so we assume to be
at the early stage St

a ∼ N t
a
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(4.9)

where H(x) represent the Heaviside function. In (4.8) the first row of the right
hand side is the usual recovering process, the second represents the process of a
susceptible activating and establishing a connection with an infected, and the third
row represents the infected nodes activating and establishing a connection with a
susceptible of activity a.
The next step is the integration over the activity, but differently from the previous
cases we integrated over

s
da [1 + (α− 1)H(ui − a)], with multiplication by the

term containing Heaviside function necessary to have an ODE:
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developing the products, we obtained
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where na = Na

N
is the population fraction and the expression for Θt

u is
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In (4.9) the product of the two Heaviside function can be rewritten as

H(ui − a)H(us − a) = H (min{us, ui} − a) (4.13)

The Heaviside functions can be now deleted changing the extremes of integration,
so the equation now becomes
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∂tI
t
u = µ∆tI t
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where in (4.17) we take the continuous limit and we introduce B(x) function. In
B(x) we substituted the thresholds us and ui with u1 and u2, being u1 the minor
of the two threshold. This is possible because the two threshold can be swapped
without changing the equation. The expression of B(x) reads
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in these expressions the subscript indicates that the integral is evaluated from ϵ
up to the subscript (e.g., when the argument is 1 it indicates the total population
below the subscript).
Notice that the dynamic equation, differently from the cases studied up to now,
is not for the whole population of infected compartment but for a fraction. Con-
sidering that the solution of this is a sum of exponentials, the leading exponential
remain the one defining the threshold. What is not anymore precise is the predicted
steepness of the early stage because of the difference with a fraction of infected
described by the equations.

We now integrate (4.9) over
s
da a[1 + (αm − 1)H(ui − a)] in order to have an
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equation for Θt
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Repeating the calculation in a way similar to (4.14) and (4.15), we reach the
expression

Θt+∆t = Θt − µ∆tΘt + λm∆tB(a2)I t
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which taking the continuous limit becomes
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To find the threshold value we have to find the maximum eigenvalue of the matrix,
and impose it greater than zero. Remember that to simplify the calculation the
transformation Λ′ = Λ+µ

λm
have been applied

[B(a) − Λ′]2 −B(1)B(a2) = 0 (4.25)
Λ′2 − 2B(a)Λ′ +B(a)2 −B(1)B(a2) = 0 (4.26)

After transforming back the eigenvalue

Λ = −µ+ λm[B(a) +
ñ
B(1)B(a2)] (4.27)

The threshold expression reads
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m[B(a) +

ñ
B(1)B(a2)]

(4.28)
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The threshold value expression is symmetric to the swap of fractions of infected
and susceptible.
After writing the equation for the problem in case the population adopting the use
of face mask is above the threshold in (4.30), we noticed that the pattern in the
solution is similar, with the only difference in the auxiliary function that this time
we called B(x) (4.31), in which the minimum is substituted with the maximum
between the two threshold ui and uS
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And the threshold is straightforward similar to the previous case but with this new
auxiliary function
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m[ B(a) +

ñ
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(4.34)

R0 = λm

µ
[ B(a) +

ñ
B(n) B(a2)] > 1 (4.35)

We plotted the phase space of the epidemic threshold in function of the activity
thresholds for susceptibles rs and infected ri, both for the two types of adoption.
We chose to always use the maximum value R0 = 1.75, and on the left represent
the effects of the upper activity threshold and on the right the lower one. In the
first row the effectiveness of the mask is 10%, αm = 0.9, and in both cases also
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with perfect adoption do not cross the threshold value for the disease. Different
the cases for the 30% and 50% of effectiveness, when the threshold is crossed. In
these 4 plot is shown also the black dotted line corresponding to the R0 = 1 line in
the case of random adoption. The random adoption is always positioned between
the two activity based adoption. This because in a case the most active nodes use
face mask while in the other they do not use it. We proceed with the validation of
the analytical threshold with simulations. We chose to plot the same values as in
the activity reduction case 3.5, in particular the case with rs = ri = 0.8, rs = 0.1
and ri = 0.8, and the symmetric one with rs = 0.8 and ri = 0.1, combined with
effectiveness of 10%, 20% and 50%. As expected the phase transition happens in
the same point but with a steepness greater in the case of greater adoption of the
susceptible in both figures 4.12 and 4.11.
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(a)

(b)

(c)

Figure 4.4: Face mask activity based adoption phase space. Analytical
value of the basic reproductive number R0 in the case of adoption based on activity
as a function of susceptible adopters fraction rs and infected adopters fraction ri as
obtained in (4.29) with upper threshold on the left and (4.35) with lower threshold
on the right, with a) αm = 0.9, b)αm = 0.7, c) αm = 0.5. Parameters used in both
figures: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a maximum value of R0
equal to 1.75 in case of no adoption. A solid red line indicates the threshold R0 = 1,
and the dashed black line the threshold line for the random adoption case.
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Figure 4.5: Lower threshold activity based adoption phase space for face
mask. The plots display on the left the final epidemic size (r∞ = R∞/N) with
95% confidence intervals for different values of λ in case of non-perfect adoption
dependent on nodes’ activity, with adopters above a certain activity threshold.
The threshold is selected for different values of rs and ri. Vertical dashed line
indicates the analytical threshold derived from (4.29). The plots on the right
display the normalized relative variance σr∞/σ

max
r∞ as a function of λ. The plots on

the first line refer to the case of 10% of effectiveness (αm = 0.9), 30% (αm = 0.7)
for the second line, 50% (αm = 0.5) for the third line. Results are obtained by
102 stochastic simulation for each point and with the following model parameters:
µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds),
while for the power law distribution the minimum value ϵ = 10−3, maximum equal
to 1, and characteristic power α = 2.1
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Figure 4.6: Upper threshold activity base adoption phase space for face
mask. The plots display on the left the final epidemic size (r∞ = R∞/N) with
95% confidence intervals for different values of λ in case of non-perfect adoption
dependent on nodes’ activity, with adopters below a certain activity threshold.
The threshold is selected for different values of rs and ri. Vertical dashed line
indicates the analytical threshold derived from (4.35). The plots on the right
display the normalized relative variance σr∞/σ

max
r∞ as a function of λ. The plots on

the first line refer to the case of 10% of effectiveness (αm = 0.9), 30% (αm = 0.7)
for the second line, 50% (αm = 0.5) for the third line. Results are obtained by
102 stochastic simulation for each point and with the following model parameters:
µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds),
while for the power law distribution the minimum value ϵ = 10−3, maximum equal
to 1, and characteristic power α = 2.1

4.2 Model vaccination in activity driven
time-varying social network

4.2.1 Random adoption of vaccination
We modeled the vaccination campaign as a single shot before the beginning of the
simulation.
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The parameters of the simulations introduced also in chapter 3 are the fraction
of susceptible f joins the vaccine campaign and once vaccinated, each node have
a probability v to leave the S compartment and enter in a new compartment Rv

and eliminating the possibility to become infected. The properties of individuals
in Rv are exactly the same of the individuals in R, we choose to create a new
compartment to have the possibility to count the total faction of infected during
the stimulation looking directly at R compartment for t → ∞, namely i∞ = r∞.
Being f a fraction and v a probability, both are number between zero and 1. We
first saw their influence in the approximation of St

a, in fact the equation for Na
t now

has to take into account the presence of Rv compartment, that is not negligible.
Now the approximation of the susceptible reads

St
a ∼ N t

a −Rt
va = N t

a − vfN t
a = (1 − vf)N t

a (4.36)

The approximations enter in the equation for the dynamics of Infected giving
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We see the term (1 − vf) could be incorporated into the m constant being only
a multiplicative factor, in this case the equation for the threshold is evaluated
straightforward from the one of the case without health intervention in (3.23)
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The factor 1 − vf is always less or equal than zero, confirming is effect of reducing
the threshold, and in the limiting cases of no effectiveness f = 0 or no vaccination
campaign v = 0 the threshold gives back the original one.
in figure ?? we plotted the phase space of the above equation. On the axes are
reported the values of f and v between zero and 1. As in the case for face mask
random adoption we reported the phase space for a disease that without health
intervention have R0 = 3 on the left, and R0 = 1.2 on the right. Comparing with
them we see that it is always possible to cross the threshold stopping the diffusion
also for larger values of R0, not possible in some cases for the use of face masks.

We ran the simulation for combination of values of 40% and 80% in the adoption
and values of 50%, 70% and 90% in the effectiveness. The results reported in the
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Figure 4.7: Vaccine random adoption phase space. Analytical value of the
basic reproductive number R0 as a function of adoption fraction f and effectiveness
v as obtained in (4.39) in the case of random adoption. Parameters used in both
figures: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a maximum value of R0
equal to 3 in case of no adoption on the left, and 1.2 in case of no adoption on the
right. A solid red line indicates the threshold R0 = 1.

phase space plots in 4.8 show the phase transition in six different scenarios in the
plots on the left. In the plot on the right, the relative variance shows again its
maximum at the threshold values predicted. It is interesting to see that in the
case with 90% of effectiveness and 80% of adoption, the relative variance plotted
line does not flatten as in the other case, this is justified by the fact that also the
extreme values of λ = 1 are still near the threshold values and suffer from the phase
transition fluctuations. The values of the thresholds λt are plotted with respect to
vaccine effectiveness in the figure 4.9. It shows the values near to 1 reached in the
case of adoption equal to 80% and as expected has the shape of a reflected branch
hyperbola .

4.2.2 Adoption based on activity of vaccination

In this section we try to model an adoption based on activity for the vaccination
as done for the previous health intervention. Differently from the case of facemask
activity based adoption, in which there were two different equations for the above
threshold activation (4.9) and the below threshold activation (4.30), for the vacci-
nation we chose to group them in a single equation.
The model as in the facemask case has only one threshold f , but we introduced
two more parameters, f> and f<, indicating respectively the random fraction of
adopters above the threshold activity and the random fraction of adopters below.
Both, are of course values between zero and one. The equation for approximating
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Figure 4.8: Vaccine random adoption phase transition plot. The plots
display on the left the final epidemic size (r∞ = R∞/N) with 95% confidence
intervals for different values of λ in case of non-perfect random adoption and
different values of effectiveness f . Vertical dashed line indicates the analytical
threshold derived from (4.39). The plots on the right display the normalized relative
variance σr∞/σ

max
r∞ as a function of λ. The plots on the first line refer to the case of

40% of adoption, and in the second line of 80% of adoption. Results are obtained by
102 stochastic simulation for each point and with the following model parameters:
µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds),
while for the power law distribution the minimum value ϵ = 10−3, maximum equal
to 1, and characteristic power α = 2.1

now becomes

St
a ∼ N t

a −Rt
a =N t

a − v[f> + (f< − f>)H(u− a)]N t
a =

={1 − v[f> + (f< − f>)H(u− a)]}N t
a (4.40)

where H(x) is the Heaviside function introduced for modeling the effect of the
threshold. Is straightforward to see that the case of total random adoption is
recovered when f> = f<. While the separated cases presented for face masks
activity based adoption are reached in the case of f< = 0 and f> = 1 for the above
threshold activation, and in f< = 1, f> = 0 for the below threshold activation.
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Figure 4.9: Variation of the threshold value λt with respect to vaccine effectiveness
v

Proceeding with the development of the model, the equation for the dynamics of
infected in the general case becomes

I t+∆t
a = I t

a−µ∆tI t
a + {1 − v[f> + (f< − f>)H(u− a)]}λm∆taN t

a

Ú
da
I t

a

N
+

+ {1 − v[f> + (f< − f>)H(u− a)]}λm∆tN t
a

Ú
da
aI t

a

N
(4.41)

The integral terms do not present the Heaviside terms so we proceed integrating ins
da both sides
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Ú
daI t+∆t
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da I t
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Ú
da I t
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N
(4.42)

I t+∆t = I t − µ∆tI t+

+ λm∆t
Ú
da a(1 − vf>)nt

a + λm∆t
Ú u

ϵ
da a(f> − f<)nt

aI
t+

+ λm∆t
Ú
da(1 − vf>)nt

aΘt + λm∆t
Ú u

ϵ
dav(f> − f<)nt

aΘt (4.43)

I t+∆t = I t − µ∆tI t + λm∆t[(1 − vf>) ⟨a⟩ + v(f> − f<) ⟨a⟩u]I t+
+ λm∆t[(1 − vf>)1 + v(f> − f<)1u]Θt (4.44)

with

Θt =
Ú
da′ a

′I t
a′

N
(4.45)

To write the equation for Θt, integrate in
s
a daÚ

da aI t+∆t
a =
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da aI t
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Θt+∆t = Θt − µ∆tΘt+

+ λm∆t
Ú
da a2(1 − vf>)na + λm∆t

Ú u

ϵ
da a2(f> − f<)naI

t+

+ λm∆t
Ú
da a(1 − vf>)naΘt + λm∆t

Ú u

ϵ
da av(f> − f<)naΘt (4.47)

Θt+∆t = Θt − µ∆tΘt+
+ λm∆t[(1 − vf>)

e
a2
f

+ v(f> − f<)
e
a2
f

u
]I t+

+ λm∆t[(1 − vf>) ⟨a⟩ + v(f> − f<) ⟨a⟩u]Θt (4.48)
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Both in the equation for I t and Θt we recognize a pattern in the multiplicative
terms that are synthesized in the function V (x)

V (x) =
Ú
da x(1 − vf>)nt

a +
Ú u

ϵ
da xv(f> − f<)nt

a =

= (1 − vf>) ⟨x⟩ + v(f> − f<) ⟨x⟩u (4.49)
example

V (1) =
Ú
da 1(1 − vf>)nt

a +
Ú u

ϵ
da 1v(f> − f<)nt

a =

= (1 − vf>)1 + v(f> − f<)1u (4.50)
and
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Ú u

ϵ
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a =
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e
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u
(4.52)

where the subscript u indicates the average of the variable from the lower limit
value of the activity distribution ϵ up to the u upper threshold value.
Recasting and taking the continuous limit, the equations become

∂tI
t = −µI t + λmV (a)I t + λmV (1)Θt (4.53)

∂tΘt = −µΘt + λmV (a)I t + λmV (a2)Θt (4.54)

The system written in matrix form readsC
∂tI

t

∂tΘt

D
=
C
−µ+ λmV (a) λmV (1)
λmV (a2) −µ+ λmV (a)

D C
I t

Θt

D
(4.55)

Again to find the leading exponential term of the solution we need to find the
largest eigenvalue Λ of the matrix

[V (a) − Λ′]2 − V (1)V (a2) = 0 (4.56)
Λ′2 − 2V (a)Λ′ + V (a)2 − V (1)V (a2) = 0 (4.57)

Where the form with + has already been selected to find the maximum eigenvalue,
and Λ′ = Λ+µ

λm
. After transforming it we obtain the expression

Λ = −µ+ λm
5
V (a) +

ñ
V (1)V (a2)

6
(4.58)
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And the threshold condition reads

λ

µ
>

1
m
è
V (a) +

ñ
V (1)V (a2)

é (4.59)

R0 = λm

µ

5
V (a) +

ñ
V (1)V (a2)

6
> 1 (4.60)

As shown before, turning off the health intervention gives back the expression for
the no reduction, in fact V (x) in these cases assumes the value of ⟨x⟩. Being a
more general case it contain also the expression for the random adoption case when
f< = f>.
With continuity with the examples used up to now, we decide to show the results
for the cases of only upper threshold activation and only lower threshold activation.
In figure 4.10 the color-maps show a disease with maximum value of R0 = 3
on the left and R0 = 1.2 on the right. The color maps in the first line are for
adopters below the threshold activity and in the second line are the in the case of
adopters above the threshold activity. The red line in the plots represent the phase
transition bound for the model, and the dotted black line represent the one for the
corresponding random adoption for vaccines. See how the random adoption always
has a better effect in mitigating the disease with respect the below threshold health
intervention, while above threshold health activation is preferred to the random
case. This is in according with the fact that the more active individuals are the
super-spreaders, and their joining to the vaccination campaign is relevant in the
lowering of the R0.
Also for the vaccination we ran simulation in both cases, lower threshold in figure

4.11, and upper threshold in figure 4.12. The combination of the two parameters
is the same we tested for the random adoption: adoption of 40% and 80%, and
effectiveness of the vaccine of 50%, 70% and 90%. The phase transition in the first
case happens for values of λ shifted to the right with respect to the case of the
upper threshold, up to the case with 90% of effectiveness and 40% effectiveness
(blue line in the upper 4.12) and 70% of effectiveness and 80% of adoption (yellow
line in the lower same figure) that remain way into the transition phase looking
at relative variance still near to one for high values of λ. In particular the case
80% adoption upper threshold and 90% of effectiveness in blue line even surpasses
the λ = 1 maximum case for the simulation. Considering the values of vaccine in
the covid-19 pandemics for vaccine effectiveness to be between the 70% and 90%
of effectiveness also at first dose and overcoming the 90% with more doses[30], a
vaccination campaign involving a great percentage of the population could mitigate
also disease with great values of R0 protecting in this way the more sensible part
of the population.
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(a) Below threshold activity based adoption

(b) Above threshold activity based adoption

Figure 4.10: Vaccine activity based adoption phase space. Analytical value
of the basic reproductive number R0 in the case of adoption based on activity as
a function of adopters fraction f and vaccine effectiveness v as obtained in (4.60)
with a) upper threshold for the activity and b) lower threshold for the threshold.
Parameters used in both figures: ϵ = 10−3, m = 2, α = 2.1, µ = 10−2 and setting a
maximum value of R0 equal to 3 in case of no adoption on the left, and of 1.2 on
the rigth. A solid red line indicates the threshold R0 = 1, and the dashed black
line the threshold line for the random adoption case.

4.3 Merging the three health intervention
in random adoption

Up to now we studied the health intervention singularly, in this section we studied
the early stage of a disease with all three health intervention with random adoption.
First of all the approximation for the S compartment has to take into account all
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Figure 4.11: Vaccine activity based adoption phase transition plot with
lower activity threshold. The plots display on the left the final epidemic size
(r∞ = R∞/N) with 95% confidence intervals for different values of λ and different
values of effectiveness f in case of non-perfect adoption dependent on nodes’ activity,
with adopters below a certain activity threshold. The threshold is selected for
different values of adoption f . Vertical dashed line indicates the analytical threshold
derived from (4.60) with f< = 0 and f> = 1. The plots on the right display the
normalized relative variance σr∞/σ

max
r∞ as a function of λ. The plots on the first line

refer to the case with 40% of adoption, while in the second line to the case with 80%
of adoption. Results are obtained by 102 stochastic simulation for each point and
with the following model parameters: µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01
(initial fraction of infected seeds), while for the power law distribution the minimum
value ϵ = 10−3, maximum equal to 1, and characteristic power α = 2.1

the previously seen approximation

St
a ∼ N t

a −Rt
a = N t

a − vfuN
t
a = (1 − vf)N t

a (4.61)

The combination of the three health intervention gives birth to 23 ×23 = 64 possible
type of combinations of infected-susceptible meeting. These luckily can be grouped
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Figure 4.12: Vaccine activity based adoption phase transition plot with
upper activity threshold. The plots display on the left the final epidemic
size (r∞ = R∞/N) with 95% confidence intervals for different values of λ and
different values of effectiveness f in case of non-perfect adoption dependent on
nodes’ activity, with adopters above a certain activity threshold. The threshold
is selected for different values of adoption f . Vertical dashed line indicates the
analytical threshold derived from (4.60) with f< = 1 and f> = 0. The plots on the
right display the normalized relative variance σr∞/σ

max
r∞ as a function of λ. The

plots on the first line refer to the case with 40% of adoption, while in the second
line to the case with 80% of adoption. The remaining parameters are settled as in
the previous figure.

and give for the infected dynamics
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a = I t
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(4.62)
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Developing the calculation this give to a threshold value R0 equal to

λ

µ
>

2
m(1 − vf)αsαi ⟨a⟩ (ψw + γp) +m(1 − vf)αsαi

ñ
⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩

(4.63)

R0 = λ

µ

m(1 − vf)αsαi ⟨a⟩ (ψw + γp) +m(1 − vf)αsαi

ñ
⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩

2
(4.64)

Trying to turn off combination of health intervention it is possible to verify the
rescue all the solution found up to now in random adoption.
It is also possible to combine different health interventions with activity based
adoption, but being the terms this time with integrals, becomes not possible to
easily group them. We verified that the procedure to find the threshold is not
giving new challenges to the problem beyond that of patience in writing several
repeating terms.
Despite this, the interplay of different health interventions remains of strong interest
and this is what we have explored in the next chapter.
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Chapter 5

Modeling the Interplay of
Health Interventions on
Activity Driven Network

5.1 Case study: Interplay of different behaviours
above and below the activity threshold

In Ref. [29], as reported in chapter 3, has been simulated a scenario in which the
more active population do not reduce their activity. This because that part of the
population has the role of keep alive the daily life of the society, so more active
individuals could be people working in hospitals, in distribution of basic necessities
products.
After the study of the health intervention applied alone the question has been
straightforward: what if the more active people, unable to reduce their activity,
try to protect themselves and the whole population adopting another of the other
health intervention.
In this case study we abandoned the study of the threshold to look at the effective
evolution of a spreading in the population, recording and plotting the evolution of
the compartments at every time-step.
The health intervention chosen for more active people are simulated singularly, so
at every simulation less active population will experience activity reduction, while
more active people will adopt three possible health intervention:

• use of face mask with random adoption

• vaccination with random adoption

• spotty use of face mask adoption
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With first two health intervention already extensively covered during this thesis
and the now introduced concept of spottiness.
The spotty use of face mask want to simulate the realistic scenario of people
adopting the use of face mask but for various reasons (e.g. forgetfulness) with a
certain rate do not wear it.
The concept of random adoption in this case study is combined with the one of
activity based, in fact we decided to do not give a perfect adoption to people above
the threshold but rather to try different percentage of random adoption above
threshold.
In the previous chapters, each simulation stopped when no more infected nodes
were in the population. In this case study the simulation all have a duration of
1000 time steps. The choice to stop before the effective end of the diffusion has the
purpose of have the same time scale for all the simulation for better comparison,
and after some attempt we noticed that at 1000 time steps the remaining infected
were few and negligible for the evaluation of the total. It was also a good trade off
between approximation and computing time.
The first scenario under study is the one with activity reduction γ = ψ = 0.1 for
p = w = 80% of population under activity threshold and for the remaining 20%
upper threshold to simulate different values of random adoption at 10%, 20%, 30%,
50%, 80% and 100% equal for infected and susceptible and an effectiveness of face
mask of 20%.
In 5.4 we plotted the mean values with 95% C.I. of the infected fraction and of
the total recovered fraction on the right for the six different cases. In the figure is
plotted in dashed grey line also the case of 80% random adoption activity reduction,
as expected way lower than the other cases. The simulation are repeated in the
case that upper threshold population decide to get vaccinated, the fraction are the
same and the chosen value for effectiveness of the vaccine is 70%. In figure 5.2 we
report again the results for fraction of infected fraction and recovered fraction in
function of time. We see the peak of the infected and the total recovered lower
than the case of use of face mask and in the case of perfect adoption for the
upper threshold to also go lower than the benchmark random adoption of activity
reduction (always dashed grey line). The last case we introduced is the one with
spottiness parameter.// A 100% spottiness is the equivalent of use of face mask,
whom uses face mask always use. We decided to run simulations for three levels of
spottiness:

• 20% of spottiness, to model population less aware to the health intervention

• 50% of spottiness, population uses face mask half of the times

• 70% of spottiness, population is aware to the use of face mask but sometimes
not
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Figure 5.1: Interplay of activity reduction and use of face mask. Plot of
the mean with 95% confidence interval of the infected fraction on the left and of
recovered fraction on the right, in the case of 80% of population below activity
threshold reducing their activity (γ = ψ = 0.1) with different levels of random
face mask adoption for the 20% of population above threshold with effectiveness
of 20% (αm = 0.8), in function of time. Results are obtained by 102 stochastic
simulation for each point and with the following model parameters: time steps =
1000, µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected
seeds), while for the power law distribution the minimum value ϵ = 10−3, maximum
equal to 1, and characteristic power α = 2.1. Grey dashed line corresponds to the
activity reduction case with 80% random adoption

The three levels of spottiness have been simulated singularly and in figure 5.3 we
plotted as in the previous cases the time evolution of infected fraction on the left,
and om the right the time evolution of recovered fraction. As expected we can
see how generally a greater level of spottiness reduce the spreading of the disease.
In order to have a measure on how much higher levels of spottiness are better we
evaluated the percent variation with respect to the no health intervention above
threshold reference case. To do so we resampled this new metric through the
method of bootstrapping: for every dataset formed of 100 simulations, we uniformly
pick 1 of them and evaluate the percent difference with one of the uniformly picked
from the reference case. This process is repeated 1000 times generating a sample
for the estimate.
We focus on the total infected fraction percent variation. The total infected fraction
is evaluated as the sum of infected fraction plus the recovered fraction at last time
step. In figure 5.4 we box-plot the samples generated with bootstrapping, seeing
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Figure 5.2: Interplay of activity reduction and vaccination. Plot of the
mean with 95% confidence interval of the infected fraction on the left and of
recovered fraction on the right, in the case of 80% of population below activity
threshold reducing their activity (γ = ψ = 0.1) with different levels of random
vaccine adoption for the 20% of population above threshold with effectiveness v
of 70%, in function of time. Results are obtained by 102 stochastic simulation for
each point and with the following model parameters: time steps = 1000, µ = 10−2,
N = 105, m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds), while for
the power law distribution the minimum value ϵ = 10−3, maximum equal to 1,
and characteristic power α = 2.1. Grey dashed line corresponds to the activity
reduction case with 80% random adoption

how the reduction for small adoption is similar through different levels of spottiness,
but then at increasing adoption corresponds a marked separation with higher levels
of spottiness experiencing higher reductions. The same method described for the
total infected fraction percent reduction is applied to evaluate the reduction of
the peak of infection with respect to the case with no adoption in 5.5 We decided
to sample the two metrics with bootstrapping also for the vaccine simulations
and produce a comparison with face mask (100% spottiness) and 20% spottiness
box-plots. In figure 5.6 the comparison for the fraction of infected percent reduction,
and in figure 5.6 the percent reduction of peak of infected.
As expected the vaccination campaign has better results in mitigating the spread
of infection, almost doubling the reduction of peak and total infected with respect
the use of face mask.
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5.2 Case study: Interplay of different behaviours
above and below the activity threshold

In the previous section we studied the interplay of two different health intervention
at a time for each simulation, but no individual choose to adopt both of them, the
two set were totally disjoint. In real world population is common the scenario in
which who wants to protect himself adopts more than one single health intervention.
Reasoning about this scenario suggest the introduction of a new parameter: the
overlap of adopters.
Now we imagine a scenario in which two health intervention have an equal fraction
of adopters, and the overlap parameters is a fraction of how many of them adopts
both the health intervention. The adopters fraction is a number between zero and
one, while the overlap fraction needs to respect the condition (5.2)

0 ≤ 2 adopters − adopters × overlap ≤ 1 (5.1)

1 ≥ overlap ≥ 2 − 1
adopters

(5.2)

The first two health intervention under test are vaccination and activity reduction,
the effectiveness of vaccine is 70% and the reductions are 90% for infected (γ = 0.1)
and 20% for the susceptible (ψ = 0.8). The values of adopters are 20%, 50% and
65%, and are combined with values of overlap of 0%, 25%, 50%, 75% and 100%.
We ran again 100 simulations for 1000 time step for each possible combination, in
figure 5.8 we plotted the infected fraction on the left and the recovered fraction
evolving in time. Notice that the case with 65% adopters only presents the lines
with overlap values great or equal to 50%, because of the (5.2) condition. To
evaluate the variation percent of total infected we execute again the bootstrapping
taking as a reference the 100%overlap case for each adoption. This produced
the box-plot in figure 5.9 showing how the greater the overlap the worst for the
population. Meaning of also if part of the population adopts strict conditions to
prevent diffusion, the opposition of individuals not adopting health intervention
will punish the entire population. In figure 5.10 we repeated the bootstrapping for
the percent variation of the peak of infection, showing again how total disjunction
of groups is a better option Adding some other simulation, in particular in the
case of 35%, 80% and 100% adopters with the relative possible overlap value, and
bootstrapping all with respect to the no health intervention case, we plotted two
color-map in figure 5.11 for the percentage variation of total infected and of the
percentage variation of peak of infection with respect to the no health intervention
case. The color-map shows how the reduction grows with adoption while decrease
with overlap, both for total infection and peak of infection.

We also replicated this experiment substituting at the activity reduction the
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use of face mask with effectiveness of 20%. The other parameters remain the same,
and in figure 5.12 we reported the infected and recovered fractions plot as made in
the previous case. And again the percent variation of total infected and of the
peak of infected in figures 5.13 and 5.14 conforming also for the vaccination-face
mask scenario the collaborative behaviour rewards the entire population. We ran
the simulation for the other three values of adoption as in the previous case and
reported also for the interplay of vaccine and face mask the generated color-map in
figure 5.15
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Figure 5.3: Interplay of activity reduction and face mask adoption with
different levels of spottiness.Plot of the mean with 95% confidence interval of
the infected fraction on the left and of recovered fraction on the right, in the case
of 80% of population below activity threshold reducing their activity (γ = ψ = 0.1)
with different levels of random face mask adoption for the 20% of population above
threshold with effectiveness of 20% (αm = 0.8), in function of time. The first line
presents a spottiness level of 20%, the second of 50% and the third of 70%. Results
are obtained by 102 stochastic simulation for each point and with the following
model parameters: time steps = 1000, µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01
(initial fraction of infected seeds), while for the power law distribution the minimum
value ϵ = 10−3, maximum equal to 1, and characteristic power α = 2.1. Grey
dashed line corresponds to the activity reduction case with 80% random adoption
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Figure 5.4: Variation percent of total infected with different levels of
spottiness. Knot plot of percent variation of the total infection (i1000 + r1000).
Each knot plot is generated bootstrapping 1000 with respect the 0% adoption.
Data used for the bootstrapping are taken from the 100 simulations of the spotty
case

Figure 5.5: Variation percent of the peak infected with different levels
of spottiness. Knot plot of percent variation of the peak of infection. Each knot
plot is generated bootstrapping 1000 with respect the 0% adoption. Data used for
the bootstrapping are taken from the 100 simulations of the spotty case
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Figure 5.6: Variation percent of total infected with different health
intervention. Knot plot of percent variation of the total infection (i1000 + r1000)
for the three health intervention: face mask, vaccination spotty face mask at 20%.
Each knot plot is generated bootstrapping 1000 with respect the 0% adoption.
Data used for the bootstrapping are taken from the previous simulations

Figure 5.7: Variation percent of the peak of infected with different health
intervention. Knot plot of percent variation of the peak of infection for the three
health interventions: face mask, vaccination spotty face mask at 20%. Each knot
plot is generated bootstrapping 1000 with respect the 0% adoption. Data used for
the bootstrapping are taken from the previous simulations
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Figure 5.8: Interplay of activity reduction and vaccination with different
levels of adoption and overlap.Plot of the mean with 95% confidence interval
of the infected fraction on the left and of recovered fraction on the right, for 3
different levels of adoption and different values of overlap in the case of random
adoption of activity reduction (ψ = γ = 0.1) and vaccination (v = 0.7), in function
of time. The first line presents an adoption of 20%, the second of 50% and the
third of 65%. Results are obtained by 102 stochastic simulation for each point
and with the following model parameters: time steps = 1000, µ = 10−2, N = 105,
m = 2, i0 = I0/N = 0.01 (initial fraction of infected seeds), while for the power law
distribution the minimum value ϵ = 10−3, maximum equal to 1, and characteristic
power α = 2.1.

62



Modeling the Interplay of Health Interventions on Activity Driven Network

Figure 5.9: Variation percent of total infected with different levels of
adoption and overlap of activity reduction and vaccination. Knot plot of
percent variation of the total infection (i1000 + r1000) for the three levels of adoption:
20%, 50% and 65% for each level of overlap of overlap social distancing and vaccine
adopters. Each knot plot is generated bootstrapping 1000 data points with respect
to the 100% overlap. Data used for the bootstrapping are taken from the previous
simulations. Not available data because of the n=1 condition

Figure 5.10: Variation percent of the peak of infected with different
levels of adoption and overlap of activity reduction and vaccination.Knot
plot of percent variation of the peak of infection for the three levels of adoption:
20%, 50% and 65% for each level of overlap of overlap social distancing and vaccine
adopters. Each knot plot is generated bootstrapping 1000 data points with respect
to the 100% overlap. Data used for the bootstrapping are taken from the previous
simulations. Not available data because of the n=1 condition

63



Modeling the Interplay of Health Interventions on Activity Driven Network

Figure 5.11: Color-map of total infected percent variation and for peak
variation for activity reduction and vaccination with different levels of
adoption and overlap. The values in the color-map are the median value of the
total infected variation in the first plot and of the peak of infection variation in the
second infection, both as function of different values overlap and of adoption of
social distancing and vaccine adopters. Each knot plot is generated bootstrapping
1000 data points with respect to the 0% adoption. Data used for the bootstrapping
are taken from the previous simulations. Not available data because of the n=1
condition
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Figure 5.12: Interplay of activity reduction and vaccination with different
levels of adoption and overlap. Plot of the mean with 95% confidence interval of
the infected fraction on the left and of recovered fraction on the right, for 3 different
levels of adoption and different values of overlap in the case of random adoption of
face mask (αm = 0.8) and vaccination (v = 0.7), in function of time. The first line
presents an adoption of 20%, the second of 50% and the third of 65%. Results are
obtained by 102 stochastic simulation for each point and with the following model
parameters: time steps = 1000, µ = 10−2, N = 105, m = 2, i0 = I0/N = 0.01
(initial fraction of infected seeds), while for the power law distribution the minimum
value ϵ = 10−3, maximum equal to 1, and characteristic power α = 2.1.
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Figure 5.13: Variation percent of total infected with different levels of
adoption and overlap of use of face mask and vaccination. Knot plot of
percent variation of the total infection (i1000 + r1000) for the three levels of adoption:
20%, 50% and 65% for each level of vaccine and face mask adopters. Each knot
plot is generated bootstrapping 1000 data points with respect to the 100% overlap.
Data used for the bootstrapping are taken from the previous simulations. Not
available data because of the n=1 condition

Figure 5.14: Variation percent of the peak of infected with different levels
of adoption and overlap of use of face mask reduction and vaccination.
Knot plot of percent variation of the peak of infection for the three levels of adoption:
20%, 50% and 65% for each level of vaccine and face mask adopters. Each knot
plot is generated bootstrapping 1000 data points with respect to the 100% overlap.
Data used for the bootstrapping are taken from the previous simulations. Not
available data because of the n=1 condition
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Figure 5.15: Color-map of total infected percent variation and for peak
variation for face mask and vaccination with different levels of adoption
and overlap. The values in the color-map are the median value of the total
infected variation in the first plot and of the peak of infection variation in the
second infection, both as function of different values overlap and of adoption of face
mask and vaccine adopters. Each knot plot is generated bootstrapping 1000 data
points with respect to the 0% adoption. Data used for the bootstrapping are taken
from the previous simulations. Not available data because of the n=1 condition
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Chapter 6

Conclusion

This thesis aims to contribute to effective pandemic modeling by incorporating
modern concepts from social network theory and integrating health interventions
into epidemic contexts. Starting with traditional models, we progressively relaxed
various assumptions to develop more realistic and sophisticated models. It is
noteworthy that we derived analytical solutions to complex problems and validated
these solutions.
The term "health intervention" has been intentionally used throughout this work be-
cause the concept of "behavioral change" inherently includes feedback loops. These
feedback loops can be implemented by appropriately modifying compartments and
their transitions within the models. During the modeling process, these feedback
loops successfully demonstrated some of the dynamics observed in pandemic data,
such as the emergence of multiple waves of infections driven by changes in individual
behavior within networks.
Exploring the relaxation of assumptions can take multiple directions. One straight-
forward approach is to introduce the concept of communities, thereby incorporating
correlation into the network and moving away from the unrealistic assumption of
a completely uncorrelated network. It is particularly interesting to observe the
effects when individuals within the same community adopt health interventions,
creating modularity in both the network and intervention adoption.
Another promising direction for future research is the integration of real-world
data into the models. Depending on the type of data, it could be used to calibrate
the parameters of various health interventions, validate network dynamics, and
enable individual or class-specific parameterization. Making models data-driven is
a significant opportunity, given the vast amount of data available. Historical data
has shown the inadequacy of past models, and future models must leverage this
data for validation and improvement.
Throughout the simulations, we tested several combinations of preventive measures,
although many more combinations remain to be explored. Our findings underscore
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Conclusion

the necessity of a collective effort to minimize the impact of pathogens, which will
inevitably continue to affect future populations. Health interventions can play a
crucial role in preparing for and mitigating the effects of potential future pandemics,
similar to COVID-19. Moreover, understanding how health interventions influence
the spread of endemic seasonal influenza could provide additional insights.
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Appendix A

Sample from power law
distribution

The chosen distribution in order to exploit heavy tail properties is the power law
distribution, with power α

F (x) ∝ x−α (A.1)

In this case, the distribution is limited below by ϵ near to zero in order to avoid
anomalous divergences in zero, and above by 1, as the variable to sample is a
probability rate (the activity) and the time scale is arbitrary.
The distribution has to respect the sum 1 constraint, in this way it is possible to
evaluate the proportionality constant of the distributionÚ ϵ

1
F (x) dx =

Ú ϵ

1
Cx−α dx = 1 (A.2)

C = 1 − ϵ1−α

1 − α
(A.3)

F (x) = 1 − ϵ1−α

1 − α
x−α (A.4)

To randomly sample from this distribution, we exploit the inverse transformation
method. In a continuous distribution, the cumulative distribution function (CDF)
maps one-to-one with the 0-1 interval.
The CDF reads

CDF (x) = 1 − ϵ1−α

1 − α

Ú ϵ

x
x′−α dx′ (A.5)

CDF (x) = x1−α − ϵ1−α

1 − ϵ1−α
(A.6)
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Sample from power law distribution

Inverting the CDF and feeding it with pseudo-random numbers generated by a
computer between 0 and 1 gives the random sample of the distribution.
Calling y the cumulative, the inverse reads

x =
è
1 − y

1
1 − ϵ1−α

2é 1
1−α (A.7)

Feeding y with random numbers, it is possible to sample from the power law
distribution. In figure A.1, the sample for a distribution with α = 2.1 and ϵ = 10−3

is shown on a log-log scale to highlight the heavy tail, which is not appreciated on
a decimal scale.

Figure A.1: Sampling from a power law distribution
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Appendix B

Social distancing threshold
analytical solution

B.0.1 Random Adoption

Starting from (3.28)

I t+∆t
a = I t

a − µ∆tI t
a + λm∆taN t

aψw

Ú
da
I t

a

N
+ λm∆tN t

aγp

Ú
da
aI t

a

N
(B.1)

Integrate in
s
da and taking the continuous limit

∂tI
t = −µI t + λmψw ⟨a⟩ I t + λmγpΘt (B.2)

and the equation for Θt after integrating
s
da a and taking the continuous limit

∂tΘt = −µΘt + λmψw

e
a2
f
I t + λmγp ⟨a⟩ Θt (B.3)

Matrix representation of the system
C
∂tI

t

∂tΘt

D
=
C
−µ+ λmψw ⟨a⟩ λmγp

λmψw ⟨a2⟩ −µ+ λmγp ⟨a⟩

D C
I t

Θt

D

Solve det(J − IΛ) = 0
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Social distancing threshold analytical solution

(−µ+ λmψw ⟨a⟩ − Λ)(−µ+ λmγp ⟨a⟩ − Λ) − (λmγp)(λmψw

e
a2
f
) = 0 (B.4)

Λ2 + [2µ− λm ⟨a⟩ (ψw + γp)]Λ+
[λ2m2ψwγp(⟨a⟩2 −

e
a2
f
) + µ2 − µλm(ψw + γp)] = 0 (B.5)

b2 − 4ac = λ2m2 ⟨a⟩2 (ψw + γp)2 − 4λ2m2γpψw(⟨a⟩2 −
e
a2
f
) =

=λ2m2 ⟨a⟩2 (ψw − γp)2 − 4λ2m2γpψw

e
a2
f

(B.6)

Λ(1,2) = 1
2[2µ− λm ⟨a⟩ (ψw + γp) ± λm

ñ
⟨a⟩2 (ψw − γp)2 − 4γpψw ⟨a2⟩] (B.7)

Λ > 0

λ

µ
>

2
m ⟨a⟩ (ψw + γp) +m

ñ
⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩

(B.8)

R0 = λ

µ

m ⟨a⟩ (ψw + γp) +m
ñ

⟨a⟩2 (ψw − γp)2 + 4γpψw ⟨a2⟩
2 > 1 (B.9)

Obtaining the result of (3.29)

B.0.2 Activity Based Adoption

Starting from equation (3.33)

I t+∆t
a = I t

a − µ∆tI t
a + λm∆ta [1 + (ψ − 1)H(us − a)]N t

a

Ú
da
I t

a

N
+

+ λm∆tN t
a

Ú
da [1 + (γ − 1)H(ui − a)] aI

t
a

N
(B.10)

Integrate in
s
da both sides

73



Social distancing threshold analytical solution

Ú
daI t+∆t

a =
Ú
daI t

a − µ∆t
Ú
daI t

a+

+ λm∆t
Ú
daa(1 + (ψ − 1)H(m− a))Na

Ú
da′ I

t
a′

N
+

+ λm∆t
Ú
daNa

Ú
da′(1 + (γ − 1)H(n− a′))aI

t
a′

N
(B.11)

= I t − µ∆tI t + λm∆t(ψ ⟨a⟩ϵ,m + ⟨a⟩m,1)I
t + λm∆tΘt (B.12)

where

Θt =
Ú
da′(1 + (γ − 1)H(n− a′))aI

t
a′

N
(B.13)

For the equation for Θt, integrate in
s
da a(1 + (γ − 1)H(n− a))

Ú
da(1+(γ − 1)H(n− a))aI t+∆t

a =
Ú
da(1 + (γ − 1)H(n− a))aI t

a− 2005/06/28ver : 1.3subfigpackage

µ∆t
Ú
da(1 + (γ − 1)H(n− a))aI t

a+

λm∆t
Ú
da(1 + (γ − 1)H(n− a))a2N t

a

Ú
da′ I

t
a′

N
+

λm∆t
Ú
da(1 + (γ − 1)H(n− a))aN t

a

Ú
da′aI

t
a′

N
(B.14)

Θt+∆t = Θt − µ∆tΘt + λm∆t(ψγ
e
a2
f

ϵ,m
+ γ

e
a2
f

m,n
+
e
a2
f

n,1
)I t+

λm∆t(γ ⟨a⟩ϵ,n + ⟨a⟩n,1)Θ
t (B.15)

taking the continuous limit

∂tΘt = −µΘt + λm(ψγ
e
a2
f

ϵ,m
+ γ

e
a2
f

m,n
+
e
a2
f

n,1
)I t + λm(γ ⟨a⟩ϵ,n + ⟨a⟩n,1)Θ

t

(B.16)

Solve the system of differential equations with Jacobi matrix, the epidemic
threshold is obtained when the greatest eigenvalue is larger than zero

C
∂tI

t

∂tΘt

D
=
C

−µ+ λm(ψ ⟨a⟩ϵ,m + ⟨a⟩m,1) λm

λm(ψγ ⟨a2⟩ϵ,m + γ ⟨a2⟩m,n + ⟨a2⟩n,1) −µ+ λm(γ ⟨a⟩ϵ,n + ⟨a⟩n,1)

D C
I t

Θt

D
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Solve det(J − I(Λ′−µ
λm

) = 0
Λ = Λ′−µ

λm

((ψ ⟨a⟩ϵ,m + ⟨a⟩m,1) − Λ)((γ ⟨a⟩ϵ,n + ⟨a⟩n,1) − Λ) − (ψγ
e
a2
f

ϵ,m
+ γ

e
a2
f

m,n
+
e
a2
f

n,1
) = 0

(B.17)

Λ2 + [(ψ ⟨a⟩ϵ,m + ⟨a⟩m,1 + (γ ⟨a⟩ϵ,n + ⟨a⟩n,1)]Λ+

+ [(ψ ⟨a⟩ϵ,m + ⟨a⟩m,1)(γ ⟨a⟩ϵ,n + ⟨a⟩n,1) − (ψγ
e
a2
f

ϵ,m
+ γ

e
a2
f

m,n
+
e
a2
f

n,1
)] = 0
(B.18)

b2 − 4ac = [(1 − ψ) ⟨a⟩ϵ,m − (1 − γ) ⟨a⟩ϵ,n]2 − 4[(ψ − 1)γ
e
a2
f

ϵ,m
+ (γ − 1)

e
a2
f

ϵ,n
+ 1]

(B.19)

writing the determinant as

F(us, ψ, ui, γ) =[(1 − ψ) ⟨a⟩ϵ,us
− (1 − γ) ⟨a⟩ϵ,ui

]2−

+4[(ψ − 1)γ
e
a2
f

ϵ,us

+ (γ − 1)
e
a2
f

ϵ,ui

+ 1] (B.20)

Λ(1,2) = 1
2[2 + (ψ − 1) ⟨a⟩ϵ,m − (γ − 1) ⟨a⟩ϵ,n ± λm

ñ
F(us, ψ, ui, γ)] (B.21)

Λ > 0

recovering the result of (3.35)

λ

µ
>

2/m
2 + (ψ − 1) ⟨a⟩ϵ,us

− (γ − 1) ⟨a⟩ϵ,ui
+ λm

ñ
F(us, ψ, ui, γ)

(B.22)

R0 = λm

µ

2 + (ψ − 1) ⟨a⟩ϵ,us
− (γ − 1) ⟨a⟩ϵ,ui

+ λm
ñ

F(us, ψ, ui, γ)
2 > 1 (B.23)
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