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Abstract

Phase transitions describe abrupt changes in the physical properties of systems
and represent fundamental complex phenomena. While in the past, ideal models
were used in order to obtain analytical results, in the last decades much attention
has been directed towards more realistic representations. In fact, real materials
are naturally characterized by defects and inhomogeneities which, even in small
amounts, can have a strong influence on the features of second order phase
transitions. Understanding the impact of disorder, or randomness, on critical
statistical models is the main goal of this thesis. It represents the first step to
describe more peculiar phenomena such as random lines of impurities.

In particular this work focuses on the disordered Potts model on a square
lattice, which, as a generalization of the Ising model, is able to describe different
and broader classes of phenomena and phase transitions. The disorder is treated
using the replica method, while the study of criticality is carried out using
renormalization group techniques in real space and conformal field theories. In
addition, these approaches are used for two general disorder distributions which
are able to capture possible short-and long-range interactions.

The two disorder critical points found confirm the existence of new univer-
sality classes, and their stability study is considered to represent the renormal-
ization flow in the parametric space. The theoretical development is supported
by numerical results using Monte Carlo methods with non-local updates, with
a particular interest in the magnetization critical exponents. The study of the
relevancy of the random fixed points is carried out numerically in several cases
and provides additional evidence for the importance of disordered models.
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Introduction

Many-body problems are the paradigmatic example of Complex System, con-
sisting of a large number of interacting elements whose phenomena cannot be
easily derived or predicted[1]. Despite their complexity and the difficulties in
solving and describing them, these systems characterize the world we live in,
from the activity of biological molecules, to turbulent flows in liquids and glass
materials[2], from climate[3] and vehicular traffic[4] to the economic sector of
financial markets[5].

Modelling is a powerful tool that helps to reproduce features, but more im-
portantly to predict and control them. The dynamics of many complex phenom-
ena nowadays are still impossible to be solved analytically. Some approximation
may lead to solutions that grasp some properties, but are not always able to
capture in a satisfactory way both the microscopic and macroscopic character-
istics. A collective effort from different fields has been required to finding ways
for a further progress in this branch of physics [6] and has pushed research in
several domains. The role of mathematics, in particular, stood out for its ability
to describe physical phenomena and its potential to treat complex systems[7].

Amongst the possible complex phenomena studies, a great curiosity has
been directed towards transition between states which are controlled by physical
parameters like temperature or pressure. Whilst we may be familiar with the
usual transition of water between the liquid form and the gas one when brought
to the ebullition point, not all phase transitions include a change in the state of
matter, although they are all characterized by an abrupt change in the physical
features[8]. Magnets, for instance, at a given temperature, may loose or gain the
property to attract or repel other magnets, commonly known as ferromagnetic-
paramagnetic phase transition[9], although, there exists even more peculiar ones,
like superconductivity [10] where the resistance of a material to electrical current
drops to zero, or super-fluidity [11] in which there is a drop of the viscosity
between particles of a fluid.

When these collective phenomena were first studied, it was important to find
a scheme and a structure to deal with their complexity. It was the peculiarity
of the helium phase transition[12] that led to a first mathematical development,
using thermodynamical quantities to distinguish between broader types of phase
transitions. The Ehrenfest Classification [12] is still used nowadays, and it makes
use of the Gibbs free energy:

G = U − TS − pV (1)

where U is the internal energy of the system, T the temperature, S the entropy,
p the pressure and V the volume. First order phase transitions are defined
as the ones in which the first derivative of the free energy, with respect to a
thermodynamical control parameter, is discontinuous and second order phase
transition, the one in which the second derivative of the free energy becomes
discontinuous but not the first one. There exists higher order phase transition
which are simply linked to higher order discontinuous derivatives of the free
energy.
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In the description of these phenomena it comes natural to define physical
quantities which are able to characterize fully different phases, and these quan-
tities are called order parameters[13]. Whilst in some cases it is easy and direct
to define them, in some other there must be an ad-hoc study, for instance this
is what happens for liquid crystals for the description of the nematic phase:
in general symmetries or broken symmetries of systems become crucial for the
definition of these quantities[14]. It is important to have an understanding of
how they vary with respect to different external conditions and the way in which
they do it. Since they are strictly linked to the free energy of the systems, it is
useful to classify phase transitions based on their behaviour, and it is possible
to rephrase in an equivalent way the previous classification based on the pres-
ence of jumps in their expressions or derivatives. To better understand this, a
well-studied phase transition will be presented, the ferromagnetic-paramagnetic
one of the Ising model [15]. The energy, or hamiltonian, is given by:

HIsing = J
∑
⟨ij⟩

sisj + h
∑
i

si (2)

where si is the spin binary variable which describes the orientation of magnetic
dipoles of a material and can take values:

si =

{
+1

−1

The indexes i, j run over all the number of spins of the system, which can be
chosen to be N . The sum is over nearest neighbours, defined as the group of
spin closest to a given one, whilst J > 0 is an interaction term that allows
to define the energy magnitude of the interaction between spins. Finally h
is an additional parameter that describes the possible presence of an external
magnetic field. The order parameter which characterize the system, in this case,
is the magnetization density, given by:

m =
1

N

N∑
i=1

⟨si⟩ (3)

It is possible in this way to differentiate mathematically the two known phases
of the model. The paramagnetic phase is characterized by disorder, which gives
a null average magnetization, all the spins can be seen as random variables with
zero mean. The system in the ferromagnetic phase instead is characterized by
some order, spins choose one of two possible configuration in which the average
of the order parameter no longer remains null, but or negative or positive.

m =

{
0 paramagnetic

±m̃ ferromagnetic

This different behaviour is exactly what can be described as a change in the
property of the systems, which is said to undergo a phase transition if the order
parameter changes from one of its values into the other one.

3



The description of phase transition is mathematically related to the non
analyticity of the partition function[16], whose general form, in the canonical
ensemble, is:

Z =
∑
{s}

e−βH{s} (4)

with β = 1
kBT the Boltzmann factor. The summation is performed over all

the possible states of the spins, which in this case will be 2N . But since the
summation is amongst a finite set, and the finite sum of exponential quantities
does not cause singularities, the only way for these to appear is considering the
thermodynamical limit

N,V → ∞ such that
N

V
∃ finite

so that the sum is amongst an infinite amount of states. Phase transition can
therefore be of I order if the first derivative of the free energy F = −kBT logZ
is discontinuous or II order or continuous if the first derivative is continuous
but the second one is discontinuous. This is exactly equivalent to the previous
classification, since the Helmholtz free energy is linked to the Gibbs one through
a simple Legendre transformation, which entails:

F = G− pV (5)

Therefore the singularities of G and its derivatives are reflected in the singular-
ities of F . If one considers the related order parameter for physical systems, it
can be simply connected to the free energy as below:

m = − 1

N

∂F

∂h

∣∣∣∣
T=T∗

so the classification of the phase transition can be done in terms of the order
parameters and below it will be given an example.

Figure 1: Phase diagram h-T of the Ising model for dimension d ≥ 2. Different
behaviours of the magnetizations with respect to the temperature and external
field are shown[17].

In Figure 1 it is shown how the phase transition can occur in different ways
depending on the choice of the external parameters T , and h. The general

4



phase diagram is given by the panel (a), where the critical line separating the
two different phases is highlighted. Let’s focus on line (i). At h = 0 for T >
Tc, the system is in the paramagnetic phase, then at the critical temperature,
it enters in the ferromagnetic phase, so below the critical temperature T <
Tc the magnetization density has a non null value. The exact value of the
magnetization density can be seen in the second panel (b) where it is clear how
the order parameter is characterized by a continuous behaviour. Although the
derivative does not change continuously, this will describe a second order phase
transition (consisting in a jump in the second derivative of the free energy). In
the presence of an external magnetic field h ̸= 0 we expect the system to be in
its ferromagnetic phase and this is what happens for T ̸= Tc. Line (iii) describes
how moving from a negative external magnetic field to a positive one brings the
system to change continuously, for T > Tc, its magnetization. The other case of
interest can be explained following line (ii), again moving at a fixed temperature
but smaller than the critical one T < Tc. As it can be seen in panel (c), the
magnetization no longer changes in a continuous way, but, by varying the sign
of h, a jump in m appears.

Another interesting analysis which can be carried out is related to the study
of the covariance of spins at different lattice points. This is called correlation
function

G(|i− j|) = ⟨sisj⟩ − ⟨si⟩⟨sj⟩ (6)

and it gives information on how much two spins can influence each other at a
given distance. This quantity has in general an exponential behaviour:

G(|i− j|) ∝ e−
|i−j|

ξ

that allows to define a new quantity representative of the characteristic length
decay of correlation, called correlation length ξ [18]. For first-order phase tran-
sitions, at critical temperature, the correlation length ξ remains finite at the
critical temperature, whereas for second-order phase transitions, the power low
behaviour of ξ leads to its divergence at criticality. Whilst in physics it is
fundamental to distinguish different scales of the systems (as for instance in
hydrodynamics fluids can be considered as continuous media neglecting the dis-
creetness of the particles) this cannot be longer done in the latter. As a result,
all scales are strictly connected to each other and cannot be analyzed indepen-
dently. Without the presence of a characteristic length the system acquires the
property of being scale-invariant or self-similar [13]. The point at which this
criticality occurs defines critical phenomena[13]; they have been widely studied
in statistical mechanics due to their interesting properties. In particular criti-
cal systems which describe very different physical events, may share equivalent
type of behaviour for their observables near criticality. This allows to intro-
duce the concept of universality [13] which consists on systems who belongs to
classes that share equivalent and universal properties despite their domain of
applications and modeling. In general this simplify a lot the possibility to treat
a problem at criticality since if a universality class is known, even hard-to-treat
problems, with complex interaction, can be perfectly mapped in any other model
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belonging to the same class. Therefore, in general, problems can be expressed
in terms of a much simpler model which is able to capture all the physics of the
phenomenon in an equivalent way.

The importance in statistical physics of the Ising model lies in these common
behaviours for a great number of different phenomena, all of which can share
equivalent phase transitions. Moreover, despite being a toy model its complexity
can be increased by simple generalization. For instance, this led to the so-called
Potts-model which hamiltonian is written below, in the absence of a magnetic
field:

HPotts = J
∑
<ij>

δsi,sj (7)

where J , the interaction term, is still taken as in the Ising case (J > 0), this
ensures the study of ferromagnetic behaviours only. The major difference in this
case relies on the spins, in fact in general they can take values of Q such that

si = {1, 2, ..., Q} ∀ i ∈ {1, ..., N}

We will focus on a 2-dimensional lattice with only nearest neighbours interac-
tions. However, we will begin to introduce additional details for a more in depth
description of the model. In particular the interactions have been chosen taking
into account periodic boundary conditions (PBCs), in such a way that all the
spins will have the same number of neighbours nn = 4 ∀ i ∈ {1, ...L2}, where L
is the linear size of the lattice. The energy contributions due to the interactions
are given only by spins in the same group of values and this is mathematically
described by the presence of a Kronecker delta. It is easy to check that if the
spins can have only two possibilities the model is perfectly equivalent to the pre-
vious Ising one (despite for a constant term which does not change the physical
properties of the model but only causes an energy shift). While for Q = 1, it
corresponds to Percolation model which usually refers to a class of models that
describe geometric features of random media[19], and, for instance, can describe
the possibility for a fluid in a porous medium to reach the core of the material
or the spread of an epidemic. The Potts hamiltonian is represented for better
visualization of the model in Figure 2.

The Potts model can undergo both type of phase transition depending on
the number of possible values of the spins [20]:{

Q ≤ 4 II order

Q > 4 I order
(8)

The order parameter for the Potts model must be generalized[21] due to
the different values of the spins and cannot longer be taken as the normalized
average of the spins. For this reason, two quantities must be introduced:{

Ni =
∑N

j=1 δsj ,i

ρi = Ni

N
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Figure 2: Graphical representation of the Potts model. Here the spins can take
Q=3 values, which are shown as colours: green, blue and red. The interaction is
taken between nearest neighbours and constant, shown through black straight
lines. For simplicity the boundary conditions in this case have been taken as
open ones.

where i = 1, ..., Q, Ni represents the total number of spins with a given value,
while ρi represents its corresponding density. The magnetization will be defined
as:

m =
Q(max{ρi}) − 1

Q− 1
(9)

which corresponds to different possible ordered phases. In this thesis we will
be interested only on the following values Q ∈ {1, 2, 3} which coincide to the
following critical models:

Q =


1 Percolation

2 Square Ising

3 3 − Potts

(10)

In general, at criticality, there exists a simple relation to link the values of
the spins, the critical temperature and the interaction magnitude, through the
expression [22]:

βcJ = log(1 +
√
Q) (11)

The Potts model has been largely studied in these above case, and its prop-
erties, physics, criticality and classes of universality are well known (for Q ̸= 1).
Further developments have been carried out with an additional generalization,
trying to make the model less ideal and more realistic. In fact, until now, the
interaction term has always been taken as homogeneous and constant, although
real materials in nature are always characterized by inhomogeneities and impu-
rities. There exists even some interesting and peculiar phenomena caused by
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disorder, such as random lines of impurities [23]. The disorder can be taken into
account in the model by rewriting the Hamiltonian as follows:

Hdis
Potts =

∑
<ij>

Jijδsi,sj (12)

where Jij is taken as a random variable. Without adding further complexity, we
will focus once again only on ferromagnetic cases, therefore choosing Jij > 0.
The simplest way to implement this randomness, is to take the random variable
between two possible values: Jij ∈ {J1, J2} [24]. There could be other options,
such as three or more variables, although two are sufficient to describe disorder
at this level, more complex implementations would not enrich the physical prob-
lem of interest, in fact we will see in the following section 2 that the relevant
quantities which fix the problem are the cumulants of the disorder distribution.
In Figure 3 it is shown how the previous representation is actually changed when
the presence of defects in the lattice is considered.

Figure 3: 3-states random Potts model on a square lattice. The interaction term
is no longer constant but it is a random variable, then each bond is representative
of an interaction between two spins with two possible different values, J1 and
J2. For graphical representation they have been shown with a black straight
line and a grey one.

This model, contains in its formulation the previous one since if we consider
the interaction in terms of an additional random variable σij :

Jij =
J1 + J2

2
+ σij

J1 − J2
2

it is simple to check that this construction allows the bimodal disorder:

Jij =

{
J1 σij = +1

J2 σij = −1
(13)
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With this, it is possible to see better how the disordered Potts model, sometimes
called Random Bond Potts model, contains its pure formulation:

Hdis
Potts =

∑
⟨ij⟩

Jijδsisj =
∑
⟨ij⟩

(
J1 + J2

2
+ σij

J1 − J2
2

)
δsisj

Hdis
Potts = HPotts +

∑
⟨ij⟩

σij
J1 − J2

2
δsisj (14)

To study this model, two additional parameters must be introduced, the first
one will be the disorder strength

∆J = J1 − J2 (15)

this is a measure of how far this generalized Random Potts model is from the
previous classical, pure, one. In fact when the values of the interaction are equal
J1 = J2 then we fall back in the previous case, and the quantity gives: ∆J = 0.
Sometimes, it will be useful even to consider an equivalent quantity, whose name
will still be disorder strength, being just a different formulation of it:

r =
J1
J2

(16)

Due to symmetry reasons, it can be chosen without any loss of generality J1 ≥
J2. This will imply that r ∈ [1,∞); the pure model is recovered when the
fraction is r = 1. The final additional parameter to be considered, is related to
the correlation of the random variable and therefore of the bonds’ interaction.
If one takes two bonds J0 and Jd, whose distance is denoted by d, as shown in
Figure 4, their correlation can be defined as:

⟨J0Jd⟩ ∝ |d|−a for d >> 1 (17)

The quantity a will be called correlation exponent. Depending on the values
of this quantity, there could be two different possible phenomena to describe.
When a ≥ 2, in a 2 dimensional system, the power low distribution has a fast
decay and will be referred to Short-Range disorder whilst in the case of a < 2 this
does not occur and it will correspond to the so-called Long-Range disorder [23].

This disorder that we are aiming to describe may influence a lot the macro-
scopic behaviours; sometimes randomness can shift the critical temperature up
to destroying completely the presence of phase transitions, or it may lead to new
physical behaviours[23][25]. A first important step to understand this, is charac-
terizing the disorder in terms of the dynamical behaviour of the impurities. For
the treatment of interest, in fact, it will be focused only on quenched disorder,
meaning that the impurities are considered as parameters frozen in time[26].
This will allow to consider the probability distribution of the interactions as a
function of a set of parameters that will not change in time. Considering the
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Figure 4: Representation of two bonds at a far distance d to characterize the
correlation between interactions

variable σ, the generic partition function will result in the parametric depen-
dence of these degrees of freedom such that:

Z({σ}) =
∑
{s}

e−βH({s},{σ})

where it has been written explicitly the dependence of the previous Hamilto-
nian (14) with respect to the configuration of spins {s} and disorder {σ}. The
corresponding free energy will be:

F ({σ}) = − 1

β
logZ({σ})

Each possible configuration of the disorder will be described by a probability
distribution P ({σ}) such that the free energy in the thermodynamical limit
must be equal to the free energy averaged over these degrees of freedom

F =
∑
σ

F ({σ})P ({σ})

therefore:

F = − 1

β
logZ({σ}) (18)

This quantity is called quenched average free energy. Moreover, since the free
energy satisfy the self-average property, averages over the disorder are equivalent
to their typical value [27]:

Ftyp = F for N, V → ∞

so that all the relevant quantities can be derived from the computation of this
quantity F and this is what will be done in this work.
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When introducing these defects, in this framework, it comes natural asking:
are the critical properties of the model affected by the disorder? If so, there
still exists a critical behaviour or does it disappear? If there is still a phase
transition what are the differences with the well known ones of the pure model?
This thesis, structured in three different parts, aims at providing answers to
the above questions with a particular interest in recognizing the presence of
different universality classes and their domain of existence by both analytical
and numerical techniques.

In the first part statistical physics tools and methods will be presented,
starting from a general introduction to Renormalization Group (RG) in real
space. The replica trick for the analytical treatment of disorder will be reported
as well as the tool of Conformal Field Theory (CFT) and the perturbative
approach. Additionally an insight on numerical techniques is given with a focus
on the theoretical foundations of Monte Carlo methods and some of the most
relevant algorithms which will be later used.

In the second section the techniques previously presented will be applied
to the Short-Range Potts model. A dynamical equation of the parameter of
the model will be obtained through RG up to 2-loop-order revising some of the
computations made by Dotsenko, Picco and Pujol from a paper published in
1995 [28]. The fixed points will be computed to find the class of universality
corresponding to the SR case. The stability of these critical phenomena will be
carried out by means of nonlinear dynamical equations and the corresponding
phase and bifurcation diagrams will be reported. A numerical investigation of
the existence of these two universality classes will be presented, focusing on the
computation of the magnetization critical exponents for a direct comparison
with the analytical computation in the case of the 3-Potts model. Furthermore,
a numerical perturbative approach will be implemented for a precise descrip-
tion of the renormalization flow near the critical pure point in order to obtain
numerically its corresponding renormalization disorder eigenvalue.

In the last section it will be studied in an analogous way the Long-Range
disordered Potts model, where a different disordered class of universality will
be found with respect to the previous one. RG computation will be carried out
up to 1-loop-order based on recent computations of Chippari, Picco and San-
tachiara on a paper published in 2023[29]. Fixed points will be studied in depth
providing stability conditions by analytical and graphical means. Once again,
numerical result will be presented, this time for 1,2,3-Potts models, through
the perturbative technique developed before and providing disorder eigenvalues
for each case, comparing the results with the theoretical predictions. This nu-
merical method and the corresponding outcomes, in agreement with analytical
computations, will represent the main, and novel, results of this work.

In the end of the thesis, general conclusions will be given, with a final recap
of the methods used, the goals reached, some open questions left and possi-
ble additional scenario to gain a better understanding of the physics of this
disordered model.
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1 Analytical and Computational Tools 1

1.1 Renormalization Group in real space [30]

1.1.1 General Framework

The whole idea of renormalization group relies on expressing a problem, modi-
fying the scale, in terms of a simpler one if possible, which keeps unchanged the
physical properties of the system. This can be done by exploiting the property
of critical systems to be scale-invariant. Having an equivalent rescaled model
requires parameters to be varied, and this creates the so called renormalization
group flow in phase-space of the parameters involved in model. A mathematical
example of a transformation of a system can be seen through the coarse-graining
procedure, the focus will be from now on to work only in the real space, although,
momentum space methods are widely used. Considering for instance a square
Ising model described by the lattice parameter a one can think to rewrite the
Hamiltonian by grouping spins by nine (3 · 3). They can be put together into
a larger spin following a given rule (either the simple sum of the spins, or ma-
jority rule for instance), in such a way that the lattice rescales by a factor 3.
This transformation leaves unchanged the property of the system and there-
fore the partition function at criticality. In this framework one can consider a
more generic transformation indicated by R which acts on the parameters of
the model {K} in such a way to produce a new set of parameters following the
expression:

{K ′} = R({K})

For instance given a generic Ising model (2) the set of parameters is:

{K} = {J, h}

and a possible transformation could be considering the coarse grain mentioned
before, in which 9 spins can be grouped together as in Figure 5.

Due to the equality of the partition function before and after the above
transformation for the self-invariant property:

Z =
∑
{s}

e−H({s}) =
∑
{s′}

e−H′({s′}) = Z ′ (19)

The Boltzmann factor has been absorbed in the Hamiltonian definition and for
here the set {s′} refers to the new variable coming from the coarse-graining
procedure of grouping spins. The transformation can then be iterated till it
reaches a fixed, point, this means that an additional transformation R will
leave the parameters unchanged. Mathematically it can be expressed as:

{K∗} = R({K∗})

1In this first part of the thesis, at the beginning of sections or subsection, there will be
reported references of textbooks or lecture notes and papers which have been used to provide
the introduction to these well-known topics
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Figure 5: Example of transformation R on a square Ising model. each set of 9
spins, as in the central panel, are grouped together to form spins on a square
lattice with three times the previous size

The equations describing the flow of parameters can be linearized in the vicinity
of the fixed point through Taylor expansion:

K ′
a ∼ K∗

a +
∑
b

∂K ′
a

∂Kb

∣∣∣∣
K=K∗

(Kb −K∗
b ) (20)

where we can take the Jacobian entries Tab =
∂K′

a

∂Kb

∣∣
K=K∗ . Considering the set

of left eigenvectors {e} it can be written the corresponding secular equations:∑
a

eiaTab = λieib

where {λ} are the set of corresponding eigenvalues.
Generally the Jacobian is not symmetric, therefore there is no reason to

assume that the right eigenvector are equivalent to the left eigenvectors so what
follows will be considered for this specific set. One can introduce the scaling
variables

ui =
∑
a

eia(Ka −K∗
a)

which are linear deviation of the parameters at the fixed points. They transform
in a multiplicative way through renormalization:

u′
i =

∑
a,b

eiaTab(Kb −K∗
b ) =

∑
b

λieib(Kb −K∗
b ) = λiui (21)

One can now define the fundamental quantities quantities: λi = byi where yi
are the renormalization group eigenvalues and b is the rescaling of the lattice
size a′ = ba. Three different cases can be distinguished:

1. yi > 0
relevant eigenvalue, the iterations of the transformation bring away from
the fixed point

2. yi < 0
this defines an irrelevant eigenvalues, successive iteration will lead the
parameter to smaller values

13



3. yi = 0
called marginal case, the behaviour cannot be known without further in-
formation.

1.1.2 Scaling of the free energy and critical exponents

It can now be taken into account the free energy which, in the general case, will
depend on the parameters of the model:

f({K}) =
1

N
log(Z({K}))

Now applying the renormalization equations, due to (19) a new term appears
which is constant and related to the coupling, it will be denoted g({K}) such
that

e−Nf({K}) = e−Ng({K})−N ′f({K′})

where N ′ = b−dN which gives the fundamental relation:

f({K}) = −g({K}) + b−df({K ′}) (22)

which represents an inhomogenous transformation. However, since we are inter-
ested just in the singular behaviour of the free energy, we can simply consider
the homogeneous relation dropping the additional term g giving the relation:

fs({K}) = b−dfs({K ′}) (23)

For the following part we focus on the computation of critical exponents con-
sidering the simple example of the Ising model, in which the number of physical
parameters it depends on is equal to two. This corresponds to consider two
relevant terms in the Hamiltonian, a thermal one (therefore related to the tem-
perature) and one related to the external magnetic field. They will be denoted
as ut, uh with corresponding eigenvalues yt and yh. The equation of the free
energy becomes:

fs(ut, uh) = b−dfs(u
′
t, u

′
h) = b−dfs(b

ytut, b
yhuh)

Iterating now the renormalization, for instance rescaling n times the size of the
system, we get the recursive relation:

fs(ut, uh) = b−ndfs(b
nytut, b

nyduh) (24)

Since ut and uh are both relevant variables, meaning that the eigenvalues are
positive, the free energy will depend on increasing quantities. Therefore, to
avoid problems in the equation, we stop at a given iteration in such a way that

|bnyt | = ut0

where ut0 is arbitrarily chosen but it is fixed to be sufficiently small to ensure
the linear approximation’s (20) validity.

14



This allows to perform the following change of variable:

bn =

∣∣∣∣ut0

ut

∣∣∣∣
fs(ut, uh) =

∣∣∣∣ ut

ut0

∣∣∣∣ d
yt

fs

(
± ut0,

∣∣∣∣ ut

ut0

∣∣∣∣
−yh
yt

uh

)
Finally this expression can be rewritten in terms of the original reduced variable
t, h:

fs(t, h) =

∣∣∣∣ tt0
∣∣∣∣ d
yt

Φ

(∣∣∣∣ tt0
∣∣∣∣
−yh
yt h

h0

)
The dependence on the left hand side of the equation, for t0, is not present
therefore it cannot be present on the right hand side either. The function
defined Φ is called scaling function and from this expression one can compute
all the critical exponents. The critical exponent related to the specific heat is
given, for instance, by the following computation:

∂2f

∂t2

∣∣∣∣
h=0

which will be developped before. We start from the computation of the first
derivative:

∂f

∂t
=

∣∣∣∣ tt0
∣∣∣∣ d
yt

−1
d

ytt0
Φ

(∣∣∣∣ tt0
∣∣∣∣
−yh
yt h

h0

)
+

∣∣∣∣ tt0
∣∣∣∣ d
yt

Φ′
(∣∣∣∣ tt0

∣∣∣∣
−yh
yt h

h0

)∣∣∣∣ tt0
∣∣∣∣
−yh
yt

−1−yh
ytt0

h

h0

Now it can be computed the second derivative, since this will be given by the
contribution of fours terms, the only quantity which we will be interested is the
non-null one when we set to zero the magnetic field. The only resulting term
will be:

∂2f

∂t2

∣∣∣∣
h=0

=

∣∣∣∣ tt0
∣∣∣∣ d
yt

−2
d

ytt20

(
d

yt
− 1

)
∝ |t|

d
yt

−2

such that the specific heat exponent is:

α = 2 − d

yt

In a completely analogous way one can get through simple derivation of the
free energy the following relations (with some additional manipulation for the
computation of δ):

∂f

∂h

∣∣∣∣
h=0

∝ (−t)
d−yh

yt

∂2f

∂h2

∣∣∣∣
h=0

∝ |t|
d−2yh

yt

15



∂f

∂h

∣∣∣∣
t=0

∝ h
d
yh

−1

which gives the following scaling exponents:

β =
d− yh
yt

, γ =
d− 2yh

yt
, δ =

d

yh
− 1

In general there are not all independent, but there exist different scaling relations
which link them:

α + 2β + γ = 2 Rushbrooke

β + γ = βδ Griffiths

2 − α = dν hyperscaling (25)

1.1.3 Scaling of the correlation length

An additional important analysis is related to the critical exponent of the cor-
relation length, which is the quantity already introduced, but defined in more
details below:

G(r1 − r2, H) = ⟨s(r1)s(r2)⟩H − ⟨s(r1)⟩H⟨s(r2)⟩H

where H is taken as the hamiltonian without external field term. The pres-
ence of this additional magnetic field parameter however, can be added in the
Hamiltonian to link directly G to the partition function:

G(r1 − r2, H) =
∂2lnZ

∂h′(r′1)∂h′(r′2)

∣∣∣∣
h=0

One now can apply the renormalization procedure, and since the field changes
as follows: h′(r′) = byhh(r), due to (19) it must be true:

∂2lnZ ′

∂h′(r′1)∂h(r′2)
=

∂2lnZ

∂h(r1)∂h(r2)

The first expression is the renormalized correlation length, which can be written
in terms of the first lattice length through the rescaling b :

G

(
r1 − r2

b
,H ′

)
=

∂2lnZ ′

∂h′(r′1)∂h(r′2)

Now, it is possible to link through some rescaling arguments the correlation
function of the original lattice:

G

(
r1 − r2

b
,H ′

)
= b2(d−yh)G(r1 − r2, H)

This can be expressed in terms of the parameters and setting the field to zero

G(r, t) = b−2(d−yt)G

(
r

b
, byt t0

)
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Repeating the same procedure that led to (24), renormalizing n times, stopping
sufficiently close to a point in which the linear expansion is still valid, we will
obtain a scaling function which will depend on a critical exponent such that:

ν =
1

yt
(26)

1.1.4 Scaling operator and scaling dimensions

When in these statistical models the continuous limit is taken, the theories
become equivalent to quantum field theories, therefore one can speak about
fields as operators through. One can then write, given a set of operators, a
univocal equivalence to a linear combination of the scaling fields:∑

i

uiϕi =
∑
a

(Ka −K∗
a)Sa

and it is possible to show that as |r1 − r2| → ∞ it is possible to relate the
renormalization group eigenvalue of a scaling variable to the behaviour of the
fixed point of the two point correlation function of the operator considered such
that:

⟨ϕ(r1)ϕ(r2)⟩ ∝ |r1 − r2|−2hi (27)

the quantity hi is called scaling dimension of the scaling operator and this
relation can be explain taking the continuous limit of this quantity;

∑
i

∑
r

uiϕi →
∑
i

ui

∫
ϕi(r)

ddr

ad

where a here is the lattice size that under renormalization becomes a′ = ba. If
under renormalization we must ensure the partition function to be invariant we
must require that:

ϕi(r) → bhiϕi(r)

This transformation allows in general to compute how the N-point correlation
function behaves, and it can be shown below:

⟨ϕ(r1)ϕ(r2)...ϕN (rN )⟩ ∝ R−x1−x2−...−xN

〈
ϕ

(
r1
R

)
ϕ

(
r2
R

)
...ϕ

(
rN
R

)〉
(28)
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1.2 Random systems and disorder treatment [30]

1.2.1 Replica Method

The quenched free energy (18) requires the computation of the average over the
logarithm of the partition function which is hard to treat. In disordered systems
there exist a way to overcome this, called replica trick and which consists on
the following equality:

logZ = lim
n→0

Zn − 1

n
(29)

This allows to rewrite the quenched average in the following way:

F = − 1

β
lim
n→0

Zn − 1

n
(30)

The series expansion of the quantity involved is called replicated partition func-
tion, which can be seen as n identical copies of the initial system, therefore each
of them will be identified by their own states and configurations.

One can therefore write:

Zn({σ}) =
∑
{sa}

e−
∑

a H({sa},{σ})

where a is the index of the replica such that a ∈ {1, ..., n}. The corresponding
averaged quantity is:

Zn =
∑
{σ}

∑
{sa}

P ({σ})e−
∑

a H({sa},{σ})

and the two sums can be exchanged giving

Zn =
∑
{sa}

∑
{σ}

P ({σ})e−
∑

a H({sa},{σ})

This quantity can be treated, and can lead to possible solutions of the problems
of interest by later requiring the limit of vanishing replicas n → 0. An example
of this disordered calculation is given below.

1.2.2 Harris criterion

Let’s consider the following Hamiltonian:

H = H∗ +
∑
i

σiϵ(i)

where ϵ represent the local energy density and i is one of the N vertex of the
square lattice with a systems size of L, such that it runs in {1, ..., L2}. The
quenched average partition function becomes:

Zn =
∑
{sa}

∑
{σ}

P ({σ})e−
∑

a H∗
a−

∑
a

∑
i σiϵa(i)
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where a takes into account the replica of the systems. The idea now is to apply
a cumulant expansion, more in detail:

Zn =
∑
{sa}

e−
∑

a H∗
a

∑
{σ}

P ({σ})e−
∑

a

∑
i σiϵa(i)

Zn =
∑
{sa}

e−
∑

a H∗
ae−σ

∑
a

∑
i ϵa(i)+

1
2

∑
a,b

∑
i,j(σ(i)σ(j)−σ2)ϵa(i)ϵb(j) + O(ϵ3) (31)

where additional higher order terms have been neglected. The relevance of the
operator ϵϵ that couples different replica, therefore for a ̸= b can be computed
through the scaling of its two point percolation function:

<
∑
a̸=b

ϵa(i)ϵb(i)
∑
c̸=d

ϵc(j)ϵd(j) >∼ 1

|i− j|4hϵ

given hϵ = d − yϵ the local energy field dimension and yϵ the renormalization
eigenvalue. In particular we recall that due to (26):

d− yϵ = d− 1

ν

Therefore the perturbation due to randomness, given by ϵϵ, whose dimension is
related by a factor two with the one of the operator ϵ, gives

y = d− hϵϵ = d− 2hϵ =
2

ν
− d

which is irrelevant for y < 0 and equivalent to the condition:

dν > 2

Due to the hyperscaling relation (25) this previous result can be simply encoded
in the condition of the critical exponent of the specific heat to give the so-called
Harris criterion for the relevancy of the disorder:

α < 0

Even though the randomness is irrelevant shift to the critical temperature (to
lower values) occurs, meanwhile when the operators become relevant a new fixed
point must be found. Although all of this is consistent if and only if the disorder
is uncorrelated. When this condition does not hold anymore, there exist a
generalization called, Extended Harris criterion or Weinrib-Halperin conjecture
[23], which has been relevant in the disorder studies. In fact it generalise the
previous result by taking the same expression of the correlated disorder given
by equation (17) and states that the disorder is irrelevant if for a < d

α < 2 − 2
d

a

while for d > a we find the previous condition. Moreover they provided, through
heuristic arguments, a relation for correlation exponent:

ν =
2

a
(32)
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1.3 Conformal Field theory and Perturbative RG

1.3.1 Conformal Field Theory [31]

An important tool that can be exploited for the study of critical models is the
one of conformal field theories. To briefly introduce it, we need to understand its
connection with the type of analysis we would like to carry out throughout the
thesis. CFT is strictly related to quantum field theories. But then the question
would be how statistical mechanics and QFT are linked to each other. There are
different way to connect and construct from classical Hamiltonian effective field
theories, but the similarities go beyond direct formal transformations from the
one to the other. Despite their differences, the ways some problems are tackled
are analogous: for instance the computation of averages in statistical mechanics
makes use of the partition function and it can be compared to the computation
of averages of path integrals in QFT with a given action[32]. Conformal field
theory is a core element of QFT since it is a quantum field theory that is invariant
under a conformal group. The most general way to define CFT, is considering
the set of transformation for spacetime that leaves angles unchanged. The most
simple transformation that follows this is a scale one. Taken for instance an
equilateral triangle with given length l for instance, the transformation l′ =
λl applied to each segment will rescale it to another equilateral triangle, in
which angles are unchanged. In general conformal transformation are quite
general and when applied to a given space, they correspond to the change of
its metric. Although, if we think to systems that are characterized by scale
invariant, they will necessarily have the property to be invariant under scale
transformation, by definition. But then any theory with a scale-invariance will
be conformally-invariant. Since all critical phenomena, due to the divergence of
the correlation length are characterized by this property, they will necessarily be
related to conformal theories. Some of the computations presented, for instance,
were already main results of CFT, in fact the scaling behaviours of observables,
which are governed by the set of critical exponents, are strictly connected to
the relevant operators of CFTs. Even the renormalization procedure seen is
well connected to CFT. When we have described in the equations of parameters,
after rescaling the system, the presence of fixed point whose stability controls the
renormalization group flow, a generic point in the phase diagram can actually
be seen as a QFT described by some given coupling set. Since fixed points
are actually conformal field theories, any QFT can actually be seen as their
perturbation, and this is exactly the idea to apply the pertrubative RG technique
presented below.

1.3.2 Perturbative Renormlization group [30]

If a system has two fixed points that are close to each other for instance, a
perturbative analysis can be applied from a known fixed point to reach the
other one; this is useful to deduce possible new universality classes by analyzing
the renormalization group flow. The main idea relies on the description of an
Hamiltonian as the sum of two contributions similarly to what has been done
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previously with the random Potts model:

H̃ = H∗ + Hp

where H∗ represent the hamiltonian at the known fixed point, meanwhile Hp

represents a perturbation. In the following, it will be taken of the general from:

Hp =
∑
i

gi
∑
r

ahiϕi(r)

with gi the set of perturbation coefficients or parameters, each associated to
a generic field ϕi. Since it is necessary to calculate the exponential of this
hamiltonian for the computation of the partition function, the expressions that
appear must be adimensional. The quantity ahi takes into account the field
dimensionality [ϕi] = L−hi such that adimensionality is ensured:

Z =
∑

states

e−H∗−
∑

i gi
∑

r ahiϕi(r)

In critical phenomena, the divergence of the correlation length allows to replace
the summation over discreet lattice points, due to a << ξ, with a continuous
limit: ∑

r

→ 1

ad

∫
ddr

therefore one is able to write:

H̃ = H∗ +
∑
i

gi
1

ad−hi

∫
ddrϕi(r)

and performing an expansion of the partition function in terms of the coupling
one can obtain:

Z = Z∗
[
1 −

∑
i

gi
1

ad−hi

∫
ddr⟨ϕi(r)⟩

+
1

2

∑
i,j

gigj
1

a2d−hi−hj

∫
ddr1

∫
ddr2⟨ϕi(r1)ϕj(r2)⟩+

− 1

3!

∑
i,j,k

gigjgk
1

a3d−hi−hj−hk

∫
ddr1

∫
ddr2·

·
∫

ddr3⟨ϕi(r1)ϕj(r2)ϕj(r3)⟩ + o(gigjgkgl)

]
(33)

which represents the first starting point to obtain the renormalization group
equations. The renormalization transformation is performed now through a
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rescaling of the system: a → ba where b it is chosen as an infinitesimal displace-
ment: b = 1+δl, δl << 1. Exploiting the property of (19) it is possible to write
the new rescaled partition function. Focusing on the first term:∑

i

gi
1

ad−hi(1 + δl)d−hi

∫
|r>a(1+δl)|

ddr⟨ϕi(r)⟩

which implies
gi → gi(1 + δl)d−hi ∼ gi + gi(d− hi)δl (34)

The second term gives a less intuitive result, first of all it is important to split
the integral in two contributions exploiting the additive property of integrals:∫

|r1−r2|>a(1+δl)

=

∫
|r1−r2|>a

−
∫
a<|r1−r2|<a(1+δl)

while the first term give the simple original contribution, the second one pro-
duces an effective change.

To understand the correct way to proceed it must be introduce the concept
of product operator expansion (OPE). Given the correlation function expression

⟨ϕi(r1)ϕj(r2)Φ⟩

where it has been denoted the arbitrary product of all other operators with the
notation Φ = Πlϕl(rl), it is wanted to study the behaviour in the case in which
|r1 − rl| << |r1 − rl| with l > 2, and in this limit it is possible to write

⟨ϕi(r1)ϕj(r2)Φ⟩ =
∑
k

Cijk(r1 − r2)

〈
ϕk

(
r1 + r2

2

)
Φ

〉
(35)

Moreover the operators product Φ, that appears on both sides, is independent
from ϕ products, and can be simplified.

⟨ϕi(r1)ϕj(r2)⟩ =
∑
k

Cijk(r1 − r2)

〈
ϕk

(
r1 + r2

2

)〉
(36)

Due to the scaling argument of the coefficients it must hold the relation:

Cijk(r1 − r2) =
cijk

|r1 − r2|hi+hj−hk
(37)

This expansion allows to compute the previous integral:

1

2

∑
i,j

gigj
1

a2d−hi−hj

∫
a<|r1−r2|<a(1+δl)

ddr1d
dr2⟨ϕi(r1)ϕj(r2)⟩ =

=
1

2

∑
i,j

gigj
ahi+hj−hk

a2d−hi−hj

∑
k

Cijk(r1−r2)

∫
a<|r1−r2|<a(1+δl)

ddr1d
dr2

〈
ϕk

(
r1 + r2

2

)〉
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=
1

2

∑
i,j

gigj
ahi+hj−hk

a2d−hi−hj

∑
k

cijk

∫
a<|r1−r2|<a(1+δl)

ddr1d
dr2

1

|r1 − r2|hi+hj−hk

If one consider that the integration produces a factor Sda
dδl where Sd is the

area of the hyper-sphere of unit radius in d dimensions, one has the following
rescaling:

gk → gk − 1

2
Sd

∑
ij

gigjδl (38)

and putting together (34), (38) the overall contribution is:

dgk
dl

= (d− xk)gk − 1

2
Sd

∑
ij

gigj + o(gigjgl)

therefore, considering the known relation one obtains the general expression:

dgk
dl

= ykgk − 1

2
Sd

∑
ij

gigj + o(gigjgl) (39)

at the first loop-order. The second loop order has an increasing complexity, and
will be treated in more details in the specific case of the Potts model in section
2.1.3. This concludes a brief introduction to the techniques which will be used for
the analytical computations of the thesis and that require the renormalization
method, but more will be said in each specific case considered.
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1.4 MonteCarlo methods

1.4.1 Towards a stochastic development for simulations [33]

In physics the importance of the formalism used to treat problems has always
been a core element to comprehend systems physical features. Newton’s me-
chanics, which posed the basis for the equation of motion in classical physics,
were found not to be appropriate to tackle certain phenomena, and this pushed
the search for new ways to describe and solve problems.

Fundamental branches of physics like relativity and quantum mechanics were
developed following this need to shift from the common prospective trying to find
a language who could suit the problems which wanted to be treated. But not all
new descriptions were born just from this need, sometimes even a simple change
of point of view on problems already known and solved would have pushed new
methods. This is what happened for instance for analytic mechanics developped
by Lagrange and Hamilton, they rethought classical mechanics in terms of new
and equivalent equation of motions, solving already known problems in different
manners and generalizing them.

Statistical physics represents another paradigmatic example of necessary lan-
guage transformation, and due the relevancy on the subject which will be treated
it will be understood more in details its impact. If one tries to describe N Avo-
gadro number of particle of a perfect gas confined in a cubic box, the possibility
of solving Newton’s equation to know the trajectories and the velocities at each
time steps, not only is not feasible but it lacks consistency in order to know
macroscopic quantities which remains unaffected by precise microscopic repre-
sentation.

The importance of statistical mechanics formalism comes from the impossi-
bility to treat physical systems with large degrees of freedom in classical physics,
adopting a non-deterministic approach based on probability distribution and
measures which results sufficient to define quantities through means of averages
and which are able to be compared with experimental results.

An example which highlights the main difference with this formalism comes
from the computation of the energy of the above mentions confined gas: New-
ton’s equations would require the solution of 2NA differential equations and
given a general energy function made up by kinetic terms and generic inter-
action between particles, the wanted quantity would then been computed as
follows

E =
1

t0

∫ t0

0

dtE(t) =
1

t0

∫ t0

0

dt

( N∑
i

p2i (t)

2m
+ V (x⃗(t))

)
where pi is the momentum of the particle and V a generic potential. But with
the introduction of the canonical formalism, the same quantity can be written
through Boltzmann’s measure:

E = ⟨H⟩ =

∫
dp⃗ dx⃗ He−βH∫
dp⃗ dx⃗ e−βH

=
1

ZCanonical

∫
dp⃗ dx⃗ He−βH
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And this computation, for certain interactions, is perfectly feasible through
factorization and integrals, without requiring to solve a proportional Avogadro
number of differential equations.

Using this description, a generic observable for a system which is character-
ized by discreet configurations C1,...,N can be computed as follows:

⟨O⟩ =

∑N
i O(Ci)e

−βH∑N
i e−βH

=

∑N
i O(Ci)e

−βH

Z

Whilst this is feasible for some types of hamiltonian and some type of observable,
this formalism is still not sufficient for numerical implementation, since the
partition function would still require a sum over all possible configuration, and
if one takes the example of the Ising model (2), this results on all the possible
up-down configurations which are exponential in the number of spins, and makes
the system numerically intractable.

This led to the use of a different description of the physical systems, and
the one adopted is related to go from a probabilistic dynamics to a stochastic
one. This has been crucial for the development of the most used techniques in
numerical simulation: Monte Carlo methods. Before going in depth with the
latter it will be introduced the basis of this stochastic language to briefly show
the shift in the description and the main characteristics.

1.4.2 Markov Chains and Markov Monte Carlo [34]

When a systems is characterized by some degrees of freedom which allow for a
dynamic to happen amongst different possible configuration, knowing in which
one the system will be at a certain time, given where it was at all time before
from the initial one, can be done in terms of conditional probability. In this
section it will be focused on a interval of time which is discreet, where for
simplicity the time step in taken as a unit, whilst the configurations runs form
C1, ..., CN and the mentioned probability can be written as follows:

P (xt = Cit |xt−1 = Cit−1
, ..., xt=0 = Ci0)

But for some processes this probability has a one step-memory, so what happens
at a given time is fully characterize by what happens at the time before:

P (xt = Cit |xt−1 = Cit−1 , ..., xt=0 = Ci0) = P (xt = Cit |xt−1 = Cit−1) = Pit,it−1

This property, called markovianity, defines processes called Markov chains. It
can be defined for a single step a matrix that describes the transition probabili-
ties form a configuration to the next one. Its dimension is related to the number
of configuration and it will in general be of the type: P ∈ RN ,N characterized
by the following features:

• all entries are non negative; Pij ≥ 0

•
∑N

j Pij = 1
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The last property comes from the fact that when a system is on a given config-
uration, since the probability is normalized, the sum of the probabilities of all
the possible configuration must be one. A matrix with this property is called
a stochastic matrix. If the initial condition is that the process starts from a
given configuration Cĩ0

then, the vector of probabilities of being on a given
configuration at a given time will be entailed by a delta Kronecker:

πt=0 = (0, ..., 0, 1, 0, ..., 0)

being πi
t=0 = δi,ĩ0 Then the probability at the next step will evolve through the

stochastic matrix as follows:

πT
t=1 = πT

t=0 P

it is important to understand how the probability vector can be written if an
interval of time is considered, to do so it can be used the Chapman-Kolmogorov
equation that reads:

P
(n)
ij = (P · P · P · ... · P ) = (Pn

ij)

such that:
πT
t=n = πT

t=0 Pn

Therefore the evolution is completely determined by the stochastic matrix, as
well as the transition probabilities from one configuration to another. We fo-
cus now on the description of systems which are characterized by stationary,
therefore the systems who are able to fulfill the condition:

P · Peq = Peq →, Peq = lim
n→∞

P

for which this limit exists and it is well defined. From this it follows that the
probability vector on a given configuration does no longer change in time:

lim
n→∞

(πn)T = πT
eq → πT

eq = πT
eqPeq

This asymptotic behaviour has been proved to hold for Ergodic Markov chains
which are characterized by a probability stochastic matrix whose entries are, at
all time steps, positive. We will focus just on systems which are characterized by
this property. Therefore, using the Chapman Kolmogorov equation and what
mentioned above it can be written the relation:

πt+1
j − πt

j =
∑
i ̸=j

Pijπ
T
i − Pjiπ

T
j

But if the system reach stationary then;

0 =
∑
i ̸=j

Pijπ
T
i − Pjiπ

T
j
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And moreover, if we are not just interest on systems which reach stationary but
even the equilibrium condition, then it is possible to write the so-called detailed
balance condition for which the above expression is fulfilled for each value of the
sum:

Pijπ
T
i − Pjiπ

T
j = 0

Pijπ
T
i = Pjiπ

T
j (40)

The above brief treatment for this formalism is sufficient to introduce the Monte
Carlo methods.

Taking into account the mentioned Ising case (2) in which observables must
be computed taking into account all possible configurations of spins, which
are indeed exponential, one can think to restrict the space of configuration
into a much smaller one in which terms with a low Boltzmann weight can be
disregarded. In doing so, for instance, one could think to take C̃ ∈ {C1, ..., CN }
which elements can be denoted as C̃ ∈ Ci1 , ..., CiT with T << N such that the
canonical average will be written as:

⟨A⟩Canonical ≃
1

T

T∑
j=1

A(Cij ) (41)

Then in this way, choosing the correct sequences of configuration transforms
into choosing the stochastic matrix P which generates, as the equilibrium dis-
tribution probability, the vector whose entries exactly corresponds to:

pi =
e−βH(Ci)

Z

Taking entries which satisfy the detailed balance condition (40) it can be written

Pij

Pji
=

πj

πi
=

e−βH(Cj)

e−βH(Ci)
= eβ(H(Ci)−H(Cj) (42)

The main problem can be modified and addressed in finding a way to extract
configurations Ci, ..., CiT exploiting the ratio of elements of the equilibrium dis-
tribution vector. The computation of the partition function is avoided in this
way, disregarding the possibility of implementing an algorithm which would be
exponential in time linked to it.

1.4.3 Local updates: Metropolis-Hastings Algorithm [33],[34]

Amongst the possible update algorithms, local ones were the first invented and
implemented, in particular the Metropolis-Hastings algorithm which is one of the
most versatile and exploited. It consist on generate the correct configurations
changing one spin at a time. In particular it considers the matrix entries

Pij = P (Cj → Ci) =

{
1 if Enew < Eold

e−β(Enew−Eold) otherwise
(43)
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which can be rewritten in a more compact way as follows:

Pij = min{1, e−β∆H}

Figure 6: Example of local update in the Metropolis Hastings algorithm on 2d
square Ising. A spin si is flipped, since the energy of the new configuration is
smaller than the original one

Therefore the algorithms select randomly a spin position, and tries to flip
it, the energy of the previous configuration is computed as well as the one of
the new configuration, than this new configuration is accepted in the way above
shown (43). In particular, another random variable is extracted and, if this ran-
dom value is smaller than Pij , then the new configuration is accepted, otherwise,
another spin is taken to repeat the process. One consider then a MonteCarlo
sweep as the number of iterations of this algorithms that on average updates
all number of degrees of freedom of the lattice size (all the spins). In this way
the dynamics over time has been changed into a dynamics over MonteCarlo
sweeps, from which now averages can be computed in a treatable time. The
first MonteCarlo sweeps are always related to the dynamics to equilibrium, so
those configurations which are necessary to reach the equilibrium condition of
the system. Whenever simulations are performed, the first thing is setting Mon-
teCarlo sweeps so that the system thermalizes. After that, MonteCarlo sweeps
can be used for averages of the quantities of interest (like energy, magnetiza-
tion and so on). The sweeps are necessary at this point to guarantee unbiased
thermal averages, meaning that the quantities which are averaged must be un-
correlated measurements, this guarantee numerical averages to be the correct
physical quantities corresponding to the ones that we want to measure.

1.4.4 Critical slowing down [34]

Local update algorithms have an easy and straightforward implementation, al-
though, they have a major drawback. When one tries to simulate the systems
close to the critical temperature, in presence of a second order phase transition,
the correlation length diverges, and this has some main effects on correlation
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time. If one consider the auto-correlation function defined as follows:

A(k) =
⟨OiOi+k⟩ − ⟨Oi⟩⟨Oi+k⟩

⟨O2
i ⟩ − ⟨Oi⟩2

for large time separation it decays exponentially as follows:

A(k) → ae
− k

τO

which defines the exponential autocorrelation time. Close to a critical point, in
an infinite volume, it follows a power law behaviour as follows:

τO ∝ ξz (44)

where z is an additional critical exponent, called dynamical critical exponent.
Since the correlation length diverges at the critical point, the same happens for
the autocorrelation time, which leads to a phenomenon called critical slowing
down.

As numerical simulation are characterize by finite size, the correlation length
must scale at the critical point with respect to the lattice size:

τO ∝ Lz (45)

and for local updates, which change one spin at a time, the value of this critical
exponent is quite large, and almost equal to z ≃ 2. This is the main reason
of implementing non-local updates, they are a way to reduce the effect of this
phenomenon, to avoid high correlation and therefore higher computation time
to obtain quantities close to a phase transition.

1.4.5 Non Local updates: Swendsen-Wang and Wolff Algorithms [34]

To try and deal with the problem of critical slowing down one needs new ex-
pressions of the partition function which can be obtained with the Fortuin-
Kasteleyn (FK) representation. An equivalent construction can be done with
Potts model[35], without any loss of generality we will still work on the Ising
model (2).

One exploits the fact that Boltzmann measure, in the absence of the field
term, in the Ising model, can be made up only of two possible contribution,
coming from σiσj = {−1, 1} so it is possible to rewrite everything defining a
new parameter:

Z =
∑
{s}

e−βJ
∑

⟨ij⟩ sisj =
∑
{s}

∏
⟨ij⟩

eβJ [e−2βJ + (1 − e−2βJ)δsi,sj ] =

=
∑
{s}

∏
⟨ij⟩

eβJ [(1 − p) + pδsi,sj ]
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where
p = 1 − e−2βJ

And at this point one can introduce a new variable, which allows to map the
model of spins into a geometrical one, which is characterize only by the lattice
and bonds which are present (activated) or not, as follows:

Z =
∑
{s}

∑
{bij}

∏
⟨ij⟩

eβJ [(1 − p)δbij ,0 + pδsi,sjδbij ,1] (46)

Here the variable bij allows to create this additional geometrical lattice and one
can sum over the spins configurations and remain only with a configuration of
the bonds, this allows to map everything into a geometrical lattice, therefore a
percolation model.

Figure 7: Non local update following Swendsen-Wang algorithm. It is taken
3-state Potts model, considering only all the cluster of red spins for better
visualization to be updated

The first step of this algorithms is the Swendsen-Wang Cluster related to
what was mentioned above, with the formation of this geometrical cluster, then
one defines a new update which is made by two step. If two spins are aligned the
cluster variable is bij = 1 with probability p = 1−e−2βJ otherwise is set to zero,
the same happens if the two spins are different from each other. Therefore from
a geometrical cluster one goes into a stochastic cluster, whose dimension is in
general much smaller. Then the update consist in flipping all stochastic clusters
formed as in Figure 7. In this case a Monte-Carlo sweep tends to update all
spins in a single way. Only when β tends to infinity, the probability tends to 1
so the geometrical cluster coincide with the stochastic one.
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Another important algorithm used is the Wolff Cluster which is actually a
variant of the previous one, since in this case one does not try to update all
spins at once, rather it peaks a spin and the cluster it belongs to to build the
stochastic cluster and simply flip it in an update procedure. One must take care
in the comparison of the two methods especially to evaluate the auto-correlation
functions, in fact an additional care must be given in the definition of a sweep.
In the Wolff algorithm the average cluster size is given by ⟨|C|⟩, therefore to
update in average all spins one has to perform V

⟨|C|⟩ iterations. In general this

variant is more efficient since in average larger cluster are flipped. The value of
the critical exponent of slowing down changes significantly, here it is shows a
table with the result for 2d Ising [36] [37] [38]:

Algorithm z

Metropolis 2.1667(5)
Swendsen-Wang 0.35(1)

Wolff cluster 0.26(2)

Table 1: Exponent for the critical slowing down phenomenon through different
algorithms

For this reason, non-local algorithms are much more suitable for the calcula-
tion of averages at criticality. These will be later used in the Numerical section
of the thesis: 2.3, 3.3

31



2 Short-range disordered Potts model

In this section we will restrict to the treatment of the short-range disorder. With
the aim to describe the system at criticality, the discreet Potts Hamiltonian
previously introduced (12) will be considered in its continuous version. Two
operators must be taken into account for this end, the density energy field and
disorder field defined as follows:

δsi,sj → ϵ(x)

σi → σ(x)

Moreover, in the framework of conformal field theory, discreet hamiltonians H
are taken as continuous action terms S. This change of vocabulary will be used
from now on.

Equation (14) allows to distinguish two terms in the action, respectively the
perturbation and the pure one. The critical action for the pure model will be
denoted as S0 whilst its perturbation:

SPert =

∫
d2xσ(x)ϵ(x)

So the final form of the action for the disordered Potts model will be:

SPotts = S0 + SPert = S0 +

∫
d2xσ(x)ϵ(x) (47)

with the corresponding partition function

Z({σ}) = Trs{e−S0−
∫
σ(x)ϵ(x)d2x}

where the trace Tr represents a summation over all possible states of the system.
The quenched disorder, as mentioned in section 1.2.1 appears as a parameter
for the partition function and it will not represent additional degrees of freedom
to sum over. In the same way, this parametric dependence will be present in
the free energy function such that the quenched one F ({σ}) is:

F = TrσP (σ)F ({σ})

The short-range character of the disorder will be highlighted by the property
of independence between the disorder at different points of the space, namely
(for x ̸= y):

σ(x)σ(y) = 0

This behaviour is well described by a Gaussian probability distribution P ({σ}).
It will be here shown the connection with the algebraic decay introduced be-
fore at equation (17). With simple scaling argument, performing the Fourier
Transform of the correlation in the dimension of interest d = 2 of the quan-
tity: |x− y|−a the cumulants of this distribution can be classified [23]. Due to
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universality consequences, all microscopic details of the distribution will be lost
during the renormalization procedure, and the first and the second cumulant
will be sufficient to characterize the whole critical properties. Therefore the
algebraic decay for a ≥ 2 is effectively equivalent to the implementation of the
Gaussian disorder, having all higher order cumulant (from the third) null. The
probability distribution will be fully characterized by:{

σ(x) = 0

σ(x)σ(y) = 2g0SRδ(x− y)
(48)

The consequences of this equation are fundamental:

we are aiming at describing the behaviour of the disorder in a Potts model in a
general framework, in fact, despite all possible distributions, the behaviour
studied in the following section will be exactly equivalent for all of those

distributions who share the same mean and variance of (48), with higher order
cumulants to be null.

The replica trick (29) can now be used, with the cumulant expansion of a Gaus-
sian distribution as in (31)

Zn =

n∏
a=1

Trsa{e−
∑

a S0
a−σ

∑
a

∫
d2xϵa(x)+

1
2

∑
a,b

∫ ∫
d2xd2y(σ(x)σ(y)−σ2)ϵa(x)ϵb(y)}

without any higher order terms, existing only two non-zero contributions for
a Gaussian distribution. The label a here takes into account the n different
replicas of the system.

Up till now, the temperature dependence has always been implicitly present
in the action terms. In the study for critical systems, the linear term in the
energy operator ϵ, is proportional to |T − Tc| and will give a null contribu-
tion at criticality. Moreover, density energy distribution in the same replica
ϵa(x)ϵb=a(x) will contribute trivially, with just a consequent shift in the criti-
cal temperature Tc. With the aim to obtain only information about universal
properties, microscopic dependent quantity, like critical temperature, will not
be taken into account. So the final from for the replicated partition function
will be:

Zn =

n∏
a=1

Tr{sa}{e
−

∑
a S0

a+g0
SR

∑
a̸=b

∫
ϵa(x)ϵb(x)d

2x} (49)

In this form, in which the disorder has been integrated out, with only the spins
degrees of freedom, the perturbation renormalization techniques presented in
the section 1.3.2 will be used. In particular, the cumulant expansion can be
performed with respect to the quantity:

g0SR

∑
a̸=b

∫
|x|>1

ϵa(x)ϵb(x)d2x

where in the integration boundaries, it has been considered a cut-off, reminiscent
of the underlying discreet square lattice with unit pass l = 1.
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2.1 Renormalization Group

2.1.1 0-loop order

We can divide the integration in such a way that the lower degrees of freedom can
be disregarded, exploiting the conservation of the partition function at different
scales of the system (as a consequence of the divergence of the correlation length)
in an equivalent way of the procedure shown in 1.3.2 :∑

a̸=b

∫
|x|>1

ϵa(x)ϵb(x)d2x =

= g0SR

∑
a̸=b

∫
1<|x|<r

ϵa(x)ϵb(x)d2x + g0SR

∑
a̸=b

∫
|x|>r

ϵa(x)ϵb(x)d2x

where r will represent the new cut-off of the fields. Therefore, the first term
will not contribute to the renormalization equations in the new system’s scale.
while the second is the only one which will. To understand in which way, we
need to rescale back following the changes below reported:

x′ = x
r

x′ = d2x
r2

ϵ′(x′) = rhϵϵ(x)

. (50)

where hϵ is the physical dimension of the density energy operator. Imposing
the equivalency of the partition functions at different scales:

g0SRr
2−2hϵ

∑
a ̸=b

∫
|x′|>1

ϵ′a(x′)ϵ′b(x
′)d2x′ = gSR,1

∑
a ̸=b

∫
|x′|>1

ϵ′a(x′)ϵ′b(x
′)d2x

we can obtain the first contribution for the renormalized short range perturba-
tive parameter:

gSR,1 = g0SRr
ϵSR (51)

where it has been defined the parameter: ϵSR = 2 − 2hϵ which plays the role of
dimensional regularization. This quantity must be small for the perturbation
method to be reasonable, and given its expression[29]

ϵSR =
4

3

(
Q− 2

π

)
+ O((Q− 2)2)

this translates in considering Q− 2 << 1. Although for the fixed point we will
analyzed the specif cases of Q = {1, 2, 3}, (not the general case in which Q is
real) and since exact values of the dimensions of the energy operator, hϵ, are
known, specific values of ϵSR will be too and will be presented later.
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2.1.2 1-loop order

At first order of the cumulant expansion, a new term must be considered, as
the product of two perturbation expansion ϵϵ and ϵϵ which translates in:

(g0SR)2

2

∫
|x|>1

d2x

∫
|x−y|>1

d2y
∑
a ̸=b

ϵa(x)ϵb(x)
∑
c ̸=d

ϵc(y)ϵd(y)

Once again we would like to integrate out the small degrees of freedom. In this
case although, due to the presence of a double integration one has to consider
different contribution of the previous integral. The case in which both the
integration of y and x are in the low degrees of freedom does not in the same
way as the integrals on both higher degrees of freedom which will give a trivial
constant contribution that can be neglected. The only fundamental term is
related to an integration over the small degrees of freedom for one variable, and
for high degrees of freedom for the other. This will lead to the term:

(g0SR)2

2

∫
|x|>r

d2x

∫
1<|x−y|<r

d2y
∑
a ̸=b

ϵa(x)ϵb(x)
∑
c ̸=d

ϵc(y)ϵb(y)

To reproduce a contribution to the ϵϵ operator, the OPE (35) can be per-
formed to contract two energy fields as follows:

ϵa(x)ϵa(y) = I⟨ϵa(x)ϵa(y)⟩ =
I

|x− y|2hϵ

where I is the identity operator. All the possible contractions now must be
counted. We fix two replicas to be equal, for instance the ones labelled by the
indexes b and c, this consists in choosing one of the n possible replicas. Then
we have 4 different ways of contraction for the other two indexes as shown in
diagram below:

Having n different replica choices, having fixed two terms, there can be n−2
choices for the remaining energy terms, such that the final combinatorial term
will be given by C1 = 4(n−2). Now it can be inserted in the previous expression
for the integrals computations:

/4(n− 2)
(g0SR)2

/2

∫
|x|>r

d2x
∑
a̸=d

ϵa(x)ϵd(y)

∫
1<|x−y|<r

d2y
I

|x− y|2hϵ

Now we integrate over y neglecting the contribution of replicas at different
positions (since they give a null contribution).

2(n− 2)(g0SR)2
∫
|x|>r

d2x
∑
a ̸=d

ϵa(x)ϵd(x)

∫ r

d2y
1

|x− y|2hϵ

The integration now can be explicitly performed using polar coordinates:

2(n− 2)(g0SR)2
∫
|x|>r

∑
a ̸=d

ϵa(x)ϵd(x)d2x

∫ r

dρ2π
1

|ρ|2hϵ−1
=
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Figure 8: Diagrammatic counting for ϵϵ contractions at 1-loop-order of the gSR.
Dots represent generic operators, in this case ϵ. Dots with the same colour
represent energy operators in the same position, for instance here light blue x
and dark blue y. The orange line represents the possible contraction between
operators at different positions. Here the 4 different possible contractions are
shown.

= 4π(n− 2)(g0SR)2
∫
|x|>r

∑
a ̸=d

ϵa(x)ϵd(x)
(r2−2hϵ)

2 − 2hϵ
d2x

As done for the 0-loop order, the system is rescaled following (50) and the
equation is set equal to the partition function at a different scale, finding the
identity:

4π(n− 2)(g0SR)2r2−2hϵ

∫
|x′|>1

∑
a ̸=b

ϵ′a(x′)ϵ′b(x
′)d2x′ r

2−2hϵ

2 − 2hϵ
=

= gSR,2

∫
|x′|>1

∑
a ̸=b

ϵ′a(x′)ϵ′b(x
′)d2x′

entailing as a second order contribution:

gSR,2 = 4π(n− 2)g0SR
2 r2ϵSR

ϵSR
(52)

.

2.1.3 2-order loop

At the second order loop we have to take into account the term of the type:

g0SR
3

3!

∫
|x|>1

∑
a̸=b

ϵa(x)ϵb(x)d2x

∫
|y|>1

∑
c̸=d

ϵc(y)ϵd(y)d2y

∫
|z|>1

∑
e ̸=f

ϵe(z)ϵf (z)d2z
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Now, performing the usual decomposition between small distances and higher
distances, the only terms which we will be interested in, are integrals of the
type:

g0SR
3

3!

∫
|x|>r

∑
a̸=b

ϵa(x)ϵb(x) =

=

∫
1<|x−y|<r

∫
1<|x−z|<r

∑
c̸=d,e̸=f

ϵc(y)ϵd(y)ϵe(z)ϵf (z)d2xd2yd2z

In this case, in order to have a term of the type ϵϵ, different contributions must
be taken into account. Let’s start by a double contraction. To consider all
the possible double contractions among six different terms, and to generate a
contribution through OPE of the type: ⟨ϵ(x)ϵ(y)⟩0⟨ϵ(y)ϵ(z)⟩0 we must count
the combinations that lead to this contribution.

In Figure 9 there are given all the 24 possibilities. Since we can choose for
instance b = c, d = e, a ̸= d, f ̸= b, a ̸= f , given n replicas, the first contractions
will contribute to (n − 2) possibilities, whilst the second one, to have another
fixed replica index, will give the a contribution of (n − 3). So in total C3,1 =
24(n− 2)(n− 3). The contribution will so be of the type:

g0SR
3

/3!
/24(n− 2)(n− 3)

∫
|x|>1

∑
a ̸=f

ϵa(x)ϵf (x)d2x·

·
∫
1<|x−y|<r

∫
1<|x−z|<r

⟨ϵ(x)ϵ(y)⟩0⟨ϵ(y)ϵ(z)⟩0d2yd2z =

= g0SR
3
4(n− 2)(n− 3)

∫
|x|>1

∑
a̸=f

ϵa(x)ϵf (x)·

·
∫
1<|x−y|<r

∫
1<|x−z|<r

1

|x− y|2hϵ

1

|y − z|2hϵ
d2yd2z

where, without loss of generality, the only term ϵϵ remaining to contribute in
the renormalization equation, must be evaluated in the same point of the space
to give a non trivial contribution. We focus on the computation of the integral
in y and x:

I =

∫
1<|x−y|<r

∫
1<|x−z|<r

1

|x− y|2hϵ

1

|y − z|2hϵ
d2yd2z

It will be now performed a change of variable of the type: y′ = y − x which
gives:

I =

∫
1<|y′|<r

∫
1<|x−z|<r

1

|y′|2hϵ

1

|y′ + x− z|2hϵ
d2y′d2z =

=

∫
1<|y′|<r

∫
1<|x−z|<r

1

|y′|2hϵ

1

|(z − x) − y′|2hϵ
d2y′d2z
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Figure 9: Diagrammatic counting for double contraction ϵϵ ϵϵ for gSR. It gives
24 different possibilities

Now it can be defined y′ = ω(z − x) and d2y′ = |x− z|2d2ω as a new change of
variable which gives:

I =

∫
1<|ω|<r

∫
1<|x−z|<r

|x− z|2

|x− z|2hϵ |ω|2hϵ

1

|(z − x) − ω(z − x)|2hϵ
d2ωd2z

where the extremes of integration have been taken only in the domain of interest,
neglecting the possible contribution for distances smaller than 1 lattice size. Now
the expression can be manipulated to get:

I =

∫
1<|ω|<r

∫
1<|x−z|<r

1

|x− z|4hϵ−2|ω|2hϵ

1

|1 − ω|2hϵ
d2ωd2z
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With a final change of variable of the type z′ = z − x:

I =

∫
1<|ω|<r

∫
1<|z′|<r

1

|z′|4hϵ−2|ω|2hϵ

1

|1 − ω|2hϵ
d2ωd2z′

The integration can now be performed by factorization, for simplicity we will
go back to the initial variables:

I =

∫
1<|y|<r

1

|y4hϵ−2|
d2y

∫
1<|z|<r

1

|z|2hϵ |1 − z|2hϵ
d2z

We can solve the first integral with the same change used for the computation
of (52) to go in polar coordinates:

I = 2π
r4−4hϵ

(4 − 4hϵ)

∫
1<|z|<r

1

|z|2hϵ |1 − z|2hϵ
d2z =

= 2π
r2ϵSR

(2ϵSR)

∫
1<|z|<r

1

|z|2hϵ |1 − z|2hϵ
d2z = 2π

r2ϵSR

(2ϵSR)
I3,1

where we have denoted with I3,1 the last integration. All together, up till now,
this gives a first contribution of the type:

g3,1 = g0SR
3
8π(n− 2)(n− 3)

r2ϵSR

(2ϵSR)
I3,1

∫
|x|>1

∑
a̸=f

ϵa(x)ϵf (x) (53)

The second contribution comes from the contraction amongst three energy op-
erators ϵϵϵ and two additional one ϵϵ. This will require the computation of
correlation of the type: ⟨ϵ(x)ϵ(y)ϵ(z)⟩0⟨ϵ(y)ϵ(z)⟩0. The combinatory of the in-
teractions is given by the diagram in Figure 10 where degeneracy factors are
considered. Once again this contribution gives a factor 24.

This time the only factor which takes into account the replica comes from
a term (n − 2) such that C3,2 = 4(n − 2) the contraction of the three energy
operators can give, projecting ϵϵϵ into ϵ, a new ϵ contribution:

gSR,0
3,2 = 24(n− 2)

g0SR
3

3!

∫
|x|>r

∑
a̸=f

ϵa(x)ϵf (x)·

·
∫
1<|x−y|<r

∫
1<|x−z|<r

⟨ϵ(x)ϵ(y)ϵ(z)ϵ(∞)⟩0⟨ϵ(y)ϵ(z)⟩0d2yd2z

which requires the computation of a four point correlation function. This can be
computed in terms of the Coulomb Gas formalism. Both the previous integral
(53) and this one, can be carried out in this new representation which makes
use of conformal field theory algebra and takes into account the presence of
singularities [28]. The first term will be able to give a contribution of the type:

gSR,0
3,1 = 16π2(n− 2)(n− 3)

r2ϵSR

ϵ2SR

∫
|x|>r

∑
a̸=f

ϵa(x)ϵf (x) (54)
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Figure 10: Diagrammatic counting for contractions with a triple contraction ϵϵϵ
and a double one ϵϵ for a 2-loop-order of gSR. In the first row, a degeneracy
of 4 has been considered for all the extreme dots at top right, left, and bottom
right, left. The second row takes into account the degeneracy factor 2, for the
two central dots. This can be done for simple symmetric reasons. All together
the degeneracy will contribute to a factor 24

While this last integral, contributes in:

gSR,0
3,2 = −8π2(n− 2)

r2ϵSR

ϵSR

∫
|x|>r

∑
a ̸=f

ϵa(x)ϵf (x) (55)

and an additional contribution due to the presence of a singularity which gives:

gSR,0
3,3 = 8π2(n− 2)

r2ϵSR

ϵ2SR

∫
|x|>r

∑
a̸=f

ϵa(x)ϵf (x) (56)

which can all be put together to give:

gSR,0
3 = gSR,0

3,1 + gSR,0
3,2 + gSR,0

3,3 =

= 8π2n− 2

ϵSR
g0SR

3
r2ϵSR

(
1 +

2(n− 2)

ϵSR

)∫
|x|>r

∑
a ̸=f

ϵa(x)ϵf (x)

Then, with the usual scaling back of renormalization equations we get a term:

gSR,3 = 8π2n− 2

ϵSR
g0SR

3
r3ϵSR

(
1 +

2(n− 2)

ϵSR

)∫
|x′|>1

∑
a ̸=b

ϵ′a(x′)ϵ′b(x
′) (57)

which can be added to the previous loop-orders (51), (52) to get the final equa-
tion:

gSR = gSR,1 + gSR.2 + gSR,3 =

= g0SRr
ϵSR +4π(n−2)g0SR

2 r2ϵSR

ϵSR
−8π2g0SR

3
(n−2)

r3ϵSR

ϵSR

(
1− 2(n− 2)

ϵSR

))
(58)
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2.1.4 Renormalization equation

Equation (58) can be written through a factorization:

gSR(r) = g0SRr
ϵSR

(
1+4π(n−2)g0SR

rϵSR

ϵSR
−8π2g0SR

2
(n−2)

r2ϵSR

ϵSR

(
1−2(n− 2)

ϵSR

))
At this point, the replica method used for the computation of the renormalized
parameter can be removed, by setting the replica to zero, performing the limit
of n → 0:

gSR(r) = g0SRr
ϵSR

(
1 − 8πg0SR

rϵSR

ϵSR
+ 16π2g0SR

2 r2ϵSR

ϵSR

(
1 +

4

ϵSR

))
(59)

Our aim is to understand how variation with respect to the cut-off r, changes
the parameter itself. To do this we will compute the so called beta-function
which corresponds to the mathematical definition of the previous concept:

β = r
dg(r)

dr
(60)

which allows to obtain a dynamical equation for the parameter of interest.

β = r
d

dr

[
g0SRr

ϵSR

(
1 − 8πg0SR

rϵSR

ϵSR
+ 16π2g0SR

2 r2ϵSR

ϵSR

(
1 +

4

ϵSR

))]
Using Leibniz’s rule for products derivatives:

β = ϵSRgSR + rg0SRr
ϵSR

d

dr

[
1 − 8πg0SR

rϵSR

ϵSR
+ 16π2g0SR

2 r2ϵSR

ϵSR

(
1 +

4

ϵSR

)]
By denoting:

Zϵϵ = 1 − 8πg0SR

rϵSR

ϵSR
+ 16π2g0SR

2 r2ϵSR

ϵSR

(
1 +

4

ϵSR

)
One can express the relation:

gSR = g0SRr
ϵSRZϵϵ (61)

From now on, the subscript SR will be dropped, and gSR will be simply consid-
ered as g to avoid heavy notation. All the coupling must be considered in the
short-range sense in this section.

The previous two expressions can be used to rewrite the β function as follows:

β = ϵg + g
r

Zϵϵ

dZϵϵ

dr
(62)

A new quantity is introduced called gamma-function γϵϵ:

γϵϵ =
r

Zϵϵ

dZϵϵ

dr
(63)
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which allows to rewrite the beta-function as follows

β = g(ϵ + γϵϵ)

A perturbative computation must be performed to obtain the gamma-function.
First the following quantity is computed:

r
dZϵϵ

dr
= r

d

dr

[
1 − 8πg0

rϵ

ϵ
+ 16π2g0

2 r
2ϵ

ϵ

(
1 +

4

ϵ

)]
=

= −8πg0r
ϵ + 32π2g20r

2ϵ

(
1 +

4

ϵ

)
Then a Taylor expansion in g is performed:

1

Zϵϵ
=

1

1 − 8πg0
rϵ

ϵ + 16π2g02
r2ϵ

ϵ (1 + 4
ϵ )

≃ 1 + 8πg0
rϵ

ϵ
− 16π2g0

2 r
2ϵ

ϵ

(
1 +

4

ϵ

)
To maintain all this computation at second order, it will be sufficient to consider
only:

1

Zϵϵ
≃ 1 + 8πg0

rϵ

ϵ

Finally it can be computed:

γϵϵ =
1

Zϵϵ
r
dZϵϵ

dr
≃
(

1 + 8πg0
rϵ

ϵ

)(
− 8πg0r

ϵ + 32π2g20r
ϵ

(
1 +

4

ϵ

))
=

= −8πg0r
ϵ + 32π2g20r

ϵ +
128

ϵ
π2g20r

2ϵ − 64π2g20
r2ϵ

ϵ
+ O(g30)

And using one last expansion to keep everything at second order starting from
equation (62):

g ≃ g0r
ϵ

(
1 − 8πg0

rϵ

ϵ

)
(64)

γϵϵ ≃ −8πg

(
1 + 8π

g

ϵ

)
+ 32π2g2 +

128

ϵ
π2g2 − 64

ϵ
π2g2 + O(g30) =

= −8πg + 32π2g2

Therefore:
β(g) = g(ϵ− 8πg + 32π2g2) (65)

This represent the dynamical equation of our perturbative parameter. Although,
to understand the behaviour at criticality, we must look for the possible fixed
points of the system.
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2.1.5 Fixed Points and stability

Fixed points can be computed looking for the values gc such that β(gc) = 0.
One first simple solutions of (65) comes from:

g1c = 0 (66)

this correspond to the well known criticality of the pure model, in fact the
coupling constant being null simply brings back all the computation to the
conformal critical action of the Pure Potts model. This is representative of the
absence of the disorder in the model. Other two fixed points will be found
solving the second order algebraic equation which turns out to give:

g2,3c =
8π ±

√
(64π2 − 128π2ϵ)

64π2
=

1

8π
±

√
1 − 2ϵ

8π
(67)

The stability study will be carried out through two approaches, the analytical
one, and the graphical method[39]. We recall that a fixed point is said to be
stable or attractive if the derivative of the dynamical equation computed at
the fixed point has negative real part. Otherwise, it is said to be repulsive or
unstable and finally marginal or half-stable in case the derivative is null. The
derivative of the β function reads:

dβ(g)

dg
= ϵ− 16πg + 96π2g2

Then for the pure point, it will simply give the dimensional contribution:

dβ(g)

dg

∣∣∣∣
g=g1

c

= ϵ

Its stability is given by the following conditions:{
ϵ > 0 unstable

ϵ < 0 stable
(68)

One proceeds to study the second fixed point:

dβ(g)

dg

∣∣∣∣
g=g2

c

= ϵ− 16/π

(
1

8/π
+

√
1 − 2ϵ

8/π

)
+ 96π2

(
1

8π
+

√
1 − 2ϵ

8π

)2

=

= ϵ− 2 − 2
√

1 − 2ϵ + 96 /π2

(
1

64 /π2
+

1 − 2ϵ

64 /π2
+

√
1 − 2ϵ

32 /π2

)
=

= −2ϵ + 1 +
√

1 − 2ϵ

Then:

∀ϵ < 1

2
:
dβ(g)

dg

∣∣∣∣
g=g2

c

> 0
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g2c unstable ∀ϵ ∈
(
−∞,

1

2

)
(69)

and due to the condition of g being real, this corresponds to the entire domain
of existence of this new fixed point, except the marginal case of ϵ = 1

2 .
Finally, repeating the same procedure for the last fixed point:

dβ(g)

dg

∣∣∣∣
g=g3

= ϵ− 16/π

(
1

8/π
−

√
1 − 2ϵ

8/π

)
+ 96π2

(
1

8π
−

√
1 − 2ϵ

8π

)2

=

= −2ϵ + 1 −
√

1 − 2ϵ

To study the stability it can be written:

−2ϵ + 1 >
√

1 − 2ϵ

4ϵ2 + 1 − 4ϵ > 1 − 2ϵ → 2ϵ(2ϵ− 1) > 0

The above inequality gives, considering that this fixed point, for the same con-
straint on g being real, exist only for ϵ < 1

2 , the following conditions:{
ϵ < 0 unstable

0 < ϵ < 1
2 stable

(70)

All this analysis is revised through graphical means in Figure 11. The
parameter ϵ has been considered in the five cases written below:

1. ϵ > 1
2

there exist only a fixed point at g1c = 0 shown with a red dot. To
characterize the stability, the sign of beta function is analyzed. In panel
(a), the function goes from being negative to positive which defines
instability, in agreement with the analytical result

2. ϵ = 1
2

there is the emerge of a new fixed point with a double degeneracy, which
is marginal since the sign of the beta function does not change.

3. 0 < ϵ < 1
2

g1c is left unchanged, the two new fixed points (green g2c and blue g3c ) get
further at decreasing ϵ, g2c is unstable as the pure point, whilst g3c is
stable since the function β passes from being positive to negative

4. ϵ = 0

the first and the third fixed point superimpose, their stability, in this
case, is marginal due the constant sign of the beta-function

5. ϵ < 0

the stability of g3c is exchanged with the one of g1c , while g2c is left
unchanged and still unstable.
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(a) ϵ > 0.5:
One unstable fixed point: g1c

(b) ϵ = 0.5:
Emergence of marginal g2c = g3c

(c) ϵ = 0.4
g1c ̸= g2c ̸= g3c with stable g3c

(d) ϵ = 0
Marginal case for g1c = g3c ̸= g2c

(e) ϵ = −1
Once again g1c ̸= g2c ̸= g3c with stable g1c

Figure 11: Fixed points’ stability graphical analysis
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The change in the stability of the fixed points, can be better visualized in
the bifurcation diagram, a graph g − ϵ where only fixed point are drawn as a
function of the parameter ϵ. Whilst straight lines corresponds to stable fixed
points, unstable are represented by dashed ones in Figure (12).

In this bifurcation diagram two important points have been highlighted:
( 1
2 ,

1
8π ) and (0, 0), corresponding to cases (11b), (11d) of previous plots. The

first one represents the point at which (considering decreasing values of the
parameter), two new fixed point appear in the dynamical description, and rep-
resents a saddle-node bifurcation. The second one, is characterized by a change
in stability between the first and the third fixed points. In literature, this type
of fixed point is referred as transcritical bifurcation.

Figure 12: Bifurcation diagram

Up till now ϵ has been taken as a general parameter, but we would like to
analyze more in depth what happens for a particular case. In fact, in the CFT
theory the value of ϵ is representative of the dimension of the energy operator
for a particular value Q of the Potts model. In fact for instance it is known in
the following cases:

ϵ =


−0.5 q = 1

0 q = 2

0.4 q = 3

(71)

It will be therefore taken into account the case of the 3-state Potts model,
which corresponds taking into account the fixed point at ϵ as in Figure 13. For
this reason, being g3 the only attractive fixed point, we will focus only on this
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Figure 13: Fixed points of the bifurcation diagram for Q=2 Potts model

quantity for the computation of the disorder eigenvalue (consistent even with a
perturbative approach where we assume g to be small).

If finally fixed points are considered in the phase space of the disorder
strength r (16) and on the temperature T , the pure fixed point g1c corresponds
to r = 1, whilst g3c represents a particular value of the parameter r, which must
be r > 1 for the initial choice made. Since we’re considering always models at
criticality, the temperature axis will not be important in the description, the
model will always be at T = Tc. Therefore if we want to describe a flow in this
parameter space, it can be done in a 1-dimensional line in which the stability of
the fixed point can be highlighted trough arrows. For the case of interest, the
pure point is unstable, whilst the new fixed point, which will be the short range
fixed point, will be stable. The result is presented in Figure 14.

Figure 14: Flow in Phase Space r-T
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2.1.6 Disorder Eigenvalue

The short-range disordered fixed point can be rewritten as follows:

g3c =
1

8π
± 1

8π
(1 − 2ϵ)

1
2

Then taking into account ϵ as a small perturbation parameter we can Taylor
expand the expression as follows:

g3c =
1

8π
− 1

8π

(
1 − ϵ− 1

2
ϵ2 − 1

2
ϵ3
)

=
ϵ

8π
+

ϵ2

16π
+ O(ϵ3)

We are interested in the eigenvalue of the disorder at the pure and stable short
range fixed points, in general this can be computed through the relation:

yd =
dβ(g)

dg

∣∣∣∣
gc

dβ(g)

dg

∣∣∣∣
gc

= ϵ− 16πg + 96π2g2

At the pure point:

y0d =
dβ(g)

dg

∣∣∣∣
g1
c

= ϵ (72)

At the new random fixed point:

y′d =
dβ(g)

dg

∣∣∣∣
g3
c

= ϵ− 2ϵ− ϵ2 +
96

64
ϵ2 + o(ϵ3) = −ϵ +

ϵ2

2
(73)

where it is used the contract notation y0d to denote the eigenvalue at the fixed
point g0c and y′ for g3c . This result for Q = 3 Potts model is an evidence of
the existence of two different universality classes with their own set of critical
exponents.

48



2.2 Energy Multifractality

In this section, it will be studied the dimension of the operator ϵϵ in relation to
the dimension of the energy operator ϵ. In particular we will refer to h as the
generic physical dimension of an operator, as introduced in section 1.1.4 and ∆
as the conformal dimension, which are linked through a simple factor: h = 2∆.
In particular, at the pure point, the dimension between ϵϵ and ϵ is given by:

∆ϵϵ = 2∆ϵ

Now it is studied what happens for the dimension relationship at the new
disordered fixed point. Having already computed the eigenvalue for the short-
range fixed point, which is related to the energy energy term, with a simple
dimensional expression it is possible to retrieve the corresponding conformal
dimension:

y′d = 2 − h′
ϵϵ = 2 − 2∆′

ϵϵ

It follows from the previous computation and equation (73):

2∆′
ϵϵ = 2 − y′d = 2 + ϵ− ϵ2

2

∆′
ϵϵ = 1 +

ϵ

2
− ϵ2

4
This quantity must be compared with the conformal dimension of the energy
operator ϵ. For this end, one can artificially introduce in the perturbative action
a new term which will be simply given by:

S = SPotts + SPert + m0

∫ n∑
a=1

ϵa(x)d2x

and we shall apply again the renormalization procedure to obtain a new dynam-
ical equation for the parameter m0.

2.2.1 0-loop order

The cumulant expansion in this case must be performed taking into account two
perturbation terms. At the 0-loop order, only a term contributes to m. This is
related to the additional energy field operator:

m0

n∑
a=1

∫
1<|x|<r

ϵa(x)d2x + m0

n∑
a=1

∫
|x|>r

ϵa(x)d2x

With the same rescale of the system (50), to integrate out small degrees of
freedom one gets:

m0r
2−hϵ

n∑
a=1

∫
|x′|>1

ϵ′a(x′)d2x′ = m′
n∑

a=1

∫
|x′|>1

ϵ′a(x′)d2x′ (74)

which represents a simple dimensional change of the parameter corresponding
to:

m1 = m0r
1+

ϵSR
2
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2.2.2 1-loop order

At first order a new additional term must be taken into account in the expansion,
which is related to the double product between the ϵϵ operator and the ϵ term
(since the energy square term will not contribute to m). As before in the
presence of a contraction, we have to count all the possible ones. This is done
in Figure 15 with 2 possibilities. Moreover choosing for instance b = c there are
(n−1) possible replica for the last energy operator. All this together contributes
to a combinatorial term of: C1 = 2(n− 1). Therefore:

Figure 15: Combinatory diagram for ϵϵ contraction at the 1-order-loop for m
parameter giving only 2 possible diagrams

/2
g0SR

/2

∑
a ̸=b

∫
|x|>r

ϵa(x)ϵb(x)d2x ·
(

m0

∫ n∑
c=1

ϵc(y)d2y

)
=

= 2(n− 1)g0SRm0

∫
|x|>r

d2x

n∑
a=1

ϵa(x)

∫
1<|x−y|<r

d2y
I

|x− y|2hϵ
=

= 4π(n− 1)g0SRm0

∫
|x|>r

n∑
a=1

ϵa(x)
rϵSR

ϵSR
d2x =

=
4π

ϵSR
(n− 1)g0SRm0r

1+
ϵSR
2

∫
|x′|>1

n∑
a=1

ϵ′a(x′)d2x′

So we can consider as a second contribution to the renormalization of the pa-
rameter:

m2 =
4π

ϵSR
(n− 1)g0SRm0r

1+
ϵSR
2 +ϵSR (75)

2.2.3 2-loop order

The second order term must come from the product of two ϵϵ with one single
energy density operator ϵ giving the general form:

/3
gSR

/3!
2 m0

∫
|x|>1

d2x
∑
a ̸=b

ϵa(x)ϵb(x) ·

·
∫
1<|x−y|<r

∑
c ̸=d

ϵc(y)ϵd(y)d2y

∫
1<|x−z|<r

∑
e

ϵe(z)d2z
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In the equation above it has already taken into account the correct integration
ranges which will contribute in the renormalization group, following the argu-
ments in previous section 2.1.3. The first term to take into account is a double
contractions of energy operators at different positions. The diagrammatic com-
binatory of this case is simpler with respect to the previous 2-loop-order one.
In Figure 16 the 8 possibilities are shown

Figure 16: Combinatory diagram for 2-order-loop contribution in the parameter
m. Here two contractions ϵϵ are considered, giving 8 possibilities

This time, when we choose the first contraction for instance b = c and
the second d = e, the replica degeneracy will account for a term of the type:
(n− 1)(n− 2) giving a general contribution of CN = 8(n− 1)(n− 2) which will
give as a first contribution:

m0
3,1 =

g2SR

/2
m0/8(n− 1)(n− 2)

∫
|x|>r

∑
a

ϵa(x)d2x·

·
∫
1<|x−y|<r

1

|x− y|2hϵ
d2y

∫
1<|x−z|<r

1

|y − z|2hϵ
d2z

The second contribution instead will take into account the contraction of three
energy operators ϵϵϵ and the other two ϵϵ that, due to the presence of the
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Figure 17: Combinatory diagram at 2-order-loop for m with a contraction ϵϵϵ
and ϵϵ. Only 4 contributions are present

projection into ϵ, will contribute with a new density operator. In Figure 17 the
diagram is presented with its only 4 contributions and with a replica degeneracy
factor of (n− 1) which will contribute to the final C3,2 = 4(n− 1) This will give
a term:

m0
3,2 =

g2SR

/2
m0/4(n− 1)

∫
|x|>1

∑
a

ϵa(x)d2x·

·
∫
1<|x−y|<r

d2y

∫
1<|x−z|<r

d2z⟨ϵ(x)ϵ(y)ϵ(z)ϵ(∞)⟩0⟨ϵ(y)ϵ(z)⟩0

From this term as the computation of section 2.1.3, it gives two additional con-
tribution of the renormalization group equations, and these integrals are solved
through the Coulomb Gas formalism already mentioned. The three contribu-
tions will therefore be[29]:

m0
3,1 = 16π2g2SRm0(n− 1)(n− 2)

(
r2ϵSR

ϵ2SR

)∫
|x|>r

∑
a

ϵa(x)d2x (76)

m0
3,2 = −4π2g2SRm0(n− 1)

(
r2ϵSR

ϵSR

)∫
|x|>r

∑
a

ϵa(x)d2x (77)

m0
3,3 = 8π2g2SRm0(n− 1)

(
r2ϵSR

ϵ2SR

)∫
|x|>r

∑
a

ϵa(x)d2x (78)

If one sums up these three terms it gets a contribution:

m0
3 = m3,1 + m3,2 + m3,3 =

=

[
− 4π2g2SRm0(n− 1)

(
r2ϵSR

ϵSR

)(
1 − 4n− 6

ϵSR

)]∫
|x|>r

∑
a

ϵ′a(x′)d2x′
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And rescaling following equations (50):

m3 =

[
−4π2g2SRm0(n−1)

(
r2ϵSR

ϵSR

)(
1− 4n− 6

ϵSR

)]
r1+

ϵSR
2

∫
|x′|>r

∑
a

ϵ′a(x′)d2x′

So putting all terms together with (74) and (75), the rescaled parameter will
be:

m = m1 + m2 + m3 = m0r
1+

ϵSR
2 + m0r

1+
ϵSR
2

4π

ϵSR
(n− 1)g0SRr

ϵSR+

−4π2n− 1

ϵSR
g0SR

2
r2ϵSRm0r

1+
ϵSR
2

(
1 − 4n− 6

ϵSR

)
(79)

2.2.4 Dimension’s computation

From previous expression one could reorganize terms as:

m = m0r
1+

ϵSR
2

[
1 +

4π

ϵSR
(n− 1)g0SRr

ϵSR+

−4π2n− 1

ϵSR
g0SR

2
r2ϵSR

(
1 − 4n− 6

ϵSR

)]
(80)

And by rewriting

m = Zϵm0r
1+

ϵSR
2 (81)

it can be obtained the adimensional quantity:

Zϵ = 1 + 4π(n− 1)g0SRr
ϵSR − 4π2n− 1

ϵSR
g0SR

2
r2ϵSR

(
1 +

4n− 6

ϵSR

)
and in the limit of the replicas going to zero (n → 0), it simply gives

Zϵ = 1 − 4πg0SRr
ϵSR +

4π2

ϵSR
g0SR

2
r2ϵSR

(
1 +

6

ϵSR

)
(82)

From now on, as in previous related computation in section 2.1.4, the index for
short range will be neglected for simplicity. It can be compute the associated
beta function:

βϵ = r
dm

dr
= m

((
1 +

ϵ

2

)
+ γϵ

)
(83)

being

γϵ =
r

Zϵ

dZϵ

dr

We first we compute

r
dZϵ

dr
= r

d

dr

(
1 − 4πg0r

ϵ +
4π2

ϵ
g0

2r2ϵ
(

1 +
6

ϵ

))
=
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= −4πg0r
ϵ + 8π2g0

2

(
1 +

6

ϵ

)
No we can compute the inverse up to the first order in g0:

1

Zϵ
≃ 1

1 − 4π
ϵ g0rϵ

= 1 +
4π

ϵ
g0r

ϵ

Therefore one can compute(
1 +

4π

ϵ
g0r

ϵ

)(
− 4πg0r

ϵ + 8π2g0
2
(

1 +
6

ϵ

))
=

= −4πg0r
ϵ + 8π2g0

2r2ϵ +
48

ϵ
g0

2r2ϵ − 16

ϵ
g0

2r2ϵ + O(g0
3)

And with the previous expression (64):

g ≃ g0r
ϵ

(
1 − 8πg0

rϵ

ϵ

)
γϵ = −4πg − /32

g

ϵ
+ 8πg2 + /32

g

ϵ
= −4πg + 8πg2

To compute the energy dimension this time, we can make use of the Callan-
Symanzik relation [40]:

2∆′
ϵ = 2∆ϵ − 2γϵ(gc) (84)

In particular, in this case this reads:

2∆′
ϵ = ∆ϵϵ + 8πg − 16πg2

gc =
ϵ

8π
+

ϵ2

16π2
+ o(ϵ3)

2∆′
ϵ = ∆ϵϵ + ϵ +

ϵ2

2
− ϵ2

4
= ∆ϵϵ + ϵ +

ϵ2

4
We recall that:

∆ϵϵ = 1 − yd
2

and at the pure point this corresponds to:

∆ϵϵ = 1 − ϵ

2

So finally we can substitute to obtain twice the conformal dimension at the new
fixed point:

2∆′
ϵ = 1 +

ϵ

2
+

ϵ2

4
But then, if this is compared with the the conformal dimension of the energy-
energy operator, we find out that since:

∆′
ϵϵ = 1 +

ϵ

2
− ϵ2

4

∆′
ϵϵ ̸= 2∆′

ϵ

coming from a second order correction in the perturbative parameter ϵ. This
embodies the property of multifractality for the energy operator.
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2.3 Numerical simulations

In this section, the first numerical results obtained trough Monte Carlo tech-
niques developped in Fortran will be shown in order to confirm the presence of
the short-range class of universality. This will be done in the case of the Q = 3
disordered Potts model explaining, through a pseudo code, the way in which the
quantities of interest have been obtained. Some of the techniques introduced
in section 1.4 will be revised. The numerical analysis will be divided in two
parts. The first one will be focused on the computation of the magnetization
and the related critical exponents. Since there is a one-to-one correspondence
between classes of universality and sets of critical exponents, it will be studied
what happens at different values of disorder. Finally it will be computed the
disorder eigenvalue through a perturbative numerical technique at the the pure
fixed point (72).

2.3.1 SR-Potts model implementation and pseudo-code

To implement a Potts model, we have to consider again the discreet Hamiltonian
version from equation (14). The spins, as mentioned above, will be taken to
have only values: si = {1, 2, 3} where i = 1, ..., L2, being L the linear size of the
lattice. The square lattice will be constructed considering spins over a matrix as
in Figure 18, in which nearest neighbours will be in general given, for a spin si
that does not being to the contour domain, by: (i−1, i+1, i+L, i−L). A special
care is given for the case of boundary spins, in which additional constraints are
added. For clarity it will be brought an example: if i = 1 then the nearest
neighbours will be the position of the spins at (L, 2, 1 +L,L(L− 1) + 1) due to
periodic boundary conditions considered.

Figure 18: Spins as elements of a square matrix to mimic a lattice in the left
panel. In the central panel an example of nearest neighbours is given for an
internal spin while on the right the special case for the boundary spin s1 is
presented

The coupling ⟨Jij⟩ which will take two possible values {J1, J2} will be taken
for each spin at a lattice site equivalent for the spin below and on the right for
convenience. These will be identified as: JB

⟨ij⟩, JR
⟨ij⟩, and their value will be

chosen through the additional random generator among two values, following
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the relation:

JB
⟨ij⟩ = JR

⟨ij⟩ =
J1 + J2

2
+ σi

J1 − J2
2

In this way σ can be a lattice variable instead of an edge one, as in equation
(14), for the sake of simplicity.

This constraint for the bottom and right interactions is a microscopic detail
for the implementation of disorder. We can affirm that it does not change the
first and the second cumulant of the disorder probability that will be specified
below. Two equation are needed to fix the parameters to work at critical points.
The first one will be the duality condition [22] which determines the location of
the critical point:

(eJ1 − 1)(eJ2 − 1) = Q (85)

where Q = 3 here. The second equation comes form the definition of the
parameter already introduced, the disorder strength:

r =
J1
J2

The random variable σi is taken to choose its values with equal probability.
This actually consist in fixing P ({σ}) in such a way that σ = 0 and each site is
independent to each other: σiσj = 0 if i ̸= j. With first and second cumulant to
be fixed, this is equivalent to a Gaussian disorder as explained at the beginning
of section 2, therefore this represents an effective short range implementation.
The parameter r will be chosen freely in its domain while the implicit equation
(85) will be solved through bisection method with an error of the order ∼ 10−12.

The actual parameters used will be listed afterword; despite their actual
values, the simulations used share common codes and it will be presented here.
After a first initialization of spins to be si = 1 ∀ i a first Montecarlo is performed
for the system to thermalize. For a given size of the lattice L there will be a
total number of iterations given by nTherm · τL where τL is a lattice dependent
parameter that takes into account how larger lattices need more time to reach
uncorrelated measures. For each iteration the FK cluster will be created using
the Swendsen-Wang Algorithm presented at section 1.4.5 with probability for
the formation of a bond between nearest neighbours given by:

p1 = 1 − eJ1 , p2 = 1 − eJ2

After thermalization the magnetization will be computed. This quantity in the
cluster model is related to the size of the largest FK constructed, denoted by A.
At the end of each simulation, the magnetization will simply be given by the
average over the number of iterations:

m̃ =

〈
A

L2

〉
(86)

For each disorder value (therefore for each set of J1 and J2), the average over
the disorder is taken simulating in an equivalent way nsamples such that at the
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end of each of them we can get the final quantity:

m =
m̃

nsamples
(87)

2.3.2 Effective critical exponent simulations

In sections 1.1.1, 1.1.2 it has been shown the behaviour of some observable at
criticality. The magnetization behaves for instance

m ≃
(
T − Tc

Tc

)β

while the correlation length scales:

ξ ≃
∣∣∣∣T − Tc

Tc

∣∣∣∣−ν

From theoretical results, it is known that the system will show a second order
phase transition, which corresponds to the divergence of the correlation length.
In a numerical simulation this phenomena cannot be observed, the divergence
will be possible only with an infinite lattice size. Then, what happens, is due to
finite sized effects that ξ becomes comparable to the system size, therefore in
general ξ ≃ L. If one performs some substitution it is possible to obtain that:∣∣∣∣T − Tc

Tc

∣∣∣∣ ≃ L− 1
ν

which entails
m ≃ L− β

ν (88)

This allows to better understand the computation of the magnetization through
the FK cluster fractal dimension. It is known in percolation model that:

AFK ∼ LDf

where this new variable is the so-called fractal dimension of the cluster linked
to the critical exponent through the relation[41]:

Df = 2 − β

ν

Normalizing over L2 as done in (86), exactly gives the same fraction of critical
exponents, therefore this quantity is proportional to the magnetization m and
represents an improved estimator of it. From now, one, we will refer to the
fraction of these two critical exponents as effective magnetic exponent :

∆(L) =
β

ν
(89)
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The dependence on lattice size is crucial, since in theoretical comparisons with
analytical calculations, the subleading correction due to the finite size of the
lattice strongly affect the values. A possible comparison could be only done in
theory in the limit:

∆ = lim
L→∞

∆(L) (90)

Numerically the effective critical exponent will be computed as follows. Taking
for instance the magnetization at L and at its double size 2L, their ratio

m(2L)

m(L)
=

(2L)−∆

L−∆

can be manipulated to extract the critical exponent:

∆ = − 1

log(2)
log

(
m(2L)

m(L)

)
In this section the disorder strength has been chosen to be r ∈ {1, 6, 100, 1000}.
The number of samples for r ̸= 1 will be nSamples = 106 (since in the pure case
there will be no disorder implementation or disorder averages to be taken into
account, for this particular case the magnetization computed will simply be m̃).
The number of iteration for the thermalization have been set nTherm = 103.
The number of iteration, corresponding to the number of step for the average
m̃ is niter = 104. The simulations have been run for: L = {8, 16, 32, 64, 128}.

Figure 19: Effective critical exponent at increasing lattice size L for different
disorder strengths r

The result of the simulation for the effective critical exponent are shown in
Figure 19. We will analyze curve by curve to understand the physics behind
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the behaviour observed. At r = 1, which corresponds to the pure model, we see
the presence of an increasing ∆ which seems to have an asymptotic behaviour
for larger lattice size, it seems to have a quite fast asymptotic behaviour to a
specific value following the general idea behind equation (90). The same seems
to happen even for r = 6, but by simple visual inspection, it can already been
stated that the asymptotic behaviour is different with respect to the previous
case, in fact, the curve seems to be shifted. For the curves at r = 100 and
r = 1000, both show a monotonic behaviour, although there is no possibility to
distinguish the pattern of the two previous curves.

We might explain what is happening by taking into account the stability
analysis of section 2.1.5, with a particular focus on the phase diagram of Figure
(14). In the numerical simulation we are taking the condition of working at
criticality, so T = Tc, we are considering only a 1 dimensional system for the
parameter space. The behaviour of the curve can be examined in two ways,
either by keeping the lattice size or the disorder value fixed. Let’s start by the
latter. As we have said, the presence of a finite size of the systems leads to
correction to the critical exponent, increasing the lattice size, this correction
becomes less and less dominant. This can be seen in an equivalent way as a
numerical renormalization, in which the system is rescaling its size (changing the
linear parameter L) till it reaches a fixed point, in which the critical exponent
will no longer change (related to the presence of the asymptotic behaviour). We
can focus on characterizing better the differences of r = 1 and r = 6 fitting
the curves following a parametric form of a typical power low behaviour at
criticality:

m

(
3L

2

)
= a + b

(
3L

2

)−c

The numerical fits are shown in Figure 20.
This allows to extract the parameter a, which corresponds to the critical

value in the limit L → ∞ for both curves. A visual representation of the result
is given in Figure (21) with the corresponding theoretical predictions.

The agreement that can be seen allows us to state that the two critical
exponents are indeed different, and this is sufficient to affirm that the numerical
calculation gives proof of the existence of a different class of universality. In
this case, it corresponds to the prediction for the existence of the short-range
random fixed point. The results will be summed up in Table 2, in which the
errors have been computed from diagonalization of the covariance matrix for
the fitting parameters.

What happens, although, for the other two curves? Since all quantities have
to converge to a relevant fixed point, then all curves have an asymptotic be-
havior. We can assume that these curves, at higher disorder values, will simply
require a longer convergence that cannot be captured at the simulated length
scale of the lattices considered. There are then two aspects to be considered, if
all curves must converge to a value how can we distinguish critical quantities?
Moreover, what causes curves to have a slower convergence? The answer to
both is actually given by a single concept, other than the subleading correction
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Figure 20: Fit of for r=1 and r=6

due to the lattice size, there are additional correction due to the distance form
the criticality of the disorder strength rc. But this means that models far from
criticality show a double correction to scaling, which may affect in a great way
the values of critical exponents and significantly slow down the asymptotic be-
haviour. This explains the trend for r = 100, 1000. But still it does not explain
how to distinguish critical r values. Well this is still an open question, in fact
it is not easy to distinguish precisely for instance rc = 6 from rc = 6.1, if sim-
ulated, at the moment. One last question would be, in fact, related to what
the curves for r = 100, 1000 will converge to. Theoretical results would lead
us to claim that they will tend to the SR value of the critical exponent, being
the only stable fixed point, since the pure point is unstable. But to claim this
numerically, a perturbative approach will be developped and will be presented
in the following section.

∆num ∆the

a1 = 0.13308 ±0.00034 0.13333
a6 = 0.13403 ±0.00046 0.13446

Table 2: Fitted parameters a, given by L → ∞, corresponding to the critical
exponent ∆ for r=1 and r=6
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Figure 21: Asymptotic behaviour and comparison with theoretical results

2.3.3 Numerical disorder operator eigenvalue

The renormalization flow previously seen is only related to the finite size effects
of the systems but does not provide the stability of the two classes of universality.
In fact we would like better to understand, what is the actual behaviour at
fixed lattice size L, but varying the disorder. This kind of approach is more
similar to the one developped for the computation of the fixed points through
the procedure of 2 and in the same way, the behaviour will be characterized
considering small perturbation with respect to a known critical model. For the
simulation this will entail to consider small values of the disorder with respect
to the pure one, so values of r ∼ 1.

In the theoretical framework of renormalization group, perturbation due to
the introduction of the disorder allows to establish a relation with the average
magnetization in the absence of randomness by means of a scaling function:

m(µ2;L) = m(0;L)f((µ2 − µ2
c)Lyd) (91)

where µ is simply linked to the disorder strength:

µ =
∆J

2

characterized by the following condition: µc = 0 at the pure point. Rewriting
the previous equation it can be expressed the final form:

m(µ2;L)

m(0;L)
= f(µ2Lyd) (92)
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The variation of the disorder corresponds to actual change in µ which is linked
to the variance of the disorder distribution (P{σ}). This justify the possibility
of plotting the fraction of the average magnetization computed as a function of
what it will be called the scaling variable µ2Lyd .

Recalling that we work near a critical point, the functional dependence of
f must be unique, so considering different curves there must exist one value of
yd in such a way that all the curves at different L collapse onto a single one.
The value which allows this, will correspond to the numerical prediction of the
renormalization group eigenvalue at the pure point.

In Figure 22b, it is shown the result of the collapse using the value nu-
merical value yd = 0.40 with an uncertainty of ∼ 10−2. More details for the
actual procedure implemented to extract the values and the error will be given
in section 3.3. The result is in agreement with the theoretical prediction of (72)

(a) (b)

Figure 22: Normalized magnetization computed at small values of disorder
strength r. This procedure, equivalent to a perturbation technique to the pure
point, show in the left panel how all the curves at fixed L have a similar be-
haviour. In the right panel it is shown how, using an appropriate scaling variable,
all functions can be collapsed into a single curve, giving the numerical form of
the universal scaling function for the magnetization

when ϵ is set for Q = 3. In particular, since the value of the renormalization
eigenvalue is positive, this confirms that the pure point is repulsive, together
with the previous claim that curves at r = 100, 1000 will converge to the value
of the short-range critical exponents. Finally this is better seen in the Figure
22a where, all the curves at fixed L go away from the pure value of the mag-
netization, and at increasing lattice size this flow is more enhanced, confirming
the repulsiveness of the pure fixed point.
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3 Long-range disordered Potts model

In this section it will be analysed the disordered Potts model with long-range
correlation. This corresponds to the case in which the correlation exponent of
equation (17) is taken as a < 2. For this section, due to an higher complexity,
given by the presence of two perturbative parameters, the renormalization com-
putation will be carried out only up to the 1-loop order. For the long range Potts
model the probability distribution cannot be expressed in the same way as it has
been done in section 2, in general, higher order cumulants starts to be relevant
and cannot be neglected anymore. The Gaussian integration of (31) cannot be
any longer performed as well as in numerical simulations, the Gaussian imple-
mentation is no longer appropriate. Firstly we would study analytically through
renormalization group procedures how the dynamical equations modify, follow-
ing a built-in critical action[29], if new fixed points are found along with their
stability conditions and their universality class. Finally, moved by the possibil-
ity to characterize the renormalization group eigenvalue numerically, following
the results of section 2.3, we will repeat the procedure for different values of Q
highlighting the main differences with the previous case.

3.1 Renormalization Group

The general idea, since we would like to generalize the short-range disorder, is to
consider a probability distribution whose integration could bring two different
terms, the short range part which we would like to prove to be relevant for a ≥ 2
and a long range one, which should dominate for a < 2. This is in general consist
in modifying directly equation (47), building manually a possible action who
could be used to describe the physics. Namely this will be done by considering:

S = S0 + Spert + SLR

being Spert the previous ϵϵ operator contribution, while the new perturbation
term will be related to:

SLR = g0LR

∫
ϵ(x)σ(x)d2x

It consists on a direct interaction between the energy density operator and the
disorder one. This is equivalent to having taken the replicated partition function
directly as:

Zn =

n∏
a=1

Tr{sa}e
−

∑
a S0

a−g0
LR

∑
a

∫
ϵa(x)σ(x)d

2x−g0
SR

∑
a ̸=b

∫
ϵa(x)ϵb(x)d

2x (93)

And the usual expansion of the exponential can be performed considering the
new perturbation term:

S̃pert = g0LR

∑
a

∫
ϵa(x)σ(x)d2x + g0SR

∑
a̸=b

∫
ϵa(x)ϵb(x)d2x
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Having already studied the contribution of the first term, up to second order,
in section 2.1.3, now it will be taken into account only the contributions coming
from the second new term and its interaction with the first one. The general
expansion will be given by:

eSpert = 1 + g0LR

∑
a

∫
ϵa(x)σ(x)d2x + g0SR

∑
a ̸=b

∫
ϵa(x)ϵb(x)d2x+

+
g0LR

2

2

∑
a,b

∫ ∫
ϵa(x)σ(x)ϵb(y)σ(b)d2xd2y+

+
g0SR

2

2

∑
a ̸=b

∑
c̸=d

∫ ∫
ϵa(x)ϵb(x)ϵc(y)ϵd(y)d2xd2y+

+
gSRgLR

2

∑
a,b̸=c

∫ ∫
ϵa(x)σ(x)d2xϵb(y)ϵc(y)d2xd2y (94)

3.1.1 0-loop order

One applies the same procedure of integrating out the smaller degrees of freedom
to the term:

g0LR

∑
a

∫
1<|x|<r

ϵa(x)σ(x)d2x + g0LR

∑
a

∫
|x|>r

ϵa(x)σ(x)d2x

Performing the rescaling with the usual change in lattice size taking into account
the disorder operator: 

x′ = x
r

x′ = d2x
r2

ϵ′(x′) = rhϵϵ(x)

σ′(x′) = rhσσ(x)

. (95)

and imposing the equivalency of partition function at different scales:

g0LRr
2−(hϵ+hσ)

∑
a

∫
|x′|>1

ϵ′a(x′)σ′(x′)d2x = gLR,1

∑
a

∫
|x′|>1

ϵ′a(x′)σ′(x′)d2x

which entails the first contribution to the renormalization of the random pa-
rameter to be:

gLR,1 = g0LRr
ϵLR (96)

where it has been set the new regularization term ϵLR = 2 − (hϵ + hσ). The
computation will be characterized by considering this as a new perturbative
quantity. The dimension of the disorder operator is strictly related to the cor-
relation parameter a (17) by:

hσ =
a

2
and substituting the energy operator dimension as a function of ϵSR we get:

ϵLR = 1 − a

2
+

ϵSR

2
(97)
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3.1.2 1-loop order

It is now possible to carry on with the contribution to the first order. This is
equivalent to consider terms from (94) like O(g2SR) that gives a contribution to
the second order for the short range renormalization equations shown in (52).
Although, this time, there are two additional terms which must be taken into
account.

The first which will be considered is the one that will contribute at second
order to the short-range perturbative parameter gSR given by O(ϵσ · ϵσ). One
proceeds integrating out the lower degrees of freedom as in all previous compu-
tations. This time the OPE must be performed between the disorder operators,
which follow the equation below:

σ(x)σ(y) = I⟨σ(x)σ(y)⟩0 =
I

|x− y|2hσ

In fact, if one contracts the ϵϵ operator, we will remain with an operator of the
type σσ. This will not contribute for irrelevancy arguments. Therefore the final
relevant term will be:

g0LR
2

2

∑
a,b

∫
|x|>r

ϵa(x)ϵb(y)

∫
1<|x−y|<r

⟨σ(x)σ(y)⟩o

therefore one obtains:

g0LR
2

2

∑
a,b

∫
|x|>r

ϵa(x)ϵb(y)

∫
1<|x−y|<r

I
|x− y|2hσ

Considering only the contribution to the renormalization which will give an
effective change:

g0LR
2

2

∑
a ̸=b

∫
|x|>1

ϵa(x)ϵb(x)

∫
1<|x−y|<r

1

|x− y|2hσ

Performing now the integration in polar coordinate as to get (52) we finally get:

g0LR
2

2

∑
a̸=b

∫
|x|>r

ϵa(x)ϵb(x)2π
r2−2hσ

2 − 2hσ

and re-scaling with (95)

g0LR
2

/2

∑
a̸=b

∫
|x′|>1

ϵ′a(x′)ϵ′b(x
′)/2π

r2−2hσ+2−2hϵ

2 − 2hσ
= gSR,2

∑
a ̸=b

∫
|x′|>1

ϵ′a(x′)ϵ′b(x
′)d2x′

From equations (97) it is possible to obtain the relations: 2hσ = 2− 2ϵLR + ϵSR

such that the second order contribution coming from the long range perturbation
gives:

gSR,2 = πg0LR
2 r2ϵLR

2ϵLR − ϵSR
(98)
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The second contributions instead, comes from the interaction of the type O(σϵ ·
ϵϵ) in which the only possible OPE comes from the energy field operators from
a contraction of two indexes among three possible fields. This will modify the
quantity gLR. The arguments from all possible integration having divided the
low and high degrees of freedom give always a single relevant contribution in
which one variable is integrated over low distances and the second over high
ones.

The contraction in this case is exactly equivalent with the one of Figure 15,
giving a contribution (taking into account in the same way the degeneracy due
to the replicas) of C2,2 = 2(n− 1). One gets therefore:

gSRgLR

2

∑
a,b̸=c

∫ ∫
ϵa(x)σ(x)ϵb(y)ϵc(y)d2xd2y =

= C2,2
gSRgLR

2

∑
c

∫
|x|>r

∫
1<|x−y|<r

ϵa(x)σ(x)ϵa(y)ϵc(y)d2xd2y

Following the usual OPE for the density energy operators:

C2,2 =
gSRgLR

2

∑
c

∫
|x|>r

ϵc(x)σ(x)d2x

∫
1<|x−y|<r

I
|x− y|2hϵ

d2y

which through integration, neglecting the lower bound gives:

/2(n− 1)rϵSR
gSRgLR

/2ϵSR

∑
c

∫
|x|>r

ϵc(x)σ(x)d2x

and finally scaling back with equations (95), and setting it equal to the rescaled
quantity:

(n− 1)
rϵSR+ϵLR

ϵSR
g0SRg

0
LR

∑
a

∫
|x′|>1

ϵa(x′)σ′(x′)d2x′ =

= gLR,2

∑
a

∫
|x′|>1

ϵa(x′)σ′(x′)d2x′

which gives to the perturbative long-range term the following contribution

gLR,2 = (n− 1)
rϵSR+ϵLR

ϵSR
g0SRg

0
LR (99)

All the above computation, (51, 52, 96, 98, 99), gives as a final result:{
gSR = g0SRr

ϵSR + 4π(n− 2)g0SR
2 r2ϵSR

ϵSR
+ πg0LR

2 r2ϵLR

2ϵLR−ϵSR

gLR = g0LRr
ϵLR + 4π(n− 1)g0SRg

0
LR

rϵSR+ϵLR

ϵSR

And in the limit of zero replicas of the system, n → 0:
gSR = g0SRr

ϵSR − 8πg0SR
2 r2ϵSR

ϵSR
+ πg0LR

2 r2ϵLR

2ϵLR−ϵSR

gLR = g0LRr
ϵLR − 4πg0SRg

0
LR

rϵSR+ϵLR

ϵSR
(100)
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These equations represent the renormalized parameters at 1-loop-order. As it
can be seen they are not independent from each other, the short-range one
depends on the long-range and vice-versa, this will lead to a more complex
treatment.

3.1.3 Fixed Points

For the computation of the fixed point we need to rewrite the two previous
expression using the beta functions. While in the previous short-range case the
dynamical equation was represented by a 1-dimensional system, the presence of
two coupled differential equation will lead to the study of a 2-dimensional phase
space and a system of non-linear dynamical equations. Let’s start by rewriting
everything in terms of the beta functions, below defined:{

βSR = r dgSR

dr

βLR = r dgLR

dr

Equations (100) can the be written as:
gSR = g0SRr

ϵSR

(
1 − 8πg0SR

r2ϵSR

ϵSR
+ π

g0
LR

2

g0
SR

r2ϵLR−ϵSR

2ϵLR−ϵSR

)
gLR = g0LRr

ϵLR

(
1 − 4πg0SR

rϵSR+ϵLR

ϵSR

)
{
gSR = g0SRr

ϵSRZSR

g′LR = g0LRr
ϵLRZLR

. (101)

where the new quantities defined are:{
ZSR = 1 − 8πg0SR

rϵSR

ϵSR
+ π

g0
LR

2

g0
SR

r2ϵLR−ϵSR

2ϵLR−ϵSR

ZLR = 1 − 4πg0SR
rϵSR

ϵSR

. (102)

and the two additional quantities can be introduced:{
γSR = r gSR

ZSR

dZSR

dr

γLR = r gLR

ZLR

dZLR

dr

(103)

{
βSR = gSRϵSR + γSR

βLR = gLRϵLR + γLR

. (104)

We can focus on the computation of one first, starting with the short-range
case.

r
dZSR

dr
=

d

dr

(
1 − 8πg0SR

rϵSR

ϵSR
+ π

g0LR
2

g0SR

r2ϵLR−ϵSR

2ϵLR − ϵSR

)
=

= −8πg0SRr
ϵSR + π

g0LR
2

g0SR

r2ϵLR−ϵSR
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1

ZSR
= 1 + 8πg0SR

rϵSR

ϵSR
− π

g0LR
2

g0SR

r2ϵLR−ϵSR

2ϵLR − ϵSR

Since we have computed RG equations at 1-loop order, we have to stop at
expansions which are most quadratic like

O(g2SR, g
2
LR, gSRgLR)

So following the same order for the computation of gamma:

γSR =

(
−8πg0SRr

ϵSR+π
g0LR

2

g0SR

r2ϵLR−ϵSR

)(
1+8πg0SR

rϵSR

ϵSR
−π

g0LR
2

g0SR

r2ϵLR−ϵSR

2ϵLR − ϵSR

)
=

= −8πg0SRr
ϵSR + π

g0LR
2

g0SR

r2ϵLR−ϵSR + o(g3)

It can be computed the beta-function:

βSR = ϵSRgSR + gSR

(
− 8πg0SRr

ϵSR + π
g0LR

2

g0SR

r2ϵLR−ϵSR

)
+ o(g3)

And considering now, at first order:{
gLR = g0LRr

ϵLR + o(g2)

gSR = g0SRr
ϵSR + o(g2)

we can write the final expression:

βSR = ϵSRgSR − 8πg2SR + πg2LR (105)

The same computation can be applied to obtain the long-range beta-function:

r
dZLR

dr
= r

d

dr

(
1 − 4πg0SR

rϵSR

ϵSR

)
= −4πg0SR

rϵSR

ϵSR

1

ZLR
= 1 + 4πg0SR

rϵSR

ϵSR

Therefore the gamma function:

γLR =

(
− 4πg0SR

rϵSR

ϵSR

)(
1 + 4πg0SR

rϵSR

ϵSR

)
= −4πg0SRr

ϵSR + o(g)

and taking into account the first order change in the parameter:

βLR = ϵLRgLR − 4πgSRgLR (106)

Fixed points can be found imposing the system of equations (105), (106) to
be null. We will consider for this aim three different cases:

68



1. gSR = gLR = 0 :

This corresponds exactly to the pure fixed point, in which disorder is not
present at criticality. The fixed point will be denoted

g⃗P = (0, 0) (107)

2. gLR = 0, gSR ̸= 0:

This is equivalent to say that the disorder implemented does not have the
long-range character but only the short range one.

Necessarily ϵSR − 8πgSR = 0, which gives

⃗gSR =

(
ϵSR

8π
, 0

)
(108)

and this is in agreement, up to the first order, to equation (67), confirming
how the action built is able to include the previous SR result and to
generalize it.

3. gSR, gLR ̸= 0:

This final case will be referred to as long-range case, due to the presence
of a non-null-term for the long-range parameter.

It will imply: ϵLR − 4πgSR = 0 → gSR = ϵLR

4π which can be substituted in
the first equation: ϵSR

ϵLR

4π − 8π( ϵLR

4π )2 + πg2LR = 0. This gives as a result:

⃗gLR
1,2 =

(
ϵLR

4π
,±ϵLR

2π

√
2 − ϵSR

ϵLR

)
(109)

3.1.4 Stability of Fixed Points and RG eigenvalues

Being the system of differential equations (the beta-functions expressions) non
linear, to study the stability of the fixed points it must be linearized. This
corresponds to the computation of the Jacobian matrix, defined as follows:

J =

(
dβSR

dgSR

dβSR

dgLR
dβlR

dgSR

dβLR

dgLR

)
Performing the derivatives this corresponds to:

J =

(
ϵSR − 16πgSR 2πgLR

−4πgLR ϵLR − 4πgSR

)
(110)

Then the stability will be given by the eigenvalues of the Jacobian matrix com-
puted at each fixed point[42]. To make the discussion about stability more sim-
pler, the values of ϵSR will be taken from the beginning as the ones of interest.
In fact focusing on a particular case of the spin values (Q=1,2,3), the dimension
of the energy operator is known, as well as the regularization parameter ϵSR

which depend on.
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Q=1 The Potts, model will corresponds to a long-range percolation model in
which ϵSR = −0.5. We can start the analysis of the fixed point from the pure
one:

J |g⃗=g⃗P =

(
− 1

2 0
0 ϵLR

)
The matrix is diagonal, the eigenvalues simply corresponds to:{

λ1 = − 1
2

λ2 = ϵLR

(111)

Moreover we have fixed λ1 < 0. We can distinguish three different cases:

• ϵLR>0:
Saddle point node, it is attractive along one direction and repulsive along
the other

• ϵLR = 0:
Node with an attractive direction and a marginal one: Stable degenerative
point

• ϵLR < 0:
Stable node, the pure point is an attractive fixed point

At the short-range fixed point:

J |g⃗= ⃗gSR
=

(
1
2 0
0 ϵLR + 1

4

)
Even in this case, being the jacobian diagonal, it is possible to determine the
eigenvalues by simply looking at the diagonal elements:{

λ1 = 1
2

λ2 = ϵLR + 1
4

(112)

Once again we can distinguish three different case:

• ϵLR > − 1
4 :

Unstable node since both eigenvalues are positive

• ϵLR = − 1
4 :

Unstable degenerate node, one negative and one null

• ϵLR < − 1
4 :

Saddle point node, one stable and one unstable direction

Finally, we study the Jacobian for the long range fixed point:

J |g⃗= ⃗gSR
=

 − 1
2 − 4ϵLR ±ϵLR

√
2 + 1

2ϵLR

∓2ϵLR

√
2 + 1

2ϵLR
0


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For symmetric reasons, which are all related to taking one of the two bond
strength greater than the other, the two fixed point will behave in the exact
same way, therefore it will be analysed just the case of g⃗ = ⃗gLR

1

J |g⃗= ⃗gLR
1 =

 − 1
2 − 4ϵLR +ϵLR

√
2 + 1

2ϵLR

−2ϵLR

√
2 + 1

2ϵLR
0


We can compute the trace:

Tr(J) = −1

2
− 4ϵLR

And the determinant:

det(J) = 2ϵ2LR

(
2 +

1

2ϵLR

)
= 4ϵ2LR + ϵLR

we are in this case more interested in the stability rather then the actual eigen-
values. The first information about the stability of the fixed point is given by
the trace of the jacobian. In this case:

Tr(J) > 0 ⇐⇒ ϵLR < −1

8

but together with the conditions of existence : (−∞,− 1
4 ],∪[0,+∞) we get that

the fixed points could be attractive or repulsive if:{
ϵLR ≤ − 1

2 unstable

ϵLR ≥ 0 stable
. (113)

Moreover, the classification of the fixed point is fully given by Tr2(J) and
4det(J) In this case it is always true that: Tr2(J) > 4det(J) so we can summa-
rize the type of fixed point in the following:

• ϵLR < − 1
4 :

unstable node

• ϵLR > 0:
stable node

The case ϵSR = − 1
4 , 0, they become degenerate nodes, respectively unstable and

stable. The general stability for all possible different values of ϵLR and the type
of fixed point is given in Figure 23. Moreover in Figure 24 it can be found the
numerical representation of the phase space whose directions for stability are in
agreement with the theoretical analysis2.

2The numerical representation of the phase space has been obtained using an already
existing code for 2-dimensional non linear phase plots[43]
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Figure 23: Summary of the stability of fixed points Q=1

(a) ϵLR < −0.25: (b) −0.25 < ϵLR < 0:

(c) ϵLR > 0

Figure 24: Phase diagram and stability analysis for q=1
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Q=2 In this case, corresponding to ϵSR = 0, the short-range fixed point (108)
collapses into the pure point (107), therefore it is sufficient to analyze just one
of them and one of the long-range fixed point to have a complete picture. For
the pure/short-range point the eigenvalues will simply be:{

λ1 = 0

λ2 = ϵLR

So we can distinguish two cases:

• ϵLR > 0:
unstable degenerate fixed point

• ϵLR < 0:
stable degenerate fixed point

Whilst for the long range jacobian, we can simplify it in the form:

J |g⃗= ⃗gLR
1 =

(
−4ϵLR +ϵLR

√
2

−2ϵLR

√
2 0

)
Once again, in this case we focus more on the characterization of the fixed

points rather than the specif value:

Tr(J) = −4ϵLR, det = 4(J)ϵ2LR

and in this case, due to the condition Tr2(J) = 4det(J) entailing:

• ϵLR < 0:
unstable star node

• ϵLR > 0:
stable star node

Figure 25: Summary of the stability of fixed points Q=2

In Figure 25 the stability conditions will be summarized. Finally, the corre-
sponding numerical phase plot will be shown in Figure 26.
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(a) ϵLR < 0:

(b) ϵLR = 0

(c) ϵLR > 0

Figure 26: Phase diagram and stability analysis for Q=2
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Q=3 In this case, we have to take into account the study for all the three
fixed points with ϵSR = 0.4. Staring from the pure one, the matrix becomes:

J |g⃗=g⃗P =

(
2
5 0
0 ϵLR

)
Therefore {

λ1 = 2
5

λ2 = ϵLR

• ϵLR > 0:
unstable node

• ϵLR = 0:
degenerate unstable node

• ϵLR < 0:
saddle point

For the short-range fixed-point:

J |g⃗= ⃗gSR
=

(
− 2

5 0
0 ϵLR − 1

5

)
Once again, being the matrix diagonal it is possible to compute{

λ1 = − 2
5

λ2 = ϵLR − 1
5

This corresponds to the following cases:

• ϵLR < 1
5 :

stable node

• ϵLR = 1
5 :

stable degenerate node

• ϵLR > 1
5 :

saddle point

Finally we analyzed the case of the LR-fixed point: g⃗ = ⃗gLR
1

J |g⃗= ⃗gLR
1 =

 2
5 − 4ϵLR +ϵLR

√
2 − 2

5ϵLR

−2ϵLR

√
2 − 2

5ϵLR
0


whose trace is computed below:

Tr(J) =
2

5
− 4ϵLR
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It gives: {
Tr(J) > 0 ϵLR < 1

10

Tr(J) < 0 ϵLR > 1
10

. (114)

Whilst the determinant:

det(J) = 4ϵ2LR − 4ϵLR

5

even in this case, as for Q = 1

Tr2(J) > 4det(J) ∀ϵLR

So we can summarize, taking into account the domain of existence (due to the
presence of the square root) the ranges:

ϵLR < 0 || ϵLR > 0.2

• ϵLR < 0:
unstable node

• ϵLR > 0.2:
stable node

And they will become degenerate, respectively unstable and stable for ϵLR =
0, 0.2. Everything will be summarized in the Figure 27.

Figure 27: Summary of the stability of fixed points Q=3

In Figure 28 it is represented the corresponding phase space computed nu-
merically, the stability of the fixed points once again show an agreement with
the theoretical computation.
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(a) ϵLR < 0:

(b) 0 < ϵLR < 0.2

(c) ϵLR > 0.2

Figure 28: Phase diagram and stability analysis for Q=3
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3.2 Operators renormalization

It is wanted at this point to understand the way both the energy ϵ operator and
the disorder one σ renormalize. The first step is to add into the action two new
quantities, following the same procedure of 2.2:

S = S0
Potts + SPert + Sϵ + Sσ

S = S0
Potts + gLR

∑
a

∫
d2xσ(x)ϵa(x) + gSR

∑
a̸=b

∫
d2xϵa(x)ϵb(x)+

+m0

∑
a

∫
d2xϵa(x) + h0

∫
d2xσ(x)

As we have seen from the previous renormalization, there exists a mixing be-
tween long-range and short-range parameters. The same will happen even for
the additional quantities m and h. Therefore the following system must be
considered for the renormalization of these two quantities:(

m
h

)
=

(
Zϵ Zϵσ

Zσϵ Zσ

)(
m0 r2−hϵ

h0 r2−hσ

)
Even in this part, it will be chosen to perform renormalization up to 1-order
loop.

3.2.1 Energy operator

Let’s start with the energy term at 0-order loop. This contribution gives a
simple dimensional quantity. In fact:

m0

∑
a

∫
|x|>r

d2xϵa(x) → m0

∑
a

r2−hϵ

∫
|x|>r

d2xϵa(x)

performing the rescaling (95). This allows to write:

m1 = m0r
2−hϵ

An additional contribution is given by the 1-loop-term that comes from the
product of energy energy operator ϵϵ and the energy ϵ one: We have already
seen this expression at (75), the main steps are repeated:

C2g
0
SRm0

∑
a

∫
|x|>r

d2xϵa(x)

∫
1<|x−y|<r

1

|x− y|2hϵ
d2y

Using again the polar coordinates:

2(n− 1)g0SRm02π
r2−2hϵ

2 − 2hϵ

∑
a

∫
|x|>r

d2xϵa(x)
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and rescaling back one finds the second contribution for the energy operator:

m2 = 4(n− 1)g0SRm0
r2−2hϵ

2 − 2hϵ
r2−hϵ

Up till now, the previous expression in the short-range section has been obtained,
although in this case there is another contribution that must be taken into
account. This comes from the disorder-energy σϵ operator which couples with
the disorder σ:

h0

∫
d2xσ(x) ·

(
g0LR

∑
a

∫
d2yσ(y)ϵa(y)

)
and following the OPE of ⟨σ(x)σ(y)⟩0 = I

|x−y|2hσ
one simply obtains the addi-

tional contribution:

m3 = h0g
0
LR

r2−2hσ

2 − 2hσ
r2−hϵ (115)

Finally obtaining the complete expression:

m = m1 + m2 + m3 =

= m0r
2−hϵ + 4(n− 1)g0SRm0

r2−2hϵ

2 − 2hϵ
r2−hϵ + h0g

0
LR

r2−2hσ

2 − 2hσ
r2−hϵ

m = m0r
2−hϵ

(
1 + 4(n− 1)g0SR

r2−2hϵ

2 − 2hϵ

)
+ h0r

2−hσ

(
g0LR

r2−hσ−hϵ

2 − 2hσ

)
(116)

So in the Z matrix representation one can write:

Zϵ = 1 + 4(n− 1)g0SR

rϵSR

ϵSR
(117)

and in the same way:

Zϵσ = g0LR

rϵLR

2ϵLR − ϵSR
(118)

3.2.2 Disorder operator

Now it is possible to compute the renormalization of the disorder field oper-
ator. For the zero-loop-order the renormalized term always corresponds to a
dimensional change:

h0

∫
|x|>r

d2xσ(x) → h0r
2−hσ

∫
|x′|>1

d2x′σ′(x′)

with a first contribution given by:

h1 = h0r
2−hσ (119)
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Meanwhile at the 1-loop order we have one contribution that comes from ϵσ
and ϵ:

m0

∑
a

∫
d2xϵa(x) ·

(
g0LR

∑
b

∫
d2yσ(y)ϵb(y)

)
From which one gets the contribution with the OPE of the ϵϵ (which has a
combinatorial of a simple factor n):

h2 = g0LRm0n2π
r2−2hϵ

2 − 2hϵ
r2−hσ (120)

and combining all together:

h = h1 + h2 = h0r
2−hσ + g0LRm0n2π

r2−2hϵ

2 − 2hϵ
r2−hσ

such that the Z matrix elements will be

Zσ = 1 (121)

Zσϵ = ng0LR2π
r2−hσ−hϵ

ϵSR
(122)

3.2.3 Operators dimension

Putting all pieces together (117, 118, 121, 122), one obtains:

Z =

(
1 + 4(n− 1)g0SR

rϵSR

ϵSR
g0LR

rϵLR

2ϵLR−ϵSR

ng0LR2π rϵLR

ϵSR
1

)

and in the limit of n → 0 one finally obtains:

Z =

(
1 − 4g0SR

rϵSR

ϵSR
g0LR

rϵLR

2ϵLR−ϵSR

0 1

)
(123)

The mixing of operators phenomenon is evident in the Z matrix representation,
in fact in this long-range case it is non diagonal. For the computation of the
dimension operators the matrix must be diagonalized. Being Z tridiagonal this
can be done easily, since the diagonal matrix simply corresponds to the one with
only diagonal elements:

Z ′ =

(
1 − 4πg0SR

rϵSR

ϵSR
0

0 1

)
(124)

In particular, at first-order, this corresponds to the absence of the dynamics for
the disorder implemented, up till this point, it does not renormalize. This will
be better understood at the end of this section.
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Given Z ′, we can compute γϵ:

r
dZϵ

dr
= 4πg0SRr

ϵ
SR

γϵ =
r

Zϵ

dZϵ

dr
= 4πg0SRr

ϵ
SR(1 − 4πg0SRr

ϵSR) = 4πg0SRr
ϵSR − 16π2(g0SR)2rϵSR

Considering the first order (3.1.3) we get

γϵ = 4πgSR − 16π2g2SR (125)

So finally using the already mentioned Callan-Symanzik equations:

2∆′
ϵ = 2∆ϵ − 2γ(gc) = ∆ϵϵ − 8πgSR + 32π2g2SR

Computed at the pure point:

2∆′P
ϵ = 2∆ϵ

as expected. Computed at the short range point:

2∆′SR
ϵ = ∆ϵϵ − ϵ +

ϵ2

2

At the long range instead:

2∆′LR
ϵ = ∆ϵϵ − 2ϵ + 2ϵ2

confirming the difference between the physics of the short-range and the long-
range fixed points. Whilst for the disorder operator, being Zσ = 1 despite the
fixed point considered, it will always be true that γσ = 0, this will entails:

2∆′
σ = 2∆σ

So that the disorder dimension does not change.
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3.3 Numerical results

In the long-range Potts model, the numerical implementation of the disorder
must be taken with some care. Up to know in fact, in the numerical part,
the correlation between spins it has been simply chosen to be the uncorrelated
one, equivalent to the Gaussian case, but now it is needed to build the power
law decay (17). For this, the property of the Ising model at criticality and its
characteristic power-law decay for spins is used:

⟨σiσj⟩ = |i− j|−1/4

This yet does not represent what we need, since we would like to work with an
algebraic parameter that is able to vary. The idea is to consider n-Ising models,
which can all be simulated at criticality, building for each n-model an auxiliary
variable as follows:

σ̃i =

n∏
j=1

σj
i (126)

We can build the correlations between these new spins by simple multiplicative
property:

⟨σ̃iσ̃j⟩ = |i− j|−n/4 (127)

and we can now set our correlation exponent

a =
n

4
(128)

which can be varied by changing the number of simulations of the Ising model.
This gives the power-law behaviour expected for long-range disorder. However,
a can only vary discretely between a certain set of values, since n must be
necessarily integer. It is important to note that all the simulations will always
be made at criticality. We will study in the following the three Potts models
corresponding to the values of Q = 1, 2, 3 3. In particular for Q=1 there will
be simulated 8 Ising copies meanwhile for the cases of Q = 2, 3 they will be
10. As shown in section 2.3 a general pseudo-code will be presented below, and
later specific values of parameters will be taken into account. The first step will
be to simulate n-Ising models. This will be done considering a square lattice
of length L with periodic boundary conditions. All spins are initialized and all
the systems are thermalized with a first set of Monte Carlo sweeps. The type
of update for the spins will be once again done through a non-local algorithm
using the construction of the FK cluster, in particular this time it will be used
the Wolff algorithm. A random cluster of spins will be constructed taking into
account, between spins of the same values, a probability, to create the stochastic
cluster, of

p = 1 − e−2J

3The numerical results of this section will be part of a paper to be published, representing
results that confirm the validity of the action built and which are in great agreement with the
theoretical renormalization group eigenvalue predictions at the pure point [44]
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with
J = log(1 +

√
Q)

where for Ising Q = 2. At the end of this construction, all spins will be reversed.
This will be repeated for all the steps of the thermalization. In particular they
will be chosen ntherm = 1000 steps, and an additional quantity which takes into
account the autocorrelation time at a given lattice size (the larger the more the
time needed to thermalize):

nL =



4 if L = 8

4 if L = 16

4 if L = 32

5 if L = 64

6 if L = 128

such that the final thermalization is given by: NTherm = ntherm · nL. At the
end of this the variables for the lattices will be created following equation (126).
For each simulation of these critical models, there will be considered different
dn = 1000 samples; they will be needed to perform disorder averages. At
this point one has to distinguish from what it is implemented for the case of
Q=1, Q=2 and Q=3. In the first case, since the spins can be taken only as
single valued, there is, actually, no dynamics in the systems, so the simulations
are much faster, and they will not require thermalization steps, nor updates. It
simply will be constructed the corresponding FK cluster, using now two different
probabilities

p0 = 1 − eJ1

and
p1 = 1 − eJ2

to take into account the randomness of the model. In fact everything will be
equivalent to what has been chosen for the bonds values in 2.3 . The magneti-
zation will be computed in the equivalent way using (86) and (87).

In the case of Q=2, and Q=3 thermalization will be needed to study the
system at thermodynamical equilibrium as well as sweeps to get uncorrelated
observables. To do this, two MonteCarlo functions will be used, following the
Wolff update of the previous case. Although for the case of Q = 3 we must
define better what reversing a cluster of spins actually means when there are
three different values. In this case, if for instance the cluster is of spins of value
2, it will be extracted a random number to choose amongst the two remaining
Q quantities, {1, 3}, and all the cluster’ spins will be set to that value. Finally,
the disordered averages for the magnetization will be computed. In this second
section of numerical analysis, we will be more interested on the computation
of the renormalization group eigenvalues through numerical perturbation in an
equivalent way to 2.3.3. This will be done with respect to the pure point,
therefore it will tell us the stability or instability of those fixed points. Although,
through theoretical prediction of the renormalization group eigenvalues we could
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get, if the pure point is unstable, which of the two other possible fixed points, SR
or LR, will be the actual stable one. In comparison with theoretical values, we
must consider the two following remarks. The first one is related to the fact that
in the theoretical computation we have considered two disordered eigenvalues
while in the numeric we will still consider a scaling function depending only
on one as in (92). We recall although that the action has been constructed
adding a term. Since λ1 and λ2 are related to be the short-range and long-
range distributions, we expect at a given fixed point to have just one of them,
depending on the dominating character of the disorder distributions. The second
remark is strictly linked to the action for the perturbation of the long-range case:

S̃pert =
∑
a

S0
a + gLR

∑
a

∫
d2xσ(x)ϵa(x) + gSR

∑
a̸=b

∫
d2xϵa(x)ϵb(x)

that we recall, it has been constructed adding directly the term O(ϵσ). In
fact, while the term O(ϵϵ) comes from a Gaussian integration that makes gSR

proportional to the variance of the disorder variable, so µ2, the other term,
since no integration is performed, will be simply proportional to the disorder
operator, so its implicit dependence will be ∝ µ. This is quite important since in
the collapse, following the universal scaling function, the scaling variable µ2Lyd

should be considered actually as µ2L2yd , with an addition factor 2. A way to
avoid this is to plot everything in such a way that the scaling function and the
magnetization are function of just µ. But to better see numerically the presence
of this effect, the first path will be chosen. Therefore, since we are computing
the eigenvalues at the pure point, which will simply corresponds to dimensional
quantities

yd = 2 − hd

being yd the disorder eigenvalue and hd the operator physical dimensionality we
specify that the actual comparison will be made as follows:{

ySR
d = ϵSR = 2 − hϵϵ

yLR
d = 2ϵLR = 2(2 − hσϵ)

(129)

This simply means that the numerical eigenvalue computed will be twice the
actual theoretical quantity in case the long-range behaviour is the relevant one.
This scheme will be analyzed in depth in the following section.
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3.3.1 Q=1

The computation of yd for Q = 1 has been performed for the following values
of a at different lattice size L:

a ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

L ∈ {8, 16, 32, 64, 128, 256}.

The magnetizations at various disorder strengths r, has been taken in the range
[1, 4], and they have been obtained computing disordered averages over N =
107 samples. Here the numerical method implemented will be shown for the
particular case of a = 0.75. The same technique will be applied for all other
values of a.

The magnetization for a given disorder value (r ̸= 1, µ ̸= 0) normalized
with the magnetization of the pure case (r = 1, µ2 = 0) is computed at fixed
lattice size. The ratio has been plotted as a function of the disorder strength
parameter µ2.

Figure 29: Fraction of magnetization at a given disorder over the magnetization
of the pure model (r=1) at different lattice sizes plotted against the scaling
variable µ2Lyd for a = 0.75

In Figure 29 the different curves show a similar behaviour although they
seem shifted one with respect to the other. Due to the uniqueness of the scaling
function f, it can be introduced the dependence to the lattice size through the
renormalization group exponent: µ2Lyd . Re-plotting the curves with this new
scaling variable, there must exist a value of yd for which all data points collapse
into a single curve. Although this procedure was already introduced in 2.3,
in this case more details will be given. With this aim, an initial guess of the
exponent ỹd = 0.68 has been chosen through visual inspection first. This unique
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functional form holds for disorder values sufficiently close to the pure fixed point.
As it can be seen in the plot, for higher values of disorder strength the collapse is
lost. This is in agreement with theoretical argument statements that the unique
functional form is preserved only in the vicinity of critical points and at higher
disorder values the perturbation is lost.

Figure 30: Fraction of magnetization at a given disorder over the magnetization
of the pure model at different lattice sizes plotted against the scaling variable
µ2Lyd for a = 0.75

To avoid these effects, to extract a more precise value of the critical exponent
yd, one can focus on a smaller domain of the scaling variable. In addition, for
a better representation for the collapse, it will be considered a slightly different
form of the data:

1 − m(µ2, L)

m(0, L)
= 1 − f(µ2Lyd)

In order to understand better how the value of yd is affected by the lattice size
L, the collapse has been performed, not as previously, amongst curves at all L,
but taking pairs only. The critical exponent variable yd has been varied upon a
range centered at the initial guess ỹd which in this case corresponds to ỹd = 0.68.
For each value of the exponent two curves at subsequent lattice size (for instance
L = 16 and L = 32, or L = 64 and L = 128) have been interpolated and their
y-distance (in absolute value) has been computed. The numerical yd is chosen
as the one which minimize the curves’ distance, yoptd . Four different pairs of
curves with the corresponding numerical renormalization exponent are shown
in Figure 31 in double logarithmic scale. The computation is in agreement with
a precise collapse as it can be seen.

A numerical uncertainty to each result has been computed considering the
quantity yd taken as the exponent which causes a deviation of 20% with respect
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Figure 31: Collapse of the function for couples of curves at different subsequen
lattice sizes

to the minimum distance between curves. This is supported by visual inspection,
taking into account the variances of each data point in the collapse represen-
tation, neglected till this point. The corresponding error has been computed
as the difference between the two quantities: |yd − yoptd |. Form the previous
figure one can observe a variation of the critical exponent at increasing lattice
size. This can be explained in terms of additional finite size effects which has
not been considered up to this point. This justifies taking into account as a
final exponent, yd from the largest couple of L, leading to an improvement of
the accuracy of the result from the simple initial guess, going from ỹd = 0.68
to ynumd = 0.71. This method has been applied for all the values of a, and the
initial guesses have been plotted below in Figures 32 in this case.

The final values of the correlation exponents have been summed up in the
Table 3 below and compared with the theoretical results. In Figure 33 a graph-
ical representation of the numerical results is presented for clarity. The sign
of the numerical values of yd defines the relevancy of the disorder. A positive
value describes a flow from the pure fixed point towards a critical disordered
fixed point whilst a negative value is an evidence of the absence of this flow
and an irrelevancy of the disorder. Finally when yd corresponds to marginal
case, it is more complex to describe what happens due to possible logarithmic
correction. The numerical result in particular show how the disorder is relevant
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Figure 32: Collapse and initial guess of yd through visual inspection for the
correlation exponent a ∈ {0.25, 2}
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a ynumd 2ϵLR ϵSR

0.25 1.25 ± 0.02 1.25 -0.5
0.5 0.97 ± 0.02 1 -0.5
0.75 0.71 ± 0.02 0.75 -0.5

1 0.45 ± 0.03 0.5 -0.5
1.25 0.17 ± 0.03 0.25 -0.5
1.5 0.01± 0.03 0 -0.5
1.75 -0.1 ± 0.02 -0.25 -0.5

2 -0.12 ± 0.03 -0.5 -0.5

Table 3: Comparison between numerical results and theoretical ones for Q=1

for a ≤ 1.5 and moreover, the flow which can be seen is in agreement with the
values of the long-range fixed point. This is perfectly equivalent to the stability
analysis made in 2.1.5, in fact the result of Q=1 shown in Figure 24, rewriting
the condition for which the long-range fixed point is stable, corresponds to:

ϵLR > 0 → 1 − a

2
+

ϵSR

2
> 0 → a <

3

2
where ϵSR = −1

2

which is exactly what is seen numerically. Although the pure fixed point results
stable for a > 1.5 the results must be taken with greater care since, in this case
logarithmic corrections could influence a lot what happens after the change in
the stability, being the disorder irrelevant.

Figure 33: Comparison between the theoretical eigenvalue and the numerical
results for L=128-256 taking into account the factor 2 for the long-range theo-
retical result
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3.3.2 Q=2

For Q = 2, due to the presence of a dynamics, some parameters have been
modified. The number of samples has been reduced to N = 106 due to a higher
computational complexity, while the range for the disorder strength r=[1,4] has
been left unchanged. The lattice size considered have been L ∈ {64, 128} for
a trade-off between the accuracy argument presented before and the increased
running time of simulations. Finally two additional values of a are considered
with respect to the previous ones: {2.25, 2.5}. The technique shown before has
been applied for each correlation exponent and the initial guesses are shown in
Figures 34 and 35.

The final results for yd values are shown in the Table 4 below with the
corresponding graphical representation in Figure 36.

The disorder critical exponent is relevant for a < 2 and marginal for a ≥
2. When these values are compared with the theoretical prediction, the first
important remark is related to the effective change of the disorder type, between
the short-range and the long-range one, captured by numerical results. In this
case there is a good comparison with all values of a, in particular this is in
agreement with Figure 25, in fact the long-range fixed point is stable for:

ϵSR > 0 → 1 − a

2
> 0 → a < 2

The marginality for a > 0 is well confirmed and observed in the plot below.

a ynumd 2ϵLR ϵSR

0.25 1.72 ± 0.02 1.75 0
0.5 1.48 ± 0.02 1.5 0
0.75 1.20 ± 0.01 1.25 0

1 1.00 ± 0.02 1 0
1.25 0.73 ± 0.01 0.75 0
1.5 0.44 ± 0.01 0.5 0
1.75 0.17 ± 0.02 0.25 0

2 0.02 ± 0.02 0 0
2.25 -0.02 ± 0.03 -0.25 0
2.5 -0.03 ± 0.02 -0.5 0

Table 4: Comparison between numerical results and theoretical ones for Q=2
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Figure 34: Comparison between the theoretical eigenvalue and the numerical
result for L=64-128 for Q=2 at a ∈ {0.25, 1.5}
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Figure 35: Comparison between the theoretical eigenvalue and the numerical
result for L=64-128 for Q=2 a ∈ {1.75, 2.5}

Figure 36: Comparison between the theoretical eigenvalue and the numerical
result for L=128-256
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3.3.3 Q=3

Finally, the results for Q = 3 are reported, using the same parameters for the
Q = 2 case. The initial guess are represented in Figure 37, 38 and there will
follow the Table 5 to compare the final results.

a ynumd 2ϵLR ϵSR

0.25 2.05 ± 0.02 2.15 0.4
0.5 1.91 ± 0.02 1.9 0.4
0.75 1.63 ± 0.01 1.65 0.4

1 1.43 ± 0.02 1.4 0.4
1.25 1.12 ± 0.03 1.15 0.4
1.5 0.89 ± 0.02 0.9 0.4
1.75 0.60 ± 0.02 0.65 0.4

2 0.52 ± 0.03 0.4 0.4
2.25 0.35 ± 0.02 -0.25 0.4
2.5 0.35 ± 0.02 -0.5 0.4

Table 5: Eigenvalue at the pure point for Q=3

In this case, it is confirmed the good agreement with theoretical predictions
which are able to capture the effective change from the long-range disorder to
the short-range case at a = 2. In fact, the eigenvalue remains relevant at all
values of a, although it cannot longer be compared with the long-range value,
but with its short-range one. If we consider in fact Figure 27 we can see that
the long-range is relevant for:

ϵLR >
1

5
→ 1 − a

2
+ /

0.4

2
> /

1

5

a < 2

Moreover, for a ≥ 2, from theoretical computation we know that the only stable
model is the short-ranged one and this can be seen with the comparison with
the short range value. The system does not flow in any case towards the pure
fixed point being yd always positive. The whole critical behaviour is described
by the two disordered fixed points and once again at a = 2 it is seen the effective
change between the long-range disorder into the short-range version. The final
result is shown in Figure 39.
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Figure 37: Initial guess for yd at Q=3: a ∈ {0.25, 1.5}
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Figure 38: Initial guess for yd at Q=3: a ∈ {1.75, 2.5}

Figure 39: Comparison with theoretical results for Q=3
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Conclusions

In this thesis we have investigated how the presence of disorder, in well-known
statistical models, affects the critical behaviour of second-order phase transi-
tions. Focusing on the Q-states Potts model, we have generalized the classical
expression of its Hamiltonian taking into account interactions between spins as
random bimodal variables: J⟨ij⟩ ∈ {J1, J2}. We have characterized the cor-
relation between bonds by taking an algebraic decay expression ∝ |i − j|−a

and by distinguishing two main cases based on the value of a: short-range and
long-range disorder.

After a general introduction to theoretical methods and numerical tech-
niques, such as the replica trick for disorder’s treatment, RG, the connection
between conformal invariance and critical points and MonteCarlo methods, we
focused on the short-range case, corresponding to a ≥ 2. We applied the per-
turbative renormalization group idea in real space, using the conformal field
theory formalism, up to second-loop-order following an analogous study carried
out by Picco, Dotsenko and Pujol[28]. We obtained a dynamical equation whose
solution gives a disordered fixed point with a different universality class from
the classical, pure, one. We analyzed in detail the domain of its stability for
Q = 1, 2, 3 making use of both theoretical and graphical methods of non-linear
equations. We later focused more on the Q = 3 case to compute the renormal-
ization group eigenvalue; this led to a more extensive analysis for the dimension
of the energy operator. In fact, while the operator dimensions for ϵ · ϵ and ϵ
are linked by a simple factor 2 at the pure point we were able to prove the
multifractality property of the energy operator since at the short range fixed
point this relation does not hold any longer ∆′

ϵϵ ̸= 2∆′
ϵ.

The same methods have been applied for the long-range study, a < 2, moti-
vated by a recent work of Chippari, Picco, Santachiara[29], by performing RG
at first-loop-order. A system of two dynamical equations has been computed
and it has provided us with three different fixed points, one of which belonging
to a different universality class from both the pure and the short-range ones
found at previous computations. Its stability has been studied in details pro-
viding theoretically the domain of stability and numerical phase space plots
which confirmed the analytical results looking at the direction of trajectories,
describing the renormalization flow, close to fixed points. The dimensions of
both the energy and the disorder operators have been computed, proving how
the latter does not change through renormalization procedures.

Numerical simulations through non-local Monte Carlo methods for the com-
putation of the magnetization were used to show, in the short-range case, the
presence of two distinct classes of universality, in agreement with theoretical pre-
dictions. The difference between the pure and short-range universality has been
confirmed by comparing the values of the effective magnetic critical exponent
by fitting techniques.

The most relevant result of the thesis comes from the implementation of a
numerical method for the computation of the disorder renormalization group
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eigenvalue. Exploiting a perturbative approach around the known critical pure
model, Potts models with weak disorder implementations have been simulated.
Exploiting scaling arguments and universality properties we have been able to
quantify the disorder eigenvalues allowing to characterize the stability of the
pure point numerically. Moreover by comparing with theoretical predictions it
has been proved which of the fixed points was relevant, moreover we showed
the expected effective change of the disorder from long-range to short range at
a = 2 for Q = 2 and Q = 3. This is one of the reasons for the importance of
this numerical method developped, that is considered as the main outcome of
the thesis.

This developped method poses the basis for a possible implementation for
numerical computations of the renormalization group eigenvalue at the new long
or short-range fixed points. In fact, up till now the numerical perturbation tech-
nique has been developped from the known pure model and the next step would
be to generalize this, by perturbing with respect to the disordered critical ones,
which are described by two different conformal actions. The main difficulty here
relies on the need to localize precisely the new disorder strength critical values
rc, since perturbation techniques require them for the success of the computa-
tion. In fact, collapses of curves make sense only close to critical models. If the
disorder strength were to be known, this numerical method would provide an
additional understanding of the relevancy of the disorder and a direct compar-
ison with theoretical result. In particular, focusing on the long-range case and
recalling the Halperin-Weinrib conjecture with their argument on the correla-
tion exponent ν = 2

a , it could be given a first numerical relation between these
two critical exponents for a non-Gaussian distribution implementation.

Finally, for the analytic part, it would be interesting to better understand
what happens at second-order-loop, in the long-range case, for the computation
of the disorder dimension through the Z matrix . In particular it would be of
great importance to study more in depth the mixing of short-range and long-
range characters in the renormalization equations, to gain a better perspective
for a possible renormalization of the disorder operator at higher orders.
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