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ABSTRACT

The spontaneous emergence of synchronization across various natural systems witnesses its impor-
tance in executing complex collective tasks within a population. Similarly, cooperation is a crucial
behavioral mechanism for ensuring the survival of a community in numerous physical, biological,
and social scenarios. Despite the evident interplay between synchronization and cooperation in many
real-world systems, a rigorous investigation of their relationship has seldom been conducted. The
Evolutionary Kuramoto Dilemma offers a quantitative approach to study the coevolution of coop-
eration and synchronization within the framework of networked interactions among populations of
coupled oscillators/agents. Each individual may decide whether or not to cooperate and interact with
the rest of the population in order to get synchronized. The decision is based on the benefit-to-cost
ratio they accrued in the past: cooperating means contributing to the collective benefit of synchroniza-
tion but also incurring the individual cost of interactions. We investigate the onset of synchronization
and cooperation within this framework, emphasizing how different interaction topologies significantly
influence the emerging phenomena. Following an initial investigation on static networks, our analysis
shifts to spatio-temporal networks, aiming to identify the conditions under which mobile individuals
and dynamical interactions promote synchronization and cooperation.
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1. INTRODUCTION

The second law of thermodynamics tells us that everything in the universe tends towards disorder.
If we consider complex systems—the closest representation of real-world systems—, we expect this
principle to be even more evident. Conversely, we continually experience occasions of spontaneous
order even in everyday life: the regular beating of our heart, the repeated contraction of the diaphragm,
the simultaneous firing of brain neurons, the perfectly timed orbits of moons, the concurrent flashing
of fireflies, the hypnotic murmuration of starlings, or even the coordinated actions of groups of indi-
viduals [1]. Natural systems tend to work in rhythm, suggesting that a coherent collective behavior
enforces their robustness, strengthening the bonds among individuals and facilitating the achievement
of much more complicated tasks. This fascinating self-organization is commonly known as synchro-
nization.
The most appealing aspect of this phenomenon is how universal it is, occurring at every scale of
nature and exploiting mechanical, chemical, electrical, gravitational and many other communication
channels to emerge. In this perspective, scientists have been investigating synchronization phenom-
ena for a long time, aiming to provide a unified quantitative description of the mechanisms governing
this behaviors.
A standard approach to tackle this problem is to describe the physical, technological, biological, or
social system under consideration as a population of coupled phase oscillators. Each oscillator swings
with a specific frequency and modifies its rhythm depending on the interactions with the rest of the
population. The nature and the structure of the communication within the population depends on
the context under investigation, resulting in a rich spectrum of diverse dynamics. If the interaction
are sufficiently suitable, the oscillators manage to converge their oscillations towards a common fre-
quency. As a result, the whole population synchronizes.[2]

In physics, interacting systems are usually described by considering each component of the popu-
lation as a passive dynamical unit bound to obey the governing laws of its evolution. However, it is
evident that many real-world situations do not match such a description. In biological, economical,
social contexts, populations are rather composed by active agents, capable of making rational deci-
sions and adopting different strategies, attempting to meet their personal needs. Individuals may be
in conflict, pursuing the same or a different objective; they may have different opinions, persuade the
partners to adopt their strategies or even behave irrationally.
Among the behavioral mechanisms emerging in systems of active agents, one of the most interesting
is certainly cooperation. The altruistic act of helping each other is counterintuitive, especially when
agents seek to achieve their own personal success. Yet, many biological and social populations decide
to cooperate even in selfish scenarios, where cooperating is costly but provides a greater collective
benefit. This highlights cooperation as a crucial behavior to ensure the community’s survival.
The powerful tool addressing this phenomenon is known as evolutionary game theory [3]. Game
theory is the unifying paradigm that provides a rigorous methodology to describe decision-making
processes. In this framework, the interacting units are considered to be rational "players" facing a
dilemma, i.e. a strategic decision. The agent’s choice eventually leads to a personal loss or gain
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depending on its effectiveness. The dilemma is commonly figured out by a game each agent plays
against another member of the population, where its eventual gain, or victory, implies a loss, or de-
feat, for the opponent. Individuals play several rounds against various opponents and each of them
eventually ends up with a net gain or loss depending on the adopted strategy.
Unlike its classical counterpart, evolutionary game theory allows agents to change their strategy over
time. Individuals can learn from other agents and imitate those adopting more successful strategies.
As a result, during the dynamics, convenient strategies survive while inefficient strategies die out.
The resulting selection mechanism becomes particularly interesting when the strategies to be adopted
are cooperation and defection. In this perspective, evolutionary games are exploited to investigate the
onset of this collective behavior [4].

Real-world systems exhibit extremely complex patterns of interaction. In recent years, the exploration
of complex systems has propelled significant advancements in the investigation of topologies where
individual units interact solely with a subset of the entire population. Among these advancements,
network science stands out as one of the most relevant. In this perspective, a population is visualized
as a large interconnected network, where each unit is represented by a node and interacts with the
connected neighbors. The way the network is constructed depends on the context under examination,
indicating a wide range of different structures [5]. In social sciences and biology, as well as in physics
and engineering, the communication usually relies on the physical proximity among the individuals:
the closer two individuals are in space, the stronger will be their interaction. On the other hand,
in real contexts, individuals typically are not static entities, but rather dynamical units that modify
their interactions over time. Each unit dynamically changes its partners and adapts its communica-
tion accordingly. To describe such a scenario, the paradigmatic framework employs spatio-temporal
networks.

The attempt of merging together synchronization phenomena, evolutionary game theory and com-
plex networks appears noteworthy. From the above overview, synchronization and cooperation result
both in pivotal mechanisms in nature, often emerging as counterparts to each other. Investigating their
interplay within complex networks is essential to accurately replicate real-world contexts.
In the present study, we investigate the coevolution of synchronization and cooperation when the os-
cillators are active agents that can decide whether or not to interact, i.e. cooperate, with the rest of the
population. The interactions are costly, but provide the collective benefit of mutual synchronization.
To address this scenario, we employ the model introduced by Antonioni et al., called Evolutionary
Kuramoto Dilemma [6]. After a preliminary part devoted to reproducing the results already intro-
duced in [6] for static networks, the novel analysis will be focused on the behavior of the model on
spatio-temporal networks.

This report is organized in three main parts. Chap. 2 is devoted to the rigorous introduction of
the model and the employed methods. In chap. 3 we present the final outcomes of our analysis.
Finally, chap. 4, provides a brief summary of the work and proposes potential future advancements.
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2. METHODS

Integrating decision-making processes into the dynamics of networked-interacting oscillators nat-
urally merges synchronization with evolutionary game theory. The model studied in this work, called
Evolutionary Kuramoto Dilemma , embodies this coevolutionary approach. To understand how syn-
chronization phenomena and evolutionary dynamics can be combined, it is essential to first present
each subject separately: this is the aim of sec. 2.1 and 2.2., while sec. 2.3 introduces the principal
model. Sec. 2.4 describes the employed topologies. Finally, sec. 2.5 briefly outlines the simulation
setup.

2.1. Kuramoto Model

Due to its broad phenomenology in several different contexts, collective synchronization has been
explored through numerous approaches. Among all, the model proposed by Kuramoto (1975) stands
out as the most successful attempt to provide a general description of the phenomenon, owing to its
mathematical tractability while retaining a nontrivial complexity.
In this framework, synchronization is addressed as the ability of a population of weakly-coupled,
nearly identical, interacting phase oscillators to adjust their rhythms based on the interaction with
each other, eventually leading them to share a common frequency (phase-locking). The emergence of
a fully synchronized state occurs only if the strength of the coupling is sufficient to overcome the di-
versity in the oscillators’ natural frequencies; otherwise the system falls into a completely incoherent
regime. As a matter of fact, the phenomenology is analogous to an equilibrium phase transition: the
system alters its collective behaviour beyond a critical threshold of the coupling strength.
Over the past forty-five years, the Kuramoto model has been subject to intensive study, resulting in
the proposal of several variations [2]. In the following paragraphs, the focus will be on presenting the
aspects that are most relevant to the current work.

Mean-Field case

The original model worked out by Kuramoto employs a mean-field approach. It consists of a popu-
lation of N phase oscillators θi(t) which are coupled by an all-to-all sinusoidal term. Each oscillator
tries to run by its natural frequency while the coupling tends to synchronize it to all the others. Thus
the dynamics is governed by the following nonlinear ODEs’ system:

θi̇ = ωi +
λ

N

N∑︂
j=1

sin(θ j − θi) , i = 1, ...,N (2.1)

where the factor 1/N ensures a good behaviour in the thermodynamic limit N → ∞, λ is the coupling
strength, and ωi denotes the natural frequency of oscillator i. The frequencies ωi are i.i.d. random
variables following the probability density g(ω), assumed to be unimodal and symmetric with respect
to its mean frequency Ω. One can set Ω=0 without loss of generality, since a suitable choice of the
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rotating frame ωi → ωi + Ω for all i is always possible.
The collective behaviour of the whole population is measured by the macroscopic complex order
parameter:

rG(t)eiψ(t) =
1
N

N∑︂
j=1

eiθ j(t) (2.2)

where ψ(t) is the average phase and the modulus rG(t) measures the coherence of the global state:
rG ≃ 1 indicates a fully synchronized state whereas rG ≃ 0 describes a totally incoherent motion of
the oscillators. Intermediate values of rG suggest a partially coherent global state, where a group of
oscillators is phase-locked, while the rest of the population remains incoherent.
By this definition, employing the Euler’s identity, Eqs. 2.1 can be decoupled and rewritten as:

θi̇ = ωi + λrGsin(ψ − θi) , i = 1, ...,N (2.3)

Eq. 2.3 clarifies the significance of the order parameter, indicating that each oscillator is coupled to
the average phase ψ(t) through a coupling strength λrG.
To infer the value of the critical coupling, a self-consistent equation for rG can be derived starting
from Eq. 2.3, admitting a nontrivial solution rG > 0 when the coupling strength exceeds a certain
threshold [7]. The resulting bifurcation point occurs at:

λMF
c =

2
πg(0)

(2.4)

This value represents the mean-field critical coupling and we have verified it by the numerical simula-
tion shown in figure 2.1. This last result is the starting point to infer the critical coupling on complex
networks

Fig. 2.1. Numerical realization of the bifurcation diagram for a population of 1000 oscillators whose natural
frequencies are uniformly distributed in [−π, π]. The red dashed line represents the corresponding critical
coupling λMF

c = 4. The results are averaged over 10 realizations.

Kuramoto Model on complex networks

Despite the mean-field Kuramoto Model offers an initial framework for understanding the onset of
synchronization, its major drawback lies in the assumption that each oscillator communicates with
every other unit in the population. This assumption is difficult to conceive in real-world systems.
In a more realistic framework, the pattern of interactions governing the dynamics is described by a
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complex network, where each oscillator interacts exclusively with its connected neighbors. For the
sake of clarity, the number of neighbors is commonly referred to as the degree of the node.
There are countless ways to construct such a network, but we will delve into these techniques in the
later sections. For now, it is sufficient to understand that networks can be mathematically described
as graphs, whose connectivity is represented by the so-called adjacency matrix. The element ai j of
the matrix is equal to 1 if node i is connected to node j, otherwise it is equal to 0.
Variations in the topology dramatically affects the phenomenology of the Kuramoto Model (KM),
leading to different types of phase transitions, altering the critical coupling values, or even precluding
the possibility of a synchronized state. The first challenge in designing KM on complex networks
is how to define the coupling term. Unlike the mean-field case, there are several possible choices.
Following [8], the selected prescription consists in the following definition:

θi̇ = ωi + λ

N∑︂
j=1

ai j sin(θ j − θi) , i = 1, ...,N (2.5)

where ai j is the element of the graph’s adjacency matrix, while λ is implicitly rescaled by the max-
imum degree k of the network, i.e. λ = λA/kA = λB/kB for two different topologies A and B. This
rescaling allows for comparison between different networks, as it projects their dynamics onto the
same timescale. It also guarantees good behavior in the thermodynamic limit and it preserves the
topological heterogeneity, unlike other prescriptions [8].
Complex networks also require more attention when measuring the collective behavior of the system.
In addition to the macroscopic order parameter introduced in Equation 2.2, a microscopic version can
be defined to assess the level of local synchronization of each node with its neighbors. In the same
spirit as Equation 2.2, considering two linked nodes l and m, we define a pairwise measure:

rlmei(θl+θm)/2 =
eiθl + eiθm

2
(2.6)

Hence, for a node l, the local order parameter rl is defined as:

rl =

∑︁N
m=1 almrlm

kl
(2.7)

where kl =
∑︁

m alm is the degree of node l. By its definition, rl ≃ 1 when the phase θl is concurrently
close to the phases of its neighbors; in the opposite case it approaches 0.
Lastly, the microscopic order parameter for the whole population can be written as the average of the
local parameters over all nodes:

rL =
1
N

N∑︂
l=1

rl (2.8)

The meaning of rL is substantially different from the macroscopic one, as it provides insight into the
synchronization level of each cluster of neighboring nodes in the network. This measure can approach
1 even if a global coherent state is not reached, indicating the formation of several groups of phase-
locked oscillators, i.e. when the so-called chimera state emerges [9].
The last noteworthy finding presented in this section concerns the variation of the critical coupling
value when dealing with complex networks. By employing a mean-field approximation, the critical
coupling can be derived analytically even when the topology is different from a complete graph [10].
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The surprising finding reveals that the critical mean-field value is simply rescaled by the ratio of the
first two moments of the graph’s degree distribution, regardless of the many other differences among
the topologies:

λth
c = λ

MF
c
⟨k⟩⟨︁
k2⟩︁ (2.9)

where ⟨k⟩ is the average number of neighbors and
⟨︂
k2

⟩︂
is the second moment of the degree distribution.

This theoretical value will be used for subsequent comparisons with the results presented in chap. 3.

2.2. Evolutionary Games

As previously mentioned, decision-making processes are commonly investigated through evolution-
ary game theory, where individuals are active agents that can adopt different strategies based on their
purpose. Since we want to characterize cooperation phenomena, let us assume two possible strate-
gies: cooperation and defection. Cooperation means that the agent accepts to interact with the rest of
the population, while defectors refuse to communicate.
The effectiveness of each strategy is evaluated by the net gain or loss the agent accumulates during
time, referred to as its payoff [4]. The higher the payoff, the more successful the agent’s strategy.
For cooperation phenomena, the standard way payoffs are measured is in terms of costs and benefits.
A cooperator pays a cost c to perform the altruistic act but provides a collective benefit b to all the
community it interacts with. Conversely, a defector does not incur any cost, rejecting to contribute to
the collective welfare (c = 0). Hence the payoff Π of each agent can be written as:

Π = b − c (2.10)

It is intuitive that a defector is intrinsically advantaged compared to a cooperator, as it receives the
benefit provided by the cooperators without paying any cost, thus accumulating a higher payoff. This
scenario is referred to as an evolutionary noncooperative game.
As introduced in Chap. 1, the dynamics of evolutionary games is characterized by agents’ capability
to change their strategy over time. The time evolution of the system yields to the emergence of
the successful strategies, implying that ineffective ones disappear. In this perspective, agents are
able to imitate the strategy of successful individuals, aspiring to achieve a higher payoff. The latter
evolutionary dynamics is called replicator dynamics [3].
The selection rule by which a player changes its strategy can be designed in many different ways.
The simplest one relies on the mere difference between the payoffs of the player and the opponent:
’if the opponent’s payoff is higher than mine, then I will imitate its strategy’. This corresponds to
the deterministic case of agents’ full rationality. However, it seems more realistic to include "noisy
effects" in agents’ decision-making process, as they are not always sure to make the right choice. To
take into account this aspect, the so-called Fermi rule is much more appropriate. According to the
rule, the probability that player A, with payoff ΠA and strategy sA, imitates the strategy of player B,
with payoff ΠB and strategy sB, is distributed according the logistic function:

P(sA ← sB) =
1

1 + e−β(ΠB−ΠA) (2.11)

where β stands for the "irrationality" of the players. Evidently, the more the payoff of B exceeds that
of A, the more probable A will imitate B. The role of β in Eq. 2.11, is that of tuning the randomness
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of the selection rule. For high values of β, the Fermi rule tends to the full rationality case. While for
low values of β, the decision approaches a random choice.

2.3. Evolutionary Kuramoto Dilemma

Here we ultimately present the model investigated in our work. The Evolutionary Kuramoto Dilemma
(EKD), first proposed by Antonioni and Cardillo in 2017 [6], is the pioneering work that studies the
emergence of synchronization by associating a cost to the networked interactions within a population
of oscillators.
In this framework, each oscillator acts as an agent that can choose between two strategies:

• Cooperation: the oscillator accepts to interact with its neighbors in a Kuramoto-like manner,
trying to reach mutual synchronization.

• Defection: the oscillator refuses to interact, free-riding at its natural frequency regardless of the
rest of the population.

The model aims to investigate how cooperation and synchronization coevolve, meaning that the two
aspects mutually influence each other.
Formally, let us consider a graph G of N nodes, where each node l is a dynamical unit defined by
its phase θl and strategy sl ∈ {0, 1}. The strategy is set to sl = 1 if the agent is a cooperator, sl =

0 if it is a defector. The discrete dynamics of the system is designed so that, at each instant of
time, the two variables θl and sl are updated through two distinct but communicating processes: the
synchronization step and the game step. These processes are described separately in the following two
paragraphs. In the third paragraph the whole dynamics is presented, focusing on how the stationary
state is investigated.

Synchronization step

The phase update is performed within this step. In the spirit of the Kuramoto model, the phase
dynamics of each oscillator is described by the following differential equation:

θl̇ = ωl + sl λ

N∑︂
j=1

al jsin(θ j − θl) (2.12)

where ωl is the natural frequency, sl the strategy of the node l, al j the element of the adjacency matrix
of G and λ the coupling strength. From Eq. 2.12, it is evident that the nonlinear coupling term is
included only in the dynamics of cooperators, enabling them to adjust their own rhythm and synchro-
nize with their neighbors. Conversely, if the node is a defector, it oscillates undisturbed at its natural
frequency.
The evolution of the phase trajectory is numerically computed with the Runge-Kutta 4th-Order method.
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Game step

The strategy update is performed within this step. In the framework of sec. 2.2, each oscillator l is
assigned a payoff Πl that quantifies the balance between the cost cl and the benefit bl.
The definition of cost and benefit is closely tied to the previously described synchronization dynamics.
The collective benefit that each agent gains is simply the level of synchronization between the node
and its neighbors, represented by the local order parameter defined in Equation 2.7:

bl(t) ≡ rl(t) (2.13)

The individual cost a cooperator has to pay is defined by how much the oscilator has modified its
frequency to converge towards local synchronization within a time step ϵ. Hence, it is given by the
absolute value of the angular acceleration:

cl(t) = ∆θl̇ ≡
⃓⃓⃓
θ̇l(t) − θ̇l(t − ϵ)

⃓⃓⃓
(2.14)

Let us emphasize that while the benefit is earned by all oscillators, irrespective of the employed
strategy, the cost is incurred only by cooperators, since defectors do not alter their natural frequency
over time. Therefore the system is placed within the framework of an evolutionary noncooperative
game (sec. 2.2).
As a result, the payoff attained by the agent l is naturally evaluated as the difference between these
two quantities:

Πl(t) = bl(t) − α
cl(t)
2π

(2.15)

where α is the relative cost and 2π is a scaling factor. The independent variable α acts as a control
parameter, tuning the system from a regime of cheap interactions to one of expensive interactions.
The criterion by which each agent selects its strategy over time is governed by the replicator dynamics
introduced in section 2.2. During the game step, each agent l randomly selects one of its neighbors,
m, and replicates its strategy with a certain probability, according to the previously-mentioned Fermi
rule:

P(sl ← sm) =
1

1 + e−β(Πm−Πl)
(2.16)

where β is the "irrationality" of the agents. The strategy update occurs in a synchronous manner, i.e.
all agents play the game with their current strategy sl(t), even though they have already decided which
strategy to adopt in the next time step sl(t + ϵ) by a previous match.

Global dynamics

The temporal evolution of the entire system is thus determined by the iteration of the two processes
over time: at each time step, a synchronization step updates the phases of the oscillators, and sub-
sequently, after the agents have accumulated their payoffs, a game step updates their strategy. This
protocol continues until the system reaches the stationary state.
To assess the emergent collective behaviour of the population, three order parameters are employed:
the canonical macroscopic and microscopic level of synchronization, rG and rL, respectively defined
by Eqs. 2.2 and 2.8, and the average number of cooperators C = 1

N

∑︁
l sl.
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2.4. Complex Networks

To achieve a closer representation of real-world systems, it is fundamentally important to study the
dynamics of interacting populations models on complex networks, examining how the pattern of
interactions affects their collective behavior.
In the present study, a complex network is mathematically referred to as a graph G(N, ⟨k⟩), where N
represents the number of nodes and ⟨k⟩ denotes the average number of neighbors, i.e. the average
degree. The nodes are connected by edges that shape the interactions within the population. The
edges are undirected and unweighted, i.e. they do not have a specified directionality and they all
possess equal significance. Additionally, the graphs are homogeneous, meaning that the tail of the
degree distribution P(k) decays exponentially fast. This implies that the degree of each node fluctuates
around the mean value ⟨k⟩, avoiding large deviations [5].
This section outlines the networks considered in this work, particularly focusing on the derivation of
⟨k⟩, a fundamental parameter for the further analysis. The three chosen topologies are profoundly
different in nature, leading to substantial differences in the population’s evolution.

2.4.1. Erdős-Rényi Graph (ER)

The Erdős-Rényi graph (ER), also known as random graph, was first introduced by the Hungarian
mathematicians Paul Erdős and Alfréd Rényi in 1959 [11]. The graph represents the first attempt to
describe a complex network with connectivity generated by a random process.
In our work, a ER graph with N nodes is constructed by including each edge in the graph with a
fixed probability p, independently of the other edges. From a probabilistic perspective, each edge is
a Bernoulli random variable. Consequently, the probability that the node l has k edges (neighbors)
follows a Binomial distribution:

P(kl = k) =
(︄
N − 1

k

)︄
pk (1 − p)1−k (2.17)

where (N − 1) is the maximum number of edges a node can possess. As a result, the average degree
is given by:

⟨k⟩ = p (N − 1) (2.18)

2.4.2. Random Geometric Graph (RGG)

Random graphs, like other classes of networks, can be considered relational networks, where the
concept of physical distance is not relevant. These topologies are particularly useful to describe many
real-world systems where interacting units communicate equally, regardless of whether they are close
or distant nodes. This is especially true in the age of the Internet and the World Wide Web.
On the contrary, many systems base their pattern of interactions precisely on spatial constraints. Con-
sider, for example, neuronal networks, electric power grids, transportation systems or human soci-
eties. To describe such systems, a particular class of graphs is used, where nodes are embedded in
physical space, and edges depend on the spatial distance between them. These networks are called
spatial networks [12].
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The random geometric graph (RGG) is the standard model for spatial networks, serving a similar role
as the ER random graph for relational networks. In this study, the structure of a RGG with N nodes
and interaction radius R is governed by the two following rules [13]:
(1) The N nodes are uniformly distributed in the unitary square [0, 1]2 ∈ R2.
(2) An edge is created for every pair of nodes (i, j) within the Euclidean distance di j < R. The periodic
boundary conditions are assumed, meaning the unitary space is boundless (torus).
By this prescription, a RGG can be visualized as a square filled with small circles of radius R and area
V = πR2: the edges are established only between the circles that overlap. Accordingly, the average
degree can be estimated by the formula ⟨k⟩ = ρV , where ρ is the number of nodes per unit space [14].
In our case, ρ = N since the unitary square is considered. Hence, in order to construct a RGG with
average degree ⟨k⟩, it is sufficient to set the radius R properly:

R =

√︃
⟨k⟩
πN

(2.19)

Let us emphasize the effect of spatial correlations in RGG networks. The constraint that nodes can
only interact within a radius R causes nodes to organize into clusters of interactions. Specifically, if
node i is connected to nodes j and k, it is very likely that nodes j and k are also connected. This
feature makes RGGs and ERs fundamentally different. Fig. 2.2 provides a visual comparison of the
two structures.

Fig. 2.2. ER (left panel) and RGG (right panel) topologies for N = 300 nodes and average degree ⟨k⟩ = 6.

2.4.3. Temporal Proximity Graph (TPG)

A notable characteristic of many biological, engineering, economic, and social systems is that the
interactions between their components are not static but exhibit explicit temporal dynamics. To repre-
sent these evolving interactions, it is customary to use specialized graphs whose topological properties
change over time. These graphs are typically referred to as temporal networks [15].
In the context of spatial graphs, temporal networks allow component units to move within the phys-
ical space they inhabit, according to a specific motion law. Their movement alters the pattern of
interactions based on the partners they encounter along the way. These graphs are commonly called
spatio-temporal networks.
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Among such mobile networks, the paradigmatic model we focus on is the temporal proximity graph
(TPG) [16]. In the present work, TPGs are the time-varying counterpart of RGGs, as their edge
generation rule are identical: at each instant of time, nodes within a certain distance threshold R are
connected. The substantial distinction between the two models is that, unlike RGG, TPG nodes are
2D random walkers moving freely throughout the boundless unitary space [17].
Formally, each node l, spatially described by its position xl(t), moves at time t with a velocity vl(t).
The nodes can only change their direction of motion φl(t), while their speed υ remains constant in
time. Hence the velocity can be written as vl(t) = [υ cos(φl(t)) , υ sin(φl(t))]. As random walkers,
the directions of motion are randomly sampled at each time step. Initially, the positions xl(0) are
uniformly distributed in the unitary square [0, 1]2. The discrete temporal evolution of the system thus
is governed by the following motion laws:

xl(t + ϵ) = xl(t) + vl(t) (2.20)

φl(t + ϵ) = ηl (2.21)

where l = 1, ...,N, ϵ is the time step size and ηl are N-independent random variables with uniform
distribution in the interval [0, 2π].
The choice of the speed υ profoundly affects how node connectivity changes over time. Values of
υ ≪ R mean that nodes fluctuate around their initial positions, maintaining more or less the same
edges throughout the evolution. Conversely, υ ≫ R indicates that the neighborhoods are continuously
reset. Hence it is reasonable to highlight how the value of the speed compares to the interaction radius
R. In light of this, we define the relative mobility µ so that:

υ = µR (2.22)

where R is defined by Eq. 2.19. The relative mobility µ is an independent variable and will play the
role of a control parameter in the further analysis.

2.5. Simulation setup

We schematically outline the settings of the employed free parameters in the numerical implemen-
tation of the EKD model. The simulations are performed on a population of N = 1000 oscilla-
tors/agents. For each dynamical unit l, the initial phase θl(0) and the natural frequency ωl are drawn
independently from a uniform distribution in the interval [−π, π], while the strategy sl(0) is randomly
initialized between 0 and 1. To ensure the correct functioning of the Runge-Kutta 4th-order method,
the time step size is fixed at ϵ = 0.01. Without loss of generality, the irrationality of the agents is
chosen to be β = 1. The average degree of the various networks is commonly set to ⟨k⟩ = 6.
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3. RESULTS

This chapter is dedicated to the outline and the analysis of the results obtained by extensive nu-
merical simulations of the EKD model. We organized the analysis in three sections. Sec. 3.1 derives
some preliminary analytical results. Sec. 3.2 focuses on the study of the ER and RGG static cases.
Finally sec. 3.3 investigates the EKD on TPGs.

3.1. Analytical conditions

The design of the EKD model, as it integrates nonlinear ODEs, decision processes, and complex
networks, makes the derivation of analytical results highly complicated. Nevertheless, we present
some theoretical outcomes that are invaluable for validating and enhancing the subsequent numerical
findings [18].

Lower bound for the microscopic order parameter

It is possible to estimate the value of the microscopic order parameter rL (Eq. 2.8) in the scenario
of total defection, where all the oscillators run incoherently. This evaluation translates in computing
the average value of the pairwise measure rlm defined in Eq. 2.6, as rL implicitly consists in a refined
average of this measure across the entire network.
Let us consider the phases θl and θm of two randomly selected oscillators l and m among the popula-
tion. Rotating the reference frame by an angle −θl, we perform a change of coordinates to θ′l = 0 and
θ′m = θm − θl = θ. Hence the pairwise measure can be written as rlm =

⃓⃓⃓
1 + eiθ

⃓⃓⃓
/2. Considering the

limiting case of totally incoherent motion, we can assume that θ follows a uniform distribution over
[−π, π]. The average pairwise measure rlm thus is given by:

rlm =
1

2π

∫︂ π

−π

⃓⃓⃓
1 + eiθ

⃓⃓⃓
2

dθ =
1

2π

∫︂ π

−π

|1 + cosθ + sinθ|
2

dθ =
1

2π

∫︂ π

−π

√︁
(1 + cosθ)2 + sin2θ

2
dθ

(3.1)

=
1

2π

∫︂ π

−π

√︃
1 + cosθ

2
dθ =

1
2π

∫︂ π

−π

cos(θ/2)dθ =
4

2π
=

2
π
≃ 0.6366

The last result represents a qualitative lower bound for the microscopic order parameter. We expect to
encounter approximately this value whenever the system reaches a stationary state characterized by a
fully incoherent behavior.

Prerequisites for the onset of cooperation

It is possible to estimate the limiting conditions under which cooperation can emerge. To do so,
Ohtsuki et al. proposed a simple rule to establish the evolutionary scenarios favoring cooperation in
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networked populations [19]. This rule is given by the condition:

b
c
> ⟨k⟩ (3.1)

where ⟨k⟩ is the average degree, b is the net benefit achieved by being a cooperator rather than a
defector, and c is the cost of this altruistic act.
In our case, let us consider the extreme scenario of a network consisting of only two oscillators, C
and D, C being a cooperator and D a defector. Let θC, θD and ωC, ωD be the corresponding phases and
natural frequencies. Without loss of generality, we assume ωC to be equal to the average frequency
Ω = 0. In addition, with the same logic as in the previous paragraph, we set θD = 0 by rotating the
reference frame.
According to the selection rule of Eq. 2.15, C will pay a cost c to provide a collective benefit to both
the oscillators. At each time step, the net benefit b that D receives from C is equal to b = bC − bD,
representing the benefit resulting from C’s choice to cooperate (bC), rather than defect (bD). Let us
calculate each quantity separately.
As in the previous paragraph, in a scenario of total defection the benefit bD is given by:

bD = rlm =

⃓⃓⃓
1 + eiθ

⃓⃓⃓
2

=

√︃
1 + cos(θC(t))

2
(3.2)

Conversely, when one oscillator switches strategy to become a cooperator, it will modify its phase
according to Eq. 2.12. At each time step, we have:

θC(t + ϵ) = θC(t) + ϵλ sin(−θC(t)) (3.3)

where ϵ is the discrete time step size and λ the coupling strength. As a result, the benefit bC provided
to the whole system at each time step is:

bC = rlm =

√︃
1 + cos(θC + ϵλsin(−θC))

2
(3.4)

Accordingly, the cost that C incurs can be written as (Eq. 2.14):

c = α

⃓⃓⃓
θ̇l(t + ϵ) − θ̇l(t)

⃓⃓⃓
2π

= α
|ωC + ϵλsin(θC(t)) − ωC |

2π
= α
|ϵλsin(θC(t))|

2π
(3.5)

Considering a mean-field scenario, we can assume that θC(t) = π
2 since θD(t) = 0. Hence, the benefit

increase b due to cooperation and the cost c are given by:

b = bC − bD =

√︃
1 + cos(π2 − ϵλsinπ

2 )
2

−

√︃
1 + cosπ2

2
=

√
2 + 2sin(ϵλ) −

√
2

2
(3.6)

c = α

⃓⃓⃓
ϵλsin(π2 )

⃓⃓⃓
2π

=
αϵλ

2π
(3.7)

Applying the method of [19], the necessary condition b/c > ⟨k⟩ under which cooperation can emerge
translates in: √

2 + 2sin(ϵλ) −
√

2
ϵλ⟨k⟩

> α (3.8)

The last inequality allows to perimeter the region of the parameter space (α,λ) where cooperation has
the possibility to thrive.
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3.2. Static networks

We begin the computational study of the EKD model on the static topologies ER and RGG. The
objective of this analysis is to reproduce the results presented by Antonioni et al. in [6].
We aim to evaluate the coevolution of synchronization and cooperation across various parameter
configurations, each representing a different evolutionary landscape. Let us remind the reader that the
parameter space encompasses two control parameters, the coupling strength λ and the relative cost α
(sec. 2.3).
To inspect whether an absorbing state is reached, we initialize the simulation as described in sec. 2.5
and we let the system evolve over time until it attains the stationary state, testing different pairs of λ
and α. We repeat this procedure several times to average out the stochasticity of the single realizations.
The stationary state is examined in terms of both synchronization level, assessed globally through rG

(Eq. 2.2), and locally through rL (Eq. 2.8), as well as cooperation level represented by C. This method
allows us to construct a phase diagram for the three order parameters. Fig. 3.1 resumes the outcome
of intensive numerical simulations following this approach.

Fig. 3.1. ER and RGG phase diagram for a networked population of N=1000 oscillators/agents. From left to
right, each column illustrates the average level of global synchronization ⟨rG⟩, local synchronization ⟨rL⟩ and
cooperation ⟨C⟩ as a function of the coupling λ and relative cost α in logarithmic scale. The top row corresponds
to ER topology, the bottom one to RGG topology. Averages are performed over 50 different realizations.

ER analysis. We first focus on the top row of Fig. 3.1. At first sight, it is immediately evident the
strong correlation between the onset of cooperation and synchronization in ER topology.
For low and intermediate values of α, the system experiences a phase transition from a completely
incoherent state to a fully synchronized one, both at global and local scale (panels a. and b.). This
transition occurs for values of the coupling λ slightly higher than the theoretical critical value λth

c

for the "without-game" model (Eq. 2.9), displayed as a horizontal dashed line. The emergence of
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coherence is complemented by the triumph of cooperation against defection (panel c.). This seems
intuitive as we are examining the region of the parameter space where the analytical condition derived
in sec. 3.1 holds —the area delimited by the curved dashed line—, where cooperation is theoretically
fostered. However, although the cheap regime, cooperation thrives only when λ exceeds the critical
value for the coherent state, indicating a profound intertwining of the two dynamics. This is an exem-
plary case of what coevolving truly means.
Interestingly, the system exhibits another phase transition as the coupling increases, spontaneously
loosing synchronization. The reason behind this behavior lies in the excessively high variation of the
angular frequency θl̇ during the discrete dynamics, caused by the large values of λ. Such a variation
leads to an unsustainable cost for the cooperators with respect to the benefit gained by the increased
synchronization. As a result, the system collapses in a fully incoherent state of defectors.
Similarly, for high values of α, the interaction costs are so high that synchronization and cooperation
are never achieved, regardless of the coupling strength. The region where defection is favoured —the
region delimited by the dashed curved according to the inequality 3.8— corroborates this result.
As a final remark, we note that our theoretical argument regarding the lower bound for rL computed
in Sec. 3.1 is confirmed, since the microscopic order parameter approaches rlm when incoherence
dominates (panel b.).

RGG analysis. The population exhibits significantly different behavior on RGG topology (Fig.
3.1 - bottom row) compared to the ER case. Here, although cooperation emerges over a larger portion
of the parameter space (panel f.), the system never converges towards global synchronization (panel
d.). Conversely, local synchronization coevolves with cooperation (panel e.), suggesting that each
oscillator is synchronized with its neighbourhood. The cause of this intriguing discrepancy lies in the
structure of the RGG topology. Unlike ERs, RGGs exhibits strong spatial correlations, meaning that
edges are assigned so that the population organizes in clusters. The presence of community struc-
tures implies that nodes interact mainly within their own cluster, hence global synchronization is not
achieved due to the poor communication among the different communities, even when the whole pop-
ulation cooperates. This phenomenon highlights the significant impact of topology on the system’s
dynamics.

Ultimately, let us stress once more the drastic interplay between synchronization and cooperation
dynamics in the EKD model by examining the single simulations over time.
On one side, it is quite straightforward to figure out why cooperating is necessary to promote syn-
chronization: the Kuramoto dynamics comes out only if the nodes decide to collaborate (sl = 1),
meaning that a fully cooperative state will bring the system at least to local synchronization in a suit-
able regime.
Conversely, it is more subtle to understand whether a fully synchronized state leads always to the
onset of cooperation. This may occur because a defector surrounded by cooperators has no incentive
to change its strategy. The defector receives the benefits from its cooperative neighbors without in-
curring any cost itself. However, if interactions are sufficiently cheap, the neighboring cooperators
will incur progressively lower cost over time, leading to higher payoffs compared to the defector since
more synchronized. The increasing synchrony among cooperators potentially persuades the defector
to change its strategy, resulting in a cluster entirely composed of cooperators.
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Actually, the transient behavior of the single dynamics is unpredictable, resulting in diverse evolu-
tionary paths even for two realizations in the same identical scenario.
In Fig. 3.2, the single-realization time evolution of the three order parameters is depicted for both the
low-cost interaction regime (α = 10−3) and the high-cost interaction regime (α = 10−1). The right
column elucidates the previously mentioned argument: cooperation (orange line) is driven by syn-
chronization (blue/cyan lines) when the cost of interaction is low. Notably, as discussed earlier, the
macroscopic order parameter rG never reaches high values in the bottom-left panel due to topological
effects. In the left column, despite the coupling value favoring synchronization, λ = 4, the system
collapses into an incoherent state of defectors because the cost of interaction is excessively high.

. The theoretical value rlm is displayed by the horizontal dashed line.

Fig. 3.2. Time evolution in different regimes. Each panel displays the trajectories of the three order parameters
rG (blue), rL (cyan), C (orange) over time. The top(bottom) row corresponds to the ER(RGG) topology. The
first column portrays the cheap interaction scenario α = 10−3, whereas the second column stands for the
expensive regime α = 10−0.5. The coupling is commonly set to λ = 4.
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3.3. Temporal proximity graphs

The absence of a global coherent state in the RGG topology raises the question of whether a fully
synchronized state can be achieved despite the presence of strong spatial correlations that force the
population to primarily interact within sub-communities. To address this question, it is reasonable to
consider the role of time as a potential game-changer. If the members of the population can change
their neighbors over time, they may be able to overcome the spatial constraint and promote a fully
synchronized state. To explore this intuition, we investigate the behavior of the EKD model on TPGs.
The reason behind the choice of this topology is to preserve the connectivity features of the static
RGG network as much as possible in the new analysis: TPGs interaction pattern, indeed, is shaped
keeping the same spatial correlations of RGGs at each time step.
Before beginning the analysis, it is important to note that for TPGs, an additional control parame-
ter comes into play, i.e. the relative mobility µ, which represents the ratio between the speed of the
agents υ and the distance threshold of interaction R (see subsec. 2.4.3). This variable allows us to
tune the system across different mobility regimes: from a situation of low-mobility, characterized by
values of υ ≪ R to a high-mobility regime where υ ≫ R. In a low-mobility scenario agents move
very slowly away from their randomly assigned initial position, whereas in the high-mobility regime
agents rapidly traverse the space from one side to another.
For the sake of simplicity, since our aim is to assess the onset of synchronization, we keep the cou-
pling strength constant at the favorable value λ = 10 for the rest of the analysis. As a result, it is
possible to explore the behavior of the networked population across various levels of interaction cost
and nodes’ mobility, which is the primary interest of this investigation.

TPG phase diagram. Following the same approach introduced in Sec. 3.2, we construct the phase
diagram of the EKD model on TPG networks varying the relative cost α and the relative mobility µ.
The remarkable outcome of comprehensive numerical simulations is portrayed in Fig. 3.3.

Fig. 3.3. TPG phase diagram for a networked population of N = 1000 oscillators/agents. From left to right, each
panel displays the behavior of the macroscopic(microscopic) order parameter ⟨rG⟩(⟨rL⟩) and the cooperation
⟨C⟩, for different values of the relative cost(mobility) α(µ) in logarithmic scale. Three different regions are
identified: the LM, IM and HM regimes are delimited by the horizontal dashed lines µ = 0.1 and µ = 1. The
latter corresponds to the critical value of the speed υ = R (subsec. 2.4.3). Averages are performed over 10
realizations.
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From the picture, we immediately recognize that, unlike the RGG case, TPG topology admits the
onset of global synchronization when the relative mobility µ exceeds a certain critical threshold (left-
panel). Accordingly to the static cases, this transition is possible only for relatively low values of α,
as in the expensive interaction domain the system falls into an incoherent stationary state regardless
the value of µ.
Let us examine the diagram in more details. Focusing on the low cost region, the following three
different regimes can be identified:
a. Low mobility regime (LM) For low values of µ, the motion of the oscillators is so restricted
that the system behaves similarly to the static RGG case. The initially formed clusters preserve their
structure over time, with each agent interacting essentially with the same neighbors during the whole
dynamics. Therefore, only local synchronization is attained despite the emergence of cooperation.
b. Intermediate mobility regime (IM) The interesting novel outcome occurs as the value of µ in-
creases (within the range 0.1 < µ < 1). The population succeeds in achieving global synchronization.
In this scenario, each oscillator can explore a large enough portion of space to interact with a sig-
nificant number of different partners, collecting the phase information of the fellow passengers and
adjusting its rhythm accordingly. Evidently, as in the previous cases, cooperation is essential to reach
such a collective behavior, meaning that the two aspects coevolve, mutually reinforcing each other.
c. High mobility regime (HM) The most intriguing and enigmatic behaviour arises when the value
of µ becomes excessively high. As soon as the relative mobility approaches and surpasses the critical
value of µ = 1 (dashed line in Fig.3.3), the phase diagram shows a visible bottleneck, i.e. a dramatic
reduction of the parameter space region favoring synchronization, but particularly cooperation. Intu-
itively, this unprecedented phenomenology is correlated to the disproportionate capability of motion
of the agents. The higher the value of µ, i.e. the greater the speed υ compared to R, the farther the
agents travel beyond their own spatial range of interaction at each time step. As a result, each oscil-
lator continuously changes all its neighbors, interactions are too brief to get synchronized, hence the
accumulated benefit is too low compared to the cost it would incur.
The emergence of synchronization for a considerably large range of the relative cost, despite the sub-
stantial absence of a cooperative state, remains an open question at this stage. Subsequently, we will
provide potential insights to tackle this problem.

Fig. 3.4. Phase diagram sections from cheap to expensive interaction regimes. The trends of ⟨rG⟩, ⟨rL⟩, ⟨C⟩ are
displayed as a function of the relative mobility µ, for α = 10−3 (cheap), α = 10−2.5 (intermediate), α = 10−1.5

(expensive). The LM, IM and HM regimes are separated by the two vertical dashed lines.
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To better highlight the aforementioned partition of the TPG phase diagram, we inspect the behav-
ior of the order parameters by selecting three representative values of α. The sections, shown in Fig.
3.4, elucidate the interplay of the cost and the mobility.
For very low values of α (left panel), the system exhibits only one phase transition from incoherence
to synchronization, which occurs close to the critical mobility µ = 1 (dashed line), maintaining it
regardless the increasing µ. Even cooperation remains sufficiently high as the costs are very low.
The middle panel, conversely, points out that even a relatively small increase of the interaction cost
leads to a totally different outcome. Here, we can distinguish the IM domain, being the only one where
⟨rG⟩ and ⟨C⟩ both spontaneously emerge. This section considers a region outside the previously men-
tioned "bottleneck". Consequently cooperation drops drastically while approaching the HM domain,
eventually reaching levels indicative of near-total defection.
For the sake of completeness, the right panel underlines once more the utter absence of collective
behaviors when the cost increases excessively.

Temporal dynamics. The conclusion of our analysis aims to offer promising intuitions to shed
light on the mechanisms governing the EKD dynamics in the HM regime. In this perspective, the sole
inspection of the stationary state is hardly exhaustive.
Therefore, we conducted several different simulations of the entire dynamics over time and com-
pared the findings on the HM scenario with those of the other domains in the same interaction cost
landscape. Fig. 3.5 illustrates a typical realization for each regime.

Fig. 3.5. Time evolution in the various regimes. From the left, typical temporal dynamics of the three order
parameters ⟨rG⟩, ⟨rL⟩, ⟨C⟩ for µ = 10−1.5 (LM), µ = 10−0.5 (IM), µ = 10 (HM). The relative cost is fixed to the
interesting value of α = 10−2.5.

Referring to the displayed simulations as exemplary cases, it is evident that they exhibit signif-
icant diversity. The dynamics in LM a and IM regimes (left and middle panels) differ, as the full
synchronization is attained only for intermediate values of µ. Nevertheless, they share a fundamental
characteristic: in both cases cooperation is an absorbing state.
On the contrary, the time evolution in the HM regime shows that the fraction of cooperators fluctu-
ates depending on the single realization, often falling below half of the population. This enigmatic
collective behavior translates in the possibility for the few cooperators of the population to meet the
majority of the defectors along their path and bear the cost that, in the other scenarios, the majority of
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the population would share. This novel evidence may suggest that such a scenario allows the popula-
tion to achieve full synchronization while incurring a much lower overall cost.
However, the noisy trajectory of C also reveals the unstable nature of the system in the HM regime,
being extremely sensitive to little perturbations due to stochastic unexpected events or to initial con-
ditions. Hence, by letting the system evolve for a longer time, we expect it will eventually reach a
stationary state, but the outcome of the temporal evolution, whether cooperation/coherence or defec-
tion/incoherence, is unpredictable. As a matter of fact, the phenomenology of the HM regime reminds
to the one of a chaotic system.
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4. CONCLUSION

Synchronization —the most exemplary manifestation of nature’s order— and cooperation —the
indispensable behavioral mechanism to guarantee the welfare of a community— appear to be two
sides of the same coin. The Evolutionary Kuramoto Dilemma aims to capture this profound interplay
and provides a methodolgy to study the coevolution of the two phenomena on networked population.

To summarize, we primarily investigated the EKD behavior on static networks (ERs and RGGs),
enlightening how the choice of the topology drastically affects the eventual outcome of the dynamics.
Strong spatial correlations prevent the onset of a global coherent state, despite they favour the emer-
gence of cooperation.
The main purpose of our work was to overcome the lack of global synchronization in spatial networks,
by identifying time as the potential missing link. Therefore, we conducted the novel exploration on
spatio-temporal networks, particularly on TPGs, in search of the onset of a coherent state.
The results of intensive numerical simulations were even more surprising than the expectations, open-
ing a wide range of questions and avenues for further research. TPG phase diagram not only displays
a phase transition towards full synchronization, but it also demonstrates a variegated phenomenology
depending on the level of mobility each agent incurs. At first glance, the IM regime fully meets our
initial requirement to obtain the spontaneous emergence of both synchronization and cooperation.
HM one is certainly the most intriguing mobility regime. On one side, the loss of cooperation sug-
gests that synchronization can be reached by incurring in a much smaller amount of cost. On the other
hand, the temporal dynamics in this regime indicates that, de facto, the system becomes chaotic.

Although various variants and applications of EKD model have been proposed since 2017, this work
is, to our knowledge, the first extension of the model on spatio-temporal networks.
Various future improvements could be conducted along this direction. In the first place, a better char-
acterization of the HM regime looks to be required. Longer-time simulations could lead to valuable
understandings of the instability of the system. Ideally, a rigorous stability analysis would be asked
for a complete comprehension of EKD behavior in this domain.
An evident potential advancements is the analysis of EKD on different spatio-temporal networks
rather than TPGs. Taking inspiration from the "without-game" case, ad-hoc spatio-temporal networks
yield to the emergence of surprising phenomena such as explosive synchronization [20] [21]. Explor-
ing diverse nodes’ motion rules, employing different timescales between dynamics and mobility, or
considering adaptive couplings are all promising candidates to find out even a richer phenomenology.
Ultimately, looking further ahead, the end goal of EKD is certainly to describe real-world scenarios
where the interplay of synchronization and cooperation is particularly relevant. In this perspective,
EKD on spatio-temporal network can be seen as a potential variant to describe biological, social,
robotic oscillators that swarm and sync [22].
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