
The effect of extreme rainfall on
COVID-19 surveillance, the case of

New York State

Master’s Degree in Physics of Complex Systems

Caruso Susanna Carmen Supervisor: Dr. Valdano Eugenio
Prof. Gamba Andrea Antonio

Politecnico di Torino, Sorbonne Université
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Abstract

This thesis examines the impact of extreme weather on COVID-19 testing rates in
New York State. Weather anomalies in temperature or precipitation were identified
and their effects on daily testing analyzed. Initial findings showed a reduction in tests
on anomalous weather days, which were challenging to quantify. To quantify this
impact, regression models were used, considering as main ingredients the weather
conditions, day of the week, and the underlying trend of tests.

The findings highlighted the effect of precipitation on testing rates. A Generalized
Linear Mixed Model (GLMM) revealed heterogeneous county responses to heavy
precipitation, with test variations ranging from 1.8% to −22.6% with respect to the
testing trend. Additionally, counties with higher prevalence of diabetes and obesity
in general population correlated with greater reductions.

This study underscores the sensitivity of disease surveillance to extreme weather,
providing insights for public health improvements. Future research should explore
other countries and understand all the factors that explain this sensitivity to enhance
global public health strategies.
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Chapter 1

Introduction

At the end of 2019, the World Health Organization (WHO) was informed about cases
of atypical pneumonia with unknown etiology in the city of Wuhan, China [14].
Within less than two months, the disease was recognised as epidemic and named
COVID-19 (Coronavirus Disease 2019), shortly after COVID-19 escalated from a
localized outbreak to a full-blown pandemic, spreading rapidly across continents.

COVID-19 is an infectious disease caused by the beta-coronavirus SARS-CoV-2,
which affects mostly the lower respiratory system presenting symptoms such as dry
cough, fever and fatigue. The severity of these symptoms varies among individuals,
with some experiencing mild to moderate illness while others face life-threatening
complications, particularly those with underlying health conditions such as cardio-
vascular disease, diabetes, or cancer [17].

Since the beginning of the pandemic several studies were conducted in order to
predict future outbreaks and to understand the factors influencing the disease trans-
mission. Part of the research focused on the relationship between weather variables,
climate zones and the spread of the disease.

This build upon former research, which had studied how seasonal influenza and
viral respiratory illness are related to climate variability [24]. Of particular interest
is the potential influence of climate variables on host susceptibility, behavior, and
virus survival in the environment.

Many studies have been undertaken to explore the potential correlation between
weather variables and COVID-19. While many of these studies assert the existence of
an effective correlation, between new cases of COVID-19 and meteorological variables
like temperature and humidity, they don’t agree on the direction of this correlation,
i.e. positive or negative [14].

The aim of the work here presented is to investigate further this relationship,
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Figure 1.1: Color map according to the percentage of COVID-19 total cases that
highlights the countries that contribute the most to the total number of COVID-19
cases worldwide.

with a particular focus on how the tests performed for COVID-19 may be linked
to the weather conditions as well. This choice arises from the fact that the weather
conditions, especially if they are extreme, may influence human behaviour and so the
COVID-19 testing patterns. If these patterns are actually influenced by the weather
conditions, then looking for direct link between incidence rate and climate becomes
less significant. Then the human behaviour may play a decisive role.

The geographical area of research is New York state. Since, up to March 2023,
USA is the country that registered most of the worldwide COVID-19 cases with
approximately 13.3% of the total followed by China (≈ 12.8%), India (≈ 5.7%),
France (≈ 5.0%), and Germany (≈ 4.9%) [2]. See Figure 1.1.

The initial recorded cases of COVID-19 in the United States dated back to Jan-
uary 2020, in Washington state. At the beginning the disease kept a relatively slow
rate of transmission until March of the same year, hitting its first peak in early April
2020 [25]. By the end of March 2020, New York State had recorded 75795 cases of
COVID-19 and 1550 related deaths [19] with the majority of cases concentrated in
the metropolitan area of New York City, establishing itself as the epicenter of the
pandemic in the United States [13]. The choice of the geographic area is favored
also by the large presence of data both for COVID-19 testing, social-demographic
parameters and weather variables.

After the data collection, a preliminary analysis was conducted using Machine
Learning algorithms in order to verify the actual existence of a link between extreme
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weather events and COVID-19 tests. Once shown this occurrence, some regression
models were trained to quantify the impact of extreme conditions on the number of
performed daily tests. Considering that the human response to an extreme event can
be related to social and demographic factors, mixed regression models were also used
in order to account for differences of these factors within the geographical regions
studied. Eventually, this work therefore aims to identify the weather factors that
can undermine the epidemiological surveillance of circulating respiratory pathogens,
providing valuable insights for public health.
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Chapter 2

Data Collection

2.1 COVID-19 Data

The data related to COVID-19 are taken from two different sources. In particular,
data with high spatial resolution (ZCTA 1 resolution) were found in Badr et al.
[2], this dataset contains the total tests and the positive tests2 by ZCTA for the
Metropolitan Area of New York City (NYC), carried out during the period from
2020-03-31 to 2023-03-30. In the dataset there are 179 ZCTA which are distributed
across NYC’s counties as follows: 26 for Bronx, 37 for Kings, 45 for New York, 59 for
Queens, 12 for Richmond. For the former dataset some cleaning actions were made.
Specifically the daily new tests were modified when their value was equivalent to
the cumulative one, namely the new tests values were substituted by the difference
between the corresponding and the previous cumulative data. Furthermore the rows
containing negative values of new cases have been removed. Visualizing the test
data one can observe some spurious outliers. In more details: the sharp peak on
the 2021-08-01 has been deleted (both for daily new tests and positive tests), given
the fact that also the cumulative tests showed the same jump; the sharp peak on
the 2021-06-10 has been deleted, because it had no correspondence with the positive
tests carried out on the same day; the relative maximum on the 2022-06-28 has been
substituted by the difference between the corresponding cumulative data and the
former one.

The data regarding tests at the county resolution were sourced from Chief Data
Officer [10], for which the dates were moved to the day earlier, as they referred to
the update.

1ZIP Code Tabulation Areas
2Positive tests, including hospitalised cases and home confinement
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At the end of the data collection and after some preliminary analysis, the data
with ZCTA resolution were discarded. The primary issue with this data was the
frequent missing entries for several days, which resulted in an unrealistic weekly
trend in the number of tests, with a unexpected peak observed on Sundays. Indeed,
as one can see from the following Figure 2.1, the tests with the higher reporting delay
in terms of days were registered on Sundays.

Figure 2.1: The left panel represents the mean number of tests conducted per day of
the week in the metropolitan area of NYC by ZCTA. It shows an unusual increase in
the number of tests as the weekend approaches. This trend can be attributed to the
fact that many tests recorded on Sunday show an higher reporting delay, referring
to the right panel. In detail, there are missing entries on the previous days, and it is
likely that cumulative data for these missing entries were logged on Sunday, leading
to the observed spike.

2.2 Health-Demographic Data

The data for the demographic parameters are taken from the United States Census
Bureau [8],[4],[7],[6],[9],[5]. For each county and ZCTA were selected the data about:
Total Population; Median Income; Percent of population below the poverty level 3;
Racial composition; Percent of population under 5 years of age; Percent of population

3The Census Bureau determines poverty status based on income thresholds, which takes into
account the family size and the composition. If a family’s total income falls below this threshold, the
family and all its members are considered in poverty. These thresholds are adjusted with respect the
inflation but they are the same independent of the geographical regions. Poverty status is assessed
based on money income before taxes and excludes capital gains or non-cash benefits.
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over 60 years of age; Median age; Sex ratio for 100 females. For some geographic
area the median income reported was ’250000+$’, this was substituted by 300000$.

While the health data are drawn from Disease Control and Prevention [11] and
(CHIRS) [1], which includes: prevalence of diabetes in the general population; preva-
lence of high blood pressure 4; percent of people obese (BMI>30).

2.3 Weather Data

The Weather data utilized in this study were obtained from the nClimGrid-Daily
product provided by NOAA’s National Centers for Environmental Information (NCEI)[16].
The data about the average temperature, the minimum temperature, the maximum
temperature and precipitation for a time span from January 1, 2026, to September
30, 2023, were drawn from the archive.

4In particular the prevalence of high blood pressure is defined as the age-adjusted percentage of
respondents who reported they had been told by a health professional they had high blood pressure.
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Chapter 3

Methods and Algorithms

3.1 Prophet

For the analysis, the data were pre-processed using a seasonal-trend decomposition
algorithm. The Prophet algorithm, developed by Facebook [23], was used for this
study. Prophet is a forecasting tool able to handle time series data through an
additive model where non-linear trends are fitted with yearly, monthly, weekly, daily,
and even hourly seasonality. Further it can also treat holiday effects and special
events. The additive models fit very quickly. The algorithm uses Stan’s L-BFGS 1

to find a maximum a posteriori estimate for the model fitting. Moreover it is robust
to missing data and shifts in the trends, and it effectively handles outliers. Prophet
decomposes the time series data into various components:

y(t) = g(t) + s(t) + h(t) + ϵt

Where:

• g(t) is the trend, which is the non periodic part of the time series. The trend
can include change-points, i.e. the points where the slope of the trend changes.

• s(t) represents the seasonal part, which captures the periodic effects at different
frequencies.

• h(t) denotes the holiday events that might impact the time series data.

1Limited-memory BFGS (L-BFGS) is an optimization algorithm that approximates the inverse
Hessian matrix using a small, fixed number of past updates. It efficiently updates this approximation
iteratively to guide the search direction for minimizing a function. L-BFGS is commonly used for
large-scale optimization problems where storing the full Hessian matrix is impractical.
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• ϵt represents the residuals, or error terms.

The Prophet algorithm was first applied to weather variables such as maximum
temperature (Tmax), minimum temperature (Tmin), and precipitation (Prec) in order
to separate seasonal patterns from extreme or uncommon weather events. For the
weather variables, the most interesting parts after applying the Prophet algorithm
are the residuals. Larger residual values capture events that are uncommon for that
specific period or season. These residuals were used both to associate each data point
to a categorical variables and to implement the Isolation forest algorithm to detect
anomalies. The classification was done in the following way. A weather variable w
is classified as:

• A if residual(w) > 0.75×max(residual(w)),

• B if residual(w) ∈ (0.25×max(residual(w)), 0.75×max(residual(w))),

• and C otherwise.

Then these results were utilized to train the regression models. The Prophet algo-
rithm was also used to extract the trend from the COVID-19 tests data. Indeed,
considering that the number of tests daily performed could be influenced by several
factors, but first of all from the epidemic situation itself, one has to take into ac-
count the epidemic driver. Hence, the algorithm was used to extract three kinds
of trend, obtained thanks to the tuning of the changepoint prior scale parameter,
which controls the flexibility of the trend g(t). See Appendix A for a more detailed
explanation. For the statistical analysis the following trends were extracted:

• Less sensitive T1

• Mid sensitive T2

• Very sensitive T3

The Figure 3.1 displays the three trends selected for the 9 most populated coun-
ties.

3.2 Isolation Forest

Isolation forest is an algorithm for data anomaly detection. It uses binary trees to
separate the outliers from the rest. The core of the algorithm is the fact that the
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Figure 3.1: The nine panels represent daily tests performed in the period between
2020-05-01 and 2021-11-01 of the nine most populated counties of New York. Each
panel also displays the different trends chosen for the analysis T1, T2, T3.
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anomalous points are easy to isolate. It works by creating recursively partitions by
randomly selecting a feature and a split value between the minimum and maximum
values allowed for that feature. The recursive partitioning is represented by a tree
structure, this is the reason of the name Isolation Forest. The number of partitions
required to isolate a point is interpreted as the length between the leaf, which marks
the end of the isolation process, and the root.

Given the dataset X = x1, x2, ..., xn where each xi has d-dimensions with i ∈
{1, 2, ..., n}, the Isolation tree (iTree) is defined with the following properties:

• A node T in the tree can be:

– an external node with no children

– an internal node with two child nodes Tl and Tr.

• for each node T is chosen:

– an attribute q

– a split value p between the maximum and the minimum of the attribute
q.

When the iTree is fully grown, each data point of X can be found at one of the exter-
nal nodes. Hence for each node, the path length h(xi) can be defined. The anomalous
data points are the ones with smaller h(xi), so again the ones that are easier to rec-
ognize. Thanks its low memory requirements and the linear time complexity the
algorithm has a simple implementation. The algorithm utilized is provided by Pe-
dregosa et al. [18], it allows to specify parameters such as the number of estimators,
the number of samples to draw from X to train each base estimator, and the con-
tamination level, which represents the user’s perception of the proportion of outliers
within the dataset.

The Isolation Forest algorithm assigns a binary variable to each data point, +1
to regular points and −1 to outliers or anomalies.

In order to investigate the impact of extreme weather events on daily number of
tests for COVID-19, one should analyze how the distribution of daily performed tests
varies during a weather anomaly. To achieve this, the relative change of number of
tests, denoted as ρ(t), is defined as:

ρ(t) =
τ(t)− τ(t− 1)

τ(t− 1)
(3.1)

where τ(t) is the number of tests performed at day t. In this work the Isolation
Forest was applied to the residuals obtained from the Prophet algorithm on the
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weather variables. This approach was used to classify these residuals in terms of
anomalies.

3.3 Regression Models

3.3.1 Poisson Regression

Poisson regression is a statistical model belonging to the family of generalized linear
models (GLMs). It is designed to model count data, i.e. the number of occurrences
of an event. This regression model assumes that the expected value of the response
function Y follows a Poisson distribution. Considering a dataset X with n observa-
tions and m features, X ∈ Rn,m, where each row represents an independent variables
Xi ∈ Rm with i ∈ {1, 2, 3, ...n} , and m represents the number of features of each
variable. As customary, an exponential link it is used for the Poisson regression,
which assumes that the expected value of the dependent variable Y ∈ Rn is the
exponential of a linear combination of the regressors:

log(E(Yi|Xi)) = α + βxi

where Yi ∈ Y and i ∈ {1, 2, ..., n}, β ∈ R1,m is the vector of coefficients and α ∈ R
the intercept term. To understand how the features affect the dependent variables
Yi one has to find the vector β and make reasoning on the sign and on the order of
magnitude of each coefficients. The expected value of the ith sample is given by:

E(Yi|Xi) = λi = eα+βxi

Which has a Poisson distribution:

P (Yi|Xi) =
e−λiλyi

i

yi!

To find β one has to maximise the Likelihood L(β|Y ,X):

L(β|Y ,X) =
nY

i=1

λyi
i e

−λi

yi!
=

nY
i=1

e−eβxi+α
eyi(α+βxi)

yi!

Or, thanks to the convexity of the logarithmic function, one can maximize the Log-
likelihood logL(β|Y ,X):

logL(β|Y ,X) =
nX

i=1

(−eα+βxi + yi(α + βxi)− log yi!)
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Hence,
∂

∂β
logL(β|Y ,X) =

nX
i=1

(−xie
α+βxi + yixi) = 0

By solving this equation for the regression coefficients β, one obtains the Max-
imum Likelihood Estimate (MLE) for β. Rather than by hand computation, an
iterative method like Iteratively Reweighted Least Squares (IRLS), implemented in
the Python package statsmodels and in the R package glm was used. The Pois-
son regression algorithm was trained with different models listed in the following
subsections [22].

3.3.2 Generalized Linear Mixed Model regression

The generalized linear mixed model (GLMM) is an extension of the generalized linear
models, such as the Poisson model, where both fixed and random effects are taken
into account.

The GLMMs are useful to handle multilevel or grouped data. The use of random
effects allows to estimate variability at different levels of the hierarchy. Similar to
generalized linear models (GLMs), the expected value of the response function is
linked to the linear predictor through a link function g. Consider m groups and
ni observations for each group. In general it is assumed that the random effects
are independently normally distributed with zero mean and some covariance matrix
Σ. While the response Yij, conditioned on the random effect, is assumed to be
distributed according to the exponential family f with 1 ≤ i ≤ m and 1 ≤ j ≤ ni.
Hence the generic formulation for the GLMM is:

Yij|Ui ∽ fYij |Ui
(yij|ui),

Ui ∽ N(0,Σ)

where Ui ∈ R1,q with q the number of random effects and with a natural parameter
ηij for the exponential family distribution fYij |Ui

defined as:

ηij = XT
ijβ +ZT

ijUi

Here X ij ∈ Rp, where p is the number of predictors with coefficients β (fixed effects)
and Zij ∈ Rq with coefficient Ui (random effects). Then the expected value of the
response function Yij is given by:

g(E(Yij|Ui)) = XT
ijβ +ZT

ijUi
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where for g, in the case of the Poisson regression, the exponential link is normally
chosen. For the work here presented, it was assumed that the expected value of
response function λij = E(Yij|Ui) is distributed according to a Poisson distribution.
Hence,

P (Yij|Ui) =
e−λijλ

yij
ij

yij!

In order to find the fixed coefficients β, and the variability of these coefficients be-
tween the groups described byΣ, one must maximize the Likelihood L(β,Σ|Y ,X,Z).

L(β,Σ|Y ,X,Z) =
mY
i=1

Z
Rq

niY
j=1

fYij |Ui
(yij|ui)fU i

(ui)dui =
mY
i=1

Z
Rq

niY
j=1

e−λijλ
yij
ij

yij!
fU i

(ui)dui

Here, fU i
(ui) represents the distribution of the random effects. In general, this

maximization problem does not have closed form, and integrating over the random
effects is usually extremely computationally intensive. To address this issue, most
statistical software programs, including R which was used in this study, employ the
Laplace approximation to implement this model [3].
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Chapter 4

Results and Discussion

4.1 Anomaly Detection

The Prophet algorithm was applied to the weather variables of Tmin,Tmax, Prec
for the period from 2016-01-01 to 2023-09-30. The residuals obtained were used to
implement the Isolation Forest for a shorter period, specifically from 2020-05-01 to
2022-05-01. This time period was chosen to avoid moments in which the surveillance
on COVID-19 was weak, like at the beginning of the outbreak and far enough from the
beginning. To account for extreme weather events, such as heatwaves and extreme
cold, the residuals of Tmin and Tmax were processed as follows: negative residuals of
Tmin and positive residuals of Tmax were retained, while all other residuals were set
to zero.

Firstly the most populated county of New York, i.e. Kings, was taken in con-
sideration. Figure 4.1 illustrates the daily test time series for Kings County, with
colored dots indicating days when a weather anomaly occurred, as described in the
legend. According to (3.1), the relative change in the number of tests performed
were computed for different scenarios across all days of the week:

• ρ0(t) baseline, neither on day t− 1 nor on day t an anomaly occurred;

• ρtmin(t), on day t− 1 no anomaly occurred while on day t an anomaly of Tmin

occurred, extreme cold;

• ρtmax(t), on day t− 1 no anomaly occurred while on day t an anomaly of Tmax

occurred, extreme hot;

• ρprec(t), on day t− 1 no anomaly occurred while on day t an anomaly of Prec
occurred, extreme rainfall;
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Figure 4.1: The figure illustrates the daily test time series for Kings County. The col-
ored dots indicate when the weather anomalies occurred identified using the Isolation
Forest algorithm on the residuals of weather variables after seasonal decomposition.

The boxplot 1 in Figure 4.2 displays distribution of the different ρ’s. One can
observe, how in particular for ρtmax and ρprec the distribution is shifted towards
smaller values of ρ’s.

ρ0 ρtmin ρtmax ρprec
−0.007 0.014 −0.144 −0.096

Table 4.1: The table shows the medians of the distribution of ρ’s. Except for ρtmin,
referring to an event of extreme cold, the medians of ρtmax and ρprec are smaller than
the one of ρ0, indicating a reduction of tests performed.

The effect of an anomaly of Tmax and Prec is a reasonable slightly reduction
of the number of tests performed during the day of the anomaly. While the effect
of an anomaly of Tmin is not very clear, moreover it could be contaminated by the
presence of seasonal influences during the colder months, that push people to perform

1The boxplot is a tool to show graphically the locality, spread of numerical data through their
quartiles. The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with
a line at the median. The whiskers extend from the box to the farthest data point lying within 1.5x
the inter-quartile range (IQR) from the box. Flier points are those past the end of the whiskers.
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Figure 4.2: Boxplot for the distribution of ρ’s for the Kings county. As expected in
case of no anomalies the distribution of ρ0 is almost centered on zero, given that all
the days of the week are considered. Instead the distributions of ρtmax and ρprec, are
slightly shifted to more negative values, indicating a reduction of the number of test
compared to the baseline (no anomalies). The black line in each box represents the
median.
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Figure 4.3: Boxplot for the distribution of ρ’s for the Kings county. The figure
displays a shift in the distribution towards smaller values of ρ, both in case of an
unusual temperature and in case of an extreme rainfall. The black line in each box
represents the median.

more tests 2. To further investigate the response to an anomaly in temperature, the
Isolation Forest was applied to a 2-dimensional vector containing both the residuals
of Tmin and Tmax.

Hence, one can define :

• ρT (t), on day t− 1 no anomaly occurred while on day t an anomaly of Tmin or
Tmax occurred;

The resulting boxplot, see Figure 4.3, shows a more clear signal about the effect of
an atypical temperature.

These results account for all days of the week in Kings County.
However, it can be interesting to understand if the specific day of the week amplify

or shrink the effect, and whether similar results are observed in other counties. Then,
the same kind of approach was applied to the 35 most populated counties in New

2Insight : A limitation of this approach is the fact that, according to their definition, ρtmin

accounts mostly for the colder seasons and ρtmax for the warmer ones. Instead ρ0 does not have
this kind of unbalance.
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ρ0 ρT ρprec
−0.002 −0.191 −0.096

Table 4.2: The table shows the medians of the distribution of ρ’s. Both the medians of
ρT and ρprec are smaller than the one of ρ0, indicating a reduction of tests performed
when a weather anomaly occurs.

Figure 4.4: Mean number of tests performed for each day of the week, for the 35
most populated counties.

York State. By viewing the average number of tests performed for each day of the
week, as shown in Figure 4.4 , it can be observed that the number of tests decreases
sharply at the weekend, while for the weekdays the higher mean is registered on
Tuesday.

Take Wednesday as the reference day. On average fewer tests are performed on
Wednesdays compared to Tuesdays. By computing the ρ values, one can determine
whether an anomaly on Wednesday amplify or mitigate this reduction in testing.

The overall effect of the anomaly is to increase the reduction of tests performed
on Wednesday compared to Tuesday, when an atypical event occurs on Wednesday.
This is clear to a greater extent for ρtmin, ρtmax and ρT , while the distribution of
ρprec results wider, see Figure 4.5.

In summary, the results of this section suggest that anomalous weather conditions
generally lead to a reduction in surveillance activities. However, in some cases these
results are challenging to interpret and quantify.

4.2 Statistical Regressions

To overcome the challenges of the previous section and quantify the impact of weather
events, the analysis was extended to include statistical regression methods. The aim
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Figure 4.5: Boxplot for the distribution of ρ’s for the 35 most populated counties
in New York State. The left panel displays the distributions of ρ for anomalies in
Tmin (extreme cold) and Tmax (extreme heat) separately. The right panel shows the
distribution of ρT , which combines the temperature anomalies. The temperature
anomaly seems to have an amplifying behaviour on the reduction in tests of Wednes-
day compared to Tuesday. While the effect of precipitations appears less clear, and
the distribution of ρprec is wider. The black line in each box represents the median
value.
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of this approach is to estimate the relationship between the dependent variable,
the number of tests daily performed, and independent variables such as weather
conditions, weekly effects, and other relevant factors.

The number of tests daily performed can be interpreted as counts data, which
may depend on various factors including weather conditions, day of the week and
the individual’s awareness of the epidemic’s spread. In particular, weather anomalies
such as extreme temperatures or heavy precipitation can affect people’s behavior,
potentially leading to changes in the number of tests performed. Additionally, the
day of the week can introduce systematic variations. Finally, public awareness and
concern about the epidemic, driven by factors such as media coverage, public health
announcements, and the reported number of cases, can significantly impact testing
behavior.

To model count data with these three main factors, Poisson regression was used.
In the following models, weather variables and the week effect were considered as
predictors, while public awareness was treated as an offset. Different kinds of offset
were chosen in order to reflect the underlying rate of testing, which depends on the
consciousness of people, probably the season (academic years, holidays) and from
the epidemic itself.

4.2.1 The Number of Tests of the Day Before

The initial approach to model individual’s awareness was to consider the Number of
Tests of the Day Before as an offset. It was assumed that the expected value of tests
performed on day t was given by:

E(Nt) = Nt−1e
α+βct+γwt

where:

• Nt: Number of tests performed on day t.

• α: Intercept.

• ct: Weather variables with corresponding vector of coefficients β, on day t.

• wt: Week variables with corresponding vector of coefficients γ, on day t.

• t: Index running over all observations, e.g. the days for the 30 counties.
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The model was trained with different predictors for the period from May 1, 2020,
to Nov 1, 2021 3, for the 30 most populated counties. Dummy variables were used for
the days of the week, denoted as mon(t) = 1 if the day t is Monday and 0 otherwise.
The predictor δ(t) represents the variation in millimeters of rain between day t and
t− 1. Additionally, δ+ and δ− were introduced as follows:

δ+(t) =

(
δ(t) if δ(t) > 0

0 otherwise
δ−(t) =

(
δ(t) if δ(t) < 0

0 otherwise

These cases were separated in order to understand what is the response in testing if
today is raining more than yesterday, but also if there is a recovery of the tests ”lost”
yesterday when today’s rainfall is less than yesterday’s. This separation allows un-
derstanding any symmetry between lost tests during rainfall and the recovered ones.
Finally, the weather variables of Tmin, Tmax, and Prec were categorized using the
categories described in 3.1, and their dummy variables were employed as predictors.
For instance, if PrecA(t) = 1, it indicates that an extreme rainfall event has occurred
on day t; otherwise, it is set to zero.

The following Table 4.3 lists the values of ∆N , defined as the percentage change in
the number of tests compared to the previous day, for each predictor. For the binary
variables, ∆N was computed as ∆N = eb−1 where b is the corresponding coefficient of
the binary variable resulting from the regression. While, for the predictors accounting
for the variation in millimeters of rain, ∆N was computed considering a 25mm of
variation 4, meaning that in this case ∆N refers to the percentage change of tests with
respect to the day before when it rained 25mmmore rain. Hence, ∆N = er·25−1 where
r is the corresponding coefficient of the rain variable resulting from the regression. 5

From the results in the table, some considerations can be made. For instance,
the ’Mon’ predictor has a ∆N value of approximately 33.3%, indicating that on
Mondays, there were 33.3% more tests performed compared to Sundays, or that in
case of extreme rainfall PrecA the test were reduced by ≈ 12.7% with respect the
former day.

3This period, which is shorter than the period used for anomaly detection, was chosen to avoid
the later peak caused by the Omicron variant, which could result in totally different behavior.

425mm of rain was chosen as the unit of measure because, from the study of the precipitation
time series, it emerged as a mid-point between extreme and light rainfall

5A p-value is the probability of obtaining test results at least as extreme as the observed results,
assuming the null hypothesis (H0) is true. The null hypothesis is the assumption that there is
no effect, difference, or relationship between variables. It represents the idea that any observed
differences or effects in the data are due to random chance rather than a true underlying effect. A
low p-value (≤ 0.05) suggests rejecting the null hypothesis, while a high p-value (> 0.05) suggests
failing to reject it.
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Intercept Mon Tue Wed Thu Fri Sat δ

Model 1 2.5% (2e-16) 33.5% (2e-16) 23.7% (2e-16) 7.4% (2e-16) 1.3% (2e-16) -10.4% (2e-16) -24.5% (2e-16) -3.0% (2e-16)
Model 2 -2.4% (2e-16) 33.5% (2e-16) 23.7% (2e-16) 7.5% (2e-16) 1.3% (2e-16) -10.4% (2e-16) -24.4% (2e-16)
Model 3 -2.4% (2e-16) 33.1% (2e-16) 23.6% (2e-16) 7.4% (2e-16) 1.1% (2e-16) -10.6% (2e-16) -24.4% (2e-16)
Model 4 -2.7% (2e-16) 33.3% (2e-16) 23.6% (2e-16) 7.5% (2e-16) 1.1% (2e-16) -10.6% (2e-16) -24.6% (2e-16)

δ− δ+ PrecA PrecB TmaxA TmaxB TminA TminB

Model 1
Model 2 2.7% (2e-16) -3.3% (2e-16)
Model 3 -12.5% (2e-16) 2.7% (2e-16)
Model 4 -12.8% (2e-16) 2.7% (2e-16) -4.0% (2e-16) 2.3% (2e-16) 0.5% (0.0327) -10.9% (2e-16)

Table 4.3: The table shows the values of ∆N for the different predictors. The values
in the brackets refer to p-value of the coefficients.

However, the results of the models (3-4) with categorical variables for weather
conditions are not straightforward to interpret. Indeed, it is necessary to verify for
each county under analysis what extreme rainfall or a temperature much lower or
much higher than the seasonal average means.

Moreover, the performance of these models appears to be poor compared to
models 1 and 2, as indicated by their higher AIC 6 values. Hence, for the rest of the
analysis it was decide to focus on quantifiable predictors, i.e. not categorical, for the
weather variables.

AIC

Model 1 4834078
Model 2 4833943
Model 3 4843275
Model 4 4836712

Table 4.4: The table lists the AIC value for each model trained, using the Number
of Tests of the Day before as offset

Model 2, which achieves the best AIC value, shows the most interesting results.
It suggests that the number of tests decreases by 3.3% if there is 25mm more rain
compared to the previous day, with the regression coefficient of δ+ being −1.343
·10−3. Conversely, the number of tests increases by 2.7% if there was 25mm more
rain the previous day compared to the present day, with the regression coefficient

6The Akaike information criterion (AIC) is an estimator of the quality of the statistical model.
It is defined as AIC = 2k − 2ln(L), where k is the number of estimated parameters and L is the
maximized likelihood function of the model. The preferred model is the one with the minimum
AIC value.
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of δ− being 1.065 ·10−3. Hence, the recovery of tests and the loss of tests are not
symmetric, namely the recovery is smaller then the loss meaning that some tests are
just lost. The lower panel of Figure 4.6 displays a line with a slope representing
the Pearson correlation between the predicted counts 7 and the actual counts. The
Pearson correlation coefficient can be interpreted as a parameter that accounts for the
test performance. Even if the Pearson correlation appears high, taking as offset the
Number of tests of the day before can lead to overfitting and diminish the effectiveness
of the coefficients. For instance, if it rained yesterday and also today, the number
of tests conducted yesterday might have already been influenced by that rainfall.
Consequently, using this data as a reference for today’s predictions could result in
erroneous conclusions due to the fitting of the yesterday’s rain in the offset.

4.2.2 Trends of tests

To avoid overfitting and remove the influence of weekly patterns and weather con-
ditions on the testing rate, it was convenient to extract the underlying trends from
the time series of tests. In particular the trends listed in 3.1 were used as offset for
the Poisson regression models. Due to the simpler interpretation of changes in the
number of tests in relation to millimeters of rain, the analysis was restricted to the
weather variable related to precipitations. Two simple models were trained, using as
offset the three trends T1, T2, T3.

• Model A:
Nt ∼ wt

the number of tests Nt depends only on the day of the week, where wt is the
vector of dummy variables representing the days of the week;

• Model B:
Nt ∼ rt +wt

the number of tests Nt depends on both the day of the week and the rainfall
rt in millimeters on day t.

Redefining ∆N , which now represents the percentage change in the number of
tests relative to the trend for 25mm of rain, the results of the two models are displayed
in Table 4.5.

7It’s important to note that the model’s training and prediction were performed on separate
datasets: training on a randomly selected 80% of the total dataset, and testing or prediction on the
remaining 20%.
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Figure 4.6: The upper panel illustrates the time-series data, plotting together the
actual test values (solid line) with those predicted by Model 2 (dashed line) across
three distinct counties. The lower panel presents a scatter plot, mapping the rela-
tionship between predicted and actual data points across all 30 counties analyzed.
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Trend Model A Model B

T1 AIC=4393444 ∆N = −5.4% (2e-16), AIC= 4365417
T2 AIC=3669219 ∆N = −5.1% (2e-16), AIC= 3647683
T3 AIC=3176207 ∆N = −4.8% (2e-16), AIC =3157658

Table 4.5: Table of results for Model A and Model B. The values in round brackets
refer to p-value of the precipitation coefficient.

As seen from the results of the models’ training, Model B scores the best AIC
values across all trends. This suggests that the amount of rainfall on a given day
in some way explains the number of tests performed on that day. In particular the
response of the daily performed tests to 25mm of rain results in a reduction of ≈ 5%
compared to the selected trend.

Up to this point, it was implicitly assumed that each county have the same
behaviour in response to the rain or other weather condition. This is of course a
limitation and can be overcome using a a Mixed Effects regression model, which takes
into account the possibly existing differences in the response for different counties.

4.2.3 The county effect

This last subsection aims to incorporate in the previous models the variability in the
response to weather conditions across different counties. To achieve this, a General-
ized Linear Mixed Model (GLMM) was used. In the GLMM framework, both fixed
effects and random effects are considered, which allows to capture the differences
between counties.

Expanding on the previous results, the fixed effects include as predictors the day
of the week and the daily millimeters of rain. To address the unique characteristics
of each county, also random effects are introduced.

While the number of tests performed can largely vary from one county to another,
this baseline variability is already taken into account by the offset, which is chosen
to be the testing trends independently extracted for each county. Hence, no random
intercept was considered. Instead more interestingly, the variability in the response
to precipitation can be modeled by a random slope for the precipitation predictor.
This allows the effect of precipitation on the number of tests to differ from one
county to another, reflecting that some counties might be more sensitive to extreme
or unusual rainfall than others. Finally, one can define the last model as:
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• Model C:
Nt ∼ wt + rt + (0 + rt|ID)

the number of tests Nt depends on both the day of the week and the amount of
rainfall rt. Additionally, the model includes a random slope for rt to account
for variability in the effect of rainfall across different counties. Here, the syntax
of R is used to formalize the random effects, referring to the term (0 + rt|ID),
where 0 represents the absence of random intercept for the reasons above, while
the second term represents the random slope for rt on the grouping variable
”ID” which is the geographical ID for the different counties.

Using the definition for ∆N of the previous subsection, the results of the Model C
are listed in the Table 4.6.

Trend Model C

T1 ∆̃N = −6.2% (2e-7), AIC= 4306739

T2 ∆̃N = −4.8% (5e-6), AIC= 3615250

T3 ∆̃N = −4.0% (6e-5), AIC =3139788

Table 4.6: Table of results for Model C, where ∆̃N denotes the mean of ∆N over all
the studied counties. The values in round brackets refer to p-value of the precipitation
coefficient.

From the Table 4.7 one can observe how the response to 25 millimeters of rain
varies significantly across counties. While most counties exhibit a reduction in the
number of tests, the magnitude of this reduction varies widely among them. Addi-
tionally, some counties’ responses are influenced by trends, whereas others demon-
strate coherent results across all three trends. See Figure 4.7. In order to understand
the nature of this variability across counties, an analysis on the correlation between
the ∆N ’s and the socio-demographic parameters was conducted. Defining P∆N

the
Pearson Correlation between the ∆N and the socio-demographic parameters, the
Table 4.8 below presents the significant values of P∆N

.
The significance of the correlation results is highly dependent on the trend. How-

ever, the results suggest that higher is the median income of a county, then smaller
is the reduction in tests due to precipitation. Conversely, poorer health conditions,
such as a higher prevalence of diabetes and/or obesity, in a county correlate with
a larger reduction in tests. Nonetheless, these considerations do not fully explain
variability between counties, leaving this an open question.
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County Code County Name T1(∆N) T2(∆N) T3(∆N)
US36001 Albany County -7.4 -6.2 -5.6
US36005 Bronx County -7.7 -7.3 -7.0
US36007 Broome County -3.1 -1.8 -1.0
US36013 Chautauqua County -13.5 -8.7 -4.6
US36027 Dutchess County -1.6 -1.4 -1.3
US36029 Erie County -6.4 -5.2 -4.8
US36045 Jefferson County -9.9 -7.3 -5.4
US36047 Kings County -5.8 -5.2 -4.8
US36055 Monroe County -5.2 -3.1 -2.7
US36059 Nassau County -6.1 -5.6 -5.5
US36061 New York County -2.9 -2.4 -2.3
US36063 Niagara County -6.3 -3.6 -2.0
US36065 Oneida County -8.1 -5.1 -3.8
US36067 Onondaga County -1.2 1.4 2.2
US36069 Ontario County -7.6 -6.6 -6.3
US36071 Orange County -4.4 -4.0 -4.0
US36075 Oswego County -15.1 -11.4 -9.3
US36079 Putnam County -5.1 -5.0 -5.1
US36081 Queens County -8.0 -7.7 -7.5
US36083 Rensselaer County -1.2 1.8 4.3
US36085 Richmond County -10.8 -10.1 -9.7
US36087 Rockland County -3.6 -3.1 -2.9
US36089 St. Lawrence County -23.3 -22.6 -22.2
US36091 Saratoga County -6.1 -4.9 -4.6
US36093 Schenectady County -0.7 -0.2 0.2
US36101 Steuben County -11.1 -10.4 -10.6
US36103 Suffolk County -5.6 -5.3 -5.1
US36109 Tompkins County -10.0 -0.8 8.9
US36111 Ulster County -6.9 -6.4 -6.1
US36119 Westchester County -6.2 -5.9 -5.7

Table 4.7: The table shows the values of ∆N for each studied county, for the three
trends T1, T2, T3.

27



Figure 4.7: The figure shows the selected counties in New York State used for the
analysis. The color map indicates the percentage change in daily tests per 25 mm of
rain, for the three trends.

Trend Median Income Percent of people with Diabete Sex ratio Percent of people Obese

T1 P∆N
= 0.36 (0.05) P∆N

= -0.39 (0.03) P∆N
= -0.42 (0.02)

T2 P∆N
= -0.38 (0.04) P∆N

= -0.36 (0.05)
T3 P∆N

= -0.36 (0.05)

Table 4.8: Table with significant values of P∆N
. The values in brackets refer to p-

value of P∆N
.
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Chapter 5

Conclusions

This work aimed to understand the reaction of the surveillance on respiratory disease
in case of an extreme or anomalous weather conditions, with particular focus on
COVID-19. The level of surveillance was quantified in terms of daily performed
tests. The anomaly detection carried out on the weather variables Tmin, Tmax and
Prec to discern anomalous weather conditions from the normal one, allowed to get
an insight about the testing rate during the anomaly. The results showed roughly a
reduction in the number of tests performed the day of the anomaly. However, these
results were challenging to interpret and mostly to quantify. Hence, once ensured
the presence of an effective modulation of the surveillance in case of unusual weather
condition, some regression models were used to weight this reduction. To model the
daily counts of tests, three main factors were considered: the weather conditions;
the day of the week; the public awareness about the epidemic status (incorporated
as an offset). The results for models incorporating categorical weather variables,
describing the magnitude of the anomaly, proved challenging to demystify, as the
definitions of extreme weather events or deviations from seasonal norms may differ
across counties. In this context the Model 2 scored the best AIC value, proving
that for 25mm of more rain the ≈ 3.3% of tests are lost and only the ≈ 2.7% of tests
are recovered for 25mm of less rain. Despite the high performance of the Model 2
the use of the Number of Tests of the Day before as offset can lead to over-fitting
and reduce the effect of the weather conditions. Therefore others regressions models
were trained, using as offset the underlying trend of tests, which encodes in some
way the epidemic curve. The simple Model A was trained in order to see if the only
week effect could explain the daily number of tests. This is not the case, given that
the Model B, according to which for 25 mm of rain the tests are reduced by ≈ 5%,
scored a better AIC values compared to Model A and Model 2. This suggests
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that the level of precipitations is relevant to explain the daily tests. However, until
this point a big approximation was done, i.e the response to the precipitations was
considered the same across all the counties. This simplification does not respect
the reality. The different counties can be more or less used to a certain amount of
precipitations and/or can be more or less ready to face a weather anomaly. Thus to
take into account the variability in the reaction of the counties, a GLMM model was
trained, using the identity of each county as grouping factor. From the results of the
Model C it was observed, that apart for some exceptions, most of the counties react
to 25 mm of rain reducing the number of tests performed during that day. However
the magnitude of the response varies widely going from ≈ 1.8% to ≈ −22.6% for the
mid sensitive trend T2, enforcing the idea that the actual people response to 25 mm
of precipitations can be different from counties to counties. To explore the nature
of these differences the correlation between some socio-demographic parameters and
the response to 25 mm of rain was studied. Still the results were not very explanatory
leaving the question open. The only conclusion that can be made is about the poor
health conditions of a county, which can increase the reduction in the number of
tests in case of large precipitations. Overall, the results presented can be useful to
the public health to understand how the surveillance on a disease can be sensitive
to the anomalous weather conditions. These insights can help identify the weak
points of the surveillance system and guide improvements to ensure accurate disease
monitoring even during adverse weather.

This study has some limitations, primarily due to the resolution of the data, as
all analyses were conducted at the county level using mean weather values. This
approach did not allow to dig more about the relationship between weather and
surveillance, preventing the identification of other confounding factors. Future work
could extend this analysis to other countries, to compare responses and understand
whether different States exhibit similar behaviors or substantial differences. This
comparative approach could help uncover underlying reasons for these variations
and inform more robust public health strategies globally.
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Appendix A

Trend function in Prophet

In the Prophet algorithm two trend models are implemented: the saturating growth
model; the piece-wise linear model. For the purpose of this thesis only the second
model was used. Specifically the trend function g(t) of the additive model in 3.1 has
the following form:

g(t) = (k + a(t)Tδ)t+ (m+ a(t)Tγ)

where:

• k is the base growth rate;

• δ is the vector of rate adjustment. Suppose that there are S changepoints which
occur at times sj, with j = 1, ..., S. The element δj represents the change in
rate that occurs at time sj;

• m is the offset parameter;

• a(t) ∈ {0, 1}S is a vector indicating the presence of changepoints, defined as:

aj(t) =

(
1, if t ≥ sj;

0, otherwise,

• γ is another parameter to adjust the offset parameter m in order to ensure the
continuity of the function. Then, the correct adjustment at changepoint j is
easily computed as: γj = −sjδj

The changepoints sj can either be specified by the analyst, or selected automatically
from a set of candidates. Automatic selection is achieved by placing a sparse prior
on δ. Typically, the prior is set to be δj ∼ Laplace(0, λ), where λ controls the
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model’s flexibility in altering its rate. In particular for the analysis of this thesis the
parameter λ was tuned to select the trends T1, T2, T3 with different adherence to the
data. [23]
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Appendix B

An extension: France

Building on the positive results obtained in Sections 4.2.2 and 4.2.3, the same
methodology was applied to data from France. As before, the trend of tests was
extracted from the data Santé publique France [21] using the Prophet algorithm,
identifying three different trends based on flexibility. These trends are illustrated in
Figure B.1.

The same models A and B were trained using the weather data obtained by
Météo France [15]. Once again the results of Table 4.5 show that the Model B

Trend Model A Model B

T1 AIC=12407084 ∆N = −11.4% (2e-16), AIC= 12365053
T2 AIC=11751103 ∆N = −11.3% (2e-16), AIC= 11710094
T3 AIC=10082328 ∆N = −9.6% (2e-16), AIC =10053102

Table B.1: Table of results for Model A and Model B. The values in the brackets
refer to p-value of the precipitation coefficient.

scores a better performance than the Model A, suggesting that also in France,
the daily number of tests performed can be explained by the millimeters of rainfall.
Furthermore the Model C was trained to account for potential variability in the
response of the number of daily tests to 25mm of rain across different departments.

As for the New York case, the results of Model C, see Table B.2, show a better
performance compared toModel B for the corresponding trends. This indicates that
different departments exhibit varied responses to extreme rainfall events. The Figure
B.2 illustrates that most of the departments studied display a blue shade, proving
that per 25mm of rain there is a reduction in the number of test compared to the
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Figure B.1: The nine panels represent daily tests performed in the period between
2020-05-01 and 2021-11-01 of the nine most populated departments of France. Each
panel also displays the different trends chosen for the analysis T1, T2, T3.
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Trend Model C

T1 ∆̃N = −13.0% (1e-11), AIC= 12323019

T2 ∆̃N = −13.0% (9e-12), AIC= 11670244

T3 ∆̃N = −11.1% (4e-10), AIC =10019578

Table B.2: Table of results for Model C, where ∆̃N denotes the mean of ∆N over all
the studied counties. The values in round brackets refer to p-value of the precipitation
coefficient.

Figure B.2: The figure shows the selected departments of France used for the analysis.
The color map indicates the percentage change in daily tests per 25 mm of rain, for
the three trends.

trend. This reduction ranges from −31.1% for the department of Moselle to −1.9%
of Loire, considering the mid-flexible trend T2, see Table B.3. Other departments,
instead, don’t follow this behaviour, for example Paris which is pink coloured.

Analyzing the correlations between the changes (Deltas) and socio-demographic
parameters can provide some insights into the nature of this variability among
France’s departments. The Pearson Correlation between the ∆N and the socio-
demographic parameters is denoted as P∆N

. Table B.4 below presents the significant
values of P∆N

, including the following metrics:

• EI is the median value of ”niveau de vie” which is a measure used by INSEE
1 to assess economic well-being. It is the disposable income of a household
divided by the number of consumption units, which adjusts for household size

1Institut National de la Statistique et des Études Économiques
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Department Code Department Name T1(∆N) T2(∆N) T3(∆N)
6 Alpes-Maritimes -22.3 -19.8 -17.3
13 Bouches-du-Rhône -16.3 -12.1 -8.8
30 Gard -9.8 -10.1 -6.2
31 Haute-Garonne -10.8 -11.5 -13.7
33 Gironde -20.1 -21.5 -19.8
34 Hérault -21.0 -19.2 -14.2
35 Ille-et-Vilaine -6.6 -6.8 -5.5
38 Isère -12.4 -11.5 -13.9
42 Loire -2.0 -1.9 -1.7
44 Loire-Atlantique 0.6 1.3 2.2
49 Maine-et-Loire -25.1 -26.0 -23.7
54 Meurthe-et-Moselle -17.3 -18.1 -17.1
56 Morbihan 2.5 2.8 2.5
57 Moselle -31.1 -31.1 -28.6
59 Nord -2.3 -3.6 -2.3
62 Pas-de-Calais -26.1 -26.3 -25.8
67 Bas-Rhin -18.2 -20.1 -21.0
68 Haut-Rhin -15.1 -14.2 -12.9
69 Rhône -5.1 -5.5 -7.2
74 Haute-Savoie -15.2 -14.6 -16.0
75 Paris 5.5 4.9 5.8
76 Seine-Maritime -5.5 -6.1 -6.5
77 Seine-et-Marne -16.3 -15.9 -14.3
78 Yvelines 1.3 0.2 1.1
83 Var -27.5 -27.9 -22.6
91 Essonne -9.1 -9.9 -3.6
92 Hauts-de-Seine -4.5 -4.8 -1.1
93 Seine-Saint-Denis -26.7 -26.5 -17.4
94 Val-de-Marne -12.1 -12.6 -8.7
95 Val-d’Oise -5.1 -5.3 -1.1

Table B.3: Department Data with Delta Values.
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Trend EI Prevalence of diabetes Poverty rate

T1 P∆N
= 0.46 (0.01) P∆N

= -0.35 (0.05)
T2 P∆N

= 0.45 (0.01) P∆N
= -0.36 (0.05)

T3 P∆N
= 0.40 (0.03)

Table B.4: Table with significant values of P∆N
. The values in brackets refer to

p-value of P∆N
.

and composition [12].

• Poverty rate is the percentage of people living in households where the equival-
ized disposable income is below a certain threshold. This threshold is commonly
set at 60% of the median equivalized disposable income, which is the house-
hold’s total income after taxes and social contributions, adjusted for household
size and composition using a standard equivalence scale, defined by INSEE.

• Prevalence of diabetes refers to the proportion of the population diagnosed with
diabetes and undergoing pharmacological treatment, adjusted for age difference
and other demographic factors [20].

Simply studying the correlation alone is not enough to fully explain the variability
across departments. However, understanding the nature of this variability can turn
into a strength of public health, both to have a more accurate monitoring system and
to improve the weak points of surveillance even in emergency climatic situations.
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