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Abstract

Active systems, ensembles of active particles capable of expending energy at the
individual level to produce motion or other forms of mechanical work, are present
at all scales in biology. Bacteria are a paradigmatic example of such out-of-
equilibrium systems, as they can convert chemical energy into motion through
structures such as pili or flagella.

Active turbulence is one possible state of collective motion exhibited by species
of elongated and flagellated bacteria. Their rod-shaped bodies promote nematic
alignment, leading to a so-called active nematics where nematic order is disrupted
by the turbulent motion of topological defects.

A crucial ingredient to produce such collective motion is the effect of the fluid
surrounding the bacteria. Indeed, even if they are too packed to swim, they set the
fluid in motion which in turn lead to their chaotic swirling motion. Such behavior
is well-reproduced by microscopic models of particles coupled to a fluid but, so
far, we lack a coarse-grained continuum theory that would express the large-scale
behavior in terms of the microscopic parameters.

In this work, we derive such a hydrodynamic theory for self-propelled rods em-
bedded in a Stokes fluid by adapting the Boltzmann-Ginzburg-Landau approach,
previously used in the dry case [12], to obtain a continuum theory from a wet
microscopic model, including explicitly the fluid. This framework accounts for the
complex interplay between self-propulsion, nematic alignment, and fluid dynamics.

Finally, we analyze the derived model by performing a linear stability analysis
of the nematically ordered stationary homogeneous solution and numerically in-
tegrating the PDEs. This allows us to investigate the effects of the fluid on both
the phase diagram and the non-linear dynamics, providing new insights into the
behavior of this wet active matter model.

Keywords: active matter, self-propelled rods, out-of-equilibrium statistical
physics, bacterial swarming, active nematics, active turbulence, hydrodynamic
theory, Boltzmann-Ginzburg-Landau
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Chapter 1

Introduction

1.1 What is active matter?

Active matter refers to systems composed of a large number of individual agents,
each capable of converting stored or ambient free energy into motion or mechanical
work. These systems are hence driven out of equilibrium at the level of their
individual constituents,and constitute a different class of systems compared to
systems that are driven out-of-equilibrium by the presence of an external field or
from the boundaries. These agents, usually called active particles, are present at
all scales in Biology, from the animal world (flocks of birds and schools of fish), to
cells (bacterial and sperm suspensions) and inside cells (molecular motors and the
cytoskeleton network). What is common to all these instances is the capacity to
self-organize and give rise to various forms of collective motion at the macroscopic
level (figure 1.1).

Figure 1.1: Examples of active systems exhibiting collective motion: (A) flocks of
starlings [2], (B) schools of sardines, (C) bands in systems of actin filaments [14]

There are also examples of synthetic active systems often made of micrometric
beads that can be activated by electric fields, light or chemical processes (figure
1.2).

2
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Figure 1.2: Examples of synthetic active systems. Left : Janus colloids are
micrometer-size silica beads half-coated with a nanometer-thick Platinum film that
is able to catalyze the reaction of H2O2. When in solution, the reaction takes place
only on one side of the colloid leading to a gradient of concentration that propels
the particle diffusiophoresis [18]Right : Quincke rollers consist of insulating beads
immersed in a conducting fluid. Applying an electric field in the vertical direction
results in surface-charge dipoles whose orientation is unstable for large enough field
leading to a rolling motion of the beads in the horizontal plane. [5]

1.2 Active Turbulence

Active agents immersed in a fluid create a so-called active fluid that can exhibit
spontaneous flow with a complex spatiotemporal structure. Such complex fluids
can be physically realised in different ways starting from active biological agents
(bacterial suspensions, sperm cells, cytoskeletal suspensions) but also engineered
self-propelled colloids (Janus particles). Even if at low Reynolds, these systems
exhibit chaotic flows reminiscent of inertial turbulence which inspired the name
active turbulence for such phenomena. A few physical systems manifesting active
turbulence are shown in figure 1.3.

The motivation for my project is to understand the behaviour of bacterial
swarms. Swarming, most often observed in rod-shaped flagellated bacterial species
moving on a substrate, is a collective mode of motion in which such species can
transition into and it is characterized by chaotic whirls and jets and it is a promi-
nent example of active turbulence in quasi-2D geometries. The type of collective
motion of interest in my project is the so called bacteria’s swarming (figure 1.4).
This is a collective mode of motion in which some bacterial species, usually rod-
shaped and flagellated, can transition into and is characterized by a fast migration
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Figure 1.3: Examples of active turbulence in different biological and artificial active
systems taken from [1].

over surfaces and the formation of dynamic patterns of whirls and jets [3], two
types of motion that can also be described as active turbulence.

1.3 Dry models of active matter

Different models of active matter systems have been proposed depending on the
type of interaction between the particles. In the simplest case, the fluid that
surrounds the particles is not taken into account. In such dry models one of the
possible distinction that can be made is between scalar and aligning active matter.
This difference is in the capacity or not, for the models’ particles, to change their
orientation in space depending on the orientation of other (usually neighbors’)
particles. Others forms of interaction can be considered in both cases leading to
an interesting collective behaviour.



CHAPTER 1. INTRODUCTION 5

Figure 1.4: (A,B,C): Different level of magnification of a swarming colony, (B,C)
focus on the active part of the bacteria colony. (D) TEM image of typical swarming
bacteria, elongated bodies and flagella. [3]

Scalar active matter and MIPS

One typical phenomenon that can be found in scalar active matter and does not
have an equivalent at equilibrium is the so called Motility Induced Phase Separa-
tion (MIPS) [13]. A minimal model for scalar active particles that undergoes MIPS
consists of Active Brownian Particles (ABP are self propelled particles whose ori-
entation undergoes a diffusive dynamic) interacting via steric repulsion. MIPS
takes place because collisions between particles effectively reduce their speed in
denser regions and in returns particles tend to accumulate in regions where their
velocity is slower leading to a positive feedback loop. What is observed is the pres-
ence of dense ”liquid” regions in which particles move slower surrounded by dilute
gas characterized by a faster motion of the particles as can be seen in figure(1.5).

Aligning active matter: Vicsek model

Probably the most important example of aligning active matter is the model intro-
duced in 1995 in the celebrated paper by Vicsek and collaborators [17]. The model
contains only alignement and self propulsion and consists in a simple discrete-time
dynamics in which N point-like particles move at constant speed v0 in a periodic
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Figure 1.5: Motility Induced phase separation from numerical simulation of ABPs
with steric repulsion [13]

2D domain and interact via a local alignment rule in the presence of angular noise.
In terms of equations:

r⃗ t+1
i = r⃗ t

i + v0ê(θ
t+1
i ), (1.1)

θt+1
i = Arg

[
⟨ê(θtj)⟩i

]
+ ξi(η) (1.2)

Where ξ is a uniform white noise sampled from [−η
2
, η
2
] with η its strength, and ⟨·⟩i

is the mean computed for the particles within a radius r0 from particle i figure 1.6a.
Applying this rule at large noise and/or low density results in a disordered phase in
which there is no net motion of the particles. Increasing the density or decreasing
noise leads to an ordered phase in which all the particles move collectively in the
same direction. In the density-noise phase diagram (figure 1.6b) there is also an
intermediate region characterized by the coexistence of the two phases. Some
dense, ordered regions also called bands since they posses an elongated structure
and in particular their direction of motion is transversal to their axis (figure1.6c)
move in a disordered ”gas”.

The starting point to model the behaviour of bacteria in swarming colonies is a
microscopic Vicsek-like model but with a few differences described in the following.

1.3.1 Self-propelled rods

The bacteria under consideration in our case are characterized by the presence
rotating flagella and an elongated body. The former provides a self propulsion speed
while the latter provides the direction in which the bacterium moves. Furthermore,
the elongated shape, provides a reason to believe that such elongated objects when
they interact (e.g. upon collision) tends to align in either directions compatible
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Figure 1.6: (a): Illustration of the Vicsek alignment rule, the red particle adjust
is orientation according to the orientation of the neighbors (blue) particles within
an interaction radius r0. [10] (b): Phase diagram of the Vicsek model in the mean
density ρ0 and noise η plane from [15]. (c): Snapshot of bands solutions in the
Vicsek model, color indicates density, arrows indicate direction of propagation. [15]

with their elongated body leading to a so-called nematic alignment (see figure
1.7) For this kind of particles, we can think a Vicsek-like model, still made of
particles with polar self-propulsion but aligning locally with a nematic alignment
rule. These active particles are usually called self-propelled rods and are used in
this work as a microscopic starting model for the bacteria. This microscopic model
has been shown to be capable of sustaining nematic order at low enough noise and
also chaotic nematically ordered bands for intermediate noise’s intensities [6] as
can be seen in figure 1.8.

Hydrodynamic theories

Insights on the behaviour of this kind of microscopic models can only be provided
by an hydrodynamic theory. This is an continuum description of the statistical
properties of our system in the form of a set of PDEs for the slow variables of
the system. There are two types of slow variables: those related to conserved
quantities, in our case the density ρ, and those associated to symmetry breaking,

Figure 1.7: Illustration of nematic alignment for elongated objects after collisions
[6]
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Figure 1.8: Different phases from simulations of the Dry microscopic model of
self-propelled rods. Particles represented as arrows indicating their orientation
exept in the third from the left. From left to right, increasing the noise we have
respectively: quasi-long range nematic order, stable nematically ordered bands,
chaotic nematically ordered bands, disordered phase. Taken from [6]

the polarity and/or the nematic tensor:

p⃗ =

(
⟨cos θ⟩
⟨sin θ⟩

)
Q =

(
⟨cos 2θ⟩ ⟨sin 2θ⟩
⟨sin 2θ⟩ −⟨cos 2θ⟩

)
(1.3)

An hydrodynamic theory for the original Vicsek model was first written on
symmetry arguments by Toner and Tu [16]. The relevant hydrodynamic fields for
this system are the coarse-grained density ρ(r⃗, t) and polarity p⃗(r⃗, t) and satisfy:

∂tρ+ v0∇⃗ · (ρp⃗) = 0 (1.4)

∂tp⃗+ λ1(p⃗ · ∇⃗)p⃗+ λ2(∇⃗ · p⃗)p⃗+ λ3∇⃗(|p⃗|2) =
(α− β|p⃗|2)p⃗− ∇⃗P +DI∆p⃗+DA∇⃗(∇⃗ · p⃗) + f⃗ (1.5)

Equation 1.4 is the usual continuity equation for the density field. The first term
on RHS of equation 1.5 is a Ginzburg-Landau term responsible, at low enough
noise or large enough density (both α and β positive), for an homogeneous polarly
ordered solution:

ρ = ρ0 ; p⃗ = p⃗0 =

√
α

β
ê (1.6)

and f⃗ is an additive gaussian noise.
The phenomenological nature of these equations means that a priori all pos-

sible 7 coefficients and the pressure P are arbitrary functions of the microscopic
parameters ρ and p⃗ and cannot be estimated with this approach. This make dif-
ficult to explore all the parameter space if not impossible to do a proper study of
the phase diagram.

Other approaches have been developed to obtain hydrodynamic equations di-
rectly coarse-graining Vicsek-like microscopic models that also make possible to
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obtain expressions of the theory’s coefficients in terms of the microscopic ones. One
of these methods is called Boltzmann-Ginzburg-Landau and it will be described in
depth in the following and used to derive an hydrodynamic theory for the system
under study.

1.4 Wet Vicsek-like model for active turbulence

The internship is devoted to model quasi-2D densely packed swarming bacteria
suspensions. A microscopic model for this kind of systems has been proposed and
studied in (H.Li et al. [9]) to describe the motion in swarming colonies of Serra-
tia Marscences. This species is characterized by an elongated body and rotating
flagella similar to figure (1.4d) and shows the characteristic behaviour of active
nematics in which active turbulence happens because of the chaotic motion of
topological defects with nematic symmetry (figure 1.9). Two kind of defects can
be observed: −1

2
defects characterized by their threefold rotationally symmetric

structure and +1
2
defects characterized by a polar structure. The number associ-

ated to each kind of defects, also known as their charge, is the winding number,
that measure the change in orientation in the nematic field as a closed loop is
traversed around the center of the defects.

Figure 1.9: Active Nematics experimental observations on Serratia Marscences,
adapted from [9]. (A) Illustration of a typical colony growing on an agar plate,
the observation are made in the active region at the border of the colony. (B) Raw
image of fluorescent cells (scale 30µm). (C) Nematic field and defects’ positions
and orientations extracted from B.

Such microscopic model, after tuning its parameters, was able to reproduce
with an high level of accuracy the statistical properties of the swarming such as
velocity and orientation correlation length, correlation time and defects speed.

The model consists in a minimal Vicsek-like model, in which self-propelled rods
are embedded in a Stokes fluid whose interaction with the particles are explicitly
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modeled (what is called a Wet active matter model). The fluid in this case is es-
sential to explain the behaviour of the particles, since they are capable of applying
a force on the fluid putting it in motion. The fluid then further rotates and advects
the particles leading to the complex patterns observed experimentally. As shown in
(H.Li et al.) the fluid is essential to model correctly such motion. Strikingly, even
when considering self-propelled rods without self-propulsion (the bacteria may be
unable to actually ”swim” in the fluid since are to packed) they are still able to
put the fluid in motion which is then responsible for active turbulence on the large
scale.

At the same time a proper hydrodynamic theory for such wet active matter
models is still missing hence the aim of the internship is to derive a continuum
theory from a microscopic model similar to the one proposed in H.Li et al. with the
Boltzmann-Ginzburg-Landau approach. The starting point will be the following
overdumped dynamic coupled to a Stokes equation:

˙⃗ri = s0ê(θi) + v⃗(r⃗i) (1.7)

θ̇i = Ca

∑
j∼i

sin[2(θi − θj)] + Cv(∇⃗ × v⃗) · ẑ + Csûi × (E · ûi) · ẑ + Cnξθ (1.8)

µ∇2v⃗ +∇P − αv⃗ + g0p⃗− fd∇ ·Q = 0 with ∇ · v⃗ = 0 (1.9)

The equation eq. (1.7) contains two contributions to particle’s velocity, the first
coming from the self propulsion speed and the second from advection by the fluid.
The first term on the RHS of eq. (1.8) is a torque providing nematic alignment
with the neighbors. Then we have two terms that summarize the effect of the
fluid on the particles orientation with Cv and Cs being Jeffrey coefficients for the
vorticity and strain rate whose value may differ from the one computed for perfect
ellipsoids [8]. ξθ is a Gaussian white noise with strength Cn. Finally eq. (1.9) is
the Stokes equation for the fluid with µ the viscosity and α an effective friction
coefficient with the substrate. We also have two forcing terms: −fd∇·Q the usual
term of the stress applied by bacteria, acting as dipoles, in a suspension and g0p⃗, a
polar term that comes from the fact that bacteria are able to interact also with the
substrate intuitively leading, thanks to their elongated body, to an ”entrainment”
of the fluid.



Chapter 2

Boltzmann approach for a
continuum theory of wet active
matter

The Boltzmann-Ginzburg-Landau (BGL) approach has been firstly introduced to
derive a continuum theory from the Vicsek model with polar alignment interaction.
This method has been then applied to self-propelled rods (dry case) [12] and was
able to predict the onset of global nematic order and describe other phenomena
observed in simulations of the microscopic model [6]. However, it is clear from the
work of H.Li et al. [9] that considering explicitly the fluid-particles interaction is
essential to properly model bacteria swarming. For this reason a proper continuum
theory for such systems need to consider an additional slow variable, the fluid
velocity field v⃗ and its coupling to the particles’ density and the polar and nematic
fields. To this end, in this chapter I will adapt the BGL approach to include the
effect of the fluid when deriving a continuum theory.

2.1 Boltzmann equation

This approach is based on writing a (generalized) Boltzmann equation for the
single particle marginal probability density function f(r⃗, θ, t) for a particle being
at a given position r⃗ with a given polarity θ, choosing as normalization constant
the total ”mass” of the particles V ρ0 where ρ0 is the mean density.

1

V

∫
V

dr⃗

∫ π

−π

dθf(r⃗, θ, t) = ρ0 (2.1)

11
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The Boltzmann equation reads:

∂f(r⃗, θ, t)

∂t
+∇⃗r⃗·(f(r⃗, θ, t)(s0ê(θ)+v⃗(r⃗)))+∂θ(f(r⃗, θ, t)(Cvω+CsF (E, θ))) = Idif [f ]+Icol[f ]

(2.2)
The first streaming part of the equation (last two terms on the LHS) is com-

posed by the convective mass flux in the position-orientation (r⃗ − θ) space due to
the fluid and the self-propulsion speed. The streaming rules for position and orien-
tation are eqs. (1.7,1.8) without noise. To lighten the notation we used ω = ∇⃗× v⃗
and F (E, θ′) = ê(θ′)× (E · ê(θ′)) · ẑ and ê(θ) is the unit vector with orientation θ.

On the RHS instead we have the self-diffusion integral and the collision in-
tegral that takes into account particles’ rotational diffusion and a noisy nematic
alignment. Note that in this case the Boltzmann equation is coupled to the Stokes
equation for the fluid 1.9.

Self-diffusion integral

To evaluate the diffusion integral some assumptions need to be made. In absence
of collisions it is assumed that the particle’s orientation evolves according to the
following stochastic process: particles undergo self-diffusion events with rate λ and
when this happens its orientation change by an angle η sampled from a distribution,
in this case we assume it to be a Gaussian with zero mean and variance σ2, Pσ(η).
This leads to the following term:

Idif [f ] = −λf(r⃗, θ, t) + λ

∫ π

−π

dθ′
∫ ∞

−∞
dηPσ(η)δ2π(θ

′ − θ + η)f(r⃗, θ′, t) (2.3)

Where δ2π is a 2π periodic delta function that is equivalent to the following:

δ2π =
+∞∑

m=−∞

δ(θ′ − θ + η + 2mπ) (2.4)

Collision integral

To evaluate the collision integral we need to make two simplifying assumptions:
the first is to consider only binary interactions and the second is the so called
molecular chaos hypothesis which (for binary collisions only) consists in assum-
ing the factorization of the 2-particle marginal into the product of single particle
marginals f2(r⃗1, θ1, t; r⃗2, θ2, t) = f(r⃗1, θ1, t)f(r⃗2, θ2, t).

Furthermore the orientations of two particles colliding evolve according to the
following stochastic process, independent from self-diffusion:

θ′1 = Ψ(θ1, θ2) + η1, θ′2 = Ψ(θ2, θ1) + η2 (2.5)



CHAPTER 2. BOLTZMANN APPROACH FOR A CONTINUUM THEORY
OF WET ACTIVE MATTER 13

Where η1, η2 are two two random variables that in this case we assume to be
sampled from the same distribution of self-diffusion Pσ(η) but in principle they
can be different. Because of isotropy Ψ(θ1, θ2) should also satisfies:

Ψ(θ1 + ϕ, θ2 + ϕ) = Ψ(θ1, θ2) + ϕ mod π (2.6)

Where modulus π is given by the π-symmetry of the particles w.r.t. the inter-
action (nematic alignment). Eq. (2.6) implies that the interaction function Ψ is
parameterized by a single variable function H(∆) := Ψ(0,∆) since

Ψ(θ, θ +∆) = θ +Ψ(0,∆) mod π (2.7)

The collision rate is encoded in the collision kernel K(∆ = θ1 − θ2) ≥ 0 that
depends only on the angle difference because of the rotational invariance of the
problem.
For self-propelled rods the two functions just introduced areH(∆) = ∆

2
for−π/2 ≤

∆ ≤ π/2 and π-periodic (nematic alignment) while:

K(∆) = 2v0r0 |ê(θ2)− ê(θ1)| = 4s0r0

∣∣∣∣sin ∆

2

∣∣∣∣ (2.8)

In principle the fluid may have an effect on the collision kernel, but we decided
to neglect it at this level and utilize the same kernel used in the Dry case. This
is evaluated in terms of a scattering process between particles having an isotropic
interaction range of radius r0, eq. 2.8 is the flux of incoming particles through the
cross-section 2r0 of a target particle.

The collision integral can then be written as:

Icol[f ] = −f(r⃗, θ, t)

∫ π

−π

dθ′K(θ′ − θ)f(r⃗, θ′, t) +

∫ π

−π

dθ1

∫ π

−π

dθ2

∫ ∞

−∞
dηPσ(η)

×K(θ1 − θ2)f(r⃗, θ1, t)f(r⃗, θ2, t)δ2π(Ψ(θ1, θ2) + η − θ) (2.9)

2.2 Angular Fourier transform and order param-

eters

To derive the dynamics of the slow fields from the Boltzmann equation, we first
need to expand f in angular Fourier components, defining:

f(r⃗, θ, t) =
1

2π

∞∑
k=−∞

f̂k(r⃗, t)e
−ikθ where f̂k(r⃗, t) =

∫ π

−π

dθf(r⃗, θ, t)eikθ (2.10)
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In particular, the first few components are related to the slow variables 1.3 we are
interested in: f̂0 = ρ,

f̂1 = ρ(px + ipy), f̂2 = ρ(Qxx + iQxy) (2.11)

Hence these Fourier modes can be used as order parameters.
Taking the angular Fourier transform 2.10 of the Boltzmann equation 2.2 an

infinite hierarchy of equations is obtained for the f̂ks (the hat is removed in the
following to lighten the notation):

∂fk
∂t

+
s0
2
(∇fk−1 +∇∗fk+1)− ikfkCvℑ(∇∗V ) +

Csk

4
(fk+2∇∗V ∗ + fk−2∇V )+

+ ℜ(∇∗(fkV )) = −(1− Pk)fk +
∞∑

q=−∞

(PkIkq − I0q)fqfk−q (2.12)

Where Ikq is defined by the following integral:

Ikq =
1

2π

∫ π

−π

d∆K(∆)e−iq∆+ikH(∆) (2.13)

and Pk(σ) =
∫∞
−∞ dηPσ(η)e

ikη that in the case of a Gaussian white noise becomes

Pk(σ) = e−
σ2k2

2 . Except for f0 that is real thanks to f ∗
k = f−k from eq. 2.10 the

other fields are complex. When using fk as fields, the complex notation used in
eq. 2.12 is more natural and compact w.r.t. writing directly the equations for
the real and imaginary parts. In this notation ∇ = ∂x + i∂y, ∇∗ = ∂x − i∂y and
V = vx + ivy where vx and vy are the components of the fluid velocity field. Eqs.
2.12 are coupled to the equation for the fluid 1.9 that in complex notation reads:

µ∆V −∇P − αV + g0f1 −
fd
2
∇∗f2 = 0 with ℜ(∇∗V ) = 0 (2.14)

The equation for k = 0 is just the conservation equation for the total number of
particles:

∂tρ+ s0ℜ(∇∗f1) + ℜ(∇∗(ρV )) = 0 (2.15)

First unstable mode

Directly from eqs. 2.12 is possible to study the linear stability of the trivial disor-
dered solution (ρ = ρ0, fk = 0 for k > 0 and v⃗ = 0 ). For k > 0 linearizing around
this isotropic solution leads to:

∂tfk = µkfk where µk = [−(1− Pk) + (Pk(Ikk + Ik0 − (I0k + I00))ρ0] (2.16)
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Figure 2.1: Values of µ2 on a selected region of the phase diagram. The blue line
is µ2 = 0. Above the line, µ2 < 0, the disordered phase is stable while, below,
µ2 < 0, the ordered solution exists while the disordered one becomes unstable.

In particular, the linear stability of the mode fk is controlled by the linear coeffi-
cient µk, we should hence look at their signs in a reasonable interval in the ρ, σ
plane. Once fixed the collision kernel (K) and the alignment rule (H) one can com-
pute Ikq and Pk for different values of ρ and σ so that also the µk can be evaluated
for different ks. What is found is that µ1 and µk with k ≥ 3 are always negative,
while µ2 change sign from negative to positive for low enough noise and/or large
enough density as shown in figure 2.1 and hence f2 is the first unstable mode.

2.3 Scaling Ansatz

The specificity of the BGL approach is to use a systematic scaling ansatz near
the instability threshold of the first unstable mode in order to truncate and close
the hierarchy (2.12) to a set of equations for the interesting fields. We already
derived an equation for ρ (2.15), clearly we want an equation for f2, but we are
also interested in having an equation for f1 given the polar nature of the particles.

At difference with the scaling already proposed for dry self-propelled rods in
[12]:

δρ = ρ− ρ0 ∼ ϵ, {f2k−1, f2k}k≥1 ∼ ϵk, ∇ ∼ ∂t ∼ ϵ (2.17)

we also need to know how the fluid velocity field scales. To do, let us consider the
equation for the fluid (2.14). Substituting the incompressibility condition leads, in
complex notation to the following expression for the Laplacian of the pressure:

∆P = g0ℜ(∇∗f1)−
fd
2
ℜ(∇∗2f2) (2.18)

From which we can deduce that with the polar term (ℜ(∇∗f1)) being order ϵ2 from
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(2.17) the pressure gradient should be ∇P ∼ ϵ. This means that at leading order
equation (2.14) is −∇P − αV + g0f1 = 0 from which we can infer that

V ∼ f1 ∼ ϵ (2.19)

2.4 Equations

Thanks to relations (2.17,2.19) a proper scaling for any terms in the hierarchy (eq.
2.12) can be inferred. In line with what was previously done for self-propelled rods
in the dry case [12] we decide to truncate our equation at order ϵ3. In order to
close the hierarchy to two equations for f1 and f2 (in addition to the conservation
equation 2.15) we need further considerations.

Firstly, we can note that the equations for f1 and f2 at order ϵ
3 are coupled to

other fields only through f3 and f4 and they only appear coupled to terms order
ϵ or in terms of their spatial derivatives. Secondly, having µ3 < 0 and µ4 < 0, f3
and f4 can be effectively considered ”fast” variables relaxing on a time scale much
smaller than the one of f2 and ρ to a value defined by the other fields. Effectively
using |∂tfk| ≪ |fk| for k = 3, 4 we can ”enslave” f3 and f4 to ρ, f1, f2 and thanks
to previous consideration we only need their expression up to order ϵ2 otherwise
substitution would lead to terms of order higher than ϵ3. Enslaving leads to the
following expression for f3 and f4:

f3 =
s0
2µ3

∇f2 −
1

µ3

[P3(I3,1 + I3,2)− (I0,1 + I0,2)]f1f2 (2.20)

f4 = − 1

µ4

(P4I4,2 − I0,2)f
2
2 (2.21)

That can be substituted into the equations for f1 and f2 leading to:

∂ρ

∂t
= s0ℜ(∇∗f1) + ℜ(∇∗(ρV )) (2.22)

∂f1
∂t

+
s0
2
(∇∗f2 +∇ρ)− if1cvℑ(∇∗V ) +

cs
4
f ∗
1∇V + ℜ(∇∗(f1V )) =

= (µ1 + β|f2|2)f1 + ζf ∗
1 f2 + γf ∗

2∇f2 (2.23)

∂f2
∂t

+
s0
2
∇f1 − i2f2cvℑ(∇∗V ) +

ρcs
4
∇V + ℜ(∇∗(f2V )) =

= (µ2 − ξ|f2|2)f2 + ν∆f2 + k1f
∗
1∇f2 + k2∇∗(f1f2) + τ |f1|2f2 + k3f

2
1 (2.24)
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µ∆V −∇P − αV + g0f1 −
fd
2
∇∗f2 = 0 with ℜ(∇∗V ) = 0 (2.25)

Importantly, all the coefficients are explicit functions of the microscopic parameters
such as in particular ρ and σ.

At this point is interesting to note that, at the level of truncation we used
(ϵ3), the presence of the polar forcing term is responsible for the coupling of the
fluid and particles’ motion. Without the term g0f1 in the forcing the fluid velocity
V would scale as ϵ2 instead of ϵ which implies that all the terms coupling fluid
and particles’ order would be ϵ4 and would not appear in the equations effectively
leading to a fluid and particles’ decoupling (at order ϵ3) which would result in the
dry theory already proposed and studied by [12].

Equation rewritten in terms of the physical filed p⃗ and Q are written in ap-
pendix A



Chapter 3

Study of the hydrodynamic
theory

Now that we have an hydrodynamic theory for the self-propelled rods embedded
in a Stokes fluid we can analyze possible solutions to see if this can lead to any new
insights and relevant predictions for the chaotic motion of topological defects and
active turbulence observed in swarming bacteria colonies. In particular we would
also like to evaluate how the fluid modify the behaviour of the equations of dry
self-propelled rods analyzed in [12]. To this aim we begin by studying the linear
stability analysis of the physically relevant stationary homogeneous solutions to
obtain a noise-density phase diagram for this model. We then proceed studying
numerically the equation also at the non-linear level.

3.1 Linear stability analysis of homogeneous so-

lutions

3.1.1 Disordered phase

Dropping all time and space derivatives in eqs. (2.22,2.23,2.24) we get:

ρ = ρ0; (µ1 + β|f (0)
2 |2)f (0)

1 = 0; (µ2 − ξ|f (0)
2 |2)f (0)

2 = 0; v⃗ = 0 (3.1)

The trivial solution, associated to the disordered phase, always exists:

ρ = ρ0; f
(0)
1 = f

(0)
2 = 0; v⃗ = 0 (3.2)

The linear stability of the disordered solution is related to the linear term µ2.
At difference with the terms ξ, β and µ1 it changes sign becoming positive for
sufficiently low noise and high density. Hence, as shown in figure 2.1, above the
blue line the disordered solution is stable while below becomes unstable.

18
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3.1.2 Ordered phase

In the region where µ2 is positive a second, physically relevant, homogeneous
solution exists thanks to the Ginzburg-Landau-like term in equation (2.24), that
is:

f2 =

√
µ2

ξ
; f1 = 0; ρ = ρ0; v⃗ = 0 (3.3)

Taking f2 real consists in assuming that the order is along x-axis (only the modulus
of f2 is fixed from the equation) which we can do without loss of generality.

What has been done next is the linear stability analysis of the ordered homo-
geneous solution with respect to non-homogeneous perturbations, namely:

ρ(r⃗, t) = ρ0+δρ(r⃗, t); f1(r⃗, t) = δf1(r⃗, t); f2(r⃗, t) = f
(0)
2 +δf2(r⃗, t); V (r⃗, t) = δV (r⃗, t)

(3.4)
We then substitute these expressions in eqs. (2.22,2.23,2.24) and expand up to first
order in the perturbations considering the explicit dependence on the density of
the different coefficients up to order ϵ3 as in the truncation. Note that thank to the
absence of time derivatives in the Stokes equation (2.14) and the incompressiblity
condition, the small perturbation to the velocity field can be explicitly written in
terms of the perturbations of the other fields and substituted in the remaining
equations.

We consider then the usual ansatz for the perturbations:

δρ(r⃗, t) = δρ0e
st+iq⃗·r⃗; δf1(r⃗, t) = δf

(0)
1 est+iq⃗·r⃗; δf2(r⃗, t) = δf

(0)
2 est+iq⃗·r⃗; V (r⃗, t) = δV (0)est+iq⃗·r⃗

(3.5)
Where the term before the exponentials are assumed to be small, q⃗ is a wave vector
of real components and s is an a priori complex growth rate. What we look for
is the dispersion relation s(q⃗), in particular its real part, that if positive for some
wavevectors q⃗ means an instability of the starting ordered solution around which
we expanded. At linear order, the ansatz (3.5) leads to the following eigenvalue
equation for s:

s


δρ
δfR

1

δf I
1

δfR
2

δfR
2

 = M(ρ0, σ, f
(0)
2 , q⃗, ...)


δρ
δfR

1

δf I
1

δfR
2

δfR
2

 (3.6)

where M is a five by five matrix and R and I indicate the real and imaginary parts
of the respective fields.

We compute numerically the the solutions of Eq. (3.6) that consists in evalu-
ating, at fixed values of all other microscopic parameters, the spectrum of M for
different values of ρ, σ and q⃗. In particular, it consists in computing, for each cou-
ple (ρ, σ), in a set spanning the interesting part of the phase diagram (where the
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ordered solution exists), the eigenvalues of M in the wave vector space. A positive
real part of one of the eigenvalues at some q⃗ implies an instability of the ordered
solution at that point of the phase diagram for a perturbation characterized by
that wave vector.

3.1.3 Phase diagram

The results of the linear stability analysis are presented in terms of the density-
noise phase diagrams in which the stability of the ordered solution is shown as a
function of the mean density ρ0 and noise σ. For this work we focus in particular
on the differences introduced by the fluid with respect to the Dry case, hence we
study how the phase diagram depends on different fluid-related parameters (in this
work mainly fd and g0).

Firstly we reproduced the phase diagram obtained for the dry case in [12], that
is equivalent to fix Cv = Cs = g0 = fd = 0. In figure (3.1) colors indicate the angle
between the most unstable wavevector and the direction of nematic order (white
for stable regions). Just below the blue line corresponding to µ2 = 0 there is an
intermediate region where the ordered solution exists but it is linearly unstable and
the direction of the most unstable wave vector is approximately perpendicular to
the direction of the order (transversal instability). Below that the ordered solution
becomes again stable up to the darker region in figure (3.1).

Spurious instability

At low enough noise the ordered phase become unstable again. This is a spurious
instability since it is not observed at the level of the kinetic theory [10], hence it is
probably introduced by the truncation procedure which, strictly speaking, is valid
only near the order disorder transition line. The nature of such instability was
investigated and its presence was connected to the following eigenvalue at q⃗ = 0:

βµ2 + µ1ξ + ζ
√
µ2ξ

ξ
(3.7)

In the region of existence of the ordered solution the first two terms in the nu-
merator are negative while the second is positive and increases moving toward the
bottom right of the phase diagram leading to the instability. This suggests that
the instability can be traced back to the term ζf ∗

1 f2 in the equation for f1 (2.23).

3.1.4 Effect of the fluid

In this section we analyze the phase diagram of the wet model, in particular
focusing on the difference with respect to the dry case and the effect of the forcing
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Figure 3.1: Phase diagram from hydrodynamic equation for dry self-propelled rods.
In blue the line given by µ2 = 0 marking the existence of the ordered solution below
it. White correspond to stable ordered solution. The color indicates the angle of
the most unstable wave vector w.r.t. the direction of the order (x-axis).

parameters fd and g0. For everything that will be discussed from now on we fix
Cv = 0.5 and Cs = 1 that are the values computed for perfect ellipsoids [8].

Effect of fd

The coefficient fd is related to the force dipoles that the bacteria are known to
exert on the fluid. The sign in particular is related to the existence of two main
types of bacteria with respect to how the fluid is put in motion around each of
them: pushers and pullers corresponding respectively to positive and negative
values of fd. The names comes from how the fluid is put in motion with respect
to their elongated direction: pushers ”push” the fluid away from them along their
elongated direction and aspirating it along the short direction while pullers are
characterized by the opposite dipole. What is currently understood is the fact
that, high level of activity (high |fd| in our context) destabilizes the nematically
ordered phase in both cases (see figure (3.2).

What is observed for positive values of fd (pushers) is that indeed the active
forcing on the fluid destabilizes the ordered solution. From figure (3.4, left column)
we see that at high enough density (depending on the value of fd) a longitudinal
(the most unstable wavevector is parallel to the direction of nematic order) in-
stability of the ordered solution appears. Increasing fd the threshold density over
which the instability appears decreases, in other words the ”new” unstable region
expands from the the high to the low density side of the phase diagram.
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Figure 3.2: Illustration of how the fluid flow around pullers (A) and pushers (B)
destabilizes respectively splay and bend perturbations leading to an unstable ne-
matically ordered phase. Adapted from [11].

On the other hand (figure 3.4 right column) for negative values of fd (pullers)
the ordered solution is not destabilized for the same values of |fd| at which we see
the appearance of the new unstable region for pushers.

Effect of g0

At fixed values of fd, increasing the positive value of g0 have a similar effect as
increasing a positive value of fd: the new instability region further expand in the
low density side of the phase diagram (figure 3.3)

Figure 3.3: Effect of g0 on the phase diagram: the plot are produced with increasing
positive values of g0 from left to right, respectively g0 = 1, 5, 10, 20. fd is fixed
to 10 while all the other parameters are the same as figure (3.4). Increasing the
value of g0 a wider region of the phase digram becomes unstable.
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Figure 3.4: Phase diagrams from linear stability analysis. In each row there two
phase diagrams for opposite values of fd left column for positives while the right
one is for the negatives. |fd| is: (A) 0.2, (B) 0.6, (C) 1.0, (D) 2.2, (E) 10. Color
code and axis values as in figure (3.1). In these phase diagram the fluid related
parameters are fixed to be: µ = 200, α = 10
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3.2 Numerical integration of the PDEs

To see how the equations behave at the full non-linear level a numerical integration
is required because of the complexity of this system of PDEs. In this work, in par-
ticular, we are interested in checking if the model derived is capable of reproducing
the bacterial turbulence and the chaotic motion of topological defects observed in
active nematics [9]. These phenomena are all observed in the bulk of the colony,
hence the bulk behaviour is our main interest.

Because of this, we decided to integrate the PDEs numerically on a square do-
main with Periodic Boundary Conditions (PBC) using a pseudo-spectral method.
This has been practically performed with a Julia code written from scratch by
me and described in more details in Apppendix B. We now discuss the numerical
solutions of the equations with a particular focus on the differences and similarities
with respect to the dry case. We would also like the reader to know that what we
have been able to perform so far is a preliminary analysis of the simulations which
allows us only to remain on a qualitative level regarding the considerations we will
do in the following.

3.2.1 Dry non-linear equations

Firstly, I used my code to check the phenomenology observed in [12] for the non-
linear equations for the dry model. These corresponds to eqs. (2.22,2.23,2.24)
without the terms involving the fluid velocity V .

The Dry case is characterized by two main types of behaviours, ignoring the
spurious instability region. The first is the existence of band solutions in a region
that corresponds approximately with the linear instability region just below the
order-disorder transition line (see phase diagram (3.1)). These bands are nemati-
cally ordered and are stable for systems small enough while for large enough sys-
tems they become unstable and move in a chaotic way, as also found by simulations
of the microscopic model [6] (figure 1.8). The bands can be obtained integrating
the equations deterministically starting from slightly non-homogeneous conditions
in the linear instability region. Bands also exists in a region slightly wider and they
can be observed when integrating from initial conditions that are inhomogeneous
enough (bands-like) outside the instability region at both higher and lower levels
of noise. A snapshot from a typical simulation showing bands is in figure (3.5).

Already at this level is possible to observe the presence of defects whose mobility
and lifetimes depends on the their type (+1/2 and -1/2) and on the noise level.

Starting from a slightly non-homogeneous condition but integrating at values
of ρ and σ deeper in the stable region what we get is the formation of defects
that move relatively slower, while the system is relaxing towards the homogeneous
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Figure 3.5: Snapshots taken from a typical simulation of the Dry model in the
band regime. In color the modulus of the complex nematic field f2, to show the
nematic order found in the bands. Obtained integrating from a band-like starting
point for ρ = 0.65 and σ = 0.2949

stable state.

3.2.2 Wet non-linear equations

When integrating deterministically the hydrodynamic equations for the wet model
some of the features that have been observed for the dry model are sill present:
bands solutions exist in transversal instability region but their domain of existence
have not been studied in details yet.

The model behave in a new, interesting way in the longitudinal instability
region of the phase diagram introduced by the fluid coupling to the particles’
motion. In this region, that we recall, it is found only for positive values of fd,
we typically observe structures as those shown in figure (3.6). This new region
is characterized by the presence of many defects that move in a chaotic way as
observed experimentally and from the microscopic model developed in [9]. By
eye the motility of the three-fold rotationally symmetric −1

2
-defects appears to

be smaller with respect to +1
2
-defects as also observed in [9]. The structures are

also reproduces exactly in the density field while f1 is typically 1 or 2 order of
magnitude smaller than ρ and f2 during all the simulations (Appendix B).
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Figure 3.6: Snapshot of |f2| from a typical simulation in the ”new” unstable region
introduced by the coupling with the fluid. Integrating deterministically the full
equations starting from a slightly inhomogeneous condition on a 200x200 square
domain. ρ = 2.2, σ = 0.3, fd = 10, g0 = 3. We can observe topological defects of
different signs moving in a chaotic way resembling an active nematics scenario.

For what concerns the fluid motion, the vorticity field for a typical simulation
is shown in figure (3.7). A quantitative analysis is still to be done, but from a
qualitative point of view we can observe the presence of structures in the vortcity
field compatible with an active turbulence scenario. Furthermore the vorticity
around the defects appears to be compatible with what observed in [7].

Increasing the positive value of g0 has the effect, qualitatively speaking, to
increase the motility of the defects as we expect from any increase of the forcing
terms. The same phenomenology is also observed increasing the average density
at which we simulate. Since the forcing terms are proportional to f1 and f2 and
both these fields are proportional to density is easy to understand the increased
motility of the defects in terms of increased forcing also in this case.
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Figure 3.7: Typical snapshot of vorticity field obtained in the same conditions as
figure (3.6).



Chapter 4

Discussion and future
perspectives

In chapter 2 we derived a continuum theory from a microscopic model of swarming
bacteria colonies while in chapter 3 we started their study by performing a linear
stability analysis of the stationary homogeneous solutions. Preliminary qualitative
observations coming from numerical integration of the PDEs ware also presented
in section 3.2.2.

Deriving the Hydrodynamic theory (2.22,2.23,2.24) coupled to the Stokes equa-
tion (2.14) we discovered that the polar forcing term (g0f1) is responsible for a
coupling (at order ϵ3 of truncation) of particles’ and fluid motion.

For pushers (fd > 0), at the linear stability level, the phase diagram is found to
be modified with respect to the dry case by the presence of a new unstable region
far from the spurious instability in the region of the phase diagram predicted to
be stable in the dry model.

Preliminary simulations of the full non-linear equations in the new unstable
region suggest that chaotic behavior of the topological defects may be explained to
some extent by the model derived in this work. Further quantitative investigations
of the equations are planned in order to study the statistical properties predicted by
this model to compare with experimental data and microscopic models’ simulations
performed in [9].

Concerning the possible applications of this work we would like to briefly discuss
future research perspectives. The work has been motivated by new experimental
observations, made on bacterial swarms, concerning (what appears to be) topolog-
ically protected edge currents in weakly chiral bacterial colonies that will appear
in a forthcoming paper. Preliminary microscopic simulations, in particular, sug-
gested that such phenomena could be explained by a microscopic model similar to
our microscopic starting point.

The study of these (possibly) topologically protected edge modes in such a soft

28
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active living system will be the focus of my PhD project. To this end we believe an
hydrodynamic theory derived from a faithful microscopic model is a first step for
a theoretical understanding of topological protection in this context. This work,
indeed, was aimed at performing a preliminary analysis of a possible continuum
theory of wet active matter derived via the Boltzmann-Ginzburg-Landau approach
in order to anticipate the future generalizations of this model needed in the context
of the new experimental observations.
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[17] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer
Shochet. Novel type of phase transition in a system of self-driven particles.
Physical Review Letters, 75:1226–1229, 08 1995.

[18] Xiaolu Wang, Martin In, Christophe Blanc, Alois Würger, Maurizio Nobili,
and Antonio Stocco. Janus colloids actively rotating on the surface of water.
Langmuir: the ACS journal of surfaces and colloids, 33:13766–13773, 12 2017.



Appendix A

Equations in terms of physical
fields

We have also rewritten the hydrodynamic theory using the more commonly used
fields: the polar vector field p⃗ and the nematic tensor field Q defined in 1.3. In
particular since both f1 and f2 are proportional to the density ρ as in eq. (2.11)
we use the following version of physical fields proportional to ρ:

m⃗ = ρp⃗ D = ρQ (A.1)

The complex fields hence are equivalent to:

f1 = mx + imy f2 = Dxx + iDxy (A.2)

Furthermore, we make use of the vorticity and rate of strain tensor respectively
defined as (where vα is a generic component of the fluid velocity field (v⃗)):

Ωαβ =
1

2
(∂αvβ − ∂βvα) Eαβ =

1

2
(∂αvβ + ∂βvα) (A.3)

In this notation the equations read:

∂t +∇ · [s0m⃗+ ρv⃗] = 0 (A.4)

∂tmα +
s0
2
∂βDαβ +

s0
2
∂αρ+ 2CvΩαβmβ −

Cs

2
Eαβmβ = (µ1 +

β

2
DijDij)mα+

ζDαβmβ + γ [∂γ(DαβDβγ)−Dαβ∂γDβγ] (A.5)
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∂tDαβ +
s0
2
[∂βmα + ∂αmβ − (∇ · m⃗)δαβ] + 2CvΩαγDγβ +

Csρ

4
(Eαβ −∇ · v⃗ δαβ) =

(µ2 − ξ
DijDij

2
)Dαβ + νDαβ + k1 [mα∂αDβγ +mα∂βDαγ −mα∂βDβγ] +

k2 [∂α(mαDβγ) + ∂α(mβDαγ)− ∂α(mβDβγ)] + τ |m⃗|2Dαβ + k3(2mαmβ − |m⃗|2 δαβ)
(A.6)

Coupled to the Stokes equation for the fluid:

µ∇2v⃗ +∇P − αv⃗ + g0m⃗− fd∇ ·D = 0 with ∇ · v⃗ = 0 (A.7)



Appendix B

Numerical integration details

The system of PDEs derived in this work has been simulated using a Julia

code written from scratch. The code implements what is called a pseudo-spectral
method for integrating non-linear PDEs using the Fast Fourier Transform. The
FFT package used was FFTW thanks to the existing bindings to this library avail-
able in Julia.

Taking the Fourier transform of the PDEs we get a system of ODEs for the
Fourier components of the different fields. These ODEs are then integrated with a
simple explicit Euler time-stepping method. The difficulty in this procedure comes
from the presence of non-linear terms that couples different components together.
At each time step indeed is necessary to transform back in the field in real space to
compute all the non-linear (interaction) terms and transform them back to Fourier
space to update the Fourier components.

When computing the non-linear terms we are faced with the aliasing problem.
Given that our numerical approach fix the resolution of our fields at a given number
of modes, when multiplying two expansions together we generally end up with
quantities having more non-zero components than those resolved by the code.
Numerically speaking, this ”high-energy” components contributes, thanks to the
FFT algorithm, to the slow modes in a spurious way giving rise to the so-called
aliasing.

To solve this problem, anti-aliasing technique has been devised [4]. Essentially
they consists in fixing to zero part of the modes (usually 1

3
for a square non-

linearity) after performing any procedure introducing aliasing errors or equivalently
updating only a subset (2

3
) of the modes at each time step. This is what has been

implemented in the code. In the code, this so-called 2
3
-rule has been used and

independently of the non-linearity at hand.
Typical evolution in time of the average field are shown in figure B.1.

34



APPENDIX B. NUMERICAL INTEGRATION DETAILS 35

Figure B.1: Time evolution of the average values of |f1| and |f2| for the 400
snapshots saved snapshots of a total simulated time T = 20 000. f1 is significantly
lower than f2 in the stationary regime.
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