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Abstract

Inferring the presence of causal links from observational data is a challenging task
which typically goes under the name of causal discovery. After reviewing the basic
concepts of this field and a standard algorithm used to infer the topology of causal
graphs, we develop an approach specifically designed for times series data based on the
Information Imbalance measure.

This estimator, first introduced in Glielmo et al., 2022 for ranking the information
content of different distance spaces, has been applied in Del Tatto et al., 2024 to
detect causal relationships between time-dependent variables. Recently, it has been
reformulated in a differentiable version (Wild et al., 2024) which allows the automatic
learning of the most informative distance function in a gradient-descent fashion. In
the first part of this thesis, we further extend this measure, introducing a procedure to
estimate its statistical error. We then use this measure in a framework for causal network
reconstruction from time series data.

Specifically, we define a protocol to progressively find subsets of independent
variables in complex non-linear dynamical systems. This allows generating a coarse
grained graph showing the hierarchy of the interactions between different groups
of features of the dataset. In contrast with standard causal discovery methods, the
algorithm proposed here does not require any combinatorial search of conditioning
sets, can be applied to high-dimensional systems and intrinsically retrieves multi-body
interactions.

Keywords: causal discovery, dynamical systems, model free analysis
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1

Introduction

Identifying the interactions between different parts of a complex system can improve
deeply our understanding of it, suggesting, for example, how different external inter-
ventions would propagate their effect in the whole system. Furthermore, pointing out
the presence of direct links between different subsystems allows building parsimonious
models, able to describe physical interconnections with a reduced number of parameters.
This is deemed useful in countless applications (from responsibility attribution to policy
making, to mention a few).

Nowadays, the most standard strategies to reach this objective relate to the studies
done, among many, by Pearl, 1995. Starting from purely observational data, such methods
try to build a graphical model representing the statistical dependencies between the
variables. The graph model can then be used per se or to impose physical constraints for
more advanced techniques (see for example Brunton et al., 2016), effectively reducing
the space of possible models to explore. Most of the available techniques for deriving
these graphs models lose statistical power, or become too computationally expensive, if
applied to high-dimensional systems, where the graph should include 𝒪(100) nodes or
more.

In this work we investigate the possibility of using a method recently introduced by
Glielmo et al., 2022 to build in a causal graph even when dealing with high dimensional
systems. Our primary focus is on systems composed of smaller subsystems. We aim to
identify these subsystems and the hierarchy of interactions among them, resulting in
what could be properly described as a directed hyper-graph.

We organise the thesis as follows: in Chapter 1 we introduce the state of the art of
causal graph reconstruction with information theoretical tools, then we summarise the
ideas underlying the Information Imbalance. In Chapter 2 we introduce a new estimator
of the Information Imbalance which allows for an explicit calculation of standard errors.
Finally, in Chapter 3 we describe a protocol, developed by us, which allows finding
subsets of progressively independent variables and we apply this approach to some
benchmark examples.
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CHAPTER 1. INTRODUCTION

1.1 Information theory for causal discovery

A causal model with variables {𝑋 𝑖} (𝑖 = 1, ..., 𝐷) can be defined through the structural
causal equations

𝑋 𝑖 := 𝑓 𝑖(𝒫(𝑋 𝑖), 𝜽𝑖) , (1.1)

where 𝑓 𝑖 is a function of a subset 𝒫(𝑋 𝑖) of all the variables, called set of parents of i,
which includes all its direct causes. The parameters 𝜽𝑖 may tune the strength of the
interactions between 𝒫(𝑋 𝑖) and 𝑋 𝑖 , as well as the contribution of external (or exogenous)
variables, typically modelled as noise terms. The form of Equation 1.1 naturally implies
a factorization of the joint distribution of the {𝑋 𝑖} into the conditional probabilities of
each variable given its parents,

𝑝(𝑋1 , ..., 𝑋𝐷) =
𝐷∏
𝑖=1

𝑝
(
𝑋 𝑖 | 𝒫(𝑋 𝑖)

)
, (1.2)

which is known as Markov property. An intuitive definition of the causal graph represent-
ing Equation 1.1 would assign a node to each variable and a directed link connecting
each element in 𝒫(𝑋 𝑖) to 𝑋 𝑖 for all i1.

Different assumptions allows to retrieve the causal graph from observations (see
for example Assaad et al., 2022 or Spirtes et al., 1993 for an introduction to different
approaches). In this part we will focus mostly on the framework of conditional
independence testing, following what discussed in Runge, 2018.

The rationale behind this approach is to perform independence tests to find a
skeleton of the causal graph and eventually use some logical rules to orient the arrows.
This implies that, for each pair of nodes 𝑋 and 𝑌 the null hypothesis 𝑋 ⊥⊥ 𝑌 |𝒮 (𝑋
and 𝑌 are conditionally independent given 𝒮) is tested against the alternative hypothesis
𝑋��⊥⊥𝑌 |𝒮 (𝑋 and 𝑌 are conditionally dependent given 𝒮), with a combinatorial search over
all the possible conditioning sets 𝒮. In the following part we will use as a measure
of conditional dependence the mutual information, but other measures such as the
partial correlation may be employed (Runge, 2018). If a set of variables 𝑋 is found to be
independent from a set of variables 𝑌 when conditioned on a set of variables 𝒮, i.e. if

𝐼(𝑋,𝑌 |𝒮) =
∭

𝑑𝒮𝑑𝑥𝑑𝑦 𝑝(𝑥, 𝑦,𝒮) log 𝑝(𝑥,𝑦 |𝒮)
𝑝(𝑥 |𝒮)𝑝(𝑦 |𝒮) = 0

𝐼(𝑋,𝑌 |∅) =
∬

𝑑𝑥𝑑𝑦 𝑝(𝑥, 𝑦) log 𝑝(𝑥,𝑦)
𝑝(𝑥)𝑝(𝑦) ≠ 0

, (1.3)

then three possible causal motifs can be identified:

• 𝑋 causes 𝒮 which causes 𝑌: 𝑋 → 𝒮 → 𝑌;
• 𝑌 causes 𝒮 which causes 𝑋: 𝑌 → 𝒮 → 𝑋;
• 𝒮 causes both 𝑋 and 𝑌: 𝑋 ← 𝒮 → 𝑌 .

1 Notice that the conditional probabilities can be factorised as in Equation 1.2 provided that the underlying
causal graph is acyclic.
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1.1. INFORMATION THEORY FOR CAUSAL DISCOVERY

These three causal motifs form a so called Markov equivalence class, i.e. a set of causal
structures that correspond to the same conditional independencies, and are therefore
observationally equivalent.

Example 1.1.1. The idea can be illustrated in a simple system with only three nodes 𝑋,
𝑌 and 𝑍. Considering the presence of two causal links, the possible patterns that might
appear are 𝑋 → 𝑍 → 𝑌,𝑌 → 𝑍 → 𝑋, 𝑋 ← 𝑍 → 𝑌, 𝑋 → 𝑍 ← 𝑌, which are shown in
Fig. 1.1.

X Y

Z

X Y

Z

X Y

Z

X Y

Z

Figure 1.1: Example of simple causal motifs in a system with three variables

The first two diagrams show the case in which two variables are indirect causes one
of the other. Take the first diagram, where the variable 𝑋 causes 𝑍 which then causes 𝑌.
In this case you’ll find that the two variables 𝑋 and 𝑌 are not marginally independent (i.e.
𝐼(𝑋,𝑌 |∅) ≠ 0). When conditioning on 𝑍, instead, the information flow from one variable
to the other gets blocked and this results in the conditional independence 𝐼(𝑋,𝑌 |𝑍) = 0.

In the third case 𝑍 is a common cause of 𝑋 and 𝑌. 𝑍 is said to be a con-
founder. We can easily see that when conditioning on 𝑍 the probabilities factorise
(𝑝(𝑥, 𝑦 |𝑧) = 𝑝(𝑥 |𝑧)𝑝(𝑦 |𝑧)) leading to 𝐼(𝑋,𝑌 |𝑍) = 0. Instead, 𝑝(𝑥, 𝑦) = ∑

𝑧 𝑝(𝑥, 𝑦, 𝑧) =∑
𝑧 𝑝(𝑥 |𝑧)𝑝(𝑦 |𝑧)𝑝(𝑧) in general does not factorise, resulting again in 𝐼(𝑋,𝑌 |∅) ≠ 0. Using

the independence tests described here, is then impossible to recognise these three causal
motifs among themselves.

The last pattern, instead, clearly falls in a different scenario. Indeed here one gets
that 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦), but 𝑝(𝑥, 𝑦 |𝑧) = 𝑝(𝑧 |𝑥,𝑦)

𝑝(𝑧) 𝑝(𝑥)𝑝(𝑦) using the Bayes Theorem. So
𝐼(𝑋,𝑌 |∅) = 0, 𝐼(𝑋,𝑌 |𝑍) ≠ 0. In this case 𝑍 is said to be a collider and conditioning on it
actually opens a path for the information flow from 𝑋 to 𝑌 and viceversa.

The framework described above allows to retrieve the correct equivalence class
for the causal graphs if we work under the hypothesis that there are no unobserved
common causes (causal sufficiency). Furthermore, we need the joint distribution of the
observed variables to truly reflects the conditional independencies embedded in the
graph structure (causal Markov condition) and viceversa (faithfulness).

This suggests an algorithmic implementation in which we test, for all couples (𝑋,𝑌),
whether a subset 𝒮 which makes them independent exists. If it does exist, then 𝑋 and 𝑌

are not directly linked. This is one of the main ingredients of the PC algorithm (Spirtes
et al., 1991)(and of many other methods, see for example Verma et al., 2022, Assaad
et al., 2022). Notice that, after this procedure, only the arrows of the colliders can be
directed exactly. Without further considerations the outcome is then a partially directed
graph representing a Markov equivalence class.

3



CHAPTER 1. INTRODUCTION

Example 1.1.2. We now present a slightly more complex system with six variables, which
we represent in Fig. 1.2. We can start drawing a fully connected graph representing
all possible interactions and then progressively prune it. We focus here on the edge
between 𝑋 and 𝑌, and we will assume to perform exact independence tests checking for
Equation 1.3. Then we can see for different subsets 𝒮 that2

𝑋��⊥⊥ 𝑌 | ∅
𝑋��⊥⊥ 𝑌 | 𝐴 𝑋��⊥⊥ 𝑌 | 𝐵
𝑋��⊥⊥ 𝑌 | 𝐶 𝑋��⊥⊥𝑌 | 𝐷

𝑋��⊥⊥ 𝑌 | {𝐴, 𝐵} 𝑋��⊥⊥ 𝑌 | {𝐴, 𝐶} 𝑋��⊥⊥ 𝑌 | {𝐴, 𝐷}
𝑋��⊥⊥ 𝑌 | {𝐵, 𝐶} 𝑋 ⊥⊥ 𝑌 | {𝐵, 𝐷}

and we stopped here because we can finally safely remove the link 𝑋−𝑌. In this example
we we stopped after checking 𝒮 up to size two, clearly this might not always happen to
be the case.

X Y

A

B

C

D

Figure 1.2: The fully connected graph used as initialisation for the PC algorithm and the true underlying
causal graph on the top right. In dark red we highlight the edge 𝑋 −𝑌 of which we discuss in the example.

This approach can be easily used also for time dependent data. In this case it is
enough to consider each time step as an independent node and verify the relationship
between variables at different time lags. Moreover, in this situation, causal ordering
allows to direct the links following the arrow of time, so that if also instantaneous links
are excluded the true causal graph is fully identifiable.

2 This can be inferred looking at the path connecting 𝑋 and 𝑌 in the true graph in Fig. 1.2. In particular,
only conditioning on both 𝐷 and 𝐵 allows to d-separate 𝑋 and 𝑌. A description of d-separation, which
allows to connect graphical models to conditional independencies, is presented in Appendix A. Notice
that the vertex 𝐶 is a collider, hence conditioning on it opens a path connecting the two variables of
our interest. This was inserted on purpose to show that, in general, it is not enough to perform a test
conditioning on all the variables (i.e. checking 𝐼(𝑋,𝑌 |𝐴, 𝐵, 𝐶, 𝐷)), which at a first look might have seemed
the fastest option to remove the link.

4



1.1. INFORMATION THEORY FOR CAUSAL DISCOVERY

Remark (Conditional independence tests). In the examples we assumed we had the chance
of performing exact estimations of conditional independence; unfortunately, the tests currently
available strongly suffer from the curse of dimensionality. This makes them extremely hard to use
when a large number of variables are present.

Remark (On the necessity of causal sufficiency). Even though the independence tests allow
in principle to build soundly the causal graph from data, when dealing with real dataset some
problems might arise. In particular, if the assumption of causal sufficiency does not hold (namely,
if a common cause of two variables is not observed), then the links drawn by the PC algorithm
could include spurious links.

The causal sufficiency assumption can also be violated in presence of observational noise
coming from the data collection process, i.e. when the observed variables are a noisy version
of the truly interacting ones. This case is depicted in Fig. 1.3, where the addition of noise is
equivalent to an additional link from the true interacting variables (round black nodes), which
are unobserved, and their noisy versions (square red nodes), which are observed. In this scenario
no measurable mutual information would ever be found equal to zero, independently of the
conditioning set. However, since the conditional independence tests are usually implemented
with a threshold tolerance, the effects of this violation could be practically irrelevant in presence
of small observational noise.

Z

Y

X

𝑡1 𝑡2 𝑡3

Figure 1.3: When dealing with observational noise, you only get access to the square nodes.

Remark (On multi-body interactions). An algorithm such as the one presented above might
not be able to retrieve all the causal relationships. Take for example 𝑌 = 𝑋1 ⊕ 𝑋2 + 𝜂𝑌 , where
𝑋𝑖 are binary random processes with equal probabilities for each of their values and ⊕ is the
XOR-gate (Runge, 2018). Then, even though 𝐼((𝑋1 , 𝑋2), 𝑌) > 0, one can easily verify that
𝐼(𝑋1 , 𝑌) = 0 = 𝐼(𝑋2 , 𝑌), so no link would be inserted. Indeed, the PC algorithm would conclude
that no causal arrow between 𝑋1 (𝑋2) and 𝑌 exists, as such variables are not even marginally
dependent. The main problem here is that the concept of pairwise-dependencies is not sufficient
to describe the causal structure of the system. Hyper-graphs becomes necessary, but this comes
with a combinatorial explosion of the number of tests to be performed. In Section B.1 we show
the results obtained with our method in a case similar to the one presented here.
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CHAPTER 1. INTRODUCTION

1.1.1 Transfer entropy and Granger causality

A simple implementation of the principles presented above needs an exponential number
of independence tests. Indeed, given a graph of 𝑁 nodes, for each true link 2𝑁−2 subsets
𝒮 are checked as conditioning sets. In general a maximum size of 𝒮 can be fixed in
advance and smart strategies are devised to reduce the number of suitable sets to test
for (e.g. building 𝒮 out of the nodes adjacent to those for which we are checking the
independence) (Runge et al., 2019; Spirtes et al., 1993).

Despite these stratagems, the computational demands could be excessive for moder-
ate to large networks. When dealing with time series, one way to address this problem
is to use directly an asymmetric measure of causality, relying on the ideas by Granger,
1980. Following Assaad et al., 2022, we can provide the following definition:

Definition (Granger causality). A time series 𝑋𝑝 Granger-causes 𝑋𝑞 if past values of 𝑋𝑝

provide unique, statistically significant information about future values of 𝑋𝑞 .

In its simplest implementation this criterion results in the comparison of prediction
errors of different linear models. In particular one considers a maximal time lag 𝜏𝑚𝑎𝑥

and the following autoregressive model for 𝑋𝑞 :

𝑋
𝑞

𝑡 = 𝑎𝑞,0 +
𝜏𝑚𝑎𝑥∑
𝑖=1

𝑎𝑞,𝑖𝑋
𝑞

𝑡−𝑖 + 𝜂
𝑞

𝑡 .

Its augmented version, which also includes the past of 𝑋𝑝 , can be written analogously:

𝑋
𝑞

𝑡 = 𝑎𝑞,0 +
𝜏𝑚𝑎𝑥∑
𝑖=1

𝑎𝑞,𝑖𝑋
𝑞

𝑡−𝑖 +
𝜏𝑚𝑎𝑥∑
𝑖=1

𝑎𝑝,𝑖𝑋
𝑝

𝑡−𝑖 + 𝜂
𝑞

𝑡 .

Using a statistical test such as the F-test (Cannelli, 2004) it is then possible to determine
if the variance of the residuals is significantly decreased in the augmented model or
not. If it is, then we can reject the hypothesis that 𝑋𝑝 is not Granger-causing 𝑋𝑞 (Assaad
et al., 2022).

A stronger formulation of the criterion would not assume any underlying model.
For example, it is possible to check on the so called transfer entropy (Schreiber, 2000),

𝑇(𝑋𝑝

𝑡 → 𝑋
𝑞

𝑡+1) = ℎ(𝑋𝑞

𝑡+1 |𝑋
𝑞

𝑡 ) − ℎ(𝑋𝑞

𝑡+1 |𝑋
𝑞

𝑡 , 𝑋
𝑝

𝑡 ) ,

which directly quantifies the difference between the entropy ℎ(·) of the two conditional
distributions 𝑝(𝑋𝑞

𝑡+1 |𝑋
𝑞

𝑡 ) and 𝑝(𝑋𝑞

𝑡+1 |𝑋
𝑞

𝑡 , 𝑋
𝑝

𝑡 ). Still both these methods do not fully
capture the idea underlying Granger causality because they specifically focus only on
pairwise (bivariate) relations. Multivariate versions can be devised (Runge, 2018; Assaad
et al., 2022) but usually they are extremely expensive computationally and lead to a
smaller effect size with consequent lower detection power (Runge et al., 2019).

The method that we will introduce in this work will broadly take inspiration from
this idea of estimating causality through the presence of an information flow between
variables.

6



1.2. INFORMATION IMBALANCE

1.2 Information Imbalance

This section reviews a statistical measure named Information Imbalance, as introduced
in Glielmo et al., 2022.

The Information Imbalance was initially developed to evaluate informativeness of
different metrics for a given dataset. Suppose to measure different properties of a system
leading to two different distance measures 𝑑𝐴 and 𝑑𝐵 among the data points. If some
information on 𝑑𝐴 could be easily retrieved from 𝑑𝐵, but not viceversa, then one would
be prone to claim that 𝑑𝐵 is more informative than 𝑑𝐴. This intuition can be quantified
by studying how distance ranks among data points change when using the two different
metrics. An illustrative example is presented in Fig. 1.4. In practice, one checks how the
nearest neighbours according to the metric remain close if the second metric is used
to measure their distance. Ranks are considered instead of pure distances, in order to
allow comparing metrics with different units of measure. The Information Imbalance is
defined as

Δ(𝑑𝐴 → 𝑑𝐵) =
2
𝑁2

𝑁∑
𝑖 , 𝑗

𝛿𝑟𝐴
𝑖𝑗
,1𝑟

𝐵
𝑖𝑗 (1.4)

where 𝑁 is the number of points in the dataset, 𝛿 is the Kronecker delta and 𝑟𝑖 𝑗 is the rank
obtained after sorting in ascending order the pairwise distances between 𝑖 and rest of
the points. The superscript in the ranks refers to the distance used. For example, 𝑟𝐴

𝑖𝑗
= 2

if 𝑗 is the second nearest neighbor of 𝑖 in distance space 𝑑𝐴. The normalization factor is
chosen in order to get Δ(𝑑𝐴 → 𝑑𝐵) = 1 in the least informative case (which corresponds
to the case in which the ranks computed with 𝑑𝐴 are completely independent from those
computed with 𝑑𝐵). The case in which nearest neighbours are kept exactly the same
using the different metrics gives Δ(𝑑𝐴 → 𝑑𝐵) = 2

𝑁 . It must be noticed that by definition
the Information Imbalance is asymmetric (Δ(𝑑𝐴 → 𝑑𝐵) ≠ Δ(𝑑𝐵 → 𝑑𝐴)). In general, the
lower the Information Imbalances are in both directions, the more the distances can be
considered equivalent one to the other.

Even though only a similarity measure between data points is needed to compute
Δ(𝑑𝐴 → 𝑑𝐵) we will focus in the rest of the work on distances 𝑑𝐴 and 𝑑𝐵 built on the
metric spaces A and B, for which the variables (or features) entering the distances are
explicitly known.

If the number of data is large, one can estimate the Information Imbalance using the
first 𝑘 nearest neighbours, instead of the first only:

Δ(𝑑𝐴 → 𝑑𝐵) =
2

𝑘𝑚𝑎𝑥𝑁2

𝑘𝑚𝑎𝑥∑
𝑘=1

𝑁∑
𝑖 , 𝑗=1

𝛿𝑟𝐴
𝑖𝑗
,𝑘𝑟

𝐵
𝑖𝑗 . (1.5)

This estimator is affected by a smaller statistical error than the one defined in Equation 1.4.
The method has already been used in a framework of causal discovery (Del Tatto

et al., 2024) to test whether a dynamic variable (or a group of dynamic variables) 𝑋

7



CHAPTER 1. INTRODUCTION

Figure 1.4: An example in which the feature 𝑋1 is less informative on 𝑋2 than viceversa. Indeed, points
which are close considering the Euclidean distance built using 𝑋1 (𝑑𝑋1 ), are not necessarily close according
to 𝑑𝑋2 , while the viceversa is true.

causes another variable (or another group of variables) 𝑌. The underlying intuition is
that if 𝑋 indeed causes 𝑌, then predicting the future state of 𝑌 using a distance measure
that incorporates the present state of 𝑋 and 𝑌 together will be more accurate than using
the state of 𝑌 alone. This implies that for some 𝜏 > 0 , representing the time lag of
information transfer, we have:

Δ
(
𝑑(𝑤·𝑋(0),𝑌(0)) → 𝑑𝑌(𝜏)

)
> Δ

(
𝑑𝑌(0) → 𝑑𝑌(𝜏)

)
∀𝑤 ≠ 0

Here, 𝑤 scales the units of 𝑋, accounting for the strength of the coupling.
Causality can then be assessed using a variational scheme, which involves testing

many values of 𝑤 to find min𝑤 Δ
(
𝑑(𝑤·𝑋(0),𝑌(0)) → 𝑑𝑌(𝜏)

)
and verifying that the minimum

is not obtained for 𝑤 = 0.
The connection between this measure and causal discovery will be further elaborated

upon in the following chapters. In particular, we will extend the ideas in Del Tatto
et al., 2024 to address two main limitations: the use of only one weight to build a
distance measure and the use of a grid search procedure to approximate the minimum.
Introducing multiple weights will create a more expressive metric, enhancing the quality
of predictions and enabling the selection of subsets of causes. This will also necessitate
a new tool to explore the space of the possible weights, which is presented in the next
section.

1.2.1 A Differentiable Information Imbalance

As stated above, a complete exploration of the parameter space would be computationally
impossible. A different approach, which at least allows to find local minima, is to devise
a gradient descent protocol.

8



1.2. INFORMATION IMBALANCE

Following the ideas in Wild et al., 2024, we define a differentiable version of the
Information Imbalance as

Δ𝜆(𝑑𝒘⊙𝑨 → 𝑑𝐵) = lim
𝜆→0

2
𝑁2

∑
𝑖 , 𝑗

𝑐𝑖 𝑗(𝜆,𝒘)𝑟𝐵𝑖𝑗 , (1.6)

where the coefficients 𝑐𝑖 𝑗 represent a smooth and differentiable version of the constraints
𝛿𝑟𝐴

𝑖𝑗
,1:

𝑐𝑖 𝑗(𝜆,𝒘) =
𝑒−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑗)/𝜆∑

𝑚≠𝑖 𝑒
−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑚)/𝜆

=
𝑒−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑗)/𝜆

𝑍𝑖
. (1.7)

In particular, 𝑐𝑖 𝑗
𝜆→0−−−→ 𝛿𝑟𝐴

𝑖𝑗
,1, so that the usual expression is recovered in the limit of small

𝜆. In this way, in a short notation:

𝜕

𝜕𝑤𝛼
Δ𝜆 =

2
𝑁2

∑
𝑖 , 𝑗

𝑟𝐵𝑖𝑗

[
−𝑍𝑖

𝜆 𝑒−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑗)/𝜆𝜕𝑤𝛼𝑑𝒘⊙𝑨(𝑋𝑖 , 𝑋𝑗) − 𝑒−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑗)𝜕𝑤𝛼𝑍𝑖

𝑍2
𝑖

]
,

where
𝜕𝑤𝛼𝑍𝑖 =

∑
𝑚≠𝑖

− 1
𝜆
𝑒−𝑑𝒘⊙𝑨(𝑋𝑖 ,𝑋𝑗)/𝜆𝜕𝑤𝛼𝑑𝒘⊙𝑨(𝑋𝑖 , 𝑋𝑗)

and for an Euclidean distance squared:

𝜕𝑤𝛼𝑑𝒘⊙𝑨(𝑋𝑖 , 𝑋𝑗) = 𝜕𝑤𝛼

∑
𝛽

𝑤2
𝛽(𝑋

𝛽
𝑖
− 𝑋

𝛽
𝑗
)2 = 2𝑤𝛼(𝑋𝛼

𝑖 − 𝑋𝛼
𝑗 )

2 .

It is interesting to observe the following properties, valid when using Euclidean squared
distances:

Π𝛼 : 𝒘 → (· · · ,−𝑤𝛼 , · · · ) , (1.8)

Δ𝜆(𝑑(Π𝛼𝒘)⊙𝑨 → 𝑑𝐵) = Δ𝜆(𝑑𝒘⊙𝑨 → 𝑑𝐵) ,

lim
𝑤𝛼→0

𝜕𝑤𝛼Δ
𝜆 = 0 ,

meaning, in particular, that the information imbalance approaches the axes flatly.
In practice, the coefficients 𝑐𝑖 𝑗 replace the selection of close points in the first space

with a Gaussian weighting, with fixed variance. Since it might seem more reasonable
to have different local weighting according to the local density, in order to effectively
select the same number of neighbors around each point, an adaptive variance 𝜆𝑖 can
be considered for each data point. Since in a point-adaptive scheme 𝜆𝑖 depends on
the distances from point i in space A, which are updated during the gradient descent
optimization, a dependence on the weights of the 𝜆𝑖(𝒘) is introduced. This leads to a
correction for the gradient computed above involving 𝜕𝑤𝛼𝜆𝑖(𝒘).

A possible choice for the adaptive 𝜆𝑖 is suggested by the similarity of Equation 1.7 to
that of the probabilities in a t-SNE procedure (see Mehta et al., 2019). Then, in a similar
fashion to what is commonly done in that case, we can define a local entropy

𝐻𝑖 = −
∑
𝑗

𝑐 𝑗𝑖 log 𝑐 𝑗𝑖 ,

9



CHAPTER 1. INTRODUCTION

Figure 1.5: The results of the gradient descent procedure for the coupled logistic maps as in Equation 2.4,
using polar coordinates for the parametrization of the 2-sphere the dynamics effectively evolves on. The
graph in the center is obtained with standard GD, the one on the right using Adam optimizer keeping
fixed 𝑆′ while sampling 5 batches of 𝑆 at each iteration. The axis 𝜙 = 𝜋/2 is highlighted: thanks to
Equation 1.8, the Information Imbalance is symmetric above and below it.

and set it equal across all data points to a perplexity Σ = 2𝐻𝑖 . Derivatives can then be
computed exactly making use of the implicit function theorem.

In the following parts, though, for the sake of simplicity we will use𝜆𝑖 = min𝑗 𝑑𝒘⊙𝑨(𝑋𝑖 , 𝑋𝑗)
and we will employ the automatic differentiation performed by the Python package JAX
(Bradbury et al., 2018) (using, step by step, the current nearest neighbour of each point).

10



2

Error estimation of information
imbalance

In this chapter we introduce an extension of the Information Imbalance which allows to
compute analytically a statistical error. The cumulative mean of this estimator converges
to the same value obtained with the standard version in Equation 1.4 (see Fig. 2.1),
namely it gives the same result on average.

Figure 2.1: The convergence of both the current and the previous estimate to the same value is shown for
different systems and settings. On the left we compute the information imbalance between two equivalent
(top) or independent (bottom) components of data sampled from a multivariate Gaussian distribution. On
the right, we compute Δ(𝑑(𝑌𝑡 ,𝑍𝑡 ) → 𝑑(𝑌𝑡+1 ,𝑍𝑡+1)), using coupled logistic maps (as in Section 2.1.1).

The main idea is making independent the computed ranks by separating the dataset
in two groups, as summarised in Fig. 2.2. Specifically, the ranks in space A and B are
computed considering the distances of the elements of the first group from those in
the second (hence avoiding to consider distances between elements of the same group).

11



CHAPTER 2. ERROR ESTIMATION OF INFORMATION IMBALANCE

This allows to remove the dependence between ranks that arises when considering the
whole dataset. Indeed, if distances are computed between all pairs of points, the ranks
𝑟𝑖 𝑗 and 𝑟 𝑗𝑖 are not independent, due to the symmetry property of any distance function,
and 𝑟𝑖𝑘 is not independent of 𝑟𝑖 𝑗 and 𝑟 𝑗𝑘 , as a consequence of the triangular inequality.

Figure 2.2: While the normal information imbalance checks how the neighbouring relationships change
when going from space A to space B (central graphs), the version proposed here first uses part of the dataset
to divide the two spaces into cells, then checks how the remaining data change its position in them (graphs
on the right).

2.1 Mathematical details

Consider a dynamical system living in a space 𝑀 and two different observations given
by 𝜑𝐴 : 𝑀 → 𝐴 an 𝜑𝐵 : 𝑀 → 𝐵. In proper conditions, we can define a probability
density function 𝜌 : 𝑀 → R and our samples will look like:

𝑋 ∼ 𝜌 ,

𝑋𝐴 = 𝜑𝐴(𝑋) ∼ 𝜌𝐴 ,

𝑋𝐵 = 𝜑𝐵(𝑋) ∼ 𝜌𝐵 ,

where 𝜌𝐴 and 𝜌𝐵 are the corresponding densities in spaces 𝐴 and 𝐵. Given a set 𝑆′ =
{𝑋𝛼}𝛼=1,...,|𝑆′ | where 𝑋𝛼 are i.i.d. from 𝜌, we can automatically access the observations
𝑆′𝐴 = {𝑋𝐴

𝛼 } and 𝑆′𝐵 = {𝑋𝐵
𝛼 } by applying the maps 𝜑𝐴 and 𝜑𝐵.

We define 𝑝(𝑟𝐴
𝑖𝛼 = 1|𝑆′) as the probability that a new point 𝑋𝑖 sampled from 𝜌 has

𝑋𝐴
𝛼 as the first neighbour in 𝑆′𝐴, when mapped in space 𝐴. This probability can be

written as

𝑝(𝑟𝐴𝑖,𝛼 = 1|𝑆′) =
∫
𝐼

𝜌𝐴(𝑥) 𝑑𝑥 ,

𝐼 =

{
𝑥 ∈ 𝐴| argmin

�̃�
𝑑(𝑥, 𝑋𝐴

�̃� ) = 𝛼

}
.
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2.1. MATHEMATICAL DETAILS

Here we call 𝑟𝐴(𝑋𝑖 , 𝑋𝛼) = 𝑟𝐴
𝑖,𝛼 the rank of 𝑑(𝑋𝐴

𝑖
, 𝑋𝐴

𝛼 ) in the list of ordered distances
{𝑑(𝑋𝑖 , 𝑋�̃�)}�̃�=1,...,|𝑆′ | 1 In a case in which 𝜌𝐴 is uniform, this is exactly like computing the
volume of a specific cell of the Voronoi tassellation generated by the set 𝑆′𝐴.

Suppose now to sample 𝑁 new points (𝑆 = {𝑋𝑖}𝑖=1,...,𝑁 ) independently from 𝑆′ and
among themselves from 𝜌. Then

𝑝({𝑟𝐴𝑖,𝛼}𝑖=1,...,𝑁 |𝑆′) =
𝑁∏
𝑖=1

𝑝(𝑟𝐴𝑖,𝛼 |𝑆
′)2 (2.1)

Now consider the following expectation value:

E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] =

𝑁∑
𝑘=1

𝑘 𝑝(𝑟𝐵 = 𝑘 |𝑟𝐴 = 1, 𝑆′)

=

𝑁∑
𝑘=1

𝑘
𝑝(𝑟𝐵 = 𝑘, 𝑟𝐴 = 1|𝑆′)

𝑝(𝑟𝐴 = 1|𝑆′)
,

where

𝑝(𝑟𝐵 = 𝑘, 𝑟𝐴 = 1|𝑆′) =

∫
𝐼′′
𝜌(𝑥)𝑑𝑥 ,

𝐼′′ =
⋃
𝑋𝛼

{𝑥 ∈ 𝑀 |𝑟𝐴(𝑥, 𝑋𝛼) = 1, 𝑟𝐵(𝑥, 𝑋𝛼) = 𝑘} .

This expectation value can be estimated by the right-hand side of the following equation:

|𝑆′ | + 1
2 Δ𝑆′(𝑑𝐴 → 𝑑𝐵) := 1

𝑁

𝑁∑
𝑖=1

|𝑆′ |∑
𝛼=1

𝑟𝐵𝑖,𝛼𝛿𝑟𝐴𝑖,𝛼 ,1
,

that we use to define Δ𝑆′(𝑑𝐴 → 𝑑𝐵). The multiplicative factor is inserted as a normaliza-
tion element adjusting for the size of S’. It is chosen in such a way that if 𝑝(𝑟𝐵 |𝑟𝐴 = 1) is
uniform over the rank values {1, 2, ..., |𝑆′ |} then E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] = 1, as it was done in
the standard Information Imbalance. From now on we will consider Δ𝑆′(𝑑𝐴 → 𝑑𝐵) as a
central element in our discussion. To simplify the notation, we will write Δ𝑆′(𝑑𝐴 → 𝑑𝐵)
simply as Δ𝑆′, and we will write E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] for 2

|𝑆′ |+1E[𝑟
𝐵 |𝑟𝐴 = 1, 𝑆′], such that

E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] ≈ Δ𝑆′ . Similarly, we will drop the prefactor dependent on |𝑆′ | also when
writing variances V[·].

Since the sample mean is an unbiased estimator of the expectation value Δ𝑆′

is an unbiased estimator of E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] and, since each of the elements 𝑒𝑖 =

2
|𝑆′ |+1

∑
𝛼 𝑟

𝐵
𝑖,𝛼𝛿𝑟𝐴𝑖,𝛼 ,1

is independent from the others because of 2.1, we have that

V[Δ𝑆′ |𝑆′] =
1
𝑁
V[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′]

1 Notice that the probabilities of higher ranks can also be written in a similar way to what we
have here. Take for example 𝑝(𝑟𝐴

𝑖,𝛼 = 2), it can be computed as an integral over a new set

𝐼′ =
[⋃

𝛽∈(𝑆\{𝛼}){𝑥 ∈ 𝐴| argmin�̃�\𝛽 𝑑(𝑥, 𝑋𝐴
�̃� ) = 𝛼}

]
\ {𝑥 ∈ 𝐴| argmin�̃� 𝑑(𝑥, 𝑋𝐴

�̃� ) = 𝛼}.
2 This is a substantial difference from what we had with the previous imbalance, where for example
𝑝(𝑟𝐴

𝑖𝑗
= 1, 𝑟𝐴

𝑗𝑖
= 1|𝑆 \ {𝑖 , 𝑗}) ≠ 𝑝(𝑟𝐴

𝑖𝑗
= 1|𝑆 \ {𝑖}) 𝑝(𝑟𝐴

𝑗𝑖
= 1|𝑆 \ { 𝑗}).
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CHAPTER 2. ERROR ESTIMATION OF INFORMATION IMBALANCE

which can be estimated in an unbiased way as3

V[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] ≈ 1
𝑁 − 1

𝑁∑
𝑖=1
(𝑒𝑖 − Δ𝑆′)2 (2.2)

It is easy to generalize the same statement also for

𝑒𝑖 =
2

(|𝑆′ | + 1)𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥∑
𝑘=1

|𝑆′ |∑
𝛼=1

𝑟𝐵𝑖,𝛼𝛿𝑟𝐴𝑖,𝛼 ,𝑘

In real applications one would be interested in a slightly different quantity, i.e.
E𝑆′E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] ≈ Δ, where the first expected value is computed over the distribution
of possible 𝑆′. Supposing that 𝑆′ can be independently sampled 𝑅 times, we can estimate
this double expected value as:

E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′] ≈ 1
𝑅

𝑅∑
𝑟=1

Δ𝑟
𝑆′ = Δ𝑆′ ,

where the superscript 𝑟 runs over multiple estimation of the Δ𝑆′ with different 𝑆′.
We can then see that for this quantity we have:

E𝑆′

[
1

𝑅 − 1

𝑅∑
𝑟=1
(Δ𝑟

𝑆′ − Δ𝑆′)2
]
= V𝑆′[E[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′]] + 1

𝑁
E𝑆′[V[𝑟𝐵 |𝑟𝐴 = 1, 𝑆′]] . (2.3)

Proof. We can see that in general for the empirical averages

𝑋
𝑟
=

1
𝑁𝑟

𝑁𝑟∑
𝑖=1

𝑋 𝑟
𝑖

𝑋 =
1
𝑅

𝑅∑
𝑟=1

𝑋
𝑟

we can write

1
𝑅 − 1

𝑅∑
𝑟=1

(
𝑋

𝑟 − 𝑋
)2

=

=
1

𝑅 − 1

𝑅∑
𝑟=1


(∑𝑁𝑟

𝑖=1 𝑋
𝑟
𝑖

)2

𝑁2
𝑟

+

(∑𝑅
𝑟′=1 𝑋

𝑟′
)2

𝑅2 −
2
(∑𝑁𝑟

𝑖=1 𝑋
𝑟
𝑖

) (∑𝑅
𝑟′=1 𝑋

𝑟′
)

𝑅𝑁𝑟


=

1
𝑅 − 1


𝑅∑
𝑟=1

(∑𝑁𝑟

𝑖=1 𝑋
𝑟
𝑖

𝑁𝑟

)2

−

(∑𝑅
𝑟′=1 𝑋

𝑟′
)2

𝑅


=

1
𝑅 − 1


𝑅∑
𝑟=1

(∑
𝑖 𝑋

𝑟
𝑖

𝑁𝑟

)2

− 1
𝑅

©«
𝑅∑

𝑟′=1

(∑
𝑖 𝑋

𝑟′
𝑖

𝑁2
𝑟′

)2

+
∑
𝑟′′≠𝑟′

(∑
𝑖 𝑋

𝑟′
𝑖

)
𝑁𝑟′

(∑
𝑖 𝑋

𝑟′′
𝑖

)
𝑁𝑟′′

ª®¬


=
1
𝑅

𝑅∑
𝑟=1

1
𝑁2

𝑟

©«
∑
𝑖

(𝑋 𝑟
𝑖 )

2 +
∑
𝑖≠𝑗

𝑋 𝑟
𝑖 𝑋

𝑟
𝑗

ª®¬ − 1
𝑅(𝑅 − 1)

∑
𝑟′′≠𝑟′

(∑
𝑖 𝑋

𝑟′
𝑖

)
𝑁𝑟′

(∑
𝑖 𝑋

𝑟′′
𝑖

)
𝑁𝑟′′

3 Another way to reach the same conclusion is to see that, given S’, 𝑒𝑖 are sampled independently from a
multinomial distribution with values equally spaced from 2

|𝑆′ |+1 to 2|𝑆′ |
|𝑆′ |+1
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Now, since in our case 𝑋
𝑟
= Δ𝑆′ and all 𝑋 𝑟

𝑖
are drawn independently, assuming that all

𝑁𝑟 are equal, we can then write:

E𝑆′E[·] =

=
1
𝑅
E𝑆′

𝑅∑
𝑟=1

[
1
𝑁𝑟
E

[
𝑋2 |𝑆′

]
+ E [𝑋 |𝑆′]2 𝑁𝑟(𝑁𝑟 − 1)

𝑁2
𝑟

]
− 1

𝑅(𝑅 − 1)E𝑆
′

[ ∑
𝑟′′≠𝑟′
E [𝑋 |𝑆′]E [𝑋 |𝑆′′]

]
=

1
𝑁𝑟
E𝑆′

[
E

[
𝑋2 |𝑆′

] ]
+ 𝑁𝑟(𝑁𝑟 − 1)

𝑁2
𝑟

E𝑆′
[
E [𝑋 |𝑆′]2

]
− E𝑆′ [E [𝑋 |𝑆′]]2

= V𝑆′E [𝑋 |𝑆′] +
1
𝑁𝑟
E𝑆′V [𝑋 |𝑆′]

□

The behaviour of these two terms is briefly discussed in the next subsection.
In Appendix B some extensions of the previous calculations are presented for the

case of categorical variables.

2.1.1 Numerical estimation of the error

It is easy to construct unbiased estimators for at least two of the quantities appearing in
Equation 2.3. In particular the quantity on the left-hand side can be explicitly estimated
as it is, while the second term in the right-hand side can be estimated in an unbiased
way making use of Equation 2.2.

We now empirically investigate the relevance of the different terms in Equation 2.3
varying only |𝑆′ |. In particular, in Fig. 2.3 we depict the results obtained for the following
coupled logistic maps:

𝑋𝑡+1 = 𝑋𝑡(𝑟 − 𝑟𝑋𝑡 + 𝜎𝜂𝑋𝑡 ) 𝑚𝑜𝑑 1,

𝑌𝑡+1 = 𝑌𝑡(𝑟 − 𝑟𝑌𝑡 − 𝑎𝑋𝑡 + 𝜎𝜂𝑌𝑡 ) 𝑚𝑜𝑑 1,

𝑍𝑡+1 = 𝑍𝑡(𝑟 − 𝑟𝑍𝑡 − 𝑏𝑌𝑡 + 𝜎𝜂𝑍𝑡 ) 𝑚𝑜𝑑 1,

(2.4)

with 𝑟 = 4, 𝑎 = 1, 𝑏 = 1, 𝜎 = 0 (a two dimensional Poincaré plot of the map 𝑍 is shown
on the right panel of Fig. 2.1). Increasing the size of 𝑆′ allows to make the second term
on the right dominant. This is particularly important because sampling a lot of sets 𝑆′ to
estimate the variance would be a very data-hungry procedure. Instead, thanks to the
emergence of some concentration properties for large |𝑆′ |, we can reliably estimate the
error of Δ as that of Δ𝑆′ in this regime (see Fig. 2.3).

2.2 Gradient descent algorithm

Given the new version of the Information Imbalance, we rewrite Equation 1.6 as follows:

Δ𝜆(𝑑𝒘⊙𝑨 → 𝑑𝐵) = lim
𝜆→0

2
𝑁(|𝑆′ | + 1)

∑
𝑖 , 𝑗

𝑐𝑖 , 𝑗(𝜆,𝒘)𝑟𝐵𝑖𝑗 , (2.5)

We also use a version of stochastic gradient descent in which 𝑆′ is fixed, while subsets of
𝑆 are sampled at each step.
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CHAPTER 2. ERROR ESTIMATION OF INFORMATION IMBALANCE

Figure 2.3: From left to right the variances of Δ(𝑑𝑌𝑡 → 𝑑𝑌𝑡+1), Δ(𝑑𝑍𝑡 → 𝑑𝑍𝑡+1), Δ(𝑑(𝑋𝑡 ,𝑌𝑡 ,𝑍𝑡 ) →
𝑑(𝑋𝑡+1 ,𝑌𝑡+1 ,𝑍𝑡+1)) computed with |𝑆 | = 600 fixed. Standard deviations are computed with 100 repetitions of
the calculations. The light blue line represent an estimate of the left-hand side of Equation 2.3, while the
dark blue one represents the second term on the right-hand side of the same equation, which becomes the
dominant one for large |𝑆′ |.
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3

Causal discovery of autonomous sets

In this chapter we finally deploy the Information Imbalance for causal discovery in time
series data.

When dealing with high-dimensional dynamical systems, the problem of detecting
causal links is considered computationally demanding (Runge, 2018). We introduce
a method which allows partially mitigating the complexity of further analyses, in a
divide-and-conquer spirit. The idea is that, if an autonomous set of variables (namely a
set of variables whose time evolution depends only on the variables inside the set itself)
can be identified, then, considering this group as a single "node" will not mar the whole
analysis, but will make it computationally simpler, reducing the number of statistical
tests that one should perform. By progressively finding the minimal autonomous
subsets it is in principle possible to rebuild step by step the dynamical relations of the
whole system.

3.1 Preliminary observations

Consider a graph representing a time series graph (microscopic graph) with all times
collapsed: each node represents a variable and a link is present if at any time delay a
link was present in the microscopic graph. This is what is commonly called a macroscopic
graph (Chicharro et al., 2014). For example, the microscopic and macroscopic graphs of
the map in Equation 2.4 can be represented as in Fig. 3.1.

Given a node 𝑋 𝑖 in the macroscopic graph, it is easy to see that the minimal
autonomous set𝒜 𝑖 to which it belongs contains all and only its ancestors, aside from
𝑋 𝑖 itself. Equivalently,𝒜 𝑖 contains 𝑋 𝑖 and all and only its causes (direct and indirect).
Always in the example of Equation 2.4 we have𝒜𝑍 = {𝑋,𝑌, 𝑍}, 𝒜𝑌 = {𝑋,𝑌}, 𝒜𝑋 =

{𝑋}. Following the ideas in Del Tatto et al., 2024 already presented at the end of Section
1.2, we observe that the distance space 𝑑𝒘⊙𝑿 (𝑡) which optimally predicts future distances
in space 𝑑𝑋 𝑖(𝑡+𝜏), using all the dynamical variables at time 𝑡, should assign zero weight
to all the variables that do not belong to𝒜 𝑖 , which are neither direct nor indirect causes
of 𝑋 𝑖 . It is then possible to reconstruct𝒜 𝑖 for each variable by computing, for different
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𝑡1 𝑡2 𝑡3

Figure 3.1: On the left the microscopic causal graph of the map in Equation 2.4, in which we have a new
node for each time step. On the right the corresponding macroscopic graph.

values of 𝜏,
�̂� = argmin

𝒘
Δ

(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑖(𝑡+𝜏)

)
, (3.1)

where 𝒘 is a vector of parameters weighting each dynamical variable, and ⊙ denotes
the element-wise product. If the weight 𝑤 𝑗 is found to be significantly different from
zero (see Section 3.2), we conclude that 𝑋 𝑗(𝑡) is a (direct or indirect) cause of 𝑋 𝑖(𝑡 + 𝜏) in
the microscopic graph. Equivalently, 𝑤 𝑗 ≠ 0 implies that 𝑋 𝑗 is a direct or indirect cause
of 𝑋 𝑖 in the macroscopic graph, namely that 𝑋 𝑗 belongs to the minimal autonomous
set of 𝑋 𝑖 . In principle, this procedure can identify multi-body interactions just as it
identifies individual links, an example is shown in Section B.1.

As an example, we show in Fig. 3.2 the landscape of the Information Imbalance as a
function of the weights 𝒘 for the three coupled logistic maps of Equation 2.4.

Using 𝜏 = 1 we recover, for example, the direct links 𝑍(𝑡) → 𝑍(𝑡 + 1) and 𝑌(𝑡) →
𝑍(𝑡 + 1), as their weights are non-zero in the minimum of the Information Imbalance,
while we do not infer the presence of any link 𝑋(𝑡) → 𝑍(𝑡 + 1), as the weight of 𝑋 is
found to be zero in the same minimum (right panel of Fig. 3.2). However, the minimal
autonomous set of 𝑍 also contains 𝑋, for which an (indirect) link can be observed only
by setting 𝜏 > 1. For example, setting 𝜏 = 2 in the same test results in a global minimum
where all the three weights are non-zero. This link, then, can be detected by considering
other time lags in the trial distance which is the left argument of Equation 3.1. This can
be achieved using the differentiable version of the Information Imbalance presented in
the previous chapter.

3.2 Algorithmic implementation

Consider now N observations of the couple (X(𝑡),X(𝑡 + 𝜏))with X ∈ R𝑑. As we outlined,
it is possible to understand whether a variable at time 𝑡 is directly or indirectly causing
another variable 𝑋 𝑖 at time 𝑡 + 𝜏 by minimizing the quantity Δ

(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑖(𝑡+𝜏)

)
.

After dividing the dataset in two subsets 𝑆 and 𝑆′, we can use the differentiable version
of the Information Imbalance for a fast search of local minima also in high-dimensional
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3.2. ALGORITHMIC IMPLEMENTATION

Figure 3.2: Since the distance 𝑑𝒘⊙𝑿 (𝑡) in Equation 3.1 is invariant under a global scaling of all weights
𝒘, for the three logistic maps it is possible to reduce the number of parameters employed in the test from 3
to 2, allowing for a 3d representation. The results in the first line are obtained for 𝜏 = 1. As expected, only
𝑋(𝑡) is relevant to predict 𝑋(𝑡 + 1) (left panel, the global minimum is found in 𝛼𝑍 = 𝛼𝑌 = 0, 𝛼𝑋 = 1),
both 𝑌(𝑡) and 𝑋(𝑡) for 𝑌(𝑡 + 1) (central panel, the global minimum is in 𝛼𝑋 ≠ 0, 𝛼𝑍 = 0,𝛼𝑌 = 1) and
𝑍(𝑡), 𝑌(𝑡) for 𝑍(𝑡 + 1) (right panel, the global minimum is in 𝛼𝑋 = 0, 𝛼𝑌 ≠ 0 𝛼𝑍 = 1). In the second
line we plot also the results for 𝜏 = 2. The main difference is that the variable 𝑋(𝑡) becomes relevant to
predict 𝑍(𝑡 + 𝜏)

spaces. A local minimum of the Information Imbalance, we recall, corresponds to a
combination of variables which provides maximal information on another combination
of variables (in our case, a single variable observed with a time lag 𝜏 in the future).We
can then scan multiple time lags to take into account faster and slower transmission of
information.

The causal links in our approach are stored in a 𝑛 × 𝑛 matrix that we denote by
𝐺. The entries of 𝐺 store the weights found with the minimisation procedure. In
particular the element 𝐺𝑖 𝑗 will be the absolute value of the 𝑖-th component of the weight
vector �̂� found by minimizing Δ

(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑗(𝑡+𝜏)

)
(namely 𝐺𝑖 𝑗 = |�̂�𝑖 |). For each new

tested value of 𝜏, we minimise 𝑑 times the Information Imbalance, using a weighted
combination of all the variables at time 𝑡 in space A and one variable at time 𝑡+𝜏 in space
B. We will update the elements 𝐺𝑖 𝑗 in such a way that they correspond to the highest
weight found for any value of 𝜏. The general procedure is illustrated in Algorithm 1.
The outcome is a fully connected weighted graph.

Notice that the number of optimizations that one should perform to estimate the
matrix 𝐺 scales linearly with the number of variables 𝑑. An algorithm that computes
the mutual informations or the transfer entropies among all the possible couples of
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CHAPTER 3. CAUSAL DISCOVERY OF AUTONOMOUS SETS

Algorithm 1 Graph updating
1: if 𝐺 hasn’t been initialised yet then
2: set 𝐺 as a 0 valued 𝑑 × 𝑑 matrix

3: end if
4: for 𝑗 ∈ {1, ..., 𝑑} do
5: �̂� ← argmin{𝒘} Δ

(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑗(𝑡+𝜏)

)
6: for 𝑖 ∈ {1, ..., 𝑑} do
7: 𝐺𝑖 𝑗 ← max

{
𝐺𝑖 𝑗 , |�̂�𝑖 |

}
8: end for
9: end for

variables at time 𝑡 and 𝑡 + 𝜏 scales as 𝑑2. If the computation of multi-body interactions is
attempted, the scaling is instead exponential. The matrix 𝐺 does not directly represent
the coarse grained causal graph, but contains all the necessary information to construct
it. In order to identify the autonomous sets, we first remove all the links whose weights
are lower than a specified threshold. This allows to remove the weights which are
numerically different from zero but can be safely neglected. In the next parts and
in Appendix C we show that the results are robust with respect to the choice of this
threshold. Applying this procedure, the 𝐺 matrix becomes sparse (as we expect in the
macroscopic representation of a system composed by smaller subsystems). We will call
𝐴 the unweighted adjacency matrix of the resulting graph: 𝐴𝑖 𝑗 = 1 if 𝐺𝑖 𝑗 > threshold
and 𝐴𝑖 𝑗 = 0 otherwise. Given the adjacency matrix 𝐴 the autonomous sets can be found
applying a recursive procedure.

In the first step for each variable we look for the set of all its ancestors. This can
be done efficiently with an algorithm similar in spirit to that of breadth first search
(Cormen et al., 2017): in particular, one starts with a set containing only the node itself,
then considers all the links pointing into a node in the set, and adds to the set itself all
the nodes from which these links are exiting. This procedure is repeated recursively
until the set is not changed anymore. Then, the smallest of these groups of ancestors
will certainly be a minimal autonomous set. We can remove from 𝐴 the rows and lines
referred to the autonomous set identified at the previous step and repeat recursively the
procedure until no elements in 𝐴 are left.

This allows to find groups with a well defined hierarchy of “autonomy”: if a group
𝒢𝑘 is identified at step 𝑘 of the algorithm, then it can be caused (directly or indirectly)
only by groups 𝒢𝑗 identified at a step 𝑗 < 𝑘, and, in turn, it can cause only groups 𝒢𝑗′

identified in the next steps 𝑗′ > 𝑘. We will call the group of autonomous sets for the
whole system the first shell of autonomy. Then, all the groups which depend only on
variables in the first shell will be part of the second shell and so on.

A “coarse grained” macroscopic graph can be finally drawn by representing the
variables in the same groups as single nodes, and drawing the links between such nodes
using the microscopic adjacency matrix 𝐴. For example, a link between node 𝒢𝑗 and 𝒢𝑘
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will be drawn if at least a link from any variable of 𝒢𝑗 to any variable of 𝒢𝑘 is present
in the all-variable representation. Particular care, though, should be put on the fact
that these links may represent both direct and indirect connections. Indeed, with the
minimisation of the Information Imbalance we can only state if there is an information
flow between variables at different time lags or not. Identifying whether this flow occurs
through other variables requires additional tests, involving appropriate conditioning on
different subsets (Chicharro et al., 2014).

As we will show in specific examples the procedure presented above still allows
to identify some direct links with high statistical confidence. Indeed, if a link among
two subsets is identified and if it is also the only path connecting them, then that link
is surely a direct one. For example, each link between groups of consecutive shells is
necessarily a direct link, in this case it is easy to see that the information flow cannot be
blocked by any conditioning on any variable of the system.

3.3 Benchmark tests

We test this approach on trajectories generated by deterministic chaotic systems of
different complexity. First of all we consider a system of three Rössler oscillators 𝑋,𝑌
and 𝑍, described each by the following three non-linear ordinary differential equations

𝑑𝑥𝑖
𝑑𝑡

= −𝜔𝑖𝑦𝑖 − 𝑧𝑖
𝑑𝑦𝑖
𝑑𝑡

= 𝜔𝑖𝑥𝑖 + 0.15𝑦𝑖
𝑑𝑧𝑖
𝑑𝑡

= 0.2 + 𝑧𝑖(𝑥𝑖 − 10) ,

with 𝜔𝑋 = 1.015, 𝜔𝑌 = 0.985, 𝜔𝑍 = 1.005. We considered these coupling scenarios:

• unidirectional couplings 𝑋 → 𝑍 and 𝑌 → 𝑍;
• unidirectional couplings 𝑋 → 𝑍 and 𝑍→ 𝑌;
• unidirectional coupling 𝑋 → 𝑌, 𝑍 uncoupled.

realised similarly to those in Del Tatto et al., 2024.
We then consider two unidirectionally coupled Lorenz 96 systems of 40 variables

each, defined for 𝑖 = 1, · · · , 40 by

𝑑𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹𝑋/𝑌 ,

where 𝑥−1 = 𝑥40 , 𝑥41 = 𝑥1, 𝐹𝑋 = 5, 𝐹𝑌 = 6. As above, the coupling between the systems
of the kind presented in Del Tatto et al., 2024. These systems represent a challenging
test of a high-dimensional setting.

After integrating the previous equations we used our procedure to retrieve the
coarse grained graph. In Fig. 3.3 we plot our results. All the nodes belonging to the
same autonomous set are painted with the same color and then depicted in the coarse
grained version of the graph in the small box in each figure.
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CHAPTER 3. CAUSAL DISCOVERY OF AUTONOMOUS SETS

Figure 3.3: We plot on the left column the graphs retrieved using our procedure for different systems
and using a threshold of 0.1. Nodes of the same color are found to belong to the same autonomous set in
different steps of the procedures. Colors range from the lightest to the darkest, showing the order of retrieval
and the hierarchy of the autonomous sets. On the right column we show how the (adjusted) mutual
information between the true groups (and shells) and the one found following our procedure change when
modifying the threshold. In general, as can be seen from the initial plateau with mutual information 1, the
solutions are consistent for quite a large range of the threshold. From the top to the bottom: 3 Rössler
oscillators coupled as 𝑋 → 𝑍← 𝑌; 3 Rössler oscillators coupled as 𝑋 → 𝑍→ 𝑌; 3 Rössler oscillators
coupled as 𝑋 → 𝑌, 𝑍 autonomous; two 40-dimensional Lorenz 96 coupled unidirectionally 𝑋 → 𝑌.
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Since the outcome of the classification in autonomous sets (but also that of the
division in shells) depends on the threshold used to build the matrix 𝐴 from matrix 𝐺,
we study the effect of changing this parameter. In particular on the right column of
Fig. 3.3 we plot the adjusted mutual information (AMI) (Vinh et al., 2010) between the
true groups and the recollected ones. The AMI modifies the estimation of the mutual
information to correct for the fact that generally its values tends to be higher for two
classifications with a larger number of clusters. A value of 1 is obtained when the two
partitions are perfectly consistent. Remarkably, our method appears to robustly deduce
both the correct groups and shells for a huge range of the threshold parameter, even for
the high-dimensional systems.

Further analyses on the change of other parameters of the algorithm are presented
in Appendix C and in the next section.

3.4 Stability of the results

After having shown the accuracy of the algorithm in high dimensional setups and its
robustness to variations of the threshold for the construction of the matrix 𝐴, we now
focus on the effect of the time lag , of statistical noise and of observational noise.

In order to perform our analysis, we consider five logistic maps coupled as in
Equation 2.4, with links 𝑋1

𝑡 → 𝑋2
𝑡+1, 𝑋2

𝑡 → 𝑋3
𝑡+1, 𝑋3

𝑡 → 𝑋4
𝑡+1 and 𝑋4

𝑡 → 𝑋5
𝑡+1. The

advantage of using maps of this kind is that the true links at any time lag can be deduced
unambiguously from the equations. This is the perfect playground to check exactly our
results with an unequivocal ground truth.

In Fig. 3.4 we show the weights retrieved when minimizing Δ
(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋5(𝑡+𝜏)

)
varying the time lag. First of all, we verify that considering longer time lags allows to
check for slower information transfer. In particular, we were able to see ( Fig. 3.4, upper
panel) that before the information can physically pass from one part of the system to the
other, no link is retrieved by minimizing Δ

(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑖(𝑡+𝜏)

)
. For example, the link

𝑋3
𝑡 → 𝑋5

𝑡+𝜏 only appears for 𝜏 ≥ 2 (the ground-truth lag of this indirect link is 2), while
the link 𝑋1

𝑡 → 𝑋5
𝑡+𝜏 is detected for 𝜏 ≥ 5 (the ground-truth lag of this indirect link is

4). It also turns out that the variance of the position of the retrieved minimum of the
Information Imbalance increases when increasing the time lag. In this case also minΔ

itself grows approaching the value of one (Fig. 3.4, lower panel). In this regime it is
actually quite difficult to infer causality, as the system has lost almost all the memory of
its initial state and the dependencies among the variables are completely washed away.

Next, we benchmarked the effect of modifying the size of the dataset. In particular,
in Fig. 3.5 we check the effect of changing both |𝑆 | and |𝑆′ | for a fixed 𝜏 = 3. As expected,
very small datasets (always with less than ∼ 100 points) lead to spurious estimations.

Finally in Fig. 3.6 we illustrate the effect of the insertion of a dynamical and an
observational noise. The observational noise is a Gaussian noise of standard deviation
𝜎𝑜 added a posteriori to the trajectory. The dynamical one is added at each step of
integration of the map, as from Equation 2.4. In the specific case we were considering,
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Figure 3.4: We minimize Δ
(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋5(𝑡+𝜏)

)
for different time lags 𝜏. We perform 20 estimations

for every time-lag and plot the averages. The colored area shows the standard deviation of the estimates.
In the graph in the bottom we also show how the minimal Information Imbalance increases with the
considered lag.

Figure 3.5: We minimize Δ
(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋5(𝑡+3)

)
. On the left we depict the effect of changing |𝑆 | with

|𝑆′ | = 3000, on the right the effect of a change in |𝑆′ | with |𝑆 | = 1500. As above, we perform 20 estimations
for every value of the parameters and plot the averages. The colored area shows the standard deviation of
the estimates.
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Figure 3.6: We minimizeΔ
(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋5(𝑡+3)

)
. On the left we depict the effect of inserting a dynamical

noise, on the right the effect of an observational one. We perform 20 estimations for every value of the
parameters and plot the averages. The colored area shows the standard deviation of the estimations.

in both cases, no spurious link is detected up to a noise of about ∼ 10% of the maximum
value of the features. In regimes strongly dominated by the noise a true form of causality
is hardly found.

3.5 Alternative approaches for obtaining the causal graph

As a final remark we notice that the approach used for analyzing the systems described
in Fig. 3.3 can be considered a first attempt for building a coarse grained graph from
the matrix 𝐺. In the following, we outline an eigenvalue-based approach which we are
currently testing, and which, we hope, might bring to even more robust results.

Given the adjancency matrix 𝐴, it is possible to define a stochastic process with
transition rates given by the matrix 𝐴𝑇 , normalized by rows. This matrix defines jumps
between nodes in the opposite direction of the links, namely from effect to causes.
Its non-ergodicity can be exploited to recover the minimal autonomous sets, since
the dynamics that it generates, starting from a given node, cannot leave the minimal
autonomous set to which the starting node belongs. Then, from a natural extension of
Perron-Frobenius theorem, the autonomous sets can be recovered from the non-zero
components of the left eigenvectors of 𝐴𝑇 with eigenvalue 1. Indeed, such eigenvectors
allows to define the submatrices in which the matrix 𝐴𝑇 can be reduced into a block
upper triangular form. This suggests an alternative way to compute the autonomous
sets as the connected components of the subgraph of 𝐴 which contains only the variables
which appear in the eigenvectors with eigenvalue 1. Furthermore, this procedure allows
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CHAPTER 3. CAUSAL DISCOVERY OF AUTONOMOUS SETS

to understand directly the hierarchy of autonomy of the subsets in the graph. Indeed
each iteration of this procedure identify a new shell of autonomous variables.

Following the previous observations we deduce that the spectral properties of 𝐴
can be linked to the autonomous set. If 𝐴 is obtained from 𝐺 by applying a sufficiently
small threshold, then 𝐺 itself can be seen as a small perturbation of the matrix 𝐴 (in
particular 𝐺𝑇 normalized by rows will be “close” to 𝐴𝑇 normalised by rows). In the
hypothesis that small perturbations in the entrances do not change dramatically the
spectrum of the matrix, one can expect that eigenvectors with eigenvalues “close” to
one obtained from 𝐺 will give similar information to those obtained directly from 𝐴. In
principle, this approach could be used to devise an alternative to the threshold on the
parameters. Obviously, though, in the case in which 𝐴 itself does not show a relevant
spectral gap between 1 and the following eigenvalue, it could be hard to isolate the
correct eigenvectors. Other possibilities will be commented in Section 4.1.
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Conclusion

In summary, we first introduced a new version of the Information Imbalance which
allows for an easier estimation of its error, and then we employed it to develop a
powerful technique for discovering a hierarchy of causal relationships between different
groups of features of the dataset. Even though the relationship between the Information
Imbalance and the mutual information has been shown (Del Tatto et al., 2024), we
verified that the method is able to retrieve the correct results for all the systems we
tested, obtaining coarse grained graphs which are consistent with the ground truth, and
therefore compliant with those which would be obtained using standard (and more
computationally expensive) causal inference methods based on information theory. Of
particular interest are the results obtained with the coupled Lorenz 96 systems, which
show promising performances of the algorithm in a challenging high-dimensional
setting.

4.1 Further perspectives

Even though at the end of the previous chapter we showed the robustness of the results
modifying the threshold for the selection of the presence of links, we still believe that
some improvements could be made in this direction. Making use of the results obtained
in Equation 2.3, it is possible to compute the expected standard error of the Information
Imbalance. This can help defining a region in the parameter space around the minimum
in which the Information Imbalance does not change relevantly (working in a similar
way to what was done by James et al., 1975). By this approach it might be possible to
check directly whether any of the parameters is significantly close to zero and to remove
links after selecting a specified significance level. Covariances between parameters can
also be considered in order to avoid eliminating all of them. We plan to explore this
reserach direction in the near future.

The method developed here potentially opens the way for many applications with
real-world data. In particular, the fact that it is suitable for high-dimensional systems
makes it a remarkable tool to study causality in this specific regime. Among the
countless applications, one that strikes into mind is to extend the analysis of the low-
frequency variability of the atmosphere presented in Springer et al., 2024. Deepening
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CHAPTER 4. CONCLUSION

the understanding of the topic could help dealing with weather and climate-related
risks.

As already suggested in Chapter 1 the method could be efficiently coupled to other
tools of system discovery to extend their usage for more complex systems. Some
applications could arise in neuroscience where the potential of pairing parsimonious
models and machine learning has already been shown (Luo et al., 2023).
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A

Graphical causal models

Since the dawn of scientific reasoning, people tried to draw connections among the
different parts of the complex world they were observing. For the people of our century
it is no more obscure at all that not all connections are truly relevant in practice. For
example, pure and simple correlations might often arise even when no deeper connection
is present. Then, to Pearl, 1995 we attribute the introduction of a distinction between
𝑝(𝑦 |𝑑𝑜(𝑥)) and 𝑝(𝑦 |𝑥). The operator “do” implies an explicit action on the system,
setting a variable 𝑋 to a given value 𝑥, which is in contrast with simply observing
𝑋 = 𝑥 (the simple conditioning). Since in many cases performing direct experiments
is just unethical or impossible it might look very hard the true estimation of these
causal effects. The great realisation, though, was that two graphical criteria can be
used to deduce estimate 𝑝(𝑦 |𝑑𝑜(𝑥)) only from observations (over assumptions on the
shape of the graphical model). These criteria are known as front-door criterion and
back-door criterion. In order to understand their definition, let’s first introduce some
useful concepts for causal graph theory (Spirtes et al., 1993).

Given a directed graph G, we call an undirected path a sequence of adjacent vertices
in the graph. Similarly, a directed path is an ordered sequence of vertices in which any
two consecutive elements are connected in the graph with a direct link from the first to
the second.

A descendant of a vertex is any other vertex in G such that a directed path from the
first to the second exist in G.

We also call a vertex V a collider on a path U if and only if there are two distinct edges
on U containing V as an endpoint.

Finally, we say that the vertices X and Y are d-separated given a distinct subset Z of
vertices in G if and only if no undirected path U between X and Y exists, such that

• all the colliders on U have a descendant in Z
• no other vertices in U are also in Z

Relating to the last definition we can finally state (Neuberg, 2003):

Criterion (Back-door criterion). Relative to the ordered pair of nodes (X,Y), Z satisfies the
back-door criterion in G if
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• none of the nodes in Z are descendants of X
• Z d-separates all the paths from X and Y which contains an arrow into X

In this case we can compute

𝑝(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

𝑝(𝑦 |𝑥, 𝑧)𝑝(𝑧)

Criterion (Front-door criterion). Relative to the ordered pair of nodes (X,Y), Z satisfies the
front-door criterion if

• Z intercepts all paths from X to Y
• no back-door path from X to Z exists
• all back-door paths from Z to Y are blocked by X

In this case, if additionally 𝑝(𝑥, 𝑧) ≠ 0, we can compute

𝑝(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

𝑝(𝑧 |𝑥)
∑
𝑥′

𝑝(𝑦 |𝑥′, 𝑧)𝑝(𝑥′)

Further insights can be found, for example, in Pearl, 2009. These criteria give another
reason for the interest in learning graphical models, as they can employed after recovering
the causal structure of the system to quantify causal effects.
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B

Categorical variables in the new
framework

Given the change in the information imbalance described above, we present here also
how this affect the results for categorical variables. In this part we also consider a
correction to the Information Imbalance which makes Δ = 0 in the most informative
case.

Consider to compute the rank in a discrete space as

𝑟𝑖 , 𝑗 =


0 if i and j in the same class

1 oth.

Then if the discrete space is the second one, you can just write the information imbalance
as (notice 𝑁 = |𝑆 |):

Δ(𝑑𝐴 → 𝑑𝐵) = 𝒩
1
|𝑆 |

∑
𝑖 , 𝑗

𝛿𝑟𝐴
𝑖,𝑗
,1𝑟

𝐵
𝑖,𝑗

and the normalization𝒩 should be fixed in such a way that the least informative case
gives as a result 1 (in agreement with the usual case). In particular

𝑝(𝑟𝐵𝑖,𝑗 = 1|𝑟𝐴𝑖,𝑗 = 1) = 𝑝(𝑟𝐵𝑖,𝑗) =

=
∑
𝛼

𝑝(𝑖 ∉ 𝐶𝛼 , 𝑗 ∈ 𝐶𝛼)

=
∑
𝛼

𝑝(𝑖 ∉ 𝐶𝛼)𝑝(𝑗 ∈ 𝐶𝛼)

=
∑
𝛼

(1 − 𝑝𝑆𝛼)𝑝𝑆
′

𝛼 = 1 −
∑
𝛼

𝑝𝑆𝛼𝑝
𝑆′
𝛼

where the index 𝛼 cycles over the different classes. Then the normalization is just
𝒩 = (E[𝑟𝐵])−1 = (∑𝛼(1 − 𝑝𝛼)𝑝𝛼)−1. Now, it is easy to see that

∑
𝛼(1 − 𝑝𝛼)𝑝𝛼 can be easily

estimated in an unbiased way since

E

[∑
𝛼

𝑁𝑆
𝛼

|𝑆 |
𝑁𝑆′

𝛼

|𝑆′ |

]
=

∑
𝛼

E

[
𝑁𝑆

𝛼

|𝑆 |

]
E

[
𝑁𝑆′

𝛼

|𝑆′ |

]
=

∑
𝛼

𝑝𝑆𝛼𝑝
𝑆′
𝛼
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It must be noticed, though, that this is not enough to get an unbiased estimate of the
normalization. Indeed, consider the case in which at least two different classes are seen
among 𝑆 and 𝑆′, then you can expand in series

1

1 −∑
𝛼

𝑁𝑆
𝛼
|𝑆 |

𝑁𝑆′
𝛼
|𝑆′ |

= 1 +
∑
𝛼

𝑁𝑆
𝛼

|𝑆 |
𝑁𝑆′

𝛼

|𝑆′ | +
∑
𝛼

𝑁𝑆
𝛼

|𝑆 |
𝑁𝑆′

𝛼

|𝑆′ |
∑
𝛽

𝑁𝑆
𝛽

|𝑆 |
𝑁𝑆′

𝛽

|𝑆′ | + · · ·

and after taking the expected value of this you get:

E [·] = 1 +
∑
𝛼

𝑝𝑆𝛼𝑝
𝑆′
𝛼 +

∑
𝛼,𝛽

E[𝑁𝑆
𝛼𝑁

𝑆
𝛽 ]E[𝑁𝑆′

𝛼 𝑁𝑆′
𝛽 ]

|𝑆 |2 |𝑆′ |2 + · · · (B.1)

which should be compared with
1

1 −∑
𝛼 𝑝

𝑆
𝛼𝑝

𝑆′
𝛼

= 1 +
∑
𝛼

𝑝𝑆𝛼𝑝
𝑆′
𝛼 +

∑
𝛼,𝛽

𝑝𝑆𝛼𝑝
𝑆
𝛽𝑝

𝑆′
𝛼 𝑝𝑆

′
𝛽 + · · · (B.2)

Considering that 𝑁𝛼s turns out to be sampled from a multinomial distribution, after
recalling that

𝐶𝑜𝑣[𝑋𝑖 , 𝑋𝑗] = −𝑁𝑝𝑖𝑝 𝑗 =⇒ E[𝑋𝑖𝑋𝑗] = 𝑝𝑖𝑝 𝑗(𝑁2 − 𝑁)
V[𝑋𝑖] = 𝑁𝑝𝑖(1 − 𝑝𝑖) =⇒ E[𝑋2

𝑖 ] = 𝑁𝑝𝑖 + 𝑝2
𝑖 (𝑁

2 − 𝑁)

and exploiting the symmetry to write
∑

𝛼,𝛽 · = 2
∑

𝛽>𝛼 · +
∑

𝛼=𝛽 ·, we can see that the last
term in equation B.1 becomes:

2
∑
𝛽>𝛼

𝑝𝑆𝛼𝑝
𝑆
𝛽𝑝

𝑆′
𝛼 𝑝𝑆

′
𝛽

[
1 + 1
|𝑆 | |𝑆′ | −

1
|𝑆 | −

1
|𝑆′ |

]
+

+
∑
𝛼

(𝑝𝑆𝛼)2(𝑝𝑆
′

𝛼 )2
[
1 + 1
|𝑆 | |𝑆′ | −

1
|𝑆 | −

1
|𝑆′ |

]
+

+
∑
𝛼

(𝑝𝑆𝛼)2𝑝𝑆
′

𝛼

[
1
|𝑆′ | −

1
|𝑆′ | |𝑆 |

]
+

∑
𝛼

𝑝𝑆𝛼(𝑝𝑆
′

𝛼 )2
[

1
|𝑆 | −

1
|𝑆′ | |𝑆 |

]
+

+
∑
𝛼

𝑝𝑆𝛼𝑝
𝑆′
𝛼

1
|𝑆 | |𝑆′ |

where in red we highlighted the terms forming the last term in equation B.2. Meaning
that

𝒩
|𝑆 | ≈

|𝑆′ |∑
𝛼

(
|𝑆 | − 𝑁𝑆

𝛼

)
𝑁𝑆′

𝛼

is at least a consistent estimator (at least up to the second order expansion). It should be
underlined that, in principle, these considerations can be used only if 𝒩|𝑆 | is estimated
independently from the rest of the information imbalance. Otherwise, the average
would not factorise, not allowing to compute on their own the terms in B.1.

If the normalisation is indeed estimated in an independent way, then it is also
possible to estimate an error which will look a little be more complex than the one used
for continuous variables. Specifically, we can use that for independent variables

V[𝑋𝑌] = E[𝑋2]V[𝑌] + E[𝑌]2V[𝑋] = V[𝑋]V[𝑌] + E[𝑌]2V[𝑋] + E[𝑋]2V[𝑌]
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and estimate the different terms for 𝑋 = 𝒩 and𝑌 the remaining terms in the information
imbalance.

In the case in which you start from a discrete space and go to a continuous one, you
can write:

Δ(𝑑𝐴 → 𝑑𝐵) = 𝒩
1
|𝑆 |

∑
𝑖 , 𝑗

𝛿𝑟𝐴
𝑖,𝑗
,1𝑟

𝐵
𝑖,𝑗 =

𝒩
|𝑆 |

∑
𝛼𝐴

∑
𝑖 , 𝑗

I[𝑖 ∈ 𝐶𝛼𝐴 , 𝑗 ∈ 𝐶𝛼𝐴]𝑟𝐵𝑖,𝑗 (B.3)

And this means that in the least informative case:

E


∑
𝛼𝐴

∑
𝑖 , 𝑗

I[𝑖 ∈ 𝐶𝛼𝐴 , 𝑗 ∈ 𝐶𝛼𝐴]𝑟𝐵𝑖,𝑗

 =

∑
𝛼𝐴

E𝐴


∑
𝑖 , 𝑗

I[𝑖 ∈ 𝐶𝛼𝐴]I[𝑗 ∈ 𝐶𝛼𝐴]E𝐵
[
𝑟𝐵𝑖,𝑗

] =

E𝐵

[
𝑟𝐵𝑖,𝑗

] ∑
𝛼𝐴

E[𝑁𝑆
𝛼𝐴]E[𝑁𝑆′

𝛼𝐴] =

E𝐵

[
𝑟𝐵𝑖,𝑗

] ∑
𝛼𝐴

𝑝𝑆𝛼 |𝑆 |𝑝𝑆
′

𝛼 |𝑆′ | =

where E𝐵
[
𝑟𝐵
𝑖,𝑗

]
= 1
|𝑆′ |

∑|𝑆′ |−1
𝑖=0 𝑖 =

|𝑆′ |−1
2 (ranks starting from 0).

It must be noticed, though, that when using B.3 for maximally informative variables
you do not get 0 (even after making the ranks starting themselves from 0). In order to
get effectively 0 a correction should be added:

Δ̃ = 𝒩
 1
|𝑆 |

∑
𝛼

∑
𝑖∈𝐶𝛼 , 𝑗∈𝐶𝛼

𝑟𝐵𝑖,𝑗 − �̃�


�̃� =

1
|𝑆 |

∑
𝛼

∑
𝑖∈𝐶𝛼


∑
𝑗∈𝐶𝛼

𝑟𝐵𝑖,𝑗

𝑚𝑖𝑛

=
1

2|𝑆 |
∑
𝛼

𝑁𝑆
𝛼 (𝑁𝑆′

𝛼 − 1)𝑁𝑆′
𝛼

Which, combined with the term computed above allows to write

𝒩−1 =
1

2|𝑆 |

[∑
𝛼

(|𝑆′ | − 1)
∑
𝛼

𝑁𝑆
𝛼𝑁

𝑆′
𝛼 −

∑
𝛼

𝑁𝑆
𝛼 (𝑁𝑆′

𝛼 − 1)𝑁𝑆′
𝛼

]
=

1
2|𝑆 |

∑
𝛼

𝑁𝑆
𝛼𝑁

𝑆′
𝛼 (|𝑆′ | − 𝑁𝑆′

𝛼 )

So finally

Δ̃ =
2∑

𝛼 𝑁
𝑆
𝛼𝑁

𝑆′
𝛼 (|𝑆′ | − 𝑁𝑆′

𝛼 )


∑
𝛼

∑
𝑖 , 𝑗∈𝐶𝛼

𝑟𝐵𝑖,𝑗 −
1
2

∑
𝛼

𝑁𝑆
𝛼 (𝑁𝑆′

𝛼 − 1)𝑁𝑆′
𝛼
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Figure B.1: In this example we consider 𝑋,𝑌, 𝑍 sampled from a Gaussian distribution centered in the
origin. As already done in the main body, we then consider polar coordinates for the plot. As expected, nor
𝑋 nor 𝑌 alone (𝜑 = 0 and 𝜑 = 𝜋/2 lines respectively) happens to be predictive on B. The minimum of the
Information Imbalance is then found for 𝜃 = 𝜋/2 (i.e. giving weight 0 to the variable 𝑍, which is indeed
not relevant to describe 𝐵).

B.1 Synergical dependencies

Once introduced the concept of the Informtation Imbalance for discrete variables, it is
possible to devise a system to analyse explicitly multi-body interactions (commonly
described as synergical dependencies (Runge, 2018)). We consider three random variables
𝐴 = {𝑋,𝑌, 𝑍} independently sampled from a symmetric distribution and a binary
variable 𝐵 = (𝑋 > 0) ⊕ (𝑌 > 0). We then compute the Information Imbalance Δ(𝑑𝒘⊙𝐴 →
𝑑𝐵). Because of the way 𝐵 is constructed we have 𝑋 ⊥⊥ 𝐵, 𝑌 ⊥⊥ 𝐵 but {𝑋,𝑌}��⊥⊥𝐵. In Fig.
B.1 we show using some Gaussian random variables that the Information Imbalance is
able to retrieve these multi-body interactions. Indeed, the minimum is found for 𝑋 and
𝑌 simulataneously different from zero.
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C

Robustness test

In this section we show the effect of modifying some of the parameters of our algorithm
with the coupled Rössler oscillators. In particular, in Fig. C.1 and Fig. C.2 we show
the change in the weights when considering different time lags and strength for an
observational noise. In Fig. C.3 and Fig. C.4 we first show the effect on the resulting
graph of applying a threshold and then the statistical significance of the procedure in
an alternative way to that presented in the main body. Finally, in Fig. C.5 we present the
true positive rate against the false positive rate for the detection of direct links at each
threshold setting.

Figure C.1: We consider the system of three coupled Rössler oscillators with 𝑋 → 𝑍→ 𝑌 and perform
the minimization for the prediction of 𝑌3. Modifying the value of the time lag different variables show
their relevance. With a small lag only the variables from the same Rössler are relevant, increasing the lag
other variables starts being more relevant.
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APPENDIX C. ROBUSTNESS TEST

Figure C.2: We consider again the same case seen in the previous plot. This time after selecting the
datapoints, we add a gaussian noise whose’s variance is progressively increased. We plot the results
obtained the different weights found at the end of the minimization procedures. On the x axis we rescale
the standard deviation of the noise by the maximum value found in the dataset.

Figure C.3: Varying a global threshold, different graph structures appears, starting from a fully connected
graph to end with a graph in which each node is independent from the others. In the plot we show the
results for 3 Rössler oscillators coupled as 𝑋 → 𝑍← 𝑌.
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Figure C.4: After minimizing Δ
(
𝑑𝒘⊙𝑿 (𝑡) → 𝑑𝑋 𝑖 (𝑡+𝜏)

)
it is possible to apply a threshold on the weights

and restart the minimization algorithm. It is then possible to compute Δ and 𝜎Δ with the initial weights
and with the final ones Δ𝑛𝑒𝑤 and 𝜎Δ𝑛𝑒𝑤 . One can then check if Δ𝑛𝑒𝑤 is significantly different from Δ. We
consider again 3 Rössler oscillators coupled as 𝑋 → 𝑍← 𝑌 and 𝜏 = 5, then for each variable 𝑋 𝑖 in the
second space and any threshold which eliminates a different weight we follow the procedure above and
plot the value of the Z-test. As expected, the highest the threshold the hardest it is to find an Information
Imbalance comparable to the original one. Indeed, the variables with higher weights are necessary for the
predictions.

Figure C.5: The receiver operating characteristic (ROC) curve is a common tool for graphically displaying
the performance of a binary classifier as its threshold varies. A larger area under the curve (AUC) indicates
better model performance in distinguishing between the two possible states. Although our method is not
specifically designed to construct adjacency matrices (which can be seen as thresholded matrices with 0-1
entries based on the presence of links) for causal graphs, it still yields good results when we focus on small
enough time lags (for which a ground truth can truly be established). As shown here, this is evident across
all the cases presented in Fig. 3.3.
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