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Summary

QUIC (Quick UDP Internet Connections) is a transport layer protocol, proposed
by Google and used both in Chrome and YouTube. Its aim is to improve overall
performance by solving some problems of the standard transport protocol currently
used by most websites, i.e., TCP. Amongst the other, those most notable are Head
of Line blocking and long handshake times.

Researchers have put their efforts in improving many aspects of transport layer
protocols, i.e., power and bandwidth constraints and congestion control in wireless
networks. Specifically, research efforts have tried to improve the performances
of congestion control algorithm, either with fixed heuristic or with new machine
learning algorithms. However, none of these solutions is able to exploit and
combine lower-level metrics with transport layer information, thus providing a
more comprehensive view of the state of the network.

In this work, we enhance the congestion control mechanism of the QUIC protocol
via usage of a Deep Reinforcement Learning model. We design a neural network-
based model that aims at obtaining better inference performance by means of
cross-layer information. Finally, the model was trained by exploiting a full-stack
dataset, which was collected during this thesis.

The proposed approach has been validated in a NextG wireless network archi-
tecture. Experimental results shows interesting performance trade-offs between
RTT and bandwidth in a variety of conditions, from video streaming to random
web browsing, proving the effectiveness of the discussed approach.

The code and the dataset are available with an open-source license.
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Chapter 1

Introduction

Since the introduction of QUIC in 2012, its adoption has steadily grown, with
it being used by approximately 7.9% of websites as of February 2024 [1] and
accounting for around 75% of Meta’s traffic [2].
QUIC, short for Quick UDP Internet Connections, is a modern transport protocol
designed to improve the speed and security of internet communication.
Unlike traditional protocols like TCP, QUIC operates over UDP (User Datagram
Protocol), which leads to faster connection setup and lower latency.
QUIC introduces multiplexed streams, allowing multiple application-layer streams
to be sent over a single QUIC connection. This enables efficient communication
between clients and servers, reducing latency and improving performance.
Additionally, QUIC supports 0-RTT (Zero Round Trip Time) connections. The
initial handshake takes one RTT, this is due to the fact that initially, the client
has no information about the server. Initially, when the client lacks information
about the server, it initiates a handshake process by sending a preliminary client
hello (CHLO) message. This CHLO prompts the server to respond with a reject
(REJ) message. The REJ message comprises several components: (i) a server
configuration that includes the server’s long-term Diffie-Hellman public value, (ii)
a certificate chain for authenticating the server, (iii) a signature of the server
configuration using the private key from the leaf certificate of the chain, and (iv)
a source-address token. This token, an authenticated-encryption block, contains
the client’s publicly visible IP address (as observed at the server) along with a
timestamp provided by the server. Subsequently, the client utilizes this token in
later handshakes to validate ownership of its IP address. Upon receiving the server
configuration, the client proceeds to authenticate it by verifying the certificate
chain and signature. Following successful authentication, the client transmits a
complete CHLO message, which includes the client’s ephemeral Diffie-Hellman
public value.
This feature allows clients to send encrypted data to servers during the initial
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handshake, further reducing latency and speeding up the connection process.
Once the client has sent a complete CHLO, it obtains initial keys for the connection.
This is possible because it can calculate the shared value using the server’s long-term
Diffie-Hellman public value and its own ephemeral Diffie-Hellman private key. At
this stage, the client can begin transmitting application data to the server. If the
client aims to achieve zero round-trip time (0-RTT) latency for data transmission,
it must start sending data encrypted with its initial keys without waiting for the
server’s response.
This allows the protocol to have particularly high gains in high RTT networks, in
the original QUIC paper [3], a set of tests in different region has been conducted,
showing that, while in low average RTT, the gain of QUIC over TCP is negligible
(like in South Korea), in other region where the average RTT is higher, like India,
the gains are much bigger as shown in Table 1.1.

% Reduction in Search Latency % Reduction in Rebuffer Rate
Country Mean Min RTT (ms) Mean TCP Rtx % Desktop Mobile Desktop Mobile
South Korea 38 1 1.3 1.1 0.0 10.1
USA 50 2 3.4 2.0 4.1 12.9
India 188 8 13.2 5.5 22.1 20.2

Table 1.1: Network characteristics of selected countries and the changes to mean
Search Latency and mean Video Rebuffer Rate for users in QUIC.

The most interesting result is that the % Reduction in Search Latency is less
pronounced in mobile devices than in Desktop ones, while it’s the other way around
in the case of Rebuffer Rate.

1.1 Motivation
The original QUIC paper [3], emphasizes several metrics, with specific focus on
handshake times, in particular it shows that the main advantage of the 0-RTT
mechanism is it’s ability to be largely insensitive to RTT, due to the fixed latency
cost of 0-RTTs.
A big limitation of QUIC is its relatively modest gains for mobile users compared
to desktop users. This is partially due to the fact that mobile applications are often
fine-tuned for their environment and partially to the CPU constraint of mobile
devices.
The vast majority of connections in the latter devices is via wireless, this means
that some work has to be done to address the performances of QUIC in this kind
of enviroment.
In order to tackle this underlying problem, different modified versions of QUIC
has been proposed by researchers worldwide, i.e., QUIC-go [4], Microsoft QUIC
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(MsQUIC) [5], Modified QUIC [6], Quiche [7] and aioquic [8]. QUIC-go is an
implentation of QUIC in Go language. MsQUIC is a Microsoft implementation of
the QUIC protocol. Modified QUIC proposes a modification to the handshaking
mechanism to minimize the time required to update the CWnd. Quiche is an
implementation of the QUIC protocol in Rust and C. aioquic is an implementation
of quic in Python.
So far, Machine Learning based congestion control algorithm have been proposed
but only for the TCP protocol, such as: Remy [9], PCC-Vivace [10], Q-Learning
TCP [11], Orca [12] and Aurora [13]. While this works demonstrate the capability
and potential of ML in this field, they were not designed and developed for the
QUIC protocol or wireless networks in general.
To address this issue some other works has been proposed, for example PBQ-
Enhanced QUIC [14] uses a deep RL algorithm based on PPO [15] to adjust the
CWnd. However, this last work does not incorporate lower-level metrics in the
algorithm.

1.2 Thesis Contribution
To address this issues, we propose a novel congestion control algorithm based on
Reinforcement Learning, which allows to use lower level metrics in order to have a
deeper understanding of the underlying network conditions.

1.3 Object
The significance of this work lies in its potential to address critical limitations
of existing congestion control algorithms in wireless networks. As 5G technology
becomes increasingly prevalent, the ability to optimize network performance is
crucial. By integrating reinforcement learning and cross-layer information, this
research offers a groundbreaking solution that could lead to more efficient, reliable,
and adaptable network protocols. Another issue that has been tackled in this work,
is the creation of a new full-stack dataset, containing features from different layers.

1.4 Findings
We anticipate that by carrying out this task, the suggested method, which combines
cross-layer information with reinforcement learning, will greatly improve QUIC’s
performance in a 5G wireless setting. It is expected that this approach will offer a
more thorough and precise knowledge of network circumstances, resulting in better
overall network efficiency and more successful congestion control. In particular,
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we anticipate lower latency, higher throughput, and more effective management of
network congestion when compared to conventional approaches that exclusively
depend on transport layer features. By creating the dataset mentioned early, we
also expect to provide researchers the ability to easily train and test new algorithms.

1.5 Meanings
The findings of this study can hold significant implications in the study of congestion
control algorithms in wireless networks. The successful integration of reinforcement
learning techniques, together with the cross-layer approach, highlights the potential
of advanced machine learning techniques in addressing complex network challenge

1.6 Perspectives
Based on these findings, we recommend further exploration and adoption of cross-
layer, machine learning based approaches in network protocol design. By continuing
research into both, more general, and real-world settings, this could pave the way
for more resilient, adaptive, and optimized network infrastructure
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Chapter 2

Related Work

2.1 Previous Work in Congestion Control
Congestion control is a critical aspect of network management, ensuring that data
is transmitted efficiently and reliably across a network. Over the years, several
traditional methods have been developed to address congestion in various network
environments. However, these methods often face significant challenges when
applied to wireless networks.

2.1.1 Overview of Traditional Congestion Control Methods
The primary goal of congestion control is to prevent network congestion, which
can lead to packet loss, increased latency, and reduced throughput. Traditional
congestion control mechanisms have been primarily implemented at the transport
layer, with TCP (Transmission Control Protocol) being one of the most widely
used protocols.

TCP Congestion Control Mechanisms

• TCP Cubic [16]: TCP Cubic enhances congestion control with a scalable
approach using a cubic function to adjust the congestion window dynamically.
It balances throughput and fairness in varying network conditions, efficiently
utilizing available bandwidth while maintaining stability.

• TCP Reno [17]: Building on early congestion control algorithms, TCP
Reno introduced the fast recovery mechanism. It improves performance in
high-latency environments by quickly recovering from packet losses without
waiting for a timeout.
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• TCP NewReno [18]: An enhancement over TCP Reno, NewReno includes
improvements in the fast recovery algorithm, allowing it to recover multiple
packet losses within a single window of data.

• TCP Vegas [19]: This algorithm focuses on detecting congestion before
packet loss occurs by monitoring round-trip times. TCP Vegas adjusts the
congestion window more conservatively compared to Tahoe and Reno, aiming
to maintain a stable network state.

• BBR (Bottleneck Bandwidth and Round-trip Propagation Time)
[20]: Unlike traditional loss-based congestion control algorithms, BBR is a
model-based algorithm that estimates the available bandwidth and round-trip
time to determine the optimal sending rate. Developed by Google, BBR aims
to maximize throughput while minimizing queuing delay by operating at the
estimated bottleneck bandwidth and keeping the network queue as short as
possible.

While these traditional congestion control algorithms have been instrumental in
managing network traffic, they encounter specific limitations in wireless environ-
ments. Traditional algorithms rely on hard-coded rules and predefined thresholds,
which means they are not adaptive. These fixed rules can lead to suboptimal per-
formance when network conditions change rapidly, as is often the case in wireless
networks.

2.2 Previous Work on Congestion Control Using
Machine Learning and Reinforcement Learn-
ing

The application of machine learning (ML) and reinforcement learning (RL) to
congestion control represents a significant advancement over traditional methods.
Unlike conventional algorithms that rely on hard-coded rules and predefined thresh-
olds, ML and RL approaches can learn and adapt to dynamic network conditions,
making them particularly suitable for complex and variable environments such as
wireless networks.

• Aurora [13]: Aurora employs a neural network to predict the optimal sending
rate based on observed network conditions such as latency and packet loss. It
has shown significant improvements in throughput and latency compared to
traditional congestion control algorithms like TCP Cubic and BBR.

• Remy [9]: Remy employs supervised learning to generate rules that opti-
mize performance based on historical network data and predefined objectives.
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Remy-generated algorithms have demonstrated better performance in terms
of throughput and fairness compared to standard TCP variants.

• PCC [21]: PCC optimizes network performance by dynamically adjusting
congestion control parameters based on observed network conditions. It aims
to maximize throughput and minimize latency through adaptive learning
techniques, ensuring efficient utilization of available bandwidth.

• Orca [12]: Orca Congestion Control is a scheme designed to enhance the
performance of network traffic by adapting to varying network conditions. It
leverages a combination of delay-based and loss-based signals to make dynamic
adjustments in real-time, ensuring efficient utilization of network resources. By
optimizing the balance between throughput and latency, Orca aims to improve
the overall quality of experience for end-users, particularly in high-speed and
complex network environments.

• Sage [22]: Sage Congestion Control is a congestion control algorithm de-
veloped to improve network performance by combining predictive modeling
with real-time data analysis. It uses machine learning techniques to forecast
network congestion and adjust data transmission rates accordingly, aiming to
prevent packet loss and minimize latency. By proactively managing conges-
tion, Sage enhances throughput and stability, making it suitable for modern,
high-demand network applications.

• Owl [23]: Owl is a novel congestion control protocol leveraging reinforcement
learning to improve network performance. Owl dynamically adjusts the
congestion window based on both end-to-end features and partial network
signals, outperforming traditional end-to-end or in-network methods. The
protocol is evaluated extensively, demonstrating significant improvements in
bandwidth and delay across various network scenarios, and proving effective
even with partial network visibility.

These examples highlight the potential of machine learning and reinforcement
learning techniques in developing more adaptive and efficient congestion control
algorithms. By leveraging data-driven approaches, these algorithms can better
handle the dynamic and unpredictable nature of network environments, especially
in wireless networks.

2.3 Previous work in congestion control for wire-
less networks

Congestion control in wireless networks plays a critical role in optimizing data
transmission efficiency and network performance. This section reviews significant
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advancements and methodologies in congestion control tailored specifically for
wireless communication environments.

• Verus [24]: Verus is a congestion control algorithm specifically designed for
wireless networks, notable for its innovative approach to optimizing throughput
and managing network resources. Verus employs machine learning techniques
to predict available bandwidth in wireless environments. By forecasting net-
work conditions, Verus can dynamically adjust transmission rates to maximize
throughput while maintaining stability.

• Sprout [25]: Sprout is a congestion control algorithm designed primarily
for real-time multimedia applications, especially those operating over wireless
networks. Developed by researchers at MIT, Sprout aims to provide low-
latency, high-quality video streaming and real-time communication experiences.

Current research in congestion control for wireless networks highlights the
evolution towards adaptive methodologies, leveraging machine learning to enhance
efficiency and effectively manage dynamic network environments, particularly in
real-time multimedia applications.
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Chapter 3

Background on QUIC and
RL

This section will provide essential background both on QUIC and on Reinforcement
Learning. This will be crucial to understand the problem we are trying to solve
and the possible solutions.

3.1 Introduction to QUIC

QUIC (Quick UDP Internet Connections) is a transport layer network protocol
initially developed by Google in 2012. It was designed to address some of the
limitations of the Transmission Control Protocol (TCP), particularly in terms of
connection establishment latency and reliability. QUIC has since been standardized
by the Internet Engineering Task Force (IETF) as RFC 9000, marking its evolution
from an experimental protocol into a widely adopted standard.

3.1.1 Purpose

The primary purpose of QUIC is to enhance the performance of web applications
by reducing latency and improving security. QUIC achieves this by combining
the features of the traditional transport and security layers into a single protocol,
thus optimizing the overall communication process. It leverages User Datagram
Protocol (UDP) as its underlying protocol, enabling faster connection setup and
data transfer compared to TCP.
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3.1.2 Multiplexed Connections
QUIC supports multiple streams within a single connection, preventing head-of-line
blocking, a common issue in TCP where a delay in one stream can block all others.
This feature enhances the performance of applications that rely on multiple parallel
data streams, such as modern web pages that load numerous resources concurrently.

3.1.3 Connection Establishment and Latency
QUIC significantly reduces connection establishment latency through its 0-RTT
(Zero Round-Trip Time) and 1-RTT (One Round-Trip Time) handshakes. Unlike
TCP, which requires multiple round trips to establish a secure connection, QUIC
can establish a secure connection much more quickly, improving page load times
and user experience.

3.1.4 Security
QUIC incorporates TLS 1.3 encryption directly into its protocol, ensuring that
all connections are secure from the start. This integration reduces the need for
separate security handshakes and simplifies the security model.

3.1.5 Congestion Control
As described on RFC 9002, the congestion control algorithms used in QUIC, are the
classical TCP ones. However, QUIC supports various congestion control algorithms,
such as Cubic and New Reno, and it provides flow control on a per-stream basis,
unlike TCP’s connection level flow control.

3.1.6 Adoption and Applications
Major web browsers like Google Chrome and Mozilla Firefox, and services like
Google Search and YouTube, have adopted QUIC, demonstrating its effectiveness
in real-world applications. Additionally, the adoption of HTTP/3, which runs over
QUIC, further underscores its significance in the next generation of web protocols.

3.2 Introduction to Reinforcement Learning
Reinforcement Learning (RL) is a branch of machine learning where an agent learns
to make decisions by performing actions in an environment to maximize some
notion of cumulative reward. This section provides a comprehensive introduction
to RL, covering its definitions, core components, fundamental concepts, and various
types of RL algorithms.
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3.2.1 Definitions and Basics
Reinforcement learning (RL) is an interdisciplinary area of machine learning and
optimal control concerned with how an intelligent agent ought to take actions in a
dynamic environment in order to maximize the cumulative reward. Reinforcement
learning is one of three basic machine learning paradigms, alongside supervised
learning and unsupervised learning.

Reinforcement learning differs from supervised learning in not needing labelled
input/output pairs to be presented, and in not needing sub-optimal actions to be
explicitly corrected. Instead the focus is on finding a balance between exploration
(of uncharted territory) and exploitation (of current knowledge) with the goal of
maximizing the long term reward, whose feedback might be incomplete or delayed.

3.2.2 Core Components
The core components of a Reinforcement Learning system are:

• Agent: The entity that takes actions and learns from the environment.

• Environment: The world in which the agent operates and interacts.

• State: A description of the world’s current situation.

• Action: Choices available to the agent at any given state, they affect the
state of the environment.

• Reward Function: A function that measures the feedback of the last action
of the agent in the environment.

• Policy: A mapping from state to action that defines the agent’s behavior.

• Value Function: Value functions specify what is good in the long run.
The value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

11
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Figure 3.1: General Framework of Reinforcement Learning

3.2.3 Markov Decision Processes (MDP)
The Markov Decision Process (MDP) is a mathematical framework for modeling
decision-making in situations where outcomes are partly random and partly under
the control of the agent. An MDP is defined by a 4-tuple (S, A, Pa, Ra):

• S: The set of all possible states called the state space.

• A: The set of actions called the action space.

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a): The probability that action a in state
s at time t will lead to state s′ at time t + 1.

• Ra(s, s′): The immediate reward receive after transitioning from state s to
state s′, due to action a.

A policy function π is a (potentially probabilistic) mapping from state space (S)
to action space (A).
The goal in and MDP is to find a policy that maximizes the expected cumulative
reward over time.
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3.2.4 Exploration vs Exploitation
One of the key challenges in RL is the balance between exploration and exploitation:

• Exploration: The agent tries new actions to discover their effects and improve
its knowledge of the environment.

• Exploitation: The agent uses its current knowledge to maximize the reward,
choosing actions that it believes to be the best based on past experience.

Effective RL strategies must find a balance between these two approaches to ensure
that the agent can discover optimal policies while still obtaining high rewards.

3.2.5 Model-Free vs Model-Based
RL algorithms can be broadly categorized into two types based on whether they
use a model of the environment:

• Model-Free: These algorithms do not use a model of the environment.
Instead, they learn policies or value functions directly from experience.

• Model-Based: These algorithms use a model of the environment to make
decisions. The model predicts the next state and reward given a current state
and action.

3.2.6 Deep Reinforcement Learning
Deep Reinforcement Learning combines RL with deep learning, allowing agents to
handle high-dimensional state spaces and learn complex policies. Some well known
algorithms are:

• Deep Q Network (DQN): Deep Q-Networks (DQN) combine Q-learning
with deep neural networks to approximate the action-value function, enabling
agents to learn policies directly from high-dimensional sensory inputs like
images. DQN uses experience replay and a target network to stabilize training,
which has achieved impressive results in complex environments such as Atari
games.

• Proximal Policy Optimization (PPO): Proximal Policy Optimization
(PPO) is a policy gradient method that improves training stability and ef-
ficiency by using a clipped objective function to limit the policy updates
within a trust region. PPO balances the benefits of policy gradient methods
with robustness, making it effective for various continuous control tasks and
commonly used in complex environments like robotics and video games.

13



Chapter 4

Dataset Collection with
ETTUS B210

In the context of 5G networks, three main components are needed:

• Core Network

• Next Generation NodeB (gNodeB/RAN)

• User Equipment (UE)

4.1 Core Network
The more complex element of the network is the Core Network, this consists of 11
functions. Each one of them represent a distinct and specialized task or operation
that contribute to the overall functionality and performance of the network. The
components of the network are namely:

• User Plane Function (UPF)

• Data network (DN)

• Core Access and Mobility Management Function (AMF)

• Authentication Server Function (AUSF)

• Session Management Function (SMF)

• Network Slice Selection Function (NSSF)

• Network Exposure Function (NEF)
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• NF Repository Function (NRF)

• Policy Control function (PCF)

• Unified Data Management (UDM)

• Application Function (AF)

Figure 4.1: Core Network Schematic

4.1.1 User Plane Function
The User Plane Function (UPF) is a crucial component in the architecture of 5G
networks. It is responsible for handling the user data plane, which involves the
actual transmission and routing of data packets between the user equipment (UE)
and external data networks. This function allows the data plane to be shifted closer
to the network edge, resulting in faster data rates and shorter latencies.

4.1.2 Data Network (DN)
In the context of 5G, the data network is often referred to as the internet. This
network is a complex infrastructure that enables the transmission, processing, and
management of data across 5G systems.
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4.1.3 Core Access and Mobility Management Function
(AMF)

The AMF is the most critical component of the 5g Core Network. It is responsible
for managing access and mobility for 5G devices, and it interacts with other network
functions such as the UPF (User Plane Function), SMF (Session Management
Function), and AUSF (Authentication Server Function). The AMF performs the
following functions:

• Device Registration
The AMF is responsible for registering a 5G device with the network and
assigning it a unique identifier. This allows the network to keep track of the
device and its location.

• Access Management
The AMF performs access management functions such as authentication,
authorization, and accounting (AAA) for 5G devices. It verifies the identity
of the device and determines whether it is authorized to access the network.

• Mobility Management
The AMF tracks the location of the device and manages handovers between
cells and base stations. It ensures that the device maintains connectivity as it
moves through different areas of the network.

• Policy Enforcement
The AMF enforces network policies such as Quality of Service (QoS) and charg-
ing policies. It ensures that the network resources are allocated appropriately
and that the device is charged correctly for the services it uses.

• Session Management
The AMF manages the establishment, modification, and termination of 5G
sessions for devices. It coordinates with other network functions such as
the Session Management Function (SMF) to ensure that sessions are set up
correctly and resources are allocated appropriately.

• User Plane Function Selection
The AMF selects the appropriate UPF based on network policies and the
device’s location. The UPF is responsible for forwarding user data between
the device and the network.

• Subscriber Data Management
The AMF stores and manages subscriber data such as the device’s profile,
subscription data, and service data. This allows the network to provide
personalized services to the device.
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• Security Management
The AMF is responsible for ensuring the security of 5G devices and the network.
It manages security functions such as key management, authentication, and
encryption.

• Network Slicing
The AMF plays a critical role in network slicing, which allows the network
to create virtualized network segments with dedicated resources and services
for different use cases. The AMF is responsible for managing the access and
mobility of devices within each network slice.

• Network Integration
The AMF is responsible for integrating the 5G core network with external
networks, such as 4G LTE networks or Wi-Fi networks. It coordinates with
other network functions to ensure a seamless handover between different
networks.

• Control Plane Management
The AMF manages the control plane of the 5G network, which is responsible
for signalling and network management. It ensures that signalling messages
are transmitted correctly between network functions and that the network
resources are managed efficiently.

• Fault Management
The AMF is responsible for detecting and managing faults within the 5G core
network. It monitors the network for anomalies and alerts network operators
if a fault is detected.

• Policy Control
The AMF is responsible for enforcing policies related to network resource
allocation, Quality of Service (QoS), and charging. It ensures that the policies
are applied correctly and that the device is charged appropriately for the
services it uses.

• Location Management
The AMF is responsible for tracking the location of 5G devices and managing
their mobility. It ensures that devices maintain connectivity as they move
through different areas of the network.

• Network Optimization
The AMF plays a key role in optimizing the 5G network for performance and
efficiency. It monitors network usage and adapts the network resources to
meet the demands of the devices.
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4.1.4 Authentication Server Function (AUSF)
The Authentication Server Function (AUSF) in the 5G network is a core component
responsible for verifying the identity of users and devices trying to access the
network. It enforces security measures to ensure only authorized entities can
connect, collaborates with other network functions, supports flexible authentication
methods, and manages authentication vectors for secure communication. Overall,
it plays a crucial role in maintaining network integrity and security

4.1.5 Session Management Function (SMF)
The Session Management Function (SMF) in the 5G network is central to managing
user sessions, ensuring optimal IP address allocation, controlling Quality of Service
(QoS), enforcing network policies, coordinating with other functions, dynamically
adapting to user and network conditions, managing data bearers, and implementing
robust security measures.

4.1.6 Network Slice Selection Function (NSSF)
The Network Slice Selection Function, as the name suggests, manages different
network slices for diverse user needs, ensuring efficient resource use, coordinating
with other network elements, facilitating customization, handling slice creation and
termination, ensuring smooth user experience, enabling flexible network deployment,
and optimizing services through policy control.

4.1.7 Network Exposure Function (NEF)
The Network Exposure Function (NEF) in 5G enables third-party applications to
access network capabilities and services through APIs, integrating external services
securely, managing authentication and authorization, fostering service innovation,
supporting monetization, and enhancing agility in service provisioning without
pinpointing specific details.

4.1.8 NF Repository Function (NRF)
The Network Repository Function (NRF) in 5G plays a fundamental role in
managing information related to network functions (NFs) within the network
architecture. Firstly, it acts as a central registry where information about available
NFs in the network is stored. This registry serves as a kind of "database" of NFs,
allowing other network elements to discover and access these functions when needed.
One of the primary functions of the NRF is to facilitate NF discovery by other
network elements. This means it provides mechanisms and procedures through
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which other network elements can obtain detailed information about which NFs are
available, what functionalities they offer, and how they can be used. Essentially, it
acts as a "catalog" of NFs within the network. In addition to NF discovery, the NRF
also supports dynamic updates of NF information. This means that when network
conditions change, such as when new NFs are added or when capabilities of existing
NFs are modified, the NRF is capable of updating and keeping the information in
its registry up to date. Another important function of the NRF is load balancing
management. Since it can provide detailed information about available NF instances
and their capabilities, it can be used to balance the workload within the network.
For example, it can route traffic to less burdened NF instances to ensure efficient
resource utilization. Furthermore, the NRF is involved in managing the security of
NF information. This includes handling permissions and credentials required to
access NFs, as well as protecting sensitive data related to NFs themselves.

4.1.9 Policy Control function (PCF)
The Policy Control Function (PCF) is responsible for enforcing network policies
related to user access, data usage, Quality of Service (QoS), and traffic manage-
ment. It dynamically manages policies based on real-time network conditions and
user requirements, ensures appropriate QoS levels, prioritizes traffic, allocates re-
sources efficiently, enables service differentiation, integrates with charging systems,
and ensures policy consistency and interoperability across network elements and
interfaces.

4.1.10 Unified Data Management (UDM)
The Unified Data Management (UDM) function in 5G networks plays a central role
in managing subscriber data, authentication, authorization, service subscriptions,
policies, identity management, service orchestration, interoperability, and data
analytics. It ensures secure access to the network, manages service entitlements, en-
forces network policies, supports service orchestration, and facilitates data analytics
for network optimization and business intelligence.

4.1.11 Application Function (AF)
The Application Function (AF) in 5G networks manages network applications
and services, controls service delivery based on policies and user preferences,
oversees session management, enforces network policies, exposes services to external
applications, allocates network resources, ensures interoperability, and provides
analytics for network optimization.
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4.2 Next Generation NodeB (gNodeB/RAN)
The gNodeB, or Next Generation NodeB, represents a significant evolution in radio
access technology within 5G networks, introducing several innovative features and
capabilities that are distinct from the core network elements. Here are some key
aspects highlighting the role and functions of the gNodeB:

• Massive MIMO Technology
One of the hallmark features of the gNodeB is its support for massive multiple-
input multiple-output (MIMO) technology. This advancement allows the
gNodeB to utilize a large number of antennas for transmitting and receiving
signals simultaneously, significantly enhancing spectral efficiency, data rates,
and overall network capacity. Massive MIMO enables the gNodeB to serve
multiple users concurrently and improve the overall performance of wireless
communication.

• Beamforming Techniques
The gNodeB implements advanced beamforming techniques to focus radio
signals in specific directions towards UEs, improving signal strength, coverage,
and reliability. Beamforming optimizes the use of radio resources and enhances
the quality of wireless connections, especially in environments with high user
density or challenging propagation conditions.

• Dynamic Spectrum Sharing (DSS)
Another key feature of the gNodeB is its ability to support dynamic spectrum
sharing. This technology allows the gNodeB to dynamically allocate spectrum
resources based on demand and network conditions, optimizing spectrum
utilization and improving overall network efficiency. DSS enables flexible
allocation of frequency bands between 4G LTE and 5G NR (New Radio) users,
ensuring seamless coexistence and transition between the two technologies.

• Low Latency Communication
The gNodeB is designed to facilitate low-latency communication, critical for
applications requiring real-time responsiveness such as autonomous vehicles,
industrial automation, and virtual reality. By reducing signal processing delays
and optimizing transmission protocols, the gNodeB enables ultra-reliable, low-
latency communication (URLLC) for time-sensitive applications, enhancing
user experience and enabling new use cases.

• Network Slicing Support
As a key component of network slicing, the gNodeB plays a crucial role in
supporting the creation and management of dedicated virtual network slices
tailored to specific use cases, industries, or applications. This capability allows
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operators to offer customized services with differentiated performance charac-
teristics, QoS levels, and security parameters, optimizing resource allocation
and meeting diverse customer requirements.

• Edge Computing Integration
The gNodeB can integrate with edge computing resources at the network edge,
enabling distributed processing, data caching, and content delivery closer to
end users. This integration enhances application performance, reduces latency,
and supports bandwidth-intensive applications by leveraging edge computing
capabilities at the gNodeB site.

• Self-Optimization and Self-Healing
The gNodeB incorporates self-optimization and self-healing mechanisms to
autonomously monitor, analyze, and optimize its performance. It can dynami-
cally adjust radio parameters, mitigate interference, and adapt to changing
network conditions, ensuring optimal operation and resilience against potential
failures or disruptions.

4.3 User Equipment (UE)
A User Equipment (UE) in the context of telecommunications refers to the devices
used by end-users to access and utilize mobile network services. UEs include
smartphones, tablets, laptops with cellular connectivity, IoT devices, and any other
device capable of connecting to a mobile network. While there are some overarching
similarities between UEs across different generations of mobile networks, such as
the ability to make calls, send messages, and access the internet, there are notable
differences in UEs designed for 5G compared to previous generations like 4G (LTE),
3G, and 2G. Here’s a breakdown of what defines a UE in 5G and how it differs
from earlier generations:

• Data Rates and Throughput
5G UEs are designed to deliver significantly higher data rates and throughput
compared to their predecessors. This allows for faster download and upload
speeds, smoother streaming of high-definition content, and improved perfor-
mance for bandwidth-intensive applications like video conferencing, online
gaming, and content streaming.

• Latency
One of the key improvements in 5G UEs is reduced latency, referring to the
time it takes for data to travel between the device and the network. Lower
latency in 5G UEs enables real-time communication and applications with
minimal delays, making them suitable for applications like augmented reality
(AR), virtual reality (VR), autonomous vehicles, and industrial automation.
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• Capacity and Connectivity
5G UEs support higher device densities and massive connectivity, allowing
for a greater number of devices to be connected simultaneously. This is
particularly important for IoT deployments, where a large number of sensors,
devices, and machines need to communicate with the network efficiently.

• Spectrum Utilization
5G UEs can operate across a wider range of frequency bands, including higher
frequency bands such as mmWave (millimeter wave), mid-band, and sub-
6GHz frequencies. This expanded spectrum enables 5G UEs to access more
bandwidth, leading to improved network performance and capacity.

• Advanced Radio Technologies
5G UEs leverage advanced radio technologies like massive MIMO (Multiple
Input Multiple Output), beamforming, and carrier aggregation. These tech-
nologies enhance signal coverage, improve spectral efficiency, and optimize
network resource utilization, resulting in better overall user experience and
network performance.

• Network Slicing and Customization
5G UEs benefit from network slicing capabilities, allowing network operators
to create customized virtual network slices tailored to specific use cases or
industries. This enables differentiated services with varying Quality of Service
(QoS) levels, security parameters, and performance characteristics, catering to
diverse user requirements.

In summary, 5G UEs represent a significant advancement in mobile device
technology, offering higher data rates, lower latency, increased capacity, advanced
radio technologies, spectrum utilization, and customization options compared
to earlier generations. These enhancements pave the way for transformative
applications, services, and use cases across various sectors, driving the evolution of
connected technologies in the 5G era.

4.4 Data Collection
To collect the data, we used OpenAirInterface (OAI) to simulate both the core
network and the gNodeB and UE. OAI is an open-source software platform that
allowed us to accurately replicate a real-world network environment. This setup
enabled us to design, test, and validate the interactions between the core network,
gNodeB, and UE, ensuring we gathered reliable and detailed data for our study. The
setup consisted of two separate PCs: one functioning as the UE simulator (a laptop)
and the other as the gNodeB simulator (a server), which also simulated the core
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network. Each PC was equipped with an ETTUS B210, enabling communication
between them using 5G capabilities. This configuration allowed us to effectively
simulate and analyze the interactions between the UE, gNodeB, and the core
network. The data collection part consisted in reading values from the L1 layer
(physical layer) and the second layer (MAC layer).

4.4.1 The Hardware
We will now provide a brief overview of the equipment specifications used in this
project. This information will be helpful in our later discussion of the limitations
encountered during the project’s development.

Server Specifications

• CPU: Intel(R) Xeon(R) Gold 6312U CPU @ 2.40GHz

• Cores: 24

• Threads: 48

• Memory: 64GB ECC

• GPU: Not present

Laptop Specifications

• CPU: 12th Gen Intel(R) Core(TM) i7-1260P

• Cores: 12

• Threads: 16

• Memory: 16GB non-ECC

• GPU: Integrated, not compatible with cuda

Antennas Specifications

Concerning the radio frontend, an ETTUS USRP B210 has been used. This device
provides a fully integrated, single-board, Universal Software Radio Peripheral
platform. The B210 supports a RF frequency range from 70 MHz to 6 GHz, has
a Spartan6 FPGA, and USB 3.0 connectivity. It uses an Analog Devices RFIC
to deliver a cost-effective RF experimentation platform, and can stream up to 56
MHz of instantaneous bandwidth over a high- bandwidth USB 3.0 bus on select
USB 3.0 chipsets (with backward compatibly to USB 2.0).
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4.4.2 Implementation And Limitations
To collect the data, the Open Air Interface’s driver code was modified, in order to
allow it to log the data to two different files, one for the Layer 1 metrics and one
for the MAC Layer metrics. While convenient, modifying the Open Air Interface
driver code introduces overhead, potentially impacting performance. However,
since the overhead is minimal, it was an acceptable trade-off. The main issue with
this approach was the granularity. Every time the driver was asked to log the
different values, it also had to compute them simultaneously. While this typically
shouldn’t be a problem, inefficiencies in the OAI code led to significant overhead.
To mitigate this, logging was limited to once per second, as more frequent logging
caused the entire system to crash. This issue could be resolved by either developing
more efficient drivers or using a more powerful machine.

The data collection was done using both a Python implementation called aioquic
[8] and a Rust based implementation called QUICHE [7], developed by Cloudflare.

The main convenience of the first one is the ability to easily implement and
switch between different congestion algorithms, this was useful to collect data from
CUBIC [16] and New Reno [18], later used for comparison purposes.

Another key element of the data collection was the type of requests done. While
having more complex requests could have lead to a more diverse dataset, given the
time and resource constraints, a simple approach, using random requests ranging
from 500 Kilo Bytes to 500 Mega Bytes has been chosen. This ensures a good
amount of variability of requests, while providing a simple way for the reproduction
of the results.

In computers, random numbers are not truly random but are generated by
algorithms called pseudorandom number generators (PRNGs). These numbers
mimic randomness but are actually produced in a predictable sequence, starting
from an initial value known as a seed. While this can be seen as a detrimental
feature, it can also be leveraged to create the same sequence of requests every time,
ensuring repeatability.

4.4.3 The Dataset
The datasets we created, one with CUBIC and another with New Reno, encompass
a comprehensive range of metrics from Layer 1 (Physical Layer), the MAC Layer,
and Layer 4 (Transport Layer). To the best of our knowledge, this is the only
existing dataset that integrates all these metrics, providing a unique and valuable
resource.

These datasets offer a wealth of information for further studies in the field.
Researchers can leverage this data to explore various aspects of network performance,
congestion control, and protocol efficiency across different layers. Additionally,
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the combined metrics can facilitate cross-layer analysis, enabling a more holistic
understanding of network behavior.

By providing a foundation for subsequent research, these datasets can signifi-
cantly contribute to advancements in networking and communication technologies.
Future studies can build on this work to develop more efficient protocols, optimize
network performance, and enhance the overall understanding of how different layers
interact within complex network environments.
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Chapter 5

Transport Protocol and
Algorithmic Design

5.1 RL model
As stated before, in reinforcement learning (RL), a state is defined by a set of
different values that describe the environment at a specific point in time. These
values encapsulate all the necessary information that an agent needs to make
informed decisions about its actions. To provide extensive context, as already said,
we provided metrics coming from the physical layer and from the transport layer.
The former are able to provide useful information about the real capabilities and
limitations of the physical carrier, while the latter is able to provide feedback about
real time performances.

5.1.1 State set
In this section we will provide more information about the metrics used in the
state, whith a brief description of the meaning of them, and the layer they are
coming from.
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Name Description Layer
Blacklisted PRBs Blacklisted Physical Resource Blocks L1
Total PRBs Total Physical Resource Blocks L1
Max IO Metric relative to the signal strength L1
Min IO Metric relative to the signal strength L1
Avg IO Metric relative to the signal strength L1
PRACH IO Quality of PRACH (Random Access Channel from UE to GNB) L1
Current QM DL Current Modulation Order (Number of Bits per Symbol) for DL L1
Current RI DL Rank Indicator for DL L1
Total Bytes TX Total number of Bytes Transmitted by the GNB since the start of the connection L1
ULSCH Power UpLink Shared Channel Power Level L1
ULSCH Noise Power UpLink Shared Channel Noise Power Level L1
Sync Pos Synchronization Position of UpLink Transmission L1
Round Trials Number of round trials for UpLink Transmission L1
DTX Discontinuous Transmission, number of times DTX has occured L1
Current QM UL Current Modulation Order (Number of Bits per Symbol) for DL L1
Current RI UL Number of Independent Data Streams for UL L1
Total Bytes RX Total number of Bytes Received by the GNB since the start of the connection L1
Total Bytes Scheduled Total number of Bytes scheduled to be sent from the GNB L1
PH Power Headroom MAC
PCMAX Maximum allowed transmit power constraint MAC
RSRP Reference Signal Received Power MAC
meas Number of measurement for RSRP MAC
UL RI Rank Indicator for UpLink MAC
TPMI Transmit Precoding Matrix Indicator MAC
Dlsch Rounds Number of rounds of transmission attempts for the DownLink shared channel (DLSCH) MAC
Dlsch Errors Number of errors during DownLink transmission MAC
PUCCH0 DTX Number of DTX in PUCCH number 0 MAC
BLER DL Block Error Rate of the DownLink transmission, measures the quality of the transmitted data MAC
MCS DL Modulation and Coding Schemes for DownLink MAC
Dlsch Total Bytes Total number of bytes transmitted through the DownLink Shared Channel MAC
Ulsch Rounds Number of rounds of transmission attempts for the UpLink Shared Channel (ULSCH) MAC
Ulsch DTX Number of DTX for the UpLink Shared Channel MAC
Ulsch Errors Number of errors during UpLink transmission MAC
BLER UL Block Error Rate of the UpLink transmission MAC
MCS UL Modulation and Coding Schemes for UpLink MAC
Ulsch Total Bytes Scheduled Number of Total Bytes SCheduled for the UpLink Shared Channel MAC
Ulsch Total Bytes Received Number Of Total Bytes Received on the UpLink Shared Channel MAC
Bandwidth Average The Bandwidth in KBytes averaged over a second L4
Congestion Window Average The Congestion Window Value averaged over a second L4
Smoothed RTT The Smoothed Round Trip Time L4
RTT Mean Deviation Mean Deviation of the Round Trip Time L4

Table 5.1: State Set

The metrics listed above are used as the input of the Reinforcement Learning
algorithm, for representation’s sake, some of them, namely Dlsch and Ulsch Rounds
are listed as a single entity, while in reality they contain four different values,
one for each retransmission round. Specifically, Dlsch and Ulsch Rounds metrics
represent the number of attempts made for data transmission and reception at
different stages of HARQ (Hybrid Automatic Repeat reQuest) retransmissions.
These stages are denoted by 0, 1, 2, and 3, each corresponding to:

• 0: The first attempt where the data packet is transmitted and ideally received
successfully without any need for retransmission.

• 1: The second attempt, indicating that the initial transmission failed, and the
packet had to be retransmitted once.
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• 2: The third attempt, showing that the packet required two retransmissions
after the first two attempts failed.

• 3: The fourth attempt, where the data packet needed three retransmissions
before being successfully received.

5.1.2 Action Space
In this section we will provide further information about the chosen action space.
The action space in a Reinforcement Learning (RL) algorithm refers to the set of
all possible actions that an agent can take in a given environment. It is a crucial
component because the agent’s goal is to learn a policy that dictates the best action
to take in each state to maximize cumulative rewards.

Advantages of a Larger Action Space

• Increased Flexibility: With more actions available, the agent has more
options to choose from, potentially leading to more optimal solutions and
better performance.

• Finer Control: A larger action space allows for more granular control over
the environment. This can be beneficial in complex scenarios where subtle
adjustments are necessary for achieving the best outcomes.

• Exploration: More actions provide the agent with a broader range to explore,
which can lead to discovering new strategies that might not be evident with a
limited set of actions.

Disavantages of a Larger Action Space

• Increased Complexity: A larger action space makes the learning process
more complex. The agent needs to evaluate and choose from more options,
which can slow down the learning process.

• Longer Training Time: More actions mean more potential policies to
explore, which can significantly increase the time required for the agent to
learn an optimal policy.

• Exploration vs. Exploitation Dilemma: With a larger action space, the
agent might spend more time exploring suboptimal actions before converging
on the optimal policy, making it harder to balance exploration and exploitation.

• Higher Computational Cost: Evaluating a larger set of actions requires
more computational resources, both in terms of memory and processing power,
which can be a limitation for resource-constrained applications.
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Given these reasons, various solutions have been considered, ranging from a
very small, discrete action space to a much more complex continuous action space.
Although a continuous action space could offer theoretically infinite granularity for
the congestion window value, it would significantly increase training time. After
some tuning, a good trade-off between the two was to use a discrete action space
composed of 11 different actions, namely:

Action Index Action Definition
0 f(x) = x

3
1 f(x) = x

2
2 f(x) = x − 10
3 f(x) = x − 7
4 f(x) = x − 3
5 f(x) = x
6 f(x) = x + 3
7 f(x) = x + 7
8 f(x) = x + 10
9 f(x) = x × 2
10 f(x) = x × 3

Table 5.2: Actions Space

5.2 Intersection of QUIC and RL
The integration of QUIC (Quick UDP Internet Connections) with Reinforcement
Learning (RL) opens up novel opportunities for improving network performance
and adaptability. This section explores the challenges in QUIC, the advantages of
RL, and how RL can be applied to dynamic congestion control.

5.2.1 Challenges in QUIC
QUIC faces several challenges despite its numerous advantages over traditional
transport protocols. Efficiently managing network congestion is critical for main-
taining optimal performance, requiring adaptive congestion control mechanisms.
Handling packet loss and ensuring reliable delivery can be challenging, especially
in high-latency or unstable network environments. QUIC must balance resource
allocation among multiple streams within a single connection, ensuring fair distri-
bution and preventing any one stream from monopolizing bandwidth. Additionally,
maintaining robust security features without compromising performance is crucial
for QUIC’s adoption. As QUIC becomes more widely adopted, it must scale
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efficiently to handle increased traffic and a growing number of connections without
degrading performance.

5.2.2 Advantages of RL
Reinforcement Learning (RL) is particularly well-suited for network environments
due to its ability to adapt and optimize in dynamic and complex settings. In network
environments, conditions such as bandwidth availability, latency, and congestion
can change rapidly. RL algorithms can learn and respond to these changes in real-
time, optimizing network performance dynamically based on continuous feedback.
This adaptability makes RL ideal for managing tasks like congestion control, where
quick adjustments are necessary to maintain optimal data flow and minimize packet
loss and delays. RL excels at handling multi-dimensional optimization problems,
making it effective for balancing various performance metrics like throughput,
latency, and fairness across different network streams.

5.2.3 Dynamic Congestion Control
Dynamic congestion control is a critical area where RL can significantly enhance
QUIC’s performance. Traditional congestion control algorithms are rule-based
and may not perform optimally under all network conditions. RL can offer a
more flexible and adaptive approach. RL algorithms can adjust congestion control
parameters in real-time based on current network conditions, such as latency,
packet loss, and throughput. By leveraging past data, RL can predict future
network conditions and proactively adjust congestion control strategies to avoid
congestion before it occurs. RL can balance multiple objectives, such as minimizing
latency, maximizing throughput, and ensuring fairness among streams, to achieve
an optimal trade-off. This approach can make congestion control more robust to
sudden changes in network conditions, such as spikes in traffic or variations in
bandwidth availability.
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Protocol and System
Implementation

6.1 Comparison between different models
Since the introduction of Deep Reinforcement Learning in 2013, a huge variety of
different algorithms has been proposed through the years. The first algorithm was
introduced by Mnih et al. [26], the algorithm in question is called Deep Q-Network
and, even if simpler than newer ones, it offers some advantages, some of them
crucial to the goal of this project.

6.1.1 Advantages of Deep Q-Network
• Simplicity: DQN is relatively straightforward to implement compared to

some newer algorithms. It uses a single network architecture to approximate
the Q-function, making it easier to understand.

• Robustness: DQN has been shown to perform robustly across a variety of
tasks and environments, including Atari games and simple control problems.
Its simplicity often leads to more stable training and reliable convergence.

• Experience Replay: DQN utilizes experience replay, where experiences
(state, action, reward, next state) are stored in a replay buffer and sampled
randomly during training. This technique helps in breaking correlations
between consecutive experiences, improving sample efficiency and enhancing
learning stability.

• Discrete Action Spaces: DQN is particularly effective for tasks with discrete
action spaces, where it can efficiently learn the Q-values for each action without
needing modifications to handle continuous actions.
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• Single Network Architecture: DQN uses a single neural network to
approximate the Q-function, reducing the computational load compared to
algorithms that require multiple networks (e.g., actor-critic methods which
use separate networks for the actor and the critic).

6.1.2 Disadvantages of Deep Q-Network
• Scalability to Continuous Action Spaces: DQN is designed for discrete

action spaces. It struggles with problems that require continuous actions,
making it less suitable for tasks where actions cannot be discretized effectively.

• Hyperparameter Sensitivity: DQN requires careful tuning of various hy-
perparameters (e.g., learning rate, discount factor, replay buffer size). Finding
the optimal settings can be challenging and time-consuming.

6.1.3 Advantages and disadvantages of newer algorithms
In this section we will provide some context of newer, more refined algorithms,
while taking a look at the main advantages and disadvantages of them over Deep
Q-Network.

In recent years, advancements in deep reinforcement learning have led to the
development of several sophisticated algorithms that address some of the limitations
of Deep Q-Networks (DQN). Notable among these are Deep Deterministic Policy
Gradient (DDPG), Asynchronous Advantage Actor-Critic (A3C), Proximal Policy
Optimization (PPO), and Soft Actor-Critic (SAC).

DDPG extends the capabilities of DQN to continuous action spaces by using
an actor-critic approach, where the actor network outputs deterministic actions
and the critic network evaluates these actions. This method allows for effective
learning in environments where actions are not discrete.

A3C introduces asynchronous updates, where multiple agents interact with their
own environments in parallel, sharing their experiences to stabilize learning. This
approach reduces training time and improves the exploration of the state space.

PPO simplifies the policy optimization process by using a clipped objective
function to ensure that updates are within a safe range. This method strikes a
balance between performance and stability, making it widely adopted for various
complex tasks.

SAC incorporates entropy maximization into the learning process, promoting
more exploration by encouraging the policy to act more randomly. This results in
robust policies that can handle a wide range of environments, particularly those
with high uncertainty.

Each of these newer algorithms brings unique strengths to the table, improving
upon DQN in aspects like handling continuous actions, improving stability and
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sample efficiency, and reducing training time. However, they also come with their
own set of challenges and complexities, which we will explore in the following
sections.

6.1.4 Advantages of newer algorithms
• Sample Efficiency: Newer algorithms often enhance sample efficiency, mean-

ing they can achieve comparable or better performance using fewer interactions
with the environment. This efficiency is crucial for applications where data
collection is costly or time-consuming.

• Stability: Many newer algorithms address issues of instability during training,
which can arise due to the non-stationarity of the data distribution or the large
variance in gradient estimates. Improved stability leads to faster convergence
and more reliable learning.

• Scalability: As environments and tasks become more complex, scalability
becomes essential. Newer algorithms often incorporate techniques that allow
them to handle larger state and action spaces, as well as more agents in
multi-agent settings.

• Generalization: Some newer algorithms focus on improving generalization,
meaning they can transfer knowledge learned from one task to another or
adapt to changes in the environment more effectively. This adaptability is
crucial for real-world applications where conditions may vary.

6.1.5 Disadvantages of newer algorithms
• Complexity: Many newer algorithms are more complex both in terms of

implementation and theoretical understanding. This complexity can make
them harder to implement, debug, and fine-tune for specific applications.

• Computational Intensity: Some algorithms require extensive computational
resources, such as powerful GPUs or even distributed computing setups, to
achieve optimal performance. This can increase costs and limit their practical
deployment in resource-constrained environments.

• Hyperparameter Sensitivity: Many deep reinforcement learning algorithms
involve tuning various hyperparameters (learning rates, exploration rates,
network architectures, etc.) to achieve good performance. Finding the optimal
set of hyperparameters can be challenging and time-consuming.
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6.2 The model
Given the computational limitations, mainly the lack of a GPU, and the implemen-
tation limitations of Stable Baselines 3, the Deep Reinforcement Learning library
used during the project, a Deep Q-Network has been used.
While this model is simple, as explained in the section above, it offers some crucial
advantages over other models in our particular setting.
Particularly, the robustness and the computational efficiency of DQN make it highly
suitable for our needs.
Another advantage, offered by the library used, is the ability to easily change the
network that is used by the algorithm to approximate the mapping between the
state set and the action space. One of the main proposal during this project was
the usage of transformers, this was backed by some recent surveys [27] [28] that
highlighted the capability and potential of using such architecture inside a Deep
Reinforcement Learning environment. In the following we will discuss some of the
key advantages of the latter.

6.2.1 Advantages of Transformers in DRL
• Handling Sequential Data: Transformers are highly effective at processing

sequential data, which is essential in reinforcement learning where states and
actions form a sequence over time. They can model long-range dependencies
and capture temporal relationships better than traditional RNNs or LSTMs.

• Attention Mechanism: The attention mechanism is crucial in transformers
for sequence modeling of states. It enables the RL agent to focus selectively
on relevant cues in the environment and ignore redundant features, which
leads to faster training. This is particularly useful in high-dimensional state
spaces where there are a large number of input elements.

6.2.2 Disadvantages of Transformers in DRL
• Computational Complexity: Transformers are computationally intensive,

particularly in terms of memory and processing power. The self-attention
mechanism has a quadratic complexity with respect to the sequence length,
making it resource-heavy for long sequences.

• Large Memory Requirements: The large number of parameters in trans-
formers requires substantial memory, which can be a bottleneck, especially for
longer sequences or higher-dimensional inputs. This can limit their applicabil-
ity on devices with limited resources.

34



Protocol and System Implementation

6.2.3 The final choice
While all the previously discussed ideas may appear sound, significant computational
constraints emerged as a challenge. Given the inefficiency and complexity associated
with transformers, coupled with the absence of a GPU-equipped server, the final
model adopted was a Deep Q-Network (DQN). Section 5.1.2 details the exploration
of different action spaces. Various Deep Reinforcement Learning models has been
investigated, along with experimentation on different network architectures using
the previously collected dataset.

Due to these computational limitations, the final model was simplified to a basic
DQN utilizing the standard network provided by Stable Baselines 3. This model
consists of a straightforward Multi-Layer Perceptron (MLP) with two layers, each
containing 64 neurons.

6.2.4 The Reward Function
In order to train the model, a reward function is needed. This is used by the model
to try to maximize the cumulative reward over time.
While a lot of different reward functions has been proposed in previous works, given
the aim of the project and the simplicity of the requests, we opted for a standard
function called Power. This is defined as:

R = Bandwidth
RTT (6.1)

Some of the key points that led to the choice of the latter are:

• Throughput Maximization: By maximizing bandwidth, the algorithm
seeks to utilize the network capacity effectively, ensuring that as much data
as possible is transmitted in a given time frame.

• Latency Minimization: By minimizing RTT, the algorithm aims to reduce
delays in the network, leading to quicker data exchanges and a more responsive
network experience.

• Balance Between Throughput and Latency: The reward function in-
herently balances the need for high throughput with the need for low latency.
A high reward is achieved when the network can transfer data quickly (high
bandwidth) with minimal delay (low RTT).

This choice has shown to provide really good efficiency, while leading to good
training results.
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6.3 The Setup and Implementation
To train the model, we utilized a similar approach as detailed in Section 4.4.2.
The network conditions during training closely mirrored those from the data
collection phase, acknowledging the inherent variability and unpredictability of
these conditions. Consequently, we conducted multiple runs and selected the results
from the longest run.

Due to factors beyond our control, the antennas occasionally disconnected from
each other. Therefore, among the numerous runs conducted, we selected the longest
one to ensure consistent and reliable results.

In the following, we will detail the testbed setup to provide further insight into
the network conditions during the training phase.

Figure 6.1: The hardware setup

Using the hardware listed in Section 4.4.1, we aimed to replicate the same
network conditions as in the previous phase. This approach was taken to ensure
fair comparisons of different algorithms during the subsequent evaluation stage.

The primary challenge during the implementation phase was effectively imple-
menting the training process. One of the main constraints of reinforcement learning
is the sequential nature of the data, necessitating real-time feedback from the
antennas. While reading the data is similar to the data collection phase, the crucial
difference is that this feedback must be fed to the model in real time to facilitate
learning.
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Stable Baselines 3 provides two main functions for training: learn() and
train(). The learn() function interacts directly with the environment to learn,
while the train() function can learn from previously saved experiences, typically
stored in a buffer.

Given this framework, we first saved experiences in a buffer provided by Stable
Baselines 3, then used the train() function to train the model. The main challenge
was tuning the hyper-parameters, specifically the buffer size and the number of
gradient steps. However, after some experimentation, we identified values that met
our needs and overcame the computational constraints.
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Evaluation

7.1 Evaluation Metrics
In this section, we will outline the methodology used to evaluate the algorithm,
discuss the rationale behind selecting specific metrics over others, and then present
and analyze the results.

7.1.1 Challenges in Congestion Control Algorithms Evalu-
ation

In this section we will list some of the main challenges in the evaluation of congestion
control algorithms, this will be crucial to understand the choices made in the
evaluation phase.

• Dynamic Network Conditions: Network conditions such as bandwidth,
latency, and packet loss can vary greatly over time and across different environ-
ments. This variability makes it difficult to create a standardized evaluation
framework that accurately reflects real-world conditions.

• Complexity of Metrics: Congestion control performance depends on multi-
ple metrics like throughput, latency, jitter, and packet loss. Balancing these
metrics to achieve a fair evaluation can be challenging, as improvements in
one metric may lead to degradation in others.

• Reproducibility: Ensuring that evaluation results are reproducible across
different studies is difficult due to variations in test environments, traffic
patterns, and network configurations.

While some other issues may be found in other settings, we believe that this are
the main one faced during this phase.
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7.2 Evaluation Results
In this section we will provide and show the results of the training phase, and the
testing phase, along with comparisons with other, more traditional, congestion
control algorithms, namely Cubic [16] and New Reno [18].

7.2.1 Training Phase
In order to show the training trend, some graphs will be provided, showing the
Reward vs Bandwidth and RTT, and than some graphs showing each one the
metrics above separately.
Given the definition of our reward function and the varying scales of the metrics, we
present a normalized version. To achieve normalization, each vector of values was
scaled to the range [0, 1] by dividing each element in the vector by the maximum
value of that vector. This process was applied to all three vectors individually.

Figure 7.1: Training reward with Bandwidth and RTT

In order to show the true scale of the said metrics, we also present a non-
normalized version of the latter, this will provide some context of the scale of things
and will be useful later to compare them with other congestion control algorithms.
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The next plot illustrates the trend of the reward function during training,
showcasing the model’s ability to learn how to maximize it. Each point represents a
packet acknowledged. Although this inherently includes some time information, the
progression is not linear. Initially, due to the low values of the congestion window,
response times are generally shorter. As training progresses and the model learns
to assign larger values to the congestion window, the granularity of the logging
decreases, meaning that in the later stages, the time difference between two points
is higher.

Figure 7.2: Reward Trend during training

The next plots will individually display the values of the bandwidth and the
Round Trip Time (RTT). These metrics are essential for understanding the perfor-
mance and behavior of the network during training.

By examining the bandwidth plot, we can observe how the data transmission
rate evolves over time and how efficiently the network is utilized. This helps us
understand the model’s ability to optimize data flow and maintain high throughput,
which is crucial for evaluating network performance.

The RTT plot provides insights into the latency and the responsiveness of the
network. It reveals how quickly packets are sent and acknowledged, which is a
critical factor in assessing the network’s efficiency and the impact of different
congestion window settings.

Displaying these metrics individually is important to show the scale of each. By
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isolating the bandwidth and RTT, we can see the absolute values and variations
over time, making it easier to interpret their significance and relationship to the
training process.

Figure 7.3: Bandwidth Trend during training

By analyzing these metrics separately, we gain a clearer understanding of the
model’s learning process and its effects on different aspects of network performance,
enabling more informed decisions for future improvements.
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Figure 7.4: Round Trip Time trend during training

7.2.2 Comparison with other algorithms
Given the reasons explained in section 7.1, in order to show the performance
differences between different algorithms, Bandwidth and Round Trip Time where
chosen as the to go metrics. To compare the algorithms, and to assure fairness
between them, several key considerations should be taken into account.

Building upon the discussion of data collection and pseudo-random request
generation in section 4.4.2, we evaluated each algorithm using the same overall
approach but with a distinct seed for the pseudo-random number generator. This
strategy ensures our algorithm is tested against request sequences that differ from
the ones encountered during training.

Furthermore, another key attention was given to the physical setup of the
antennas. In a 5G environment, RSRP is a key performance indicator used
to measure the signal strength of a cell’s reference signal as received by a user
equipment (UE), such as a smartphone or other connected device. Here are some
key points about RSRP:

RSRP

• Definition: RSRP is defined as the linear average of the received power
of all resource elements that carry cell-specific reference signals within the
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considered measurement bandwidth.

• Measurement: It is typically measured in dBm (decibels relative to one
milliwatt). Higher RSRP values indicate stronger signal strength, which
usually translates to better network performance and connectivity.

• Impact on User Experience: Strong RSRP generally leads to better
throughput, lower latency, and fewer dropped connections, enhancing the
overall user experience.

Given the logarithmic nature of the dBm measurement unit for RSRP, significant
changes in actual power levels appear as relatively small changes in dBm values.
However, these values can fluctuate slightly from second to second due to factors
such as changes in air conditions or the presence of other 5G devices. Consequently,
complete repeatability is rarely achievable, except in some specific controlled
environments.

In order to create the most similar conditions, we tried our best to ensure that
the Reference Signal Received Power (RSRP) was the same across all the tests.

As previously explained, although exact conditions cannot be guaranteed due
to the limitations of the test-bed, this methodology was the best possible approach
under the circumstances.

Figure 7.5: Bandwidth Comparison between different algorithms
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In this first graph, related to the bandwidth, it is possible to appreciate the
bandwidth gain of our algorithm compared to the other ones. As we can see, New
Reno has turned out to be the worse amongst the three, this is most likely due to the
conservative approach of the algorithm. New Reno increases the congestion window
size using the additive increase approach, which is relatively conservative. This
means it only increases the congestion window by one segment size per round-trip
time (RTT) during the congestion avoidance phase. This slow growth limits the
rate at which the sender can transmit more data, particularly in high-bandwidth,
high-latency networks.

On the other hand, CUBIC has demonstrated significantly higher efficiency and
better channel utilization.

This is due to, mainly, to a couple of reasons:

• Cubic Growth Function: CUBIC uses a cubic function to control the
growth of the congestion window. This allows for more aggressive window
growth in high-bandwidth environments, which helps in quickly ramping up
the transmission rate and fully utilizing the available bandwidth.

• Better Handling of Packet Loss: CUBIC’s algorithm is designed to
recover from packet loss more gracefully. It reduces the congestion window
more conservatively compared to New Reno, allowing for quicker recovery and
less dramatic reductions in data transmission rates. This results in a more
stable and efficient utilization of the channel.

Our algorithm, however, has demonstrated the ability to deliver superior results
overall, achieving higher bandwidth utilization. Measuring both the average and
standard deviation of the bandwidth across the three algorithms provides additional
insights. In the following table all the values are in KBytes/s.

Algorithm Average Standard Deviation
Cubic 4267.2 876.2

New Reno 2674.1 1123.0
Our Algorithm 4539.5 950.3

Table 7.1: Bandwidth Average and Standard Deviation Comparison

As noted earlier, our algorithm achieved higher bandwidth utilization. However,
as indicated in the table, this came at the expense of a higher standard deviation.
This behavior is likely due to the algorithm’s capability to enact more pronounced
changes in the congestion window value, both during ramp-up and ramp-down
phases.
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Figure 7.6: Round Trip Time Comparison between different algorithms

In this graph, we observe a similar trend as seen in the bandwidth plot. New
Reno exhibits numerous large spikes, indicating its unsuitability for this type of
problem. In contrast, CUBIC performs significantly better, demonstrating more
stable and consistent behavior.

As done with the bandwidth, we will provide further insight into the behavior
of the three algorithms, by presenting both the average and the standard deviation
during testing phase. The values will be shown in ms, in order to keep the same
scale as done in the plot.

Algorithm Average Standard Deviation
Cubic 27.6 23.2

New Reno 174.9 182.6
Our Algorithm 21.8 1.1

Table 7.2: Round Trip Time Average and Standard Deviation Comparison

The table below further shows the unsuitability of New Reno in this kind of
setting. At the same time it shows the surprising stability and performances
of our algorithm in the optimization of Round Trip Times. By looking at the
standard deviation, we can see how it learned how to control the RTT surprisingly
well. While there is no mathematically correct explanation for this behavior, we
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hypothesize that this is most likely due to the availability of lower level metrics.
Due to the significant variance observed in New Reno, we aim to offer a clearer

comparison between our algorithm and CUBIC. Therefore, we will provide an
additional plot that focuses solely on comparing our algorithm with CUBIC.

Figure 7.7: Round Trip Time Comparison between our algorithm and CUBIC

This plot allows us to more easily appreciate the differences between the two
algorithms. While CUBIC’s performance is much more stable compared to New
Reno, it is out shined by the stability of our approach. Our algorithm demonstrates
superior consistency and efficiency, largely due to its utilization of lower-level
metrics. These metrics provide a more granular understanding of the network
conditions, enabling our algorithm to make more informed decisions and adapt
more effectively. As a result, our approach not only maintains higher stability but
also optimizes bandwidth utilization, leading to improved overall performance.
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Conclusion

8.1 Summary of Findings
This thesis presented a novel approach to congestion algorithm for wireless network,
by blending machine learning techniques with cross-layer metrics.

The primary goal was to enhance network performance by leveraging the pre-
dictive capabilities of machine learning to adapt congestion control algorithms
dynamically.

Key finding for our research include:

• Improved Bandwidth Utilization: The proposed algorithm demonstrated
superior bandwidth utilization compared to traditional congestion control
algorithms. This was achieved through more accurate predictions of network
conditions, allowing for optimal adjustment of transmission rates.

• Enhanced Stability: Despite the dynamic nature of wireless networks,
our approach maintained a surprisingly higher level of stability in network
performance, compared to traditional congestion control algorithms.

• Reduced Latency: Our approach proved effective in reducing latency while
maintaining greater stability, resulting in smoother data flow and enhanced
performance.

The findings listed above highlight the effectiveness of our approach, showcasing
its ability to achieve remarkable stability while delivering enhanced bandwidth
utilization and reduced latency. The stability provided by our method ensures
consistent performance, even in the face of fluctuating network conditions. These
results underscore the potential of integrating machine learning with cross-layer
metrics in developing advanced congestion control algorithms for wireless networks.
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8.2 Contributions
The primary contributions of this thesis include the development of a novel dataset,
encompassing metrics from the physical layer to layer 4, collected in a 5G envi-
ronment. Additionally, we demonstrated the effectiveness of using Reinforcement
Learning combined with cross-layer metrics, tested within a 5G environment, to
manage the congestion window. This approach achieved significant improvements
over traditional congestion control algorithms.

8.3 Implications of Findings
The implications of our findings extend well beyond the immediate improvements
in congestion control. They provide a robust foundation for future research and
development in network management and optimization. By demonstrating the
successful integration of machine learning with cross-layer metrics, our work opens
up several avenues for further exploration and application.

The creation of the dataset described in section 4.4.3 not only supports current
research efforts but also lays the groundwork for future innovations in wireless net-
working. By providing a comprehensive and standardized dataset, we aim to foster
collaboration, accelerate advancements, and ultimately enhance the performance
and reliability of wireless communication systems.

8.4 Limitations
While the results are quite promising, some further insight should be discussed, in
order to understand the main limitations.

As detailed in Section 4.4.2, our methodology for data collection and model
training, while straightforward, primarily involves using the same type of requests
with varying values. This simplicity may restrict the model’s ability to generalize
across a wider range of request types and scenarios.

Another significant limitation is the static nature of our test bed. While
this configuration enhances repeatability, it presents challenges for generalization,
particularly regarding the input values of the reinforcement learning algorithm
derived from the physical layer, which tend to be largely homogeneous.

In summary, a primary limitation of our work lies in its ability to generalize
to diverse environments and conditions beyond the static setup of our test bed.
This constraint raises concerns about the applicability of our findings to real-world
scenarios characterized by varying network dynamics and conditions. Addressing
these challenges will be crucial for extending the relevance and impact of our
research beyond controlled experimental settings.
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8.5 Recommendations for Future Research
As discussed in Section 6.2, the utilization of transformers shows considerable
promise due to the sequential nature of the data involved. A potential improvement
could be the adoption of a more advanced reinforcement learning algorithm, such as
Proximal Policy Optimization (PPO) [15], which might offer enhanced performance
due to its sophisticated optimization processes.

Additionally, transforming the input features in innovative ways could enhance
the model’s effectiveness. For instance, applying various transformations or nor-
malizations to the input data could provide the model with a more refined and
informative feature set.

Another promising idea is to explore different reward functions. Given the
extensive feature space and the amount of available information, designing more
complex and robust reward functions could leverage this data more effectively,
potentially leading to significant performance improvements. By carefully tuning
these reward functions, the model can be guided towards more desirable behaviors,
further optimizing network performance.
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