
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Performance Analysis of Switch Workload
Management Protocols for Burst Tolerant

Networks

Supervisors

Prof. Guido MARCHETTO

Prof. Alessio SACCO

Prof. Flavio ESPOSITO

Candidate

Lorenzo PANTANO

July 2024

Abstract

One of the main causes of packet loss and performance degradation in today’s
datacenter operations, is represented by microsecond-scaled congestion events,
known as microbursts. Microbursts are characterized by sudden spikes in network
traffic, and are likely to lead to congestion, impacting the overall efficiency of the
datacenter. Existing solutions, such as packet deflection techniques, have shown
promise in mitigating microburst effects. However, further research is needed
to explore alternative approaches that can enhance network performance and
stability. In this study, we propose Robinhood, a solution aimed at mitigating
microbursts in datacenter networks as well as improving the overall performance.
We exploit the insights gained from existing solutions, taking inspiration from the
job-scheduling domain, and implement novel algorithms based on work-stealing
scheduling techniques to address the challenge of microburst mitigation. We
implemented a simulation framework from scratch, featuring BRITE for network
topology generation, to test different networks under various degrees of load.
Through extensive simulations and performance evaluations, we demonstrate the
effectiveness of our proposed work-stealing scheduling algorithms in mitigating
microbursts: for example, in a leaf-spine architecture network under 80% of load,
the flow completion time improves by 22%, 6% and 7% when applying work-stealing
techniques to switch buffers, compared to ECMP, DIBS and Vertigo respectively.
Additionally, the flexibility of these algorithms, makes them suitable for applicability
to other network environments beyond datacenters, such as 5G and other burst
tolerant networks. For future research purposes, we released the source code of the
simulation framework, in order to be tested with different network topologies and
configurations.

Acknowledgements

i

Table of Contents

List of Tables iv

List of Figures v

Acronyms vi

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2

2 Existing Solutions and Challenges 4
2.1 Data Center Network Architectures 4
2.2 Congestion Control Mechanisms . 5

2.2.1 Deflection challenges . 6
2.2.2 Vertigo . 7
2.2.3 DIBS . 8

2.3 Robinhood Vision . 9
2.3.1 Strengths and Limitations of Modern Strategies 9
2.3.2 Job Scheduling Domain . 10

3 Robinhood 11
3.1 Design Principles . 11
3.2 Protocol Overview . 11
3.3 Buffer Threshold . 12
3.4 Exchange Messages . 13

3.4.1 Work Donating . 14
3.5 Robinhood’s Deflection Development 15

3.5.1 First Iteration . 15
3.5.2 Second Iteration . 15
3.5.3 Final Version . 18

3.6 Example Scenario . 20

ii

4 Simulation Framework 23
4.1 Overview . 23

4.1.1 Event Generation . 23
4.1.2 Network Core . 25
4.1.3 Performance Metrics and Analytics 28

4.2 Network Topology Generation . 29
4.3 Algorithms Simulation . 31

4.3.1 ECMP . 31
4.3.2 Vertigo . 33
4.3.3 DIBS . 34
4.3.4 Robinhood . 35

4.4 Simulation Parameters . 37

5 Performance Evaluation 39
5.1 Simulation Setup . 39

5.1.1 Network Topologies . 39
5.1.2 Workloads . 40

5.2 Results . 40
5.2.1 Early Versions . 40
5.2.2 Major Results . 42

5.3 Future Development . 48

6 Appendix 49

Bibliography 50

iii

List of Tables

3.1 Stealing Neighbors candidates list at first step. 20
3.2 Stealing Neighbors candidates list after switch B is overloaded. . . . 21
3.3 Example of Deflection Table for Switch B 21

iv

List of Figures

2.1 Data Center Network Architectures 5
2.2 Data Center Network Architectures - K-ary Fat-Tree Three-Tiered . 6
2.3 Vertigo Design Overview. From Vertigo design article [1] 8
2.4 DIBS example of 15 detours, in a K=8 Fat-Tree topology. From

DIBS article [2] . 9

3.1 RobinHood - Steal Request/Steal Cancel messages as IPv4 ToS bits.
Last bit is set to 0 to indicate Steal Requests. Last bit is set to 1 to
indicate Steal Cancels. 14

3.2 Network scheme for protocol workflow illustration 20

5.1 Robinhood (First Iteration) Improvement over other algorithms
in Average FCT. Major improvements are only noticeable against
ECMP, with a 22% improvement at full network load, while Vertigo
and DIBS perform better at any load. 41

5.2 Average FCT - First Iteration. Robinhood place itself between
Vertigo and ECMP. Performance on average flow completion time in
the first iteration are almost equal among the three at smaller loads. 42

5.3 Drop Rate - First Iteration . 43
5.4 Robinhood (Second Iteration) Improvement over other algorithms

in Average FCT. 44
5.5 Average FCT - Second Iteration . 45
5.6 Drop rate - Second Iteration . 45
5.7 Average FCT under various degrees of load. 46
5.8 Average FCT under various degrees of load. 46
5.9 Robinhood and other algorithms, average FCT - CDF 47
5.10 Throughput under various degrees of load. 47

v

Acronyms

DCN
Data Center Network

TCP
Transport Control Protocol

UDP
User Datagram Protocol

IP
Internet Protocol

ToS
Type Of Service

DCTCP
Data Center TCP

ECN
Explicit Congestion Notification

CE
Congestion Experienced

ToR
Top Of Rack Switches

RFS
Remaining Flow Size

vi

SR
Steal Request

SC
Steal Cancel

DIBS
Detour-Induced Buffer Sharing

ECMP
Equal Cost Multi-Path Routing

vii

Chapter 1

Introduction

Datacenters are, as of today, at the core of our modern technologies, forming a
critical infrastructure underlying cloud computing, and enabling a huge amount of
services and applications. Most of the data processing and network traffic happens
and goes through data center servers and nodes, from simple website hosting to
complex data processing or analytics and machine learning workloads.

A commonly known scheme used by services like web search, social network
content composition and the selection of advertisements, requires requests at higher
level to be partitioned and framed to low-level workers in data centers, then
the responses are aggregated to produce a meaningful result. The efficiency and
reliability of these networks are thus essential, as the disruption of these services
can cause major inconveniences or even financial losses. With these stringent
low-latency requirements, and thanks to the technologies that they implement, the
disaggregated resources carried on in data centers such as GPUs, memory, disk,
etc. are extremely fast.

So, as of today, the network is frequently the performance bottleneck for data
center operations. Among the varying challenges faced by data center networks,
congestion control is one of the most persistent and significant, given the vast
amount of traffic and data to be processed. The most prominent cause of congestion
is represented by microbursts, which are sudden, short-lived and intense spikes in
the network traffic. As an immediate consequence, they lead to significant packet
retransmission that causes loss in performance. Traditional routing and congestion
control algorithms, such as ECMP (Equal Cost Multi-Path Routing) proved to
be often inadequate in handling the intensity of microbursts. Additionally, their
short-lived nature, lasting no more than a millisecond, require networks to be able
to react to them in real-time, with a fast and efficient solution. As a result, there
has been a growing interest for better mitigation strategies, that effectively address
the problems of microbursts, with more advanced and complex congestion control
techniques.

1

Introduction

1.1 Objectives
The main goal of this study is, therefore, to introduce and evaluate a novel
algorithm, named Robinhood, that aims at mitigating congestion in data center
networks, and improving the overall performances, especially in the presence of
microbursts. Robinhood has been designed taking into consideration the limitations
of existing solutions, providing an alternative approach in the congestion control
mechanisms. Current strategies predominantly revolve around the fundamental
concept of redirecting incoming packets away from full buffers to more optimal
and less congested nodes, a technique commonly referred to as packet deflection.
Robinhood similarly operates on this principle. However, the intricate decisions
involved in determining factors such as the choice of nodes for traffic redirection,
initiation time for deflection, and the specific target node for rerouting make way
for a multitude of algorithmic variations, which serve as the foundational basis
for existing solutions. We also seek to compare Robinhood against three of the
currently well-established approaches, such as Vertigo [1], DIBS [2] and ECMP
showing a promising enhancement in terms of average flow completion times and
throughput.

1.2 Contributions
Robinhood’s inspiration comes from the job-scheduling domain [3]. Task and
job scheduling efficiency problems share a common interest with packet deflection
techniques; at their core, their main objective is to improve load balancing, achieving
a better parallelization of tasks and packet processing, leading to an efficiency boost.
Looking into the task scheduling domain, studies [3] on efficient scheduling policies
have shown that the work-stealing technique is the most promising in balancing
load and core efficiency for microsecond-scaled tasks. Transposing this solution,
with all the required adjustments, into the network plane, is what Robinhood
proposes to implement, given the short-lived nature of microbursts. Robinhood
is then a packet deflection technique based on the work-stealing implementation
in the network plane, aiming at observing the impact of these techniques on data
center network performance. Robinhood’s fundamental idea is to offload packets
among neighboring switches to balance the load, whenever possible, preemptively
choosing suitable candidates. Furthermore, naive deflection leads to excessive
packet reordering, with a direct impact on network performance. To address this
issue the deflection process is flow-based, where a flow is a sequence of packets
uniquely identified by common attributes such as source, destination and other
properties. The flow-based deflection results in less need for reordering packets
once they reach their destination. To test and evaluate the performance of these

2

Introduction

algorithms, we have developed a network simulation framework from scratch, rather
than adopting existing ones, to allow for more flexibility.

The software comprises three main components: the event generator, which
generates packets based on configurable distributions; the simulation core, which
includes all necessary network components and the implemented algorithms (with
a margin for adding more); and a metrics component that tracks and updates all
performance metrics.

Most of the results are evaluated on a leaf-spine architecture, validating the
findings against an equivalent three-tiered network, which are the same network
architectures that Vertigo and DIBS use for their tests; using the BRITE [4] software
to define nodes and edges, though, allows the generation of custom topologies, with
different degrees of complexity and scale, making it possible to further extend the
testing of the algorithms in other use-cases beyond data centers. Despite having
undergone different iterations and versions, the final version of Robinhood has
been able to achieve significant improvements in terms of average flow completion
times, allowing faster data center operations. Robinhood has improved average flow
completion time by 22% when compared to ECMP, 7% and 6% when compared to
Vertigo and DIBS, respectively.

3

Chapter 2

Existing Solutions and
Challenges

Given the need for high throughput and low-latency efficiency, and the importance
of data center networks, a variety of solutions has been proposed to mitigate the
effects of congestion. In this chapter we start taking a look at modern data center
network (DCN) architectures and the problems they face, with a brief explanation
and introduction to the main solutions that have been proposed, and the limitations
they carry.

2.1 Data Center Network Architectures
The modern architectures proposed for data centers are mainly two: Three-Tiered
and Fat-Tree [5] topologies. Three-Tiered architectures are more of a traditional
setup, consisting, as the name suggests, in three levels of switches, each which
different characteristics and performance capabilities. The core switches are the
ones responsible for connecting the data center with the Internet, bringing great
performance capabilities; then there are aggregation (or distribution) layer switches,
often equipped with load balancing services and firewalls as a level of protection
and management for the rest of the network. Finally there are access layer switches,
commonly referred as Top-Of-Rack (ToR), which are switches responsible for
connecting to the servers. ToR switches are equipped with a relatively large
amount of ports, since a single ToR switch is often connected to several (24-48)
servers. The three-tiered architecture gives its best performance when used against
north to south traffic, meaning traffic entering the data center from outside, or
exiting the data center network. Nowadays, a vast amount of traffic moves instead
from east to west, going from server to server among the same data centers.

The Fat-Tree (or Two-Tiered) architecture is the preferred choice for this kind of

4

Existing Solutions and Challenges

traffic, considerably reducing the number of hops for intra-DCN traffic. Essentially,
in Fat-Tree architectures, the core and aggregation layers are condensed into one
layer of switches, called Spine, while ToR nodes are now called Leaf switches, even
though they preserve the same task of being connected to end servers. The number
of hops from intra-DCN traffic is reduced, favoring east-west traffic, but at the
same time a larger amount of switches per-layer is required. Fat-Tree topologies
can also be three-tiered: a generalization of this architecture, the k-ary Fat-Tree
consists in the same core, aggregation and edge switches, in a higher number of
nodes. (k/2)2 core switches are connected to k pods. Each pod consists of edge
(ToR) and aggregation switches. In each pod, edge switches are connected up
to k/2 servers and up to k/2 aggregation switches, while the latter are each one
connected to k/2 core switches and k/2 edge switches.

Figure 2.1: Data Center Network Architectures

2.2 Congestion Control Mechanisms
As previously mentioned, modern strategies for microbursts mitigation rely on
packet deflection, which involves rerouting incoming packets to neighboring switches,
independently of the architecture. While straightforward and efficient [6], most of
the deflection approaches suffer from two main problems: activating only during
the congestion, not trying to avoid it, and excessive packet reordering. One of the
main solutions, which sets the basis for more advanced solutions, is data center
TCP (DCTCP) [7], an enhanced version of the TCP protocol specifically crafted
to minimize congestion in data center network environments. DCTCP [7] exploits
the TCP explicit congestion notification (ECN) to give continuous feedback about
congestion status. Marking packets, with ECN specific fields (e.g. CE - Congestion

5

Existing Solutions and Challenges

Figure 2.2: Data Center Network Architectures - K-ary Fat-Tree Three-Tiered

Experienced) instead of instantly dropping them, provides a more fine-grained
control over the congestion window size of the sender, which once adjusted, provides
lower queuing delays and higher throughput.

Although, DCTCP has been a breakthrough in data center network environments,
its reliance on continuous feedback makes it not particularly efficient when handling
sudden increases in the network traffic, such as the ones brought by microbursts.
Most of the solutions presented in this study for comparison, and Robinhood itself,
are built on the foundations of DCTCP, and work alongside it without trying to
replace it. The main solutions referenced in this study, that exploit the concepts
of packet deflection, and that rely on a DCTCP foundation, are Vertigo [1] and
DIBS [2] which both suffer from the previously mentioned issues. We also consider
Equal-Cost Multi-Path routing (ECMP) [8] as an alternative approach that does
not rely on packet deflection, but provides more static flow distribution routing
paths.

2.2.1 Deflection challenges
In this section, before diving into the details of the aforementioned protocols, we
explore the fundamental ideas behind deflection, and the challenges that its naive
realization creates. As already stated, packet deflection means re-routing incoming
packets to congested hot-spots instead of dropping them. Despite being effective
at managing bursts, a naively deployed deflection still brings high drop rates,
excessive rerouting and path stretch, causing packets to follow longer paths and
increasing latency, along with an inevitable out-of-order delivery. Regarding the
packet ordering issue, both Vertigo and DIBS, try to solve it with different solutions,

6

Existing Solutions and Challenges

as will be further detailed. DIBS for instance, addresses reordering by disabling
the fast re-transmission option in congestion control protocols such as DCTCP,
after receiving out-of-order packets; Vertigo instead operates on end hosts to mark
packets with packet-specific value information and retrieve it at destination hosts,
necessitating additional components. Vertigo’s reordering solution brings another
issue to the table of deflection challenges: implementing deflection techniques is not
always feasible [6], and most of the time, not having access to end hosts, operating
directly at the network core is the best option. This is also what Robinhood
proposes to do. It is a solution easily implementable in modern programmable
switches and that operates at the network core, without the need to impact end
hosts.

2.2.2 Vertigo
Diving deeply in the proposed approaches for packet deflection, Vertigo adopts the
mechanism of so called Selective Deflection [6], meaning that it carefully selects
which packets are to be deflected, based on their impact on the current congestion
[1], prioritizing relatively short flows instead of longer ones. Vertigo consists of
three components (figure 2.3), implied both on the end hosts and at the core of the
network. An end host component marks a packet with remaining flow size (RFS)
information in an additional header (flow-info header) provided by the protocol.
This information proves to be very useful when estimating how many packets are
expected to arrive at a given node in the network, since it contains the value of
how many bytes are left to transmit in the flow the packet belongs to; and will
also be exploited in the early versions of Robinhood for a flow-based selective
deflection. When a packet encounters a switch with a full output buffer, Vertigo’s
core component selects the packet with the highest RFS for deflection and dequeues
it from the buffer. It then randomly selects two queues in the switch, deflecting the
selected packet to the least loaded one. If both queues are full, the packet with the
highest RFS value selected between the deflected packet and others in the queues,
is dropped and retransmitted, with the RFS value halved to prevent starvation,
and an additional value is set in the flow-info header to indicate the halving, since
this process of RFS being halved can happen multiple times for the same packet.

Vertigo’s main strength is the ability to react to microbursts in real-time and
preventing an overloaded buffer to become even more congested by selectively
deflecting packets that are more likely to contribute to congestion, leaving short
flows to be transmitted faster, thus reducing the overall load on buffers.

However, the random selection of a deflection port and the deflection choices
made on each packet arrival, lead to excessive out-of-order delivery. Vertigo third
component on end-hosts takes care of packet reordering based on the RFS value of
the packets; if a packet RFS value has been halved due to the deflection algorithm it

7

Existing Solutions and Challenges

Figure 2.3: Vertigo Design Overview. From Vertigo design article [1]

is multiplied by the value set in the header at the moment of drop or re-transmission.
The RFS value marking in end hosts, even if introducing a minimal additional
header for the packets and thus processing overhead, proves to be very useful for
both the packet selective deflection and reordering. Along with the additional
overhead, the deployment of different components on different parts of the network,
over which our control, especially for the end-hosts, is not granted, is another of
the issues carried on by Vertigo. In Robinhood we therefore looked into a solution
that is employable directly at the network core, without the need to operate on
end-hosts, and that is also capable of bringing the same deflection efficiency Vertigo
presents.

2.2.3 DIBS
The Detour-Induced Buffer Sharing (DIBS) technique [2] instead, focuses on a
more brute-force approach, deflecting packets to randomly selected ports each time
it is needed. This method is also referred to as Simple Deflection, opposed to the
Selective Deflection of Vertigo. When a packet arrives at a switch input port, the
switch checks to see if the buffer for the destination port is full. If so, instead
of dropping the packet, the switch selects one of its other ports to forward the
packet to, avoiding ports whose buffers are full and ports connected to end-hosts.
Other switches will buffer and forward the packet following the same protocol, and
the packet will eventually make its way to its destination, possibly coming back
through the switch that originally detoured it.

Although great performances are achieved in terms of drop rates and low-latency,
DIBS struggles to avoid possible loops, often causing packets to be sent back and
forth among different switches, before actually reaching its destination; DIBS
studies [2] (figure 2.4) show how packets get detoured up to 15 times across a set
of a small number of switches, causing a major slow-down in packet delivery times,
impacting throughput and causing a non-negotiable reordering problem. To face the
problem of reordering, a direct consequence of the random detour, DIBS disables

8

Existing Solutions and Challenges

Figure 2.4: DIBS example of 15 detours, in a K=8 Fat-Tree topology. From DIBS
article [2]

the fast re-transmit option in congestion control protocols such as DCTCP or
standard TCP which reduces the sending rate after receiving consecutive reordered
packets. However, this solution unfortunately does not fix the problem completely.
Robinhood’s proposal is also to limit the deflection targets to avoid unnecessary
detours and, operating at flow level, we eliminate the problem of reordering packets,
as we will discuss in detail.

2.3 Robinhood Vision

2.3.1 Strengths and Limitations of Modern Strategies
Despite bringing a significant contribution to network efficiency and performance,
the referred solutions focus on solving the congestion problem when it has already
been consolidated. Microbursts are certainly the main motivation behind this
behaviour, and advanced packet deflection techniques such as Vertigo and DIBS,
definitely pose a graceful limitation to the problem. The specific problems, carried
on by Vertigo and DIBS, though, are the foundation for our newly developed Robin-
hood algorithm; addressing reordering and unnecessary detours with a network-core

9

Existing Solutions and Challenges

strategy. As mentioned, both Vertigo and DIBS address the reordering overhead in
different approaches. Vertigo, with its selective deflection [6], in contrast to DIBS
which follows a more simple deflection approach, additionally operates on end
hosts both in the transmission and reception, having them perform marking steps
to overcome the out-of-order delivery. DIBS instead opts to operate on the fast
retransmit options of congestion control protocol, only after receiving non-ordered
packets. The cause that brings to reordering is mainly a direct consequence of
deflection itself: detouring packets will necessarily bring them to be delivered
out-of-order, contrary to following the same established shortest path; and these
strategies are trying more to repair the damage made by deflection than solving
the problem at the core. Robinhood vision proposes instead to operate at flow-level
in case of deflection. Detouring packets belonging to the same flow, to the same
targets, will surely make them follow the same, even if not the shortest, path,
resulting in an ordered delivery. Operating at the network core, also solves the
issue of feasible implementation. The management control over end host is, in most
of the cases, not granted; making the marking step required by Vertigo hard to
realize.

2.3.2 Job Scheduling Domain
Robinhood’s inspiration comes from job scheduling policies, which provide numerous
strategies for efficient load balancing and core efficiency [3], which are particularly
valuable in managing traffic congestion, as rerouting packets is a direct implication
of load balancing. Robinhood’s primary proposed approach, work-stealing (and
a work-donating variant), derives from its respective scheduling policy. In the
task-scheduling domain, work stealing means redistributing the load by letting
under-loaded nodes execute part of the jobs scheduled on another node, and it
was found to be [3] the most promising solution when it comes to microsecond-
scaled tasks, which become particularly meaningful when adopting this approach
against microbursts. In the network plane, this approach simply translates into
the offloading of packets by an overloaded switch to an under-loaded one. In our
proposed method, switches are constantly aware of the state of their neighbors
by exchanging state messages that we will discuss later. This information allows
switches that are experiencing huge amounts of traffic, to offload part (or most) of
their load to neighbors who are not overwhelmed by packets. It is important to
note that a direct translation of work-stealing paradigms into the network plane is
not an immediate solution. As previously stated, to be aware of the under-loaded
neighbors, nodes need to exchange information in some way or another, which brings
additional overhead, that can be minimized making smart protocol decisions.

10

Chapter 3

Robinhood

3.1 Design Principles
Given the need for an alternative and efficient approach to deal with microbursts,
and to minimize packet reordering, we present Robinhood: a work-stealing based
workload management protocol for burst tolerant networks. Robinhood’s principal
idea is simple: to share buffer capacity among neighboring switches, so that
overloaded switches can offload packets to under-loaded ones. To realize this idea,
switches need to be aware of the state of their neighbors; to do so we introduce
also a basic communication protocol to allow switches exchanging their load status
information. The guiding principle of Robinhood is also to avoid or minimize
reordering: in order to do so, we have opted for a flow-based deflection where a
flow is uniquely identified by the values of source IP, destination IP, source port,
destination port, protocol TCP/UDP of a single packet. We aimed at deflecting
packets belonging to the same flow, to the same neighboring switches, so that, even
if deflected, packets of the same flow are likely to follow the same path, resulting
in an ordered delivery. Robinhood’s results are promising; the design choices focus
on solving existing deflection problems, while maintaining high throughput and
low-latency. Its design is also a suitable implementation for modern switches,
operating directly at the network core without having to alter end-hosts operations.

3.2 Protocol Overview
Every certain X period of time, switches will broadcast their status to neighbors.
The period of time X is set, in our simulations, to every simulation time unit, in
order to react to congestion in real-time. This value can, however, vary depending
on the situations. Increasing the value will reduce the number of status updates
provided by switches, thus impacting on the overhead of packet processing, but

11

Robinhood

at the same time, a much quicker response time to congestion may be needed.
The sooner switches find out about congestion in progress, the sooner they will
be able to react. For an optimal solution that does not introduce overhead and
maximises the number of updates, state messages are embedded in the Type of
Service (ToS) field of IP, present in both IPv4 and IPv6 as Figure 3.1 shows. Each
switch will keep in memory a list of the available neighbors, that are ready to
accept offloaded packets in case of congestion; the list is updated by the status
messages they exchange. Once a switch as been acknowledged as overloaded, it
will start deflecting packets towards one or more neighboring switches in its list,
performing deflection at flow-level, meaning that every packet of the same flow is
deflected towards the same switch. The flow-level deflection is critical to avoid
reordering. Neighbor candidates are picked randomly, when choosing a deflection
target, in the final version of the protocol. To help with deflection decisions, a data
structure is needed: the Deflection Table is what holds the associations between
deflected flow - target neighbor, and will be populated on-the-go, as packets come
to the full buffer and its flow is not listed in the table. Any packet incoming to the
overloaded switch will then see its flow id being checked against this table for a
matching entry. If not found, a random neighbor is chosen and an entry created
for that flow.

As previously mentioned, and introduced by Vertigo, the remaining flow size
info provides a good estimate of how much is left to transmit for a given flow.
Picking the one which has the most packets still to transmit will provide a smarter
avoidance of the congestion. In the early versions of Robinhood we exploit this
value, giving priority to the flows that are more likely to lead to congestion, and
changing the mode of neighbor selection, preferring the least loaded. This simpler
approach though, will not prevent the buffer to become full, since packets coming
from other flows may contribute to an already congested buffer. In the final version
of Robinhood, we instead deflect, as already stated, not only the flow with more
packets to transmit, but also any other incoming flow, until the buffer is no longer
congested.

3.3 Buffer Threshold
To better define the status of a switch we set a threshold for the buffers. The
main strength of Vertigo and DIBS is their ability to react to congestion when
packets arrive at full buffers. In Robinhood we challenge this methodology and
propose that switches will react to incoming congestion before buffers are actually
full, setting a threshold on the buffer size. If the threshold is overcome by the
actual buffer size, switches will start to refer to themselves as overloaded. After
several experiments, the best value for the threshold is found to be around 15%

12

Robinhood

less of the original buffer size; if the size of a buffer is 300KB, then the threshold
is set to 250KB. The value of the threshold is critical: decreasing this value
will activate Robinhood and hence, packet deflection, more frequently, often when
switches are not actually congested; a relatively high value is needed to ensure that
deflection is performed only when switches are effectively experiencing congestion.
The premature deflection of packets will, in Robinhood, lead to longer completion
times for the flows, since deflected packets are least likely to follow the shortest
path. Further research on the Robinhood solution, may introduce an adaptive
buffer threshold, that adjusts to traffic in real-time, possibly introducing predictive
machine learning models based on the collected data. A low-value of the threshold
activates Robinhood more frequently, but it has also the advantage of starting
deflection processes sooner, eventually absorbing the congestion faster. In this
study, though, we kept a fixed value for the threshold, leaving the adaptive value
implementation for future development.

3.4 Exchange Messages
The background assumption of the Robinhood approach requires switches to
exchange messages about their status to neighbors. These messages, are called
Steal Requests (SR), and as the name suggests indicate the willingness for a
neighbor to accept the offloading of packets. Every X time period, if switches are
under-loaded, they will broadcast Steal Request messages to their neighbors. For a
switch to be under-loaded it is required that the size of their buffers be currently
below the set threshold. Upon reception of an SR message, neighbors will append
the SR sender to the list of possible helping switches, in case of needed deflection.
The candidates for deflection are listed together with an expiry timeout. If a switch
does not receive a Steal Request after the timeout has expired, it means that the
neighbor is experiencing congestion and is no longer a suitable deflection target. It
will be therefore removed from the list.

There is another possible solution for a switch to remove a candidate, which is
the reception of a Steal Cancel (SC) message. This message is sent, broadcast,
by a switch when it becomes overloaded, to ensure that it will not receive any
deflected packets. Upon receiving a SC message, switches will immediately remove
the sender from the candidate list, even if the timeout has not expired. Steal
Cancel messages are optional, but recommended, since the expiring timeout will
take care of removing overloaded switches from the list, but at the same time, to
reduce overhead, timeout is set high enough so as not to introduce more overhead
than what is actually needed. So, an explicit notification would prove useful to
remove the candidate faster, avoiding the chance to possibly chose the sender as a
deflection target. Figure 3.1 shows the explicit set of bits in the Type Of Service

13

Robinhood

(ToS) field in the IPv4 header. Robinhood sets the last bit of the field to 0 to
indicate a Steal Request (switch is under-loaded), and in case of explicit notification
of overloading (Steal Cancel), the bit is set to 1.

3.4.1 Work Donating

A variant of the Robinhood protocol, opposed to work-stealing principles, suggests
that instead of preemptively sending steal requests, overloaded switches should
be the ones in charge of sending requests for assistance (Donation Request), and
neighbors should respond with their availability. Since this process introduces
an increased number of message exchanges and does not provide any significant
improvement (actually it introduces a little more overhead) we have decided to not
to go on with this approach, but have listed it here as part of the development
process.

Figure 3.1: RobinHood - Steal Request/Steal Cancel messages as IPv4 ToS bits.
Last bit is set to 0 to indicate Steal Requests. Last bit is set to 1 to indicate Steal
Cancels.

14

Robinhood

3.5 Robinhood’s Deflection Development
Once the stealing neighbors have been defined though the exchange of Steal Request
messages, a switch becoming overloaded has now the ability to start deflecting
packets towards neighbors. We present here the development of the protocol and
the conclusions that led us to the final decisions; from a first iteration, where we
deflect one single flow to a single neighbor, to a final version where we deflect
multiple flows to multiple neighbors. It is important to note that even deflecting
multiple flows to multiple neighbors, we still avoid deflecting the same flow to
different neighbors, to avoid reordering. All the iterations are based on an already
available deflection candidate list. What changes in the different versions are the
selection of flows being deflected, how many flows are deflected, and the way we
choose the deflection targets.

3.5.1 First Iteration
In the first iteration of the protocol, we exploit the remaining flow size information
as intended and introduced by Vertigo. Note that the exploitation of this value
introduces more overhead since an additional header for the packets is needed, and
a marking step on end hosts is required. A newly overloaded switch will start by
picking the packet with the highest RFS value in the overflowing buffer and the
flow it belongs to. It will then pick a neighbor from the list of available candidates,
and will start deflecting every incoming packet of that flow to the selected neighbor.

The neighbor selection process can be random, but for the first version of
the protocol, since we are only deflecting one flow, the best choice would be the
least overloaded one, although this will require additional overhead for the load
information of every switch. The selection of the least loaded neighbor will
bring different results when deflecting multiple flows. From now on, every
incoming packet belonging to the chosen flow, will be deflected to the least loaded
neighbor. The procedure in Algorithm 1 describes how a newly overloaded switch
behaves when its buffer threshold has been surpassed. With this primitive and
early approach Robinhood is able to overcome ECMP static paths average flow
completion times, but with higher drop rates. As mentioned earlier, the deflection
of a single flow, even with a set threshold, does not prevent buffers to become fully
loaded, causing packets not belonging to the deflected flow to be dropped.

3.5.2 Second Iteration
In the attempt to improve drop rates, we proceed to the second iteration of
Robinhood: we start deflecting multiple flows, still preferring the ones with highest
number of bytes left to transmit and still exploiting the RFS information in the

15

Robinhood

Algorithm 1 Robinhood - First Iteration
1: procedure RobinhoodFirst(BS, BT)
2: ▷ BS is the Buffer Size of the switch
3: ▷ BT is the Buffer Threshold set by the algorithm
4: ▷ [S1, S2, ..., Sn] are the candidate neighbors for offloading
5: ▷ MaxRFSPacket is the packet with highest RFS value in the overloaded

buffer
6: Flow = MaxRFSPacket.FlowId
7: N = LeastLoadedNeighbor in [S1, S2, ..., Sn]
8: while BS > BT do
9: ▷ Pi is incoming packet

10: if Pi.FlowId = Flow then
11: Deflect Pi towards N
12: else
13: Ignore Pi

14: ▷ Ignore is intended as "ignore for deflection"
15: ▷ Pi is put the corresponding output buffer
16: ▷ or retransmitted or dropped
17: end if
18: end while
19: end procedure

16

Robinhood

header. The selection of the flows to deflect, follows the same approach of the first
iteration: we pick the packet with highest RFS in the overflowing buffer, but this
time we then proceed to pick also the second, the third, and so on.

Algorithm 2 Robinhood - Second Iteration
1: procedure RobinhoodSecond(BS, BT)
2: ▷ BS is the Buffer Size of the switch
3: ▷ BT is the Buffer Threshold set by the algorithm
4: ▷ [S1, S2, ..., Sn] are the candidate neighbors for offloading
5: ▷ Procedure is triggered as soon as BS > BT
6: ▷ Nf is the number of flows in the overloaded buffer
7: ▷ X is the percentage of flows to deflect
8: NumberF lowsToDeflect = Math.floor(X*Nf)
9: FlowsToDeflect = getMaxRFSPackets(NumberF lowsToDeflect)

10: ▷ The flows of the top X packets with highest RFS values in the buffer
11: StealingNeighbors = []
12: for flow in FlowsToDeflect do
13: StealingNeighbors.append(random in [S1, S2, ..., Sn])
14: end for
15: while BS > BT do
16: ▷ Pi is incoming packet
17: if Pi.FlowId in FlowsToDeflect then
18: Deflect Pi towards corresponding StealingNeighbor
19: else
20: Ignore Pi

21: ▷ Ignore is intended as "ignore for deflection"
22: ▷ Pi is put the corresponding output buffer
23: ▷ or retransmitted or dropped
24: end if
25: end while
26: end procedure

The number of selected flow highly depends on the current number of flows
in the buffer. We chose to deflect a percentage X of the current number of flows,
to optimize performance. An optimal value for X was found to be around 50%
of the flows: deflecting too many flows will result in the deflection target buffers
themselves becoming overloaded. At the same time, deflecting fewer flows, will bring
no noticeable difference from the first iteration. There are some cases, although
rare, in which for instance the number of flows in the buffer is very limited, and
the congestion is caused by mostly one single flow. In this case, picking half of
the flows in the buffer, falling into a generalized first iteration, is the best choice;

17

Robinhood

deflecting flows that are contributing to congestion, while leaving other flows to
be forwarded through their shortest path, in a Vertigo-style prioritization. This
phase of the development led to interesting results: deflecting multiple flows has its
repercussions on the selected stealing neighbors; if we stick to selecting the least
loaded neighbor from the list, we end up overloading that same neighbor. The speed
at which the deflection target fills up also depends on the X percentage value of the
deflected flows. The more we deflect, the higher the probability and speed at which
the neighbor becomes congested. This observation led us to the conclusion
that when deflecting multiple flows, randomly choosing multiple stealing
neighbors is the best choice, as Algorithm 2 shows. The neighbor selection is
then performed together with the flows selection; distributing the flows randomly
among the candidate neighbors. Any subsequent packet, belonging to one of the
selected flows, will be deflected according to its relative entry in the Deflection
Table.

At this point of the development, Robinhood is able to overcome ECMP and
Vertigo in terms of average flow completion times. DIBS is still able to achieve
better results, due to its behaviour in deflecting every single packet that comes
to a congested switch in every available port buffer. DIBS does not take into
consideration already congested switches, but aggressively forwards packets. Vertigo
and Robinhood follow a more conservative approach, taking the congested neighbors
into consideration even with different solutions, with the advantage that Robinhood
deflects the same flow to the same switch, eliminating the need for a reordering
component, thus achieving better flow completion times. This version of Robinhood
still has the downside of not deflecting every single incoming packet, leaving packets
that do not belong to deflected flows to be dropped, even if multiple flows are
chosen.

3.5.3 Final Version

We then come to the final and last version of the protocol, in which, every incoming
packet is deflected, respecting the same flow - same switch relationship, leading to
outstanding results for flow completion times, which will be better analyzed in the
relative section. As listed in Algorithm 3, as soon as a packet arrives, an overloaded
switch will look into its Deflection Table to find an entry for the corresponding flow.
If found, the packet is then deflected to the entry deflection target node. If, on the
contrary, no entry is found, it will be created for subsequent packets of that flow,
randomly selecting a neighbor from the candidate list. As mentioned, the random
selection of the stealing neighbor at this point has its advantages. By preferring the
least loaded neighbor, a larger quantity of flows, and subsequently packets, will be
poured on it. From this point on, we will refer to Robinhood as in its final version.

18

Robinhood

Algorithm 3 Robinhood - Final Iteration
1: procedure Robinhood(BS, BT)
2: ▷ BS is the Buffer Size of the switch
3: ▷ BT is the Buffer Threshold set by the algorithm
4: ▷ [S1, S2, ..., Sn] are the candidate neighbors for offloading
5: ▷ DefT is the deflection table for the current switch
6: ▷ Procedure is triggered as soon as BS > BT
7: while BS > BT do
8: ▷ Pi is incoming packet
9: if Pi is Steal Cancel then

10: ▷ Sx is the sender of the Steal Cancel message
11: removeEntry(Sx) in DefT
12: end if
13: if Pi.FlowId has entry in DefT then
14: Deflect Pi towards corresponding stealing neighbor in DefT
15: else
16: Neigbor = random in [S1, S2, ..., Sn]
17: DefT addEntry(Pi.FlowId, Neighbor)
18: Deflect Pi towards Neighbor
19: end if
20: end while
21: end procedure

19

Robinhood

3.6 Example Scenario
In this section we present an example scenario in which Robinhood takes action,
supposing we have a network defined as figure 3.2 shows.

Figure 3.2: Network scheme for protocol workflow illustration

Supposing at the start no switch is overloaded, after exchanging Steal Request
messages, each switch has its neighbors as a potential candidate for deflection.
Table 3.1 reflects this situation.

Switch Stealing Neighbors Candidates
Switch A [B, C, D]
Switch B [A, C, D, E]
Switch C [A, B, D]
Switch D [A, B, C, E]
Switch E [B, D]

Table 3.1: Stealing Neighbors candidates list at first step.

Now suppose that switch B becomes overloaded. The first step of the protocol
requires switch B to send an explicit Steal Cancel message to its neighbors, so that
the offloading of packets into switch B is avoided. The sending of explicit steal
cancel is not mandatory, since switch B will not send any further Steal Request
messages and the expiry timeout on the neighboring switches will take care of
removing it from the candidates list. In each case, table 3.2 reflects the situation.

Following the steal cancel message, switch B is now able to pick random neighbors
for deflection. Sticking with the final version of Robinhood, we are deflecting every
packet that comes to switch B, and with them, every different flow; leaving the

20

Robinhood

Switch Stealing Neighbors Candidates
Switch A [C, D]
Switch B [A, C, D, E]
Switch C [A, D]
Switch D [A, C, E]
Switch E [D]

Table 3.2: Stealing Neighbors candidates list after switch B is overloaded.

stealing neighbor selection random. An alternative could be to select the neighbors
in a round-robin fashion, but as shown by simulations, since the pool of targets is
relatively small, the mode of selection does not provide a significant difference, and
at the end of the process, since we are deflecting multiple flow, multiple neighbors
will be chosen either way. The important detail that switch B has to consider is the
relationship between flows and switches to avoid and prevent reordering: multiple
flows can be deflected to the same switch, but never deflect the same
flow to multiple switches. Switch B will remember the associations made for
this purpose in the already introduced Deflection Table, made of an entry for each
different flow and the port where incoming packets should be deflected.

Flow Stealing Neighbor
121 Switch C
99 Switch A
192 Switch C

Table 3.3: Example of Deflection Table for Switch B

Table 3.3 shows an example of what the Deflection Table of switch B could look
like when deflecting multiple flows. However, the table is dynamic and subject
to change, since neighboring switches statuses may change even during deflection.
As line 9 of Algorithm 3 shows, if the switch receives a Steal Cancel message, (or
timeout expiry) it will proceed to automatically find a replacement for the flow that
steal cancel sender was deflecting. In this example every packet coming from flows
121, 99 and 192 will be deflected to switches C, A and C respectively. Supposing
a steal cancel message is received, coming from switch A, switch B will promptly
remove A from stealing neighbor candidates, and its corresponding associations in
the Deflection Table; then since the association is removed, an incoming packet
belonging to flow 99 will find no corresponding entry in the table, and then a newly
random chosen switch will be selected, this time with switch A removed from the

21

Robinhood

candidate list and thus not available for possible selection. Every other packet,
not belonging to flows 121, 99, and 192, will follow the same procedure: randomly
choose an available neighbor and start deflecting the corresponding flow. With
this more dynamic and reactive approach, Robinhood ensures that every packet
gets deflected, but at the same time flow-based deflection avoids reordering steps.
Robinhood is able to achieve improved performance compared to Vertigo and DIBS,
but still with a higher drop rate, which suggests room for improvement, and will
be analyzed in the performance evaluation section.

22

Chapter 4

Simulation Framework

4.1 Overview
The simulation framework, on which Robinhood and the other algorithms were
tested, has been coded in the Python language, in an object-oriented fashion, making
use of different libraries, especially numpy for helping with the collecting, tracking
and calculation of performance metrics. The project is made up of three main
components which are the event generation, the network core and the performance
analytics which will be detailed in the following sections.

4.1.1 Event Generation
The event generation component takes care of generating traffic for the simulation.
What is referred as traffic is made up of arrays of Packet objects (subclass of
Event class), listed together in a bigger data structure called universe. Packets
are generated with some common attributes such as arrivaltime.

1 c l a s s Packet (Event) :
2 de f __init__(s e l f , arr iva l_t ime , serv ice_time , src , dst , s i z e ,

f low_id) :
3 super () . __init__(arr iva l_t ime , serv ice_t ime)
4 s e l f . id = id (s e l f)
5 s e l f . s r c = s r c # Host
6 s e l f . dst = dst # Server
7 s e l f . s i z e = s i z e # Bytes
8 s e l f . f low_id = flow_id # Flow

• Arrival Time and Service Time are the two parameters that are inherited
from the Event parent class. Arrival time is the time at which the packet is

23

Simulation Framework

generated and the scheduled time at which its processing will start. Service
time is the time required for a network node to process the packet, serving as
a baseline for a comprehensive study on the queue being formed in network
devices. The service time is what will actually be used by servers for processing
time of a packet, and in the simulation is set as default to 0, indicating an
immediate response of the server. What actually generates queues in the
system are forwarding delays relative to switches and hosts, as we will see
later.

• Src and Dst, as the name suggests are network devices source and destination
of the packet. These two attributes will become relevant when generating
flows and when defining the static paths of routing for the network. Devices
are uniquely identified by their IP address which in this framework is a simple
string.

• Size Packet are defined with a fixed size of 1512 byes.

• Flow ID Although a flow is uniquely defined by the tuple (srcIp, dstIp, srcPort,
dstPort, protocol), having an id, generated in phase of flow generation, proves
to be useful when it comes to deflecting decisions for switches.

The flow generation process, follows a straightforward approach. When generat-
ing traffic, the process is divided in two steps: generating a background load, and
then generating load for the network load parameter, that goes from 0.3 to 0.8. To
guarantee a varying load, with an increase in the parameters, follows an increase
in packets generated per interval; at full load, a number of packets is generated
every time unit so that buffers become full.

1 packe t s_to_f i l l_bu f f e r = math . f l o o r (math . f l o o r (Conf ig . b u f f e r _ s i z e
/ Conf ig . max_packet_size) ∗ Config . network_load)

Flows are generated independently, since the number of sources and destinations
is limited. Packets are then added to the flow, in a first step when generating
background traffic, and then in a later step when generating varying load. One
of the main parameters is also the arrival rate. Varying this value, will increase
(or decrease) the "closeness" of events among each other. The event generator
also includes a random seed parameter, coming from a more general simulation
configuration, that randomizes the packets generation interval for varying load.

1 f l ow = Flow ()
2 s r c = src_parameter e l s e random . cho i c e (NetworkUti ls . hos t s)
3 dst = dst_parameter e l s e random . cho i c e (NetworkUti ls . s e r v e r s)

24

Simulation Framework

4 f l ow . s r c = s r c
5 f l ow . dst = dst
6 f o r _i in range (f l ow_s i ze)
7 i n t e r_arr iva l_t ime = random . expovar ia te (1/ s e l f . a r r i v a l _ r a t e)
8 ar r iva l_t ime += inte r_arr iva l_t ime
9 packet = Packet (arr iva l_t ime , . . . , f low . id)

10 . . .
11 f l ow . packets . append (packet)

4.1.2 Network Core
The classes that compose the network core are mainly the ones regarding the
network devices (switches, end hosts and servers), one class regarding static path
generation (routing) and the controller classes. Controller classes are at the core
of the simulation, since they provide the algorithms for handling full buffers and
deflecting packets in each of the implemented algorithms (Vertigo, DIBS, ECMP
and Robinhood), with the flexibility to add more whenever needed. We will talk in
detail about controller classes implementation in their relative section, and about
static routing in the network topology section, focusing in this paragraph on the
device classes.

Hosts, switches and server classes, inherit from a base ForwardingDevice class,
that implements some common methods and attributes. ForwardingDevice class
itself inherits other device generic attributes, such as the IP address, from an
abstract NetworkDevice class. General forwarding devices, include the implemen-
tation of Port objects for every reachable destination, populated in the static
routing phase as we will later discuss, and a ForwardingTable implementation,
listing entries for destination - corresponding port. Ports, are the objects that bring
a queue mechanisms, that is intended as the buffer, one for each port of the switch.

1 c l a s s Port :
2 de f __init__(s e l f , port_id , b u f f e r _ s i z e=Config . b u f f e r _ s i z e) :
3 s e l f . id = port_id
4 # . . .
5 # Buf f e r capac i ty
6 s e l f . bu f f e r_capac i ty = b u f f e r _ s i z e i f b u f f e r _ s i z e e l s e Config

. b u f f e r _ s i z e
7 s e l f . b u f f e r = []
8 s e l f . eg r_buf f e r_s i ze = 0 # Actual b u f f e r s i z e
9

10 # . . . Port methods . . .
11

12 de f put_packet (s e l f , packet) :
13 # Buf f e r s i z e exceeds b u f f e r capac i ty

25

Simulation Framework

14 i f s e l f . eg r_buf f e r_s i ze + packet . s i z e > s e l f . b u f f e r _ s i z e :
15 r a i s e Fu l lBu f f e rExcept ion ()
16 e l s e :
17 # . . .
18 heapq . heappush (s e l f . bu f f e r , packet)
19 s e l f . eg r_buf f e r_s i ze += packet . s i z e
20

21 # . . . Port methods . . .
22

23 c l a s s NextHop :
24 de f __init__(s e l f , port , hop , d i s tance , hops_to_dest inat ion =0) :
25 s e l f . port = port
26 s e l f . hop = hop
27 s e l f . d i s t anc e = d i s t ance
28 s e l f . hops_to_dest inat ion = hops_to_dest inat ion
29

30 # . . .
31

32 c l a s s ForwardingTableEntry :
33 de f __init__(s e l f , dst , next_hop , port : Port , d i s tance ,

hops_to_dest inat ion) :
34 s e l f . dst = dst
35 s e l f . poss ible_next_hops : l i s t [NextHop] = []
36

37 # . . .

The way network devices they work, according to the simulation, is by constantly
processing and/or handling an incoming packet, which means putting it in the
relative port buffer according to the packet destination. In which port to put the
packet, is a task delegated to the device’s forwarding table, which is implemented
in its own class. Once the packet has been put in the corresponding output buffer,
two scenarios might present: the port is full, so we go on retransmitting or dropping
the packet, or the port is not full, so we keep the packet in the buffer queue. Every
simulation step, based on the device’s state, so based on if there are packets to
forward, or incoming packets to handle, the corresponding methods will be called.

1 # Forwarding Device c l a s s methods
2

3 de f move_packet_to_output_buffer (s e l f , packet , output_port=None) :
4 # Output port parameter f o r manual forward ing
5 output_port = output_port or C on t r o l l e r .

handle_moving_packet_to_output_buffer (s e l f , packet)
6

7 t ry :
8 output_port . put_packet (packet)
9 except Fu l lBu f f e rExcept ion : # Output port b u f f e r i s f u l l

10 C o n t r o l l e r . hand l e_fu l l_buf f e r (s e l f , packet , output_port)

26

Simulation Framework

11

12 # . . .
13

14 de f handle_moving_packet_to_output_buffer (device , packet) :
15 possible_next_hops = dev i ce . forwarding_table . get_next_hops (packet

. dst . ip_addr)
16 # . . .
17 next_hop = possible_next_hops [0] # Hops are ordered by d i s t anc e
18 output_port = dev i ce . forwarding_table . get_port (next_hop . ip_addr)
19 # . . . Eventual ECMP Handling
20 re turn output_port

Retransmission or drop of packets are handled by the inherited method of
ForwardingDevice class. There are many options available when handling retrans-
mission, depending on the parameters of the simulation; most of them are discussed
later in the relative section; but for context, retransmission can be enabled indef-
initely, enabled with a maximum attempt (preferred choice for the performance
evaluation) or disabled completely. Note that retransmitting a packet will simply
mean generating a new packet with the current simulation time + offset as arrival
time, but will all the same characteristics (flowId, src, dst, service time).

1 de f handle_retransmiss ion (device , packet) :
2 packet . departure_time = −1 # Set departure time to −1 to

i n d i c a t e that the packet was dropped
3 i f Conf ig . r e t r an sm i s s i on : # Retransmiss ion enabled
4 # Schedule r e t r an s m i s s i on i f Conf ig . ret ransmiss ion_attempts

are not exceeded , i gno re i f Conf ig . ret ransmiss ion_attempts i s −1
5 i f packet . r e t r a n s m i s s i o n s < Config . ret ransmiss ion_attempts or

Config . ret ransmiss ion_attempts == −1:
6 # pr in t (f " Schedul ing r e t r an sm i s s i on f o r packet { packet . id

} from { dev i c e . ip_addr } ")
7 dev i ce . s chedu l e_ret ransmi s s i on (packet)
8 e l s e :
9 pr in t (f "DROPPING packet { packet . id } ")

10 S t a t i s t i c s . update_dropped_packets ()
11 e l s e :
12 pr in t (f "DROPPING packet { packet . id } ")
13 S t a t i s t i c s . update_dropped_packets ()

In the case of not full buffer, going on with the simulation, switches, which
are the devices in charge of forwarding packets until they reach their destination
server, will keep the packet in processing for a simulation time specified in the
forwarding delay parameter (simulation parameters section). Once the time has
passed, they will proceed with the forwarding. The packet has already been put
in the corresponding output port for destination; and at that time an attribute
on the packet class nextHop has been set. To simply forward the packet we

27

Simulation Framework

remove the packet from the output buffer and call the corresponding method for
handling incoming packets on the next hop device. Note that at this stage, since
we are handling packets one at a time, switches need to pick another packet to be
processed from the queues they have. To focus on the algorithmic performances
of Robinhood and other solutions we decided to schedule the next packet to be
forwarded, from the port with most packets in queue. The scheduling mechanism
is though implemented separately, allowing for easy editing whenever needed.

1 de f schedule_next_packet (s e l f) :
2 port = s e l f . s chedu l e r . s chedu le (s e l f . por t s)
3 i f port i s None :
4 # This means that a l l the por t s have empty output b u f f e r s
5 s e l f . current_packet = None
6 s e l f . current_output_port = None
7 s e l f . current_next_hop = None
8 e l s e :
9 s e l f . current_packet = port . se lect_next_packet ()

10 s e l f . current_output_port = port
11 s e l f . current_next_hop = s e l f . forwarding_table . get_next_hops (

s e l f . current_packet . dst . ip_addr) [0]

4.1.3 Performance Metrics and Analytics
For collecting and tracking performance metrics we make use of a class composed
mainly of static methods to make them accessible throughout the entire project.
Most of the metrics are calculated at the end of the simulation, while data is
collected while the simulation is running. Most meaningful metrics include:

• Number of dropped packets - with drop rate

• Number of retransmitted packets - with retransmission rate

• Generated packets

• Algorithms handles: increments each time a packet is handled by Vertigo,
DIBS, ECMP or Robinhood, to have a better idea of how many times, a
proposed solution comes into play.

• AVG Throughput: At the end of the simulation is a mean of throughput values.
Each throughput value is updated every simulation step with the number of
processed packets in that simulation step.

• AVG Flow Completion Times: At the end of the simulation is a mean of all the
flow completion times collected (also at the end of the simulation). Dropped
packets are not counted in this step.

28

Simulation Framework

• Buffer utilization data: are calculated considering the buffer utilization (in
percentage) on each switch. The percentage of buffers being used is Bi(t)
where i is the switch and t the simulation time. Then aggregated metrics over
time are the average buffer utilization for switch i: AV G(Bi) = 1/T ∗ q(Bi(t))
where T is the final simulation time; and total average buffer utilization:
1/N ∗ sum(AV G(Bi) where N is the total number of switches.

The Statistics class in which all these methods are grouped, also contains the
code for saving the results in CSV format files and plot them accordingly.

4.2 Network Topology Generation
The topology generation is delegated to the BRITE [4] software. BRITE is a
software developed by the Boston University that allows for a flexible and highly
versatile topology generation. BRITE [4] works by generating a plane with a set of
coordinates, placing nodes inside the plane, according to one of the chosen model
and then connecting the nodes according to a variety of parameters, primarily
preferential connectivity, degrees of a node, min/max bandwidth. Then it generates
a list of nodes, and a list of edges that connect the nodes, complete with distance
and other information. The models which are used for placing the nodes on the
plane are the Waxman and the Barabasi-Albert model. One the key features of
BRITE is its capability to generate independent but interconnected, two or higher
level topologies. Parameters for the different network level can be set independently,
having for instance a waxman based first level topology with 100 nodes and then
a second level topology of 1000 nodes. The nodes of the same level topology are
connected according to its relative parameters, while BRITE [4] allows for setting
up ways of interconnecting the two levels with other values. Recursively generating,
following this approach, will allow for higher than two-level topologies. We exploited
BRITE [4] generation when generating the core of the network topology, which are
switches. Using a two-level topology we are able to mark different level networks as
two Autonomous Systems (AS); re-adapting this scenario in a data center network
leaf-spine architecture this will translate in a first level of Spine switches, and a
second level of Leaf switches, when using a Fat-Tree topology. Hosts and servers
are kept separated from the BRITE-generated network, but are instead generated
manually according to the simulation parameters, setting the exact value for how
many hosts and how many servers are needed. Hosts and servers are then connected
to switches accordingly, taking care of connecting hosts to a set of Spine switches
and servers to a set of Leaf switches, in a round robin fashion. BRITE [4] runs as
a standalone program, but once run, gives as an output a .brite file that will be
parsed by a dedicated component in the simulation framework. A .brite file looks
like this:

29

Simulation Framework

1 Topology : (12 Nodes , 17 Edges)
2 Model (5 − TopDown)
3 Model (3 − ASWaxman) : 3 1000 100 1 2 0 .15 0 .2 1 1 −1.0 −1.0
4 Model (1 − RTWaxman) : 4 1000 100 1 2 0 .15 0 .2 1 1 −1.0 −1.0
5

6 Nodes : (12)
7 3 449 245 3 3 0 RT_BORDER
8 4 150 280 2 2 0 RT_NONE
9 5 598 115 4 4 0 RT_BORDER

10 6 302 70 3 3 0 RT_NONE
11 . . .
12

13 Edges : (17)
14 2 5 3 197.73973 0 .0 −1.0 0 0 E_RT_BACKBONE U
15 3 5 4 477.4191 0 .0 −1.0 0 0 E_RT_BACKBONE U
16 4 6 4 259.23734 0 .0 −1.0 0 0 E_RT_BACKBONE U
17 5 6 5 299.40106 0 .0 −1.0 0 0 E_RT_BACKBONE U
18 6 3 6 228.54759 0 .0 −1.0 0 0 E_RT_BACKBONE U
19 . . .

Each generated node has an assigned ID, xposition and yposition in the plane,
number of incoming connections (inDegree), number of outgoing connections
(outDegress), AS ID, and a node type, in order from left to right. The node type,
is the attribute that will be used to separate different types of switches. Edges
instead are generated together with an assigned id, start and end node, edge length,
bandwidth, transmission delay, AS-from and AS-to ids, if a two-level model is
used, and an edge type. As we can see, BRITE [4] allows for highly customized
networks, making it possible to test Robinhood and other algorithms in different
environments.

1 # . . . Parser ob j e c t c l a s s
2

3 de f parse_node (s e l f , l i n e) :
4 node_id , _xpos , _ypos , _indegree , _outdegree , as_id , node_type =

l i n e . s p l i t ()
5 s e l f . nodes . append (Node (node_id , as_id , node_type))
6

7 de f parse_edge (s e l f , l i n e) :
8 edge_id , s t a r t , end , length , delay , bandwidth , as_from , as_to ,

edge_type , _what i s th i s = l i n e . s p l i t ()
9 s e l f . edges . append (Edge (edge_id , s ta r t , end , length , bandwidth ,

delay , as_from , as_to , edge_type))

Exploiting nodes and edges, generated by BRITE [4], once parsed, the simulation
framework takes care of generating static paths for connecting hosts to servers.

30

Simulation Framework

The Routing class handles these operations firstly by creating an adjacency list of
the graph and then running well-known shortest paths algorithms such as Dijkstra
(or the Yen-K variant) to find the top-k shortest paths for each host-server pair. As
a result of running these algorithms, the forwarding tables of the devices (including
switches) gets to be populated with the found destinations along with a hop number
and distance. These values, such as hop number and distance are hold in the Port
class, which is the main component of an entry in a forwarding table, along with a
queue acting as an output buffer.

1 de f d i jk s t ra_paths (s e l f , s rc , dst , k=10) :
2 pr ior i ty_queue = [(f l o a t (0) , s r c . ip_addr , [] , 0)] # (d i s tance ,

node , path , hops)
3 top_k_paths = []
4

5 whi le pr ior i ty_queue and l en (top_k_paths) < k :
6 (current_distance , current_node , current_path , hops) = heapq .

heappop (pr ior i ty_queue)
7 # I f the cur rent node i s the de s t i na t i on , re turn the path
8 i f current_node == dst . ip_addr :
9 top_k_paths . append ((current_path + [current_node] ,

current_distance , hops))
10

11 # Check ne ighbors f o r the cur rent node
12 f o r neighbor , weight in s e l f . ad j a c ency_l i s t [current_node] :
13 i f ne ighbor not in current_path :
14 heapq . heappush (pr ior i ty_queue , (current_di s tance +

f l o a t (weight) , neighbor , current_path + [current_node] , hops + 1))
15

16 re turn top_k_paths

4.3 Algorithms Simulation
What makes the simulation take key decisions when handling full buffers or de-
flection, are the implemented algorithms controllers. Each of them, depending on
the algorithm, goes into action in different moments and parts of the simulation.
Vertigo and DIBS for instance, replace the standard behaviour of retransmitting or
dropping a packet when arriving at a full buffer, ECMP and Robinhood instead
operate preemptively, making the necessary routing and forwarding decisions.

4.3.1 ECMP
ECMP’s forwarding decisions take action whenever packets needs to be handled
by a switch, before actually moving them into the corresponding output buffer for

31

Simulation Framework

their destinations. The switch, after finding out all the possible next hops for the
packet destination, forms a list of the next hops with the same cost, defined in the
simulation as the number of hops or distance, based on parameters. Then, several
inputs, such as packet’s source and destination address are given to an hashing
function (CRC32), together with a random integer between 0 and 100. A modulo
N operation is then performed on the result of the hashing function, where N is the
number of equal cost paths found for the packet’s destination, giving as a result
the index of the chosen hop. In the real implementation of ECMP, other inputs
are provided, such as source and destination port, but since in this simulation they
are not considered, a random number is required, otherwise packets belonging to
the same flow will always be redirected to the same next hop, making the ECMP
process useless.

1 de f ecmp_handle (device , packet) :
2 possible_next_hops = dev i ce . forwarding_table .

get_equal_cost_next_hops (packet . dst . ip_addr)
3 next_hop = ECMPController . ecmp_hash (packet , poss ible_next_hops)
4 output_port = dev i ce . forwarding_table . get_port (next_hop . ip_addr)
5 packet . next_hop = next_hop
6 S t a t i s t i c s . ecmp_handles += 1
7 re turn output_port

1 de f ecmp_hash (packet , poss ible_next_hops) :
2 hash_input_1 = packet . s r c . ip_addr
3 hash_input_2 = packet . dst . ip_addr
4 hash_input_3 = packet . remaining_flow_size
5 hash_input_4 = random . rand int (0 , 1000) # Random number to

d i f f e r e n t i a t e the packets
6 hash_input = [hash_input_1 , hash_input_2 , hash_input_3 ,

hash_input_4]
7

8 hash_result = z l i b . c rc32 (s t r (hash_input) . encode (’ ut f −8 ’)) # Hash
the packet

9 next_hop_index = hash_result % len (possible_next_hops)
10 re turn possible_next_hops [next_hop_index] . hop

As mentioned, ECMP handles incoming packet to a switch, even if not congested,
whenever needs to be moved to the corresponding output buffer, as you can see from
the code snippet in the 4.1.2 paragraph. Robinhood also operates preemptively,
but its deflection decisions are delegated to switches, actually moving the packet to
an output port passed as a manual parameter. Vertigo adn DIBS instead operate
as soon as buffers become full.

32

Simulation Framework

1 de f handle_moving_packet_to_output_buffer (device , packet) :
2 possible_next_hops = dev i ce . forwarding_table . get_next_hops (packet

. dst . ip_addr)
3 # . . .
4 i f Conf ig . ecmp :
5 output_port = ECMPController . ecmp_handle (device , packet)
6 re turn output_port

4.3.2 Vertigo
Vertigo’s approach, differing from ECMP’s, operates directly when handling full
buffer exceptions. The implementation of Vertigo is not carried on only in its
relative controller, but also includes other attributes and mechanisms that has to be
considered, such as the remaining flow size info in a packet and the halving of such
value when a packet is dequeued. So, as for Vertigo, other packet attributes are
needed. When a packet comes at a full buffer, the simulation standard behaviour is
to raise a FullBufferException, and subsequently retransmit of drop the packet.
Vertigo (and DIBS too) intervenes in this exact moment, instead of dropping the
packet, the controller takes action and performs the task required by the algorithm.
The packet with the highest RFS value is dequeued from the buffer making space
for the newly arrived packet; then the least loaded port among two of the possible
next hops is selected and the max RFS packet is enqueued, if possible, in this
selected port. If still the least loaded port buffer is full, then another exception is
triggered, but this time with a set parameter indicating to ignore Vertigo, in order
to proceed with the retransmission or eventual drop.

1 de f vert igo_handle (device , packet , output_port) :
2 # Dequeue max RFS packet
3 max_rfs_packet = output_port . get_max_rfs_packet ()
4 output_port . remove_packet_from_buffer (max_rfs_packet)
5 # Enqueue new packet
6 output_port . put_packet (packet)
7 # . . .
8 # Find other 2 p o s s i b l e next hops f o r the max RFS packet
9 possible_next_hops = dev i ce . forwarding_table . get_all_next_hops ()

10 # . . .
11 # Get the por t s f o r the other p o s s i b l e next hops (except the

cur rent next hop)
12 random_ports = random . sample (possible_next_hop_ports , 2)
13

14 # Choose the l e a s t loaded port from the two random port s
15 l east_loaded_port = min (random_ports , key=lambda port : port .

eg r_buf f e r_s i ze)

33

Simulation Framework

16

17 t ry :
18 # Put the max RFS packet in the l e a s t loaded port
19 max_rfs_packet . remaining_flow_size = i n t (max_rfs_packet .

remaining_flow_size / 2)
20 l east_loaded_port . put_packet (max_rfs_packet)
21 S t a t i s t i c s . ver t igo_handles += 1
22 except Fu l lBu f f e rExcept ion :
23 # I f the l e a s t loaded port i s f u l l , drop the packet / schedu le

r e t r an sm i s s i on
24 C o n t r o l l e r . hand l e_fu l l_buf f e r (device , max_rfs_packet ,

output_port , vertigo_param=False)

4.3.3 DIBS
Same as Vertigo, Detour-Induced Buffer Sharing algorithm executes whenever a
packet comes to a full buffer, raising a FullBufferException. The procedure is
then, for a switch, to move the packet to another random port, making sure to
exclude: ports that are directly connected to end hosts or servers, and ports whose
buffer is already full. Instead of Vertigo, since we are excluding full buffers from
the port selection, exceptions are not occurring, what might happen is instead
that when the packet will be forwarded might encounter other full ports and so
the procedure is repeated until packets reach their destination. Another possible
outcome for DIBS procedure is that there are no available ports for deflection. In
this case, the network controller will take care of handling the full buffer, exploiting
the same strategy as for Vertigo, which is setting a parameter to indicate to ignore
DIBS intervention.

1 de f dibs_handle (device , packet , output_port) :
2 ava i l ab l e_por t s = []
3 f o r port in dev i ce . por t s :
4 i f port . i s_over loaded () :
5 cont inue
6 i f port . other_end_device () . i s_switch () :
7 ava i l ab l e_por t s . append (port)
8

9 i f l en (ava i l ab l e_por t s) == 0 : # No port s are a v a i l a b l e to move
the packet

10 C o n t r o l l e r . hand l e_fu l l_buf f e r (device , packet , output_port ,
dibs_param=False)

11

12 S t a t i s t i c s . dibs_handles += 1
13 port = random . cho i c e (ava i l ab l e_por t s)
14 port . put_packet (packet)

34

Simulation Framework

4.3.4 Robinhood
Given the articulate and preliminary steps required to implement Robinhood
protocol, the main deflecting action is performed directly at switch level, while
all the preparatory steps, such as the updates on deflection candidates list are
performed every simulation step in the Robinhood controller class. Every time the
simulation is advanced, a loop goes through all the switches to find out under-loaded
and overloaded ones, taking different actions based on the status. Overloaded
switches will send Steal Requests (SR) in the form of an help offer to neighboring
switches, which will take care of inserting the sender in the deflection candidates list.
Overloaded switches will instead send a Steal Cancel message, requiring neighbors
to remove them from the possible deflection targets. In the simulation, the use of a
direct approach is preferred, instead of carrying on specific packet implementations,
since as previously mentioned, these messages can be carried on by a single IP
state message, introducing minimal overhead.

1 de f act ivate_robinhood (device , packet , output_port) :
2 f o r switch in s e l f . network . sw i t che s :
3 i f switch . i s_over loaded () i s None :
4 s e l f . send_stea l_request (switch)
5 e l s e :
6 s e l f . send_stea l_cance l (switch)

1 de f send_stea l_request (s e l f , switch) :
2 switch_neighbors = s e l f . network . get_neighbor ing_switches (switch)
3 f o r ne ighbor in switch_neighbors :
4 i f switch not in neighbor . neighbors_that_can_help :
5 neighbor . neighbors_that_can_help . append (switch)

1 de f send_stea l_cance l (s e l f , switch) :
2 ne ighbors = s e l f . network . get_neighbor ing_switches (switch)
3 f o r ne ighbor in ne ighbors :
4 i f switch in ne ighbor . neighbors_that_can_help :
5 neighbor . neighbors_that_can_help . remove (switch)

The isOverloaded() method, checks whether a switch has at least one buffer
surpassing the size threshold set by Robinhood. The result of the check, not only
broadcasts the adequate message to neighbors, but is also the trigger to initiate
the deflection process. Every switch, together with the candidates list, keeps also
track of the flows it is currently deflecting (Deflection Table), in a specific switch
attribute, made up of entries on the DeflectingTo class.

35

Simulation Framework

1 c l a s s Def l ect ingTo :
2 de f __init__(s e l f , f low_id=None , switch=None) :
3 s e l f . f low_id = flow_id
4 s e l f . switch = switch

When the process starts, the candidate list is empty, but as soon as initiated,
every incoming packet will create an entry in the Deflection Table if not already
present, with the flow it belongs to and the randomly chosen deflection target. If
an entry for the flow is already present in the table, the switch then proceeds to
move the packet into the corresponding output buffer of the target neighbor.

1 de f rob inhood_def l ect_mult ip le (s e l f , packet) :
2 f o r de f l e c t ing_i t em in s e l f . de f l e c t ing_to_mult i :
3 i f packet . f low_id == de f l e c t ing_i t em . f low_id :
4 s e l f . de f l e c t_packet (packet , de f l e c t ing_i t em . switch)
5 re turn
6

7 # I f f low i s not a l r eady in d e f l e c t i o n
8 s t ea l ing_ne ighbor = s e l f . p i ck_stea l ing_ne ighbor ()
9 s e l f . de f l ec t ing_to_mult i . append (Def l ect ingTo (packet . flow_id ,

s t ea l ing_ne ighbor))
10 output_port = s e l f . forwarding_table . get_port (s t ea l ing_ne ighbor .

ip_addr)
11 # Move with f o r c ed output port
12 s e l f . move_packet_to_output_buffer (packet , output_port)

Early versions of Robinhood, follow a different approach, based on the iteration.
Both the first and second iteration, though, make use of the RFS value, of Vertigo,
selecting a single, or multiple flows based on this value.

1 # . . . F i r s t I t e r a t i o n
2 de f r ob inh oo d_ ac t i v a t e _ f i r s t_ i t e r a t i o n_ de f l e c t i o n (s e l f , packet) :
3 l east_loaded_neighbor = sor t ed (switch . neighbors_that_can_help ,

key=lambda x : x . get_load ()) [0]
4 switch . d e f l e c t i ng _t o . switch = least_loaded_neighbor
5 # Get the f low id o f the packet with the h i ghe s t remaining f low

s i z e
6 port = switch . i s_over loaded ()
7 f low_id = port . get_max_rfs_packet () . f low_id
8 switch . d e f l e c t i ng _t o . f low_id = flow_id

1 # . . . Second I t e r a t i o n

36

Simulation Framework

2 de f rob inhood_act ivate_second_ite rat ion_de f l e c t ion (s e l f , packet) :
3 max_rfs_packets = RobinHoodControl ler .

get_max_rfs_packets_of_flows (switch)
4 f o r packet in max_rfs_packets :
5 s t ea l ing_ne ighbor = random . cho i c e (switch .

neighbors_that_can_help)
6 d e f l e c t i n g_t o = Def l ect ingTo (packet . flow_id ,

s t ea l ing_ne ighbor)
7 switch . de f l e c t ing_to_mult i . append (d e f l e c t i n g_ to)
8

9 de f get_max_rfs_packets_of_flows (switch) :
10 port = switch . i s_over loaded ()
11 # Count d i f f e r e n t f l ows in over loaded port
12 d i f f e r e n t _ f l o w s = []
13 f o r packet in port . b u f f e r :
14 i f packet . f low_id not in d i f f e r e n t _ f l o w s :
15 d i f f e r e n t _ f l o w s . append (packet . f low_id)
16 to ta l_ f l ows = len (d i f f e r e n t _ f l o w s)
17 f l ows_to_de f l e c t = math . c e i l (t o ta l_ f l ows ∗ 0 . 5)
18 # Get top f lows_to_de f l e c t packets with the h i ghe s t d i f f e r e n t

remaining f low s i z e s
19 max_rfs_packets = port . get_top_k_max_rfs_packets_different_flows (

f l ows_to_de f l e c t)
20 # pr in t (f "Num max_rfs_packets : { l en (max_rfs_packets) } ")
21 re turn max_rfs_packets

4.4 Simulation Parameters
As suspected, the simulation revolves around a multitude of parameters to allow for
an highly customized environment. They are stored in an .ini file which is loaded at
the start of the simulation and populates a static Config class that enables access
to the values, everywhere in the simulation. Following there is a list of the most
significant and adopted ones.

• Debug parameters: multiple boolean values that enable/disable the printing
of statements, drawing of network nodes and plots the generated packets

• Algorithm parameters: multiple boolean values that enable/disable a single
algorithmic choice among Vertigo, ECMP, DIBS and Robinhood. Algorithms
should be enabled one at a time.

• Robinhood modes: integer value for enabling/disabling the execution of a
different version of the iterations of Robinhood protocol.

• Arrival Rate: defines the "closeness" of interarrival times when generating
packets.

37

Simulation Framework

• Service Time: time (in simulation units) required by a server to process a
packet.

• Forwarding Delays: one for hosts and one for switches, defines the time a
host or a switch takes to process and forward a packet.

• Retransmission parameters: these include a retransmission timeout, which
is an offset for when to reschedule retransmitted packets after the current
simulation time; a retransmission attempts value for indicating how many
times a packet should be retransmitted before it gets dropped

• Number of Hosts and Servers: integer numbers indicating the number
of hosts and the number of servers which will be generated and attached to
switches.

• Network load: float value ranging from 0 to 0.8

• Packet Size: set as default to 1512 bytes

• Buffer Size: capacity of a single buffer, set as default to 300KB

• Spine Buffer Size: capacity of a single buffer of a Spine or Core switch, set
to default as Buffer Size but could be increased, since these switches are the
ones directly attacched to hosts.

• Buffer Threshold: the value for Robinhood buffer threshold is set as default
to 250KB, about 15% less of the Buffer Size

• Background Traffic: positive value to enable/disable background traffic
and its intensity; set as default to 200 which means that each flow generated
contains at least 200 packets.

• Max and Min Flow Size: used in case of fixed flow sizes. Flow size is
inteded as the number of packets belonging to the flow.

• Brite File: input topology file for the parsed, from which nodes and edges
are generated.

• Results File: Output file in which to collect performance metrics.

38

Chapter 5

Performance Evaluation

We evaluate Robinhood using a custom built network simulation framework, under
the same conditions where Vertigo and other approaches have been tested, which
are Fat-Tree and equivalent Three-Tiered architectures with a varying number
of hosts and servers, a varying network load, supported by background traffic.
Summarizing our findings:

• Robinhood achieves better throughput under various degrees of load, compar-
ing to Vertigo, DIBS and ECMP.

• The flow completion times are improved by 22% compared to ECMP, 6% and
7% compared to Vertigo and DIBS, respectively.

• The improvement on FCT, comes at the cost of a reduced average buffer
utilization after which follows a higher drop rate.

5.1 Simulation Setup
5.1.1 Network Topologies
We perform our simulations using the BRITE [4] software for generating the
topologies. BRITE works by placing nodes inside of a plane, and then connecting
the nodes according to a variety of parameters, primarily preferential connectivity,
degrees of a node, min/max bandwidth. The main strength of BRITE software
is that it allows for multi-level topologies: in our simulations we mainly used
2-level hierarchically generated networks, in order to map Spine switches, directly
connected to hosts, and Leaf switches, connected to servers. The primary used
topology for the simulation is a Fat-Tree topology with 4 1-level switches and 8
2-level switches. We also validate our findings against an equivalent three-tiered
architecture with 4 core and 8 aggregate switches. We also tested fully and randomly

39

Performance Evaluation

connected topologies, proving that Robinhood performs well under circumstances
that may be different from the ones in data centers. Hosts, which are in charge of
sending the packets into the network, and servers, which are in charge of the final
processing, are detached from the topology generated by BRITE, to maintain a
highly customized network.

5.1.2 Workloads
For testing different network loads, we regulate the incoming packets and flows
based on the switch buffer capacity. At full load, the hosts periodically (at each
simulation step) send packets to servers for a fixed time interval, with the number
of packets per switch matched to fill its buffers. The time interval is randomly
chosen, so the simulations are repeated for different random seeds, to validate the
results. An alternative approach, would be to modify the arrival rate of the packets,
operating on the inter-arrival times, to make the same number of packets to be
generated with shorter time difference. Also, additionally to the varying load, in
every simulation there is a background traffic set to 20% of the full load, in order
to keep nodes busy and more easily manipulate the load. The background traffic is
distributed across multiple, already defined flows. The final network load is the
sum of the background load + the variable load, that for every test goes from 30%
to 80%, making and aggregate load of 100% at full capacity.

5.2 Results

5.2.1 Early Versions
In the first iteration of the protocol, where we deflect one single flow for an
overloaded switch, we can see a positive improvement compared to ECMP, in
terms of average FCT, as shown in Figure 5.1. The average flow completion times
improved by 10% with respect to ECMP results at 80% network load, but with a
slightly higher drop rate, 5.8% drops compared to ECMP 5.4% as figure 5.3 shows.
This is primarily because of the single flow deflection, leaving any packet that does
not belong to the deflected flow to experience re-transmission or drops. ECMP
lacks the ability to react to bursts in real-time, thus exacerbating congestion in
some cases. Robinhood instead takes notice of non-congested switches and paths
when making deflection decisions, improving the final flow completion time. This
early version also takes the RFS into consideration, making a sizeable difference
when deflecting a single flow, picking the one with most bytes left to transmit. As
already noted, this approach leaves many packets to be dropped, but at the same
time, non-deflected packets follow their shortest path towards their destination.

40

Performance Evaluation

Vertigo and DIBS still perform better than Robinhood in every metric, given that
they deflect every incoming packet by nature.

Figure 5.1: Robinhood (First Iteration) Improvement over other algorithms in
Average FCT. Major improvements are only noticeable against ECMP, with a 22%
improvement at full network load, while Vertigo and DIBS perform better at any
load.

Then, starting to deflect multiple selected flows we can see an advantage in
terms average fct even when compared to Vertigo. In this stage where we deflect a
fixed percentage of flows, the buffer threshold mechanism of Robinhood prevents
multiple buffers from becoming fully overloaded. Incoming packets are following
the shortest path by nature, thus, preemptively deflecting flows that are more likely
to contribute to congestion and leaving packets with small remaining flow size to
follow their best path, can have a considerable impact on the overall delivery time.
Another contribution to the performance is also given by the avoidance of packet
reordering which provides a consistent overhead for Vertigo. As we can see from
figure 5.4 the improvement gap provided by Robinhood is reduced and brought to
zero when the network is fully loaded. In such conditions, buffers at many switches
are likely to be frequently overloaded or close to their thresholds. Robinhood’s
buffer threshold mechanism becomes less effective as most buffers are likely to
surpass these thresholds, leading to a situation where almost all switches are no
longer candidates for deflection. Despite the improvement on flow completion times,

41

Performance Evaluation

Figure 5.2: Average FCT - First Iteration. Robinhood place itself between Vertigo
and ECMP. Performance on average flow completion time in the first iteration are
almost equal among the three at smaller loads.

drop rates are still high. The limited number of flows still has its own repercussions
on the remaining non-deflected flows; also the limited number of deflection targets
sets the foundation for the biggest downside of Robinhood protocol.

5.2.2 Major Results
Putting aside the early versions of Robinhood, we now focus on the results of the
final version, deflecting every incoming packet towards a flow-based neighbor. The
hints of the previous iterations gives us a major improvement of the flow completion
times. Analyzing the results coming from the simulation we can state that:

Robinhood deflection is resilient to the scale and flow size of network
load.

As figure 5.7 shows, Robinhood achieves great performances at different network
loads, proving its ability to effectively manage microbursts and prolonged periods
of congestion, improving flow completion times. At lower loads, DIBS performs
slightly better than Robinhood. The reason is that DIBS randomly chooses a port
for deflection among all the switch ports, giving a more effective load balancing

42

Performance Evaluation

Figure 5.3: Drop Rate - First Iteration

and parallelization of packet forwarding. At higher loads, the detour produced by
DIBS, leads to packets being deflected multiple times, even coming back to the
first-deflection switch, before reaching their destination. As already pointed out,
DIBS research [2] shows packets being deflected even 15 times, going back and
forth among multiple switches, causing multiple loops that find an end only when
congestion is over. Packet drops are prevented using DIBS approach, since packets
are constantly detoured, but the delayed delivery is an unavoidable consequence.

Robinhood is consistent in average fct improvement

The cumulative distribution function plot (figure 5.9), shows Robinhood’s curve
residing generally left to the others, showing better performance. The curve is also
generally steeper than the others, showing significant consistency in the majority
of the flows. These results are achieved by the congestion avoidance mechanism
that Robinhood carries on thanks to the buffer threshold. The main point of
other algorithms is to react to microbursts and congestion in real-time, while
Robinhood, also reacting in real-time, provides a smarter avoidance of congestion,
in cases where it is limited to a smaller time frame. Also, without depending on the
number of flow, or network load, or network architecture, Robinhood is consistent
in improving average flow completion times thanks to its limited and parallelized

43

Performance Evaluation

Figure 5.4: Robinhood (Second Iteration) Improvement over other algorithms in
Average FCT.

capability of packet processing, allowing packets to reach their destination faster,
without unnecessary detours like DIBS or established paths like ECMP.

Robinhood significantly improves throughput

While throughput for other algorithms like DIBS, ECMP, and Vertigo remains
relatively stable or fluctuates slightly, Robinhood shows a clear advantage with
higher throughput values, maintaining a noticeable lead over the others as seen in
figure 5.10. This indicates that Robinhood not only handles microbursts effectively
but also significantly enhances overall network speed and performance. This result
is directly bound to the improvements on average flow completion times and vice-
versa; the selective deflection on specific under-loaded neighbors, allows packets to
be processed more frequently, even if not following the direct shortest path; proving
that deflecting has a significant advantage in periods of congestion.

Drop rates are the major downside

Packet drop causes differ among the different iterations of Robinhood. In the
early stages of development, the majority of drops were being caused by all the
non-deflected flows coming to a full buffer. As for the final version, the primary

44

Performance Evaluation

Figure 5.5: Average FCT - Second Iteration

Figure 5.6: Drop rate - Second Iteration

45

Performance Evaluation

Figure 5.7: Average FCT under various degrees of load.

Figure 5.8: Average FCT under various degrees of load.

46

Performance Evaluation

Figure 5.9: Robinhood and other algorithms, average FCT - CDF

Figure 5.10: Throughput under various degrees of load.

47

Performance Evaluation

reason behind this behaviour, deflecting every packet, is the neighbor-selection
based deflection performed by Robinhood. Having a small, almost fixed, sample
deflection candidates compared to Vertigo or DIBS, the packet drops are simply
redistributed across multiple buffers, but not effectively managed. What happens
most of the time, is that overloaded switches, deflecting every incoming packet,
end up overloading other buffers when deflecting. The threshold has already been
surpassed, so we end up emptying the buffer until it is below the threshold, then,
becoming an available candidate, it will receive packets from neighboring switches,
surpassing the threshold again. Other algorithms have every switch port as a
candidate for deflection, so they pick their best target on a larger pool of options.
Improvements on packet drop rates are present between the different stages of
Robinhood, but still higher than ECMP even in the final version.

5.3 Future Development
Despite the improvements on throughput and average flow completion times, the
performance boost comes at the cost of higher drop rates. This trade-off makes
Robinhood more suitable in environments where more drops are tolerated, but
more efficient delivery is needed. One of the main reasons behind this behaviour is
the fixed value for the threshold; we believe that with an adaptive value, coming
from a predicting machine learning model based on the collected data, drop rates
are likely to improve. An adaptive buffer threshold allows the protocol to adjust
to varying network conditions in real-time, so when network congestion increases,
the threshold can be lowered to trigger deflections earlier, preventing buffers from
becoming critically overloaded and thus reducing the risk of packet drops; when
instead network congestion is at lower values, the threshold can be kept high enough
to prevent Robinhood from activating, thus leaving packets to follow their shortest
path without any major deflection. Future development of Robinhood also includes
the implementation on modern programmable switches, using P4, which would
consist in the deployment of exchange messages, setting the specific ToS field of IP;
two data structures holding the deflection candidates list and the Deflection Table
and the implementation of the deflection itself.

48

Chapter 6

Appendix

Simulation software:
https://github.com/lorenzopantano/event-driven-simulator.git

BRITE software:
https://www.cs.bu.edu/brite/

49

https://github.com/lorenzopantano/event-driven-simulator.git
https://www.cs.bu.edu/brite/

Bibliography

[1] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. «Burst-tolerant
datacenter networks with Vertigo». In: Proceedings of the 17th International
Conference on Emerging Networking EXperiments and Technologies. CoNEXT
’21. Virtual Event, Germany: Association for Computing Machinery, 2021,
pp. 1–15. isbn: 9781450390989. doi: 10.1145/3485983.3494873. url: https:
//doi.org/10.1145/3485983.3494873 (cit. on pp. 2, 6–8).

[2] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu,
and Jitendra Padhye. «DIBS: just-in-time congestion mitigation for data cen-
ters». In: Proceedings of the Ninth European Conference on Computer Systems.
EuroSys ’14. Amsterdam, The Netherlands: Association for Computing Ma-
chinery, 2014. isbn: 9781450327046. doi: 10.1145/2592798.2592806. url:
https://doi.org/10.1145/2592798.2592806 (cit. on pp. 2, 6, 8, 9, 43).

[3] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
«Efficient Scheduling Policies for Microsecond-Scale Tasks». In: 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22).
Renton, WA: USENIX Association, Apr. 2022, pp. 1–18. isbn: 978-1-939133-
27-4. url: https://www.usenix.org/conference/nsdi22/presentation/
mcclure (cit. on pp. 2, 10).

[4] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
Universal Topology Generation from a User”s Perspective. Tech. rep. USA:
Boston University, 2001 (cit. on pp. 3, 29, 30, 39).

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. «A scalable,
commodity data center network architecture». In: Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication. SIGCOMM ’08. Seattle,
WA, USA: Association for Computing Machinery, 2008, pp. 63–74. isbn:
9781605581750. doi: 10.1145/1402958.1402967. url: https://doi.org/10.
1145/1402958.1402967 (cit. on p. 4).

[6] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. «Practical Packet
Deflection in Datacenters». In: Proc. ACM Netw. 1.CoNEXT3 (Nov. 2023).

50

https://doi.org/10.1145/3485983.3494873
https://doi.org/10.1145/3485983.3494873
https://doi.org/10.1145/3485983.3494873
https://doi.org/10.1145/2592798.2592806
https://doi.org/10.1145/2592798.2592806
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967

BIBLIOGRAPHY

doi: 10.1145/3629147. url: https://doi.org/10.1145/3629147 (cit. on
pp. 5, 7, 10).

[7] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
«Data center TCP (DCTCP)». In: SIGCOMM Comput. Commun. Rev. 40.4
(Aug. 2010), pp. 63–74. issn: 0146-4833. doi: 10.1145/1851275.1851192.
url: https://doi.org/10.1145/1851275.1851192 (cit. on p. 5).

[8] Fiqih Rhamdani, Novian Anggis Suwastika, and Muhammad Arief Nugroho.
«Equal-Cost Multipath Routing in Data Center Network Based on Software
Defined Network». In: 2018 6th International Conference on Information and
Communication Technology (ICoICT). 2018, pp. 222–226. doi: 10.1109/
ICoICT.2018.8528730 (cit. on p. 6).

51

https://doi.org/10.1145/3629147
https://doi.org/10.1145/3629147
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1109/ICoICT.2018.8528730
https://doi.org/10.1109/ICoICT.2018.8528730

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Contributions

	Existing Solutions and Challenges
	Data Center Network Architectures
	Congestion Control Mechanisms
	Deflection challenges
	Vertigo
	DIBS

	Robinhood Vision
	Strengths and Limitations of Modern Strategies
	Job Scheduling Domain

	Robinhood
	Design Principles
	Protocol Overview
	Buffer Threshold
	Exchange Messages
	Work Donating

	Robinhood's Deflection Development
	First Iteration
	Second Iteration
	Final Version

	Example Scenario

	Simulation Framework
	Overview
	Event Generation
	Network Core
	Performance Metrics and Analytics

	Network Topology Generation
	Algorithms Simulation
	ECMP
	Vertigo
	DIBS
	Robinhood

	Simulation Parameters

	Performance Evaluation
	Simulation Setup
	Network Topologies
	Workloads

	Results
	Early Versions
	Major Results

	Future Development

	Appendix
	Bibliography

