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Abstract

In the world of cloud services, the growing complexity of distributed appli-
cations and the increase in energy consumption necessitate more efficient
management of resources. For this reason, orchestrators such as Kubernetes
are widely employed to automate the handling of workloads and resource
usage, determining moment by moment the most suitable node on which
to start a new task. On the other hand, the expanding application of arti-
ficial intelligence algorithms, particularly reinforcement learning, opens up
new development opportunities. These advancements allow the creation of
increasingly autonomous and state-of-the-art systems.

This thesis introduces and develops a different approach to scheduling
within Kubernetes clusters. Specifically, the proposed scheduler utilizes
a Deep Q-Network (DQN) reinforcement-learning algorithm, integrating
a custom plugin in the scheduling chain’s scoring phase to optimize the
distribution of load across available nodes. In developing this innovative
and intelligent approach, each RL model has been trained to learn a distinct
policy with specific objectives such as load balancing, energy consumption
optimization, or node-user latency optimization.

The reinforcement-learning algorithm implemented in the plugin dynami-
cally assesses the resources available on cluster nodes and learns to manage
them while adhering to user-defined constraints. By assigning a score to each
node based on its suitability for hosting new pods, this intelligent approach
supports decision-making and serves as a predictive tool for the scheduling
system. Over time, this enables the system to continually improve its de-
cisions regarding the optimal distribution of new workloads, in accordance
with the learned policy.

The implementation has been tested on a Kubernetes Kind environment,
allowing for an assessment of the overall performance of the developed system
and the effectiveness of the proposed approach. In particular, results shows
that our policy, referred to as FC-RL, learned by the agent, proves to be
the best choice when the goal is to reduce energy consumption and node-
user latency, both compared to the other tested policies and to the default
behavior of the Kubernetes scheduler.
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Chapter 1

Introduction

Nowadays, one of the most precious resources for human beings is software.
When talking about this realm, it is known that the ability to effectively
managing continuously evolving applications and adapting to global changes
without compromising, but rather enhancing, user experiences, highlights
the need for increasingly sophisticated automation systems capable of au-
tonomously managing applications. The success of an application is in fact
closely linked to its management and subsequent UX.

Consequently, over the years, more and more applications have been leverag-
ing cloud platforms for their distribution. This preference stems from the
fact that the cloud comprises a suite of components, software and resources
specifically designed for this purpose, ensuring reliability and enabling the
efficient hosting and management of our systems.

Within this virtual world, it is crucial to manage all components instantly.
Once again, software plays a pivotal role, especially in the form of orches-
trators like Kubernetes [1], which automate the entire process of resource
management. Kubernetes, in particular, is a platform for containerized
applications in the cloud, representing a fundamental pillar in the world of
distribution and utilization of applications.

One of the key aspects that have made Kubernetes a standard in the cloud
world is its open-source nature. This fundamental characteristic, combined
with the great flexibility and modularity of this project, allows for constant
experimentation and improvement of the services offered in this field. For
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Introduction

example, a very interesting case of possible improvements to its functional-
ity consists of the intriguing union between the Cloud world and Artificial
Intelligence, that is a powerful tool that is demonstrating all its potential in
this century.

The object of this thesis is, therefore, the exploration of the potential of
merging the Kubernetes orchestration software, in particular the scheduler
component, with a DQN-type Reinforcement Learning model.

The reasons that led me to choose this fascinating theme as the main topic
of my thesis are certainly associated with my growing interest in the world
of Al and my curiosity to better understand those systems that, almost
working in the shadows, improve users’ lives without them being aware of it.
Moreover, what truly fascinated me was the possibility of merging these two
complex worlds through this work, thus giving me the opportunity to delve
into these two spheres simultaneously.

1.0.1 Objective

The objective of this thesis is to compare the behavior of a system with
Kubernetes containing a default scheduler versus our implementation of
a scheduler plugin that utilizes Reinforcement Learning.With objectives
similar to those presented in [2], we trained models to learn three main load
management policies.

The result obtained is that one of the policies learned by the model, the
policy EL-RL, has proved to be better than the default Kubernetes scheduler
configuration. This work, therefore, serves as a basis for demonstrating,
along with other works, the validity of using RL algorithms in container
orchestration.

1.0.2 Methodology

The approach used to achieve our result involved initially defining a plugin
inserted in the scoring phase for the Kubernetes scheduler. The Kubernetes
scheduler is indeed the key component that determines on which cluster node
a particular task should be started.

The system was then extended by leveraging Prometheus [3] to collect
all the monitoring metrics needed during the model’s training and testing
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Introduction

phases. The metrics collected concern CPU, memory, and network values.
However, a metric that is not directly exposed is latency, which in our so-
lution is obtained by deploying an app on each node that, upon request,
returns the latency between the node and the external user.

The other fundamental element is the DQN model. Derived from the cleanr]
library [4] and subsequently modified, this DQN agent was implemented
using a neural network that leverages the concept of DeepSet [5] and masks.
This was a fundamental step within our system as the agent is capable of
working with inputs of variable sizes and can work with values permutations.
This aspect is crucial in the world of networks, given that a node could fail
at any moment.

Once the system was defined, the next step was to define valid reward
functions so that the model could learn a specific policy, along with the need
to derive the various parameters to adapt the model to the problem. The
model communicates its suggestions to a suggestion server that represents
the meeting point between the plugin and the agent itself. Therefore, when
a user submits a new scheduling request defining minimum requirements,
the model retrieves the metrics by communicating with Prometheus and the
various nodes, and sends the suggestion. This suggestion is then used by the
scheduler to determine the node on which to start the task.

Upon completing this phase, testing of the implementation was carried out
to compare the behavior of the systems with and without the use of our
solution.

1.0.3 Structure

The main topics covered in this thesis are:

[S—

. Related works: works related to what has been produced in this thesis
2. Background: a more in-depth overview of the systems used

3. System design: detailed architecture of the system and its functioning
4. Results: a summary collection of the results obtained

5. Conclusion: final considerations and possible future works
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Introduction

1.0.4 Contributions

The result obtained through hard work leads me to hope for a future in this
field, which could, for example, concern one of the possible future works
illustrated in the conclusions. This thesis, therefore, is a contribution to
encourage the exploration of the use of Al algorithms in the orchestration of
lightweight virtual machines.

The main contributions of this thesis in the end are:

o The definition of an EL-RL policy that enables training an RL agent to
reduce energy consumption and latency between nodes and users when
scheduling a new task in a Kubernetes-based system.

o Demonstrating that DQNs are powerful RL models suitable for Kuber-
netes orchestration, as they can bring significant improvements.



Chapter 2

Related Work

Kubernetes is an open-source platform for the orchestration of container-
ized applications that revolutionizes the management of modern software
architectures by automating critical tasks such scalability, deployment, and
management. One of its key architectural component is the scheduler, which
is the responsible for allocating resources by determining the optimal cluster
node on which to execute a new task, ensuring that the kubelet can perform
it.

The main advantage of using Kubernetes lies on its flexibility, that provide
to users the ability to adapt and configure the scheduler according their
specific needs by means of default algorithms based on predefined policies.
Additionally, it is also possible to create custom schedulers or integrate
plugins to modify and customize the scheduling process in the cluster.

This chapter examines works related to modifications to the Kubernetes
scheduler to improve the scheduling process.By examining various studies and
initiatives, we uncover strategies and advancements geared towards optimiz-
ing workload placement, enhancing resource allocation, and improving overall
cluster efficiency. These modifications play a crucial role in unlocking the
full potential of Kubernetes, ensuring seamless orchestration of containerized
applications in diverse and dynamic environments.
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Related Work

2.1 Custom scheduling

The concept of customizing the Kubernetes scheduler has been explored since
as early as 2017. These customizations aim to address specific requirements
that the default scheduler may not fully accommodate.

For example, in [6], the Kubernetes scheduler is modified to receive infor-
mation from client applications to evaluate the best scheduling configurations.
The motivation behind this is the inherent limitation of containers that can
provide less isolation compared to vitrual machines. By integrating client-side
information, the scheduler can make more informed decisions, mitigating
resource contention issues.

Another contribution is described in [7], where NBWGuard is introduced.
Here the proposed solution extends Kubernetes to treat network bandwidth
as a schedulable resource,, integrating it into resource specifications alongside
CPU and memory. Traditional Kubernetes scheduling primarily considers
CPU and memory, which can lead to suboptimal performance for bandwidth-
intensive applications. NBWGuard also supports the 3 kubernetes = QoS
classes - Guaranteed, Burstable, and Best-effort- with respect to network
bandwidth.

2.2 Latency aware scheduling

Another example is [8]. In this work the authors propose a latency-aware
scheduler integrated into Kubernetes. In this case the scheduler is designed to
guarantee that the latency between end-user devices and the replica placement
is minimized. By prioritizing latency reduction, this customization enhances
user experience and application responsiveness.

2.3 Reinforcement learning based scheduling

More recent works have explored the integration of machine learning tech-
niques into Kubernetes scheduling.

The integration of RL enables the scheduler to dynamically adapt its
decision-making process based on feedback from the environment, optimizing
task placement and resource allocation in real-time. By leveraging RL,
Kubernetes can enhance its scheduling capabilities, leading to improved
efficiency and performance in diverse and dynamic computing environments.
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Related Work

This integration represents a significant advancement in Kubernetes
scheduling, highlighting the potential of machine learning techniques to
augment traditional scheduling algorithms and address the evolving needs of
modern application deployments.

2.3.1 RLKube

In [2], the scheduler is extended by designing a Reinforcement Learning
(RL)-based custom plugin that comes into action during the PreScore phase
of scheduling, as it is shown in 2.2
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Figure 2.1: Kubernetes scheduling framework with
additional RLKube Plugin (from [2])

In this solution, Prometheus is used to collect metrics on the state of the
nodes, which are then forwarded to the RL model based on a Double Deep
Q-Network. RLKube provides an evaluation in terms of node scores, which
is then used in the final scheduling decision. The node with the highest score
is selected for task execution. The objective is to optimize resource usage
and improve the energy efficiency of the cluster by leveraging the advantages
offered by reinforcement learning.

2.3.2 DRL-FORCH

In [9] another neural network-based solution is proposed. This study focuses
optimize completing QoS requirements while working with fog nodes.
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Related Work

The orchestrator is implemented as Deep Set (DS) network and uses
Deep reinforcement learning with invalid action masking to find an optimal
trade-off between competing objectives.

Deep Reinforcement Learning-based Fog Orchestrator
(DRL-FORCH)
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Figure 2.2: Service deployment decision making in
DRL-FORCH (from [9])

Results show that the DS-based policy generalizes well to larger problem
sizes, outperforming greedy heuristics and traditional MLP-based DRL.
Additionally, the DS-based policy offers significantly faster inference times,
enhancing scalability and enabling near real-time decision-making.

2.4 Energy consumption based scheduling

Another significant theme is the reduction of energy consumption in data
centers, as demonstrated by AWS [10] and [11]. This has led to the proposal
of many studies, such as those presented in [12, 13, 14].

In the study by [12], a new scheduling policy is introduced, aiming to
migrate electricity consumption to regions with lower carbon intensity. Simi-
larly, in [13], KEIDS is introduced as a controller to manage containers on
edge-cloud nodes while considering carbon emissions.

8



Related Work

In the work of [14], instances used by clients to deploy containers or execute
computing tasks are considered. Heats is presented as a new task-oriented
and energy-aware orchestrator for containerized applications targeted at
heterogeneous clusters. It enables clients to trade performance for energy
requirements by learning the performance and energy characteristics of
physical hosts, monitoring task execution, and opportunistically migrating
them across cluster nodes. Heats is implemented within Google Kubernetes
and evaluation on synthetic traces indicates significant energy savings (up
to 8.5%) with minimal impact on overall task execution time (at most 7%).
Furthermore, Heats is released as open-source.



Chapter 3

Background

3.1 Kubernetes

Kubernetes [1] is an open-source, extensible, and portable platform for
managing containers.

A container is a lightweight virtual machine that provides a less stringent
isolation model compared to full virtual machines. It utilizes the underlying
host’s kernel, which allows the container image to be minimal, containing
only the essential components of a specific operating system. This results in
a much lighter and easy to use version of the OS.

By launching a simple command, Kubernetes creates automatically a
virtualized cluster, which is a collection of nodes that will manage containers.
Each node can host one or more pods, and the cluster ensures efficient
distribution and management of workloads. Nodes can be physical machines
or virtual machines, and they are responsible for running the containerized
users’s applications.

Key Components

o« Master Node: This is the control plane of the Kubernetes cluster,
responsible for managing the overall cluster. Among its various tasks,
it hosts the kubectl client, which allows users to manage the cluster
remotely. It includes components like the scheduler that has the role of
assigning pods to nodes based on resource availability.

o« Worker Nodes: These nodes are responsible for running the applica-
tions within containers.
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Background

For each cluster, there is at least one worker node, which runs the user’s
workload, and a master node or control plane that manages the workers and
the cluster.

CLUSTER

CONTROL PLANE

Controller Manager

Figure 3.1: Kubernetes cluster architecture by [1]

3.2 Kubernetes Scheduling

A fundamental component for managing the Kubernetes cluster, running on
the control plane, is the scheduler. This component observes newly created
Pods and determines the best node on which to launch each new Pod. The
default scheduler for Kubernetes is the kube-scheduler, which runs in the
control plane. This component is designed to be extensible, allowing users
to write their own scheduling components and use them.

Nodes that meet the scheduling requirements are called feasible nodes. The
scheduler identifies these feasible nodes and then executes a set of functions
to filter and score them, selecting the node with the highest score.

The node selection operation consists of two parts:

o filtering : In this phase, feasible nodes are filtered by executing a set
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of filtering functions, reducing their number so that the final selection
will only consider a subset of nodes.

e scoring : In this phase, the remaining nodes are evaluated based on
scores that can be attributed to nodes according to different elaborations
or setting different plugins. The node that in the end has the higher
score will be the chosen one.

3.2.1 Profiles

Filtering and scoring can be easily configured through scheduling policies
and scheduling profiles. Specifically, profiles allow the configuration of
existent plugins or custom plugins to implement one of the possible stages of
filtering and scoring processes.

A possible kube-scheduler configuration that enables the custom plugin
named "Network Traffic', as seen from [15], can be:

apiVersion: kubescheduler.config.k8s.io/vl
kind: KubeSchedulerConfiguration

clientConnection:
kubeconfig: "/etc/kubernetes/scheduler.conf’
profiles:
— schedulerName: default—scheduler
plugins:
score :
enabled :
— name: NetworkTraffic
disabled :
— name: "x'
pluginConfig:
— name: NetworkTraffic
args :
prometheusAddress: "http://10.96.105.208:9090"
networkInterface: "ethO'

timeRangeInMinutes:

3

e apiVersion: kubescheduler.config.k8s.io/v1l - Specifies the ver-
sion of the Kubernetes Scheduler API to use.
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e kind: KubeSchedulerConfiguration - Indicates that this configura-
tion is for the Kubernetes scheduler.

e clientConnection - Contains settings for the scheduler’s connection to
the Kubernetes API server.

— kubeconfig: "/etc/kubernetes/scheduler.conf" - Specifies the
path to the kubeconfig file that the scheduler uses to connect to the
API server.

o profiles - Defines scheduling profiles, which can be used to customize
the scheduling process.

— schedulerName: default-scheduler - The name of the scheduler
profile.

— plugins - Specifies plugins to be used during scheduling.

* score - Plugins used for scoring nodes.
- enabled - Lists plugins that are enabled for scoring.

- — name: NetworkTraffic - The NetworkTraffic plugin is
enabled for scoring.

- disabled - Lists plugins that are disabled for scoring.
- — name: "x" - Disables all other scoring plugins.
— pluginConfig - Configuration for individual plugins.
« — name: NetworkTraffic - Configuration for the NetworkTraffic|
plugin.
- args - Arguments for the plugin.

- prometheusAddress: "http://10.96.105.208:9090" - The
address of the Prometheus server to query for network traffic
data.

- networkInterface: "ethO"- The network interface to mont
itor (e.g., eth0).

- timeRangeInMinutes: 3 - The time range in minutes for
which to consider network traffic data.

So the Profile makes it possible to configure the different stages of
scheduling in the kube-scheduler. Each stage is exposed in an extension
point.
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Plugins provide scheduling behaviors by implementing one or more of
these extension points.

Scheduling is composed by the following list of stages exposed through
the following extension points:

e queueSort: These plugins provide an ordering function that is used
to sort pending Pods in the scheduling queue. Exactly one queue sort
plugin may be enabled at a time.

o preFilter: These plugins are used to pre-process or check information
about a Pod or the cluster before filtering. They can mark a pod as
unschedulable.

o filter: These plugins are the equivalent of Predicates in a scheduling
Policy and are used to filter out nodes that can not run the Pod. Filters
are called in the configured order. A pod is marked as unschedulable if
no nodes pass all the filters.

o postFilter: These plugins are called in their configured order when no
feasible nodes were found for the pod. If any postFilter plugin marks
the Pod schedulable, the remaining plugins are not called.

e preScore: This is an informational extension point that can be used
for doing pre-scoring work.

« score: These plugins provide a score to each node that has passed the
filtering phase. The scheduler will then select the node with the highest
weighted scores sum.

» reserve: This is an informational extension point that notifies plugins
when resources have been reserved for a given Pod. Plugins also imple-
ment an Unreserve call that gets called in the case of failure during or
after Reserve.

o permit: These plugins can prevent or delay the binding of a Pod.

o preBind: These plugins perform any work required before a Pod is
bound. bind: The plugins bind a Pod to a Node. bind plugins are called
in order and once one has done the binding, the remaining plugins are
skipped. At least one bind plugin is required.
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« postBind: This is an informational extension point that is called after
a Pod has been bound.

o multiPoint: This is a config-only field that allows plugins to be enabled
or disabled for all of their applicable extension points simultaneously.

In this thesis the custom plugin extends the score stage, by adding the
model suggestion in evaluating nodes scores.

For each extension point, it is also possible to disable specific default
plugins or enable a specific one by editing the configuration file seen previously.
For example:

apiVersion: kubescheduler.config.k8s.io/vl
3 kind: KubeSchedulerConfiguration

| profiles:
— plugins:
6 score :
7 disabled:
8 — name: PodTopologySpread
9 enabled :
10 — name: MyCustomPluginA
11 weight: 2
2 — name: MyCustomPluginB
13 weight: 1

This special configuration file makes it easy to enable or disable the plugin
so that is easier to compare the custom scheduler behaviour with the default
one.

3.2.2 Scheduling pods with deployments

A Deployment is a kubernetes resource object used to deploy pods in a
declarative way. This means that the user can define the requirements
needed for the specific application and Kubernetes will manage the life cycle
of pods autonomously.

The user describes a desired state in a Deployment, and the Deployment
Controller changes the actual state to the desired state at a controlled rate.
In the following case the deployment will ensure the scheduling of 3 replicas
for and nginx app:
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apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx—deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

— name: nginx
image: nginx:1.14.2
ports:

— containerPort: 80

apiVersion: apps/vl - Specifies the API version for the Deployment
resource. Here, it uses the apps/vl API.

kind: Deployment - Indicates that this resource is a Deployment.
metadata - Contains metadata for the Deployment.

— name: nginx-deployment - The name of the Deployment.
— labels: app: nginx - Labels used to categorize the Deployment.
spec - Defines the desired state of the Deployment.
— replicas: 3 - Specifies the number of pod replicas to maintain.
Here, it is set to 3.

— selector - Defines how the Deployment finds which pods to manage.

*« matchLabels: app: nginx - Matches pods with the label
app: nginx.
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— template - Describes the pods to be created.

* metadata - Metadata for the pods.
- labels: app: nginx - Labels for the pods.

% spec - Specification for the containers in the pod.
- containers - Defines the container specifications.
- name: nginx - The name of the container.

image: nginx:1.14.2 - The Docker image to use for the
container, set to version 1.14.2 of Nginx.

- ports - Specifies the ports exposed by the container.

- containerPort: 80 - Exposes port 80 on the container.

In Kubernetes, the management of various components is extremely sim-
plified because changes to the system are declarative. The user defines the
desired state and applies this specific configuration to the cluster. However,
Kubernetes itself is responsible for achieving and maintaining the desired
state.

3.3 Reinforcement Learning

Reinforcement learning [16] is a technique for understanding and automating
decision-making and goal-oriented learning. It is used to discover new
solutions and relies on neural networks that handle unstructured, unordered,
and highly varied data. This type of learning appears to be the best method
for making a machine creative in exploring new solutions.

Reinforcement learning models learn to make a series of judgments. Es-
sentially, starting from an unpredictable and complex environment, the agent
must learn on its own to achieve a goal. The environment is like a game,
where the solution is found after many trials and errors. The Al receives
rewards and penalties based on the outcomes of its choices. The objective is
to maximize the total reward. The model designer sets the reward policy, or
the rules of the game, which the model must maximize.
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Figure 3.2: RL interaction between agent and environment from [16]

The most difficult aspect is setting up the simulation environment, which
depends on the task at hand. Integrating the model into the real world
is complex. Moreover, the only way to communicate with the network is
through rewards and penalties.

Keywords

In the context of Reinforcement Learning (RL), agents are entities or
computer programs that learn to take actions in an environment to maximize
long-term reward or evaluation.

Agents are central in RL problems and play an active role in interacting with
the environment and in the learning process. Here are some key concepts
related to agents in Reinforcement Learning:

e Goal : The agent’s task is to maximize the cumulative reward across
various action steps in the environment before an episode ends.
This is done to find the best solution among all possible solutions to the
problem. Reinforcement learning (RL) is based on the reward hypothesis,
which states that all goals can be described as the maximization of the
final outcome we want to achieve or as the maximization of the sum of
partial outcomes.

« Policy: An agent operates by following a policy, which is a strategy or
probability map specifying which action to take in a specific state. The
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policy can be deterministic (e.g., action A in state S) or stochastic (e.g.,
probability of action A in state S).

Learning: RL agents learn to improve their policy through interaction
with the environment. They use various machine learning techniques to
update their policy to maximize total rewards.

Exploration and Exploitation: Agents must balance executing ac-
tions that have led to high rewards in the past (exploitation) with
executing new actions to discover better actions (exploration).
Finding the right balance between exploitation and exploration is a
fundamental challenge in RL. In the exploration phase, the agent tries
random actions to gather information about the environment, which is
better than acting blindly.

In the exploitation phase, we use this information to start maximizing
the reward, thus acting with a more informed strategy. In general,
there is a trade-off between exploration and exploitation, as one must
determine how much to explore and when it is better to exploit the
information gathered.

Evaluation and Control: RL agents can engage in two main types of
activities: "evaluation," which involves estimating the value of actions or
policies, and "control," which involves optimizing policies to maximize
reward.

State:The state is a complete description of the world, meaning there is
no hidden information that might force us to make blind decisions. For
example, in the game of chess, we can see the entire board and evaluate
all possible moves.

Observation An observation is a partial information of the state. Some
parts of the environment are hidden.

Applications: RL agents are used in a wide range of applications,
including robotics, games, resource optimization, autonomous manage-
ment, machine learning, deep learning, and more.
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3.4 RL approaches

How it is possible to build an agent that learns to choose an action aiming
to achieve the maximum reward possible? The first step is to define a policy.
A policy is a function that tells us which action to take given a certain state,
thus defining the agent’s behavior at any given moment. So, policy(state)
= action.
This function is what the agent needs to learn and construct through training,
and it is the function that maximizes the reward.

Thus, the idea is to define a reward function that assigns rewards each
time the agent gets closer to understanding the policy.
The optimal policy can be found through two approaches:

« Direct (policy-based): We teach the agent which action to take
given the state. So in this case the agent learn the decision-making
function directly, which maps a state to the best action to take either
deterministically or based on the probability distribution of actions given
a certain state, always evaluating our objective.

 Indirect (value-based): We teach the agent to understand which
state has the highest value and consequently to construct the policy
function that brings us to the higher-value states in the environment,
thus maximizing the reward. In the value-based method, instead of
learning this function, we learn a value function that maps a state to a
value associated with being in that state. The state’s value corresponds
to the expected return we anticipate obtaining if we choose to go to that
state and continue choosing the highest-value states (thus following this

policy).

Q-Learning

It is a value-based method that uses a temporal difference approach to train
the action-value function.

The function we aim to find is a Q-function, which determines the value of
being in a specific state and taking a specific action in that state. The "Q"
stands for quality, referring to the value of the action for that state. The
value of the state is the cumulative reward we expect the agent to obtain by
following the policy.
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Training means obtaining the optimal Q-table on which to build the optimal
Q-function.

Initially, the Q-table is useless because we would have to make completely
arbitrary decisions, but as the agent explores the environment, it will update
the Q-table, giving us an increasingly better approximation of the optimal
policy.

If the environment has a large number of states, managing the Q-table
becomes complex. Therefore, we use deep Q-learning algorithms, where
instead of using a Q-table, a neural network is used to approximate Q-values
for each action based on the state.

Q-learning is a tabular method and is not scalable. For example, in Atari
environments, a single frame consists of an image of 210x160 pixels, each
varying from 0 to 255 possible values.

In this thesis the model is obtained by means of a deep QQ-learning algo-
rithm.

Deep Q-Learning

Deep Q-Learning (DQN) is one of the first algorithms that demonstrated
the success of deep learning in reinforcement learning (RL). It is widely used
in value-based control problems.

In deep RL, an agent learns to behave by interacting with the environ-
ment, taking actions that yield rewards (positive or negative). By repeating
this process many times, the agent trains itself, generating a function that
allows it to make decisions based on the future state of the environment.

The agent takes an action and consequently receives a reward and the
next state (which can be the new timestamp frame) of the environment, on
which to base the next decision. This cycle repeats continuously at each step
as a sequence of four elements:

So(state), Ag(action), Ry (reward), Sy (nextstate)
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Difference between Q-learning and DQN

The main difference between a Q-learning algorithm and a Deep Q-Network
(DQN) algorithm is in how they maintain and update Q-values.

Q-learning uses a matrix to store Q-values for each state-action pair. This
approach works well for environments with a limited number of states and
actions but becomes impractical for more complex problems due to the
exponential growth of the matrix size as the state and action spaces increase.

In contrast, DQN uses a neural network to approrimate the Q-values. This
neural network takes the state as input and outputs the Q-values for all
possible actions in that state. By using a neural network, DQN can handle
much larger and more complex state spaces, as the network can generalize
and learn patterns in the data, making it possible to approximate the Q-
values without explicitly storing them for each state-action pair.

This generalization capability allows DQN to apply Q-learning to problems
that are infeasible with a simple matrix representation, such as those involv-
ing high-dimensional state spaces like images or large-scale environments.
The neural network’s ability to approximate Q-values through training on
experiences also enables DQN to perform well in tasks where the state-action
space is continuous or vast, opening up a broader range of applications
compared to traditional Q-learning.

3.5 Custom Environment for RL Agent

The custom environment for a Reinforcement Learning (RL) agent is a
simulation or interface that models the interaction with the external word.
This environment encapsulates the state, actions, rewards, and transitions
that define the problem space in which the RL agent operates.

Components of a Custom Environment

A typical custom environment consists of the following components:

1. Observation Space: Defines the state representation of the environ-
ment.
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It includes all relevant variables and metrics that the RL agent can
observe to make decisions. For example, in a Kubernetes cluster manage-
ment context, the observation space may include metrics like CPU usage,
memory availability, network traffic, and pod scheduling information.

2. Action Space: Specifies the set of actions that the RL agent can take
in response to observations from the environment.
In Kubernetes, actions could involve selecting a node for pod deployment,
scaling resources, or adjusting scheduling policies.

3. Reward Function: Determines the immediate feedback provided to
the RL agent based on its actions.
The reward function is crucial as it guides the agent towards learning
optimal behaviors. Rewards in Kubernetes environments may reflect
performance metrics, cost efficiency, or system stability.

4. Step Function: Governs the interaction between the RL agent and the
environment.
It defines how the agent perceives observations, executes actions, receives
rewards, and transitions to new states.
In Kubernetes, the step function could involve querying Prometheus for
node metrics, calculating rewards based on scheduling decisions, and
updating the environment state, as it is done in this work.

5. Termination Conditions: Specifies criteria for terminating an episode
within the RL environment. This ensures that the agent learns within a
defined scope and can handle various scenarios gracefully.

Creating a Custom Environment

Creating a custom environment involves defining these components in a
structured manner that aligns with the problem domain and the objectives
of RL training. To create a custom environment it is needed to:

1. Define Observation and Action Spaces: Identify and formalize the state
variables (observations) and permissible actions (action space) within
the environment. This step requires a clear understanding of the system
being modeled and the relevant metrics for decision-making.
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2. Implement Reward Function: Design a reward function that quantifies
the desirability of agent actions based on the environment’s objectives.
The reward function should incentivize behaviors that contribute posi-
tively to system performance or efficiency.

3. Develop Step Function: Implement the step function that orchestrates
interactions between the RL agent and the environment. This function
should handle state transitions, action execution, reward computation,
and termination conditions.

4. Integrate External APIs (Optional): If interacting with external systems
or data sources (for example Prometheus for node metrics), integrate
APIs to fetch relevant information and update the environment state
dynamically.

5. Validate and Test: Validate the custom environment by running simula-
tions and tests to ensure that the defined observations, actions, rewards,
and transitions align with expected behavior and learning objectives.

By carefully crafting a custom environment, RL agents can effectively
learn optimal strategies and contribute to enhanced automation and decision-
making capabilities.

3.6 DeepSets

Machine learning algorithms typically can only handle fixed-dimensional
data instances as input and output.

However, it is quite common to encounter problems that require processing
inputs that can vary.

Recently, researchers have been trying to expand these algorithms so that
they can successfully handle cases where inputs or outputs are permutation-
invariant sets rather than fixed-dimensional vectors. Some studies, such as
[5], specifically consider scenarios where both inputs and outputs provided
to a model are sets.

It is in [5] where the implementation of DeepSets is introduced.

The DeepSets architecture utilizes invariant and equivariant transforma-
tions to handle data sets, maintaining invariance or equivariance with respect

24



Background

to permutations of input elements. This architecture effectively models data
sets where the order of elements is irrelevant, but the overall structure of
the set is significant.

Invariant Model

The DeepSets model, an invariant model, operates on the principles of
permutation-invariant functions.

In this case the model’s output should not change if the order of the input
elements is changed. For example, if you have a set of numbers 1, 2, 3, the
order doesn’t matter, so 3, 1, 2 should give the same result.

The workflow is summarized as:

1. Instance Transformation: Each element of the set is transformed
individually into a representation. Think of this as converting each
number into a meaningful piece of information.

2. Summation of Representations: All these individual representations
are added together. This summation step ensures that the model doesn’t
care about the order of elements.

3. Output Transformation: The sum of the representations is then
passed through another network to produce the final output.

4. Optional Conditioning: If there’s additional information (like con-
text), it can be used to adjust the transformations.

Equivariant Model

The goal of the equivariant model is to design layers of neural networks
that are equivariant with respect to permutations of elements in the input z.
A function is equivariant if the permutation of input elements results in a
permutation of output elements.

If you permute (rearrange) the input set, the output should be permuted in

the same way. This is useful when the structure of the output should directly
correspond to the structure of the input.
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A neural network layer fg(x) is equivariant with respect to permutations if
and only if all off-diagonal elements of © are tied together and all diagonal
elements are equal. So the equivariant model ensures that if you permute
the input set, the output is permuted in the same way.

Implementation
The equivariant function is:
f(z) = o(AMx + ymax(pool(x))1),

that is a special type of function where the output is structured similarly to
the input if the input elements are rearranged. This equivariant layer can be
further manipulated to achieve other variations, and it has been observed
that in some applications, this variation performs better.

Composition of Equivariant Functions

Since the composition of equivariant functions with respect to permutations
is also equivariant, it is possible to construct DeepSets by stacking such layers.

This enables the creation of neural networks that respect the invariance
or equivariance with respect to permutations of inputs, making them suitable
for tasks where the input structure is a set.

Independence from Input Dimensions

To make the previously introduced DeepSets independent even of variations
in input dimensions, masks are introduced.

Specifically, when the model needs to determine the chosen action, the
data provided in the state is masked using a dedicated function defined in
the environment.

#Action mask fuction from environment
def action masks(self):

sl valid__actions = np.zeros(self.state.__len (), dtype=bool)

valid__actions|[self.state != —1] = True

sl return valid actions

- J
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In this context, the model obtains a mask that indicates which of the
possible actions are valid, thereby dynamically adjusting the probabilities
of choice. This mechanism allows the model to adapt to varying input sizes
effectively, ensuring robust performance across different scenarios.

The use of masks ensures that the DeepSets framework can handle input
data of varying dimensions seamlessly, maintaining its ability to process and
make decisions based on relevant features within the data. This approach
enhances the model’s flexibility and applicability in real-world applications
where input sizes may vary dynamically, as it appens for example in the case
of our cluster.
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Chapter 4

System Design

4.1 Architecture

The architecture of the solution proposed in this thesis consists of five
fundamental communication units, implemented using Python or Golang.
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and send itto model on
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Figure 4.1: System architecture

As it is shown in figure 4.1, the Kind cluster was generated with 4 fundamental
nodes. In detail, the main components developed are:
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1 Plugin: This component plays a critical role during the scoring phase
of the scheduling process. It requests scheduling suggestions from the
RL model via exposed APIs.

By integrating these advanced decision-making capabilities directly into
the scheduling workflow, the plugin ensures that node selection is based
on dynamically computed metrics and real-time data.

2 Suggestions Server: The Suggestions Server exposes APIs for ob-
taining and setting scheduling recommendations. It acts as an interme-
diary between the scheduler and the RL model, facilitating seamless
communication and ensuring that the scheduler can access up-to-date
recommendations when making scheduling decisions.

3 RL Model: The Reinforcement Learning (RL) model is central to the
intelligent decision-making process within the scheduler.
It utilizes node metrics, such as those fetched from Prometheus, to
suggest optimal nodes for scheduling new pods. The model evaluates
these metrics and provides a score for each node, indicating its suitability
for handling additional tasks based on current network conditions and
historical performance data.

4 Prometheus: This monitoring system is responsible for collecting and
exposing various metrics from the nodes. These metrics include vital
performance indicators such as CPU usage, memory consumption, and
network metrics.

Prometheus serves as the data backbone, supplying the RL model with
the necessary information to make informed and accurate scheduling
decisions.

5 Latency Application: Deployed on each node, this application evalu-
ates node-user latency upon request. It provides real-time data on the
latency experienced by users interacting with different nodes. This infor-
mation is crucial for determining the overall efficiency and responsiveness
of the cluster, ensuring that user experience remains optimal.

These components work together to enhance scheduling efficiency and moni-
tor system performance, leveraging metrics and real-time recommendations
for effective resource management.
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Thus, the user submits a new scheduling request describing the specifi-
cations regarding resource usage limits and latencies. This request reaches
the scheduler, which requests a suggestion from the model via the suggestions
APIs. The plugin then receives a score suggestion for the various nodes, with
the node having the highest score being considered for task scheduling.
The choice to use a plugin allows for the easy enabling or disabling of RL
functionalities simply by modifying a configuration file.

4.2 Scheduler Plugin

Kubernetes is renowned for its exceptional flexibility and extensibility, making
it a preferred choice for various complex orchestration tasks.

During the scheduler design phase, we carefully evaluated our options to
determine the best approach for our specific needs. We considered two main
possibilities:

o Rewrite a new scheduler from scratch and configure its image within
the Kubernetes kind cluster.
This approach would involve developing a completely custom scheduler
tailored to our requirements, providing us with full control over its
behavior and features.

» Create a plugin that could be seamlessly integrated into any existing
scheduler.
This option focuses on developing a modular extension that can enhance
the functionality of the default scheduler or any other scheduler without
the need to replace it entirely.

After thorough analysis and consideration, we opted for the second ap-
proach.
Creating a custom plugin offered several advantages: it allowed us to leverage
the robust and well-tested default scheduler while introducing additional
capabilities specific to our use case. This approach minimized the complexity
associated with maintaining a completely custom scheduler and ensured
compatibility with future updates to the Kubernetes ecosystem.

As a result, the final scheduler in our Kubernetes environment is the default
scheduler augmented with our custom plugin. This solution strikes a balance
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between leveraging existing, stable technologies and introducing the flexi-
bility needed to meet our unique scheduling requirements. By opting for a
plugin-based approach, we achieved an elegant and maintainable solution
that integrates seamlessly into the Kubernetes architecture.

The plugin developed for the scheduler is implemented in Golang, utilizing
[17] as the foundation for the modifications made, which in turn is introduced
in [15].

To thoroughly study and evaluate its functionality, all default plugins have
been disabled. This leaves only the custom plugin active, ensuring that
its effects on the scheduling process can be observed in isolation without
interference from other default scheduling behaviors.

The plugin specifically intervenes when a new task is scheduled during
the scoring phase of various nodes (4.2). During this phase, each node is
assigned a score that reflects its suitability for executing the task. This
suitability is assessed based on evaluations performed within the plugin,
which takes into account RL model suggestions to optimize node selection.
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Figure 4.2: Scheduler plugin Architecture (scoring phase)

The scoring mechanism is driven by a Reinforcement Learning (RL) agent,
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which operates as a process within the scheduler. The RL agent evaluates
relevant metrics to assign scores to each node. These scores are then used to
determine the optimal node for task execution, aiming to enhance overall
performance and efficiency of the Kubernetes cluster optimizing resource
usage.

The integration of the RL agent within the scheduler is a key innovation, as
it brings adaptive learning capabilities to the scheduling process. By con-
tinuously learning from the environment and task execution outcomes, the
RL agent can dynamically adjust its scoring criteria, leading to progressively
better scheduling decisions over time.

4.3 RL Model

The Reinforcement Learning (RL) agent utilized in this architecture is a
Deep Q-Network (DQN) agent from the library cleanrl [4].

Significant customizations have been applied to tailor the agent’s operations
within a custom environment designed to simulate the Kind cluster’s condi-
tions accurately. This custom environment is crucial as it provides all the
necessary information to the agent for both training and testing phases, ensur-
ing that the learned policies are directly applicable to the real cluster scenario.

One of the major modifications to the standard DQN agent involves the
incorporation of DeepSets into the neural network structure, as it is done
in [9]. DeepSets are a powerful neural network architecture that allows the
model to handle input data permutations correctly and adapt to changes
in input dimensions. This adaptability is particularly useful in realistic
scenarios where a node may not be temporarily active, leading to a dynamic
and variable number of nodes in the environment.

The modified DQN-RL agent is modified as follows:

class EquivariantLayer (nn.Module) :
def _ init_ (self , in_channels, out_channels):
super ().__init__ ()
self .Gamma = nn. Linear (in_ channels, out_channels,
bias=False)
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self .Lambda = nn. Linear (in_ channels, out_channels,
bias=False)

def forward(self, x: torch.Tensor):
#pdb.set_trace ()

gamma_x = self.Gamma(x)
xm, = torch.max(gamma x, dim=1, keepdim=False)
return self.Lambda(x) — self.Gamma(xm.unsqueeze(1).

expand_as(x))

| class QNetwork (nn.Module) :

def __init__ (self, env):

super (). init__ ()

self.final layer = nn.Linear (env.single action_space
n, 3)

self .network = nn.Sequential(
EquivariantLayer ( envs.observation_space.shape
1], 120),
nn.ReLU() ,
EquivariantLayer (120, 84),
nn.ReLU() ,

EquivariantLayer (84, env.single action_ space.n),

)

def forward(self, x):
x = self.network (x)
return self.final layer(x)

def get_value(self, x: torch.Tensor):
return self.critic(x)

def get_action(self, x: torch.Tensor, masks: Optional]|
torch.Tensor|] = None, deterministic: bool = True):
logits = self.network(x)
if masks is not None:
HUGE NEG = torch.tensor(—1e8, dtype=logits.dtype
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if masks.dim() = 1:
masks = masks. unsqueeze (0)
logits = torch.where(masks, logits , HUGE NEG)

# discrete probability distribution over a set of
actions. The logits provide the unnormalized log
probabilities for each action.

dist = Categorical (logits=logits)

# if deterministic is True, return the mode of the
Categorical distribution (highest probability , selecting
the action with the highest logit value)

if deterministic:

return dist .mode

# if deterministic is False, return a random sample
from the Categorical distribution.

return dist.sample ()

def get_ feature_ size(self):
return self.feature size

def predict(self, obs: npt.NDArray, masks: Optional [npt.
NDArray| = None) —> npt.NDArray:
with torch.no grad():
action = self.get action(
torch.as_tensor(obs, dtype=torch.float32),
torch.as_tensor(masks, dtype=torch.bool), deterministic=
True

) .numpy ()
return action

To implement DeepSets, the neural network’s standard Linear Layers are
substituted with Equivariant Layers. These layers are designed to maintain
the functionality of DeepSets, ensuring that the network can process sets
of nodes as inputs rather than fixed-size vectors. This change enhances the
model’s ability to generalize across different cluster states and configurations,
making it robust to variations in the number of active nodes.

Additionally, two new functions, ’predict’ and ’get action’, have been
integrated into the neural network. These functions are critical during the
testing phase:

The ’predict’ function is used to extract the value with the highest proba-
bility from the distribution of values obtained during training. This function
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helps in making deterministic decisions based on the learned policy.

The ’get action’ function assists in extracting the best possible action to
take in the current state based on the trained model’s predictions. It ensures
that the agent selects actions that maximize the expected reward, adhering
to the policy learned during training.

During the training phase, however, the action selection process involves an
element of randomness. The agent chooses actions randomly from the set of
valid actions provided by the environment. This approach, known as explo-
ration, is crucial for the agent to learn effectively as it helps in discovering
new strategies and refining the policy over time. The environment supplies
a valid actions mask, ensuring that only permissible actions are considered
during this exploratory phase.

Models were trained to learn a specific policy by varying the reward function
inserted in the custom environment. The reward function is a critical compo-
nent of the RL framework, guiding the agent’s learning process by providing
feedback on the quality of actions taken.

By adjusting the reward function, different aspects of scheduling performance,
such as efficiency, latency, and resource utilization, can be emphasized, lead-
ing to a policy that aligns with the desired objectives.

4.3.1 Custom environment

To enable the RL agent to work effectively on the cluster, a custom envi-
ronment was created and registered among the possible environments in
the Gymnasium library [18]. Gymnasium, a popular toolkit for developing
and comparing reinforcement learning algorithms, provides a standardized
interface for environments, making it an ideal framework for our custom
implementation.

Key Features of the Custom Environment

— Action Space: The custom environment defines a discrete action space.
Each action corresponds to the selection of a specific node in the cluster
where a new pod should be scheduled.

— Observation Space: The observation space includes all relevant in-
formation about the nodes in the cluster, such as CPU usage, memory
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consumption, network latency, and other performance metrics.

Table 4.1: Action and Observation Spaces

Action Space Observation Space

Discrete actions (nodes) | CPU, memory consumption, network latency, etc.

Step Function

The step function encapsulates all the steps required when the agent performs
an action in the environment. This function is called each time the agent takes
an action, and it updates the environment’s state accordingly. Specifically, it
involves:

— Action execution: The model selects a node to schedule a new pod.

— State update: The environment updates its state based on the action
taken.

— Reward evaluation: The environment evaluates the outcome of the
action and assigns a reward based on the defined policy.

Reward Function

The reward function is critical for guiding the agent’s learning process. It
provides feedback on the quality of the actions taken, influencing the agent’s
decision-making process.

The design of the reward function varies based on the specific policy objec-
tives. For example, it may prioritize efficiency, latency reduction, or other
performance metrics relevant to cluster management.

Environment implementation Details

The custom environment is integrated and registered with the Gymnasium
library, ensuring compatibility and usability within the RL framework.

By defining a discrete action space and a comprehensive observation space,
the environment enables the agent to make informed decisions and optimize
cluster performance through intelligent scheduling strategies.
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The custom environment plays a crucial role in facilitating effective RL-based
scheduling on Kubernetes clusters. It provides the necessary framework for
the agent to learn and adapt scheduling policies based on real-time cluster
conditions, enhancing resource utilization and performance efficiency.

4.4 RL model policies

Energy efficient (EE) policy

According to this policy the goal for the model is to learn to choose node
with highest resource utilization (CPU, memory, disk, or number of
scheduled pods) to optimize energy consumption.

At each step the custom environment provides an observation of the cluster
and in this case the provided observation is the number of scheduled pods
per node that can be switched with a resource between CPU, memory, disk.
So the model will choose a possible action selecting among available nodes
the one that will get the maximum score.

For this policy the reward function simply is the ratio of unused machines to
total machines based on resource utilization. In particular, at each step the
reward is obtained as follows:

(4 EE REWARD
unused nodes = sum(1 for value in self.state if value < 1)
sireward = int( 0 if terminated else (unused nodes/(self.

num_ of nodes —1))x10 )

self.state=get nodes_ state(self.policy, self.worker ips)
-

The episode is terminated when a node different from the one to select is
chosen.

Load Balancing (LB) policy

According to this second policy the goal for the model is to learn to choose
node with lowest resource utilization (CPU, memory, disk, or number
of scheduled pods) to increase throughput.
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At each step the custom environment provides an observation of the cluster
and in this case the provided observation is the number of scheduled pods
per node that can be switched with a resource between CPU, memory, disk.
So the model will choose a possible action selecting among available nodes
the one that will get the maximum score.

For this policy the reward function simply is a constant reward upon suc-
cessful pod scheduling. In particular, at each step the reward is obtained as
follows:

~
terminated = action._ _eq (node_ to_not_select)

ol almost_terminated = action. ne (node_ to_select) and action

~_ne (node_ to_ not_select)

4 LB REWARD

slreward = 10 if action.__eq (node_to_select) else (0 if

almost terminated else —1)

| self.state=get_nodes_state(self.policy, self.worker_ ips)

In this case, the episode is terminated if the selected node is the worst (the
most loaded), while the episode is "almost terminated" if the second most
loaded node is selected.

Energy and Latency Reinforcement Learning (EL-RL) policy

In the last case the goal for the model is to learn to select the node with
lower node-user latency and highest number of scheduled pods to
optimize both energy consumption and latency.

At each step the custom environment provides an observation of the cluster
and in this case the provided observation is the number of scheduled pods,
memory and CPU usage, node-user latency per node. So the model will
choose a possible action selecting among available nodes the one that will
get the maximum score.

For this policy the reward function is the combination of rewards to
minimize used nodes, host pods on minimal nodes, and choose node with
best latency (values in range [0,1]) In particular, at each step the reward is
obtained as follows:
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(4 EL-RL REWARD

rl = (self.num_of nodes — on_nodes)/ self.num_of nodes #
reward member to minimize the number of used nodes

tot__pods = np.sum(scheduled pods)

r2 = tot_pods/on_nodes # reward member to host pods on min
number of nodes [0, 1]

5r2__min = 0 # no pods scheduled

r2_max = 50 # all pods scheduled on the single on_node

if on nodes > 0:

r2 = (r2 — r2 _min) / (r2_max — r2_min)
else:
r2 =0
latency_node_user = float (getLatency (action_node_ip))
sir3 =0
if latencyHardConstraint!= —1 and latencySoftConstraint!=
—1:
if latency_ node_ user > latencyHardConstraint:
r3 =0
terminated = True

elif (latencySoftConstraint< latency mnode user) and (
latency node_ user <= latencyHardConstraint):

r3 = 0.5
terminated = False

elif latency_ node_ user <= latencySoftConstraint :
r3 =1
terminated = False

else:
r3 =0
terminated = True

reward = rl + r2 + r3

- )

Here the episode is terminated when the latency requirement is not
satisfied.

In this case, the goal is also to satisfy users’ latency requirements. In
particular, the user can define two constraints:
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o LatencyHardConstraint: A requirement of latency that must be
strictly satisfied.

o LatencySoftConstraint: A requirement of latency that does not need
to be strictly satisfied but allows for a higher reward as it is the better
choice.

To evaluate node-user latency, each node runs an app that, upon request,
measures the latency between the node and the user. Therefore, the observa-
tion provided to the model will also contain all the latencies for all nodes, so
that the agent’s decision can also take latency into account.

In particular, as can be seen from the EL-RL reward code, the component
r3 provides the part of the reward related to latency, giving 3 possible values:

0 if latency node_ user > HardConstraint
r3 = ¢ 0.5 if SoftConstraint < latency node_user < HardConstraint

1 if latency node_user < SoftConstraint
(4.1)
The components r and 79 will ensure that the maximum number of pods
are scheduled on the minimum number of nodes. In particular, the goal is to
select the most loaded node.

In general, therefore, the user can define specific requirements they wish to
meet for running their application, and these requirements are taken into
consideration during the reward or penalty phase for the agent, which is
rewarded when all requirements are satisfied.

4.5 Suggestions Server

The suggestion server written in Python plays a pivotal role within the
system architecture by exposing APIs that facilitate seamless communication
between the scheduling plugin and the machine learning model. These
APIs serve as the primary interface through which the plugin interacts with
the model, exchanging scheduling recommendations and receiving real-time
updates.

Additionally, the suggestion server provides APIs specifically designed to
retrieve critical node metrics from the Prometheus monitoring system. This
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integration is essential for obtaining detailed insights into the current state
of nodes within the Kubernetes cluster. By configuring Prometheus with
Node Exporter, the system ensures comprehensive monitoring capabilities,
capturing metrics such as CPU utilization, memory availability, disk usage,
network traffic, and other performance indicators.

4.6 Prometheus

Prometheus [3] is a service monitoring system , renowned for its scalability
and robustness in cloud-native environments, that employs a scraping-based
architecture to gather metrics directly from cluster nodes and services.
Prometheus can deliver accurate and timely data, essential for informed
decision-making and efficient resource management.

The combination of the suggestion server’s APIs and Prometheus’ monitor-
ing capabilities forms a robust foundation for enhancing cluster performance
and reliability. By leveraging these technologies, the system not only op-
timizes resource allocation and workload distribution but also empowers
dynamic adjustments based on real-time operational insights.

Specifically, in this solution, Prometheus has been configured using the
Node Exporter. The Node Exporter exposes a wide variety of hardware-
and kernel-related metrics such as CPU usage, memory utilization, disk
usage, and network statistics from Linux and UNIX hosts.

By configuring Prometheus with the Node Exporter, this solution enables the
collection of detailed performance metrics from each node in the Kubernetes
cluster.

The main queries used in training are:

CPU

| 100 — (avg(irate (node_cpu_seconds_total{mode="idle",
instance="{internal node ip}:9100" }[1m])) = 100)

This query calculates the CPU usage percentage by subtracting the average
idle time from 100%.

MEMORY
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1{nodememoryMemAvailablebytes{ instance="{internal ip}:9100"
/1079

This Prometheus query returns the amount of available memory in gigabytes
on a specific node.

DISK

| 100 — (node_ filesystem_ free_ bytes{mountpoint="/run" instance
="{internal ip}:9100"} / node filesystem size bytes{
mountpoint="/run" jinstance="{internal ip}:9100"} x 100)

This query evaluates the percentage of free space on the specific filesystem.

NETWORK TRAFFIC

| rate (node_network_receive_bytes_ total{instance="{internal ip
}:9100", device="eth0"}[5m])

This query calculates the rate of byte reception on the "eth(Q" interface over
the last 5 minutes.

NETWORK CONNECTIONS

1[n0de7netstatiTCpiCurrEstab{ instance="{internal ip}:9100"} \

This Prometheus query retrieves the current number of established TCP
connections on a specific node.

PODS NUMBER

| count (kube_pod_info{{node="{node name}"', namespace="default"
}}) or vector(0)
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This Prometheus query retrieves the current number of pods scheduled in
default namespace for each node.

The decision to integrate Prometheus into the cluster management sys-
tem was driven by several key considerations related to resource monitoring
and performance management. Prometheus was chosen for its robustness,
flexibility, and ability to provide detailed real-time data on cluster nodes.

Prometheus is an open-source monitoring and alerting system originally
designed to monitor cloud-native infrastructures like Kubernetes. Its ar-
chitecture model based on scraping allows it to collect metrics directly
from running services, providing an accurate and detailed view of system
performance.

Node Metrics Monitoring

Prometheus integrates the Node Exporter to gather essential metrics such
as CPU usage, available memory, disk space, and network traffic on each
cluster node.

Many other metrics can be collected on the cluster, as prometheus can be
configured in different ways.

Support for Scheduling Decisions

Metrics collected by Prometheus are used to train machine learning models,
such as Deep Q-Network (DQN) agents, to recommend the most suitable
nodes for scheduling new pods. For example, the model can leverage CPU
and memory usage information to balance workload across nodes and enhance
overall system efficiency.

Scalability and Flexibility

Due to its scalable architecture and extensive library support, Prometheus can
be easily adapted and extended to meet specific monitoring and management
needs of Kubernetes clusters. Its ability to handle large volumes of data and
integrate with other automation tools makes it an ideal choice for dynamic
and evolving environments like Kubernetes clusters.
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Results

Testing

Once the system is launched and configured, the testing phase is executed
through various scheduling steps for the different policies. Specifically, each
policy corresponds to a model that learns a specific behavior.

e Scheduling Steps: The system employs a series of scheduling steps to
ensure that each policy is tested thoroughly. This involves deploying the
policies under different conditions and monitoring their performance.

« Policy: Each policy implemented in the system is associated with a
trained model. These models are designed to learn and adapt to specific
behaviors based on predefined criteria. During the testing phase, the
behavior of each model is evaluated to ensure it meets the expected
outcomes.

e Monitoring and Evaluation: Throughout the testing phase, continu-
ous monitoring and evaluation are conducted to assess the performance of
each policy. This involves collecting data, analyzing results, and making
adjustments as needed to improve the overall system performance.

By executing these testing steps, the system ensures that each policy
functions correctly and efficiently within the Kubernetes Kind environment,
providing valuable insights and validation for future deployments.

In particular, the testing phase consists of scheduling a certain number of
deployments and deleting them, repeating the operation cyclically.

44



Results

Versions

The implemented system is tested in a Kubernetes Kind environment with
the following versions of the installed programs:

Program | Version

Go go 1.21.4

Docker Docker version 20.10.23, build 7155243
Ubuntu Ubuntu 20.04.6 LTS

Kind kindest/node:v1.27.3

Windows | 11 Home 23H2

Python Python 3.8.10

Table 5.1: Table of Versions

Deployment

For each pod, the specifications are defined in the deployment file, where the
LatencyHardConstraint and LatencySoftConstraint are also specified.
In particular values are:

» LatencyHardConstraint: 30
« LatencySoftConstraint: 20

The deployment file that is cyclically created requires the scheduling of a
pod of type nginx:latest.

2 apiVersion: apps/vl

3 kind: Deployment

| metadata:

5 name: 'nginx—deployment—25
6 labels:

7 app: nginx

8 annotations:

9 latencySoftConstraint: "20"
10 latencyHardConstraint: "30'
11 spec:

"
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12 replicas: 1

13 selector:

14 matchLabels:

15 app: nginx

16 template:

17 metadata:

18 labels:

19 app: nginx
20 annotations:

21 latencySoftConstraint: "20"
22 latencyHardConstraint: "30"'
23 spec:

24 containers:

25 — name: nginx

26 image: nginx:latest

27 ports:

28 — containerPort: 80

29 resources:

30 requests:

31 memory: ' 64Mi" # 64MB of memory
32 cpu: "250m' # (0.25 CPU)

This file is applied to the cluster using two different testing algorithms,
which operate in two distinct ways:

o In the first case (testl), all pods are created initially and then subse-
quently deleted to repeat the scheduling cycle.

o In the second case (test2), pods are created continuously. Once the
number of pods reaches approximately 30, the first pod in the list of
created pods is deleted.
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Test1

Algorithm 1 Kubernetes Deployment Management 1

1: for 500 iterations do

2 for 30 iterations do

3 generate deployment name

4 call replace_deployment_name with deployment name
5 create deployment in Kubernetes
6: wait for 3 seconds

7 end for

8 wait for 20 seconds

9: for 30 iterations do
10: generate deployment name
11: delete deployment in Kubernetes
12: end for
13: print "All deployments deleted."
14: wait for 5 seconds
15: end for
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Test2

Algorithm 2 Kubernetes Deployment Management 2

1: for 30 iterations do

2: generate deployment name

3: call replace_deployment_name with deployment name
4: create deployment in Kubernetes

5: Add deployment name to pod_names

6: Wait for 2 seconds

7: end for

8: while true do

9: old__deployment < first element of pod_names
10: delete deployment old_ deployment

11: Wait for 3 seconds

12: generate deployment name

13: create deployment in Kubernetes

14: Remove first element from pod_names

15: Add new__deployment to pod_names

16: next index < next index + 1

17: Wait for 1 seconds
18: end while
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5.1 Energy efficient (EE) policy

Test 1

The first test consist in scheduling a number of 30 pods and to delete all
after 10 seconds. This scheduling is repeted ciclically. In this case, the result
obtained in testing as it is shown in figure 5.1 is that the model will focus
all the scheduling on one node that is the most loaded, whithout considering
any latency.

In this case for example Node 0 is the one with the worst latency, but is
chosen since it is the most loaded.
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Figure 5.1: Energy efficient policy: pods distribution on test 1

Test 2

The second test consist in scheduling a number of pods each 2 seconds and
at 30 pods scheduled the oldest scheduled pod is deleted while the system
schedule other pods each 3 seconds. In this case, the result obtained in
testing as it is shown in figure 5.2 is again that the model will focus all the
scheduling on one node that is the most loaded, whithout considering any
latency.

In this case the selected node is Node2, that still is not the best choice for
latency.
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Figure 5.2: Energy efficient policy: pods distribution on test 2

5.2 Load balancing (LB) policy

Test 1

With this policy the goal is to learn to schedule pods between nodes so that
the load is distributed.
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Figure 5.3: Load balancing policy: pods distribution on test 1
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As it can be seen from the figure 5.3, in the first case of testing the desired
result is obtained.

Test 2

In the second test case, as it is shown in figure 5.4 the load distribution is
even more apparent as, at each step, the least loaded node is selected, even

when old pods start to be removed.

0 20 40 60 80 100 120 140 160
Steps

Number of scheduled pods

Figure 5.4: Load balancing policy: pods distribution on test 2

5.3 Latency and energy efficiency policy

testl

In this scenario, the training involves systematically varying latencies between
nodes and users by introducing different latency values. This approach
simulates significant fluctuations in latency during the training process.

In the first case node0 has lower latency since step 100, and it satisfies
both soft and hard latency constaints. The latencies are varied to verify the
model’s learning.

The following images show the agent’s choices in some of the possible
latency scenarios.
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Figure 5.5: EL-RL Pods scheduling on node0 (test1)
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Figure 5.6: EL-RL Pods scheduling on nodel (testl)
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Figure 5.7: EL-RL Pods scheduling on node2 (test1)
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The result obtained during testing is that the model can select the node
with the lowest latency each time the latencies are varied. Additionally, the
policy optimizes energy consumption by consistently suggesting the same
node for scheduling new pods.

test2

The second test case further explores the model’s response to changes in node
latencies. This involves intentionally altering the latencies at two specific
points in time to observe the model’s adaptive behavior, as illustrated in the
accompanying figure.

The test is modified to initially create 20 pods instead of 30.

The result obtained is:

12.54 —— MNode2
Nodel
10.0 { —— Node0
---- change latency 1
7.54 ---- change latency 2

Number of scheduled pods

0 20 40 60 80 100 120
Steps

Figure 5.8: EL-RL Pods scheduling on nodes (test 2)

It is observed that the policy directs all the load to a single node. However,
when latencies are modified, the model starts to shift the entire load to the
best node to select based on the new latencies.

Such a dynamic adaptation is crucial in environments with fluctuating
network conditions, ensuring optimal resource utilization and performance.
The ability of the model to respond to latency changes can prevent potential
bottlenecks and enhance the overall efficiency of the system. This adaptive
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approach can be particularly beneficial in cloud environments and distributed
systems where network performance can vary significantly.

5.4 Comparisons between RL policies and
default Kubernetes scheduler

Once the models were successfully trained and the agents effectively learned
the intended policies by means of the reward mechanism, it became possible
to compare RL policies with the default behavior of the Kubernetes scheduler
by disabling the RL plugin when necessary.

Specifically, the comparison aims to highlight optimizations in terms of
energy consumption and latencies.

Each model is tested individually, gathering data on:

o Number of active nodes at each step: the goal is to minimize the number
of active machines. A machine is considered active when it as at least
one pod scheduled.

o Chosen latency values at each step: the goal is to minimize latency over
time.

Subsequently, the collected values are compared using a moving average
approach to visually simplify the comparison of results.

Training phase comparison

At system startup, the agent’s training phase begins. Initially, suggestions
are random for all policies. This behaviour is similar to the one of the default
scheduler that behaves as a load balancer. The following graph 5.10 shows
how, even before completing the actual training, the EL-RL agent makes
better choices compared to other policies in terms of latencies.
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Testing phase comparison (Energy consumption)

The initial comparison obtained during the testing phase of the various
models shows that the default Kubernetes scheduler tends to distribute the
load across all available nodes by scheduling pods among all possible nodes,
as seen in the case of the LB policy.

It is also observed that the EL-RL and EE policies exhibit a similar
behavior, aiming to concentrate all the load on a single node to optimize
energy consumption by minimizing the number of active nodes.
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Figure 5.11: Comparison over time of active machines (testing)

Testing phase comparison (Node-user latency)

However, this second result highlights that, although the EE policy may be
efficient in minimizing consumption, it does not take into account another
important aspect: the latencies between nodes and the user, which are often
critical for certain applications.
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Figure 5.12: Comparison over time of latency values (testing)

Instead, the EL-RL policy not only optimizes energy consumption but
also selects the node with lower latency that meets the latency requirements
specified by the user.

In both cases, the proposed policy EL-RL performs better compared to the

default behavior of the scheduler and the LB policy.
Moreover, in the EL-RL policy, the agent is trained to adapt to changes
in the network. If an additional node offers lower latency, the workload is
shifted to that node. Through the implementation of DeepSets and the use
of masks, the agent accepts inputs regardless of permutations of values or
reductions in input dimensions, allowing it to adapt to network changes.

Using RL enables flexible testing of various policies to improve scheduling
based on different learned policies defined by a reward function.
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Chapter 6

Conclusion

6.1 Overview

The primary objective of this thesis was to explore the possibilities offered
by the combination of Kubernetes and Reinforcement Learning (RL) and
to evaluate whether this union is advantageous compared to the use of the
default scheduler provided by Kubernetes.

This research required the implementation of a simulated system, which,
however, can be extended to real-world situations. The results obtained have
demonstrated several advantages, including:

o Increased flexibility in the implementation of new scheduling policies, as
the problem shifts to defining a new reward function.

e The possibility of achieving better results through the use of neural
networks that can adapt and learn from environmental changes to
determine the optimal behavior.

o The definition of standard policies obtained through RL.

o The definition of a new EL-RL policy guided by a model that optimizes
scheduling in terms of energy consumption and latency.

In particular, the EL-RL policy implemented showed improvements over
both the default scheduler and other policies initially hypothesized.

This thesis highlights the benefits of using Al algorithms and, thanks to
the flexibility and composability of the systems used, serves as a foundation
for potential extensions across various domains.
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6.2 Future works

A potential future implementation is for example to extend the obtained
results to a multi-cluster environment, leveraging the capabilities offered
by tools such as Liqo [19].

Additionally, future research could explore the following directions:

o Scalability and Performance Optimization: Investigate the scala-
bility of the RL-based scheduler in large-scale Kubernetes deployments.
This includes testing the system under high load conditions and opti-
mizing performance to ensure low latency and low energy consumption.

e Integration with Other Scheduling Algorithms: Explore the
integration of RL-based scheduling with other advanced scheduling algo-
rithms, such as those based on heuristics or machine learning, to create
a hybrid scheduler that combines the strengths of different approaches.

e Dynamic Reward Function Adjustment: Develop methods for
dynamically adjusting the reward function based on real-time feedback
from the environment. This could improve the adaptability and respon-
siveness of the RL-based scheduler to changing workload patterns and
resource availability.

o Test and compare different RL algorithms Implement and compare
various RL algorithms to optimize performance.

o Energy-Efficiency Enhancements: Further refine the energy-efficient
scheduling policy by incorporating additional factors such as thermal
constraints, hardware-specific power consumption characteristics, and
renewable energy sources. This could lead to even greater energy savings
and environmental benefits.

« Real-World Testing and Validation: Conduct extensive testing
and validation of the RL-based scheduler in real-world Kubernetes
environments. This includes collaborating with industry partners to
deploy the scheduler in production systems and gather empirical data
on its performance and reliability.

o User-Friendly Interfaces and Tools: Develop user-friendly interfaces
and tools to facilitate the configuration and monitoring of the RL-based
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scheduler. This includes creating dashboards, visualization tools, and
APIs that allow users to easily define reward functions, track scheduling
decisions, and analyze system performance.

By pursuing these directions, the potential of combining Kubernetes with
Reinforcement Learning can be fully realized, leading to more efficient, adapt-
able, and intelligent resource management in containerized environments.

6.3 Code repository

The code related to this implementation is publicly available on GitHub
to encourage future collaborations and extensions. Specifically, the Git
repository is located at [20].
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System installation guide

In this appendix, we demonstrate how to recreate the system implemented in
this thesis locally and how to make modifications to implement future work.

A.0.1 Prerequisites

The system requires the installation of components to run a kind cluster,
including:

Software Requirements

Docker: Install Docker to enable containerization and management of
containers. Instructions for installing Docker can be found on the official
Docker documentation.

kind: Install kind (Kubernetes IN Docker) to create and manage local
Kubernetes clusters using Docker containers. Installation instructions
are available on the kind GitHub repository.

kubectl: Install kubectl, the Kubernetes command-line tool, to interact
with the Kubernetes cluster. Follow the kubectl installation guide for
instructions.

Python: Ensure Python is installed on your system. You can download
it from the official Python website.

Go: Install Go (Golang) as it is required for building and running
certain Kubernetes components. Instructions for installing Go can be
found on the official Go documentation.
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Hardware Requirements

Ensure your system meets the following hardware requirements:

o« CPU: At least 4 CPU cores.
o« Memory: At least 8 GB of RAM.
« Disk Space: At least 20 GB of free disk space.

A.0.2 Installation

Download the repository from
https://github.com/SoniaMatranga/SoniaMatrangaTesi, which is struc-
tured as follows:

» scheduler-plugins: Contains the code for the new scheduler with the
plugin that needs to be built into a new image and used instead of the
default Kubernetes scheduler.

» latency: Contains the app to be deployed on the nodes to gather latency
data.

« model: Contains the code for the RL agent.

e venv: Virtual environment with all necessary dependencies to run the
model and integrate the custom environment.

o Configuration files.

Setup Kind Cluster

Create a Kind cluster with 4 nodes using the configuration file kind-config.yaml|
ensuring the paths for the model and venv are correctly configured. Execute
with:

1[ kind create cluster name vbetad —config kind—(‘,()nfig.yaml\

Note that the control node will mount model and venv volumes, where
venv contains all the requirements requested by the cleanrl repository.

If it is needed it is possible to recreate the venv by installing cleanrl
requirements, but in this case the gymnasium package must be modified by
inserting and registering the custom environment for our model.
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Configure Prometheus with Node Exporter

Install Prometheus configured with Node Exporter into the cluster to provide
metrics to the RL model.

rkubectl create namespace monitoring

helm repo add prometheus—community https://prometheus—
community . github .io/helm—charts

s helm repo update

fhelm install prometheus prometheus—community/prometheus—node

—exporter —m monitoring

)

-

Follow the steps outlined in the article kind-fix missing prometheus operator
targets to let Prometheus work on a Kind cluster.

Configure Custom Scheduler on Master Node

After automatically creating the cluster, add the configuration of the new
scheduler into the master node (control-plane of the cluster). Add files to
the following paths:

o /etc/kubernetes/manifests: Copy the kube-scheduler.yaml file
containing the new configuration of the scheduler pod that will be
created locally.

o /etc/kubernetes: Copy the networktraffic-config.yaml file con-
taining the configuration of the scheduler plugins, from which you can
enable or disable default behaviors.

Build and Load Local Scheduler Image

Generate the new scheduler image locally using the files from the scheduler-
plugins directory, which contains the code for the plugins including the
custom NetworkTraffic plugin. This plugin performs scoring based on the
suggestions of the reinforcement learning model. Run the following command
to generate a new Docker image:

| make local—image
ol kind load docker—image —mname vbeta3 localhost:5000/
scheduler—plugins /kube—scheduler:latest
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Alternatively, upload the image to DockerHub and modify the kube-
scheduler.yaml configuration file to specify the image source for the master
node.

Restart the Control Plane

Restart the control plane and delete the scheduler pod to create the new
scheduler with the correct configuration and the local image. Retrieve the
scheduler pod name using the command:

x[kubectl get pods —m kube—system

where the pod scheduler is named similarly to kube-scheduler-vbeta3-
control-plane.

A.0.3 Scheduling Test

The nginx-deployment.yaml can be applied to the cluster to test scheduling,
so that one pod is scheduled.

kubectl create -f nginx-deployment.yaml

Then, by observing the scheduler logs, it is possible to analyze the behavior
when a new pod is scheduled:

1 kubectl logs —f kube—scheduler—vbetad—control—plane —m
kube—system

The deployments.sh script will create multiple deployments, allowing
you to train and test the model by executing it. This file will create the
results shown in testl. Results shown in test2 cases can be obtained by
executing deployments2.sh. To change the policy, it is possible to select
one of the possible policies by modifying the custom environment and setting
self-policy as indicated in the file scheduling.py.

A.0.4 Change policy

It is possible to modify the learned policy by setting the self.state variable
in the scheduling.py file. It is crucial that when policy PO (EL-RL) is set,
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the observation space is adjusted accordingly. Specifically, the code defining
the observation space dimensions:

| self .min_state = np.zeros ((node_count()—1), dtype=np.float32

)

ol self .max_state = np. full ((node_count()—1), float( inf"),
dtype=np. float32)

In policy PO, this needs to be changed to:

| self . min state = np.zeros ((node count()—1)x4, dtype=np.
float32)

ol self .max_state = np. full ((node_count()—1)%4, float( inf’),
dtype=np. float32)

Failing to make this change will result in an error produced by CleanRL,
as the dimensionality of the observation space will be incorrect when the
reset () method is invoked.

A.1 Modify the system

A.1.1 Register a new custom environment

The first thing is to insert the custom environment file to the path
$venv/1ib/python3.9/site-packages/gymnasium/envs/classic_control

Then it is needed to register the environment in gymnasium environment
to let cleanr] use it. So in the file __init__.py, it must be added the line

i| from gymnasium.envs.classic_control.acrobot import
YourEnvName

and in the file envs/__init__.py it must be added the env registration:

1 register (
id="YourEnvld"
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entry_point="gymnasium.envs. classic_control.yourenvfile:
YourEnvName" |

max__episode_steps=200,

reward threshold=195.0,

5
6 )

A.1.2 Modify the Reward Function

In order to test new policies, it is possible to define new reward functions by
inserting the code into the step function of the custom environment.

When modifying scheduling.py, the environment defines self.policy,
so from here a different policy can be set. In this case it is also needed to
modify suggestion APIs and to insert the code to evaluate the state for the
model.

A.1.3 Improving Neural Network Models
With models it is possible to modify:

o the hyperparameters used at the start of training, which are set in the
plugin, specifically in the path scheduler—plugins/cmd/scheduler/main.go

 the neural network structure itself by modifying the path model/cleanrl/
cleanrl/dqn.py. Clearly, it is also possible to test other agents available
in the cleanrl library.

» the action selection during the training phase in model/cleanrl/cleanrl/
dgn.py and during the testing phase by modifying the path:
model/cleanrl/cleanrl utils/evals /eval dqn.py

For example, in this thesis, the used hyperparameters are:

Hyperparameter | Value
exploration-fraction | 0.3
save-model True
—total-timesteps 2000
—learning-rate 2.5e-3
—learning-starts 300

Table A.1: Table of model hyperparameters
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For example, in this thesis, the test phase is modified from the one in

cleanrl so that the function predict defined in our custom implementation
is used.

model = Model(envs).to(device)
model . load__state_dict (torch.load (model path,
map_ location=device))
model . eval ()

obs, = envs.reset ()

episodic_returns = []

while len (episodic_returns) < eval episodes:
action_masks = []
for env_idx in range(envs.num_envs):

env = envs.envs|[env_ idx]
if hasattr(env, ’'action_ masks’) and callable (
getattr (env, ’‘action masks’)):
action_mask = env.action_ masks|()
action__masks.append (action_mask)
else:
action_masks.append (None)
action _mask = action masks[0]
action_mask matrix = action_mask.reshape (1, —1)
if random.random () < epsilon:
actions = []
for env_mask in action mask matrix:
valid__actions = np.where(env_mask) [0]
actions = np.array ([np.random. choice (
valid__actions) for _ in range(envs.num_envs)|)
#actions = np.array ([envs.single action_space.
sample () for _ in range(envs.num_envs)|)
else:
#q_values = model(torch. Tensor (obs).to(device))
#actions = torch.argmax(q_values, dim=1).cpu().
mormpy ()
actions = model. predict (obs, action mask matrix)
next_obs, _, _, | infos = envs.step(actions)

if "final info" in infos:
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for info in infos["final info']:
if "episode" not in info:

continue
print (f"eval episode={len (episodic_returns)
}, episodic_return={info [’ episode "|['r’'|} ")
episodic_returns += [info['"episode"|["r"]]
obs = next obs

return episodic_returns

A.2 Directory Structure and Key Files

Model Directory

« model/cleanrl: Contains all files of cleanrl that must be mounted on
the scheduler pod.

« model/cleanrl/cleanrl/dgn.py: Modified DQN agent that uses DeepSets|

« model/main.py: Contains functions to expose agent suggestions and
to allow communication between the virtual environment (venv) and
Prometheus.

e Other files used in previous versions.

Scheduler-Plugins Directory

« scheduler-plugins/build/scheduler/Dockerfile: Dockerfile for the
scheduler where new libraries are installed and the venv is activated.

« scheduler-plugins/cmd/scheduler/main.go: Starts the model and
registers the custom plugin for the scheduler.

 scheduler-plugins/pkg/networktraffic/networktraffic.go: Defines
the custom plugin.

« scheduler-plugins/pkg/networktraffic/prometheus.go: Functions
for interaction between the custom plugin and Prometheus in case
communication with the agent fails.
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« Additionally, there are changes to library versions to ensure the repos-
itories work correctly. See scheduler-plugins/README.md for more
details.

Venv /lib/python3.9 Directory

 /site-packages/gymnasium/envs/classic__control/scheduling.py
contains the definition of the environment used by the DQN agent, which
is located in the model. It also starts an app to visualize graphs on the
agent.

« site-packages/gymnasium/envs/classic_ control/___ init___.py regt
isters the new custom environment in Gymnasium [18].
Configuration Files

o kind-config.yaml: Initial cluster configuration where Prometheus needs

to be added.

o kube-scheduler.yaml: Configuration of the scheduler pod where vol-
umes of plugins, model, and venv are inserted.

» networktraffic-config.yaml: Configuration file for the custom sched-
uler where plugins and default scheduler behaviors can be enabled or
disabled. It passes Prometheus address as an argument.

A.3 Useful Commands

A.3.1 System

When starting the system, ensure that Docker is running. Then, by opening a
new terminal, the scheduler logs can be viewed using the following command:

i| kubectl logs —f kube—scheduler—vbetad—control—plane —m kube—
system

In this command, the -f flag will follow the logs, providing real-time
updates.
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The system automatically generates graphs, which are exposed on port
8050 of the virtual cluster. To view these graphs on your local browser,
you need to forward port 8050 of the virtual cluster to port 8050 on your
localhost. This can be accomplished with the following command:

| kubectl port—forward pod/kube—scheduler—vbeta3d—control—plane
8050:8050 —n kube—system

Initially, the graphs will be empty. To start the scheduling and populate
the graphs, simply execute the deployment script:

\[ / deployment . sh

A.3.2 Model

CleanRL offers the ability to monitor the learning progress of the model
using TensorBoard [21]. To start TensorBoard, follow these steps:
First, enter the control plane by executing:

| kubectl exec —it kube—scheduler—vbetad—control—plane —n kube
—system — /bin/bash

Within the control plane, start TensorBoard by running:

x[tensorboard —Ilogdir runs ’

Next, forward the TensorBoard service to be accessible from localhost:

| kubectl port—forward pod/kube—scheduler—vbeta3—control—plane
6006:6006 —n kube—system

After performing these steps, you can access TensorBoard on your local
browser at http://localhost:6006, allowing you to visualize and monitor
the learning process of your model.
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