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Abstract

This thesis considers an UAV-assisted wireless network, where an
unmanned aerial vehicle (UAV) is deployed to collect status update
data from various heterogeneous sensors monitoring physical proce-
ses. The UAV then transmits the collected data to a base station
using LoRa (Long Range) communication, which is known for its
low-power, low-cost, and long-range capabilities. However, in urban
environments, the effectiveness of LoRa can be significantly compro-
mised due to diverse physical settings, signal interference, and ob-
structions, making it difficult to determine the optimal locations from
which transferring the collected data to the base station.

The primary objective of this thesis is to develop a comprehensive
system that leverages a UAV to optimize data collection from sensor
networks within an unknown environment, where the LoRa signal
qualities of different locations are not predetermined. Specifically, this
work aims to minimize the Age of Information (AoI) to ensure that
the data received at the base station is as fresh as possible, thereby
enhancing the timeliness and relevance of the information. A critical
challenge in achieving this objective is the joint optimization of the
UAV’s trajectory and the selection of data transmission locations to
minimize the AoI. We formulate this as a new optimization problem
and demonstrate that it is NP-Hard.

First, to understand how the real environment affects the LoRa
connection, we developed a testbed with a LoRa transmitter and re-
ceiver to collect real-world transmission data in a 1 km² urban area.
Using this collected data, an initial solution was implemented with
Gurobi, based on the assumption of a perfectly known data rate dis-
tribution. Next, we considered a real-world scenario where the LoRa
signal quality is unknown at different locations. Given the high com-
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putational cost of the Gurobi solution, we propose a heuristic algo-
rithm that leverages reinforcement learning to learn the environment
and plan the UAV trajectory with the objective of minimizing the
AoI. Additionally, we performed extensive experiments to assess the
performance of the proposed solution against existing approaches.

In conclusion, this thesis develops an efficient UAV-aided data col-
lection system with LoRa communication capabilities for base stations
in urban environments. By jointly optimizing transmission locations
and the UAV’s trajectory, the system effectively reduces the Age of
Information (AoI) and enhances data relevance.
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Chapter 1

Introduction

The rapid development of the Internet of Things (IoT) has driven
advancements in applications like traffic control, autonomous driving,
infrastructure inspection, disaster management, and industrial con-
trol. However, the increasing data volume and demand for timely
delivery pose significant challenges, especially in energy-constrained
IoT systems and areas with limited internet coverage and sparse sen-
sor deployment. Unmanned Aerial Vehicles (UAVs) offer a solution
by extending network connectivity and assisting in data collection as
mobile relay nodes. Unlike multi-hop transmission, UAVs can oper-
ate near IoT devices, leveraging line-of-sight (LOS) communication to
reduce transmission energy, improve reliability, and enhance through-
put.

Meanwhile, Long Range Wide Area Network (LoRa) [1], a low-
power, wide-area network (LPWAN) protocol, has emerged as a promis-
ing network solution for wirelessly connecting battery-operated de-
vices. Its exceptional capabilities in providing extensive communica-
tion range and cost-efficient deployment make it widely adopted for
large-scale IoT applications such as smart cities, manufacturing, and
smart agriculture. Existing works related to LoRa focus on optimizing
parameter settings and resource allocation to improve network perfor-
mance metrics such as throughput, packet loss rate, and retransmis-
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Chapter 1. Introduction

sion time. However, these approaches primarily consider static LoRa
nodes, i.e, the distance between transmitter node and the receiver
node are fixed. LoRa communication quality can be significantly im-
pacted by heterogeneous physical environments, i.e., trees, buildings,
obstacles, and signal interference. Consequently, nodes placed far
from the receiver or surrounded by buildings and trees, as in urban
environments, can experience prolonged transmission times and high
packet loss rates.

This work utilizes a UAV-assisted mobile LoRa node equipped with
a LoRa transceiver to collect data from ground IoT devices and trans-
mit it to a base station. The UAV’s mobility allows it to find optimal
positions for good communication, overcoming environmental and sig-
nal interference challenges.

Timeliness of data is crucial, especially in delay-sensitive applica-
tions like safety control. Age of Information (AoI) quantifies data
freshness at the receiver. Existing AoI optimization in UAV-assisted
IoT networks generally falls into two categories: one neglects UAV-
to-core network transmission, which is impractical due to unlicensed
spectrum delays; the other considers UAVs as mobile nodes connected
to ground base stations. Some approaches have UAVs deliver all col-
lected data after returning to the base station, which is inefficient.
Others transmit data during flight but assume deterministic trans-
mission rates, which is unrealistic due to environmental changes and
interference.

To understand the impact of the physical environment on LoRa
communication quality, we conducted extensive LoRa transmissions
within a 1 km² urban area divided into 100 grids. With the LoRa
receiver at the center, we moved the transmitter across all grids and
measured transmission data rates. Areas farther from the receiver or
obstructed by buildings and trees had lower rates, with most transmis-
sions failing in non-line-of-sight (NLOS) conditions. Rates increased
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Chapter 1. Introduction

up to 300 bytes/s in LOS conditions. The standard deviation reached
up to 90, with over 40% of grids showing a deviation greater than 40,
likely due to traffic conditions and mobile device interference. This
variability complicates determining optimal data collection trajecto-
ries and transmission decisions to minimize AoI.

Using the collected data, an initial solution was implemented using
the Gurobi optimizer, assuming a perfectly known data rate distribu-
tion. Due to high computational cost, an heuristic algorithm has been
proposed to replace Gurobi. Subsequently, a real-world scenario was
considered where the LoRa signal quality is unknown at different loca-
tions. To address this problem a UCB algorithm has been proposed.
This algorithm learns the environment and plans the UAV trajectory
with the objective of minimizing AoI. Extensive experiments were
conducted to assess the performance of the proposed solution against
existing approaches.

The results demonstrate that our heuristic algorithm, even if pro-
duce a sub-optimal solution, significantly outperforms the Gurobi
solver in terms of speed, enabling the solution to scale to a higher
number of sensors. Additionally, the Upper Confidence Bound (UCB)
algorithm consistently outperforms the other two approaches when
applied to real-world scenarios. This indicates superior efficiency and
effectiveness. The detailed comparison of the different algorithms pro-
vides valuable insights into their relative performance and scalability.

In conclusion, this thesis develops an efficient UAV-aided data col-
lection system with LoRa communication capabilities for base stations
in urban environments. By jointly optimizing transmission locations
and the UAV’s trajectory, the system effectively reduces the Age of
Information (AoI) and enhances data relevance.

In conclusion, this thesis develops an efficient UAV-aided data col-
lection system with LoRa communication capabilities for base stations
in urban environments. By jointly optimizing transmission locations
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Chapter 1. Introduction

and the UAV’s trajectory, the system effectively reduces the Age of
Information (AoI) and enhances data relevance, outperforming the
actual solutions.

1.1 Organization of the thesis

This thesis is organized into 6 chapters, structured as follows:

• Chapter 1: Introduction

Explores the rapid development of IoT applications and the asso-
ciated challenges in data volume and timely delivery. Discusses
the role of UAVs in extending network connectivity and assisting
data collection. Introduces LoRa technology and the concept of
Age of Information (AoI) to assess data freshness. This chap-
ter sets the context for the research and outlines the motivation
behind the implementation of this work.

• Chapter 2: Background & Related Work

Discusses the key technologies used in this work, including LoRa
architecture, the Gurobi optimization solver, and the UCB al-
gorithm. Rapidly reviews recent research on optimizing UAV
trajectories for efficient data collection, focusing on the AoI min-
imization.

• Chapter 3: Methodology

Details the system model, communication model and the AoI
formulation. Explains the algorithms implemented for the op-
timization, including the Gurobi solver, the heuristic algorithm,
and the UCB algorithm, and describes their application to the
problem. This chapter explains the theoretical and practical ap-
proaches used in designing and implementing the UAV-assisted
data collection system.
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Chapter 1. Introduction

• Chapter 4: Experiments

Provides a comprehensive explanation of the experimental setup,
including the components and configurations used. Discusses the
data collection process and presents the analysis, highlighting
the impact of environmental factors on signal quality and data
transmission. The chapter also explains the tuning process for
the LoRa communication parameters and the methods used to
ensure reliable data collection in urban environments.

• Chapter 5: Results

This chapter analyzes the performance of the implemented solu-
tions. It begins by comparing the Gurobi solver with the heuristic
algorithm and then presents the UCB solution. The findings are
discussed, highlighting their implications for optimizing UAV tra-
jectories to minimize AoI and enhance data collection efficiency.
The chapter also presents the advantages and disadvantages of
each implemented solution, providing a clear explanation of the
reasoning behind each choice.

• Chapter 6: Conclusion

Summarizes the key findings and contributions of the study. Sug-
gests potential directions for future research, including further
optimization techniques and increasing the level of complexity of
the solution, adding, for example, more UAVs.
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Chapter 2

Background & Related Work

This chapter explores key technologies and theories essential in this
work. It starts with LoRa (Long Range Wide Area Network), a lead-
ing IoT communication protocol, and covers its architecture, features,
and regulatory differences between the USA and Europe. Next, it ex-
amines the Gurobi optimization solver, highlighting its performance
and applications in solving complex mathematical problems. The con-
cept of Age of Information (AoI) is then introduced, explaining its im-
portance in ensuring information freshness in real-time applications.
The chapter also covers the Upper Confidence Bound (UCB) algo-
rithm, which balances exploration and exploitation in reinforcement
learning. Finally, it reviews recent research on optimizing UAV tra-
jectories for efficient data collection, focusing on energy efficiency and
AoI minimization. This sets the stage for understanding the current
advancements and challenges in UAV-assisted IoT data collection.S

2.1 LoRa

In recent years, the Internet of Things (IoT) has witnessed exponen-
tial growth, necessitating the development of efficient and scalable
wireless communication protocols. LoRa (Long Range Wide Area
Network) has emerged as a leading protocol in this domain, offering
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long-range communication, low power consumption, and the ability
to support a massive number of devices. This section provides an
in-depth exploration of LoRa, its architecture, key features, applica-
tions, regulatory differences between the USA and Europe, and future
prospects.

2.1.1 Architecture of LoRa

LoRa is a protocol designed to manage communication between low-
power devices and a central network server. The architecture of LoRa
can be broadly divided into four key components: end devices, gate-
ways, network servers, and application servers.

Figure 2.1: LoRa Infrastructure

• End Devices: These are the sensors or actuators deployed in
the field. They communicate with the gateways using the LoRa
(Long Range) modulation technique, which is robust against in-
terference and capable of achieving long-range communication
[11].

• Gateways: Gateways act as intermediaries between end devices
and the network server. They receive data from end devices
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and forward it to the network server over an IP backbone (e.g.,
Ethernet, cellular, Wi-Fi) [12].

• Network Server: The network server is responsible for man-
aging the network, including tasks such as data de-duplication,
security checks, and network management functions. It ensures
the integrity and security of the data before it is sent to the
application server [13].

• Application Server: This component processes and analyzes
the data received from the network server, enabling end-user ap-
plications. It can trigger actions based on the analyzed data,
providing real-time responses and insights [14].

2.1.2 Key Features

LoRa is distinguished by several features that make it ideal for IoT
applications:

• Long Range: LoRa can achieve communication ranges up to
15 kilometers in rural areas This capability is critical for appli-
cations requiring widespread coverage [15].

• Low Power Consumption: End devices in a LoRa network
are designed to operate for years on a single battery, thanks to
low power consumption mechanisms. This makes it suitable for
battery-powered IoT devices [11].

• Scalability: LoRa can support millions of devices within a
single network, making it highly scalable. The use of spread
spectrum modulation and adaptive data rate techniques helps in
managing network capacity efficiently [12].
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2.1.3 LoRa Parameters

Understanding the various parameters of LoRa is crucial for opti-
mizing network performance and meeting specific application require-
ments. Key parameters include data rate, spreading factor, band-
width, coding rate, and transmit power.

Figure 2.2: Visualization of the Spreading Factor

• Data Rate: The data rate in LoRa is a function of the spreading
factor (SF) and the bandwidth (BW). LoRa supports a range
of data rates from 30 bps to 1 kbps, allowing for flexibility in
balancing range, power consumption, and data throughput [15].
The data rate is adjusted dynamically using Adaptive Data Rate
(ADR) to optimize network performance [11].

• Spreading Factor (SF): The spreading factor determines the
duration of the chirp signal used in LoRa modulation. It ranges
from SF7 to SF12, with higher spreading factors resulting in
longer chirps [12]. Higher spreading factors increase the link bud-
get, enabling longer communication ranges at the cost of lower
data rates and higher airtime [14].

• Bandwidth (BW): LoRa supports multiple bandwidth options,
including 125 kHz, 250 kHz, and 500 kHz. The bandwidth affects
the data rate and the robustness of the signal [13]. Narrower
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bandwidths (e.g., 125 kHz) provide better sensitivity and longer
range, while wider bandwidths (e.g., 500 kHz) support higher
data rates [15].

• Coding Rate (CR): The coding rate is a measure of error
correction applied to the transmitted data. LoRa uses forward
error correction (FEC) to improve communication reliability [11].
Coding rates range from 4/5 to 4/8, with higher coding rates pro-
viding better error correction at the expense of reduced effective
data rate [12].

• Transmit Power: Transmit power in LoRa can be adjusted to
balance range and power consumption. Higher transmit power
increases the communication range but also consumes more bat-
tery [14]. The maximum allowable transmit power is regulated
and varies by region (e.g., up to 1 Watt in the USA and 25 mW
in Europe) [16,17].

• Channel Plan: The channel plan specifies the frequencies and
channel spacing used for communication. It is region-specific
to comply with local regulatory requirements [13]. In the USA,
the channel plan includes 64 channels in the 902-928 MHz band,
while in Europe, the plan includes 8 channels in the 863-870 MHz
band [18].

• Duty Cycle: The duty cycle is the fraction of time a device is
allowed to transmit in a given period. It is regulated to prevent
spectrum congestion and ensure fair access [17]. In Europe, the
duty cycle is strictly limited (e.g., 1% or 0.1% depending on the
sub-band), while in the USA, duty cycle restrictions are more
relaxed [16].

• Adaptive Data Rate (ADR): ADR is a mechanism in Lo-
RaWAN that dynamically adjusts the data rate, spreading fac-
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tor, and transmit power of end devices based on network con-
ditions [11]. ADR optimizes network capacity, battery life, and
overall performance by adapting to the changing environment
and device locations [12].

2.1.4 Regulatory Differences between the USA and Europe

LoRa operates in the unlicensed Industrial, Scientific, and Medical
(ISM) radio bands, which are regulated differently in the USA and
Europe. These differences affect the deployment and operation of
LoRa networks in these regions.

• Frequency Bands:

– USA: In the United States, LoRa operates primarily in the
902-928 MHz ISM band. This band is regulated by the Fed-
eral Communications Commission (FCC) and is subject to
specific rules regarding output power and duty cycle [16].

– Europe: In Europe, LoRa operates in the 863-870 MHz
ISM band, regulated by the European Telecommunications
Standards Institute (ETSI). The regulations here are more
stringent, with tighter restrictions on duty cycle and trans-
mission power [17].

• Duty Cycle and Transmission Power:

– USA: The FCC regulations in the USA allow for higher
transmission power up to 1 Watt (30 dBm) and do not
impose strict duty cycle limitations, making it possible to
achieve longer ranges and higher data rates [16].

– Europe: ETSI regulations in Europe limit the transmission
power to 25 mW (14 dBm) for most applications and enforce
a duty cycle limit of 1% or lower, depending on the specific
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Figure 2.3: Frequency band regulation in different continents

sub-band. These restrictions are designed to minimize inter-
ference and ensure fair usage of the spectrum [17].

• Channel Plan:

– USA: The LoRa channel plan in the USA typically includes
a larger number of channels due to the wider available spec-
trum (902-928 MHz). This allows for greater flexibility and
capacity in network design [18].

– Europe: In Europe, the available spectrum (863-870 MHz)
is narrower, resulting in fewer channels and potentially more
congestion. The channel plan must be carefully managed to
optimize performance and compliance with duty cycle regu-
lations [17].

• Regional Adaptations:

– USA: The flexible regulations in the USA support a broader
range of applications and facilitate rapid deployment and
innovation in LoRaWAN technologies [16].

– Europe: The stricter European regulations ensure that the
spectrum is used efficiently and fairly, which can lead to more
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predictable network performance and reduced interference
[17].

2.1.5 Conclusion

LoRa has established itself as a pivotal technology in the IoT land-
scape, offering a robust solution for long-range, low-power, and scal-
able communication. Its versatile applications across multiple do-
mains underscore its significance and potential in driving the future
of connected devices. The regulatory differences between the USA
and Europe present both challenges and opportunities for optimizing
LoRa deployments to meet regional needs and compliance require-
ments [12].

2.2 Gurobi

Gurobi is a state-of-the-art optimization solver designed for solving
complex mathematical problems. It is widely used in academia and
industry for tackling a variety of optimization problems, including lin-
ear programming (LP), mixed-integer programming (MIP), quadratic
programming (QP), and mixed-integer quadratic programming (MIQP).

2.2.1 Key Features of Gurobi

• High Performance: Gurobi is known for its speed and effi-
ciency. It employs advanced algorithms and parallel processing
techniques to solve large and complex problems quickly.

• Wide Range of Problem Types: Gurobi supports a diverse
set of problem types:

– Linear Programming (LP): Optimization of a linear ob-
jective function, subject to linear equality and inequality
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constraints.

– Mixed-Integer Programming (MIP): Extension of LP
with the inclusion of integer variables, making it suitable for
problems requiring discrete decisions.

– Quadratic Programming (QP): Optimization involving
a quadratic objective function with linear constraints.

– Mixed-Integer Quadratic Programming (MIQP): Com-
bines the elements of MIP and QP, allowing for quadratic
objective functions and integer variables.

– Quadratically Constrained Programming (QCP) and
Mixed-Integer Quadratically Constrained Program-
ming (MIQCP): For problems with quadratic constraints.

• User-Friendly Interfaces: Gurobi offers a variety of interfaces
to suit the main programming environments:

– Python, C, C++, Java: Compatibility with the main
programming languages.

– MATLAB and R.

– AMPL, GAMS, and MPL: Support for these algebraic
modeling languages.

2.2.2 Applications of Gurobi

The versatility of Gurobi makes it suitable for a wide range of appli-
cations, including but not limited to:

• Supply Chain Optimization: Designing efficient supply chains,
optimizing inventory levels, and improving logistics.

• Financial Modeling: Portfolio optimization, risk management,
and financial planning.
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• Scheduling: Workforce scheduling, production planning, and
project management.

• Energy Systems: Optimizing energy production, distribution,
and consumption.

• Transportation: Route planning, vehicle scheduling, and traf-
fic management.

2.2.3 Conclusion

Gurobi is a powerful and flexible optimization solver that has become
a cornerstone in the field of mathematical optimization. Its ability
to handle a wide range of problem types, combined with its high
performance and user-friendly interfaces, makes it an invaluable tool
for researchers and practitioners alike.

2.3 Age of Information

The Age of Information (AoI) is a metric that quantifies the freshness
of information in a network. Unlike traditional metrics such as delay
or latency, which measure the time taken for a packet to travel from
the source to the destination, AoI captures the age of the most recently
received update at the destination. This age is crucial in applications
where the most up-to-date information is needed to make decisions or
take actions.

Mathematically, AoI is defined as follows:

∆(t) = t− u(t)

where:

• ∆(t) is the Age of Information at time t.
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• t is the current time.

• u(t) is the generation time of the last received update at the
destination.

For example, if the current time is 10 seconds and the last received
update was generated at 7 seconds, the AoI is 3 seconds. This means
the information available at the receiver is 3 seconds old.

2.3.1 Importance

The importance of AoI stems from its ability to provide a direct mea-
sure of information freshness, which is critical in various real-time and
latency-sensitive applications. Here are some key reasons why AoI is
important:

1. Performance Optimization:

• Traditional metrics like throughput and delay do not ad-
equately capture the performance of systems that rely on
timely updates. AoI provides a more relevant performance
measure for optimizing such systems [20].

• For instance, in wireless sensor networks used for environ-
mental monitoring, ensuring that the data is fresh (low AoI)
can significantly improve the quality of monitoring and sub-
sequent actions based on the sensor data [21].

2. Network Efficiency:

• Understanding and managing AoI can lead to more efficient
use of network resources. By optimizing update frequencies
and scheduling policies, it is possible to minimize AoI with-
out unnecessarily increasing the load on the network [24].
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• This is particularly important in resource-constrained net-
works such as wireless sensor networks or Internet of Things
(IoT) systems, where energy and bandwidth are limited [25].

2.3.2 Applications Highlighting the Importance of AoI

1. Data Collection Optimization:

• In IoT sensor networks, timely data collection is crucial for
accurate monitoring. High AoI can result in outdated or
irrelevant information being processed, leading to poor de-
cisions.

• Optimizing UAV trajectories and scheduling data transmis-
sions can significantly reduce AoI, ensuring that the collected
data is as fresh and relevant as possible. .

2. Autonomous Vehicles:

• Autonomous vehicles rely on real-time data from various sen-
sors and communication with other vehicles and infrastruc-
ture. High AoI can result in outdated information about
traffic conditions, road hazards, or the positions of other ve-
hicles, leading to unsafe driving decisions.

• Techniques to minimize AoI in vehicular networks can im-
prove both safety and efficiency by ensuring that vehicles are
operating on the most recent data [26].

3. Industrial Automation:

• Industrial processes often involve real-time control systems
where timely updates from sensors are critical for maintain-
ing process stability and efficiency. High AoI can lead to
delays in detecting and responding to process deviations,
potentially causing defects or downtime.
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• By managing AoI, industrial automation systems can ensure
more reliable and efficient operations, reducing the risk of
production losses and enhancing overall productivity [23].

2.3.3 Conclusion

The Age of Information is a crucial metric for evaluating and opti-
mizing the timeliness of information in various systems. Its impor-
tance spans a wide range of applications, from autonomous vehicles
to healthcare and industrial automation, where timely information is
vital for making informed decisions, ensuring safety, and enhancing
system performance. By focusing on AoI, researchers and engineers
can develop more effective strategies to keep information fresh, ulti-
mately leading to more reliable and efficient systems.

2.4 UCB algorithm

The Upper Confidence Bound (UCB) algorithm is designed to manage
the exploration-exploitation trade-off in reinforcement learning. In
multi-armed bandit problems1, a decision-maker must choose between
multiple actions (arms) to maximize the cumulative reward. Each
action has an unknown reward distribution, and the decision-maker
must explore different actions to learn their rewards while exploiting
the actions that yield the highest known rewards.

Mathematically, the UCB algorithm selects the action a at time t

that maximizes the following expression:

at = argmax
a∈A

µ̂a(t) + c

√√√√ ln t

Na(t)


1In this type of problem, a decision-maker (or gambler) is faced with several options, each

with an unknown probability distribution of rewards. These options are metaphorically referred
to as "arms" of a slot machine or "bandit," hence the name "multi-armed bandit."
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where:

• µ̂a(t) is the estimated mean reward of action a at time t.

• Na(t) is the number of times action a has been selected up to
time t.

• c is a positive parameter that controls the level of exploration.

• A is the set of all possible actions.

The term
√

ln t
Na(t)

is the upper confidence bound, which decreases
as the number of times action a is chosen increases. This encourages
exploration of less frequently chosen actions.

2.4.1 Importance

The importance of the UCB algorithm in reinforcement learning arises
from its effectiveness in balancing exploration and exploitation. Here
are some key reasons why the UCB algorithm is important:

1. Optimal Exploration-Exploitation Trade-off:

• The UCB algorithm provides a theoretically sound approach
to balancing exploration and exploitation, which is a funda-
mental challenge in reinforcement learning [27]. By consid-
ering both the estimated reward and the uncertainty of the
reward, UCB ensures that actions with high potential re-
wards are explored sufficiently.

2. Theoretical Guarantees:

• The UCB algorithm has strong theoretical guarantees on
its performance. It is proven to achieve logarithmic regret,
meaning that the difference between the reward obtained by
the algorithm and the reward obtained by always choosing
the best action grows logarithmically with time [27].
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3. Simplicity and Efficiency:

• The UCB algorithm is simple to implement and computa-
tionally efficient. It requires maintaining estimates of the
mean rewards and counts of the actions, which can be up-
dated incrementally [28].

2.4.2 Applications Highlighting the Importance of UCB

The field of usage of this type of algorithm is really wide:

1. Online Advertising: In online advertising, UCB algorithms are
used to select which ads to display to users in order to maximize
click-through rates. By balancing exploration of new ads and
exploitation of known successful ads, UCB helps in efficiently
identifying the most effective advertisements [30].

2. Clinical Trials: In clinical trials, UCB algorithms can be used
to dynamically allocate treatments to patients. This ensures that
patients receive treatments that are most likely to be effective
while still gathering enough data to learn about all treatment
options [31].

3. Adaptive Routing: In networking, UCB algorithms are em-
ployed to optimize routing decisions. By exploring different routes
and exploiting the best-known routes, UCB helps in minimizing
latency and improving overall network performance [32].

2.4.3 Conclusion

The Upper Confidence Bound algorithm is a powerful tool in rein-
forcement learning, offering an effective solution to the exploration-
exploitation trade-off. Its theoretical guarantees, simplicity, and wide

20



Chapter 2. Background & Related Work

applicability make it a valuable approach in many domains. By en-
suring a balanced exploration of all actions, UCB algorithms help
in maximizing cumulative rewards and have demonstrated success in
numerous practical applications.

2.5 Related Work

Numerous studies have investigated the deployment of UAVs for data
collection from distributed sensor networks. In [33], the authors ex-
plored the optimization of UAV trajectories to maximize data col-
lection efficiency while considering energy constraints. The study
presented a framework where UAVs are utilized to gather data from
ground sensors and then transmit this data to a base station. The
authors formulated an optimization problem aiming to determine the
optimal UAV trajectory that maximizes the total amount of collected
data within a given flight time, subject to energy limitations. Their
results indicated that significant improvements in data collection ef-
ficiency could be achieved through optimal path planning, especially
in scenarios with sparse sensor distributions.

Similarly, [34] presented an energy-efficient UAV trajectory design
that balances the trade-off between data collection and UAV battery
life. This work proposed an optimization framework that simultane-
ously considers the UAV’s flight energy consumption and the data
collection performance. By optimizing the UAV’s flight path, the au-
thors demonstrated that it is possible to extend the operational time
of the UAV while ensuring effective data collection from sensor net-
works. The study highlighted the importance of energy-aware trajec-
tory planning, particularly in applications where UAVs have limited
battery capacities.

The optimization of UAV trajectories for data collection is critically
linked to the concept of Age of Information (AoI). AoI is a metric
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that quantifies the freshness of the information received at the base
station, defined as the time elapsed since the generation of the latest
received update. In scenarios involving UAV-assisted data collection,
minimizing AoI is essential to ensure that the base station has the
most current information about the monitored environment.

Recent research has focused on integrating AoI considerations into
the trajectory optimization problem. For instance, [35] investigated
scheduling policies that minimize AoI in wireless networks, and their
findings are applicable to UAV-assisted scenarios. The authors devel-
oped algorithms that strategically determine the timing of data trans-
missions to keep the AoI as low as possible. This work underscores the
importance of timely data collection and transmission, which can be
directly influenced by the UAV’s flight path and scheduling decisions.

By jointly optimizing the UAV’s trajectory and the data trans-
mission schedule, it is possible to achieve a balance between energy
efficiency and AoI minimization. [36] introduced a framework for opti-
mizing AoI in wireless networks through adaptive scheduling policies.
Although their work primarily focused on static base stations, the
principles can be extended to dynamic UAV scenarios. The study
demonstrated that by carefully planning the UAV’s route and data
transmission times, the AoI can be significantly reduced, leading to
more timely and relevant data being available at the base station.

In summary, the optimization of UAV trajectories for data collec-
tion involves a complex interplay path planning and AoI minimiza-
tion. By considering both factors, it is possible to design UAV-assisted
systems that provide timely, fresh data while operating within the en-
ergy constraints of the UAV. This integrated approach is crucial for
enhancing the performance and effectiveness of UAV-assisted wireless
networks, particularly in urban environments where signal propaga-
tion challenges and dynamic conditions are prevalent.

22



Chapter 3

Methodology

In this chapter, we dig into the core aspects of the system and provide
a comprehensive formulation of the problem. We start by presenting
an overview of the system architecture, detailing the components and
their interactions. Following this, we articulate the specific problem
we aim to address.

To address the problem effectively, we introduce and examine var-
ious proposed solutions. Each solution is meticulously analyzed, in-
cluding a detailed explanation of the pseudocode, offering insights into
the logic and structure of the algorithms.

The chapter aims to provide a solid foundation for understanding
the complexities of the system and the challenges involved in optimiz-
ing UAV trajectories for enhanced data collection and minimized Age
of Information (AoI) considering LoRa.

3.1 System Presentation

Consider a set S = {S1, S2, ..., SM} of M heterogeneous ground In-
ternet of Things devices (IoTDs) that are sparsely distributed over
a specific geographical area. These devices are responsible for moni-
toring various physical processes and periodically collecting data such
as temperature, humidity, light intensity, and other environmental
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Figure 3.1: Schematic of the system described. The blu dots are the hovering
points and the circles on the ground are their projections. The Green circle means
the sensor has already been visited, light blue means the UAV is in that location
and yellow circle means the sensor has not been covered yet. The red lighting
means the drone is transmitting data to the BS

metrics, or capturing images.
Due to the large urban deployment of the network, the sensors

cannot communicate directly with the base station. To facilitate data
collection and transmission, an Unmanned Aerial Vehicle (UAV) is
deployed to gather data from these ground IoTDs and relay it to the
Base Station (BS) for further processing. This relay is performed
using LoRa (Long Range) communication. The effective communica-
tion range of LoRa varies with the environment, achieving a maximum
range of 6 kilometers in rural areas and only 800 meters in urban en-
vironments with the implemented set-up.

The UAV departs from the BS S0, follows a predetermined trajec-
tory T , hovers above the ground sensors to collect the generated data,
and transmits the collected data to the BS from strategically chosen
hovering positions to ensure the freshness of information. After com-

24



Chapter 3. Methodology

pleting its data collection mission, the UAV returns to the BS. For
simplicity, we assume that the UAV operates at a fixed altitude H

and maintains a constant speed V .
The 2D location of IoTD Si ∈ S is denoted as li = (xi, yi), while

the location of the BS S0 is denoted as l0 = (x0, y0). The set of
hovering points where the UAV stays for data collection from ground
devices and for data transmission to the BS is represented as H =

{h1, h2, ..., hM}. Each hovering point hi = (xi, yi, H) is the projection
of li at altitude H. We assume that the UAV only collects data from
device Si when it is hovering at hi.

After collecting data from ground device Si ∈ S, the UAV has two
operational choices:

1. Transmitting all or part of the currently collected data to the BS
if the LoRa communication quality is adequate at the current
hovering position.

2. Retaining the collected data and flying to the next hovering po-
sition if the communication quality to the BS is poor.

The UAV offloads all the remaining data not transmitted once
arrived to the BS.

3.1.1 LoRa Communication Model

As mentioned in the previous chapter, the communication quality
of LoRa can be significantly influenced by various factors such as
buildings, trees, and other obstacles (both static and dynamic). These
factors cause variability in the quality of LoRa communication at
different times, even at the same location, as depicted in Figure 3.2.
To model this variability and achieve a more accurate representation,
the data rate of LoRa communication to the BS at each hovering
position hk has been modeled as a random variable Xk. At any given
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time t, the data rate at hk is represented by the realization X t
k of the

random variable Xk.
We assume that the distribution of Xk remains stationary over a

sufficiently extended period. This implies that the type of distribution
and the expected value of Xk do not change within this period. Once
real data is obtained (as will be explained in the next chapter), the
distribution can be computed. To model the variability of the data
rate, a Gaussian distribution has been used.

Figure 3.2: Real distribution of the data rate

3.1.2 Age of Information (AoI)

To measure the freshness of the information collected from the IoTDs,
we employ the concept of Age of Information (AoI). AoI is defined as
the time elapsed since the instant at which the latest received status
update packet at the base station was generated. We denote the
timestamp of data generated at Si as τi and the data size of the
information stored in Si as Di.
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The timestamp of the UAV taking off from the BS is denoted as
τBS. All data are generated before the UAV departs on the current
tour, such that τBS > τi for all i ∈ {1, ....,M}. We also denote TAi

as the arrival time of the UAV at hovering position hi and TDi as the
departure time of the UAV from hi. Let zij ∈ {0, 1} be a decision
variable equal to 1 if the UAV transmits the data of Si from the
location of hj, and 0 otherwise.

If Si is the k-th sensor whose data is transmitted to the BS by the
UAV when hovering at position hj, it can also be labeled as vjk, i.e.,
vjk = i.

Let’s define TAj and TDj respectively as the arrival time and the
departure time of the UAV from the sensor j − th.

The UAV leaves the base station at t = 0, so

TD0 = 0

The arrival time of the UAV at sensor j is given by the time the
UAV has left sensor i plus the travel time between the two sensors.
Generalizing this, we can express it as:

TAj =
∑M

i=0

(
||Sj−Si||

V + TDi

)
· xij

Instead, the departure time from a sensor j can be computed by
considering the arrival time at the sensor and the transmission time
of all the data and it can be expressed as follows:

TDj = TAj +
∑M

i=1 zij · Di

Bj

Here, D is an array containing the data size of every sensor and B

is an array containing the LoRa data rate from each sensor’s location
to the base station.

Now that the various terms have been explained it is possible to
formulate the AoI.
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Denote τi as the data generation time for the IoT sensor i ∈ M . As
mentioned previously, we assume this time is the same for all sensors,
corresponding to the time when the UAV leaves the base station.
Thus, the AoI of the sensor Si is defined as follows:

AoIi = TUi − τi

where

TUi =
∑M

j=0

(
zij · TAi + zij ·

∑i
k=1 zkj · Dk

Bj

)
This term refers to the uploading time of a data from the UAV to

the base station. Moreover this formulation has been used in order to
consider the transmission of multiple data from the same location. In
fact the LoRa connection doesn’t allow the transmission of multiple
data in the same time. So in the computation of the AoI is essential
to consider the order of transmission because it affects the AoI of the
data.

If the UAV from a certain location i decide to transmitt two data,
D1 and D2, the AoI of the two data will be:

AoI1 = TAi +
D1

Bi

AoI2 = TAi +
D1

Bi
+ D2

Bi

As it is possible to see, the AoI of the sensor 2 includes also the trans-
mission time of the data 1.

The metric used to evaluate the performance of the solution is the
sum of the AoI of all the sensors:

AoI =
∑M

i=1AoIi

3.2 Problem Formulation

Now that the system model has been explained, the problem to be
addressed can be articulated.
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As mentioned in the introduction, the objective of this research is
to visit all sensors while maximizing the freshness of the data collected.
The terms that express the freshness of the data is the AoI, so the
objective function can be expressed as

min
∑M

i=1AoIi

so minimizing the total sum of the AoI of every sensor.

There are some restrictions in the formulation of this problem that
have to be presented:

• The UAV has to visit all the sensor only once

• The drone has to start and coming back to the initial point

In the next section the solutions proposed are analyzed

3.3 Proposed Solution

In this section is present the proposed solution to the problem outlined
in the previous section.

The final solution has been developed through several iterations,
starting with simpler approaches and gradually addressing the com-
plete problem. The subsequent subsections will detail the entire pro-
cess undertaken to arrive at the final, comprehensive solution.

3.3.1 Gurobi Optimizer

The first step has been to solve the problem with Gurobi(2.2). The
problem, as it is formulated, is a quadratic programming(QP) prob-
lem, since a lot of constraint are expressed through quadratic func-
tions.
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Since Gurobi is an optimizer and does not account for physical
constraints, a series of constraints must be introduced to ensure an
accurate description and effective optimization.

Before listing all the constraints, it is essential to explain two vari-
ables to enhance comprehension:

• The variable xi,j ∈ 0, 1 is a decision variable equal to 1 if the
drone travel from sensor i to j with i, j ∈ M

• The variable zi,j ∈ 0, 1 is a decision variable equal to 1 if the
drone transmit the data i from the sensor position j with i, j ∈
M

These first two constraints are essential to ensure that the UAV
visits all the sensors available.

∑M
j=1 xij = 1 ∀i ∈ M

∑M
i=1 xij = 1 ∀j ∈ M

The next one ensure that the drone starts and ends from the same
position

∑M
i=1 xi0 =

∑M
j=1 x0j = 1

The three sub-tour elimination constraints are used in order to
avoid that sensors are visited multiple times and they work by labeling
the order in which the nodes are visited through ui . The formulation
used is the Miller-Tucker-Zemlin (MTZ)1

u0 = M + 1

1 ≤ ui ≤ M + 1 ∀i ∈ [0,M ]

ui − uj + 1 ≤ M(1− xij) ∀i ∈ [1,M ],∀j ∈ [0,M ]

1There are several formulations for the sub-tour problem
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The final set of constraints is necessary to optimize the transmis-
sion positions accurately. These constraints ensure that data is trans-
mitted only after it has been collected and that all data is delivered
to the base station.

zij(uj − ui) ≥ 0 ∀i ∈ [1,M ],∀j ∈ [0,M ]∑M
j=0 zij = 1 ∀i ∈ M

As it is possible to notice most of the constraints are quadratic and
even though Gurobi is able to solve QP problem, in order to speed up
the solver, the constraints have been linearized.

Using this approach, the optimal solution is guaranteed to be found
thanks to Gurobi. However, the primary challenge with this approach
is its scalability. Specifically, the constraints used to prevent sub-
tours grow exponentially (at a rate of nn, where n is the number of
sensors) as the number of sensors increases. This exponential growth
in constraints can lead to significant computational challenges. Even
with a small number of sensor the solving time was really high.

3.3.2 Heuristic Algorithm

For the reasons mentioned above, while the Gurobi solution is op-
timal, it is not scalable. Therefore, a heuristic algorithm has been
implemented to achieve scalability. Although the performance is in-
ferior compared to the Gurobi solution (a performance comparison
will be presented in Chapter 5), the scalability introduces numerous
advantages.

The pseudocode 1 describes the heuristic algorithm implemented.
First, the UAV’s tour is initialized at the base station s0 with

empty sets for transmission points and collected data. The set Y is
initialized with all possible hovering points, and D is initially empty.
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Algorithm 1: Heuristic algorithm
1 Unmanned Aerial Vehicle (UAV) hovers at hj , collects data Dj from Internet of Things

Device (IoTD) Sj , and
2 T tour = {s0};
3 T transmission = {};
4 Y = H;
5 D = {};

/* Determine the UAV Trajectory */
6 while Y ̸= ∅ do
7 for each hj ∈ Y do
8 wj =

log10 DRj

||T tour [−1]−hj ||
;

9 h∗ = argmaxhl∈Y wl;
10 T tour = T tour ∪ h∗;
11 Y = Y\h∗

/* The last point of the tour is the base station */
12 T tour = T tour ∪ s0

/* Let’s initialize hj at the third value of the set Ttour ∗ /
13 hj = T tour[1]
14 AoI = 0;
15 t = 0;

/* Let’s compute the transmission positions */
16 for each hn ∈ T tour[2 : |T tour| − 1] do
17 D = D ∪ {Dj};

/* Determine whether to transmit now or from next position. */
18 Rank the data in D in acceding order according to their data size.
19 Generate the action set Aj size of 2|D| , each action k is a binary vector aj

k
∈ Aj

size of D; */
20 /* /* Evaluate the AoI of all possible transmission combination */
21 AoIset = {};
22 for each aj

k
∈ Aj do

23 AoIk = 0; */
24 /* /* Loop through all the actions of the current combination */
25 for each aj

k,l
∈ aj

k
do

26 if aj
k,l

= 1 then
/* transmit the data at the current hovering point hj */

27 AoIl =
∥Dl∥
DRj

;

28 else
/* transmit the data at the next hovering point hn */

29 AoIl =
||hj−hn||

V
+

∥Dl∥
DRn

;

30 AoIk = AoIk +AoIl;

31 AoIset = AoIset ∪AoIk

/* Select the optimal combination that minimize the AoI */
32 aj∗ = argmin

a
j
k
∈Aj (AoIset);

33 for each aj
∗,l ∈ aj∗ do

34 if aj
∗,l = 1 then
/* transmit the data at the current hovering point hj */

35 t = t+
∥Dl∥
DRj

;

36 AoI = AoI + t;
37 D = D\{Dl};
38 T transmission[j] = T transmission[j] ∪ l

/* Update the value of hj */
39 hj = hn

40 Output T tour, T transmission;
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To determine the UAV trajectory, the algorithm iterates while all
the hovering points in Y are visited. Every iteration, for each point
hj in Y , a weight wj is calculated based on the logarithm if the data
rate (DRj) and the distance from the current tour endpoint. The
data rate dampens the effect of data rate. The point h∗, with the
maximum weight is selected as next hovering point to be visited and
added to the tour T tour. The final point in the tour is set to be the
base station.

Next, the transmission pattern is computed.
Let’s define two variables used in the code:

• hj is the current hovering point

• hn is the next hovering point

The transmission process is initialized setting as first hovering point
hj the first sensor in the tour, excluding the base station. The AoI
and time are both set to 0.

For each hovering point hj, the collected data Dj is added to
D(represent the data collected and not yet transmitted) and the data
is ranked by size. All possible transmission actions are generated for
the data as binary vector2

The Age of Information (AoI) for each action is evaluated by con-
sidering whether to transmit at the current (1) or next (0) hovering
point. For example, if the combination is 101, the AoI is computed
as follows: data 1 and 3 are transmitted from hj while data 2 is
transmitted from hn.

The action that minimizes the AoI is selected and the optimal
transmission actions are executed. The transmission time and AoI
are updated, and the transmitted data is removed from D the set.
The current hovering point is then updated to the next in the tour.

2E.g. if D has three data the possible combinations are 9:(000, 001, 010,..., 111).
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Finally, the algorithm outputs the final UAV tour and transmission
points. This heuristic algorithm efficiently plans the UAV’s trajectory
and transmission strategy to minimize the AoI for data collected from
IoT devices.

3.3.3 UCB algorithm

The previously discussed solutions perform effectively when the data
rate is constant and known. However, their performance deteriorates
significantly when these conditions are not met.

To address this issue, the Upper Confidence Bound (UCB) algo-
rithm has been implemented. This reinforcement learning technique
is particularly suited for tasks requiring the discovery of distributions
and selecting actions that maximize "random" rewards. The theoret-
ical foundation of the UCB algorithm is detailed in Section 2.4.

In our specific application, the goal is to minimize the Age of Infor-
mation (AoI). Thus, the UCB formula has been adapted accordingly.
The standard UCB action selection formula:

at = argmax
a∈A

µ̂a(t) + c

√√√√ ln t

Na(t)


has been modified to:

at = argmax
a∈A

µ̂a(t)− c

√√√√ ln t

Na(t)


In this revised formula, the “+” sign is replaced with a “-” sign to

reflect the objective of minimizing the AoI rather than maximizing the
reward. This version of the algorithm is called the Lower Confidence
Bound (LCB), but to avoid confusion, we will continue to refer to it
as UCB.

The pseudo-code of the UCB algorithm is shown in 2
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Algorithm 2: UCB algorithm
/* Initialization phase */

1 limit = X
2 tour = 0;
3 b̂ = [0]1×|M|;
4 d = [0]1×|M|;
5 Calculate the UAV trajectory T r with Nearest Neighbor [] and UAV starts data collection following T r .
6 for each hj ∈ T tour do
7 UAV hovers at hj , collects data Dj from IoTD Sj , and immediately transmits the collected data to the Base

Station (BS);

8 Observe the total transmission time Ti at the BS and calculate the data rate btour
j =

|Dj |
Tj

;

9 Update b̂i = btour
j and dj = dj + 1;

/* Learning phase */
10 while tour < limit do
11 tour = tour + 1;
12 T tour = {s0};
13 Y = H;

/* Recompute the UAV Trajectory */
14 while Y ̸= ∅ do
15 for each hj ∈ Y do

16 wj =
log10 b̂j

||T tour [|T tour|−1]−hj ||
;

17 h∗ = argmaxhl∈Y wl;

18 T tour = T tour ∪ h∗;
19 Y = Y\h∗

/* The last point of the tour is the base station */
20 T tour = T tour ∪ s0
21 ChangePath = False
22 while ChangePath = False do

/* Let’s initialize hj at the first value of the set T tour */
23 hj = T tour [1];
24 T transmission = {};
25 D = {};
26 AoI = 0;
27 t = 0;

/* Let’s compute the transmission positions */
28 for each hn ∈ T tour [2 : |T tour| − 1] do
29 D = D ∪ {Dj};

/* Determine whether to transmit now or from next position. */
30 Rank the data in D in acceding order according to their data size.
31 Generate the action set Aj size of 2|D|, each action k is a binary vector aj

k
∈ Aj size of D;

/* Evaluate the AoI of all possible transmission combination */
32 AoIset = {};
33 for each a

j
k

∈ Aj do
34 AoIk = 0;

/* Loop through all the actions of the current combination */

35 for each aj
k,l

∈ a
j
k

do

36 if aj
k,l

= 1 then
/* transmit the data at the current hovering point hj */

37 AoIl =
∥Dl∥

b̂n−c·
√

ln(tour)

d[j]

;

38 else
/* transmit the data at the next hovering point hn */

39 AoIl =
||hj−hn||

V
+

∥Dl∥

b̂n−c·
√

ln(tour)

d[n]

;

40 AoIk = AoIk + AoIl;

41 AoIset = AoIset ∪ AoIk

/* Select the optimal combination that minimize the AoI */

42 a
j
∗ = argmin

a
j
k
∈Aj (AoIset);

43 for each aj
∗,l ∈ a

j
∗ do

44 if aj
∗,l = 1 then
/* transmit the data at the current hovering point hj */

45 t = t +
∥Dl∥
DRj

;

46 AoI = AoI + t;
47 D = D\{Dl};
48 T transmission[j] = T transmission[j] ∪ l
49 zlj = 1

/* Update the value of hj */
50 hj = hn

51 for each hj ∈ H do

52 btour
j =

∑
i
|Di|·zij
Tj

;

53 if
∑

i
zij ≥ 1 then

54 Update b̂j =
b̂j ·d[j]+btour

j
d[j]+1

and

55 d[j] = d[j] + 1;

56 If the criteria to recompute the path is met, ChangePath = True

57 Output T tour ,T transmission, b̂;
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Let’s analyze the code in order to understand how it works.

Initialization Phase

1. Initialization of the Variables:

• limit = X: Set the maximum number of tours.

• tour = 0: Initialize the tour counter.

• b̂ = [0]1×|M |: Initialize the estimated data rate for each
hovering point to zero.

• d = [0]1×|M |: Initialize the number of times a transmission
has been performed from a certain location.

2. Compute Initial UAV Trajectory:

• An initial tour is conducted to gain preliminary data on the
datarate across different locations. During this first tour,
transmissions are attempted from each location. If a location
lacks a connection and the transmission fails, the UAV will
wait for a time-out period before moving to a new location.
The data collected from the location with no connection will
be transmitted back to the base station. Although this initial
tour will result in a high Age of Information (AoI), it is
essential for initializing the UCB algorithm.

Learning Phase

Now that the initialization phase has been completed the learning
phase can start

(a) Computation of the tour

• The tour is determined using the Heuristic algorithm de-
scribed in the previous section. The data rate value used
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to compute the path is denoted as b̂. Initially, b̂ does not
accurately represent the actual data rate. However, as
the UAV iterates through the process, the value b̂ con-
verges to the true data rate. Consequently, the path
computed using b̂ will eventually become optimal.

• The path is computed and stored in Ttour

3. Data Transmission Optimization:

• Set the last point of the tour as the base station.

• Initialize ChangePath to False.

• While ChangePath is False(this variable is used to com-
municate that is time to recompute the path), the transmis-
sion location optimization is run. It works exactly as in the
heuristic algorithm, the only difference is the data rate value
used to compute the transmission path. In fact, in order to
explore the and find the best solution the data rate used isn’t
the learned one b̂, but it is modified with the UCB formula.
The data rate value used to compute the the transmission

order is b̂n − c ·
√

ln(tour)

d[j] , that is the learned value decrease
of a certain factor. This factor allows to explore more at the
beginning, since b̂ is completely wrong, and to exploit more
and more the number of tour grows and the b̂ converge to
the expected value.
After determining the transmission order, the actual trans-
mission uses the data rate value available at the location at
that specific time.

4. Update Data Rates:

• For each hovering point hj:

– Calculate the new data rate btourj .
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– Update the estimated data rate b̂j if data was transmit-
ted.

– Increment the data collection count d[j].

5. Path Recalculation Criteria:

• Set ChangePath to True if criteria are met to recompute
the path. If the criteria are not met, the UAV does another
transmission tour with the same path, but maybe changing
the transmission order.

In summary, the algorithm iteratively improves the UAV’s trajec-
tory and transmission strategy to optimize data collection and trans-
mission efficiency by leveraging the UCB approach to balance explo-
ration and exploitation in learning the best data rates at different
hovering points.
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Experiments

This chapter provides a comprehensive explanation of how the exper-
imental setup has been implemented. It details the components that
make up the setup and describes how the software operates. Fur-
thermore, the chapter gives a deep explanation of the data collection
process, which is fundamental to the project. Finally, it presents the
results obtained from the data collection, offering an brief analysis
and discussion of the findings.

4.1 LoRa Testbed Implementation

To test the performance of the LoRa connection and the data collec-
tion capabilities, two LoRa nodes were constructed: one for transmit-
ting data and the other serving as a base station.

The configuration of the two nodes is as follows:

• Raspberry Pi 3 Model B

• Heltec WiFi LoRa 32 V2 Module

• Bendable Antenna TX915-JKD-20

Additionally, on the transmitter side, to enhance user interaction
with the system, a 3-inch touch screen was integrated. This touch
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Figure 4.1: Test bed implemented. This is the transmission node. The camera
has not been used in our test

screen facilitates easier control and monitoring of the data transmis-
sion process.

Overall, by combining the Raspberry Pi 3 Model B, touch screen,
RGB camera, Heltec WiFi LoRa 32 V2 transceiver, and high-gain
external antenna, I created a robust and versatile LoRa node. This
setup supports data collection and transmission and enhances user
interaction and visualization, making it suitable for a wide range of
IoT applications.

The following subsections will detail the specific components and
configurations used in the testing setup.

4.1.1 Heltec WiFi LoRa 32 V2 Module

The Heltec WiFi LoRa 32 V2 is a versatile development board that
combines WiFi, Bluetooth, and LoRa (Long Range) communication
capabilities. It is based on the ESP32 microcontroller, which inte-
grates a dual-core processor with robust processing power and a rich
set of features suitable for a wide range of IoT applications. The board
includes an SX1276 LoRa transceiver chip, which operates in the 915
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Figure 4.2: Heltec WiFi LoRa 32 V2

MHz frequency band commonly used in North America. LoRa tech-
nology is known for its long-range, low-power communication, making
it ideal for IoT applications that require devices to communicate over
long distances. Additionally, the Heltec module features an onboard
0.96-inch OLED display with a resolution of 128x64 pixels, which is
useful for debugging, monitoring, and displaying information without
needing an external screen.

The ESP32 microcontroller provides built-in WiFi and Bluetooth
connectivity, allowing the device to connect to the internet, local net-
works, or other Bluetooth devices. This dual connectivity makes it
suitable for a variety of applications, including remote monitoring,
data logging, and control systems. The Heltec WiFi LoRa 32 V2
supports a wide range of peripherals and interfaces, including multi-
ple GPIO pins, UART, I2C, SPI, and ADC interfaces, enabling it to
interface with a wide range of sensors, actuators, and other devices.

Power management is another crucial feature of the Heltec WiFi
LoRa 32 V2. It can be powered via a micro-USB connector or an
external power source, and it includes a battery connector for portable
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and remote applications. The board has built-in power management
features to optimize power consumption, which is critical for battery-
operated devices.

This module provides a ESP32 + LoRaWAN protocol Arduino
library, this is a standard LoRaWAN protocol that can communicate
with any LoRa gateway running the LoRaWAN protocol.

In the experiments the module was connected to a Raspberry Pi
3B, the gateway, via serial port. This solution was adopted in order
to provide the necessary processing power and flexibility for handling
data collection and transmission tasks. Both on the raspberry Pi and
the Heltec module run a custom code, that will be briefly explained
later

4.1.2 Bendable Antenna TX915-JKD-20

To get the best performance from the LoRa communication, a high-
gain external antenna has been used. This antenna operates at the
915 MHz frequency band, boosting the signal strength and range of
the LoRa transceiver. Here are some key features of the antenna:

• Frequency: 915 MHz

• Bandwidth: 900-931 MHZ

• Gain: 5dbi

• Radiation Direction: Omnidirectional

• Polarization: Vertical

• Power Capacity: 20W

A higher gain antenna could have been utilized to achieve a longer
communication range; however, a trade-off between range and ma-
neuverability was considered and ultimately adopted.
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4.1.3 Software Implementation

An important part that needs to be deepened is the algorithm im-
plemented on the Raspberry Pi, used to manage the communication
between the two nodes. The Raspberry Pi communicates with the
LoRa module via serial communication.

Serial interfacing between a Raspberry Pi and a LoRa module in-
volves a few critical steps to ensure efficient data transmission and
reception. Initially, the Pi sends a stream of bytes up to a certain
buffer limit and waits for the LoRa module to signal readiness for
more data. The LoRa module automatically forwards any received
data to the Raspberry Pi.

There are two processes we need to analyze:

• The transmission

• The reception

Transmission

The transmission starts with the sending of the header packet. Mul-
tiple header packets are sent to account for any potential packet loss.
These header packets inform the receiver of the total number of bytes
and the name of the file being transmitted.

After the receiver is notified with the communication information,
the entire file is then sent packet by packet over the serial interface for
LoRa transmission. After sending the file, the transmitter waits for a
final handshake from the receiver confirming successful transmission
without any missing packets. If packets are missing, the receiver sends
back the IDs of the missed packets, which are then retransmitted by
the transmitter. This process repeats until all packets are successfully
received.
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Reception

On the receiving end, the process begins by waiting for a header packet
to determine the expected number of packets. The receiver then reads
from the serial interface the packets. It keeps track of the number of
the packet that it is receiving and if the expected packet ID is not
received, it is added to a list of packets to request for retransmission.
Once the final packet is detected or a timeout occurs (in case the final
packet is lost during the transmission), the receiver requests any miss-
ing packets if necessary. If there are no missed packets, a confirmation
is sent to the transmitter. Otherwise, the process of retransmission
starts.

Packet Structure

The packet structure consists of 64 bytes. The first two bytes are
used to represent the packet ID while the last two bytes contain the
checksum to detect if there have been any problems in the serial com-
munication. The remaining 60 bytes make up the data payload. If
the payload is not fully utilized, the packet is padded with null data
to maintain communication integrity.

Correcting the communication protocol ensures reliable and effi-
cient data transfer between the Raspberry Pi and the LoRa module,
handling potential issues like packet loss and ensuring data integrity
through checksums.

Figure 4.3: Structure of the packet
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4.2 Data Collection

A fundamental part of this work has been the data collection process.
However before conducting the final data collection the best setting
for the various parameters had to be found.

The performance tests were conducted to better understand how
the urban environment affects transmission range and to determine
the optimal setup for parameters such as Bandwidth (BW) and Spread-
ing Factor (SF).

4.2.1 Tuning the testbed

First, several tests were conducted to understand the capabilities of
the testbed. The base station was fixed in the lab, and the transmitter
was brought to two different locations, as shown in Figure 4.4.

Figure 4.4: Map with the the two locations used for the preliminary tests

The first location was the campus library, situated 900 meters from
the base station. After conducting several tests, it was observed that
the urban environment significantly affected the transmission range.
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To achieve successful transmission, very conservative parameters were
required:

• SF > 10

• BW = 125 KHz

This parameter setup allowed communication between the two nodes,
but the transmission was very slow (100 bytes/s) and unstable, leading
to considerable data loss. The RSSI was very close to the connection
limit for our module and antenna, which is -130 dBi. This demon-
strated the significant impact of buildings on the signal. In an open
field, with the same setup, stable communication can be achieved up
to 5-6 km.

Having discovered the setup’s limits, I then aimed to understand
how various parameters affected the signal and to determine the best
settings for this research. The second test was conducted in another
campus building, located 500 meters from the laboratory.

The setup of the experiment was as follows:

• One PC1 in the lab with the LoRa module connected(fig. 4.5)

• One PC on the receiving side (with me)

• Remote control of the lab PC using TeamViewer

• Re-uploading the code to the LoRa module using the Arduino
IDE for both Tx and Rx sides whenever changing spreading fac-
tor and bandwidth values. The coding rate remains unchanged,
as any value other than 5 worsened the connection.

• Sending the same image file over LoRaWAN each time

• Collecting the following data for each set of parameters:
1For this test the PC was used instead of the Raspberry-pi in order to have a more efficient

experiments setup
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– Missing Packets Rate

– Tx Time (No Re-Tx)

– Bit Rate

Figure 4.5: Receiver node

The Bandwidth values ranged from 125 to 500 kHz, while the
spreading factor ranged between 7 and 10 (values of 11 and 12 were
too high for our purposes). Two parameters have been fixed and the
same values will be used for all the next transmissions:

• Transmission Power: 17dBm

• Coding factor : 4
5

After analyzing the results, the chosen parameters for subsequent
experiments were BW = 250 kHz, CR = 5, and SF = 9. These values
were selected as they provide a good trade-off between speed and
transmission robustness as it is possible to notice in 4.6.

These values will be used for the next experiments.

4.2.2 Data Collection

The data collection part has been fundamental in order to understand
how the signal was spread in a urban environment. After the analysis
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Figure 4.6: Data obtained during the tuning phase. The x-axis shows the values
of the SF.

done in the previous section, the dimension of the area selected for
the collection of the data is 1km2, with the base station placed in the
middle. This dimension has been selected because the range with the
parameters selected is about 600 meters in the best direction(with less
buildings).

The area has been divided in 100 squares with dimension 100x100.
This splitting has been selected since a bigger dimension of the squares
would have lost some information about the spreading of the signal,
while a smaller size would have capture more information but the
collecting time would have increased drastically. So, for our setting,
this resolution was the best one.

The data collection process requires to take 6/8 measurements from
every cell of the grid. Considering the measurements of a cell, they
had to be taken in two different hours and days, in order to highlight
how, even within the same cell, in different moment, the signal was
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different. This was accomplished collecting data in February and May.
The grid that was placed on the real map, in order to find the best

location. The lab has been selected as central point. The creation of
the grid has been done with a python algorithm, that gives in input
the coordinate of the central point, the number of rows and columns,
the size of the cells and the orientation of the grid is able to plot on
google maps the resulting grid, as it is possible to see in 4.9. In order
to obtain a really accurate grid the position of the various points has
been computed using the Vincenty algorithm2

Figure 4.7: Grid used to collected the points. It is placed in the actual location
where the points have been collected

Now that the collecting area has been defined it is possible to
start to collect the points. The setup used for the points collection is
explained in the section 4.1

2The Vincenty algorithm is a formula used to calculate the distance between two points
on the Earth’s surface. It accounts for the Earth’s shape, providing a more accurate result
compared to simpler distance calculations that assume a perfectly spherical Earth.
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In order to speed up the collection, the gateway of the receiver has
been modified so that it was able to communicate with telegram.

In fact given that the RX device must remain fixed in the lab, a
Telegram bot to monitor the live reception of files has been imple-
mented. The Telegram bot facilitates control over the main receiving
program, enabling the user to launch it, check transmission parame-
ters, and receive live updates on their phone. Upon successful trans-
mission, the bot sends detailed transmission parameters (bit rate,
time, RSSI) and saves them into a file for historical reference. Ad-
ditionally, it prompts the user to send the transmission coordinates
to autonomously plot the grid points. In the event of transmission
failure, the bot requests a new transmission attempt. This system is
really robust and it allows a easier points collection.

Measurements were taken at all grid points to provide an overview
of the LoRa signal distribution. The antenna was placed in four differ-
ent locations, one on each side of the lab. This was done because the
antenna couldn’t be placed on the roof, and if the antenna was left in
the middle of the lab, the signal would have been strongly affected by
the walls. To simulate the placement on the roof, I physically moved
the antenna close to four windows (less interference) on the four sides
of the lab. The error introduced is negligible.

As mention before, 6/8 points has been collected in every useful
grid: the cells too far away, where the signal is strongly unstable or
it doesn’t exist, didn’t gave any information, so I didn’t perform any
measurements.

The points within a cell were collected trying to cover all the part of
the cell so that the data collected best reflects the nature of the signal.
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4.3 Data analysis

After the collection process was finalised, the data collected has been
processed.

The collected data has been filtered and plotted on 2D and 3D
graphs to facilitate analysis. The metrics used to analyse the range
distribution are:

• RSSI

• Total transmission time(including re-transmission of the lost pack-
age)

• Data Rate

• Missing packets

It is crucial to consider the total transmission time rather than just
the transmission time without the re-transmission, as the latter is
relatively constant across points, but it doesn’t express the quality
of the signal. In fact, where the RSSI is lower and so the transmis-
sion more unstable the number of missing packets increase, affecting
retransmission time.

As seen in Figure 4, the data are not uniformly distributed. All
four graphs are clearly correlated with each other.

One interesting observation is that distance is not the only factor
affecting signal quality; obstacles present in the environment also play
a significant role. This can be observed in cell [5;2], which has no
connection despite the surrounding cells having a connection.

The points collected were plotted on the real map in order to show
how the distribution of the collected points and where they have been
collected. The map is showed in 4.9. The last analysis performed
on the collected points involved computing the standard deviation to
quantify how much the signal varies within a cell. The results are
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Figure 4.8: Plots with the different metrics used to evaluate the distribution of
the signal

displayed in Figure 4.10. Only the cells with a connection are present
in the graph, as the others don’t have any standard deviation.

This values are then stored in a .txt file in order to be used in the
next chapter.

The results indicate heterogeneity, with data not uniformly dis-
tributed due to the presence of buildings, cars, and trees affecting
signal distribution. This finding supports the implementation of an
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Figure 4.9: Grid showing the points collected. Every yellow marker contains the
information about its own transmission

Figure 4.10: Average DR values(green dots) and their own variances(blue lines).
Here are displayed only the cells which values are different from zero

algorithm to identify the best transmission spot in order to minimize
the AoI and the trajectory. The 3D graph4.11 shows perfectly this
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Figure 4.11: 3D representation of the RSSI distribution

heterogeneity, using the RSSI as metrics.
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Results

After an exhaustive presentation of the implemented solution and the
data collection process, we can now analyse the results obtained. As
explained in Chapter 3, three main solutions have been implemented:

• Gurobi Solver

• Heuristic Algorithm

• UCB Algorithm

As will be analyzed in this chapter, the evolution of the solution has
been necessary as the complexity of the problem increased, requiring
the solutions to evolve accordingly.

The first two solutions operate under the assumption that the data
rate in every cell of the grid is constant, meaning it doesn’t vary over
time and is known beforehand. This is a flawed assumption, as in real
scenarios, the data rate can vary even between two consecutive trans-
missions from the same point. We aimed to address the variability
of the data rate and to implement a case where the distribution of
the data rate was unknown, requiring the UAV to learn it. Therefore,
we decided to utilize a reinforcement learning technique capable of
exploring and learning the distribution of the data rate, and find the
best path to minimize the AoI.

55



Chapter 5. Results

Before presenting the results, it is important to highlight that for all
the subsequent experiments, the speed of the drone is fixed at 7m

s ,
while the data generated by the sensors are considered to be of the
same size, equal to 800 Bytes.

5.1 Gurobi VS Heuristic

Let’s dig deeper into the results obtained with the first two solutions.
Before starting to explain the results obtained, it’s important to make
a crucial premise: the data rates during the resolution of these solu-
tions is considered constant

5.1.1 Gurobi

The first approach to solving the problem involves using Gurobi. The
problem formulation is detailed in 3.3.1.

Gurobi, being an optimizer, provides the optimal solution, which is
the best possible path and transmission schedule that can be achieved
given a specific distribution of sensors. Every cell of the grid possesses
a unique real value representing the data rate. For example, When the
UAV collects data from a sensor located in cell B5, the data rate be-
tween the UAV and the base station will correspond to that of cell B5.

In Figure 5.1, a solution obtained using Gurobi is presented. Given
7 sensors randomly distributed within the grid, Gurobi computes the
optimal solution to minimize the AoI. The map on the right illustrates
the path followed by the UAV (depicted by the red arrow) and the
actions performed at each sensor location:

• The green numbers above each sensor indicate the data trans-
mitted back to the base station from that location.
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• The black numbers indicate the duration for which the UAV
remains at that location.

The map on the left visualizes the data rate at each sensor location.

Figure 5.1: Joint optimization of the path and transmission using Gurobi.

5.1.2 Heuristic

The second approach used to solve this problem has been the imple-
mentation of an heuristic algorithm, detailed in 3.3.2.

Since the heuristic search is used, the solution obtained is sub-
optimal. However, the results are promising and not too far from the
optimal solution.In Figure 5.2 the solution generated by the heuristic
method is shown. The sensor distribution is identical to that used in
the previous section, allowing for an initial visual comparison between
the two solutions. A more in-depth comparison between these two
solutions will be provided in the next section.

57



Chapter 5. Results

Figure 5.2: Joint optimization of the path and transmission using the Heuristic
algorithm.

5.1.3 Performances comparison

Although Gurobi provides the optimal solution, it requires substantial
computational power. Indeed, the problem presented in 3.3.1 is NP-
hard, meaning that the complexity increases exponentially with the
number of sensors.

This complexity precludes the exploration of scenarios with a higher
number of sensors, and seven sensors are insufficient to address a real-
world case. Therefore, we decided to implement the heuristic algo-
rithm. Using this solution, the optimal outcome is not guaranteed.
To better understand the performance of our algorithm relative to
the optimal solution, several tests were conducted, and the results are
shown in Figure 5.3.

The optimization was performed on 40 maps using Gurobi initially
and then the heuristic algorithm. The average of the three most
significant parameters is displayed. During these experiments, the
number of sensors considered was 7.

The first bar illustrates the comparison of the total travel time: as
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observed, the heuristic solution computes a more greedy path solution
(evident in the way the path is computed), resulting in a faster travel
time. However, the greediest path solution for this type of problem is
not optimal.

The third bar shows the average Age of Information (AoI): on
average, the heuristic solution results in an AoI that is 18% higher.
This is a reasonably good result when considering the computational
time (second bar). To compute the solution with 7 sensors, Gurobi
takes 70 seconds per map, while the heuristic algorithm only requires
1 second. This difference in computation time increases exponentially
with the number of sensors, but this issue will be addressed in the
next section.

Figure 5.3: This bar graph compares the performances of the Gurobi optimization
solver and the Heuristic algorithm. The performance metrics are plotted on the
Y-axis, the time in [s] on the X-axis

Let’s now compare two solution obtained with the two methods.
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Figure 5.4: Comparison of joint optimization of path and transmission using
the two implemented solutions in two different maps. Top: Case where the
two algorithms almost coincide. Bottom: Case where the heuristic completely
diverges respect to Gurobi.

In Figure 5.4, two cases are illustrated: the top one shows close
results between the heuristic and Gurobi, while in the bottom case
the heuristic solution is significantly worse than the optimal one.

In the first case, the computed path is almost the same except for
the visit to three sensors. Since the three sensors are really close to
one another, the metric that decides the path in the heuristic is the
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Data Rate (S7 is visited earlier even if it isn’t the optimal one because
it has higher Data Rate). The transmission positions, however, are
the optimal ones.

Looking at the second case, it is possible to notice that the path
is completely different. After conducting several tests, it has been
discovered that the heuristic algorithm performs worse when there
are a lot of sensors with no connection, such as in the second case
shown. In that situation, the algorithm tends to visit the few sensors
with some coverage first, regardless of the distance, and then visits all
the remaining sensors (without connection) at the end, planning to
directly bring back data to the base station. This increase a lot the
AoI of all the sensors which data are not transmitted.

5.1.4 Scalability of the solution

As previously discussed, although Gurobi guarantees the optimal re-
sult, the computational cost of finding it increases exponentially as the
number of sensors increases. This phenomenon is illustrated in Fig-
ure 5.5, which analyzes the computational time required for different
numbers of sensors.

From the data presented, it is evident that the Gurobi solution
becomes impractical beyond eight sensors. Specifically, the compu-
tational time required for nine sensors reaches approximately 37,000
seconds (roughly 10 hours). For ten sensors, the estimated computa-
tional time soars to around 194 hours. It is important to note that
these latter values were obtained by fitting the available data, ex-
trapolating the observed trend to predict the computational cost for
larger numbers of sensors, considering that the problem formulated is
NP-hard

In stark contrast, the heuristic solution exhibits a markedly differ-
ent performance profile. Although the computational time still grows
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exponentially, the rate of growth is significantly slower compared to
Gurobi. For instance, the heuristic approach requires only 10 seconds
to compute the solution when deploying 40 sensors. This substan-
tial difference in computational efficiency underscores the heuristic
method’s practicality for scenarios involving a larger number of sen-
sors.

Figure 5.5: Comparison of Computational Time: Gurobi vs. Heuristic Methods

In summary, while Gurobi provides guaranteed optimal solutions,
its scalability is severely limited by the exponential growth in com-
putational time. On the other hand, the heuristic solution, despite
also exhibiting exponential growth, maintains a much more manage-
able computational cost, making it a viable alternative for larger-scale
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sensor deployment scenarios.

5.2 UCB algorithm

The results previously presented are applicable under the assumption
that the data rate is known and constant. Unfortunately, in real-
world scenarios, the data rate is not constant but varies according to a
certain distribution. Indeed, by examining the actual data obtained,
it is evident that even at the same location, the data rate between
successive transmissions can differ significantly.

Moreover, we are considering a scenario where the UAV is deployed
in an area with an unknown data rate distribution, rendering tradi-
tional solution methods impractical.

To address this challenge, which generalizes the previous problem,
we have decided to adopt the solution outlined in Section 3.3.3. This
reinforcement learning approach is well-suited for problems of this
nature, where it is necessary to explore and learn the distribution of
the data rate at each sensor location.

It is important to highlight that for the next results we will use
20 sensors and a c=20.In fact, to appreciate the capabilities of this
algorithm is fundamental to use a high number of sensors.

5.2.1 Data Distribution

To model the distribution of the data and simulate the learning pro-
cess, we decided to use a Gaussian distribution. In the 4.3 part, it has
been explained that for every grid cell, the mean value and the stan-
dard deviation have been computed. This values are used to compute
the distribution. Two example are shown in 5.6
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Figure 5.6: Example of the distribution of two different cells

5.2.2 Performances

The main goal of this Reinforcement Learning algorithm is to learn
the distribution, specifically the mean value, in order to take the right
decisions during optimization.

The value b̂, which the UAV is learning, represents its current
knowledge about the mean value of the data rate for a certain grid
cell. In 5.7, the blue line represents b̂, while the red line represents
the expected mean value. It is evident that the algorithm is able
to learn the correct mean value of the distribution. In green, the
data rate values for each iterations are also represented. Since these
values are highly spread out, using one of the previous algorithms
that did not consider the mean value would have resulted in very
poor performance.

After 200 iterations the b̂ and the expected value coincide.
To better show the learning capabilities, Figure 5.8 displays the cu-

mulative average error over all the sensors during the learning process.
It is clear that the error decrease until it converge.

One of the last two metrics used to evaluate the performances of
this algorithm is the regrets, define as:

Regreti = AoIoptimal − AoIi

For iteration i, the regret is computed as the difference between
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Figure 5.7: Learning Curve for two different sensors

Figure 5.8: This graph shows the convergence of the cumulative average of the
data rate learned value of all the sensors

AoIOptimal, which is the AoI obtained using the real mean value of
the data rate (DR), and the AoI obtained at that iteration with the
random DR values. The cumulative average of the instant values of
the regret then has been computed.

The other metric is the average of cumulative AoI.
By examining Figure 5.9, it is evident that both graphs converge

to the correct value(Regret to 0 and the AoI to AoIoptimal ). This
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Figure 5.9: Average of cumulative AoI(Left) and Regret(Right)over 200 iterations

indicates that the algorithm is capable of correctly learning the dis-
tribution and compute the correct path.

The first value is really high because, as shown in Algorithm 2, in
the first iteration, the drone attempts to transmit from every position
to "explore" all the the data rate of the sensors. Even if there is
no connection, the UAV waits for the end of the transmission, which
obviously won’t occur. After a time-out period, the drone will move
in any case and the data will be brought back to the base station.
In fig. 5.10 it is possible to see that the algorithm propose works.
Indeed at the last iteration, the path computed with the learned values
is exactly the same respect to the one computed with the expected
values. Also the transmission patterns match, showing a very good
convergence between the two solutions. The AoI computed at the
200th iteration is a bit lower because in that iteration some sensors
had the data rate higher than the mean value, resulting in a lower
AoI.
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Figure 5.10: Optimization problem computed using the expected value(UP)
and optimization problem computed with the learned value at the 200th
tour(BOTTOM)
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Conclusion

In conclusion, this thesis presents an innovative UAV-aided data col-
lection system using LoRa communication for base stations in urban
environments. By integrating the optimization of transmission loca-
tions and the UAV’s trajectory, the system significantly reduces the
Age of Information (AoI), ensuring that the data collected is timely
and relevant. The primary contributions of this work include the de-
velopment of a heuristic algorithm that leverages reinforcement learn-
ing to adapt to the dynamic urban environment and optimize the
UAV’s path.

A lot of experiments and data analysis validate the performance
of the proposed system. The heuristic algorithm demonstrates no-
table improvements in speed and scalability compared to traditional
optimization methods, while the Upper Confidence Bound (UCB) al-
gorithm excels in real-world scenarios where data rate distributions
are unknown and variable. This robust performance across different
conditions highlights the system’s practical applicability and effec-
tiveness in maintaining low AoI, thereby enhancing the quality and
freshness of the collected data.

Future research aims to further deepen this solution by improving
the performance of the heuristic algorithm and modifying the UCB
to achieve better performance and this could involve utilize other re-
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inforcement learning techniques. Exploring additional optimization
techniques and considering new parameters may expand the system’s
capabilities and efficiency. Moreover, introducing multiple UAVs and
enlarging the map could present new challenges but more possibilities.

Another crucial aspect to investigate is the introduction of bat-
tery limitations. Currently, it is assumed that the drone has sufficient
charge to visit all sensors, which is feasible due to the low number of
sensors and the small map size. Incorporating battery limitations in-
troduces significant challenges, such as managing the Age of Informa-
tion (AoI) for sensors that are not visited due to battery constraints.
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