

Politecnico di Torino

Master’s Degree in Computer Engineering: Artificial
Intelligence and Data Analytics

July 2024

The Multiply-And-Max/min Neural
Paradigm as a Pruning and Training

Accelerator

Supervisors: Candidate:

Prof. Fabio PARESCHI
Prof. Gianluca SETTI
Dr. Luciano PRONO

Lorenzo NIKIFOROS

Abstract

Neural networks have revolutionized the field of artificial intelligence, en-
abling machines to perform complex tasks once exclusive to human cognition.
However, large-scale neural networks present significant computational chal-
lenges, particularly during training on servers and deployment on embedded
devices. The high computational cost and resource demands impede their
practical application in low-resources/energy devices. To address this issue,
pruning is introduced, which is a technique that systematically removes
redundant parameters and has emerged as a promising solution to reduce
computational complexity while maintaining performance.

This Master’s thesis explores the effectiveness of a novel layer, Multiply-
And-Max/min (MAM), introduced as an alternative to the classical Multiply
and Accumulate (MAC) approach, wherein the reduction function is not the
sum of all elements but only of the largest and the smallest.

Experimental results demonstrate the efficacy of the MAM-based approach
in significantly sparsifying matrices through different pruning techniques,
particularly the Global Gradient Pruning (GGP), which achieved, e.g. on
ViT trained on ImageNet-1K, an accuracy drop less than 3% while removing
99.93% of weights.

In particular, this study highlights novel properties of the MAM neurons.
Since the MAM layer’s ability is to identify essential interconnection, it
is possible to reintroduce the MAC layer post-pruning, thereby reducing
numbers of FLOPs from 3 to 2 for each weight.

The validity of this transition is supported by empirical evidence showing
that the strength of this layer lies in identifying crucial interconnections. As
an example, as observed with ViT trained on ImageNet-1K dataset, moving
from a deeply pruned MAM structure to a deeply pruned MAC structure
keeps the accuracy unaltered, that goes from 79.70% for MAM to 78.95%.

A final experiment involves pruning the DNN layers before the convergence
of the training process, demonstrating two important properties of the
MAM neural paradigm. Firstly, MAM is capable of identifying the crucial
interconnections prior to convergence. Secondly, by leveraging this, it is
possible to introduce significant FLOPs savings during the training on server,
reducing the energy consumption. As an example, in the case of AlexNet

trained on CIFAR-10, 99.8% of FLOPs can be theoretically saved for the
pruned layers during training with MAM.

ii

i

Acknowledgements

I want to thank my family, especially my grandmother and my sister for
their support throughout these long years, despite the difficulties.

I also want to thank my friends from Ovada (and Costa): Lollo, Davi, Ila,
and Ele who have always been part of my life since the first year of high
school and whom I know I can always count on.

Other thanks go to Samu, who have always supported me even in the most
difficult moments, as well as my other friends from Turin: Rob, Martino,
Cappellino, Daniè, Ometto, Rosy, Angelo, Miri, Claudia, Cuda, Angeluzzo
and Pascuzzi.

Also I want to send my regards to Messrs. Gabriele, Peppe and Francesco
for treating me like part of the family.

A special thanks to Gaia who is always there for me and encourages me
to be a better person.

I would also like to thank my supervisors for their guidance in completing
my thesis, particularly Luciano for his constant availability and help.

In memory of my mother and my grandfather.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Thesis Objective . 3

2 Deep Neural Networks 5
2.1 Convolutional Neural Networks 7

2.1.1 AlexNet . 9
2.2 Transformers . 12

2.2.1 ViT . 14

3 Pruning 16
3.1 Unstructured Pruning . 17

3.1.1 Random Pruning . 18
3.1.2 Magnitude Based Pruning 19
3.1.3 Gradient Based Pruning 19
3.1.4 Dynamic Sparse Training 19

3.2 Lottery Ticket Hypothesis 20

4 Multiply and Max/Min Layer 23
4.1 MAM description . 24

4.1.1 Probability of Selection Pruning 26
4.2 Backpropagation and vanishing contributions method 26

iv

5 MAM as a pruning tool for MAC 28
5.1 Pruning Before Convergence 29
5.2 Dynamic Sparse Training Comparison 30

6 Experiments 32
6.1 Dataset . 32
6.2 MAM training and pruning methodology 33
6.3 MAM to prune MAC . 34

7 Results 35
7.1 Pruning Performance . 35

7.1.1 Analysis of Gradient Pruning 41
7.2 Analysis of MAC Pruning Results with MAM Approach . . 43

7.2.1 Exploiting MAM to prune MAC 43
7.2.2 Early pruning of MAM 43

8 Conclusions 46

A Linear and Parabolic Beta Decay 48

Bibliography 51

v

List of Tables

7.1 MAM to MAC performance after Pruning 43
7.2 AlexNet CIFAR-10 MAM pruning before convergence 44
7.3 AlexNet CIFAR-10 MAM to MAC before convergence 44

vi

List of Figures

2.1 MAC neuron: representing the weights, the bias, the sum-
mation, and the activation function to produce the output
[15]. 7

2.2 Topology of a Neural Network [16]. 7
2.3 CNN composed by convolutions, pooling and a fully-connected

layers[18]. 8
2.4 The PyTorch’s AlexNet implementation[21]. 11
2.5 Transformer architecture[22]. 13
2.6 The general framework of ViT[23]. 14

4.1 A comparison between the two reduction phases:the sum op-
eration indiscriminately retains all values of V (a), whereas
the Max/min operation selectively chooses only two weights
per row (b). 25

5.1 Pipeline for pruning MAC layers: (1) DNN with MAC layers
(2) Replace MAC with MAM (3) Train the network (4) Prune
the DNN (5) Reinsert MAC layers (6) Fine-tune the network. 29

7.1 AlexNet CIFAR-10 Pruning 36
7.1 AlexNet CIFAR-10 Pruning 37
7.2 ViT ImageNet-1K Magnitude Pruning 38
7.3 ViT ImageNet-1K Gradient Pruning 39
7.4 ViT ImageNet-1K Probability of Selection Pruning 40
7.5 ViT ImageNet-1K parallelism between LGP and a mixed

LMP-LPSP . 42

A.1 Linear Decay with Q = 20(b), 40(d). 49
A.2 Parabolic Decay with Q = 20(a), 40(b). 50

vii

Acronyms

AI
Artificial Intelligence

IoT
Internet of Things

TinyML
Tiny Machine Learn- ing

LLMs
Large Language Models

MAC
Multiply and Accumulate

MAM
Multiply and Max/Min

DNN
Deep Neural Network

CNN
Convolutional Neural Network

ViT
Vision Transformer

ix

LMP
Local Magnitude Pruning

GMP
Global Magnitude Pruning

LGP
Local Gradient Pruning

GGP
Global Gradient Pruning

LPSP
Local Probability of Selection Pruning

GPSP
Global Probability of Selection Pruning

DST
Dynamic Sparse Training

LTH
Lottery Ticket Hypothesis

FLOP
Floating Point Operation

x

Chapter 1

Introduction

Neural networks have emerged as a cornerstone of modern artificial intel-
ligence, revolutionizing various fields including computer vision, natural
language processing, and reinforcement learning. These powerful computa-
tional models, inspired by the biological structure of the human brain, are
adept at learning complex patterns and relationships from data, enabling
machines to perform tasks that were once thought to be exclusive to human
cognition.

Neural networks are very important in solving many real-world problems.
They are used for things like identifying images and recognizing speech, as
well as for self-driving cars and natural language processing. Neural networks
can automatically find complex patterns in raw data and do well with new,
unseen data. This has made them a key part of AI research and applications.

For example, in image classification, neural networks like U-Net [1] help
doctors by identifying diseases from X-rays and MRIs, often as accurately as
human experts [2]. In speech recognition, they power virtual assistants like
Siri and Alexa, helping them understand and respond to what people say
[3]. Self-driving cars use neural networks to process data from cameras and
sensors to drive safely and smoothly [4].

Large Language Models (LLMs), a type of neural network, are used in
natural language processing (NLP) to perform a wide range of language
tasks. These include generating human-like text, translating languages,
summarizing documents, and more. Models like GPT-4 [5] are examples of
LLMs that perform a wide range of language-related tasks.

However, the widespread adoption of neural networks is not without
challenges. One significant impediment is their substantial computational

1

Introduction

cost, both in terms of memory and processing power. Training and deploying
large-scale neural networks demand formidable computational resources,
often necessitating high-performance computing infrastructure and energy-
intensive computations. This issue becomes even more pronounced when
considering the integration of neural networks with the Internet of Things
(IoT) and embedded systems.

In the context of IoT, devices are typically characterized by their limited
computational capacity, restricted memory, and power constraints. These
limitations present a formidable challenge when attempting to implement
neural networks on such devices [6]. For instance, smart sensors and IoT de-
vices designed for monitoring environmental conditions, industrial equipment,
or health metrics need to operate continuously on battery power, making
energy efficiency a critical concern. Implementing traditional large-scale
neural networks in these scenarios would be impractical due to their heavy
computational and power requirements.

To address these challenges, the concept of Tiny Machine Learning
(TinyML) has emerged. TinyML focuses on developing and deploying machine
learning models on resource-constrained devices, by optimizing algorithms
and models to run efficiently on low-power microcontrollers, enabling the
integration of neural networks into IoT devices [7]. This opens up numerous
applications where intelligent processing is performed at the edge, reducing
the need for constant communication with centralized cloud servers and
thereby saving bandwidth and energy.

Modern architecture, for exemple Large Language Models like GPT-4,
represent the other end of the spectrum in terms of computational demand.
GPT-4, with its billions of parameters, requires extensive computational
resources for both training and inference [8]. Training such models involves
vast amounts of data and high-performance GPUs or TPUs, consuming
significant electrical power. Deploying these models also necessitates con-
siderable computational infrastructure to ensure low-latency responses and
high availability, which is why they are typically hosted on powerful cloud
servers rather than on local devices.

Integrating these huge models into the context of TinyML poses a signif-
icant challenge due to their contrasting computational requirements. Ad-
dressing these computational needs has become a focal point for researchers
in the field. One promising technique that has garnered significant attention
is pruning [9] [10]. Pruning involves systematically removing redundant or
less influential parameters, connections, or neurons from a trained neural

2

Introduction

network, thereby reducing its size and computational complexity.
By selectively pruning components while preserving model performance,

one can achieve more efficient models that are easier to deploy on resource-
constrained devices. This approach not only reduces the computational
workload but also facilitates faster inference times and more energy-efficient
operation.

In recent years, pruning techniques have evolved considerably, offering in-
creasingly sophisticated methods for optimizing neural network architectures.
These advancements have led to simpler and more efficient AI systems.

1.1 Thesis Objective
The thesis objective is based on the pruning of fully-connected layers in
neural networks for image classification tasks. The focus of this work is to
explore a novel pruning method, centered around a new layer called Multiply-
And-Max/min (MAM) [11][12], that replaces the traditional Multiply-and-
ACumulate (MAC) paradigm by altering the accumulate phase. Instead of
adding together all the elements (i.e., the inputs multiplied by the weights),
this neural model sums only the maximum and minimum values.

Previous work on this layer has demonstrated its effectiveness in making
weight matrices highly sparsifiable through pruning. Specifically, the initial
studies employed it in small neural networks composed of fully connected
and convolutional layers, targeting applications in the IoT field. More recent
researches show its efficacy for state-of-the-art neural networks in image
classification, such as Vision Transformers.

The first part of this thesis focuses on replicating the results obtained in
these studies. Specifically, the models and datasets used are ViT trained on
Imagenet-1K and AlexNet trained on CIFAR-10, achiving results comparable
with the previous studies.

Additionally, specific of this work, an analysis is conducted to understand
why Gradient Pruning (GP) usually performs much better compared to
other techniques. This is done by creating a custom score, multiplying the
absolute value of the weight by the number of times it has been selected as
the maximum or minimum, in an attempt to replicate the functionality of
Gradient Pruning. The results show that the effectiveness of GP may be
linked to its correlation with the number of times a weight is chosen.

However, despite the effectiveness of this layer, it still had some drawbacks.

3

Introduction

Firstly, by altering the layer’s structure, the number of FLOPs required per
weight theoretically increases from 2 (as required by a MAC layer) to 3. While
this is already a disadvantage, it is also important to consider that MAC layers
benefit from widely optimized and prevalent hardware architectures, ensuring
high efficiency. In contrast, MAM layers lack such optimized hardware,
furthermore, creating an optimization customized for this layer would not
only need to be specifically implemented in the hardware architecture, but
also would require two branch instructions (for the maximum and minimum),
which tend to disrupt the normal pipeline structure, further slowing down
the process.

Therefore, a central contribution I made in this work was to address
the problem at its root. I found that after pruning a MAM layer, it can
be reverted to a MAC layer while maintaining the same sparse matrices
previously produced. This process enables the creation of a training pipeline
that ends with the network’s structure identical to its starting point, thus
allowing the use of well-known, highly optimized hardware architectures.

For instance, when ViT is trained on the ImageNet-1K dataset, the
accuracy remains almost unchanged when switching from a deeply pruned
MAM structure to a deeply pruned MAC structure.

Another issue related to the MAM layer concerns its training. During the
training of neural networks, especially the newer large models, a vast amount
of computational resources is required. Therefore, in my thesis, I advanced
the pruning phase to an earlier stage, before the network converges. This
strategic adjustment could potentially lead to significant server-side savings
in terms of FLOPs during the training process if sparse training were used.

Furthermore, for these models, it is essential to use hardware accelerators
like GPUs, which require specially programmed kernels to achieve high
efficiency. Currently, despite the existence of a kernel specifically created for
MAM optimization, its performance is still about three times worse than
a MAC kernel. Therefore, building on the previously obtained results, this
work explores further optimization of the training process as follows: once
again, before the network converges, it is pruned. After this, the MAC layer
is directly reinserted, thus achieving optimization through both the more
efficient kernel and potentially, as before, sparse training.

The results obtained demonstrate that with these strategies, it is possible
to achieve models with accuracy and size reduction comparable to those
obtained with the standard training pipeline, but with significant resource
savings.

4

Chapter 2

Deep Neural Networks

Neurons are the basic computational units of neural networks, functioning
similarly to biological neurons in the human brain. These units receive input
signals, process them, and produce output signals [13]. The simplest and
most commonly used type of neuron is found in Fully Connected layers, also
called MAC layers.

Each neuron computes the weighted sum of its inputs. This computation
involves multiplying each input by its corresponding weight and summing
up these weighted inputs. Additionally, a bias term is added to the weighted
sum to account for the neuron’s baseline activation level. Mathematically,
the weighted sum z can be expressed as:

z =
nØ

i=1
wixi + b (2.1)

Following the computation of the weighted sum, the neuron applies an
activation function to introduce non-linearity into its output. Activation
functions play a crucial role in enabling neural networks to learn complex
patterns and relationships in data. Various activation functions are available,
each with its unique properties. Commonly used activation functions include
sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), and softmax.

The output of the neuron is determined by the result of the activation
function applied to the weighted sum of inputs. This output, often denoted as
y, represents the neuron’s activation level and serves as input to subsequent
neurons or output layers in the network.

y = f(z) (2.2)

5

Deep Neural Networks

Where f(·) is the activation function.
Figure 2.1 shows an overview of a MAC neuron.
Neurons are organized into layers within a feed-foward neural network,

with each layer serving a specific purpose in the information processing
pipeline.

• Input Layer: The input layer serves as the entry point for raw data
or features into the neural network. Each neuron in the input layer
corresponds to a distinct feature or attribute of the input data. The
number of neurons in the input layer is determined by the dimensionality
of the input data.

• Hidden Layers: Hidden layers are intermediary layers situated between
the input and output layers. These layers perform complex transforma-
tions on the input data, progressively extracting higher-level features
and representations. Deep neural networks may contain multiple hidden
layers, enabling them to learn hierarchical representations of the input
data.

• Output Layer: The output layer produces the final output of the neural
network, which is typically used to make predictions or decisions based
on the input data. The structure and function of the output layer depend
on the specific task the neural network is designed to solve. For instance,
in classification tasks, the output layer may employ a softmax activation
function to produce probability distributions over different classes.

In figure 2.2 is shown a classical feed-forward neural network.
The connections between neurons in adjacent layers form the synaptic

connections of the neural network. Each connection is associated with a
weight, which determines the strength of the connection and influences the
neuron’s activation. During the training process, these connection weights
are adjusted through a process known as backpropagation [14], allowing the
network to learn from examples and improve its performance over time.

Training a neural network involves iteratively adjusting the weights and
biases of its connections to minimize a predefined loss function. This process
aims to optimize the network’s parameters to make accurate predictions on
unseen data.

While neural networks offer remarkable capabilities in various domains,
they often come with significant computational costs, especially for training
large models on extensive datasets. The training process typically requires

6

Deep Neural Networks

substantial computational resources, including high-performance GPUs. As
a result, there’s growing interest in developing efficient algorithms and hard-
ware architectures to reduce the computational burden of neural networks,
particularly for deployment on edge devices with limited computational
capabilities and power constraints.

Figure 2.1: MAC neuron: representing the weights, the bias, the summation,
and the activation function to produce the output [15].

Figure 2.2: Topology of a Neural Network [16].

2.1 Convolutional Neural Networks
Convolutional layers are fundamental building blocks in convolutional neural
networks (CNNs), specifically designed to extract and learn spatial hierarchies
of features from input data such as images [17].

Convolutional layers were introduced to address the limitations of fully
connected layers in processing spatial data efficiently. Traditional neural

7

Deep Neural Networks

Figure 2.3: CNN composed by convolutions, pooling and a fully-connected
layers[18].

networks struggle with images due to the vast number of parameters in-
volved in processing high-dimensional data. Convolutional layers use shared
weights and sparse connections to reduce the computational complexity while
preserving spatial information.

The operation of a convolutional layer involves applying a series of learnable
filters or kernels to the input data through a convolution operation. Each
filter is a window that slides over the input data, computing element-wise
multiplications and summations to produce feature maps. The convolution
operation can be expressed as:

Y = X ∗ W + b (2.3)

Where Y is the output map, X is the input, W is the filter, b is the bias and
∗ denotes the convolution operator.

This operation is performed at every spatial location of the input data,
resulting in a set of feature maps capturing different aspects of the input.

A key aspect of convolutional layers is the concept of shared weights
and sparse connectivity. Each filter is shared across the entire input space,
enabling the network to learn local patterns that are invariant to translation.
Additionally, convolutional layers exhibit sparse connectivity, where each
output feature map is only connected to a small local region of the input.
This reduces the number of parameters in the network and promotes feature
reuse, making convolutional networks more parameter-efficient and robust
to overfitting.

In conjunction with convolutional layers, pooling layers are often used to
downsample feature maps, reducing their spatial dimensions while preserving

8

Deep Neural Networks

important features. Common pooling operations include max pooling and
average pooling, which extract the maximum or average value from local
regions of the feature maps, respectively. Pooling layers help to capture
the most salient features while discarding redundant information, further
enhancing the efficiency and robustness of convolutional networks.

Following the convolution and pooling operations, each feature map typi-
cally undergoes a non-linear activation function like the Feed Foward layers,
figure 2.3 provides an overview of a simple convolutional neural network.

2.1.1 AlexNet
AlexNet was introduced in [19] and marked a significant breakthrough in
the field of computer vision. Its architecture played a pivotal role in the
resurgence of interest in deep learning and convolutional neural networks by
achieving unprecedented performance on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC).

This achievement underscored the power of deep learning for image recog-
nition and paved the way for the adoption of CNNs in various applications,
including image classification, object detection, and segmentation. AlexNet
demonstrated the feasibility of training deep neural networks on large-scale
datasets and highlighted the importance of model architecture, data augmen-
tation, and regularization techniques in achieving superior performance. In
this work, the PyTorch implementation of AlexNet based on [20] was utilized:
The initial convolutional layer convolves the 224×224×3 input image using
64 kernels, each sized 11×11×3, with a stride of 4.

Subsequently, the second convolutional layer processes the pooled output
from the first convolutional layer, applying 192 kernels sized 5×5×64.

Following a sequential pattern, the third, fourth, and fifth convolutional
layers directly connect to one another without any intervening pooling. The
third convolutional layer features 384 kernels sized 3×3×256, which are
linked to the outputs of the second convolutional layer.

Similarly, the fourth and the fifth convolutional layer comprises 256 kernels
sized 3×3×256.

After a pooling stage, two fully connected layers with 4096 neurons each are
present, interspersed with a Dropout layer. A fully connected classifier forms
the concluding stage of the network’s architecture. Overall, it contains more
than 60 million learnable parameters stored as float32 occuping approximately
228.88 MB of memory.

9

Deep Neural Networks

The image 2.4 shows the implementation of the network.
The performance achieved by this network had a significant impact, lead-

ing to a substantial improvement over the state-of-the-art of those years.
Specifically, for the ILSVRC-2010 competition, the best published results
were a 45.7% top-1 error rate and a 25.7% top-5 error rate. In contrast,
AlexNet achieved 37.5% and 17% respectively. AlexNet also attained first
place at the ILSVRC-2012 with a top-5 error rate of 15.3%, surpassing the
second-place finisher by 10.8%.

10

Deep Neural Networks

Figure 2.4: The PyTorch’s AlexNet implementation[21].

11

Deep Neural Networks

2.2 Transformers
The Transformer architecture, introduced in the groundbreaking paper [22],
represents a paradigm shift in sequence modeling. Transformers are a type of
neural network architecture designed to handle sequential data by leveraging
self-attention mechanisms, which allow the model to weigh the importance of
different elements in a sequence, regardless of their position. This contrasts
with previous architectures like Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks, which process data sequentially
and can struggle with long-range dependencies.

Transformers have gained widespread adoption due to their ability to
scale effectively with the size of the network. As the number of layers and
parameters in the network increases, transformers continue to improve their
performance, enabling them to handle larger and more complex datasets with
greater accuracy. This scalability has made them the architecture of choice
for a variety of tasks across different domains, from language processing and
image recognition to time series prediction and beyond.

One of the most notable applications of transformer architecture is in the
development of Large Language Models (LLMs) [8] for Natural Language
Processing (NLP) tasks. These models, such as GPT [5], has demonstrated
exceptional capabilities in generating coherent and contextually relevant
text.

More specific this architecture consists of an encoder and a decoder, each
comprising multiple layers of self-attention mechanisms and feedforward
neural networks.

The self-attention mechanism is central for this architecture, which enables
the model to capture global dependencies within input sequences. Given an
input sequence X = {x1, x2, ..., xn} the self-attention mechanism computes
attention weights αij for each pair of tokens xi and xj, indicating the relative
relevance.

These attention weights are calculated as a softmax function applied to
the scaled dot-product of query, key, and value vectors:

Attention(Q, K, V) = softmax
A

QKT

√
dk

B
V (2.4)

represents the compatibility score between tokens.
The query, key, and value vectors are obtained by projecting the input

embeddings into query, key, and value spaces, respectively by FC layers.

12

Deep Neural Networks

Figure 2.5: Transformer architecture[22].

To incorporate positional information into the model, positional encoding
vectors are added to the input token embeddings. These vectors encode the
position of each token in the sequence using sine and cosine functions of
different frequencies and phases:

PE(pos,2i) = sin
A pos

10000
2i

dmodel

B

PE(pos,2i + 1) = cos
A pos

10000
2i

dmodel

B (2.5)

where pos rappresents the position and dmodel is the dimensionality of the
input embeddings.

In tasks such as machine translation, the Transformer architecture employs
an encoder-decoder architecture, in 2.5 the left side is the encoder and the
decoder is on the right. The encoder processes the input sequence and

13

Deep Neural Networks

generates context-aware representations, while the decoder utilizes these
representations to generate the output sequence.

2.2.1 ViT
The Vision Transformer (ViT) is a transformative architecture designed to
address computer vision tasks by adapting the Transformer model to image
processing. Proposed in [23] ViT marks a departure from traditional convo-
lutional neural networks (CNNs) by treating images as sequences of tokens
and leveraging self-attention mechanisms for global context aggregation.

Figure 2.6: The general framework of ViT[23].

ViT begins by dividing the input image into fixed-size patches, typically
16×16 pixels, resulting in a grid of image patches. Each patch is then linearly
projected into a lower-dimensional embedding space, yielding a sequence of
image tokens that serves as the model’s input.

The core of ViT consists of a stack of Transformer encoder layers, mirroring
the architecture of the original Transformer model. Each encoder layer
incorporates self-attention mechanisms to capture dependencies between
image tokens and position-wise feedforward neural networks for feature
transformation.

In ViT, the multi-head self-attention mechanism enables the model to
attend to different parts of the image simultaneously. Given the sequence

14

Deep Neural Networks

of image tokens, self-attention computes attention weights for each pair of
tokens, allowing the model to focus on relevant regions while aggregating
global context information.

To encode spatial information into the model, positional embeddings
are added to the token embeddings. These embeddings convey the spatial
relationships between image patches and enable the model to differentiate
between tokens based on their positions within the image grid.

Following the Transformer encoder, ViT utilizes a classification head to
predict the class labels or perform other downstream tasks. Typically, the
output token representation of the [CLS] token, which summarizes the entire
image, is fed into the classification head for task-specific processing.

In the original paper three models were proposed, in this work the ViT-
Base model is used composed by 12 Layers, an Hidden Size D equal to 768, an
MLP size of 3072 and 12 Heads; consisting in total of 86 milion parameters,
equivalent to 320.31 MB if saved as float32.

The results of ViT depend on the implementation used; the larger the
model, the better it performs. For example, taking the two extreme cases,
ViT-Base (86M parameters) and ViT-Huge (632M parameters), achieved a
top-1 accuracy of 84% and 88.55% on ImageNet, respectively.

15

Chapter 3

Pruning

Neural network pruning stands as a pivotal technique in optimizing trained
neural networks by strategically reducing parameters or computational re-
sources while upholding predictive accuracy. It involves the systematic
identification and elimination of less influential components, such as certain
weights or neurons, thereby streamlining the network’s complexity and size.

This method finds particular relevance in scenarios where large, over-
parameterized models exhibit effectiveness but face computational constraints
or limitations in deployment due to their size. By selectively discarding com-
ponents that contribute minimally to output predictions, pruning facilitates
the creation of swifter models that retain high accuracy levels.

In essence, pruning offers a pathway to enhance the efficiency and scal-
ability of neural networks, enabling them to be deployed more effectively
across various applications and platforms. Through the judicious removal
of redundant or less impactful components, neural networks can achieve
improved performance metrics, such as reduced memory footprint, faster
inference times, and enhanced energy efficiency.

Neural network pruning encompasses diverse techniques, including un-
structured pruning and structured pruning. Unstructured pruning entails
the selective removal of individual connections within the network by setting
corresponding weights to zero, yielding sparse weight matrices. Structured
pruning involves the removal of entire neurons along with their connections,
resulting in a more compact and simplified network architecture.

The pruning process typically unfolds through a structured pipeline, which
can span multiple stages to achieve optimal results. Initially, a baseline neural
network model is trained on a relevant dataset to establish a performance

16

Pruning

benchmark. Subsequently, the less influential parameters or connections are
identified and pruned away.

Following, the pruned model undergoes fine-tuning or retraining to restore
or enhance its performance on the given task. This fine-tuning stage aims to
compensate for any performance degradation resulting from the removal of
parameters or connections during pruning.

Moreover, the pruning process may incorporate multiple stages of pruning
and fine-tuning, each refining the network’s architecture further. Through
iterative cycles of pruning and fine-tuning, the network’s architecture evolves
to strike an optimal balance between model size reduction and preserved
performance.

3.1 Unstructured Pruning
Unstructured pruning offers the benefit of achieving a very high compression
rate, as it can remove individual weights without considering their arrange-
ment within the network. In contrast, structured pruning, due to stricter
constraints, to maintain high accuracy, achieves a lesser reduction in network
size. However, structured pruning has the advantage of requiring fewer
modifications to the original network structure, facilitating easier and more
efficient implementation. This is not the case with unstructured pruning, as
it leads to sparse weight matrices that necessitate more complex hardware
implementation and, currently, exhibit lower efficiency compared to dense
matrices.

In essence, both pruning methods aim for high efficiency but through
different approaches: unstructured pruning excels in compression efficiency
but requires sacrificing hardware optimization, whereas structured pruning
offers easier deployment and optimization at the cost of lower compression
rates.

We can describe unstructured pruning as a minimization problem as
follows:

min
w

L(w; D) = min
w

1
N

NØ
i=1

l(w; (xi, yi))

s.t. ∥w∥0 ≤ k.

(3.1)

Where D id the dataset, L is the loss function on the entire dataset, N is
the number of samples of the dataset, xi is the i-th sample assosciated with

17

Pruning

is label yi, l is the loss function on a single sample, ∥ · ∥0 denotes the zero
norm, so how many weights are non-zero, w are the weights to prune and k
is how many weights we want to maintain.

It can also be viewed as applying a binary mask m to the original weights:

min
w′

L(w′; D)

s.t. w′ = w ⊙ m

∥m∥0 ≤ k

(3.2)

Where ⊙ is the Hadamard product and w′ are the new weights.
In the literature, numerous methods for unstructured pruning have been

proposed [9] [10]. Particularly, this work will only analyze some of them.
In general, each method seeks to associate a score with each weight, repre-

senting its importance. During the pruning phase, weights with lower scores
are removed first. Additionally, pruning can occur at various granularities,
specifically, after assigning a score to each weight, one can choose to eliminate
the lower scores by separately analyzing each layer (Local Pruning) or by
directly applying it to all the layers intended for pruning (Global Pruning).

Below, I will present and explain several pruning methods, starting with
the simplest one, Random Pruning, progressing to those used in this work,
Magnitude and Gradient Pruning, and culminating with a more intricate
technique that shares similarities with the MAM layer, that will be later
analyzed, namely Dynamic Sparse Training.

3.1.1 Random Pruning

Random pruning is perhaps the simplest method employed in neural network
pruning. As the name suggests, it involves randomly selecting weights or
neurons to prune from the network. While seemingly elementary, random
pruning serves as a fundamental baseline for evaluating the efficacy of more
sophisticated pruning algorithms [24]. This comparison helps assess whether
the additional complexity of sophisticated techniques significantly improves
model efficiency and performance, otherwise, if advanced pruning methods
are unnecessary, it implies that all the weights to prune already contribute
little to the network’s accuracy.

18

Pruning

3.1.2 Magnitude Based Pruning
These methods prioritize the removal of weights with smaller magnitudes,
under the assumption that they contribute less to the network’s overall
performance. One common approach is to rank the weights based on their
absolute values, considering larger weights as more significant and smaller
weights as less significant [25]. The corresponding score can be expressed as:

g(ι) = |wι| (3.3)

Magnitude-based scoring methods are straightforward and computationally
efficient. However, they may not always capture the true importance of
weights, especially in cases where small weights are still influential in the
network’s performance. Additionally, they do not consider the interactions
between weights or their context within the network architecture.

3.1.3 Gradient Based Pruning
Another class of pruning methods aims to identify the importance of weights
based on the change obtained when they are eliminated. One approach is
through the approximation of the change in loss following a perturbation for
weights w via the first-order Taylor expansion as follow:

∆L = ∇wL∆w + O(∥δw∥2) (3.4)

And so it’s possible to express the scores as:

g(ι) = E
C-----∂L(y, DNN(x, w))

∂wι
wι

D

(3.5)

This method, proposed in [26], allows for the identification of the importance
of weights based on dataset information, enabling a more accurate evaluation.
However, it requires both a dedicated pruning dataset with a distribution
similar to that of the training and test sets, as well as increased computational
demand, as gradients need to be computed for each weight and input.

3.1.4 Dynamic Sparse Training
Dynamic sparse training is a technique aimed at enhancing the pruning by
dynamically adjusting the sparsity of network parameters during the training

19

Pruning

process. Unlike the previous pruning techniques that remove connections or
parameters after the training, dynamic sparse training adapts the sparsity
pattern throughout training based on various criteria.

In particular, the work done in [27] proposes an adaptive threshold that
is trained during the network’s training process.

It can be formulated as follows:

Mi,j = S(|Wi,j| − ti) with 1 ≤ i ≤ M, 1 ≤ j ≤ N (3.6)
Where W ∈ RM×N is the weight matrix, t ∈ RM is the threshold vector,

S(·) is the Step Function and M ∈ RM×N is the mask.
During the inference the masked weight matrix M⊙W is used, therefore, a

threshold is added to the weights that should be used. However, since the Step
Function has an impulse function as its derivative during the BackPropagation
phase, an estimator of the derivative is introduced that behaves similarly to
the original derivative but is suitable for gradient propagation:

d

dx
S(x) ≈ H(x) =


2 − 4|x|, −0.4 ≤ x ≤ 0.4
0.4, 0.4 < |x| ≤ 1
0, otherwise

(3.7)

Additionally, during the training phase, a regularization term is added to
encourage the thresholds not to be too small while simultaneously preventing
them from becoming too large:

R =
MØ

i=1
e−ti (3.8)

It is also worth noting that the unused weights are not zeroed out during
the process, thus preserving the learned information.

This method yields excellent results; some of the most notable examples
include training WideResNet-16-8 on CIFAR-10 achieving an accuracy of
94.73% with 4.64% remaining weights, and training ResNet-50 on ImageNet
achieving 72.78% top-1 accuracy with 9.87% remaining weights.

3.2 Lottery Ticket Hypothesis
The Lottery Ticket Hypothesis [28] represents a groundbreaking concept in
the realm of deep learning, offering profound insights into the structure and

20

Pruning

optimization of neural network architectures. This hypothesis challenges
conventional knowledge regarding the necessity of large, over-parameterized
networks by suggesting that within these complex structures lie sparse,
trainable subnetworks capable of achieving comparable performance with
significantly fewer parameters.

At the core of the LTH lies the premise that during the training process
of deep neural networks, there exist subnetworks, or "winning tickets" that,
when initialized appropriately, can achieve high accuracy with a sparse
set of weights. This notion challenges the prevailing belief that the huge
number of parameters in large networks is essential for achieving state-of-
the-art performance. Instead, the hypothesis says that only a small subset
of connections is critical for successful learning and generalization.

The LTH draws inspiration from the concept of network sparsity, which
suggests that neural networks can function effectively with a reduced number
of connections. By identifying and preserving these crucial connections, one
can potentially train more compact models without sacrificing performance.

Empirical studies have provided evidence in support of the Lottery Ticket
Hypothesis across various deep learning architectures and tasks. Researchers
have demonstrated that by iteratively pruning connections based on their
importance, sparse subnetworks emerge, which exhibit comparable or even
superior performance to the original dense networks. These winning tickets
often converge faster during training and generalize better to unseen data,
indicating that they capture essential patterns and relationships within the
data more efficiently.

For example, some of the most notable results include ResNet-18 trained
on CIFAR-10 achieving an accuracy of 89.5% when only the subnetwork was
trained (the entire network achieved 90.5% accuracy), with 21.9% of weights
remaining.

Furthermore, experiments have shown that these sparse subnetworks are
not merely artifacts of the training process but rather inherent properties of
the initial network architecture. Even when reinitialized with different ran-
dom seeds, the same winning tickets can be identified, suggesting robustness
and reproducibility across different training runs.

The significance of this study, unlike those previously described concerning
pruning, lies not in finding an effective methodology for pruning a network,
but rather in empirically demonstrating that only a small fraction of weights
is crucial for achieving good performance. Identifying this subset allows
for initializing the entire network by pruning it beforehand, resulting in a

21

Pruning

remarkable increase in training speed due to significantly fewer parameters.
While it has limited practical impact for networks already trained and pruned,
which would achieve comparable accuracy and pruning rates, it has sparked
extensive research interest: if one can identify this winning ticket before
training, it is possible to train only this subnetwork, conserving substantial
resources. This approach, known as Pruning at Initialization, is currently
a focal area of interest among researchers specializing in neural network
optimization [29].

22

Chapter 4

Multiply and Max/Min
Layer

Traditional pruning techniques in Deep Neural Networks (DNNs) involve
selecting specific connections or entire neurons without altering the network’s
fundamental structure, which relies on the Multiply-and-Accumulate (MAC)
paradigm. This can be seen as a map-reduce approach, in which the map-
ping function is represented by multiplication and the reducing function by
accumulation, namely summation.

It has been observed that the summation operation in MAC neurons can
be considered a specific instance of a more general aggregation:

o =
 nØ

i=1
vp

i


1
p

(4.1)

where the resulting output is determined by a parameter, p, controlling the
influence of individual values. This realization has prompted the consideration
of replacing the traditional sum-based , p = 1, reduce operation with a
max/min-based one, p → +∞/p → −∞.

It is worth noting that in magnitude-based pruning, only weights with
the largest absolute values are selected. This process aligns with the concept
being pursued here, further emphasizing the direction of this approach.

This innovation has led to the development of a new neuron model based
on the Multiply-And-Max/min (MAM) paradigm [11] [12]. Unlike traditional
MAC neurons, MAM neurons explicitly identify which inputs contribute to
the output, thus distinguishing themselves from previous methods. Most

23

Multiply and Max/Min Layer

importantly, this represents a novel approach to non-structured pruning, as it
renders individual neuron behavior less sensitive to pruning while remaining
hardware-friendly.

Although the functional equivalence between original and alternative
neurons cannot be guaranteed on a neuron-by-neuron basis beforehand,
empirical evidence supports the idea that substituting MAC-based neurons
with MAM-based ones across the entire network preserves the overall behavior
of the DNN.

The MAM paradigm has been found to naturally lend itself to pruning, as
neurons consistently select a few connections during maximum and minimum
reduction operations. Moreover, most existing pruning algorithms applicable
to MAC-based layers can be adapted to MAM-based ones with minimal
modifications, thereby enhancing performance without introducing significant
computational overhead.

4.1 MAM description
To enter into the specifics of the MAM layer, it’s better to first examine
separately how the map and reduce phases behave. During the mapping
phase, the weighted input matrix V ∈ RM×N is defined as follow:

V =


w1 ⊙ xT

w2 ⊙ xT

...
wM ⊙ xT

 (4.2)

Where x ∈ RN is the input vector, wi is the i-th row of the weights matrix
W ∈ RM×N and ⊙ is the Hadamard product. It also can be view more
explicitally as:

vi,j = wi,jxj with i ∈ {1, .., M}, j ∈ {1, .., N} (4.3)

This map operation is shared by both the MAM layer and the MAC layer.
In the MAC layer, the reduce operation is the sum of the elements row by
row of the matrix V :

zi =
NØ

j=1
vi,j + bi with i ∈ {1, .., M} (4.4)

24

Multiply and Max/Min Layer

(a) (b)

Figure 4.1: A comparison between the two reduction phases:the sum
operation indiscriminately retains all values of V (a), whereas the Max/min
operation selectively chooses only two weights per row (b).

To observe the reduce operation in the MAM layer, it is necessary to first
introduce the operator M as follows:

MN
j=1vi,j ≜ max

j∈{1,..,N}
vi,j + min

j∈{1,..,N}
vi,j (4.5)

which selects the maximum and minimum of each row of the weighted input
matrix. The reduce operation so can be defined as:

zi = MN
j=1vi,j + bi with i ∈ {1, .., M} (4.6)

There are several important points to note. First, this operation does not
perform pruning but rather redefines how the reduce phase should be carried
out. In fact, the unselected weights are not zeroed out but simply do not
contribute to interference. Furthermore, each time a new input is passed
through the neural network, the selected maximum and minimum values
may differ.

The second point to note is that empirically, it is often observed that
the selected maximum is associated with a positive weight value while the
minimum is associated with a negative one and this enhances the neuron’s
stability. This can be explained by the fact that the ReLU activation function
is commonly used in architectures, rendering the activation map non-negative.

Lastly, it is useful to observe that through the comparison between formulas
(4.4) and (4.6), it is evident that the MAM layer serves as an approximation
of the MAC layer, attempting to utilize the most influential information.

25

Multiply and Max/Min Layer

4.1.1 Probability of Selection Pruning
The MAM layer introduces a pruning method based on the probability of a
weight being selected, specifically, considering formula (4.6), only two values
are chosen for each input, reflecting the use of only two weights from the
weight matrix W , hence, an empirical probability can be associated with
each weight based on how often it is selected out of the total number of input
passes. Therefore, it is necessary to introduce, as in (3.1.3), a pruning dataset
to compute this score. This can be more rigorously defined as follows:

g(ι) =
qN

k=1 Ik
wι

N
(4.7)

Where N is the cardinality of the pruning dataset, and Ik
wι

is equal to 1 if wι

is selected, regardless of whether it is the maximum or minimum, for sample
k, and 0 otherwise.

It is noteworthy that the gradient score is intrinsically linked to this score;
indeed, when a weight is never selected, it will have a score of 0 for both.

4.2 Backpropagation and vanishing contribu-
tions method

During the training of the neural network, directly employing the formulation
in (4.6) yields unsatisfactory results. To comprehend the reason behind this,
we must analyze the gradient of (4.6):

∂zi

∂vi,j
= δi,j with δi,j =


1 if vi,j = maxj∈{1,..,N} vi,j

1 if vi,j = minj∈{1,..,N} vi,j

0 otherwise
(4.8)

From empirical findings, we are aware of certain properties of the MAM
layer, specifically, only a subset of weights from the matrix is effectively
utilized, this is also the reason why the MAM layer exhibits good pruning
capabilities. By employing formula (4.8) and leveraging insights from the
lottery ticket hypothesis, in particular the experimental evidence suggests that
the selection of interconnections is crucial for achieving good performance,
we can infer that directly utilizing the MAM layer may lead to premature
convergence of crucial interconnections within the network. This occurs

26

Multiply and Max/Min Layer

because weights with already high absolute values are updated from the
outset, inhibiting the network’s thorough exploration of solution space.

For these reasons, a gradual transition between the MAC layer and the
MAM layer has been proposed. This can be achieved through an affine
combination of formulas (4.4) and (4.6):

zi = β
NØ

j=1
vi,j + (1 − β)MN

j=1vi,j + bi with i ∈ {1, .., M} and β ∈ [0,1] (4.9)

The formula (4.9) can be seen as a bridge between the MAC and MAM
layers: when β = 1, it is equivalent to (4.4), while when β = 0, it is equivalent
to (4.6). To perform this gradual transition between the two layers, β is
initialized to 1 at the beginning of training then decremented until it reaches
0. From that point onwards, for the remainder of the training, it remains
at 0. Experimental results show that immediately after the transition from
MAC to MAM, i.e β is 0, there is a drop in performance. For this reason, it
is necessary to continue training the network for several epochs after this
happens.

This strategy allows a more effective exploration and leading to significantly
improved performance. Beta can be decremented according to various
strategies, which however seem to lead to the same final performance, so
a linear decay is usually employed. However, in this work, for specific
applications, a parabolic decay has also been utilized 1.

1Further details of linear and parabolic decay can be found in Appendix A

27

Chapter 5

MAM as a pruning tool
for MAC

The MAM layer modifies the architecture of the neural network, introducing
computational overhead compared to the traditional MAC layer. Changing
the layer’s structure increases the number of FLOPs per weight from 2 (as
needed by a MAC layer) to 3. This is already a disadvantage, but it’s
also important to note that MAC layers benefit from widely optimized and
common hardware architectures, ensuring high efficiency. MAM layers, on
the other hand, do not have such optimized hardware support. Additionally,
creating optimization specifically for MAM layers would not only require
special implementation in the hardware architecture but also involve two
branch instructions (for maximum and minimum), which disrupt the normal
pipeline structure and slow down the process further.

To address these issues, a key contribution of my work was to tackle the
problem at its core. My hypothesis was that the importance of MAM lay
solely in its ability to identify which connections are important. In previous
work, it was believed that for MAM to function effectively, it needed to
maintain its structure of selecting maximum and minimum values. It was
thought that this competition, which generates different subnetworks for
each input, was the reason for the good performance of this layer.

My hypothesis was based on the experimental evidence that the MAM
layer retains very few active connections after the pruning phase. This may
suggest that non-linearities (max and min) do not primarily account for the
layer’s success, but rather serve as a necessary mechanism to ensure that the
network focuses only on a few connections.

28

MAM as a pruning tool for MAC

Based on this hypothesis, I proposed that after pruning a MAM layer, the
network can be reverted by reintroducing MAC layers while retaining the
same sparse matrices produced by pruning the MAM layer.

Figure 5.1: Pipeline for pruning MAC layers: (1) DNN with MAC layers
(2) Replace MAC with MAM (3) Train the network (4) Prune the DNN (5)
Reinsert MAC layers (6) Fine-tune the network.

Following Figure 5.1, the approach used can be analyzed: first, the MAM
layers are inserted in place of the MAC layers that are to be pruned (steps 1
and 2). Then, the network is trained until reaching convergence as described
in 4.2 and pruned (steps 3 and 4). At this point, the previously replaced
MAC layers are reintroduced, retaining the weight matrices of the MAM
layers, and the network is fine-tuned (steps 5 and 6).

This process enables the creation of a training pipeline that ends with the
starting network’s structure, but with deeply pruned layers. Thus allows the
use of well-known, highly optimized hardware architectures.

5.1 Pruning Before Convergence
In recent years, the development and deployment of large neural network
models have posed significant challenges related to resource requirements.
These models, for exemple Large Language Models like GPT-4, require vast

29

MAM as a pruning tool for MAC

amounts of computational power, memory, and storage. The training process
itself involves massive datasets and long durations leading to high energy
consumption.

To address this problem, one technique used is pruning the network before
it converges [30]. This allows for the removal of unimportant weights during
an intermediate training phase, thereby saving computational resources on
the server side. However, this process has its own challenges. Hardware
accelerators used for training neural networks, such as GPUs and TPUs,
heavily rely on the continuity of weight matrices in memory to achieve high
efficiency. A sparse weight matrix does not have this property, so, as of now,
the gains obtained are not proportional to the compression rate, therefore,
to achieve computational gains, the pruning must be extremely high.

In this work, being aware of the high prunability of the MAM layer, I
adopted this strategy. Specifically, I investigated how long the network needs
to be trained after setting β to zero in (4.9) to determine at what point
the crucial interconnections are identified. However, the savings from this
strategic anticipation of the pruning phase are assessed only in terms of
theoretical FLOPs saved, and an actual sparse training is not implemented
due to the difficulties mentioned above.

Additionally, as mentioned earlier, it is crucial to use hardware accelerators
like GPUs for these models, which require specially programmed kernels to
achieve high efficiency. Despite the existence of a kernel specifically designed
for MAM optimization, its performance is still about three times worse than
that of a MAC kernel. Building on previous concepts, this work investigates
further optimization of the training process as follows: before the network
converges, it is pruned. Then, the MAC layer is directly reinserted, allowing
for optimization through both the more efficient kernel and potentially, as
before, sparse training.

5.2 Dynamic Sparse Training Comparison
Despite the MAM layer having a formulation 4.6 that may appear quite
different from that of dynamic sparse training 3.6 at first, once it is noted that
after pruning, the MAM layer can revert to a MAC layer, certain parallels
can be observed. This layer can be viewed as a particular case of DST,
with two substantial differences: firstly, instead of the weight matrix W , the
weighted input matrix V is used; secondly, rather than having a threshold

30

MAM as a pruning tool for MAC

based on the minimum value a weight should have, there is a threshold based
on how many are selected, namely 2 (i.e., the largest and smallest values).

From this perspective, it is also noteworthy that the option of choosing
only two values is due to the use of the matrix V (moreover, maintaining
more than two values in this setting would not be feasible, as it would involve
excessively high computational and memory cost). If this were not the case
and the weight matrix were used instead, the same interconnections would
always be selected, leading to significantly inferior performance.

Similarities can also be observed during the initial training phase; in-
deed, in both methods, one starts with a regular MAC layer, which is then
transformed into a sparse structure. However, regarding DST, this occurs
gradually by eliminating some interconnections, whereas with MAM, it
happens through a gradual reduction in the contribution of the unselected
interconnections.

31

Chapter 6

Experiments

In this section, detailed descriptions of all datasets, architectures, hyperpa-
rameters and all the information needed to ensure the replicability of the
experiments are provided. The investigation begins by replicating the find-
ings from [12] on the efficacy of pruning the MAM layer. It then explores the
feasibility of using MAM to prune a MAC layer. Lastly, the study involves
pruning the MAM layer before the network converges, examining scenarios
where the MAM layer remains and where the MAC layer is reintroduced
post-pruning.

6.1 Dataset
Two different computer vision datasets have been used for this work: CIFAR-
10 [31] and ImageNet-1K [32].

1. CIFAR-10: is a widely used benchmark dataset in the field of computer
vision. It consists of 60,000 color images, each belonging to one of ten
classes, including common objects such as airplanes, cars, birds, cats,
and dogs. The dataset is divided into 50,000 training images and 10,000
test images, with each image having a size of 32x32 pixels. CIFAR-10
serves as a standard dataset for training and evaluating image classifica-
tion algorithms and models. Consistent data augmentation is applied,
including image rotation, random cropping, adjustments in brightness,
contrast, and saturation, horizontal flipping, and normalization.

2. Imagenet-1K: is a very popular dataset, consisting of over 1 281 167
high-resolution images across 1,000 object categories. The validation

32

Experiments

and test set have 50000 images. These categories cover a wide range
of objects, animals, scenes, and more, making ImageNet-1K one of
the largest and most diverse datasets available for object recognition
and classification tasks. Data augmentation is performed by random
horizontal flip, random saturation and random change in contrast and
brightness.

Where the pruning set is required, the validation set is utilized, and
evaluation is conducted on the test set.

6.2 MAM training and pruning methodology
The initial experiments conducted concern the prunability of the MAM
layer. For each network, MAM is inserted in place of certain MAC layers
present in the original network. Subsequently, the training phase occurs,
when the network converges, its performance is evaluated, followed by a
one-shot pruning (that is a single pruning phase rather than iteratively) on
the MAM layers using methodologies outlined in 3.1.2, 3.1.3 and 4.1.1. The
network’s performance is then assessed after weight removal.

Specifically, the networks are trained as follows:

1. AlexNet: The MAM layers were inserted in place of the last two fully
connected layers before the classifier, where 54.5 million weights are
present. The network was trained on CIFAR-10 starting from a model
pre-trained on ImageNet-1k. A batch size of 256 was used, along with
Adam with an initial learning rate of 0.0001, trained for a total of 70
epochs with the initial 35 epochs of vanishing contribution.

2. ViT: In this work a pretrained MAM-model is used, trained in this way
[12]: the MAM layers replace the fully connected layers present in the
intermediate and output states of the encoders, containing 28.2 million
total interconnections. During the training on ImageNet Adam was used
with a learning rate of 0.0005, a batch size of 128 and trained for 50
epochs with 12 epochs of vanishing contribution. A model pre-trained
on Imagenet-21k[32] was used.

Pruning is then performed at different granularities with the aim of not
dropping below 3% of the network’s initial accuracy.

33

Experiments

6.3 MAM to prune MAC
The approach to assess the feasibility of pruning a MAC layer using MAM
employs the following pipeline:

• Train the model with MAM until convergence and prune it as described
in 6.2.

• Revert the model to the original network with fully connected layers,
while retaining the same pruned weight matrices obtained with MAM.

• Fine-tuning the network with the same parameters used previously for
training.

The fine-tuning is done for 30 epochs for AlexNet CIFAR-10 and only one
epoch for ViT ImageNet-1K (due to computational resources).

The next experiment, instead, concerns the prunability of the MAM
layer before convergence, specifically to observe if it maintains previous
performance levels and, if so, at what epoch crucial interconnections are
learned. The experiment follows these specified phases:

• Train the model with MAM for a few epochs beyond those of vanishing
gradient.

• Prune the network with the same strategy and threshold that obtained
the best results in the first experiment.

• Fine-tuning the network with the same parameters used previously for
training.

This experiment exclusively focuses on AlexNet trained on CIFAR-10,
using 1, 3, 5, 10, and 15 epochs after the gradient vanishing contribution.
The network is trained using both linear and parabolic β decay.

Finally, the experiment is repeated, with a small adjustment: after pruning
the network, the MAC layer is reintroduced exploiting the sparse matrices
achieved by MAM.

34

Chapter 7

Results

7.1 Pruning Performance
This section is dedicated to demonstrating the prunability of the MAM
layer, employing various pruning strategies and thresholds to identify the
most efficient approach. The goal is to replicate results comparable to those
achieved in [12]. Explicit comparison with the accuracy and prunability
of the MAC layer is not provided, as the findings from the previous works
already extensively confirm that MAM achieves comparable accuracy and
much greater prunability.

In Figure 7.1, the results of pruning AlexNet on CIFAR-10 using LMP,
GMP, LGP, GGP, LPSP, GPSP are reported.

All the proposed methods exhibit highly performance of pruning, manag-
ing to prune about 99.8% of the present interconnections, thus demonstrating
the remarkable effectiveness of this approach. In particular, gradient pruning,
both local and global, as well as local magnitude pruning, appear to be the
most promising methods. An important point to note is the performance
of the probability of selection pruning. It maintains excellent results up to
a certain point, after which there is an immediate and drastic drop. One
explanation for this phenomenon could be that initially, weights that are
never selected, and thus have no impact on performance, are pruned. Subse-
quently, weights that are rarely activated are pruned, sometimes leading to
a slight improvement, likely because it enhances the network’s generalization
capabilities. The performance drop occurs when the remaining weights are
all frequently activated, resulting in very similar scores. At this stage, the
importance assigned to each weight is approximately equal and not very

35

Results

(a) LMP - GMP

(b) LGP - GGP

Figure 7.1: AlexNet CIFAR-10 Pruning

36

Results

(c) LPSP - GPSP

Figure 7.1: AlexNet CIFAR-10 Pruning

significant.
The Figures 7.2, 7.3 and 7.4 show, instead, the results of all the mentioned

pruning methods for ViT trained on ImageNet. Once again, even for this
complex architecture and dataset, it can be observed that the prunability of
the layer is extremely high, retaining only 0.07% of the present weights for
GGP, and demonstrate how Gradient pruning exhibits significantly better
effectiveness compared to other methods. In this case, a notable difference
from before is observed in the behavior of Magnitude pruning, which does
not stand up to comparison with Gradient pruning. For the PSP, similar
observations apply as those discussed earlier.

37

Results

(a) LMP

(b) GMP

Figure 7.2: ViT ImageNet-1K Magnitude Pruning

38

Results

(a) LGP

(b) GGP

Figure 7.3: ViT ImageNet-1K Gradient Pruning

39

Results

(a) LPSP

(b) GPSP

Figure 7.4: ViT ImageNet-1K Probability of Selection Pruning

40

Results

7.1.1 Analysis of Gradient Pruning
In this study, a more specific analysis was conducted to examine why Gradient
Pruning is the method that has yielded the best overall results, particularly
for ViT. One hypothesis for this observation lies in the correlation between
this method and Probability of Selection Pruning. These two methodologies
assign an equal score, namely 0, when a weight is never selected. When a
weight is selected, their scores diverge, yet there exists a correlation: the
gradient accumulates for each weight whenever it is selected, accumulating as
many times as the PSP’s assigned score. Considering the earlier discussion
on PSP’s potential functioning, a new score can be defined as the product of
the Magnitude score and the Probability of Selection score. This approach
combines PSP’s properties during initial pruning phases and associates a score
proportional to the numbers of activations, but not solely dependent on them;
it also considers magnitude, aiming to replicate behavior of the Gradient
Pruning. This could serve to provide experimental evidence supporting these
hypotheses.

Figure 7.5 demonstrates how this method, despite still performing less
effectively than LGP, provides evidence that the hypotheses mentioned above
may be realistic. Indeed, it outperforms both individual LMP and LPSP.

41

Results

Figure 7.5: ViT ImageNet-1K parallelism between LGP and a mixed LMP-
LPSP

42

Results

7.2 Analysis of MAC Pruning Results with
MAM Approach

7.2.1 Exploiting MAM to prune MAC
In this section, I present the experiment to evaluate the feasibility of using
MAM for pruning MAC layers. Recalling the process pipeline: after the
training and pruning process with MAM, the MAC layers are reintroduced,
and the network is fine-tuned.

Pruning MAM MAC
AlexNet CIFAR-10 GGP 99.8% 89.46% 89.91%
ViT ImageNet-1K GGP 99.93% 79.70% 78.95%

Table 7.1: MAM to MAC performance after Pruning

In Table 7.1, the results of this approach are shown once the network has
reached convergence; a comparison is also provided to illustrate how the
MAM layer performs with fine-tuning after pruning. It is worth noting that
the results on ViT trained with ImageNet could potentially be better, as it
was only fine-tuned for one epoch.

The results demonstrate that the hypothesis suggesting the MAM layer
serves to identify crucial interconnections is indeed correct, and that the
non-linearity introduced is not necessary to achieve these performances with
strongly sparse weight matrices. In fact, the result using MAC are comparable
with that using MAM.

7.2.2 Early pruning of MAM
In this following, is demonstrated the possibility of pruning MAM before the
network reaches convergence. After the vanishing contribution, non-essential
weights are removed using GGP with a compression rate of 99.8%. The
network is then further trained with this leaner structure.

The results presented in table 7.2 demonstrate how the crucial intercon-
nections are indeed learned in a phase preceding convergence. Achieving an
even higher top-1 accuracy compared to pruning alone in the final phase,
with a theoretical savings of 99.8% FLOPs for each epoch for the pruned

43

Results

After Epochs 1 Linear β decay Parabolic β decay
1 87.82% 88.87%
3 88.26% 88.64%
5 87.85% 88.95%
10 87.76% 89.33%
15 88.38% 89.46%

Table 7.2: AlexNet CIFAR-10 MAM pruning before convergence

MAM layers if training with sparse matrices were used. his result is achieved
by considering that only 0.2% of the weights remain, while the others have
been removed. Consequently, computational resources will only need to be
used for this small number of weights.

The results also suggest that there is a performance increase when using
a parabolic beta decay. Moreover, utilizing more after epochs indicates a
potential small increase in accuracy, although less than 1%.

Now the experiment is repeated, but MAC is introduced in the place of
the MAM layers after the pruning.

After Epochs Linear β decay Parabolic β decay
1 88.99% 89.33%
3 89.37% 89.75%
5 89.42% 89.46%
10 89.38% 89.53%
15 89.51% 89.79%

Table 7.3: AlexNet CIFAR-10 MAM to MAC before convergence

Table 7.3 presents the results of this approach. It can be observed that
the results are even better than those previously shown, demonstrating not
only that it is possible to prune the MAM layer before convergence, but also
confirming that the crucial interconnections are already identified at this
stage and that is the fundamental property of MAM that makes it extremely

1"After Epochs" is refered to those epochs that are conducted after the vanishing
contributions phase.

44

Results

efficient. Similar analyses to the previous ones are confirmed in this case,
potentially saving 99.87% of the FLOPs compared to normal training without
early pruning of the MAM layers. The savings are greater because the MAC
layer requires only 2 FLOPs per weight compared to the 3 required by MAM.

45

Chapter 8

Conclusions

Throughout this research, the Multiply-And-Max/min (MAM) approach has
been evaluated as a novel technique for pruning and accelerating the training
of neural networks, as well as a pruning tool for MAC.

The initial experiments focused on replicating the previous work concerning
the prunability of the MAM layer within neural networks. This is done by
replacing specific MAC layers with MAM layers, training the network and
conducting one-shot pruning using various methodologies.

The results confirmed that the MAM layer significantly sparsified matrices,
showing its efficacy in reducing model complexity while maintaining high
accuracy. Notably, the experiments on ViT trained on ImageNet-1K revealed
an accuracy drop of less than 3% while removing 99.93% of weights using
Gradient Global Pruning (GGP).

Specifically this work also provides mathematically insights, experimentally
confirmed, into why Gradient Pruning outperforms other techniques. This is
attributed to its inherent correlation with Probability of Selection Pruning,
demonstrated through the development of a customized scoring mechanism
that mimics the characteristics of Gradient Pruning.

The central contribution of this work was founding out that after pruning
a MAM layer, it can be reverted to a MAC layer while preserving the same
sparse matrices previously generated. This approach facilitates a training
pipeline that concludes with the network retaining its original structure. This
approach is adopted because the MAM layer introduces computationally
challenges. Altering the structure of the net increases the theoretical FLOPs
per weight from 2 (typical for a MAC layer) to 3. Additionally, MAC layers
benefit from widely optimized hardware, ensuring efficient performance. In

46

Conclusions

contrast, MAM layers lack such hardware optimization and would require
specialized hardware adaptations.

The transition from deeply pruned MAM structures to deeply pruned MAC
structures achived an accuracy of 78.95% for ViT trained on ImageNet-1k,
obtaining an incredible compression for the MAC layer.

Another important contribution concern experiments involving pruning
DNN layers before convergence, showing the MAM layer’s capability to
identify crucial interconnections early in the training process. The reason
for this is because in recent years, the development and deployment of large
neural network models have posed significant challenges related to resource
requirements during the training. This early pruning potentially leads to
significant server-side savings up to 99.8% FLOPs for the pruned layers
during the final stages of training for AlexNet trained on CIFAR-10.

These aspects find further confirmation through parallels with dynamic
sparse training, as shown in paragraph 5.2. It can thus be concluded that
the MAM layer can be utilized as a method of dynamic pruning based on
the provisional modification of the neural network’s structure.

47

Appendix A

Linear and Parabolic Beta
Decay

In transitioning from the MAC to the MAM layer, β must decrease from
1 to 0. To achieve this, various monotonically decreasing functions can be
defined to exhibit this behavior. Particularly, an analysis on:

1. Linear:
β = − 1

Q
q + 1 (A.1)

2. Parabolic:
β = 1

Q2 q2 − 2
Q

q + 1 (A.2)

Where Q is the number of epoch used for the transition and q is the current
epoch.

The profiles of functions A.1 and A.2 can be seen in Figures A.1 and
A.2 for different values of Q. Empirically, it is observed that both lead
to comparable results. However, during training, near β = 0, there is a
performance decrease that is less pronounced when using parabolic decay
rather than linear decay.

48

Linear and Parabolic Beta Decay

(a)

(b)

Figure A.1: Linear Decay with Q = 20(b), 40(d).

49

Linear and Parabolic Beta Decay

(a)

(b)

Figure A.2: Parabolic Decay with Q = 20(a), 40(b).

50

Bibliography

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Con-
volutional Networks for Biomedical Image Segmentation. 2015. arXiv:
1505.04597 [cs.CV]. url: https://arxiv.org/abs/1505.04597
(cit. on p. 1).

[2] Pawan Kumar Mall, Pradeep Kumar Singh, Swapnita Srivastav, Vipul
Narayan, Marcin Paprzycki, Tatiana Jaworska, and Maria Ganzha.
«A comprehensive review of deep neural networks for medical im-
age processing: Recent developments and future opportunities». In:
Healthcare Analytics 4 (2023), p. 100216. issn: 2772-4425. doi: https:
//doi.org/10.1016/j.health.2023.100216. url: https://www.
sciencedirect . com / science / article / pii / S2772442523000837
(cit. on p. 1).

[3] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and
Khaled Shaalan. «Speech Recognition Using Deep Neural Networks: A
Systematic Review». In: IEEE Access 7 (2019), pp. 19143–19165. doi:
10.1109/ACCESS.2019.2896880 (cit. on p. 1).

[4] Pranav Singh Chib and Pravendra Singh. Recent Advancements in
End-to-End Autonomous Driving using Deep Learning: A Survey. 2023.
arXiv: 2307.04370 [cs.RO]. url: https://arxiv.org/abs/2307.
04370 (cit. on p. 1).

[5] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303 . 08774
[cs.CL]. url: https://arxiv.org/abs/2303.08774 (cit. on pp. 1,
12).

[6] Fangxin Wang, Miao Zhang, Xiangxiang Wang, Xiaoqiang Ma, and
Jiangchuan Liu. «Deep Learning for Edge Computing Applications: A
State-of-the-Art Survey». In: IEEE Access 8 (2020), pp. 58322–58336.
doi: 10.1109/ACCESS.2020.2982411 (cit. on p. 2).

51

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/https://doi.org/10.1016/j.health.2023.100216
https://doi.org/https://doi.org/10.1016/j.health.2023.100216
https://www.sciencedirect.com/science/article/pii/S2772442523000837
https://www.sciencedirect.com/science/article/pii/S2772442523000837
https://doi.org/10.1109/ACCESS.2019.2896880
https://arxiv.org/abs/2307.04370
https://arxiv.org/abs/2307.04370
https://arxiv.org/abs/2307.04370
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ACCESS.2020.2982411

BIBLIOGRAPHY

[7] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han.
«Tiny Machine Learning: Progress and Futures [Feature]». In: IEEE
Circuits and Systems Magazine 23.3 (2023), pp. 8–34. issn: 1558-0830.
doi: 10.1109/mcas.2023.3302182. url: http://dx.doi.org/10.
1109/MCAS.2023.3302182 (cit. on p. 2).

[8] Guangji Bai et al. Beyond Efficiency: A Systematic Survey of Resource-
Efficient Large Language Models. 2024. arXiv: 2401.00625 [cs.LG].
url: https://arxiv.org/abs/2401.00625 (cit. on pp. 2, 12).

[9] Vadera; Sunil and Ameen; Salem. «Methods for Pruning Deep Neural
Networks». In: IEEE Access 10 (2022), pp. 63280–63300. doi: 10.1109/
ACCESS.2022.3182659 (cit. on pp. 2, 18).

[10] Hongrong Cheng; Miao Zhang; Javen Qinfeng Shi. «A Survey on Deep
Neural Network Pruning-Taxonomy, Comparison, Analysis, and Rec-
ommendations». In: (2023). doi: https://doi.org/10.48550/arXiv.
2308.06767 (cit. on pp. 2, 18).

[11] Philippe Bich, Luciano Prono, Mauro Mangia, Fabio Pareschi, Riccardo
Rovatti, and Gianluca Setti. «Aggressively prunable MAM2-based Deep
Neural Oracle for ECG acquisition by Compressed Sensing». In: 2022
IEEE Biomedical Circuits and Systems Conference (BioCAS). 2022,
pp. 163–167. doi: 10.1109/BioCAS54905.2022.9948676 (cit. on pp. 3,
23).

[12] Luciano Prono, Philippe Bich, Chiara Boretti, Mauro Mangia, Fabio
Pareschi, Riccardo Rovatti, and Gianluca Setti. «A Multiply-And-
Max/min Neuron Paradigm for Aggressively Prunable Deep Neural
Networks». In: (Feb. 2024). doi: 10.36227/techrxiv.22561567.v2.
url: http://dx.doi.org/10.36227/techrxiv.22561567.v2 (cit. on
pp. 3, 23, 32, 33, 35).

[13] Ian Goodfellow; Yoshua Bengio; Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 5).

[14] Rumelhart; Hinton; Williams. «Learning representations by back-propagating
errors». In: 323 (6088) (1986), pp. 533–536. doi: doi : 10 . 1038 /
323533a0 (cit. on p. 6).

[15] url: https://www.developersmaggioli.it/blog/le-reti-neural
i-ricorrenti/ (cit. on p. 7).

[16] url: https://www.ce.unipr.it/people/medici/geometry/node11
2.html (cit. on p. 7).

52

https://doi.org/10.1109/mcas.2023.3302182
http://dx.doi.org/10.1109/MCAS.2023.3302182
http://dx.doi.org/10.1109/MCAS.2023.3302182
https://arxiv.org/abs/2401.00625
https://arxiv.org/abs/2401.00625
https://doi.org/10.1109/ACCESS.2022.3182659
https://doi.org/10.1109/ACCESS.2022.3182659
https://doi.org/https://doi.org/10.48550/arXiv.2308.06767
https://doi.org/https://doi.org/10.48550/arXiv.2308.06767
https://doi.org/10.1109/BioCAS54905.2022.9948676
https://doi.org/10.36227/techrxiv.22561567.v2
http://dx.doi.org/10.36227/techrxiv.22561567.v2
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/doi:10.1038/323533a0
https://doi.org/doi:10.1038/323533a0
https://www.developersmaggioli.it/blog/le-reti-neurali-ricorrenti/
https://www.developersmaggioli.it/blog/le-reti-neurali-ricorrenti/
https://www.ce.unipr.it/people/medici/geometry/node112.html
https://www.ce.unipr.it/people/medici/geometry/node112.html

BIBLIOGRAPHY

[17] Ragav Venkatesan; Baoxin Li. Convolutional Neural Networks in Visual
Computing. First. CRC Press, 2017. doi: https://doi.org/10.4324/
9781315154282 (cit. on p. 7).

[18] url: https://it.wikipedia.org/wiki/Rete_neurale_convoluzio
nale#/media/File:Typical_cnn.png (cit. on p. 8).

[19] Alex Krizhevsky;Ilya Sutskever;Geoffrey E. Hinton. «ImageNet clas-
sification with deep convolutional neural networks». In: (2012). doi:
https://doi.org/10.1145/3065386 (cit. on p. 9).

[20] Alex Krizhevsky. «One weird trick for parallelizing convolutional neural
networks». In: (2014). doi: https://doi.org/10.48550/arXiv.1404.
5997 (cit. on p. 9).

[21] url: https://medium.com/swlh/scratch-to-sota-build-famous-
classification-nets-2-alexnet-vgg-50a4f55f7f56 (cit. on p. 11).

[22] Ashish Vaswani; Noam Shazeer; Niki Parmar; Jakob Uszkoreit; Llion
Jones; Aidan N. Gomez; Lukasz Kaiser; Illia Polosukhin. «Attention Is
All You Need». In: (2017). doi: https://doi.org/10.48550/arXiv.
1706.03762 (cit. on pp. 12, 13).

[23] Alexey Dosovitskiy; Lucas Beyer; Alexander Kolesnikov; Dirk Weis-
senborn; Xiaohua Zhai; Thomas Unterthiner; Mostafa Dehghani; Matthias
Minderer; Georg Heigold; Sylvain Gelly; Jakob Uszkoreit; Neil Houlsby.
«An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale». In: (2020). doi: https://doi.org/10.48550/arXiv.2010.
11929 (cit. on p. 14).

[24] Davis Blalock; Jose Javier Gonzalez Ortiz; Jonathan Frankle; John
Guttag. «What is the State of Neural Network Pruning?» In: (2020).
doi: https://doi.org/10.48550/arXiv.2003.03033 (cit. on p. 18).

[25] Song Han; Huizi Mao; William J. Dally. «Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization
and Huffman Coding». In: (2015). doi: https://doi.org/10.48550/
arXiv.1510.00149 (cit. on p. 19).

[26] Zhonghui You; Kun Yan; Jinmian Ye; Meng Ma; Ping Wang. «Gate
Decorator: Global Filter Pruning Method for Accelerating Deep Con-
volutional Neural Networks». In: (2019). doi: https://doi.org/10.
48550/arXiv.1909.08174 (cit. on p. 19).

53

https://doi.org/https://doi.org/10.4324/9781315154282
https://doi.org/https://doi.org/10.4324/9781315154282
https://it.wikipedia.org/wiki/Rete_neurale_convoluzionale#/media/File:Typical_cnn.png
https://it.wikipedia.org/wiki/Rete_neurale_convoluzionale#/media/File:Typical_cnn.png
https://doi.org/https://doi.org/10.1145/3065386
https://doi.org/https://doi.org/10.48550/arXiv.1404.5997
https://doi.org/https://doi.org/10.48550/arXiv.1404.5997
https://medium.com/swlh/scratch-to-sota-build-famous-classification-nets-2-alexnet-vgg-50a4f55f7f56
https://medium.com/swlh/scratch-to-sota-build-famous-classification-nets-2-alexnet-vgg-50a4f55f7f56
https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/https://doi.org/10.48550/arXiv.2003.03033
https://doi.org/https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/https://doi.org/10.48550/arXiv.1909.08174
https://doi.org/https://doi.org/10.48550/arXiv.1909.08174

BIBLIOGRAPHY

[27] Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden
K. H. So. Dynamic Sparse Training: Find Efficient Sparse Network
From Scratch With Trainable Masked Layers. 2020. arXiv: 2005.06870
[cs.LG] (cit. on p. 20).

[28] Jonathan Frankle; Michael Carbin. «The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks». In: (2019). doi: https:
//doi.org/10.48550/arXiv.1803.03635 (cit. on p. 20).

[29] Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent
Advances on Neural Network Pruning at Initialization. 2022. arXiv:
2103.06460 [cs.LG]. url: https://arxiv.org/abs/2103.06460
(cit. on p. 22).

[30] Maying Shen, Pavlo Molchanov, Hongxu Yin, and Jose M. Alvarez.
When to Prune? A Policy towards Early Structural Pruning. 2021. arXiv:
2110.12007 [cs.CV]. url: https://arxiv.org/abs/2110.12007
(cit. on p. 30).

[31] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny
Images». In: 2009. url: https://api.semanticscholar.org/Corpus
ID:18268744 (cit. on p. 32).

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. «ImageNet: A large-scale hierarchical image database». In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848 (cit. on pp. 32, 33).

54

https://arxiv.org/abs/2005.06870
https://arxiv.org/abs/2005.06870
https://doi.org/https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/https://doi.org/10.48550/arXiv.1803.03635
https://arxiv.org/abs/2103.06460
https://arxiv.org/abs/2103.06460
https://arxiv.org/abs/2110.12007
https://arxiv.org/abs/2110.12007
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://doi.org/10.1109/CVPR.2009.5206848

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Objective

	Deep Neural Networks
	Convolutional Neural Networks
	AlexNet

	Transformers
	ViT

	Pruning
	Unstructured Pruning
	Random Pruning
	Magnitude Based Pruning
	Gradient Based Pruning
	Dynamic Sparse Training

	Lottery Ticket Hypothesis

	Multiply and Max/Min Layer
	MAM description
	Probability of Selection Pruning

	Backpropagation and vanishing contributions method

	MAM as a pruning tool for MAC
	Pruning Before Convergence
	Dynamic Sparse Training Comparison

	Experiments
	Dataset
	MAM training and pruning methodology
	MAM to prune MAC

	Results
	Pruning Performance
	Analysis of Gradient Pruning

	Analysis of MAC Pruning Results with MAM Approach
	Exploiting MAM to prune MAC
	Early pruning of MAM

	Conclusions
	Linear and Parabolic Beta Decay
	Bibliography

