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 ABSTRACT 

In recent years, Artificial Intelligence (AI), including the emergence of 

ChatGPT, has attracted significant attention due to its increasing 

prevalence in several aspects of business processes. AI involves the 

development of automated systems capable of executing tasks 

traditionally performed by humans, with the aim of speeding up processes 

and reducing wasted time within organisations. This technology has also 

opened significant opportunities for application in the legal sector, 

traditionally engaged in analysing large amounts of documentation. This 

Master's thesis explores the use of Large Language Models (LLM) to 

support legal staff and reduce document management time. The aim of 

this research is to study, design, develop a POC (proof of concept) to 

address these challenges by implementing a web application where 

lawyers can analyse contracts e generate contract. The application is 

based on Retrieval-Augmented Generation (RAG) capable of providing 

fast, effective and high-quality responses. To achieve this goal, an in-

depth analysis was conducted on large language models and the prompts 

used to guide them. To achieve this, the analyses focused on the 

effectiveness of LLMs in interpreting legal language and their ability to 

integrate information to produce relevant and coherent output. Particular 

attention was paid to the configuration of prompts and their optimisation to 

improve the accuracy of responses. In conclusion, this thesis highlights the 

considerable potential of generative AI in the legal field. By integrating the 

advantages of semantic embeddings for information retrieval with those of 

generative AI for producing answers, lawyers can significantly reduce the 

time spent in drafting new contracts, taking into account previous clauses, 

and analysing new contracts. This approach enables effective optimisation 

of legal processes, making contract management more efficient and 

accurate. 
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1. INTRODUCTION 

 

Over the past several years, Artificial Intelligence (AI), including the 

emergence of ChatGPT, has attracted significant attention due to its 

increasing prevalence in various aspects of enterprise operations. AI 

involves developing automated systems capable of performing tasks 

traditionally carried out by humans, aiming to streamline processes and 

reduce time wastage within enterprises. This integration of AI into systems 

is gaining momentum as companies recognize its potential to enhance 

efficiency and productivity. In the legal field, enterprises are often 

inundated with a vast number of contract documents containing various 

types of clauses. Many times, during contract drafting, lawyers spend 

considerable time analysing numerous contracts to choose the correct 

clause. 

Centralizing and standardizing document management across various 

sources and formats would empower any lawyers to access necessary 

information by querying an intelligent system. 

This master's thesis, conducted in partnership with Orbyta, explores the 

integration of generative AI in the legal field by proposing a pipeline for 

contract analysis and clause generation. The key component of this 

approach is an information retriever that employs semantic embedding to 

grasp the connection and implicit meaning among words. By adopting this 

method, the system can identify and retrieve a set of documents that are 

most pertinent to the user’s query efficiently. This functionality enhances 

the user experience by offering precise and direct solutions, reducing 

cognitive overload, and eliminating the need to access multiple documents 

for information. 

This thesis aims to develop a POC (prof of concept) to address these 
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challenges by implementing a web application where lawyers can analyse 

contracts e generate contract. This web application is intended to offer a 

user-friendly experience, enabling users to make requests without the 

need for complex query languages. 
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2. ORBYTA 

2.1 PROVIDER PROFILE 

Orbyta Tech is the technology company of the Orbyta Group, which 

comprises seven companies. Thanks to the know-how and specialised 

skills of the individual companies, Orbyta offers its customers 

comprehensive support and consulting, covering all areas of business 

interest. The group's offering is structured in two macro-brands, each of 

which addresses specific customer targets and sectors: 

 

 

FIGURE 2.1: THE ORBYTA GROUP LOGO 

 

 

 

• Orbyta Technologies: A leading IT consultancy company, Orbyta 
Technologies specialises in both applications and systems. It 

develops highly complex projects using the most advanced 

technologies and state-of-the-art methodologies. Its expertise 

includes the design, implementation, integration and maintenance 

of software, hardware and IoT systems. Its divisions include: 

o Orbyta Tech: Focused on software development and 

systems support, it offers integrated solutions and designs IT 
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infrastructures, providing consultancy services and turnkey 

projects. 

o Orbyta Infogest: Focuses on designing, supplying and 

reselling hardware, as well as installing and servicing PCs, 

servers, storage and internetworking solutions for diversified 

operating environments. 

• Orbyta Business Partner: This division provides essential 

business support services, assisting customers in the areas of 

compliance, engineering design, and accounting, administrative, tax 

and financial management. It also offers payroll processing and 

outsourced human resources management services, as well as out-

of-court and in-court legal assistance. 

The well-established synergy between the group's companies makes 

Orbyta a reliable and comprehensive partner, capable of offering a wide 

range of services and solutions. This integrated approach allows Orbyta to 

successfully meet the challenges of the market, guaranteeing efficient and 

tailor-made solutions for every customer need. The companies that are 

part of the business partner area are: 

• Orbyta Engineering: Specialising in civil and industrial 

engineering, this company offers design and construction 

management services, identifying customised solutions that comply 

with legal requirements and aim to simplify corporate compliance. 

• Orbyta Tax&Finance: This division focuses on tax and corporate 

consulting, providing support for management, accounting and all 

civil and tax obligations necessary for business activities. 

• Orbyta People: Provides consultancy in the employment area, 
managing administration and human resources, payroll processing, 
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time management, benefits, welfare and labour relations. 

• Orbyta Legal: This division provides legal assistance and advice, 

both judicial and extrajudicial, with a particular focus on business 

management and development, offering ongoing support. 

• Orbyta Strategy This in-house company contributes to the 

continuous improvement of business processes. It provides 

integrated services for corporate organisation and growth, setting 

strategies and managing the Group's internal dynamics. 

2.1.1 KEY PROVIDER INFORMATION 

Orbyta is a constantly growing group, with a 2022 turnover of 15 million 

euros. The group has about 250 employees and is in various locations: 

Turin, Milan, Rome, Lecce. These offices and the presence of consultants 

located in other areas allow the company to cover geographically the 

whole Italian territory. The process of analyzing and evaluating 

investments and acquisitions in foreign offices, particularly in Germany, it’s 

currently happening. 
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2.2 PROVIDER ORGANIZATION OVERVIEW 

At Orbyta Technologies, innovation is at the heart of every activity. The 

company guides its partners through the conception, design and 

development of technological processes that are not only interactive but 

also fully immersive. With highly specialised multidisciplinary expertise, 

Orbyta stands out in the field of design, development and implementation 

of complex information systems and state-of-the-art digital solutions. A 

dedicated team is always ready to provide support to partners and 

companies alike, turning accumulated experience into continuous 

innovation. Orbyta's offering is organised in the following areas: 

 

• Digital Transformation: Orbyta Technologies guides and supports 
partners in their digital transformation journey, offering technological 

solutions and IT architectures in line with growth objectives. The 

cross-skilled consulting team manages every aspect of the process, 

coordinating all activities and monitoring performance. The ability to 

go beyond traditional schemes and a holistic view of business 

processes allow innovation and efficiency to be optimised. 

 

• Software Development: develop tailor made technological 
solutions implementing a wide range of IT products and projects in 

multiple areas of intervention, with carefully composed teams with 

specialist skills ranging from project management to the most up-to-

date ICT training. The aim is to become a reference point for the IT 

architecture of each partner thanks to the planning and 

management capacity of information systems and subsystems of 
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the team in our software house, Area 51. 

 

• Design & Strategy: XLAB, Orbyta Tech's creative team, is 

dedicated to promoting digital growth and developing high impact 

omnichannel strategies. It focuses on creating connections using an 

effective mix of user experience, digital interface design, creative 

communication and digital marketing. Working at the intersection of 

business, technology and design in all its forms (Design Thinking, 

Human-Centred Design, System Design, Service Design, Futures 

Design, User Experience, User Interface) XLAB aims to transform 

innovative visions into tangible realities. 

The team consists of pixel-perfect and enthusiastic futurists, who 

collaborate with the partners at all stages of the project, from analysis and 

design to prototyping and testing. The customer is a member of the team, 

an irreplaceable project partner in the co-creation of the best digital 

product. The company's competencies are User research, UI/UX Design, 

Brand Design, Brand Strategy, 3D Design, Creative & Integrated 

Communication, Web Experience Development and Metaverse Creation. 

The company's approach is: 

• Collaboration: smart working, hybrid and presence modes to 
ensure efficiency in every situation. It uses the best collaboration 

tools, such as Trello, FigJam, InVision, Zeplin and many others, to 

keep teams synchronised and projects aligned with customer 

expectations. 

• Design: employs the best design and development tools available 

on a daily basis, including Figma, Sketch, Adobe, Blender and 

Webflow. This allows it to remain at the forefront of design and to 
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respond effectively to its customers' needs. 

• Innovation: constantly dedicated to innovation and 

experimentation, especially in the creation of 3D environments in 

the Metaverse. This approach is geared towards devising new 

business models that take advantage of the latest technologies and 

market trends 

• Infrastructure Networking: offerinh advanced networking and 

security enhancement services for the corporate network. It 

identifies connectivity needs and makes projects operational, 

working both remotely and on-site. Its consolidated experience, 

combined with a constant search for the most innovative 

technologies, guarantees systemic support and management 

consultancy in large data processing centres, including the banking, 

insurance and industrial sectors. 

• Hardware Reselling: specialising in the creation of customised 

hardware infrastructures, supported by a continuous, high added-

value consultancy process that facilitates organisational and 

management change and development of business flows. The 

process begins with understanding the customer's needs, followed 

by building the necessary framework and guiding integration with 

day-to-day business operations. Each solution is built to be secure 

and reliable, with careful evaluation of the best available 

technologies. The Infogest team utilises established partnerships 

with leading market players such as HP, Microsoft, Fortinet, 

VMware, Veeam and Arcserve, thus ensuring access to state-of-

the-art solutions in the technology sector. 

The current organization of Orbyta Tech in 4 Units and Dedicated Teams 

for customers and projects with similar technology stacks, makes possible 
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the parallel and coordinated development of initiatives: 

• Intelligent Platform: Design of complex and resilient Cloud Native 

architectures, Data Analytics, ML and AI. 

• Process Automation: Design and development of software 

modules on the Microsoft DotNet stack, Java, Node, Javascript and 

Python. 

• Digital & App Innovation: Design and development of web client, 
desktop and mobile applications, with different targets and 

development stacks, such as Angular, React, Vue, Flutter, 

ReactNative, Swift, Kotlin. 

• Business Consulting: Governance and management of complex 
projects, with the application of the best methodologies and 

development of automated test phases. 

2.3 BUSINESS PROVIDER STRATEGY AND 
PROFILE 

Orbyta Tech operates in the area as a System Integrator and offers 

consultancy to large corporate client companies from various fields, 

including: 

• Banking & Insurance: Design products for every branch of 

business, from digital payment services to fraud control, web 

security and encryption services, from a template predictive 

decision-making on financing to an operations asset management 

software, up to the creation of an application for managing the 

migration of a complex set of data. 

• Automotive & Industrial: Work in synergy with partners, 
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international companies of recognized fame, for the development 

of: high-speed data streaming and display mechanisms towards 

remote customers; a complete modeling of the life cycle of software 

with complex functions of predictive maintenance, intrusion 

detection, mitigation and firmware over the air update; platforms for 

the management of complete technical documentation of products 

with data profiling and automation capabilities for use by teams; 

application for the cross-management of stock availability and 

supplies purchase in relation to production times. 

• Transportation: Carry out innovative technological projects that 
contribute to the relevant need of the transport and logistics sector 

to carry on a process of digitization of systems to promote 

increasingly integrated mobility; to return punctual and in real time 

information, to maintain the attractiveness for users of the services. 

• Manufacturing: Structure solutions capable of integrating, 

harmonizing and aggregating data from multiple sources with the 

aim of extracting value and optimizing workflows. It’s about projects 

of high strategic value that facilitate monitoring, verification and 

control and provide important forward-looking data. 

 

• Textile & Fashion: Design digital solutions of great strategic impact 

that intervene in all phases of the production processes. 

Technology becomes an essential resource for being competitive in 

a sector strongly permeated by craftsmanship and element crucial 

to consolidate the presence on the market and satisfy, if not even 

anticipate customer needs. 

• Gaming: Conceive and develop proposals that are characterized as 
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augmented and virtual experiences, totally immersive, also through 

the creation and use of avatars. Design solutions that through 

gaming elements are oriented to improve the company performance 

through user engagement strategies aimed at multiple goals. 

Orbyta Tech mainly deals with: Technical consulting, Business analysis, 

Research and development, Software development and operations, 

Process management and support, Digital transformation, Data analysis, 

Cloud, lean processes & new digital core, IOT and connected services. 

Orbyta Tech is historically Gold Partner of Microsoft, cultivates further 

expertise in the public Cloud area also with Amazon Web Services (AWS) 

and Google cloud. As part of the management of multi-cloud native cloud 

platforms, the simplification of IT operations and the improving of software 

product efficiency, Orbyta Tech is a partner of the Mia Platform company. 
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3. BACKGROUND 

Natural language is the primary medium through which humans 

communicate and express their thoughts. The term Natural Language 

Processing (NLP) describes the field that analyzes natural language. 

This chapter provides a brief introduction to NLP in section 3.1, and then 

discusses the significant contributions of deep learning models in section 

3.5, made possible by the exponential growth in computational power. 

3.1 INTRODUCTION TO NATURAL LANGUAGE 
PROCESSING (NLP) 

This chapter serves to introduce key concepts in Natural Language 

Processing (NLP) essential for comprehending the methodologies 

employed in this thesis.  

The overarching objective of NLP has always been to enable machines to 

comprehend human-written text. Given the complexity of language, 

machine understanding is organized into distinct levels, resembling a 

pipeline: 

• Lexicon: This refers to the dictionary of words utilized. 

• Morphology: It involves analyzing how words are formed by 
combining morphemes, which are the smallest units of meaning 

(e.g., root and affixes). Morphological analysis aims to decompose 

words into their constituent morphemes, akin to stemming, which 

reduces a word to its base form or lemma. 

• Syntax: This concerns the arrangement of words to form 

grammatically correct sentences, including understanding 
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grammatical relationships such as subject-object linkages and 

dependencies. 

• Semantics: This involves interpreting the meaning of individual 

words and how they combine to convey the overall meaning of a 

sentence. 

• Pragmatics: This examines how the meaning of a sentence is 

influenced by the context in which it is used, including social, 

cultural, and spatial-temporal factors. It considers the intended 

purpose or concept conveyed by the user within a given context. 

In applications involving spoken language, an additional level of analysis—

Phonetics and Phonology—is often required to understand the sounds that 

constitute a language. 

Due to the exponential growth of textual data, Natural Language 

Processing (NLP) has gained significant importance in recent years. 

Particularly with the growth of machine learning and deep learning 

techniques, a wide array of problems can now be effectively tackled, 

including sentiment analysis, machine translation, text summarization, and 

more. 

Understanding the context in which language is used is crucial, but it 

presents several challenges. Firstly, many words in various languages can 

have multiple meanings, necessitating the elimination of ambiguity. Word 

sense disambiguation, an active area of research in NLP, aims to address 

this by identifying the correct sense of ambiguous words within a specific 

document. 

Secondly, the understanding task involves documents from diverse 

domains, each with unique characteristics that NLP models need to grasp. 
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Despite these challenges, the success of an NLP algorithm is determined 

by its ability to accurately accomplish its task, regardless of whether it 

possesses explicit knowledge of the underlying linguistic structure or 

concepts involved. 

3.1.1 HISTORY 

During the 1960s, research was primarily focused on creating rules to 

manually model human language. Data-driven approaches were deemed 

impractical due to the large data sizes required, high processing overhead, 

and the need for efficient learning algorithms. Consequently, the most 

viable method for language models involved manually defined rules that 

incorporated local linguistic dependencies for specific NLP tasks. Despite 

their usefulness, these approaches had notable limitations: the 

effectiveness of the rules depended on the knowledge of their creators and 

updating and adapting them to new languages required substantial effort. 

 

In the late 1980s, performance improvements were achieved through the 

adoption of statistical methods, facilitated by advancements in 

computational power and access to extensive text corpora. Statistical 

techniques addressed the limitations of their predecessors by enabling the 

long-term modelling of language dependencies, automating the training 

process, and reducing reliance on human intervention. This transition from 

traditional to statistical techniques paved the way for the development of 

new machine learning algorithms, such as decision trees, which have 

demonstrated efficacy in various natural language processing tasks, 

including part-of-speech tagging. 

In applying statistical techniques, language processing and generation 

activities utilized the concept of n-grams. An n-gram represents a 
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sequence of n consecutive elements in a text sample, expressed in words 

or characters. For example, a bi-gram extracted from the phrase "machine 

learning and deep learning" would include pairs like "machine learning," 

"learning and," and so on. This approach, extended to character-based bi-

grams, captures sequences such as "ma," "ac," "ch," "hi," "in," "ne," and so 

forth. The objective is to establish a series of elements and leverage 

statistical techniques to ascertain the likelihood of their co-occurrence. 

This succinct yet dynamic definition of n-grams has spurred the 

development of innovative text generation systems, information retrieval 

techniques, text mining methods, and other applications. By applying n-

gram definitions, a fresh approach to document representation has 

emerged, focusing on individual words. 

 

FIGURE 3.1: THE EVOLUTION OF NATURAL LANGUAGE PROCESSING 
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3.2 TEXT REPRESENTATION 

In the field of NLP, how data is represented is critical. Text representation 

in NLP involves converting words, sentences, or documents into numerical 

or vectorized formats, enabling analysis and processing by Machine 

Learning (ML) algorithms. 

The Bag-of-Words (BOW) approach is a widely employed method for text 

representation in NLP. Its concept is straightforward yet highly practical. 

BOW treats text as a "bag" of words, disregarding their order, and counts 

the occurrences of each word in the document or collection of documents. 

The process consists of the following steps: 

1. Tokenization: The text is segmented into individual words or "tokens." 

2. Vocabulary creation: A vocabulary is constructed, containing all 

unique words present in the documents. 

3. BOW vector: For each document or sentence, a numeric vector is 

generated with a length equal to the vocabulary size. Each position in the 

vector corresponds to a word in the vocabulary, and the value at each 

position indicates the frequency of the word in the document. 

The encoding used in the bag-of-words representation presents a 

fundamental issue, as it only indicates whether a word appears at least 

once in a document. While straightforward to use, this method fails to 

account for the frequency of a word within the document. The Vector 

Space Model (VSM) offers a solution to this problem. Originally designed 

for information retrieval, the VSM has been extensively applied in various 

NLP tasks. In the VSM, the frequency of each word is used to represent 

the document, rather than just the presence of words. This approach is 

further refined by incorporating TF-IDF (term frequency-inverse document 

frequency) [28], a commonly used statistic that highlights the significance 
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of a term in a document relative to a collection or corpus. The inverse 

document frequency (IDF) component of TF-IDF penalizes frequently 

occurring words, as these are less distinctive within the collection. 

Although more precise than the bag-of-words approach, TF-IDF still faces 

challenges related to data sparsity and the absence of contextual  

3.3 EMBEDDING 

3.3.1 WORD EMBEDDING 

Unlike traditional text representation methods, word embeddings capture 

semantic relationships and contextual information. Essentially, word 

embeddings represent words as vectors in a continuous vector space, 

positioning words with similar meanings closer to each other. 

Word2Vec is a pioneering approach proposed by Mikolov et al. in 2013 [1] 

to learn word embeddings. The core idea is to train a neural network 

where, given a target word in a dictionary, a sliding window moves over 

the text to collect training samples and make predictions. The objective is 

to predict the surrounding words of the target word, using the sliding 

window to define contextual positive examples (self-supervision). The size 

of this window determines how many words before and after the target 

word are considered as context words. Mikolov and his colleagues also 

addressed the complementary task of training a neural network to predict 

the target word given the context words. To achieve this, they proposed 

two architectures:  

 

CBOW (Continuous Bag-of-Words) [1]: This model predicts the current 

word based on a window of surrounding context consisting of 𝐶 words 

within a range of 𝑘 words. The order of the context words does not 

influence the prediction (bag-of-words assumption), and any repetition of 
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words is ignored. 

 

FIGURE 3.2: CONTINUOUS BAG-OF-WORDS(CBOW) ARCHITECTURE [1] 

 

Skip-Gram [1]: This model uses the current word to predict the 

surrounding context within a window of 𝐶 words. The skip-gram 

architecture assigns more weight to nearby context words than to those 

that are more distant. 
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FIGURE 3.3:SKIP-GRAM ARCHITECTURE [1] 

The model consists of a single hidden layer that produces the vector 

representation of words. These vectors are initialized with random values 

and gradually updated during training. It is important to note that the 

training procedure does not require annotations. Both training strategies 

are illustrated in Figure 3.1. 

Given a sequence of training words 𝑤1,𝑤2,…,𝑤𝑇w1,w2,…,wT with a total 

length 𝑇, the objective function of the Continuous Skip-Gram model is to 

maximize the average log probability: 

1

𝑇
∑  

𝑇

𝑡=1

∑  

−𝑐≤𝑗≤𝑐,𝑗≠0

log⁡ 𝑝(𝑤𝑡+𝑗 ∣ 𝑤𝑡) 

where 𝑐 is the size of the training context. 

In contrast, the Continuous Bag-of-Words (CBOW) model aims to predict 

the target word given the surrounding context words. In this model, the 

input layer consists of 𝑁N words, which are encoded and passed to a 

projection layer applied to all words. A hidden vector is then created, 
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element-wise averaged, and passed to the output layer. The output layer 

is responsible for generating the probability distribution across the 

vocabulary. 

Given a sequence of training words 𝑤1,𝑤2,…,𝑤𝑇w1,w2,…,wT with a total 

length 𝑇, the objective function of the CBOW model is to maximize the 

average log probability: 

log⁡ 𝑃(𝑤𝑐 ∣ 𝑤𝑐−𝑚, … ,𝑤𝑐−1, 𝑤𝑐+1, … ,𝑤𝑐+𝑚) 

where 𝑚 is the size of the training context.These architectures have some 

drawbacks. Firstly, during training, only the weights corresponding to the 

target word might receive significant updates, while the weights related to 

non-target words might experience only minor changes or no changes at 

all. Secondly, calculating the final probabilities using the softmax function 

is highly inefficient, as the computational cost is proportional to the size of 

the vocabulary. 

 

 

3.4 RNN
 

Recurrent Neural Networks (RNNs) are particularly effective in processing 

sequences of data due to their ability to maintain a form of 'memory' of 

previous inputs. This distinguishes them from traditional neural networks 

that process each input independently without reference to previous ones. 

The sequential nature of RNNs allows them to take into account the 

context provided by the previous elements of a sequence, a fundamental 

feature for applications such as natural language processing. For example, 

in text generation, an RNN can predict the next word based not only on the 
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immediately preceding word, but on the entire sequence of words 

generated so far, thus enabling linguistic productions that respect a more 

natural syntactic and semantic coherence. 

 

FIGURE 3.4:RECURRENT NEURAL NETWORK VS FEED-FORWARD NEURAL NETWORK [2] 

 

 

 

As illustrated in Fig.3.4, Recurrent neural networks (RNNs) are distinct 

from feed-forward neural networks because, in RNNs, the output of one 

node can influence the next, forming a loop in the data flow. This feature 

allows RNNs to use previous information to influence future computations, 

making them suitable for processing data sequences such as text, where 

contextual understanding is essential. 

Although effective in sequence processing, traditional RNNs find it difficult 

to maintain long-term dependencies due to the gradient vanishing 

problem, which makes it difficult for the network to learn long-term 

dependencies in sequences. In order to overcome these bottlenecks, 

variants of RNNs such as Long Short-Term Memory (LSTM) [3]and Gated 

Recurrent Units (GRU) [4] have been developed. These models introduce 

'gate' structures that regulate the flow of information, allowing the network 
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to 'decide' which information to keep or discard. This mechanism helps to 

preserve gradients and improve the network's ability to learn 

dependencies between data that occur at long time intervals. 

Although these networks can achieve excellent results in various domains, 

they require long training and are computationally expensive. Each 

iteration necessitates the computation of all previous steps, impeding the 

parallelisation of the training phase. 

A significant challenge over the past decade has been to capture 

dependencies between words, trying to speed up or parallelise the training 

process. 

 

3.5  TRANSFORMER 

Transformers, introduced by Vaswani et al. in 2017 [5], have 

revolutionized the fields of NLP and Computer Vision. Prior to 

Transformers, state-of-the-art NLP solutions heavily relied on Recurrent 

Neural Networks (RNNs) such as LSTM and Gated Recurrent Units 

(GRUs). However, the sequential nature of RNNs made parallelization 

during training difficult. The Transformer architecture uses an encoder-

decoder model based on self-attention. This allows for non-sequential 

processing and parallelization, significantly speeding up the training 

process. The input sequence is first transformed into three matrices 

representing keys (K), values (V), and queries (Q). To compute the output 

matrix, the authors proposed a modified Dot-Product Attention, called 

"Scaled Dot-Product Attention": 

 attention (𝑄,𝐾, 𝑉) = softmax⁡ (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

where 𝑑𝑘 represents the dimension of the queries and keys. 
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FIGURE 3.5:TRANSFORMER ARCHITECTURE [5] 

 

The Transformer architecture consists of an encoder and a decoder, each 

containing multiple layers of self-attention mechanisms. A typical structure 

of the Transformer model is shown in Figure 3.5, the encoder block on the 

left and the decoder block on the right. 

The encoder processes the input sequence iteratively, with each layer 

generating encodings that provide information about which parts of the 

inputs are relevant to each other. The encoder's output is then used as 

input to the decoder. The decoder's role is to use the context information 

received to generate an output sequence. 

The attention mechanism enables the Transformer to capture 

dependencies between sequence elements by assigning different levels of 

importance to each element using learnable weights during training. 
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Consider a sentence with 𝑛 words 𝑆:𝑤1,𝑤2,…,𝑤𝑛 S:w1,w2,…,wn, where 

each word 𝑤𝑖 is represented by an initial vector 𝑥𝑖 and a triplet of vectors 

𝑞𝑖, 𝑘𝑖, and 𝑣𝑖v (representing "query", "key", and "value" respectively). 

These vectors are obtained by multiplying the initial weight matrices 𝑊𝑞, 

𝑊𝑘, and 𝑊𝑣 by the vector 𝑥𝑖. To calculate the attention of each word 𝑤𝑖 

with respect to itself (hence the term self-attention), the dot product 

between 𝑞𝑖 and 𝑘𝑖 is computed, followed by a softmax operation. The 

resulting scores are then multiplied by the value vector 𝑣𝑖. 

To enhance the self-attention layer, the multi-headed attention mechanism 

is used. This involves using 𝑛 different sets of weight matrices 𝑊𝑞, 𝑊𝑘, 

and 𝑊𝑣, all initialized randomly. Each set captures distinct relationships, 

resulting in varied representations that are combined through another layer 

of trainable weights 𝑊0. 

This architecture is highly parallelizable, making training more efficient. 

However, the computational complexity is 𝑂 (𝑛2) for a sequence of length 

𝑛, which generally limits the length of input sentences to 512 or 1024 

tokens. Both the encoder and decoder layers include a feed-forward 

neural network for additional processing of the outputs and contain 

residual connections and layer normalization steps. The residual 

connections help bypass layers that do not provide significant information, 

while layer normalization speeds up the training process and reduces the 

risk of overfitting. 

Depending on the task, it is possible to use only one part of the encoder-

decoder architecture. For instance, GPT-3, a state-of-the-art language 

model for human-like text generation, uses only the decoder side. In 

contrast, BERT [6], a state-of-the-art model for sentence encoding, and its 

variants use only the encoder side. 
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3.5.1  GENERATIVE PRE-TRAINED TRASFORMER 

The Generative Pre-Trained Transformer (GPT) is a language model 

based on the decoder block of the Transformer architecture. The 

architecture is modified by removing the encoder-decoder attention layer. 

The model inherits the autoregressive property from the decoder, meaning 

it processes the sequence from left to right. The pre-training task focuses 

on next-word prediction, enabling the model to understand the sequential 

structure of text. It is classified as an autoregressive model, where each 

generated word is fed back into the input to continue the sequence 

generation. 

As the name suggests, GPT aims to generate text that is both coherent 

and contextually relevant. It is a useful tool for various tasks, including text 

generation and translation. 

The first version, GPT-1 [7], was constructed with a stack of 12 

Transformer decoder blocks, resulting in 117 million parameters. Pre-

training was conducted on a dataset called BookCorpus, which comprises 

roughly 4.5GB of text from 7000 books. These features provide the model 

with a comprehensive and rich linguistic foundation capable of 

understanding intricate language structures. The latest version, GPT-3 [8], 

has 175 billion parameters (requiring 800 GB of storage), allowing the 

model to produce sophisticated text almost indistinguishable from human-

generated text. 
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3.6 LLM 

A large language model is a type of artificial intelligence (AI) model 

specifically designed to understand and generate human language. It is a 

particular kind of transformer that has been trained on vast amounts of text 

data. 

A language model takes a sequence of words as input and predicts the 

probability distribution of the next word or sequence of words. It learns 

from large datasets, including books, articles, websites, and other sources, 

to capture the statistical patterns and relationships between words. By 

analyzing these patterns, a language model can generate human-like text 

based on the context and input it receives. 

A large language model, such as GPT-4 [9](one of the largest language 

models to date), refers to a model with an extensive number of 

parameters. Parameters are internal variables the model uses to make 

predictions and store information. The more parameters a model has, the 

more complex and nuanced its understanding of language can be. 

Large language models like GPT-4 are trained on massive datasets 

containing billions of sentences to develop a deep understanding of 

grammar, syntax, and semantics. This training allows them to generate 

text that is remarkably coherent and contextually relevant. These models 

can be fine-tuned for specific tasks, such as translation, summarization, 

question answering, and more. 

 

3.6.1 LLM – COMMON USE CASES 

Large Language Models (LLMs) have a wide range of use cases due to 

their ability to understand and generate human-like text based on the 
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extensive training data they've been exposed to [10]. Here's a detailed 

presentation of some key LLM use cases: 

1. Text Generation (Generative Use Cases) 

• Creative Writing: LLMs can generate creative pieces of writing, 

including poetry, short stories, and even novels. They can assist 

writers by providing inspiration and generating content. 

• Content Creation: LLMs can automatically generate articles, blog 

posts, and other forms of written content, which is valuable for 

content marketers and publishers. 

• Code Generation: LLMs can produce code snippets in various 

programming languages based on high-level descriptions or 

requirements, aiding software developers. 

• Data Augmentation: LLMs can generate additional training data for 

machine learning models, helping improve the performance of 

various AI applications. 

2. Natural Language Understanding (NLU) Use Cases 

• Chatbots: LLMs power conversational AI by understanding user 

queries and generating human-like responses. They're used in 

customer support, virtual assistants, and more. 

• Sentiment Analysis: LLMs can determine the sentiment (positive, 

negative, neutral) of text, which is valuable for understanding 

customer opinions and market trends. 

• Named Entity Recognition: LLMs can extract specific information, 

such as names, locations, dates, and organizations, from text, 

which is useful in various data analysis tasks. 
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• Language Translation: LLMs excel at translating text from one 

language to another, enabling real-time language translation in 

various applications. 

3. Text Summarization and Information Retrieval 

• Text Summarization: LLMs can generate concise summaries of 

long articles or documents, which is valuable for quick information 

retrieval and content curation. 

• Search Engines: LLMs can improve search engine results by 

better understanding user queries and retrieving more relevant 

documents or web pages. 

4. Text Classification and Sentiment Analysis 

• Topic Classification: LLMs can classify documents or text 

snippets into predefined categories, aiding in content organization 

and information retrieval. 

• Spam Detection: LLMs can identify spam emails, comments, or 

other types of unwanted content, enhancing cybersecurity. 

5. Personalization and Recommendations 

• Personalized Recommendations: LLMs can analyze user 

preferences and behaviors to make personalized product, content, 

or service recommendations. 

• Content Tagging: LLMs can automatically tag and categorize 

content, making it easier to organize and recommend relevant items 

to users. 

6. Academic and Scientific Research 
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• Research Assistance: LLMs can assist researchers in finding 

relevant papers, summarizing research findings, and generating 

hypotheses. 

7. Accessibility and Inclusivity 

• Text-to-Speech: LLMs can convert written text into spoken words, 

making content accessible to visually impaired individuals. 

• Language Generation for Non-Native Speakers: LLMs can help 

non-native speakers generate more fluent and accurate text in a 

given language. 

These are just a few examples of the many use cases for Large Language 

Models. The versatility and capabilities of LLMs continue to expand as 

research and development in this field progress. 

3.6.2 HOW LLM CAN BE USED IN LEGAL SECTOR 

Large Language Models (LLMs) in the legal sector assist with various 

tasks, enhancing efficiency and accuracy: 

1. Document Review 

• LLMs can quickly review and analyze large volumes of legal 

documents, making them particularly useful for tasks such as due 

diligence, contract review, and e-discovery during litigation. 

2. Legal Research 

• LLM tools can help lawyers find relevant case law, statutes, and 

legal precedents, saving time and improving the quality of their legal 

research. 

3. Predictive Analytics 
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• LLMs can predict case outcomes based on historical data, aiding 

lawyers in assessing the viability of a case and potentially 

facilitating dispute settlements outside of court. 

4. Contract Analysis 

• LLMs can extract and analyze key information from contracts, 

ensuring compliance and identifying potential risks. 

5. Natural Language Processing (NLP) 

• NLP-based LLM tools can automate the drafting of legal 

documents, generate client communications, and assist with 

regulatory compliance. 

6. Administrative Tasks 

• LLMs can automate administrative tasks in law firms, such as 

appointment scheduling, document organization, and client 

communication, allowing lawyers to focus on more complex legal 

work. 

In this master thesis, we focus on two specific applications of Large 

Language Models (LLMs) in the legal sector: contract analysis and the 

generation of clauses. 

3.7 INFORMATION RETRIEVAL 

In the digital age, the exponential growth of data has created a pressing 

need for efficient methods to access and retrieve relevant information. 

Information retrieval (IR) is a field within computer science that addresses 

this challenge by developing techniques and systems to locate the most 

pertinent data from vast repositories based on user queries. At its core, IR 

involves indexing, searching, and ranking documents or data items to 
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satisfy information needs effectively. 

Traditional IR systems rely on keyword-based matching, where the 

occurrence of specific terms in both the user's query and the documents 

determine their relevance. These systems are foundational in various 

applications, including web search engines, digital libraries, e-commerce 

platforms, and enterprise content management systems. The objective of 

IR is to return a set of documents or data items that best match the user's 

query, ranked in order of relevance. 

The process of information retrieval has several key components: 

• Query Processing: Understanding and interpreting the user's 

request for information. 

• Indexing: Organizing data to enable fast and efficient retrieval. 

• Search Algorithms: Techniques for matching queries to 

documents. 

• Ranking: Ordering the search results based on their relevance to 

the query. 

The topic of interest to the user is referred to as the "information need." 

The IR process begins when the user inputs a query into the system. 

Queries are formal declarations of informational needs, similar to search 

strings used in web search engines. Unlike traditional SQL database 

queries, IR queries cannot pinpoint a single object within the collection. 

Instead, multiple objects may correspond to the query with varying 

degrees of relevance. 

Semantic Search 

Traditional IR systems predominantly depend on keyword matching, 
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determining relevance based on the presence of specific terms in both the 

query and the documents. Although this method has proven effective, it 

frequently fails to grasp the deeper meaning and context of user queries. 

To overcome these limitations, semantic search has emerged as an 

advanced extension of information retrieval. Semantic search aims to 

improve the accuracy and relevance of search results by comprehending 

the context, intent, and meaning behind user queries, rather than simply 

matching keywords. This approach utilizes natural language processing 

(NLP), machine learning, and knowledge graphs to interpret the semantics 

of both queries and data. 

By incorporating semantic search techniques, IR systems can provide 

more precise and contextually appropriate results, greatly enhancing user 

satisfaction and efficiency in locating relevant information. This 

advancement is especially critical in fields such as legal research where 

the precision and relevance of retrieved information are most important. 

 

3.8 RETRIEVAL AUGMENTED GENERATION 

Retrieval-Augmented Generation (RAG) [11]is an advanced technique in 

the field of Natural Language Processing (NLP) that merges the strengths 

of pre-trained language models with the advantages of information 

retrieval systems. The primary objective of RAG is to enhance the 

capabilities of large language models (LLMs), particularly for tasks that 

demand a deep understanding and generation of contextually relevant 

responses. 

Traditional language models generate responses based solely on their 

input and the information they were trained on. While effective in many 

scenarios, these models often struggle with tasks requiring specific, factual 
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knowledge or the ability to reference multiple sources of information. RAG 

addresses these limitations by integrating retrieval mechanisms, enabling 

models to access and utilize external data, thereby improving accuracy 

and relevance in generated responses [12]. 

The concept of RAG involves two main components: a document retriever 

and a large language model (LLM) [12]. The document retriever finds 

relevant information from a large corpus of documents based on the input 

query using semantic search. This information is then passed to the LLM, 

which generates a response. What sets RAG apart is its joint process 

where document retrieval and response generation are intertwined, 

allowing the model to consider multiple documents simultaneously when 

generating a response. This results in more accurate and contextually 

relevant outputs.  

 

FIGURE 3.6:RAG ARCHITECTURE [13] 

 

The RAG approach is particularly effective for tasks requiring a deep 

understanding of context and the ability to reference multiple sources of 
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information. This includes tasks such as question answering, where the 

model needs to consider multiple sources of knowledge and select the 

most appropriate one based on the context of the question. 
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4. LEGAL APPLICATION 

In this chapter, we explore the platform, which enables Orbyta Legal 

employees to improve and speed up the document analysis and the draft 

of new contract in a more efficient and intuitive way. The proposed 

platform contains main components: 

Web Application: The interfaces act as a bridge between the user and 

the system, with user-friendly interface. It allows the use to write input text 

and receive response in real-time. 

Retrieval Augmented Generation (RAG) system allows direct 

interaction between text documents and deep learning models, such as 

Large Language Models (LLM). This methodology enhances the 

generative capabilities of LLMs with an information retrieval system, 

improving the quality of the responses generated by AI. 

  

4.1 APPLICATION 

4.1.1 FRONT-END 

The front-end of this application was constructed using streamlit an open-

source Python framework for data scientists and AI/ML engineers to 

deliver dynamic data apps with only a few lines of code. With the rise of 

Large Language Models (LLMs), Streamlit [14]has rapidly become the 

visual UI of choice for LLM-powered apps, including chatbots, sentiment 

analysis tools, content summarizers, and more. For this first version of this 
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application, we chose streamlit because offers several advantages: 

Easy to use: Streamlit allows to build interactive applications with minimal 

effort. Developers can create complex complex UI without extensive front-

end development knowledge. 

Real-time Feedback: Streamlit supports real-time updates, which is 

crucial for applications that require dynamic interactions, such as those 

utilizing LLMs for tasks like text generation, question answering, or 

chatbots. 

Visualization: For LLM applications, Streamlit can render markdown, 

code snippets, and styled text, making it perfect for displaying generated 

text, summaries, and other outputs. Streamlit can also integrates popular 

libraries like Matplotlib, Ploty, enabling rich visualizations of model outputs 

and performance metrics. 

The application has three main pages and two pages of configuration: 

• Generate clauses: On this page, users can draft their desired 

clause using the text input fields. The application then generates 

the clause, displaying it in a response box along with additional 

information about the resources used in the generation process 

. 
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FIGURE 4.1: PAGE GENERATION CLAUSES 

 
 

• Add clause: Users can add their clauses using the input fields. The 
application stores these clauses in a Redis database, allowing them 

to be used as resources for future clause generation. 
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FIGURE 4.2:PAGE ADD YOUR CLAUSES 

 

 

• Summarize Contract: Users can upload contracts for analysis 

using the drag-and-drop interface. The application then iteratively 

analyzes the contract without storing it and displays the key points 

of the document. 
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FIGURE4.1.3: PAGE SUMMARIZE CONTRACT 

 
 

 

• Configure Prompt: In this page user can configure the input 
prompt for the generation of clauses and summarization contract. 

 

 

FIGURE 4.3:PAGE CONFIGURE PROMPT 
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• Configure Clauses: The user can manage the source clauses 
stored in Redis database. User can modify or delete clauses. 

 

 

FIGURE 4.4: PAGE CONFIGURE CLAUSES 

In conclusion, the last two pages are configuration pages where the 

administrator can manage the clause sources and configure the prompts 

used by the LLM. 

4.1.2 BACK-END 

The application leverages Redis as a database for storing initial prompts 

and as a vector database to store clause embeddings. At the startup, the 

application injects the clauses and prompts into Redis. For implementing 

the pipeline and manipulating chains, the application uses LangChain, an 

open-source framework designed for building applications based on large 

language models (LLMs). Chains, which are series of automated actions 

from the user's query to the model's output, are the fundamental principles 

in LangChain that ensure context-aware responses. 

Main components of the application: 

• Redis Database: Redis is used for storing initial prompts and 
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clause embeddings, making it a crucial component for fast and 

efficient data retrieval and manipulation. As Vector DB stores 

clauses embeddings, nabling quick semantic searches and 

similarity matching. 

• Langchain: LangChain is utilized for creating and managing the 

AI-driven workflows within the application. It provides several 

modules to build robust, context-aware language model systems. 

o APIs: LangChain provides APIs for developers to connect 

and query various LLMs, including public and proprietary 

models like GPT, Bard, and PaLM. This simplifies 

integration by allowing simple API calls instead of complex 

code. 

o Prompt Templates: Developers can create and use prompt 

templates to consistently format queries for AI models. 

These templates can be reused across different applications 

and language models, ensuring consistency and precision. 

o Custom Chains: LangChain provides tools and libraries to 

compose and customize chains for complex applications. An 

agent in LangChain prompts the language model to 

determine the best sequence of actions in response to a 

query. 

o RAG Systems: LangChain supports the development of 

Retrieval-Augmented Generation (RAG) systems, offering 

tools to transform, store, search, and retrieve information 
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that refines language model responses. 

The integration of Redis for efficient data storage and LangChain for 

managing AI workflows makes this application robust and contextually 

aware. 

4.2 CHUNKING 

In the world of information retrieval and machine learning, document 

chunking plays a critical role, particularly in the context of Retriever-

Augmented Generation (RAG) systems [15]. Document chunking involves 

breaking down large texts into smaller, manageable pieces or "chunks" 

that are easier for computational models to process and analyze. This is 

crucial in scenarios where the answer to a query might span different 

sections of a document or when handling large datasets that exceed the 

processing capacity of standard models. Chunking is essential for several 

reasons: 

• Efficiency: Processing smaller sections of text can dramatically 

speed up computation time, making applications more efficient. 

• Accuracy: By focusing on smaller text segments, models can more 

accurately associate queries with relevant text pieces, improving 

the accuracy of the responses. 

• Scalability: Chunking allows systems to scale by handling larger 
documents. 

DOCUMENT READER  

To perform document retrieval, we need to load the documents into our 

system and for this purpose we use Document Reader. In this application, 

we manage two types of document readers offered by LangChain: 
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• PyPDFLoader: used to read contracts before chunking them. It 

efficiently handles the complexities of PDF files and extracts the 

text content for further processing 

• TextLoader: used to manage the injection of clauses and prompts. 

It ensures that textual data is loaded efficiently for subsequent 

chunking and processing. 

TEXT SPLITTER 

LangChain offers multiple splitters, each suited for specific types of text 

and applications. For this purpose, we use the Character Text Splitter. It is 

used in the loading of the source clause with a chunk size of 800 and 

separator "\n\n" to ensure that each clause is treated as a separate chunk, 

avoiding cutoffs in the middle of clauses. 

4.2.1 TEXT EMBEDDER 

The text embedding model transforms the chunks extracted by the 

Document Reader or the user's query into vector representations. 

Significant advancements over the past decade have led to the 

development of models capable of creating vector representations of 

words or phrases that encode semantic relationships. This ability to 

represent semantic connections is crucial for assessing the relevance of 

specific text portions in relation to the user's inquiry. 

The following features were considered when selecting the model to be 

used: 

• Number of Input Tokens: A model capable of handling a large 
number of input tokens offers significant benefits. It minimizes the 

need for additional text segmentation, optimizing the amount of data 

stored in the database. Additionally, it accelerates search 
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operations while maintaining high accuracy and relevance in the 

responses. 

• Supported Language: Given the project’s nature and target 

audience, it was crucial that the chosen model adequately 

supported the Italian language. This ensures that linguistic and 

cultural nuances specific to Italian are accurately captured and 

represented. 

• Cost and Performance: Beyond evaluating the model’s 

effectiveness, practical aspects such as cost, speed, and reliability 

were also considered. The balance between cost and performance 

led to the selection of a model that provides the best value for the 

project’s requirements. 

Text-Embedding-Ada-002 

Text-Embedding-Ada-002 (TEA-002) is a general-purpose text embedding 

model released by OpenAI in late 2022. This model integrates and 

enhances the performance of all previously released OpenAI embedding 

models, excelling in tasks such as search, similarity, and retrieval. In 

addition to performance improvements, it supports larger input sizes and 

restricts output length, making it suitable for embedding very long text 

sequences while still producing low-dimensional vectors. 

Since it is a closed model, details about its training and the datasets used 

have not been disclosed. However, a significant advantage of using this 

model is its availability as a service through dedicated APIs, which 

eliminates infrastructure and maintenance costs. This also reduces long-

term costs and avoids dependency on potential malfunctions of OpenAI's 

proprietary systems. The model is cost-effective, with a pricing of 

€0.00001 per 1,000 tokens. Estimating that a typical document page 
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includes approximately 8,000 tokens, converting 10,000 document pages 

would amount to €1. 

Moreover, converting documents into vectors incurs a one-time expense, 

with the only recurring cost being the conversion of user queries. This cost 

structure makes Text-Embedding-Ada-002 an economical choice for 

embedding large volumes of text efficiently.  

Text-Embedding-Ada-002 can be utilized with OpenAi API or Microsoft 

Azure OpenAI’s APIs but there is different performance [16]. 

The comparison between OpenAI and Azure on text-embedding-ada-002 

is easy to characterize Azure’s outputs are identical given the same input, 

whereas OpenAI’s outputs are noisy. In other words, don’t expect to get 

the same embedding vector back from OpenAI’s ada-002 implementation. 

As can be seen in Figure 4.2.1, OpenAI produces about 10 or so unique 

embeddings per 100 trials of the same input sentence, whereas Azure 

produces 1 in each case. 
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FIGURE 4.5:COMPARISON OPENAI AND AZURE EMBEDDING [3] 

 

How this impacts a retrieval augmented generation (RAG) system or 

another system reliant on text embeddings depends critically on the use 

case and data in question. In order to have a stable application we use the 

AZURE OpenAI endpoint. 

4.3 VECTOR DATABASE 

Databases play a crucial role in the architecture of any computer system, 

particularly in those involving machine learning or artificial intelligence 

models. Their effectiveness and efficiency have a direct impact on the 

model's performance, especially in terms of response speed. 

Vector databases, a subtype of non-relational databases, utilize vectorized 

data representation. Unlike conventional keyword-based databases that 
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search for exact matches, vector databases perform searches based on 

the semantic meaning of the data. This capability allows them to find 

matches that are contextually or semantically related to the query, which is 

particularly advantageous for tasks like similarity search or classification 

functions. Furthermore, due to their non-relational nature, vector 

databases can easily store associated metadata, such as file names, 

resource links, or contained images. 

4.3.1 REDIS 

Redis [17] is renowned for its exceptional performance, attributed to its in-

memory architecture which provides rapid response times for both read 

and write operations. This makes it highly suitable for tasks requiring the 

processing of large amounts of vector data, such as similarity searches. 

Redis supports two types of vector indexing: Flat and Hierarchical 

Navigable Small Worlds (HNSW). 

• Flat Indexing: This method involves a brute-force search, 
examining every vector in the database to find the one most like the 

query vector. Although straightforward, this technique can be 

inefficient and slow with large datasets. 

• Hierarchical Navigable Small World (HNSW) Indexing: HNSW is 
an advanced indexing and searching algorithm that creates a 

hierarchical structure of vectors. This structure allows for much 

more efficient similarity searches compared to flat indexing, 

especially in large datasets. HNSW traverses this hierarchical 

structure to quickly locate the most similar vectors, significantly 

reducing the number of comparisons needed. 

 

Redis’s in-memory capabilities are particularly beneficial for operations 
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involving vectors, such as similarity searches, due to the exceptional 

speed in read and write operations. Additionally, Redis's scalability is a 

notable feature; it can be easily scaled up as datasets grow to 

accommodate larger workloads, ensuring consistent response times and 

maintaining optimal performance. 

4.4 MODEL CHOICE 

Large Language Models (LLMs) are sophisticated artificial intelligence 

systems trained using vast datasets and deep learning methods, 

especially the transformer architecture. These models excel at 

comprehending and generating human-like text, allowing them to tackle a 

wide array of natural language processing (NLP) tasks with high accuracy 

and fluency. By employing advanced algorithms, LLMs process and 

analyze text efficiently, deriving valuable insights, producing coherent 

responses, and enhancing human-machine interactions through natural 

language. Their applications span diverse sectors such as content 

creation, customer service, healthcare documentation, and beyond.  

Howewer, the process of training such models entails significant financial 

and computational expenditures, making it a viable option primarily for 

well-resourced entities. Consequently, only a select group of major 

corporations, including industry leaders such as Google, Meta, Microsoft, 

and OpenAI, can afford to engage in the intensive research and 

development necessary for these advanced models. This economic barrier 

effectively limits participation to those with substantial capital, highlighting 

a disparity in the technological advancement capabilities among different 

sized entities within the field. 

When assessing LLMs, it is crucial to consider several important factors: 

• Task: Identification of the task that LLM needs to perform. Different 
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models excel in different areas. 

• Model Size: LLMs vary in size, from smaller models like GPT-2 to 

massive architectures like GPT-4 or Claude. Consider the trade-off 

between model size and computational resources. Larger models 

generally provide superior performance but are more expensive and 

demand significant computational power and memory, especially if 

you manage the hosting internally. This balance is crucial for 

effectively deploying LLMs, as it impacts both the feasibility and 

sustainability of various applications. 

• Resource Constraints: Evaluation of the computational resources, 
including GPU availability, memory capacity, and the speed 

required for generating inferences. The selection of an LLM that fits 

within the resource limits while still maintaining effective 

performance. Latency is a critical consideration—if immediate 

responses are necessary, choosing for a faster, more streamlined 

model may be required, which might involve reducing model 

complexity. Additionally, consider the availability of APIs that can 

facilitate integration and streamline operations, offering a balance 

between performance and resource management. 

• Open-Source and closed-source models: Numerous open-
source models utilize architectures like LLama and LLama 2, which 

were developed and released by Meta. These foundational models 

facilitate extensive experimentation and optimization, allowing for 

specific adaptations such as Alpaca and Vicuna. While these fine-

tuned models exhibit strong performance, they often strive to reach 

the efficacy of leading proprietary models such as Bard or GPT-4. 

• Data Privacy: Consider ethical implications such as bias, fairness, 

and data privacy when selecting an LLM. Ensure that the model 
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aligns with ethical guidelines and principles to mitigate potential 

risks. 

The market now offers APIs that allow for the use of models without the 

necessity of local installation. This arrangement means that the costs for 

machine management and maintenance are incorporated into the service 

fees, eliminating the need for users to manage these aspects 

independently. Another significant advantage is the immediacy with which 

these services can be utilized; unlike with open models, there is no delay. 

With open models, one must account for the time required for fine-tuning. 

Additionally, the performance of these API-based models is exceptionally 

high, with those provided by OpenAI being among the best available. 

For the privacy maintenance Azure OpenAI guarantees that the data 

submitted remains within Microsoft Azure and is not passed to OpenAi for 

model predictions. Azure has sole control and governance of the data and 

OpenAI.  Azure OpenAi [18]is the best choice for data company. 

For the initial launch of this application, we have opted to use GPT-3.5-

Turbo.  In future, after an evaluation by the user, we will use gpt4. 

 

4.5 PROMPT ENGINEERING 

Prompt engineering [19] is the process where you guide generative 

artificial intelligence (generative AI) solutions to generate desired outputs. 

Even though generative AI attempts to mimic humans, it requires detailed 

instructions to create high-quality and relevant output. In prompt 

engineering, you choose the most appropriate formats, phrases, words, 

and symbols that guide the AI to interact with your users more 

meaningfully. Prompt engineers use creativity plus trial and error to create 

a collection of input texts, so an application's generative AI works as 



Legal Application 

 

 

55 
 

expected. 

The Prompt engineering bridge the gap between the end users and the 

large language model. Prompt engineering makes AI applications more 

efficient and effective. 

Prompt engineering [20] is a dynamic and evolving field. It requires both 

linguistic skills and creative expression to fine-tune prompts and obtain the 

desired response from the generative AI tools. 

A good prompt is composed by: 

• Role: specifies the position or persona that the prompt assigns to 

an individual, aiding the AI in crafting responses that are pertinent 

to that specific character. For instance, if the prompt says: “You are 

a layer specialized in the writing contract.” Using the term “layer 

specialized in..” allows the AI to create a response in a legal tone 

appropriate for contract support. 

• Istruction/task: This refers to a clear outline of what specific action 

or response the AI is expected to generate. For example, 

“Compose a rescission clause for a furniture contract” is a prompt 

asking the AI to generate a rescission clause by taking in 

consideration the type of contract 

• Context: Adding further contextual information significantly 
enhances the AI-generated response by making it more relevant 

and accurate for the specific scenario. In Rag system the contextual 

information is given by the result of the retrieval of stored 

documents. 

• Example: An effective learning strategy can be adding examples to 

the prompts, which further attracts the AI’s attention and sets clear 
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expectations for the type of information required. 

The combination of this elements helps to obtain the desired response by 

the LLM. 

4.6 FINE-TUNING 

Fine-tuning involves training a pre-trained model on a specific dataset or 

task. This process fine-tunes the model’s parameters to adapt it to a 

particular task, making it more specialized. For example, you could fine-

tune a GPT model on a dataset of text summarization examples. This 

would train the model to generate summaries that are more accurate and 

relevant than summaries generated by a model that has not been fine-

tuned. Fine-tuning allows you to optimize the model for a specific task, 

resulting in better performance and reduce the prompt dependency. In 

other ways, it is difficult to search a task-specific dataset in order to train 

the model. 

 

4.7 RAG VS FINETUNING VS PROMPT 
ENGINEERING 

"Finetuning”, “prompt engineering" and “Rag” are three approaches used 

to adapt and optimize language models, particularly Large Language 

Models (LLMs), to specific tasks. 

Finetuning is when you take the language model and make it learn 

something new or special. Think of it like updating an app on your phone 

to get better features. But in this case, the app (the model) needs a lot of 

new information and time to learn everything properly. It's a bit like going 

back to school for the model. 
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Finetuning needs a lot of computer power and time, it can be expensive. It 

offers the advantage of being able to adapt the model to very specific 

scenarios, thereby greatly improving its performance, it also has critical 

issues. Indeed, training these models requires significant computational 

resources and, in the presence of limited data sets, can reduce overall 

performance and expose the model to the risk of overfitting. 

In contrast, "prompt engineering" focuses on the curation and optimization 

of the prompt or the initial input in the form of an instruction or question 

given to the model to guide its response. This technique requires no 

additional computational resources for training and offers considerable 

flexibility, allowing the model to be adapted to different tasks without 

changing its structure. However, finding the ideal prompt may require 

iterative experimentation and may not guarantee the same effectiveness 

as ’fine-tuning’ in some contexts.  

Retrieval Augmented Generation, or RAG, mixes the usual language 

model stuff with something like a knowledge base. When the model needs 

to answer a question, it first looks up and collects relevant information from 

a knowledge base, and then answers the question based on that 

information. It's like the model does a quick check of a library of 

information to make sure it gives you the best answer. 

In practice, these techniques can be combined or used in tandem to 

achieve optimal results. In our application we create a system could 

employ RAG to retrieve relevant information, and then use prompt 

engineering to guide the model's generation for a specific task. 
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FIGURE 4.6:RAG VS FINE-TUNING [21] 

 

4.8 DEPLOYMENT 

The deployment process is a critical phase in an application's lifecycle, 

shaping how and when users can access and engage with the application. 

Docker is an open-source platform that assists developers in creating, 

shipping, and running distributed applications through containers. These 

containers offer a lightweight and portable method to package an 

application with all its dependencies, including libraries and configuration 

files, into a single consolidated image. On the other hand, Azure, 

Microsoft's cloud computing platform, provides a wide range of services, 

including computing, storage, and networking capabilities. The first step 

involves creating an Azure Container Registry (ACR) which will serve as a 
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repository for Docker images. ACR is a private registry that allows you to 

store and manage Docker images specific to an organization. A Dockerfile 

is a text file containing instructions for building a Docker image, outlining 

the base Docker image to use, the location of the application source code 

to be included in the image, as well as the libraries, packages, and other 

dependencies necessary for the application's operation. Docker interprets 

and follows the instructions in this file to construct the image.  

The Dockerfile sets up a Python environment tailored for running a 

Streamlit application and install the libraries contained in the 

requirements.txt file 

  

FIGURE 4.7:DOCKER FILE 

Docker Compose is a tool that simplifies the process of defining and 

managing multi-container Docker applications. Through a single YAML file, 

developers can configure all the necessary services for an application, 

manage volumes, networks, and inter-service dependencies. This allows 

for starting and stopping all services with a single command, greatly 

facilitating the implementation of complex environments.  

In the docker compose was setting-up a service that includes a web 
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application and a Redis instance using the redis/redis-stack image. 

 

FIGURE 4.8:DOCKER FILE 

 

After the image is created, it is pushed to the registry 

Access to the application is limited to the company network and is 

restricted to the developer and legal-office. 
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5. METHODOLOGIES 

The aim of this research was to provide support to lawyers through the use 

of large language models (LLM) to speed up time-consuming processes 

such as reading contracts and drafting model clauses. In this chapter, we 

will analyse the methodologies used to achieve this goal. We will explore 

both the prompt configurations used and other parameters for the various 

tasks in order to understand how LLMs can be effectively adapted to the 

specific needs of legal professionals. 

5.1 CONTRACT SUMMARIZATION 

In the legal field, extracting information from contracts is challenging 

primarily due to the scarcity of annotated data. Utilizing advanced models 

such as the Generative Pretrained Transformer (GPT) offers a promising 

solution. However, these models face limitations with their inherent token 

capacity, which can hinder the processing of extensive legal documents. 

The main challenges in contract analysis using state-of-the-art models 

include not only the limited data available for training or fine-tuning to 

achieve high accuracy but also the substantial size of many contracts. This 

often exceeds the processing capabilities of current transformer 

architectures. Transformer-based models are constrained by a maximum 

sequence length, and contracts exceeding this limit may need to be 

segmented into smaller parts, complicating the analysis process. 

Following the methodology outlined in the paper, we decided to implement 

summarization using AzureOpenAI. However, we encountered a limitation 

due to the model's context length. 

 The context length limitation is a significant hurdle: while large 

language models (LLMs) have many capabilities, they struggle to 
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synthesize large documents or process extensive text effectively due to 

this constraint. Current models are capable of handling input and output 

lengths ranging from 4,096 to 16,384 tokens, corresponding approximately 

to 6.4 to 26.5 pages of text. "Tokens" are the basic units of processing for 

LLMs, typically representing about three-quarters of a word. Various 

models use different tokenization methods, and each model has a 

specified "input context length" which indicates the total number of tokens 

it can handle at once, with a designated portion reserved for generating 

output.  

 

FIGURE 5.1:ERROR CONTEXT LENGHT 

 

Contract can vary significantly in length, typically ranging from 10 to 100 

pages. Analysing such extensive documents is a substantial undertaking 

due to their size. In our initial attempt to automate this process in our 

application, we implemented a summarization feature. However, we 

encountered constraints related to the context length that Large Language 

Models can handle, as they are limited to a certain number of tokens per 

session. 

To address this issue, we adopted a preprocessing approach, dividing the 
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document into smaller segments, each containing a single page of the 

contract, to keep the number of tokens within the model’s allowable limits. 

Initially, we configured our system to send only a portion of the document 

along with a carefully designed prompt for summary generation to the first 

API call. In subsequent API calls, we integrated the previously generated 

summaries into the prompt, aiming to preserve context and enhance the 

consistency of the generated content. 

 

FIGURE 5.2:CALL CHAIN 

 

This method is successfully to avoid context limitations but was inefficient 

in terms of computational and token cost. 

While effective in meeting token constraints, this method has shown 

inefficiencies. Segmenting the document into isolated parts may lead to a 

loss of overall context, potentially reducing the accuracy and relevance of 

the summaries produced. Furthermore, the accumulation of summaries in 

successive queries increases the consumption of tokens for each 

subsequent call, which may become onerous and less manageable as the 

length of the original document increases. These problems highlight the 

need to explore further improvements or alternative technologies to 

efficiently handle large volumes of text in legal contexts. 



Methodologies 

 

 

64 
 

SOLUTION 

After careful analysis of the documents and discussion with the legal team, 

we identified that, in reviewing the contracts, the lawyers were looking for 

specific information that tended to be recurring. Consequently, we decided 

to focus on extracting key points from the documents. Key points typically 

required in a contract include: 

• Parties involved: identification of the legal entities participating in 

the contract. 

• Subject matter of the contract: description of the agreement and 

the objectives of the contract. 

• Terms and conditions: details of the rules and regulations 

governing the contract. 

• Duration: period for which the contract is valid. 

• Consideration or economic condition: details of financial 

aspects, such as payments or fees. 

• Liability: obligations and duties of the parties. 

• Guarantees: assurances given by one or both parties. 

• Dispute resolution: procedures for handling disputes related to the 

contract. 

• Contract changes: conditions under which the contract may be 

changed. 

• Special clauses: unique or specific stipulations necessary for 

certain situations. 
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• Applicable law and jurisdiction: law under which the contract is 

interpreted and jurisdiction for disputes.  

• Terms and conditions: details of the rules and regulations 
governing the contract. 

• Express termination clause: conditions allowing termination of the 
contract. 

• Penalty Clause: penalties for non-compliance with the terms of the 
contract. 

This strategy aims to simplify the contract review process, improving 

efficiency and reducing the time needed to review legal documents. 

  

Algorithm 1 PSEUDO-CODE CONTRACT EXTRACTION  

1: procedure Load(contract) 
                                2:   chunks ← split(contract,by pages) 
                                3:                  chain←InitializeChain(initial 

prompt,model,output parser) 
                                4:   extraction ← InvokeChain(chunks[0].content) 
                                5:    for i = 1 to length(chunks) - 1 do 
                                6:   extraction ← 

RefineChain(chunks[i].content,extraction) 
                                7:  end for 
                                8:  return extraction 

9: end procedure 
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The prompts are designed for a legal application that acts as a digital 

assistant for lawyers, with the specific purpose of facilitating the extraction 

of key information from contracts. This AI tool uses a system based on 

Large Language Models (LLMs) to analyse the contract text and identify 

relevant components such as parties involved, subject matter of the 

contract, terms and conditions and others. 

The first part of the prompt can be divided into: 

• Role: “You are a legal assistant. Your main function is to help the 
lawyer in extracting relevant information from contracts”. 

• Task: “Given the first part of a contract below and no previous 
information, extract the following essential information”. 

• Context: The first page of the loaded contract 

• Key Extraction: the list of information to be extracted. This list can be 

modifying in the prompt configuration as mentioned in the 

paragraph 4.1. 

After the first extraction, we implement an iterative loop in which we create 

a new chain [Algorithm 1]. In this chain, we progressively include the 

previous extraction in the prompt. This process allows us to continuously 

update the extracted information as we proceed with the analysis of 

subsequent pages of the document. This methodology ensures that each 

new page analysed enriches the overall context, improving the accuracy 

and completeness of the information extracted from the contract in 

subsequent stages. This methodology ensures that each new parsed page 

enriches the overall context, improving the accuracy and completeness of 

the information extracted from the contract in subsequent steps. 
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5.2 GENERATION CLAUSES 

The advent of artificial intelligence (AI) has led to a significant 

transformation in the legal services landscape, introducing new 

possibilities for automation and process optimisation. In particular, contract 

management benefits greatly, with considerable time savings and a 

reduction in manual errors. 

To take full advantage of these opportunities, we have developed an 

innovative virtual assistant based on Large Language Model (LLM). This 

intelligent tool enables the automatic generation of draft contract clauses 

using archived data, significantly speeding up the drafting process and 

minimising errors associated with manual procedures. 

The lawyer can request the system to create a contract clause. Starting 

from a set of standard and previously used clauses, the system can modify 

and adapt them to the lawyer's needs, providing flexibility and 

customisation in the drafting of the contract. 

Solution 

The first step in implementing the clause generator was to collect the 

clauses commonly used by the law firm. These were carefully categorised 

by type, allowing for systematic and organised management. After 

extracting them from an Excel file, the clauses were saved in the Redis 

database. 

When a user submits a request, the system transforms this request into 

embeddings, i.e. vector representations that facilitate semantic 

comparison. It then performs a similarity search among the stored clauses, 

selecting and returning the three most relevant results. These serve as 
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context for a subsequent interaction with a Language Model (LLM), for 

which a specific prompt has been prepared detailing: 

• USER REQUEST: {query} 

• Role: You are a legal assistant; your task is to assist in the 

formulation of contractual clauses. 

• Task: "You will be provided with clauses contained within (''''), your 

task is, from the examples provided, to generate a clause that fits 

the user's request." 

• Context: The result of the similarity search. 

Using Langchain to generate the required clause, we set the model 

temperature to 0.3 to balance the creativity and accuracy of the generated 

clauses. 

The ability to expand or modify the assistant's knowledge by adding or 

editing clauses in the dedicated section further increases the versatility of 

the system. 

Benefits of this virtual assistant include: 

• Time savings: Automation in the draft and clause generation 
process dramatically reduces the time needed to draft contracts, 

freeing lawyers for more value-added activities. 

• Reduced errors: Minimising manual work reduces the risk of 

human error, resulting in more accurate and reliable contracts. 

• Increased efficiency: Automation in the contract drafting process 

significantly improves law firm efficiency, optimising the use of 

resources and increasing productivity. 
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• Customisation: The ability to generate customised clauses gives 

lawyers the flexibility to tailor contracts to each client's specific 

needs, ensuring a highly personalised service. 

 

 

 

 

FIGURE 5.3:FILE CLAUSES 
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5.3 EVALUATION 

For the monitoring and evaluation of our system, we employ Langsmith, 

developed by Langchain. This tool supports the debugging, monitoring and 

evaluation of applications using Large Language Models (LLM). Langsmith 

offers execution logging and visualisation of pipeline components, 

integrated with Langchain. When analysing the architecture of a Retrieval-

Augmented Generation (RAG) system, it is crucial to examine both the 

document retrieval and generation components. This method makes it 

possible to assess the quality of the model and identify areas for 

improvement to optimise performance. In particular, to assess the 

effectiveness of our clause generator, we focus on the retriever. The 

choice of the most appropriate retriever is based on the analysis of the 

feedback provided by lawyers regarding the correctness of the generated 

clauses, collected through Langsmith [22]. For the evaluation of the 

retriever, we use the following metrics: 

• Context Relevance: This metric assesses how relevant the 

retrieved context is to the question asked. Using an LLM, it 

determines how well the context supports the statements needed to 

formulate an appropriate response. 

• Contextual recall: Measures the system's ability to retrieve all 

essential information to answer the question. An LLM verifies that 

each element of the answer is supported by the retrieved context. 

In addition, we analyse the speed at which the vector database provides 

the appropriate context by assessing the impact of the type of index used 

on overall system performance. 

The following table illustrates the variations in the similarity score with 

respect to the following query: “Help me write a termination clause for a 
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contract that specifies that if the customer fails to comply with the 

contractual terms, the customer will have to pay a penalty of up to 

€10,000." 

Similarity Score Total 

Tokens 

Context 

relevance 

Context 

Recall 

Latency(s) User 

Fedback 

0.9 1350 0.86 0.85 4.01 Positive 

0.75 1400 0.90 0.92 3.83 Positive 

0.5 1520 0.60 0.65 4.31 Negative 

0.3 1600 0.57 0.60 5.31 Negative 

 

The results obtained show how the parameters change as the similarity 

score of Redis differs. As can be seen, the latency changes very little as 

the parameter changes; however, the total number of tokens in the context 

varies significantly. We also considered this parameter with a view to 

future developments and upgrading to better models. As regards the type 

of Retriever, we decided to experiment only with Flat Indexing due to the 

very small dataset of clauses at our disposal. 
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FIGURE 5.4:: FEDDBACK FROM LANGSMITH 

 

 

 

 

FIGURE 5.5:TRACING LANGSMITH 
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6. CONCLUSION 

This report explores the application of Large Language Models (LLM) in 

the legal sector, focusing on their use for the optimisation of contract 

analysis and the generation of contract clauses. The introduction of 

artificial intelligence technologies in this field marks a remarkable 

transformation, opening the way to solutions previously considered 

unfeasible. Specifically, we analysed the effectiveness of an LLM-based 

virtual assistant to automate and improve procedures traditionally handled 

manually by lawyers. This tool not only speeds up the process of analysing 

and creating customised clauses, but also helps minimise errors and 

increase the operational efficiency of law firms. We showed how, by 

supplementing the capabilities of OpenAi with an appropriate set of 

clauses and the use of retriever techniques and specific prompts, it is 

possible to develop a RAG system that effectively meets the needs of the 

law firm. In addition, we addressed contract privacy challenges by 

implementing AzureOpenAi, which meets the GDPR security standards 

provided by Azure. 

The automated innovations in the legal industry allow lawyers to focus 

more on high-quality activities, greatly improving the firm's productivity. 

Another crucial aspect to consider is the essential need for human 

supervision. Despite the significant benefits brought by automation through 

Large Language Models, it is essential to maintain an active, supervisory 

role on the part of lawyers. 

The active presence of a legal professional ensures that technology is 

used as a supporting tool and not as a complete substitute for human 

decision-making, preserving the integrity of the legal process. 

However, some limitations have emerged: the current system is only able 
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to process documents in text format and not scanned documents. In 

addition, it lacks a feedback mechanism to guide the model in generating 

clauses more precisely. 

In conclusion, this pilot project offers legal professionals a safe and 

efficient tool, representing a valuable starting point for further development 

6.1 FUTURE WORK 

In this section, we look at possible future developments that can improve 

the system, planned for the second phase of the project.  

One of the current critical points is the Document Reader, which is 

currently limited to reading files in PDF format. To increase the versatility 

of Contract Analyser, it is essential to extend support for other common file 

formats. This would allow users to upload and analyse contract documents 

independently of the original format. Considering that many legal 

documents are paper-based and digitised by scanning, the integration of 

OCR (Optical Character Recognition) technology would allow these 

digitised documents to be analysed as well, avoiding omitting vital 

information for analysis. This improvement would significantly increase the 

accessibility and usability of the system. 

Another potential improvement is the implementation of a Feedback 

System integrated into the web application. This system would allow users 

to evaluate and comment on the answers generated by the system, 

improving the accuracy and relevance of the answers. The collected 

feedback could be used to create an annotated dataset, useful for fine-

tuning the model, adapting it to the specific needs of legal users and 

improving the quality of the generated clauses. 

In the initial phase, a relatively outdated model such as ChatGPT-3.5 was 

used. In the future, an upgrade to more advanced models available on 
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Azure is planned, evaluating the associated costs. In addition, the 

implementation of a local model will be considered, which would offer 

advantages such as increased data security and reduced dependence on 

external providers. This would be particularly useful for law firms with 

stringent requirements in terms of confidentiality and compliance with 

privacy regulations. 

Finally, in order to improve the user interface and make the system more 

user-friendly, a chatbot library could be developed that is integrated with a 

front-end realised with frameworks other than the Streamlit library, 

currently used for simple front-ends. Using a more advanced framework, it 

would be possible to create dynamic and responsive web applications, 

significantly improving the user experience. An improved front-end would 

allow greater customisation, allowing users to configure the interface 

according to their specific needs and ensuring better accessibility, making 

the system usable by a larger number of users. 

By implementing these improvements, POC would not only further 

optimise contract management, but also offer more sophisticated and 

adaptable legal support, improving the efficiency and accuracy of lawyers' 

work. 
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