

Politecnico di Torino

Data Science and Engineering
A.a. 2023/2024

Sessione di Laurea Luglio 2024

Master’s Degree Thesis
The Use of LLMs in the Legal
Field: Optimizing Contract

Management with Generative
Artificial Intelligence

Relatori: Candidati:
Maurizio Morisio

Corelatore:
 Daniele Sabetta

Alessio Mongoli

Abstract

1

 ABSTRACT

In recent years, Artificial Intelligence (AI), including the emergence of

ChatGPT, has attracted significant attention due to its increasing

prevalence in several aspects of business processes. AI involves the

development of automated systems capable of executing tasks

traditionally performed by humans, with the aim of speeding up processes

and reducing wasted time within organisations. This technology has also

opened significant opportunities for application in the legal sector,

traditionally engaged in analysing large amounts of documentation. This

Master's thesis explores the use of Large Language Models (LLM) to

support legal staff and reduce document management time. The aim of

this research is to study, design, develop a POC (proof of concept) to

address these challenges by implementing a web application where

lawyers can analyse contracts e generate contract. The application is

based on Retrieval-Augmented Generation (RAG) capable of providing

fast, effective and high-quality responses. To achieve this goal, an in-

depth analysis was conducted on large language models and the prompts

used to guide them. To achieve this, the analyses focused on the

effectiveness of LLMs in interpreting legal language and their ability to

integrate information to produce relevant and coherent output. Particular

attention was paid to the configuration of prompts and their optimisation to

improve the accuracy of responses. In conclusion, this thesis highlights the

considerable potential of generative AI in the legal field. By integrating the

advantages of semantic embeddings for information retrieval with those of

generative AI for producing answers, lawyers can significantly reduce the

time spent in drafting new contracts, taking into account previous clauses,

and analysing new contracts. This approach enables effective optimisation

of legal processes, making contract management more efficient and

accurate.

Abstract

2

TABLE OF CONTENTS

Abstract --1
List of Figures ---4
1.Introduction --5
2.Orbyta --7

2.1Provider profile --7
2.1.1Key Provider Information ---9

2.2Provider organization overview --- 10
2.3 Business Provider Strategy and Profile --- 13

3.Background -- 16
3.1Introduction to Natural Language Processing (NLP) ------------------------ 16

3.1.1History--- 18
3.2Text Representation --- 20
3.3Embedding -- 21

3.3.1Word Embedding -- 21
3.4RNN -- 24
3.5TRANSFORMER --- 26

3.5.1Generative pre-trained trasformer -- 29
3.6LLM -- 30

3.6.1LLM – Common Use cases -- 30
3.6.2How LLm Can be used in legal sector --------------------------------------- 33

3.7Information retrieval --- 34
3.8Retrieval Augmented Generation --- 36

4.Legal Application -- 39
4.1Application -- 39

4.1.1Front-end --- 39
4.1.2Back-End --- 44

4.2Chunking --- 46
4.2.1Text Embedder --- 47

Abstract

3

4.3Vector Database --- 50
4.3.1Redis --- 51

4.4Model Choice --- 52
4.5Prompt Engineering --- 54
4.6Fine-tuning -- 56
4.7RAG vs Finetuning vs Prompt engineering ------------------------------------- 56
4.8Deployment --- 58

5.Methodologies -- 61
5.1Contract Summarization --- 61
5.2Generation Clauses -- 67
5.3Evaluation --- 70

6.Conclusion --- 73
6.1Future work --- 74

7.Bibliografia --- 76

List of Figures

4

LIST OF FIGURES
Figure 2.1: THE ORBYTA GROUP LOGO .. 7

Figure 3.1: THE EVOLUTION OF NATURAL LANGUAGE PROCESSING 19

Figure 3.2: CONTINUOUS BAG-OF-WORDS(CBOW) ARCHITECTURE......... 22

Figure 3.3:SKIP-GRAM ARCHITECTURE .. 23

Figure 3.4:Recurrent neural Network vs Feed-forward neural network 25

Figure 3.5:Transformer Architecture ... 27

Figure 3.6:RAG ARCHITECTURE ... 37

Figure 4.1: Page Generation Clauses .. 41

Figure 4.2:Page Add Your Clauses.. 42

Figure 4.3:Page Configure Prompt .. 43

Figure 4.4: Page Configure Clauses .. 44

Figure 4.5:Comparison Openai and Azure Embedding [3] 50

Figure 4.6:Rag Vs Fine-tuning.. 58

Figure 4.7:Docker file .. 59

Figure 4.8:Docker file .. 60

Figure 5.1:Error Context Lenght .. 62

Figure 5.2:Call Chain ... 63

Figure 5.3:File Clauses.. 69

Figure 5.4:: Feddback from Langsmith ... 72

Figure 5.5:Tracing Langsmith .. 72

Introduction

5

1. INTRODUCTION

Over the past several years, Artificial Intelligence (AI), including the

emergence of ChatGPT, has attracted significant attention due to its

increasing prevalence in various aspects of enterprise operations. AI

involves developing automated systems capable of performing tasks

traditionally carried out by humans, aiming to streamline processes and

reduce time wastage within enterprises. This integration of AI into systems

is gaining momentum as companies recognize its potential to enhance

efficiency and productivity. In the legal field, enterprises are often

inundated with a vast number of contract documents containing various

types of clauses. Many times, during contract drafting, lawyers spend

considerable time analysing numerous contracts to choose the correct

clause.

Centralizing and standardizing document management across various

sources and formats would empower any lawyers to access necessary

information by querying an intelligent system.

This master's thesis, conducted in partnership with Orbyta, explores the

integration of generative AI in the legal field by proposing a pipeline for

contract analysis and clause generation. The key component of this

approach is an information retriever that employs semantic embedding to

grasp the connection and implicit meaning among words. By adopting this

method, the system can identify and retrieve a set of documents that are

most pertinent to the user’s query efficiently. This functionality enhances

the user experience by offering precise and direct solutions, reducing

cognitive overload, and eliminating the need to access multiple documents

for information.

This thesis aims to develop a POC (prof of concept) to address these

Introduction

6

challenges by implementing a web application where lawyers can analyse

contracts e generate contract. This web application is intended to offer a

user-friendly experience, enabling users to make requests without the

need for complex query languages.

Orbyta

7

2. ORBYTA

2.1 PROVIDER PROFILE

Orbyta Tech is the technology company of the Orbyta Group, which

comprises seven companies. Thanks to the know-how and specialised

skills of the individual companies, Orbyta offers its customers

comprehensive support and consulting, covering all areas of business

interest. The group's offering is structured in two macro-brands, each of

which addresses specific customer targets and sectors:

FIGURE 2.1: THE ORBYTA GROUP LOGO

• Orbyta Technologies: A leading IT consultancy company, Orbyta
Technologies specialises in both applications and systems. It

develops highly complex projects using the most advanced

technologies and state-of-the-art methodologies. Its expertise

includes the design, implementation, integration and maintenance

of software, hardware and IoT systems. Its divisions include:

o Orbyta Tech: Focused on software development and

systems support, it offers integrated solutions and designs IT

Orbyta

8

infrastructures, providing consultancy services and turnkey

projects.

o Orbyta Infogest: Focuses on designing, supplying and

reselling hardware, as well as installing and servicing PCs,

servers, storage and internetworking solutions for diversified

operating environments.

• Orbyta Business Partner: This division provides essential

business support services, assisting customers in the areas of

compliance, engineering design, and accounting, administrative, tax

and financial management. It also offers payroll processing and

outsourced human resources management services, as well as out-

of-court and in-court legal assistance.

The well-established synergy between the group's companies makes

Orbyta a reliable and comprehensive partner, capable of offering a wide

range of services and solutions. This integrated approach allows Orbyta to

successfully meet the challenges of the market, guaranteeing efficient and

tailor-made solutions for every customer need. The companies that are

part of the business partner area are:

• Orbyta Engineering: Specialising in civil and industrial

engineering, this company offers design and construction

management services, identifying customised solutions that comply

with legal requirements and aim to simplify corporate compliance.

• Orbyta Tax&Finance: This division focuses on tax and corporate

consulting, providing support for management, accounting and all

civil and tax obligations necessary for business activities.

• Orbyta People: Provides consultancy in the employment area,
managing administration and human resources, payroll processing,

Orbyta

9

time management, benefits, welfare and labour relations.

• Orbyta Legal: This division provides legal assistance and advice,

both judicial and extrajudicial, with a particular focus on business

management and development, offering ongoing support.

• Orbyta Strategy This in-house company contributes to the

continuous improvement of business processes. It provides

integrated services for corporate organisation and growth, setting

strategies and managing the Group's internal dynamics.

2.1.1 KEY PROVIDER INFORMATION

Orbyta is a constantly growing group, with a 2022 turnover of 15 million

euros. The group has about 250 employees and is in various locations:

Turin, Milan, Rome, Lecce. These offices and the presence of consultants

located in other areas allow the company to cover geographically the

whole Italian territory. The process of analyzing and evaluating

investments and acquisitions in foreign offices, particularly in Germany, it’s

currently happening.

Orbyta

10

2.2 PROVIDER ORGANIZATION OVERVIEW

At Orbyta Technologies, innovation is at the heart of every activity. The

company guides its partners through the conception, design and

development of technological processes that are not only interactive but

also fully immersive. With highly specialised multidisciplinary expertise,

Orbyta stands out in the field of design, development and implementation

of complex information systems and state-of-the-art digital solutions. A

dedicated team is always ready to provide support to partners and

companies alike, turning accumulated experience into continuous

innovation. Orbyta's offering is organised in the following areas:

• Digital Transformation: Orbyta Technologies guides and supports
partners in their digital transformation journey, offering technological

solutions and IT architectures in line with growth objectives. The

cross-skilled consulting team manages every aspect of the process,

coordinating all activities and monitoring performance. The ability to

go beyond traditional schemes and a holistic view of business

processes allow innovation and efficiency to be optimised.

• Software Development: develop tailor made technological
solutions implementing a wide range of IT products and projects in

multiple areas of intervention, with carefully composed teams with

specialist skills ranging from project management to the most up-to-

date ICT training. The aim is to become a reference point for the IT

architecture of each partner thanks to the planning and

management capacity of information systems and subsystems of

Orbyta

11

the team in our software house, Area 51.

• Design & Strategy: XLAB, Orbyta Tech's creative team, is

dedicated to promoting digital growth and developing high impact

omnichannel strategies. It focuses on creating connections using an

effective mix of user experience, digital interface design, creative

communication and digital marketing. Working at the intersection of

business, technology and design in all its forms (Design Thinking,

Human-Centred Design, System Design, Service Design, Futures

Design, User Experience, User Interface) XLAB aims to transform

innovative visions into tangible realities.

The team consists of pixel-perfect and enthusiastic futurists, who

collaborate with the partners at all stages of the project, from analysis and

design to prototyping and testing. The customer is a member of the team,

an irreplaceable project partner in the co-creation of the best digital

product. The company's competencies are User research, UI/UX Design,

Brand Design, Brand Strategy, 3D Design, Creative & Integrated

Communication, Web Experience Development and Metaverse Creation.

The company's approach is:

• Collaboration: smart working, hybrid and presence modes to
ensure efficiency in every situation. It uses the best collaboration

tools, such as Trello, FigJam, InVision, Zeplin and many others, to

keep teams synchronised and projects aligned with customer

expectations.

• Design: employs the best design and development tools available

on a daily basis, including Figma, Sketch, Adobe, Blender and

Webflow. This allows it to remain at the forefront of design and to

Orbyta

12

respond effectively to its customers' needs.

• Innovation: constantly dedicated to innovation and

experimentation, especially in the creation of 3D environments in

the Metaverse. This approach is geared towards devising new

business models that take advantage of the latest technologies and

market trends

• Infrastructure Networking: offerinh advanced networking and

security enhancement services for the corporate network. It

identifies connectivity needs and makes projects operational,

working both remotely and on-site. Its consolidated experience,

combined with a constant search for the most innovative

technologies, guarantees systemic support and management

consultancy in large data processing centres, including the banking,

insurance and industrial sectors.

• Hardware Reselling: specialising in the creation of customised

hardware infrastructures, supported by a continuous, high added-

value consultancy process that facilitates organisational and

management change and development of business flows. The

process begins with understanding the customer's needs, followed

by building the necessary framework and guiding integration with

day-to-day business operations. Each solution is built to be secure

and reliable, with careful evaluation of the best available

technologies. The Infogest team utilises established partnerships

with leading market players such as HP, Microsoft, Fortinet,

VMware, Veeam and Arcserve, thus ensuring access to state-of-

the-art solutions in the technology sector.

The current organization of Orbyta Tech in 4 Units and Dedicated Teams

for customers and projects with similar technology stacks, makes possible

Orbyta

13

the parallel and coordinated development of initiatives:

• Intelligent Platform: Design of complex and resilient Cloud Native

architectures, Data Analytics, ML and AI.

• Process Automation: Design and development of software

modules on the Microsoft DotNet stack, Java, Node, Javascript and

Python.

• Digital & App Innovation: Design and development of web client,
desktop and mobile applications, with different targets and

development stacks, such as Angular, React, Vue, Flutter,

ReactNative, Swift, Kotlin.

• Business Consulting: Governance and management of complex
projects, with the application of the best methodologies and

development of automated test phases.

2.3 BUSINESS PROVIDER STRATEGY AND
PROFILE

Orbyta Tech operates in the area as a System Integrator and offers

consultancy to large corporate client companies from various fields,

including:

• Banking & Insurance: Design products for every branch of

business, from digital payment services to fraud control, web

security and encryption services, from a template predictive

decision-making on financing to an operations asset management

software, up to the creation of an application for managing the

migration of a complex set of data.

• Automotive & Industrial: Work in synergy with partners,

Orbyta

14

international companies of recognized fame, for the development

of: high-speed data streaming and display mechanisms towards

remote customers; a complete modeling of the life cycle of software

with complex functions of predictive maintenance, intrusion

detection, mitigation and firmware over the air update; platforms for

the management of complete technical documentation of products

with data profiling and automation capabilities for use by teams;

application for the cross-management of stock availability and

supplies purchase in relation to production times.

• Transportation: Carry out innovative technological projects that
contribute to the relevant need of the transport and logistics sector

to carry on a process of digitization of systems to promote

increasingly integrated mobility; to return punctual and in real time

information, to maintain the attractiveness for users of the services.

• Manufacturing: Structure solutions capable of integrating,

harmonizing and aggregating data from multiple sources with the

aim of extracting value and optimizing workflows. It’s about projects

of high strategic value that facilitate monitoring, verification and

control and provide important forward-looking data.

• Textile & Fashion: Design digital solutions of great strategic impact

that intervene in all phases of the production processes.

Technology becomes an essential resource for being competitive in

a sector strongly permeated by craftsmanship and element crucial

to consolidate the presence on the market and satisfy, if not even

anticipate customer needs.

• Gaming: Conceive and develop proposals that are characterized as

Orbyta

15

augmented and virtual experiences, totally immersive, also through

the creation and use of avatars. Design solutions that through

gaming elements are oriented to improve the company performance

through user engagement strategies aimed at multiple goals.

Orbyta Tech mainly deals with: Technical consulting, Business analysis,

Research and development, Software development and operations,

Process management and support, Digital transformation, Data analysis,

Cloud, lean processes & new digital core, IOT and connected services.

Orbyta Tech is historically Gold Partner of Microsoft, cultivates further

expertise in the public Cloud area also with Amazon Web Services (AWS)

and Google cloud. As part of the management of multi-cloud native cloud

platforms, the simplification of IT operations and the improving of software

product efficiency, Orbyta Tech is a partner of the Mia Platform company.

Background

16

3. BACKGROUND

Natural language is the primary medium through which humans

communicate and express their thoughts. The term Natural Language

Processing (NLP) describes the field that analyzes natural language.

This chapter provides a brief introduction to NLP in section 3.1, and then

discusses the significant contributions of deep learning models in section

3.5, made possible by the exponential growth in computational power.

3.1 INTRODUCTION TO NATURAL LANGUAGE
PROCESSING (NLP)

This chapter serves to introduce key concepts in Natural Language

Processing (NLP) essential for comprehending the methodologies

employed in this thesis.

The overarching objective of NLP has always been to enable machines to

comprehend human-written text. Given the complexity of language,

machine understanding is organized into distinct levels, resembling a

pipeline:

• Lexicon: This refers to the dictionary of words utilized.

• Morphology: It involves analyzing how words are formed by
combining morphemes, which are the smallest units of meaning

(e.g., root and affixes). Morphological analysis aims to decompose

words into their constituent morphemes, akin to stemming, which

reduces a word to its base form or lemma.

• Syntax: This concerns the arrangement of words to form

grammatically correct sentences, including understanding

Background

17

grammatical relationships such as subject-object linkages and

dependencies.

• Semantics: This involves interpreting the meaning of individual

words and how they combine to convey the overall meaning of a

sentence.

• Pragmatics: This examines how the meaning of a sentence is

influenced by the context in which it is used, including social,

cultural, and spatial-temporal factors. It considers the intended

purpose or concept conveyed by the user within a given context.

In applications involving spoken language, an additional level of analysis—

Phonetics and Phonology—is often required to understand the sounds that

constitute a language.

Due to the exponential growth of textual data, Natural Language

Processing (NLP) has gained significant importance in recent years.

Particularly with the growth of machine learning and deep learning

techniques, a wide array of problems can now be effectively tackled,

including sentiment analysis, machine translation, text summarization, and

more.

Understanding the context in which language is used is crucial, but it

presents several challenges. Firstly, many words in various languages can

have multiple meanings, necessitating the elimination of ambiguity. Word

sense disambiguation, an active area of research in NLP, aims to address

this by identifying the correct sense of ambiguous words within a specific

document.

Secondly, the understanding task involves documents from diverse

domains, each with unique characteristics that NLP models need to grasp.

Background

18

Despite these challenges, the success of an NLP algorithm is determined

by its ability to accurately accomplish its task, regardless of whether it

possesses explicit knowledge of the underlying linguistic structure or

concepts involved.

3.1.1 HISTORY

During the 1960s, research was primarily focused on creating rules to

manually model human language. Data-driven approaches were deemed

impractical due to the large data sizes required, high processing overhead,

and the need for efficient learning algorithms. Consequently, the most

viable method for language models involved manually defined rules that

incorporated local linguistic dependencies for specific NLP tasks. Despite

their usefulness, these approaches had notable limitations: the

effectiveness of the rules depended on the knowledge of their creators and

updating and adapting them to new languages required substantial effort.

In the late 1980s, performance improvements were achieved through the

adoption of statistical methods, facilitated by advancements in

computational power and access to extensive text corpora. Statistical

techniques addressed the limitations of their predecessors by enabling the

long-term modelling of language dependencies, automating the training

process, and reducing reliance on human intervention. This transition from

traditional to statistical techniques paved the way for the development of

new machine learning algorithms, such as decision trees, which have

demonstrated efficacy in various natural language processing tasks,

including part-of-speech tagging.

In applying statistical techniques, language processing and generation

activities utilized the concept of n-grams. An n-gram represents a

Background

19

sequence of n consecutive elements in a text sample, expressed in words

or characters. For example, a bi-gram extracted from the phrase "machine

learning and deep learning" would include pairs like "machine learning,"

"learning and," and so on. This approach, extended to character-based bi-

grams, captures sequences such as "ma," "ac," "ch," "hi," "in," "ne," and so

forth. The objective is to establish a series of elements and leverage

statistical techniques to ascertain the likelihood of their co-occurrence.

This succinct yet dynamic definition of n-grams has spurred the

development of innovative text generation systems, information retrieval

techniques, text mining methods, and other applications. By applying n-

gram definitions, a fresh approach to document representation has

emerged, focusing on individual words.

FIGURE 3.1: THE EVOLUTION OF NATURAL LANGUAGE PROCESSING

Background

20

3.2 TEXT REPRESENTATION

In the field of NLP, how data is represented is critical. Text representation

in NLP involves converting words, sentences, or documents into numerical

or vectorized formats, enabling analysis and processing by Machine

Learning (ML) algorithms.

The Bag-of-Words (BOW) approach is a widely employed method for text

representation in NLP. Its concept is straightforward yet highly practical.

BOW treats text as a "bag" of words, disregarding their order, and counts

the occurrences of each word in the document or collection of documents.

The process consists of the following steps:

1. Tokenization: The text is segmented into individual words or "tokens."

2. Vocabulary creation: A vocabulary is constructed, containing all

unique words present in the documents.

3. BOW vector: For each document or sentence, a numeric vector is

generated with a length equal to the vocabulary size. Each position in the

vector corresponds to a word in the vocabulary, and the value at each

position indicates the frequency of the word in the document.

The encoding used in the bag-of-words representation presents a

fundamental issue, as it only indicates whether a word appears at least

once in a document. While straightforward to use, this method fails to

account for the frequency of a word within the document. The Vector

Space Model (VSM) offers a solution to this problem. Originally designed

for information retrieval, the VSM has been extensively applied in various

NLP tasks. In the VSM, the frequency of each word is used to represent

the document, rather than just the presence of words. This approach is

further refined by incorporating TF-IDF (term frequency-inverse document

frequency) [28], a commonly used statistic that highlights the significance

Background

21

of a term in a document relative to a collection or corpus. The inverse

document frequency (IDF) component of TF-IDF penalizes frequently

occurring words, as these are less distinctive within the collection.

Although more precise than the bag-of-words approach, TF-IDF still faces

challenges related to data sparsity and the absence of contextual

3.3 EMBEDDING

3.3.1 WORD EMBEDDING

Unlike traditional text representation methods, word embeddings capture

semantic relationships and contextual information. Essentially, word

embeddings represent words as vectors in a continuous vector space,

positioning words with similar meanings closer to each other.

Word2Vec is a pioneering approach proposed by Mikolov et al. in 2013 [1]

to learn word embeddings. The core idea is to train a neural network

where, given a target word in a dictionary, a sliding window moves over

the text to collect training samples and make predictions. The objective is

to predict the surrounding words of the target word, using the sliding

window to define contextual positive examples (self-supervision). The size

of this window determines how many words before and after the target

word are considered as context words. Mikolov and his colleagues also

addressed the complementary task of training a neural network to predict

the target word given the context words. To achieve this, they proposed

two architectures:

CBOW (Continuous Bag-of-Words) [1]: This model predicts the current

word based on a window of surrounding context consisting of 𝐶 words

within a range of 𝑘 words. The order of the context words does not

influence the prediction (bag-of-words assumption), and any repetition of

Background

22

words is ignored.

FIGURE 3.2: CONTINUOUS BAG-OF-WORDS(CBOW) ARCHITECTURE [1]

Skip-Gram [1]: This model uses the current word to predict the

surrounding context within a window of 𝐶 words. The skip-gram

architecture assigns more weight to nearby context words than to those

that are more distant.

Background

23

FIGURE 3.3:SKIP-GRAM ARCHITECTURE [1]

The model consists of a single hidden layer that produces the vector

representation of words. These vectors are initialized with random values

and gradually updated during training. It is important to note that the

training procedure does not require annotations. Both training strategies

are illustrated in Figure 3.1.

Given a sequence of training words 𝑤1,𝑤2,…,𝑤𝑇w1,w2,…,wT with a total

length 𝑇, the objective function of the Continuous Skip-Gram model is to

maximize the average log probability:

1

𝑇
∑  

𝑇

𝑡=1

∑  

−𝑐≤𝑗≤𝑐,𝑗≠0

log⁡ 𝑝(𝑤𝑡+𝑗 ∣ 𝑤𝑡)

where 𝑐 is the size of the training context.

In contrast, the Continuous Bag-of-Words (CBOW) model aims to predict

the target word given the surrounding context words. In this model, the

input layer consists of 𝑁N words, which are encoded and passed to a

projection layer applied to all words. A hidden vector is then created,

Background

24

element-wise averaged, and passed to the output layer. The output layer

is responsible for generating the probability distribution across the

vocabulary.

Given a sequence of training words 𝑤1,𝑤2,…,𝑤𝑇w1,w2,…,wT with a total

length 𝑇, the objective function of the CBOW model is to maximize the

average log probability:

log⁡ 𝑃(𝑤𝑐 ∣ 𝑤𝑐−𝑚, … ,𝑤𝑐−1, 𝑤𝑐+1, … ,𝑤𝑐+𝑚)

where 𝑚 is the size of the training context.These architectures have some

drawbacks. Firstly, during training, only the weights corresponding to the

target word might receive significant updates, while the weights related to

non-target words might experience only minor changes or no changes at

all. Secondly, calculating the final probabilities using the softmax function

is highly inefficient, as the computational cost is proportional to the size of

the vocabulary.

3.4 RNN

Recurrent Neural Networks (RNNs) are particularly effective in processing

sequences of data due to their ability to maintain a form of 'memory' of

previous inputs. This distinguishes them from traditional neural networks

that process each input independently without reference to previous ones.

The sequential nature of RNNs allows them to take into account the

context provided by the previous elements of a sequence, a fundamental

feature for applications such as natural language processing. For example,

in text generation, an RNN can predict the next word based not only on the

Background

25

immediately preceding word, but on the entire sequence of words

generated so far, thus enabling linguistic productions that respect a more

natural syntactic and semantic coherence.

FIGURE 3.4:RECURRENT NEURAL NETWORK VS FEED-FORWARD NEURAL NETWORK [2]

As illustrated in Fig.3.4, Recurrent neural networks (RNNs) are distinct

from feed-forward neural networks because, in RNNs, the output of one

node can influence the next, forming a loop in the data flow. This feature

allows RNNs to use previous information to influence future computations,

making them suitable for processing data sequences such as text, where

contextual understanding is essential.

Although effective in sequence processing, traditional RNNs find it difficult

to maintain long-term dependencies due to the gradient vanishing

problem, which makes it difficult for the network to learn long-term

dependencies in sequences. In order to overcome these bottlenecks,

variants of RNNs such as Long Short-Term Memory (LSTM) [3]and Gated

Recurrent Units (GRU) [4] have been developed. These models introduce

'gate' structures that regulate the flow of information, allowing the network

Background

26

to 'decide' which information to keep or discard. This mechanism helps to

preserve gradients and improve the network's ability to learn

dependencies between data that occur at long time intervals.

Although these networks can achieve excellent results in various domains,

they require long training and are computationally expensive. Each

iteration necessitates the computation of all previous steps, impeding the

parallelisation of the training phase.

A significant challenge over the past decade has been to capture

dependencies between words, trying to speed up or parallelise the training

process.

3.5 TRANSFORMER

Transformers, introduced by Vaswani et al. in 2017 [5], have

revolutionized the fields of NLP and Computer Vision. Prior to

Transformers, state-of-the-art NLP solutions heavily relied on Recurrent

Neural Networks (RNNs) such as LSTM and Gated Recurrent Units

(GRUs). However, the sequential nature of RNNs made parallelization

during training difficult. The Transformer architecture uses an encoder-

decoder model based on self-attention. This allows for non-sequential

processing and parallelization, significantly speeding up the training

process. The input sequence is first transformed into three matrices

representing keys (K), values (V), and queries (Q). To compute the output

matrix, the authors proposed a modified Dot-Product Attention, called

"Scaled Dot-Product Attention":

 attention (𝑄,𝐾, 𝑉) = softmax⁡ (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉

where 𝑑𝑘 represents the dimension of the queries and keys.

Background

27

FIGURE 3.5:TRANSFORMER ARCHITECTURE [5]

The Transformer architecture consists of an encoder and a decoder, each

containing multiple layers of self-attention mechanisms. A typical structure

of the Transformer model is shown in Figure 3.5, the encoder block on the

left and the decoder block on the right.

The encoder processes the input sequence iteratively, with each layer

generating encodings that provide information about which parts of the

inputs are relevant to each other. The encoder's output is then used as

input to the decoder. The decoder's role is to use the context information

received to generate an output sequence.

The attention mechanism enables the Transformer to capture

dependencies between sequence elements by assigning different levels of

importance to each element using learnable weights during training.

Background

28

Consider a sentence with 𝑛 words 𝑆:𝑤1,𝑤2,…,𝑤𝑛 S:w1,w2,…,wn, where

each word 𝑤𝑖 is represented by an initial vector 𝑥𝑖 and a triplet of vectors

𝑞𝑖, 𝑘𝑖, and 𝑣𝑖v (representing "query", "key", and "value" respectively).

These vectors are obtained by multiplying the initial weight matrices 𝑊𝑞,

𝑊𝑘, and 𝑊𝑣 by the vector 𝑥𝑖. To calculate the attention of each word 𝑤𝑖

with respect to itself (hence the term self-attention), the dot product

between 𝑞𝑖 and 𝑘𝑖 is computed, followed by a softmax operation. The

resulting scores are then multiplied by the value vector 𝑣𝑖.

To enhance the self-attention layer, the multi-headed attention mechanism

is used. This involves using 𝑛 different sets of weight matrices 𝑊𝑞, 𝑊𝑘,

and 𝑊𝑣, all initialized randomly. Each set captures distinct relationships,

resulting in varied representations that are combined through another layer

of trainable weights 𝑊0.

This architecture is highly parallelizable, making training more efficient.

However, the computational complexity is 𝑂 (𝑛2) for a sequence of length

𝑛, which generally limits the length of input sentences to 512 or 1024

tokens. Both the encoder and decoder layers include a feed-forward

neural network for additional processing of the outputs and contain

residual connections and layer normalization steps. The residual

connections help bypass layers that do not provide significant information,

while layer normalization speeds up the training process and reduces the

risk of overfitting.

Depending on the task, it is possible to use only one part of the encoder-

decoder architecture. For instance, GPT-3, a state-of-the-art language

model for human-like text generation, uses only the decoder side. In

contrast, BERT [6], a state-of-the-art model for sentence encoding, and its

variants use only the encoder side.

Background

29

3.5.1 GENERATIVE PRE-TRAINED TRASFORMER

The Generative Pre-Trained Transformer (GPT) is a language model

based on the decoder block of the Transformer architecture. The

architecture is modified by removing the encoder-decoder attention layer.

The model inherits the autoregressive property from the decoder, meaning

it processes the sequence from left to right. The pre-training task focuses

on next-word prediction, enabling the model to understand the sequential

structure of text. It is classified as an autoregressive model, where each

generated word is fed back into the input to continue the sequence

generation.

As the name suggests, GPT aims to generate text that is both coherent

and contextually relevant. It is a useful tool for various tasks, including text

generation and translation.

The first version, GPT-1 [7], was constructed with a stack of 12

Transformer decoder blocks, resulting in 117 million parameters. Pre-

training was conducted on a dataset called BookCorpus, which comprises

roughly 4.5GB of text from 7000 books. These features provide the model

with a comprehensive and rich linguistic foundation capable of

understanding intricate language structures. The latest version, GPT-3 [8],

has 175 billion parameters (requiring 800 GB of storage), allowing the

model to produce sophisticated text almost indistinguishable from human-

generated text.

Background

30

3.6 LLM

A large language model is a type of artificial intelligence (AI) model

specifically designed to understand and generate human language. It is a

particular kind of transformer that has been trained on vast amounts of text

data.

A language model takes a sequence of words as input and predicts the

probability distribution of the next word or sequence of words. It learns

from large datasets, including books, articles, websites, and other sources,

to capture the statistical patterns and relationships between words. By

analyzing these patterns, a language model can generate human-like text

based on the context and input it receives.

A large language model, such as GPT-4 [9](one of the largest language

models to date), refers to a model with an extensive number of

parameters. Parameters are internal variables the model uses to make

predictions and store information. The more parameters a model has, the

more complex and nuanced its understanding of language can be.

Large language models like GPT-4 are trained on massive datasets

containing billions of sentences to develop a deep understanding of

grammar, syntax, and semantics. This training allows them to generate

text that is remarkably coherent and contextually relevant. These models

can be fine-tuned for specific tasks, such as translation, summarization,

question answering, and more.

3.6.1 LLM – COMMON USE CASES

Large Language Models (LLMs) have a wide range of use cases due to

their ability to understand and generate human-like text based on the

Background

31

extensive training data they've been exposed to [10]. Here's a detailed

presentation of some key LLM use cases:

1. Text Generation (Generative Use Cases)

• Creative Writing: LLMs can generate creative pieces of writing,

including poetry, short stories, and even novels. They can assist

writers by providing inspiration and generating content.

• Content Creation: LLMs can automatically generate articles, blog

posts, and other forms of written content, which is valuable for

content marketers and publishers.

• Code Generation: LLMs can produce code snippets in various

programming languages based on high-level descriptions or

requirements, aiding software developers.

• Data Augmentation: LLMs can generate additional training data for

machine learning models, helping improve the performance of

various AI applications.

2. Natural Language Understanding (NLU) Use Cases

• Chatbots: LLMs power conversational AI by understanding user

queries and generating human-like responses. They're used in

customer support, virtual assistants, and more.

• Sentiment Analysis: LLMs can determine the sentiment (positive,

negative, neutral) of text, which is valuable for understanding

customer opinions and market trends.

• Named Entity Recognition: LLMs can extract specific information,

such as names, locations, dates, and organizations, from text,

which is useful in various data analysis tasks.

Background

32

• Language Translation: LLMs excel at translating text from one

language to another, enabling real-time language translation in

various applications.

3. Text Summarization and Information Retrieval

• Text Summarization: LLMs can generate concise summaries of

long articles or documents, which is valuable for quick information

retrieval and content curation.

• Search Engines: LLMs can improve search engine results by

better understanding user queries and retrieving more relevant

documents or web pages.

4. Text Classification and Sentiment Analysis

• Topic Classification: LLMs can classify documents or text

snippets into predefined categories, aiding in content organization

and information retrieval.

• Spam Detection: LLMs can identify spam emails, comments, or

other types of unwanted content, enhancing cybersecurity.

5. Personalization and Recommendations

• Personalized Recommendations: LLMs can analyze user

preferences and behaviors to make personalized product, content,

or service recommendations.

• Content Tagging: LLMs can automatically tag and categorize

content, making it easier to organize and recommend relevant items

to users.

6. Academic and Scientific Research

Background

33

• Research Assistance: LLMs can assist researchers in finding

relevant papers, summarizing research findings, and generating

hypotheses.

7. Accessibility and Inclusivity

• Text-to-Speech: LLMs can convert written text into spoken words,

making content accessible to visually impaired individuals.

• Language Generation for Non-Native Speakers: LLMs can help

non-native speakers generate more fluent and accurate text in a

given language.

These are just a few examples of the many use cases for Large Language

Models. The versatility and capabilities of LLMs continue to expand as

research and development in this field progress.

3.6.2 HOW LLM CAN BE USED IN LEGAL SECTOR

Large Language Models (LLMs) in the legal sector assist with various

tasks, enhancing efficiency and accuracy:

1. Document Review

• LLMs can quickly review and analyze large volumes of legal

documents, making them particularly useful for tasks such as due

diligence, contract review, and e-discovery during litigation.

2. Legal Research

• LLM tools can help lawyers find relevant case law, statutes, and

legal precedents, saving time and improving the quality of their legal

research.

3. Predictive Analytics

Background

34

• LLMs can predict case outcomes based on historical data, aiding

lawyers in assessing the viability of a case and potentially

facilitating dispute settlements outside of court.

4. Contract Analysis

• LLMs can extract and analyze key information from contracts,

ensuring compliance and identifying potential risks.

5. Natural Language Processing (NLP)

• NLP-based LLM tools can automate the drafting of legal

documents, generate client communications, and assist with

regulatory compliance.

6. Administrative Tasks

• LLMs can automate administrative tasks in law firms, such as

appointment scheduling, document organization, and client

communication, allowing lawyers to focus on more complex legal

work.

In this master thesis, we focus on two specific applications of Large

Language Models (LLMs) in the legal sector: contract analysis and the

generation of clauses.

3.7 INFORMATION RETRIEVAL

In the digital age, the exponential growth of data has created a pressing

need for efficient methods to access and retrieve relevant information.

Information retrieval (IR) is a field within computer science that addresses

this challenge by developing techniques and systems to locate the most

pertinent data from vast repositories based on user queries. At its core, IR

involves indexing, searching, and ranking documents or data items to

Background

35

satisfy information needs effectively.

Traditional IR systems rely on keyword-based matching, where the

occurrence of specific terms in both the user's query and the documents

determine their relevance. These systems are foundational in various

applications, including web search engines, digital libraries, e-commerce

platforms, and enterprise content management systems. The objective of

IR is to return a set of documents or data items that best match the user's

query, ranked in order of relevance.

The process of information retrieval has several key components:

• Query Processing: Understanding and interpreting the user's

request for information.

• Indexing: Organizing data to enable fast and efficient retrieval.

• Search Algorithms: Techniques for matching queries to

documents.

• Ranking: Ordering the search results based on their relevance to

the query.

The topic of interest to the user is referred to as the "information need."

The IR process begins when the user inputs a query into the system.

Queries are formal declarations of informational needs, similar to search

strings used in web search engines. Unlike traditional SQL database

queries, IR queries cannot pinpoint a single object within the collection.

Instead, multiple objects may correspond to the query with varying

degrees of relevance.

Semantic Search

Traditional IR systems predominantly depend on keyword matching,

Background

36

determining relevance based on the presence of specific terms in both the

query and the documents. Although this method has proven effective, it

frequently fails to grasp the deeper meaning and context of user queries.

To overcome these limitations, semantic search has emerged as an

advanced extension of information retrieval. Semantic search aims to

improve the accuracy and relevance of search results by comprehending

the context, intent, and meaning behind user queries, rather than simply

matching keywords. This approach utilizes natural language processing

(NLP), machine learning, and knowledge graphs to interpret the semantics

of both queries and data.

By incorporating semantic search techniques, IR systems can provide

more precise and contextually appropriate results, greatly enhancing user

satisfaction and efficiency in locating relevant information. This

advancement is especially critical in fields such as legal research where

the precision and relevance of retrieved information are most important.

3.8 RETRIEVAL AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) [11]is an advanced technique in

the field of Natural Language Processing (NLP) that merges the strengths

of pre-trained language models with the advantages of information

retrieval systems. The primary objective of RAG is to enhance the

capabilities of large language models (LLMs), particularly for tasks that

demand a deep understanding and generation of contextually relevant

responses.

Traditional language models generate responses based solely on their

input and the information they were trained on. While effective in many

scenarios, these models often struggle with tasks requiring specific, factual

Background

37

knowledge or the ability to reference multiple sources of information. RAG

addresses these limitations by integrating retrieval mechanisms, enabling

models to access and utilize external data, thereby improving accuracy

and relevance in generated responses [12].

The concept of RAG involves two main components: a document retriever

and a large language model (LLM) [12]. The document retriever finds

relevant information from a large corpus of documents based on the input

query using semantic search. This information is then passed to the LLM,

which generates a response. What sets RAG apart is its joint process

where document retrieval and response generation are intertwined,

allowing the model to consider multiple documents simultaneously when

generating a response. This results in more accurate and contextually

relevant outputs.

FIGURE 3.6:RAG ARCHITECTURE [13]

The RAG approach is particularly effective for tasks requiring a deep

understanding of context and the ability to reference multiple sources of

Background

38

information. This includes tasks such as question answering, where the

model needs to consider multiple sources of knowledge and select the

most appropriate one based on the context of the question.

Legal Application

39

4. LEGAL APPLICATION

In this chapter, we explore the platform, which enables Orbyta Legal

employees to improve and speed up the document analysis and the draft

of new contract in a more efficient and intuitive way. The proposed

platform contains main components:

Web Application: The interfaces act as a bridge between the user and

the system, with user-friendly interface. It allows the use to write input text

and receive response in real-time.

Retrieval Augmented Generation (RAG) system allows direct

interaction between text documents and deep learning models, such as

Large Language Models (LLM). This methodology enhances the

generative capabilities of LLMs with an information retrieval system,

improving the quality of the responses generated by AI.

4.1 APPLICATION

4.1.1 FRONT-END

The front-end of this application was constructed using streamlit an open-

source Python framework for data scientists and AI/ML engineers to

deliver dynamic data apps with only a few lines of code. With the rise of

Large Language Models (LLMs), Streamlit [14]has rapidly become the

visual UI of choice for LLM-powered apps, including chatbots, sentiment

analysis tools, content summarizers, and more. For this first version of this

Legal Application

40

application, we chose streamlit because offers several advantages:

Easy to use: Streamlit allows to build interactive applications with minimal

effort. Developers can create complex complex UI without extensive front-

end development knowledge.

Real-time Feedback: Streamlit supports real-time updates, which is

crucial for applications that require dynamic interactions, such as those

utilizing LLMs for tasks like text generation, question answering, or

chatbots.

Visualization: For LLM applications, Streamlit can render markdown,

code snippets, and styled text, making it perfect for displaying generated

text, summaries, and other outputs. Streamlit can also integrates popular

libraries like Matplotlib, Ploty, enabling rich visualizations of model outputs

and performance metrics.

The application has three main pages and two pages of configuration:

• Generate clauses: On this page, users can draft their desired

clause using the text input fields. The application then generates

the clause, displaying it in a response box along with additional

information about the resources used in the generation process

.

Legal Application

41

FIGURE 4.1: PAGE GENERATION CLAUSES

• Add clause: Users can add their clauses using the input fields. The
application stores these clauses in a Redis database, allowing them

to be used as resources for future clause generation.

Legal Application

42

FIGURE 4.2:PAGE ADD YOUR CLAUSES

• Summarize Contract: Users can upload contracts for analysis

using the drag-and-drop interface. The application then iteratively

analyzes the contract without storing it and displays the key points

of the document.

Legal Application

43

FIGURE4.1.3: PAGE SUMMARIZE CONTRACT

• Configure Prompt: In this page user can configure the input
prompt for the generation of clauses and summarization contract.

FIGURE 4.3:PAGE CONFIGURE PROMPT

Legal Application

44

• Configure Clauses: The user can manage the source clauses
stored in Redis database. User can modify or delete clauses.

FIGURE 4.4: PAGE CONFIGURE CLAUSES

In conclusion, the last two pages are configuration pages where the

administrator can manage the clause sources and configure the prompts

used by the LLM.

4.1.2 BACK-END

The application leverages Redis as a database for storing initial prompts

and as a vector database to store clause embeddings. At the startup, the

application injects the clauses and prompts into Redis. For implementing

the pipeline and manipulating chains, the application uses LangChain, an

open-source framework designed for building applications based on large

language models (LLMs). Chains, which are series of automated actions

from the user's query to the model's output, are the fundamental principles

in LangChain that ensure context-aware responses.

Main components of the application:

• Redis Database: Redis is used for storing initial prompts and

Legal Application

45

clause embeddings, making it a crucial component for fast and

efficient data retrieval and manipulation. As Vector DB stores

clauses embeddings, nabling quick semantic searches and

similarity matching.

• Langchain: LangChain is utilized for creating and managing the

AI-driven workflows within the application. It provides several

modules to build robust, context-aware language model systems.

o APIs: LangChain provides APIs for developers to connect

and query various LLMs, including public and proprietary

models like GPT, Bard, and PaLM. This simplifies

integration by allowing simple API calls instead of complex

code.

o Prompt Templates: Developers can create and use prompt

templates to consistently format queries for AI models.

These templates can be reused across different applications

and language models, ensuring consistency and precision.

o Custom Chains: LangChain provides tools and libraries to

compose and customize chains for complex applications. An

agent in LangChain prompts the language model to

determine the best sequence of actions in response to a

query.

o RAG Systems: LangChain supports the development of

Retrieval-Augmented Generation (RAG) systems, offering

tools to transform, store, search, and retrieve information

Legal Application

46

that refines language model responses.

The integration of Redis for efficient data storage and LangChain for

managing AI workflows makes this application robust and contextually

aware.

4.2 CHUNKING

In the world of information retrieval and machine learning, document

chunking plays a critical role, particularly in the context of Retriever-

Augmented Generation (RAG) systems [15]. Document chunking involves

breaking down large texts into smaller, manageable pieces or "chunks"

that are easier for computational models to process and analyze. This is

crucial in scenarios where the answer to a query might span different

sections of a document or when handling large datasets that exceed the

processing capacity of standard models. Chunking is essential for several

reasons:

• Efficiency: Processing smaller sections of text can dramatically

speed up computation time, making applications more efficient.

• Accuracy: By focusing on smaller text segments, models can more

accurately associate queries with relevant text pieces, improving

the accuracy of the responses.

• Scalability: Chunking allows systems to scale by handling larger
documents.

DOCUMENT READER

To perform document retrieval, we need to load the documents into our

system and for this purpose we use Document Reader. In this application,

we manage two types of document readers offered by LangChain:

Legal Application

47

• PyPDFLoader: used to read contracts before chunking them. It

efficiently handles the complexities of PDF files and extracts the

text content for further processing

• TextLoader: used to manage the injection of clauses and prompts.

It ensures that textual data is loaded efficiently for subsequent

chunking and processing.

TEXT SPLITTER

LangChain offers multiple splitters, each suited for specific types of text

and applications. For this purpose, we use the Character Text Splitter. It is

used in the loading of the source clause with a chunk size of 800 and

separator "\n\n" to ensure that each clause is treated as a separate chunk,

avoiding cutoffs in the middle of clauses.

4.2.1 TEXT EMBEDDER

The text embedding model transforms the chunks extracted by the

Document Reader or the user's query into vector representations.

Significant advancements over the past decade have led to the

development of models capable of creating vector representations of

words or phrases that encode semantic relationships. This ability to

represent semantic connections is crucial for assessing the relevance of

specific text portions in relation to the user's inquiry.

The following features were considered when selecting the model to be

used:

• Number of Input Tokens: A model capable of handling a large
number of input tokens offers significant benefits. It minimizes the

need for additional text segmentation, optimizing the amount of data

stored in the database. Additionally, it accelerates search

Legal Application

48

operations while maintaining high accuracy and relevance in the

responses.

• Supported Language: Given the project’s nature and target

audience, it was crucial that the chosen model adequately

supported the Italian language. This ensures that linguistic and

cultural nuances specific to Italian are accurately captured and

represented.

• Cost and Performance: Beyond evaluating the model’s

effectiveness, practical aspects such as cost, speed, and reliability

were also considered. The balance between cost and performance

led to the selection of a model that provides the best value for the

project’s requirements.

Text-Embedding-Ada-002

Text-Embedding-Ada-002 (TEA-002) is a general-purpose text embedding

model released by OpenAI in late 2022. This model integrates and

enhances the performance of all previously released OpenAI embedding

models, excelling in tasks such as search, similarity, and retrieval. In

addition to performance improvements, it supports larger input sizes and

restricts output length, making it suitable for embedding very long text

sequences while still producing low-dimensional vectors.

Since it is a closed model, details about its training and the datasets used

have not been disclosed. However, a significant advantage of using this

model is its availability as a service through dedicated APIs, which

eliminates infrastructure and maintenance costs. This also reduces long-

term costs and avoids dependency on potential malfunctions of OpenAI's

proprietary systems. The model is cost-effective, with a pricing of

€0.00001 per 1,000 tokens. Estimating that a typical document page

Legal Application

49

includes approximately 8,000 tokens, converting 10,000 document pages

would amount to €1.

Moreover, converting documents into vectors incurs a one-time expense,

with the only recurring cost being the conversion of user queries. This cost

structure makes Text-Embedding-Ada-002 an economical choice for

embedding large volumes of text efficiently.

Text-Embedding-Ada-002 can be utilized with OpenAi API or Microsoft

Azure OpenAI’s APIs but there is different performance [16].

The comparison between OpenAI and Azure on text-embedding-ada-002

is easy to characterize Azure’s outputs are identical given the same input,

whereas OpenAI’s outputs are noisy. In other words, don’t expect to get

the same embedding vector back from OpenAI’s ada-002 implementation.

As can be seen in Figure 4.2.1, OpenAI produces about 10 or so unique

embeddings per 100 trials of the same input sentence, whereas Azure

produces 1 in each case.

Legal Application

50

FIGURE 4.5:COMPARISON OPENAI AND AZURE EMBEDDING [3]

How this impacts a retrieval augmented generation (RAG) system or

another system reliant on text embeddings depends critically on the use

case and data in question. In order to have a stable application we use the

AZURE OpenAI endpoint.

4.3 VECTOR DATABASE

Databases play a crucial role in the architecture of any computer system,

particularly in those involving machine learning or artificial intelligence

models. Their effectiveness and efficiency have a direct impact on the

model's performance, especially in terms of response speed.

Vector databases, a subtype of non-relational databases, utilize vectorized

data representation. Unlike conventional keyword-based databases that

Legal Application

51

search for exact matches, vector databases perform searches based on

the semantic meaning of the data. This capability allows them to find

matches that are contextually or semantically related to the query, which is

particularly advantageous for tasks like similarity search or classification

functions. Furthermore, due to their non-relational nature, vector

databases can easily store associated metadata, such as file names,

resource links, or contained images.

4.3.1 REDIS

Redis [17] is renowned for its exceptional performance, attributed to its in-

memory architecture which provides rapid response times for both read

and write operations. This makes it highly suitable for tasks requiring the

processing of large amounts of vector data, such as similarity searches.

Redis supports two types of vector indexing: Flat and Hierarchical

Navigable Small Worlds (HNSW).

• Flat Indexing: This method involves a brute-force search,
examining every vector in the database to find the one most like the

query vector. Although straightforward, this technique can be

inefficient and slow with large datasets.

• Hierarchical Navigable Small World (HNSW) Indexing: HNSW is
an advanced indexing and searching algorithm that creates a

hierarchical structure of vectors. This structure allows for much

more efficient similarity searches compared to flat indexing,

especially in large datasets. HNSW traverses this hierarchical

structure to quickly locate the most similar vectors, significantly

reducing the number of comparisons needed.

Redis’s in-memory capabilities are particularly beneficial for operations

Legal Application

52

involving vectors, such as similarity searches, due to the exceptional

speed in read and write operations. Additionally, Redis's scalability is a

notable feature; it can be easily scaled up as datasets grow to

accommodate larger workloads, ensuring consistent response times and

maintaining optimal performance.

4.4 MODEL CHOICE

Large Language Models (LLMs) are sophisticated artificial intelligence

systems trained using vast datasets and deep learning methods,

especially the transformer architecture. These models excel at

comprehending and generating human-like text, allowing them to tackle a

wide array of natural language processing (NLP) tasks with high accuracy

and fluency. By employing advanced algorithms, LLMs process and

analyze text efficiently, deriving valuable insights, producing coherent

responses, and enhancing human-machine interactions through natural

language. Their applications span diverse sectors such as content

creation, customer service, healthcare documentation, and beyond.

Howewer, the process of training such models entails significant financial

and computational expenditures, making it a viable option primarily for

well-resourced entities. Consequently, only a select group of major

corporations, including industry leaders such as Google, Meta, Microsoft,

and OpenAI, can afford to engage in the intensive research and

development necessary for these advanced models. This economic barrier

effectively limits participation to those with substantial capital, highlighting

a disparity in the technological advancement capabilities among different

sized entities within the field.

When assessing LLMs, it is crucial to consider several important factors:

• Task: Identification of the task that LLM needs to perform. Different

Legal Application

53

models excel in different areas.

• Model Size: LLMs vary in size, from smaller models like GPT-2 to

massive architectures like GPT-4 or Claude. Consider the trade-off

between model size and computational resources. Larger models

generally provide superior performance but are more expensive and

demand significant computational power and memory, especially if

you manage the hosting internally. This balance is crucial for

effectively deploying LLMs, as it impacts both the feasibility and

sustainability of various applications.

• Resource Constraints: Evaluation of the computational resources,
including GPU availability, memory capacity, and the speed

required for generating inferences. The selection of an LLM that fits

within the resource limits while still maintaining effective

performance. Latency is a critical consideration—if immediate

responses are necessary, choosing for a faster, more streamlined

model may be required, which might involve reducing model

complexity. Additionally, consider the availability of APIs that can

facilitate integration and streamline operations, offering a balance

between performance and resource management.

• Open-Source and closed-source models: Numerous open-
source models utilize architectures like LLama and LLama 2, which

were developed and released by Meta. These foundational models

facilitate extensive experimentation and optimization, allowing for

specific adaptations such as Alpaca and Vicuna. While these fine-

tuned models exhibit strong performance, they often strive to reach

the efficacy of leading proprietary models such as Bard or GPT-4.

• Data Privacy: Consider ethical implications such as bias, fairness,

and data privacy when selecting an LLM. Ensure that the model

Legal Application

54

aligns with ethical guidelines and principles to mitigate potential

risks.

The market now offers APIs that allow for the use of models without the

necessity of local installation. This arrangement means that the costs for

machine management and maintenance are incorporated into the service

fees, eliminating the need for users to manage these aspects

independently. Another significant advantage is the immediacy with which

these services can be utilized; unlike with open models, there is no delay.

With open models, one must account for the time required for fine-tuning.

Additionally, the performance of these API-based models is exceptionally

high, with those provided by OpenAI being among the best available.

For the privacy maintenance Azure OpenAI guarantees that the data

submitted remains within Microsoft Azure and is not passed to OpenAi for

model predictions. Azure has sole control and governance of the data and

OpenAI. Azure OpenAi [18]is the best choice for data company.

For the initial launch of this application, we have opted to use GPT-3.5-

Turbo. In future, after an evaluation by the user, we will use gpt4.

4.5 PROMPT ENGINEERING

Prompt engineering [19] is the process where you guide generative

artificial intelligence (generative AI) solutions to generate desired outputs.

Even though generative AI attempts to mimic humans, it requires detailed

instructions to create high-quality and relevant output. In prompt

engineering, you choose the most appropriate formats, phrases, words,

and symbols that guide the AI to interact with your users more

meaningfully. Prompt engineers use creativity plus trial and error to create

a collection of input texts, so an application's generative AI works as

Legal Application

55

expected.

The Prompt engineering bridge the gap between the end users and the

large language model. Prompt engineering makes AI applications more

efficient and effective.

Prompt engineering [20] is a dynamic and evolving field. It requires both

linguistic skills and creative expression to fine-tune prompts and obtain the

desired response from the generative AI tools.

A good prompt is composed by:

• Role: specifies the position or persona that the prompt assigns to

an individual, aiding the AI in crafting responses that are pertinent

to that specific character. For instance, if the prompt says: “You are

a layer specialized in the writing contract.” Using the term “layer

specialized in..” allows the AI to create a response in a legal tone

appropriate for contract support.

• Istruction/task: This refers to a clear outline of what specific action

or response the AI is expected to generate. For example,

“Compose a rescission clause for a furniture contract” is a prompt

asking the AI to generate a rescission clause by taking in

consideration the type of contract

• Context: Adding further contextual information significantly
enhances the AI-generated response by making it more relevant

and accurate for the specific scenario. In Rag system the contextual

information is given by the result of the retrieval of stored

documents.

• Example: An effective learning strategy can be adding examples to

the prompts, which further attracts the AI’s attention and sets clear

Legal Application

56

expectations for the type of information required.

The combination of this elements helps to obtain the desired response by

the LLM.

4.6 FINE-TUNING

Fine-tuning involves training a pre-trained model on a specific dataset or

task. This process fine-tunes the model’s parameters to adapt it to a

particular task, making it more specialized. For example, you could fine-

tune a GPT model on a dataset of text summarization examples. This

would train the model to generate summaries that are more accurate and

relevant than summaries generated by a model that has not been fine-

tuned. Fine-tuning allows you to optimize the model for a specific task,

resulting in better performance and reduce the prompt dependency. In

other ways, it is difficult to search a task-specific dataset in order to train

the model.

4.7 RAG VS FINETUNING VS PROMPT
ENGINEERING

"Finetuning”, “prompt engineering" and “Rag” are three approaches used

to adapt and optimize language models, particularly Large Language

Models (LLMs), to specific tasks.

Finetuning is when you take the language model and make it learn

something new or special. Think of it like updating an app on your phone

to get better features. But in this case, the app (the model) needs a lot of

new information and time to learn everything properly. It's a bit like going

back to school for the model.

Legal Application

57

Finetuning needs a lot of computer power and time, it can be expensive. It

offers the advantage of being able to adapt the model to very specific

scenarios, thereby greatly improving its performance, it also has critical

issues. Indeed, training these models requires significant computational

resources and, in the presence of limited data sets, can reduce overall

performance and expose the model to the risk of overfitting.

In contrast, "prompt engineering" focuses on the curation and optimization

of the prompt or the initial input in the form of an instruction or question

given to the model to guide its response. This technique requires no

additional computational resources for training and offers considerable

flexibility, allowing the model to be adapted to different tasks without

changing its structure. However, finding the ideal prompt may require

iterative experimentation and may not guarantee the same effectiveness

as ’fine-tuning’ in some contexts.

Retrieval Augmented Generation, or RAG, mixes the usual language

model stuff with something like a knowledge base. When the model needs

to answer a question, it first looks up and collects relevant information from

a knowledge base, and then answers the question based on that

information. It's like the model does a quick check of a library of

information to make sure it gives you the best answer.

In practice, these techniques can be combined or used in tandem to

achieve optimal results. In our application we create a system could

employ RAG to retrieve relevant information, and then use prompt

engineering to guide the model's generation for a specific task.

Legal Application

58

FIGURE 4.6:RAG VS FINE-TUNING [21]

4.8 DEPLOYMENT

The deployment process is a critical phase in an application's lifecycle,

shaping how and when users can access and engage with the application.

Docker is an open-source platform that assists developers in creating,

shipping, and running distributed applications through containers. These

containers offer a lightweight and portable method to package an

application with all its dependencies, including libraries and configuration

files, into a single consolidated image. On the other hand, Azure,

Microsoft's cloud computing platform, provides a wide range of services,

including computing, storage, and networking capabilities. The first step

involves creating an Azure Container Registry (ACR) which will serve as a

Legal Application

59

repository for Docker images. ACR is a private registry that allows you to

store and manage Docker images specific to an organization. A Dockerfile

is a text file containing instructions for building a Docker image, outlining

the base Docker image to use, the location of the application source code

to be included in the image, as well as the libraries, packages, and other

dependencies necessary for the application's operation. Docker interprets

and follows the instructions in this file to construct the image.

The Dockerfile sets up a Python environment tailored for running a

Streamlit application and install the libraries contained in the

requirements.txt file

FIGURE 4.7:DOCKER FILE

Docker Compose is a tool that simplifies the process of defining and

managing multi-container Docker applications. Through a single YAML file,

developers can configure all the necessary services for an application,

manage volumes, networks, and inter-service dependencies. This allows

for starting and stopping all services with a single command, greatly

facilitating the implementation of complex environments.

In the docker compose was setting-up a service that includes a web

Legal Application

60

application and a Redis instance using the redis/redis-stack image.

FIGURE 4.8:DOCKER FILE

After the image is created, it is pushed to the registry

Access to the application is limited to the company network and is

restricted to the developer and legal-office.

Methodologies

61

5. METHODOLOGIES

The aim of this research was to provide support to lawyers through the use

of large language models (LLM) to speed up time-consuming processes

such as reading contracts and drafting model clauses. In this chapter, we

will analyse the methodologies used to achieve this goal. We will explore

both the prompt configurations used and other parameters for the various

tasks in order to understand how LLMs can be effectively adapted to the

specific needs of legal professionals.

5.1 CONTRACT SUMMARIZATION

In the legal field, extracting information from contracts is challenging

primarily due to the scarcity of annotated data. Utilizing advanced models

such as the Generative Pretrained Transformer (GPT) offers a promising

solution. However, these models face limitations with their inherent token

capacity, which can hinder the processing of extensive legal documents.

The main challenges in contract analysis using state-of-the-art models

include not only the limited data available for training or fine-tuning to

achieve high accuracy but also the substantial size of many contracts. This

often exceeds the processing capabilities of current transformer

architectures. Transformer-based models are constrained by a maximum

sequence length, and contracts exceeding this limit may need to be

segmented into smaller parts, complicating the analysis process.

Following the methodology outlined in the paper, we decided to implement

summarization using AzureOpenAI. However, we encountered a limitation

due to the model's context length.

 The context length limitation is a significant hurdle: while large

language models (LLMs) have many capabilities, they struggle to

Methodologies

62

synthesize large documents or process extensive text effectively due to

this constraint. Current models are capable of handling input and output

lengths ranging from 4,096 to 16,384 tokens, corresponding approximately

to 6.4 to 26.5 pages of text. "Tokens" are the basic units of processing for

LLMs, typically representing about three-quarters of a word. Various

models use different tokenization methods, and each model has a

specified "input context length" which indicates the total number of tokens

it can handle at once, with a designated portion reserved for generating

output.

FIGURE 5.1:ERROR CONTEXT LENGHT

Contract can vary significantly in length, typically ranging from 10 to 100

pages. Analysing such extensive documents is a substantial undertaking

due to their size. In our initial attempt to automate this process in our

application, we implemented a summarization feature. However, we

encountered constraints related to the context length that Large Language

Models can handle, as they are limited to a certain number of tokens per

session.

To address this issue, we adopted a preprocessing approach, dividing the

Methodologies

63

document into smaller segments, each containing a single page of the

contract, to keep the number of tokens within the model’s allowable limits.

Initially, we configured our system to send only a portion of the document

along with a carefully designed prompt for summary generation to the first

API call. In subsequent API calls, we integrated the previously generated

summaries into the prompt, aiming to preserve context and enhance the

consistency of the generated content.

FIGURE 5.2:CALL CHAIN

This method is successfully to avoid context limitations but was inefficient

in terms of computational and token cost.

While effective in meeting token constraints, this method has shown

inefficiencies. Segmenting the document into isolated parts may lead to a

loss of overall context, potentially reducing the accuracy and relevance of

the summaries produced. Furthermore, the accumulation of summaries in

successive queries increases the consumption of tokens for each

subsequent call, which may become onerous and less manageable as the

length of the original document increases. These problems highlight the

need to explore further improvements or alternative technologies to

efficiently handle large volumes of text in legal contexts.

Methodologies

64

SOLUTION

After careful analysis of the documents and discussion with the legal team,

we identified that, in reviewing the contracts, the lawyers were looking for

specific information that tended to be recurring. Consequently, we decided

to focus on extracting key points from the documents. Key points typically

required in a contract include:

• Parties involved: identification of the legal entities participating in

the contract.

• Subject matter of the contract: description of the agreement and

the objectives of the contract.

• Terms and conditions: details of the rules and regulations

governing the contract.

• Duration: period for which the contract is valid.

• Consideration or economic condition: details of financial

aspects, such as payments or fees.

• Liability: obligations and duties of the parties.

• Guarantees: assurances given by one or both parties.

• Dispute resolution: procedures for handling disputes related to the

contract.

• Contract changes: conditions under which the contract may be

changed.

• Special clauses: unique or specific stipulations necessary for

certain situations.

Methodologies

65

• Applicable law and jurisdiction: law under which the contract is

interpreted and jurisdiction for disputes.

• Terms and conditions: details of the rules and regulations
governing the contract.

• Express termination clause: conditions allowing termination of the
contract.

• Penalty Clause: penalties for non-compliance with the terms of the
contract.

This strategy aims to simplify the contract review process, improving

efficiency and reducing the time needed to review legal documents.

Algorithm 1 PSEUDO-CODE CONTRACT EXTRACTION

1: procedure Load(contract)
 2: chunks ← split(contract,by pages)
 3: chain←InitializeChain(initial

prompt,model,output parser)
 4: extraction ← InvokeChain(chunks[0].content)
 5: for i = 1 to length(chunks) - 1 do
 6: extraction ←

RefineChain(chunks[i].content,extraction)
 7: end for
 8: return extraction

9: end procedure

Methodologies

66

The prompts are designed for a legal application that acts as a digital

assistant for lawyers, with the specific purpose of facilitating the extraction

of key information from contracts. This AI tool uses a system based on

Large Language Models (LLMs) to analyse the contract text and identify

relevant components such as parties involved, subject matter of the

contract, terms and conditions and others.

The first part of the prompt can be divided into:

• Role: “You are a legal assistant. Your main function is to help the
lawyer in extracting relevant information from contracts”.

• Task: “Given the first part of a contract below and no previous
information, extract the following essential information”.

• Context: The first page of the loaded contract

• Key Extraction: the list of information to be extracted. This list can be

modifying in the prompt configuration as mentioned in the

paragraph 4.1.

After the first extraction, we implement an iterative loop in which we create

a new chain [Algorithm 1]. In this chain, we progressively include the

previous extraction in the prompt. This process allows us to continuously

update the extracted information as we proceed with the analysis of

subsequent pages of the document. This methodology ensures that each

new page analysed enriches the overall context, improving the accuracy

and completeness of the information extracted from the contract in

subsequent stages. This methodology ensures that each new parsed page

enriches the overall context, improving the accuracy and completeness of

the information extracted from the contract in subsequent steps.

Methodologies

67

5.2 GENERATION CLAUSES

The advent of artificial intelligence (AI) has led to a significant

transformation in the legal services landscape, introducing new

possibilities for automation and process optimisation. In particular, contract

management benefits greatly, with considerable time savings and a

reduction in manual errors.

To take full advantage of these opportunities, we have developed an

innovative virtual assistant based on Large Language Model (LLM). This

intelligent tool enables the automatic generation of draft contract clauses

using archived data, significantly speeding up the drafting process and

minimising errors associated with manual procedures.

The lawyer can request the system to create a contract clause. Starting

from a set of standard and previously used clauses, the system can modify

and adapt them to the lawyer's needs, providing flexibility and

customisation in the drafting of the contract.

Solution

The first step in implementing the clause generator was to collect the

clauses commonly used by the law firm. These were carefully categorised

by type, allowing for systematic and organised management. After

extracting them from an Excel file, the clauses were saved in the Redis

database.

When a user submits a request, the system transforms this request into

embeddings, i.e. vector representations that facilitate semantic

comparison. It then performs a similarity search among the stored clauses,

selecting and returning the three most relevant results. These serve as

Methodologies

68

context for a subsequent interaction with a Language Model (LLM), for

which a specific prompt has been prepared detailing:

• USER REQUEST: {query}

• Role: You are a legal assistant; your task is to assist in the

formulation of contractual clauses.

• Task: "You will be provided with clauses contained within (''''), your

task is, from the examples provided, to generate a clause that fits

the user's request."

• Context: The result of the similarity search.

Using Langchain to generate the required clause, we set the model

temperature to 0.3 to balance the creativity and accuracy of the generated

clauses.

The ability to expand or modify the assistant's knowledge by adding or

editing clauses in the dedicated section further increases the versatility of

the system.

Benefits of this virtual assistant include:

• Time savings: Automation in the draft and clause generation
process dramatically reduces the time needed to draft contracts,

freeing lawyers for more value-added activities.

• Reduced errors: Minimising manual work reduces the risk of

human error, resulting in more accurate and reliable contracts.

• Increased efficiency: Automation in the contract drafting process

significantly improves law firm efficiency, optimising the use of

resources and increasing productivity.

Methodologies

69

• Customisation: The ability to generate customised clauses gives

lawyers the flexibility to tailor contracts to each client's specific

needs, ensuring a highly personalised service.

FIGURE 5.3:FILE CLAUSES

Methodologies

70

5.3 EVALUATION

For the monitoring and evaluation of our system, we employ Langsmith,

developed by Langchain. This tool supports the debugging, monitoring and

evaluation of applications using Large Language Models (LLM). Langsmith

offers execution logging and visualisation of pipeline components,

integrated with Langchain. When analysing the architecture of a Retrieval-

Augmented Generation (RAG) system, it is crucial to examine both the

document retrieval and generation components. This method makes it

possible to assess the quality of the model and identify areas for

improvement to optimise performance. In particular, to assess the

effectiveness of our clause generator, we focus on the retriever. The

choice of the most appropriate retriever is based on the analysis of the

feedback provided by lawyers regarding the correctness of the generated

clauses, collected through Langsmith [22]. For the evaluation of the

retriever, we use the following metrics:

• Context Relevance: This metric assesses how relevant the

retrieved context is to the question asked. Using an LLM, it

determines how well the context supports the statements needed to

formulate an appropriate response.

• Contextual recall: Measures the system's ability to retrieve all

essential information to answer the question. An LLM verifies that

each element of the answer is supported by the retrieved context.

In addition, we analyse the speed at which the vector database provides

the appropriate context by assessing the impact of the type of index used

on overall system performance.

The following table illustrates the variations in the similarity score with

respect to the following query: “Help me write a termination clause for a

Methodologies

71

contract that specifies that if the customer fails to comply with the

contractual terms, the customer will have to pay a penalty of up to

€10,000."

Similarity Score Total

Tokens

Context

relevance

Context

Recall

Latency(s) User

Fedback

0.9 1350 0.86 0.85 4.01 Positive

0.75 1400 0.90 0.92 3.83 Positive

0.5 1520 0.60 0.65 4.31 Negative

0.3 1600 0.57 0.60 5.31 Negative

The results obtained show how the parameters change as the similarity

score of Redis differs. As can be seen, the latency changes very little as

the parameter changes; however, the total number of tokens in the context

varies significantly. We also considered this parameter with a view to

future developments and upgrading to better models. As regards the type

of Retriever, we decided to experiment only with Flat Indexing due to the

very small dataset of clauses at our disposal.

Methodologies

72

FIGURE 5.4:: FEDDBACK FROM LANGSMITH

FIGURE 5.5:TRACING LANGSMITH

Conclusion

73

6. CONCLUSION

This report explores the application of Large Language Models (LLM) in

the legal sector, focusing on their use for the optimisation of contract

analysis and the generation of contract clauses. The introduction of

artificial intelligence technologies in this field marks a remarkable

transformation, opening the way to solutions previously considered

unfeasible. Specifically, we analysed the effectiveness of an LLM-based

virtual assistant to automate and improve procedures traditionally handled

manually by lawyers. This tool not only speeds up the process of analysing

and creating customised clauses, but also helps minimise errors and

increase the operational efficiency of law firms. We showed how, by

supplementing the capabilities of OpenAi with an appropriate set of

clauses and the use of retriever techniques and specific prompts, it is

possible to develop a RAG system that effectively meets the needs of the

law firm. In addition, we addressed contract privacy challenges by

implementing AzureOpenAi, which meets the GDPR security standards

provided by Azure.

The automated innovations in the legal industry allow lawyers to focus

more on high-quality activities, greatly improving the firm's productivity.

Another crucial aspect to consider is the essential need for human

supervision. Despite the significant benefits brought by automation through

Large Language Models, it is essential to maintain an active, supervisory

role on the part of lawyers.

The active presence of a legal professional ensures that technology is

used as a supporting tool and not as a complete substitute for human

decision-making, preserving the integrity of the legal process.

However, some limitations have emerged: the current system is only able

Conclusion

74

to process documents in text format and not scanned documents. In

addition, it lacks a feedback mechanism to guide the model in generating

clauses more precisely.

In conclusion, this pilot project offers legal professionals a safe and

efficient tool, representing a valuable starting point for further development

6.1 FUTURE WORK

In this section, we look at possible future developments that can improve

the system, planned for the second phase of the project.

One of the current critical points is the Document Reader, which is

currently limited to reading files in PDF format. To increase the versatility

of Contract Analyser, it is essential to extend support for other common file

formats. This would allow users to upload and analyse contract documents

independently of the original format. Considering that many legal

documents are paper-based and digitised by scanning, the integration of

OCR (Optical Character Recognition) technology would allow these

digitised documents to be analysed as well, avoiding omitting vital

information for analysis. This improvement would significantly increase the

accessibility and usability of the system.

Another potential improvement is the implementation of a Feedback

System integrated into the web application. This system would allow users

to evaluate and comment on the answers generated by the system,

improving the accuracy and relevance of the answers. The collected

feedback could be used to create an annotated dataset, useful for fine-

tuning the model, adapting it to the specific needs of legal users and

improving the quality of the generated clauses.

In the initial phase, a relatively outdated model such as ChatGPT-3.5 was

used. In the future, an upgrade to more advanced models available on

Conclusion

75

Azure is planned, evaluating the associated costs. In addition, the

implementation of a local model will be considered, which would offer

advantages such as increased data security and reduced dependence on

external providers. This would be particularly useful for law firms with

stringent requirements in terms of confidentiality and compliance with

privacy regulations.

Finally, in order to improve the user interface and make the system more

user-friendly, a chatbot library could be developed that is integrated with a

front-end realised with frameworks other than the Streamlit library,

currently used for simple front-ends. Using a more advanced framework, it

would be possible to create dynamic and responsive web applications,

significantly improving the user experience. An improved front-end would

allow greater customisation, allowing users to configure the interface

according to their specific needs and ensuring better accessibility, making

the system usable by a larger number of users.

By implementing these improvements, POC would not only further

optimise contract management, but also offer more sophisticated and

adaptable legal support, improving the efficiency and accuracy of lawyers'

work.

Bibliografia

76

7. BIBLIOGRAFIA

[1] K. C. G. C. a. J. D. Tomas Mikolov, «Efficient Estimation of Word
Representations in Vector Space.,» arXiv:1301.3781 [cs.CL], 2013.

[2] A. G. P. Andreas Zelios, «Recursive neural Networks: recent results
and application,» 2022.

[3] S. H. a. J. Schmidhuber, «Long short-term memory. Neural
computation,» 1997.

[4] B. V. M. C. G. D. B. F. B. H. S. K. Cho, «. Learning phrase
representations using rnn encoder-decoder for statistical machine
translation,» arXiv preprint arXiv:1406.1078, 2014.

[5] N. S. N. P. J. U. L. J. Ashish Vaswani, «Attention Is All,» CoRR
abs/1706.03762 (2017). arXiv: 1706 . 03762., 2017.

[6] M.-W. C. K. L. K. T. Jacob Devlin, «BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,»
arXiv:1810.04805, 2018.

[7] J. W. R. C. D. L. D. A. I. S. Alec Radford, «Language Models are
Unsupervised Multitask Learners,» 2019.

[8] OpenAI, «Language Models are Few-Shot Learners,» 2020.

[9] OpenAI, «GPT-4 Technical Report,» 2024.

[10] A. U. K. Q. M. S. A. U. N. A. B. M. Humza Naveed, «A Comprehensive
Overview of Large Language Models,» arXiv:2307.06435v9, 2024.

[11] E. P. A. P. F. P. V. K. N. G. H. K. M. L. W.-t. Y. T. R. S. R. D. K. Patrick
Lewis, «Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks,» arXiv:2005.11401 , 2020.

[12] Redis, «Introduction to Retrieval Augmented Generation (RAG),»
[Online]. Available: https://redis.io/glossary/retrieval-augmented-
generation/.

[13] J. Coenradie, «Medium,» 2023. [Online]. Available:
https://jettro.dev/question-answering-through-retrieval-augmented-
generation-9b54806c214e.

[14] streamlit, «streamlit,» [Online]. Available: https://docs.streamlit.io/.

Bibliografia

77

[15] P. cs, «Understanding Document Chunking in LangChain for
Enhanced RAG Applications,» [Online]. Available:
https://www.linkedin.com/pulse/understanding-document-chunking-
langchain-enhanced-rag-praveen-cs-otvmc/.

[16] M. L. Michael Freenor. [Online]. Available:
https://www.willowtreeapps.com/craft/openai-or-azure-openai-can-
models-be-more-deterministic-depending-on-api.

[17] Redis, «Redis Documentation,» [Online]. Available:
https://redis.io/docs/latest/develop/interact/search-and-
query/advanced-concepts/vectors/.

[18] Microsoft, [Online]. Available: https://learn.microsoft.com/en-
us/legal/cognitive-services/openai/data-privacy.

[19] Amazone, «AWS,» [Online]. Available: https://aws.amazon.com/it/what-
is/prompt-engineering/?nc1=h_ls.

[20] Prompt Engineering Guide, «Prompt Engineering Guide,» [Online].
Available: https://www.promptingguide.ai/introduction/examples.

[21] W. Glantz, «Medium,» [Online]. Available:
https://betterprogramming.pub/fine-tuning-gpt-3-5-rag-pipeline-with-
gpt-4-training-data-49ac0c099919.

[22] M. F. Alam, «DataSciencedojo,» 2023. [Online]. Available:
https://datasciencedojo.com/blog/llm-evaluation-with-langsmith/.

[23] K. C. G. C. J. D. T Mikolov, «Efficient estimation of word
representations in vector space,» ICLR (Workshop Poster), 2013.

Bibliografia

78

ACKNOWLEDGEMENTS

I am deeply grateful to Daniele Sabetta for his continuous support and
guidance. His involvement in various projects I supervised was crucial. I
must also thank Prof. Morisio for his remarkable flexibility and availability. I
extend my heartfelt appreciation to all the environment in Orbyta. This
thesis is a testament to your support, guidance, and confidence in my
abilities.

