
POLITECNICO DI TORINO

Master’s Degree
in Data Science and Engineering

Master Thesis

Towards more stable continuous-time functional diffusion
processes

Supervisors Candidate
prof. Tatiana Tommasi Alberto Foresti
prof. Pietro Michiardi

Academic Year 2023-2024

Summary

Continuous-time functional diffusion processes demonstrated great potential in the gen-
eration of resolution-invariant data and in generalising diffusion models to different data
types. However, training these models is challenging due to the high number of hyper-
parameters and the instability of the training process. Meta-learning is the dominant
approach for training this kind of models. Two sets of parameters are used, where one
specialises to the task at hand, while the other is computed at inference time to adapt the
network for the current datum through few iterations of stochastic gradient descent. In
this thesis, we propose a more stable approach to infer functional representations of data
and avoid the pitfalls of meta-learning. We employ a different neural network to infer
the set of parameters that specialises to the datum. This allows to preserve important
properties, such as resolution invariance in case of visual tasks.
Additionally, we derive a new functional Stochastic Differential Equation (SDE) that is
more stable and requires fewer hyperparameters. Specifically, we remove the drift term
by showing that the infinitesimal generator can be set to the zero operator without losing
the guarantee for the existence of the reverse diffusion process. Moreover, we show that
it is possible to estimate the covariance operator of the Brownian term of the diffusion
process directly from data as the empirical covariance of the dataset.
The proposed approach allows to reduce the number of hyperparameters, leading to a
faster, simpler and cheaper training process. Remarkably, this new functional SDE re-
sembles the variance exploding SDE, sharing similar properties, such as the unbounded
variance in the forward diffusion process in the limit of infinite time.
Together, the two main contributions of this work provide a more stable and efficient way
to train continuous-time functional diffusion processes. We validate the proposed method
on a set of experiments, showing that it is more stable and requires fewer computational re-
sources compared to the state of the art of continuous-time functional diffusion processes.
The implementation of this project was done using the PyTorch library, expanding and
translating the codebase of the paper Continuous-Time Functional Diffusion Processes,
originally written using Jax. Future work will be done to demonstrate the ability of the
proposed method to scale to more complex datasets and bigger architectures.

Acknowledgements

Vorrei ringraziare i miei genitori, i miei zii, le mie nonne e i miei parenti tutti per il loro
supporto e la loro fiducia in me nel corso degli anni.
Un ringraziamento speciale va a mia madre, che mi ha sempre sostenuto e si è sempre inter-
essata in ogni mia scelta, anche tecnica, nonostante faccia tutt’altro nella vita. Ringrazio
in egual misura mio padre, che con la sua esperienza sul campo mi ha sempre dato i giusti
consigli e mi ha aiutato a trovare la strada giusta. Più volte mi sono ispirato a lui per
dedizione e approccio ai problemi.
Ringrazio Giulia per avermi supportato in questi anni a Torino e in Francia, per avermi
sopportato nei momenti di stress e per avermi rallegrato in tutti i momenti passati in-
sieme. Grazie anche per essere stata un’ottima agente immobiliare.
Ringrazio i professori Pietro Michiardi e Giulio Franzese per avermi accolto in Francia
con così poco preavviso e per avermi guidato in questo progetto e per aver permesso di
potermi esprimere al meglio.
Ringrazio la professoressa Tatiana Tommasi per avermi dato le giuste dritte da Torino e
per essermi stata vicino nella ricerca del progetto di tesi giusto per me.
Ringrazio i miei amici, in particolare Giulia, per aver condiviso l’ufficio con me e per
avermi tirato su quando gli esperimenti non funzionavano. Rimarranno memorabili le
nostre colazioni in ufficio e la settimana enigmistica dopo pranzo. Un grazie anche a Sha-
heer, per esserci stato dal primo giorno e per tutto il nostro percorso insieme tra progetti
ed esami difficili. Ringrazio, quindi, tutti i miei amici a Torino per aver reso indimenti-
cabile la mia esperienza universitaria. Un grazie anche agli amici che ho trovato in costa
azzurra, per aver creato tanti ricordi in un erasmus comunque troppo corto e ai miei com-
pagni dell’ASP, abbiamo trascorso poco tempo insieme ma ci siamo sempre divertiti un
sacco. Ringrazio, infine tutti gli amici e mentori che ho trovato nel corso della mia vita
a Savona e Gressoney, per avermi insegnato tanto e per avermi fatto crescere come per-
sona. Un ringraziamento particolare va ad Elia per avermi accolto a casa sua durante la
quarantena e a Luca, per le nostre passeggiate sul lungomare che ci tenevano sani durante
la pandemia. Ringrazio in generale gli studenti del PoliTo per la comunità online che mi
ha permesso di confrontarmi con altri colleghi e studiare meglio, specialmente durante il
2020 e il 2021.
Infine, un grazie agli asini dell’Eurecom, per tutte le volte in cui vi ho dato da mangiare
e per tutte le volte in cui mi avete fatto compagnia uscendo dall’università.

Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Escaping the inductive bias . 1
1.2 Contribution . 2

2 Mathematical Foundations 5
2.1 Measure theory . 5
2.2 Functional analysis . 8

2.2.1 Semicontinuous Semigroups . 10
2.3 Stochastic calculus . 11
2.4 The diffusion equation . 13

2.4.1 Reversing the diffusion equation . 13
2.5 Girsanov’s theorem . 14
2.6 Stochastic calculus in infinite dimensions 15

2.6.1 SDEs in infinite dimensions . 16

3 Machine Learning and Generative modelling 19
3.1 Variational autoencoders . 19

3.1.1 Evidence Lower Bound . 20
3.2 Generative Adversarial Networks . 21
3.3 Learning with diffusion models . 22
3.4 Score-based diffusion models . 23

3.4.1 Denoising Diffusion Probabilistic Models 25
3.4.2 Score based generative modelling through SDEs 26
3.4.3 Sampling from the generative model 27
3.4.4 Solving the reverse diffusion SDE 29
3.4.5 A variational perspective on score-based generative modelling . . . 29

3.5 Continuous-time functional diffusion processes 31
3.5.1 Practical implementation . 33

3.6 Implicit Neural Representations (INRs) . 34
3.6.1 Architectures for INRs . 35

3.7 Reinforcement learning . 36
3.7.1 Q-learning . 37
3.7.2 Reinforcement learning for diffusion models 38

3.8 Transformers . 38
3.8.1 Attention . 39
3.8.2 The original transformer architecture 39
3.8.3 Vision transformer . 39
3.8.4 Vision transformer for diffusion models 40

4 Proposed method 43
4.1 Modulation networks for INRs . 43
4.2 Reparametrisation of the score-based generative model 45

4.2.1 The driftless diffusion process . 45
4.2.2 Estimating the covariance operator from data 48

5 Experiments 51
5.1 Data . 51
5.2 Software and code . 52
5.3 Experimental settings . 52

5.3.1 Results with general SDE . 52
5.3.2 Results with driftless SDE . 55
5.3.3 Evaluation . 59

6 Conclusions 61

List of Tables

5.1 Results of the FID score for the models trained with the general SDE . . . 59
5.2 Results of the FID score for the models trained with the driftless SDE . . . 59
5.3 Results with VE SDE best practises . 60

List of Figures

3.1 The working mechanism of the Variational Autoencoder Kingma et al. [2019] 20
3.2 Visualization of the reparametrisation trick Kingma et al. [2019] 21
3.3 An example of diffusion process Song et al. [2020] 27
3.4 The architecture of the transformer Vaswani et al. [2017] 40
3.5 The architecture of ViT Dosovitskiy et al. [2020] 41
3.6 The architecture of U-ViT Bao et al. [2023] 42
4.1 The mechanism of the modulation network for skipping meta-learning . . . 44
5.1 Example of images from the MNIST dataset 51
5.2 Samples generated by the modulation network approach trained on coloured

noise . 53
5.3 Samples generated by the U-ViT network trained on coloured noise 53
5.4 Samples generated by the modulation network approach trained on white

noise . 53
5.5 Samples generated by the U-ViT network trained on white noise 53
5.6 Real batch of data . 54
5.7 Noisy batch of data . 54
5.8 Data denoised using the modulation network approach 54
5.9 Data denoised using the U-ViT network 54
5.10 Real batch of data . 55
5.11 Noisy batch of data . 55
5.12 Data denoised using the modulation network approach 55
5.13 Data denoised using the U-ViT network 55
5.14 Images generated with T = 10 and white noise 56
5.15 Images generated with T = 20 and white noise 56
5.16 Images generated with T = 100 and white noise 56
5.17 Images generated with estimated covariance operator and T = 20 in both

training and inference . 57
5.18 Images generated with estimated covariance operator and T = 20 in train-

ing and T = 30 in inference . 57
5.19 Images generated with estimated covariance operator and T = 100 in both

training and inference . 57
5.20 Images generated with estimated covariance operator and T = 10 in train-

ing and T = 15 in inference . 57

5.21 Images generated with estimated covariance operator, estimated covariance
operator, T = 20 and following VE SDE best practises 58

5.22 Images generated with estimated covariance operator, estimated covariance
operator, T = 100 and following VE SDE best practises 58

5.23 Images generated with estimated covariance operator, estimated covariance
operator, T = 1000 and following VE SDE best practises 58

5.24 Images generated with a bigger modulation approach model using the gen-
eral SDE . 60

If you cannot understand my
argument, and declare
it’s Greek to me
you are quoting Shakespeare.
[B. Levin, Quoting Shakespeare]

Chapter 1

Introduction

In the last few years, we witnessed a surge in the development of generative Artificial
Intelligence (AI) systems. Notably, the release of chatGPT to the public in late 2022
brought increasingly higher attention on the field. From that date, however, generative
AI did not stop progressing, with the release of more advanced models like GPT-4 or
DALL-E. Interestingly, the models pioneering the generative AI wave focused on textual
tasks. This could sound unintuitive to a biologist, as in the history of the evolution of life
forms on earth, language was a capability that developed solely in human and, in any case,
after the development of vision. While this can motivate the different nature of intelligence
in humans and AI, it also raises the question of whether generative AI can be applied to
visual tasks or other different types of tasks. Remarkably, recent success in vision, like the
release of DALL-E or SORA, suggests that the current paradigms of generative AI can
be successfully applied to different fields. However, the models behind these successes are
still not general enough to be applied to any kind of task. In fact, while humans can learn
to perform any kind of task with limited information in a reasonable time due to millions
of years of evolution, AI models can only rely on statistical correlations from huge pools
of data produced and selected by humans. This affects the generalization capabilities of
AI models, as they are bound to the inductive bias of the data they are trained on. For
this reason, models such as GPT-4 fail to accomplish simple tasks that do not appear
often in the data they have been trained on, such as solving the graph colouring problem
Stechly et al. [2023].

1.1 Escaping the inductive bias
Diffusion based generative modelling emerged as a promising paradigm versatile enough
to be bounded to any kind of data. Due to its reliance on mathematical assumptions and
constructs such as Partial Differential Equations, there is stronger theoretical evidence
compared to Generative Adversarial Networks (GANs), which rely on intuitions based
on engineering. At the core of diffusion, however, lie deep learning architectures, such
as transformers and Convolutional Neural Networks (CNNs). These architectures allow
diffusion models to exploit the inductive bias for better performances. For instance, in

1

Introduction

computer vision, CNNs offer a way to encode the information of the spatial structure of the
image through convolution kernels. However, this kind of approach does not generalise
well to different data types. This does not limit to transferring the architecture from
different kind of media, such as image to audio, but also in scaling image models to
different resolutions.
Representing a single data point as a function show promise as a way to generalise diffusion
models, as functions are mathematical objects and do not rely on real world assumptions.
This method, however, comes with several practical challenges. Firstly, functions are, by
definition, infinite dimensional, as they are elements of a Hilbert space, whereas computer
memory is finite.
Fortunately, we have several tools to deal with that issue. Most notably, Multi-Layer
Perceptrons (MLPs) are universal function approximators Hornik et al. [1989], meaning
that they can approximate any function to any degree of precision. Additionally, Fourier
analysis allows us to exactly represent certain functions in a finite dimensional space,
by decomposing them in a sum of sinusoidal functions, even with a limited amount of
samples of the same function. In practice, however, stability in training diffusion models
using functional representation is not guaranteed, and they can be hard to train, especially
compared to traditional architectures such as CNNs and Vision Transformers (ViTs).
Additionally, considering the joint impact of the set of hyperparameters related to the
functional representation network and the hyperparameter of the SDE of the diffusion
model can cause a lot of trouble as:

1. It is not clear how the two sets of hyperparameters affect each other.

2. The training of the model can be unstable and require a lot of computational re-
sources.

1.2 Contribution
In this work, we propose a novel approach to train diffusion models using functional rep-
resentation on top of the work proposed by Franzese et al. [2024]. We start by illustrating
the intuition with the help of a simple example: generating images at different resolutions.
For this task, given a set of images, we can represent them using a functional representa-
tion. In this work, we treat each image as a function, however we maintain a shared core
function representation, and then we specialise it by using another network to compute a
set of parameters that modifies the core function. In this way we can enhance stability
in training and exploit the inductive bias of the additional network. However, this comes
with an increased complexity of the training process. For this reason, in this work we
reason on reducing the number of hyperparameters of the SDE of the diffusion process for
a simpler and cheaper training process. This work is structured as follows:

• In Chapter 2, we provide the mathematical foundations required to understand the
results of this work.

• In Chapter 3, we provide a review of the state of the art in diffusion models and
functional representation.

2

1.2 – Contribution

• In Chapter 4, we introduce the proposed method and the intuition behind it.

• In Chapter 5, we provide the results of the experiments conducted to validate the
proposed method.

• In Chapter 6, we provide the conclusions and future work.

3

4

Chapter 2

Mathematical Foundations

Generative modelling takes inspiration from work in probability theory, measure theory,
and functional analysis. In this chapter, we provide the mathematical foundations required
to understand the results of this work. In particular, we start with mainstream material,
leading the way to advanced concepts which will form the backbone of the work.

2.1 Measure theory
In this section, we provide the basics of measure theory for understanding the results
of this work. The definitions in this section come from Salamon [2020] unless stated
otherwise. We start by defining the notion of measurable space and sigma-algebra:

Definition 1 (Measurable space) A σ-algebra A on a set X is a collection of subsets
of X such that:

• X ∈ A.

• If A ∈ A, then Ac ∈ A.

• Every countable union of elements in A is also in A.

A measurable space is a pair (X,A), where A ⊂ 2X is a σ-algebra.

We follow by defining the notion of topology Hatcher [2009]:

Definition 2 (Topological space) A topological space is a set X together with a collec-
tion O of subsets of X, called open sets, such that:

• The union of any collection of sets in O is in O.

• The intersection of any finite collection of sets in O is in O.

• Both X and ∅ are in O.

O is called a topology on X.

5

Mathematical Foundations

A σ-algebra is called a Borel σ-algebra if it is generated by the open sets of a topological
space. Moving forward, we introduce the concept of measurable maps:

Definition 3 (Measurable Map) First, we define the pre-image f−1(B) of a set B
under a function f : X → Y as the set of elements in X that are mapped to B by f ,
denoted as f−1(B). Then, a map f : X → Y is called measurable if for any measurable
B ⊂ Y , then f−1(B) is a measurable subset.

These definitions are useful for Lebesgue integrals. Informally, Lebesgue integrals
use approximations of functions, called simple functions or step functions. Those
are real-valued functions that admit only a finite number of values, that is, they have
finite image. An important result of step functions is that a function f : X → [0,∞] is
measurable if and only if there exists a sequence of step functions sn that converge to it:
limn→∞ sn(x) = f(x) ∀x ∈ X. We now have the elements to define the measure:

Definition 4 (Measure) Let (X,A) be a measurable space. A measure on (X,A) is a
function µ : A → [0,∞] such that:

• µ is σ-additive: µ(∪∞
i=1Ai) =

q∞
i=1 µ(Ai) for any countable collection of disjoint sets

{Ai}i.

• There exists a measurable set A ∈ A such that µ(A) <∞.

A measure space is a triple (X,A, µ) consisting of a measurable set, its σ-algebra and
a measure.

An important example of measure space is the probability space, where the measure
of the entire space is one. More formally, we give the following definition:

Definition 5 (Probability Space) A probability space is a measure space (Ω,F , P),
where:

• The set Ω is the sample space.

• The σ-algebra F ⊂ 2Ω is the set of events.

• The measure P : F → [0,1] is the probability measure. It satisfies P (Ω) = 1.

We can now use all these elements to define Lebesgue integrals:

Definition 6 (Lebesgue Integral) Given a measure space (X,A, µ) and a measurable
set E, let s : X → [0,+∞) be a measurable step function of the form:

s(x) =
nØ
i=1

aiχAi(x) (2.1)

With αi a positive real number and Ai ∈ A. The Lebesgue integral of s over E is the
number defined as: Ú

E
sdµ =

nØ
i=1

αiµ(Ai ∩ E) (2.2)

6

2.1 – Measure theory

Additionally, let f : X → [0,+∞) be a measurable function. The Lebesgue integral of f
over E is the number defined as:Ú

E
fdµ = sup

;Ú
E
sdµ : s ≤ f, s simple

<
(2.3)

We say that a function f : X → R is integrable with respect to measure µ if it is
measurable and if

s
|f |dµ < +∞.

The extension to non-negative functions is straightforward, as we can define the integral
of a function f as the difference between the integral of its positive and negative parts.
A random variable X : Ω → R is an integrable function, by taking the integral over the
entire space we obtain the expected value of X.

Completion of measure spaces A measurable space (X,A, µ) is called complete if
N ∈ A, µ(N) = 0, A ⊂ N =⇒ A ∈ A. When a space is not complete, we can complete
it by adding the necessary sets to the σ-algebra. More formally:
Theorem 1 Let (X,A, µ) be a measure space. Then we define a new σ-algebra:

A∗ = {E ⊂ X| there are measurable sets A, B ∈ A such that A ⊂ E ⊂ B ∧ µ(B \ A) = 0}
(2.4)

Then there is a unique measure µ∗ : A∗ → [0,+∞] such that µ∗|A = µ. Moreover, µ∗

preserves also integration, that is, if f is µ-integrable, then it is also µ∗-integrable and the
integrals coincide. The triple (X,A∗, µ∗) is a measure space and is called the completion
of (X,A, µ).

Lp spaces In this work, we will often consider integrable functions. In this paragraph we
formally define a space of integrable functions and generalise the notion of integrability.
Given a measure space (X,A, µ) a measurable function f : A → R is said to be p-integrable
if: 3Ú

X
|f |pdµ

4 1
p

< +∞ ∀x ∈ A (2.5)

This integral is also called the p-norm, and it is denoted as ||f ||p. The space of
p-integrable functions is denoted as Lp(µ).

The Lebesgue measure The Lebesgue measure is particularly interesting, because it
appears frequently with Euclidean spaces. To define the Lebesgue measure we define the
property of translation invariance of a measure µ, that is µ(A+x) = µ(A) ∀A ∈ A, x ∈
X. Where A + x := {a + x : a ∈ A} and A is the σ-algebra of all Borel sets in Rn. It
is important to denote that there is a unique measure µ : B → Rn that is translation
invariant and satisfies µ([0,1]n) = 1.
Definition 7 (Lebesgue Measure) If we denote (Rn,B, µ) as the measure space of the
measure defined earlier, then the completion of the measure space is the Lebesgue mea-
sure space (Rn,A, µ) and µ is the Lebesgue measure.
More practically, the Lebesgue measure allows us to assign the value one to all unit cubes
in Rn.

7

Mathematical Foundations

The Radon-Nikodym Derivative A measurable space X is said to be σ-finite if it
can be expressed as the union of countably many subsets with finite measures, that is:

X =
∞Û
i=1

Xi, with µ(Xi) <∞ ∀i (2.6)

For example, the Euclidean space is σ-finite with the Lebesgue measure because it
is the union of countably many cubes, or balls, with finite volume. We now state an
important theorem that allows us to relate different measures, we will use it later in the
work:

Theorem 2 (Radon-Nikodym Theorem) Let (X,A, µ) be a σ-finite measure space
and ν a measure on A such that µ is absolutely continuous with respect to ν. Then there
exists a measurable function f : X → [0,+∞) such that:

ν(A) :=
Ú
A
fdµ ∀A ∈ A (2.7)

The function f is called the Radon-Nikodym derivative of ν with respect to µ and is
denoted as dν

dµ .

The reverse implication is also valid, that this if we can find f then µ is absolutely
continuous with respect to ν, but we will use the forward implication in this work.

2.2 Functional analysis
In this section we provide the basics of functional analysis required to understand the
results of this work. The definition of this section follow the work Bühler [2017]. We start
by defining Metric Spaces, which provide the fundamentals for Hilbert spaces and Banach
spaces.

Definition 8 (Metric space) A metric space is a pair (X, d), where X is a set and
d : X ×X → R is the distance function with the following properties:

• d(x, y) ≥ 0 ∀x, y ∈ X, with equality if and only if x = y.

• d(x, y) = d(y, x) ∀x, y ∈ X.

• d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (triangle inequality).

A Cauchy sequence over a metric space is a sequence {xn}n such that for every ϵ > 0
there exists an N such that d(xn, xm) < ϵ ∀n,m > N . A metric space is complete if
every Cauchy sequence converges to a point in the space.

Definition 9 (Normed vector space) A normed vector space is a pair (X, || · ||), where
X is a real vector space and || · || : X → R is a function called norm with the following
properties:

8

2.2 – Functional analysis

• ||x|| ≥ 0 ∀x ∈ X, with equality if and only if x = 0.

• ||αx|| = |α|||x|| ∀x ∈ X,α ∈ R.

• ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (triangle inequality).

A complete normed vector space is called a Banach space.

This definition plays a crucial role for Hilbert spaces, which only need an additional
condition on their norm:

Definition 10 (Hilbert space) A Hilbert space is a real or complex inner product space
that is also a complete metric space with respect to the distance function induced by the
inner product.

The inner product of two vectors x and y in a Hilbert space H is denoted by ⟨x, y⟩.
The norm of a vector x is defined as ∥x∥ =

ð
⟨x, x⟩.

The concept of Banach space allows us to define bounded linear operators. The term
linear operator is an alias for linear map, which is a function between two vector spaces
that preserves the operations of vector addition and scalar multiplication.

Definition 11 (Bounded Linear Operator) Let (X, || · ||X) and (Y, || · ||Y) be two
normed vector spaces, then a linear operator A is said to be bounded if there exists a
constant C such that ||Ax||Y ≤ C||x||X ∀x ∈ X.

The smallest constant C that satisfies the inequality is called the operator norm of A
and is denoted by ||A||.

An operator A is said to be positive definite if it satisfies:

⟨x,Ax⟩ ≥ 0 ∀x ∈ X (2.8)

Where ⟨·, ·⟩ is the inner product of the Hilbert space X.
Note that, for a positive definite operator A, we can also define the square root A 1

2 as the
operator that satisfies A 1

2A
1
2 = A. Similarly, we can define the inverse of an operator A

as the operator A−1 that satisfies AA−1 = A−1A = I. Combining these two we can define
A− 1

2 as the inverse of the square root of A.
We can also define kernel and image of a linear operator:

• The kernel of a linear operator A is the set of vectors x such that Ax = 0.

• The image of a linear operator A is the set of vectors y such that there exists a
vector x such that Ax = y.

They resemble the concepts of null space and column space in linear algebra, with an
extension to infinite dimensions. Analogously, we can also define the trace of an operator
A : X → Y :

tr(A) =
Ø
n

⟨ek, Aek⟩ (2.9)

9

Mathematical Foundations

The trace is well-defined only when it is unique for any choice of base. Operators for
which a trace can be defined are said to be trace-class operators. The space of bounded
linear operators X → Y is denoted by L(X, Y) and (L(X, Y), ||L||(X,Y)) forms a normed
vector space.
Remarkably, we can relate the operators of two different spaces through the definition of
adjoint operator:

Definition 12 Let A : X → Y be a bounded linear operator between two Hilbert spaces
X and Y . The adjoint operator A∗ : Y → X is the unique operator that satisfies:

⟨Ax, y⟩Y = ⟨x,A∗y⟩X ∀x ∈ X, y ∈ Y (2.10)

Adjoint operators will allow us to work with solutions of Partial Differential Equations
(PDEs) more concisely.

2.2.1 Semicontinuous Semigroups

We now delve into a class of operators of paramount importance for the solutions of PDEs:
semigroups.

Definition 13 (Strongly continuous semigroup) Let X be a real Banach space, then
a one-parameter semigroup of operators on X is a map S : [0,+∞) → L(X) such
that for all s, t ≥ 0:

S(0) = I, the identity operator (2.11)
S(s+ t) = S(s)S(t) (2.12)

A strongly continuous semigroup is a semigroup with the following property:

lim
t→0
||S(t)x− x|| = 0 ∀x ∈ X (2.13)

We can also define the continuous version of semicontinuous semigroup, the only dif-
ference is that their domain is R and not [0,+∞). In this work, we will use the family
of operators S(t) = eAt =

q
k=0

tkAk

k! , where A : X → X is a bounded linear opera-
tor. Strongly continuous semigroups answer to the task of finding a solution for a linear
differential equation, the inverse problem is answered by infinitesimal generators:

Definition 14 (Inifnitesimal Generator) Let X be a Banach space and let S be a
strongly continuous semigroup. The infinitesimal generator of S is the operator A :
dom(A)→ X, where dom(A) =

î
x ∈ X| limt→0

s(t)x−x
t exists

ï
, such that:

lim
t→0

S(t)x− x
t

= Ax ∀x ∈ dom(A) (2.14)

10

2.3 – Stochastic calculus

2.3 Stochastic calculus
In this section, we provide the basics of stochastic calculus required to understand the
results of this work. We follow the theoretical foundations laid out by Särkkä and Solin
[2019]. Throughout this section, we assume random variables with values in Rm with
0 < m < +∞ finite. In general, we can write a Stochastic Differential Equation (SDE) as
follows:

dXt = f(Xt, t) + g(Xt, t)dWt (2.15)

Where:

• Xt is the random variable that characterises the random process described by 2.15.

• f : Rm × [0, T]→ Rm is a function called drift coefficient.

• g : [0, T]→ Rm is a function called diffusion coefficient.

• dWt is a Brownian motion.

In practice, dWt can be treated as infinitesimal white noise, more formally:

Definition 15 (Brownian motion) The Brownian motion Wt ∈ Rm is a stochastic
process characterised by a diffusion matrix R ∈ Rm × Rm such that:

1. Any increment ∆Ws−t = Ws −Wt with s > t > 0 is a Gaussian random variable
with zero mean and covariance R(s− t)

2. W0 = 0.

3. Increments are independent if their time intervals do not overlap.

The Brownian motion is a fundamental object in stochastic calculus, it is the continuous-
time analogue of a random walk. Moreover, Brownian motions cannot look into the future,
but are only conditioned by the past. This property is formalized by the concept of fil-
tration:

Definition 16 (Filtration) Given a probability space (Ω,F , P), a filtration Ft is a fam-
ily of σ-algebras such that:

• Ft ⊂ Fs for t < s.

•
t
tFt = F .

A stochastic process is said to be adapted to the filtration Ft if it is Ft-measurable for
all t ≥ 0. In this way, we can formalize the intuition that Brownian motions do not see
into the future. In fact, we can define a filtration with respect to the time index such that
the Brownian motion is adapted to it.

The scalar case of Brownian motion with diffusion matrix R = 1 is called standard
Brownian motion. Since Brownian motions are nowhere differentiable, most definitions of
integrals do not work. We must appositely define a new kind of integral for this case:

11

Mathematical Foundations

Definition 17 (Itô integral) Given g : Rn × [0, T]→ R and a standard Brownian mo-
tion Wt the Itô integral

s T
0 g(Xt, t)dWt is the number:Ú T

0
g(Xt, t)dWt = lim

N→∞

Ø
k

g(Xtk , tk)Wtk(tk+1 − tk) (2.16)

Where {tk}k∈[1,2,...,N] is a sequence of times in increasing order.

This formulation is similar to a Riemann integral, however Riemann integrals allow
any choice of t∗k ∈ [tk, tk+1] for the computation of g(Xt∗

k
, t∗k). In this case, the Brownian

motion would be too irregular for such a series to converge. This shows the importance
of fixing the sequence {tk}k∈[1,2,...,N].
As an implication of this definition, Itô calculus has a different chain rule. For example,
consider the following integral:Ú t

0
WtdWt = (Wt)2

2 − t

2 /= (Wt)2

2 (2.17)

In general, the chain rule in Itô calculus has the following form:

Theorem 3 (Itô’s formula) Given a Itô process xt, then given an arbitrary scalar func-
tion ϕ(xt, t) the differential dϕ is:

dϕ = δϕ

δt
dt+

Ø
i

δϕ

δxi
dxi + 1

2
Ø
i,j

δ2ϕ

δxiδxj
dxidxj (2.18)

Where mixed derivatives are coupled with the rules:

• dWtdW
T
t = Rdt.

• dtdW = 0.

• dWdt = 0.

This formula extends to the non-scalar case as it holds to each component of a multi-
dimensional Itô process. In any case any Itô process can be expressed as the solution of
the SDE dXt = f(Xt, t)dt+ g(Xt, t)dWt. The probability density p(x, t) of the solution of
the equation in 2.15, solves the following equation, called Fokker-Planck-Kolmogorov
(FPK) equation:

δp(x, t)
δt

= −
Ø
i

δ

δxi
[fi(x, t)p(x, t)] + 1

2
Ø
i,j

δ2

δxiδxj
{[g(x, t)Qg(x, t)T]ijp(x, t)} (2.19)

The FPK equation allows to define the equivalent probability flow ordinary differential
equation (ODE) in diffusion processes Song et al. [2020]. The solution of the FPK equation
solves also another equation called backward Kolmogorov equation:

−δp(y, t|x, s)
δs

= Ap(y, t|x, s), p(y, s|x, s) = δ(x− y) (2.20)

12

2.4 – The diffusion equation

Where t ≥ s and A is an infinitesimal generator satisfying:

Aϕ = −
Ø
i

δ

δxi
[ϕ]fi(x, t) + 1

2
Ø
i,j

δ2

δxiδxj
{[g(x, t)Qg(x, t)T]ijp(x, t)} (2.21)

It may also be of practical interest to find a solution to 2.19. In this case, we can rely
on the Kac-Feynman formula:

Theorem 4 (Kac-Feynman formula) Let Xt be the solution of the SDE in 2.15 and
p(x, t) the solution of the FPK equation in 2.19. Then the solution of the following equa-
tion:

u(x, t) = E[ϕ(Xt)|X0 = x] (2.22)
is given by:

u(x, t) =
Ú
Rm

ϕ(y)p(y, t|x,0)dy (2.23)

2.4 The diffusion equation
In this work, we are interested in the diffusion equation, which is a simplified case of
equation 2.15, where the diffusion term only depends on time:

dXt = f(Xt, t)dt+ g(t)dWt (2.24)

The FPK equation allows to find the drift term of a PDE that has the same distribution
at final time as the reverse-time SDE.

2.4.1 Reversing the diffusion equation
Given a forward diffusion equation, an important problem consist on inverting it so that
we can recover a stochastic process that goes back in time. In his work Anderson [1982]
Anderson provides a formula using the Bayes theorem and the FPK equation:

p(xt, t, xs, s) = p(xs, s|xt, t)p(xt, t), with s ≥ t (2.25)
Then, by manipulating the FPK equation, the reverse time process associated to the

forward process in eq.2.15 is:

dX̄t = f̄(X̄t, t)dt+ g(X̄t, t)dW̄t (2.26)

Where W̄t is a Wiener process independent of past increments of Xt and, equivalently,
of future increments of X̄t. Whereas:

f̄(Xt, t) = f(Xt, t)−∇x[log p(Xt, t)g(Xt, t)gT (Xt, t)]g(Xt, t)gT (Xt, t) (2.27)

In the case of the diffusion equation, we get that g only depends on time. Hence, we
can simplify:

f̄(Xt, t) = f(Xt, t)− g2(t)∇x[log p(Xt, t)] (2.28)
This last equation was used by Song and Ermon in their formulation of generative

modelling through SDEs Song et al. [2020].

13

Mathematical Foundations

2.5 Girsanov’s theorem
Suppose we are given two stochastic processes driven by:

dXt = f1(Xt, t)dt+ dWt, with X0 = x0 (2.29)
dYt = f2(Yt, t)dt+ dWt, with Y0 = x0 (2.30)

With dWt being a Wiener process with diffusion matrix R. Let us also define the
trajectories up to time T : X = {Xt1 , Xt2 , ..., Xtn}, Y = {Yt1 , Yt2 , ..., Ytn} such that {tk}
are in increasing order and become dense in time as n → +∞. These trajectories allow
us to define path integrals:

E[h(Xt)] =
Ú
h(Xt)p(Xt)dXt (2.31)

The ratio of the probability law of the two paths is given by:

p(Xt)
p(Yt)

= Z(t) (2.32)

Where:

Z(t) = exp
A
− 1

2

Ú t

0
[f1(Yτ , τ)− f2(Yτ , τ)]TR−1[f1(Yτ , τ)− f2(Yτ , τ)]dτ

+
Ú T

0
[f1(Yτ , τ)− f2(Yτ , τ)]TR−1dWτ

B

This allows us to relate path integrals in the following way:

E[h(Xt)] = E[Z(t)h(Yt)] (2.33)

We can also define an induced probability measure p̃(Xt) = Z(t)p(Xt) such that the
following process W̃t is a Brownian motion under p̃ with covariance matrix R:

W̃t = Wt −
Ú t

0
f1(Yτ , τ)− f2(Yτ , τ)dτ (2.34)

The true Girsanov theorem is a generalization of what we have seen so far. In the
following statements we also explicitate the dependence of our processes with respect to
the event space.

Theorem 5 (Girsanov) Let θt : [0, T]× Ω→ RN be a stochastic process adapted to the
filtration {Ft}t≥0driven by the N-dimensional Brownian motion W (ω, t) under probability
measure P. Let’s define the process Zt:

Z(t, ω) = exp
3Ú t

0
θT (τ, ω)dW (τ, ω)− 1

2

Ú t

0
θT (ω, τ)θ(ω, τ)dτ

4
(2.35)

14

2.6 – Stochastic calculus in infinite dimensions

Satisfying E[Z(t, ω)] = 1, then the process:

W̃ (t, ω) = W (t, ω)−
Ú t

0
θ(ω, τ) (2.36)

Is a Brownian motion under probability measure P̃ derived via:

E

C
dP̃
dP

(ω)|Ft
D

= Z(t, ω) (2.37)

We call this theorem a generalization, because the process θ cannot always be derived
as a likelihood ratio. Additionally, the ratio of probability densities Z(ω, t) is the Radon-
Nikodym derivative of P̃ with respect to P.
We can use Girsanov’s theorem to find the weak solution of a SDE, consider the following
SDE:

dXt = θ(Xt, t)dt+ dWt (2.38)
Then by Girsanov theorem the expectation of any function h of Xt can be computed as:

E[h(Xt)] = E[Z(t)h(X̃t)] (2.39)

Where Z(t) is defined as in the theorem and X̃t is the solution of the SDE:I
dX̃t = X0 + dWt

W̃t = Wt −
s t

0 θ(X0 +Wτ)dτ
(2.40)

This system solves the SDE 2.38 under the new path measure P̃ = Z(t)P.

2.6 Stochastic calculus in infinite dimensions
In this section, we show how to extend the concept we introduced previously to infinite
dimensions following the foundations laid out by Da Prato and Zabczyk [2014]. We start
again with the Brownian motion. When the Brownian motion is Hilbert-valued, the
diffusion matrix is not suitable to describe it, as we have infinite dimensions. For this
reason, we use a symmetric and non-negative operator R called covariance operator.
Given a suitable orthonormal basis {ek}k for our Hilbert space H we have the following
property:

Rek = λkek for λk ≥ 0 and bounded (2.41)
Using this operator we can proceed with the definition of Brownian motion:

Definition 18 (Brownian motion in Hilbert spaces) A H-valued stochastic process
W with covariance operator R is said to be an R-Wiener process if:

• W0 = 0.

• W has continuous trajectories.

15

Mathematical Foundations

• Non-overlapping increments are independent.

• Increments W (t)−W (s) with s < t are normally distributed N (0, (t− s)R).

When R is trace-class, we have useful properties that can also allow us to practically
implement infinite dimensional SDEs in code. In particular, the Brownian motion admits
the following, convergent, series expansion:

Wt =
+∞Ø
j=1

ñ
λjβ

j
t ej (2.42)

Where βj = 1√
λj

⟨Wt, ej⟩ for j ∈ N∗. Those βj are mutually independent, real-valued
Wiener processes. For practical applications, we still have the problem that we have
infinite dimensions. However, we can use Fourier analysis and the sampling theorem to
use a finite number of basis vectors.

2.6.1 SDEs in infinite dimensions
Nonlinear SDEs in infinite dimensions read as follows:I

dXt = (AXt + f(Xt, t))dt+ g(Xt, t)dWt

X0 = ζ
(2.43)

Where A is a bounded linear operator, and both f and g are nonlinear functions.
The process assumes a probability space (Ω,F , P), with the canonical filtration Ft. Most
notably, this kind of equations admit a unique mild solution under some assumptions,
where the term mild solution is defined as follows:

Definition 19 (Mild solution) Given a process described by 2.43, a mild solution is a
process Xt such that:

• P
1s t

0 |Xs|2ds < +∞
2

= 1, P − almost surely

• For any t ∈ [0, T]:

X(t) = S(t)ζ+
Ú t

0
S(t−s)f(Xs, s)ds+

Ú t

0
S(t−s)g(Xs, s)dWs P−almost everywhere

(2.44)
Where S(t) = eAt is a strongly continuous semigroup of operators.

The list of complete assumptions for existence and uniqueness of mild solutions is avail-
able in Da Prato and Zabczyk [2014]. Informally, we can already see from the definition
of mild solution that A is required to be the infinitesimal generator of S(t). The most
practical assumptions also require f and g to be Lipschitz and have linear growth.
A practical way to get a solution of a SDE in infinite dimensions is to use Girsanov’s
theorem:

16

2.6 – Stochastic calculus in infinite dimensions

Theorem 6 (Girsanov in infinite dimensions) Given a process θ with values in U0 =
R− 1

2 (U) adapted to the natural filtration {F}t≥0 such that:

E
C
exp

AÚ T

0
⟨θs, dWs⟩0 −

1
2

Ú T

0
|θs|20ds

BD
(2.45)

Then, the process W̃ :
W̃t = Wt −

Ú t

0
θsdWs, t ∈ [0, T] (2.46)

Is a Wiener process with covariance operator R under the probability measure P̃ defined
by:

dP̃ = exp
AÚ T

0
⟨θs, dWs⟩0 −

1
2

Ú T

0
|θs|20ds

B
dP (2.47)

As we can see, the theorem is similar to the finite dimensional case, with the major
difference that the inner product and the norm are defined in the Hilbert space U0. We
can use Girsanov’s theorem to compute a change of measure that allows us to solve the
SDE in 2.43 with a simpler form, similarly for what is done for finite dimensions.

17

18

Chapter 3

Machine Learning and
Generative modelling

This work builds upon techniques from machine learning and generative modelling. In
this section, we provide a brief overview of the most important concepts and techniques
used in this work. In particular, we delve into the pillars of deep learning and generative
modelling, while exploring different interesting approaches from both a theoretical and
practical point of view which can lead to fascinating research directions.

3.1 Variational autoencoders

Variational Autoencoders (VAEs) Kingma and Welling [2013] belong to the class of Deep
Latent Variable Models (DLVMs). DLVMs work with latent variables, a latent variable
is part of the model we employ for our task that cannot be observed, and it is not part
of the dataset. Conversely, it can be derived with a mathematical model from the known
variables. Denoting the variables in our dataset by x and the latent variables z, the task
of DLVMs is to approximate the marginal distribution:

pθ(x) =
Ú
pθ(z|x)pθ(x)dz (3.1)

Unfortunately, pθ(x) and the posterior pθ(z|x) are intractable. In order to make them
tractable an encoder, or inference model, qϕ is used to model qϕ(z|x) ∼ pθ(z|x). The
generative model learns a joint distribution p(x, z) by factorising it into a prior distribution
over the latent space p(z) and a stochastic decoder pθ(x|z).

19

Machine Learning and Generative modelling

Figure 3.1: The working mechanism of the Variational Autoencoder Kingma et al. [2019]

3.1.1 Evidence Lower Bound
VAEs are optimised using the Evidence Lower BOund (ELBO). This quantity can be
derived from the likelihood of the model as follows:

log pθ(x) = Eqϕ(z|x)[log pθ(x)]

= Eqϕ(z|x)

5
log pθ(x, z)

pθ(z|x)

6
= Eqϕ(z|x)

C
log pθ(x, z)qϕ(z|x)

qϕ(z|x)pθ(z|x)

D

= Eqϕ(z|x)

C
log pθ(x, z)

qϕ(z|x)

D
ü ûú ý

ELBO: Lϕ,θ(x)

+ Eqϕ(z|x)

5
log qϕ(z|x)

pθ(z|x)

6
ü ûú ý
DKL(qϕ(z|x)||pθ(z|x))

In the second term DKL is the Kullback-Leibler divergence, which measures a dis-
tance between two distributions. Hence, this term is quite straightforward as it measures
the divergence between the inference model and the true posterior. The ELBO is more
complicated to explain, but we can rearrange it with the following terms:

Lϕ,θ(x) = Eqϕ(z|x)

C
log pθ(x, z)

qϕ(z|x)

D
= log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) ≤ log pθ(x) (3.2)

20

3.2 – Generative Adversarial Networks

Hence, it represents a lower bound to the likelihood of the model. Maximising the
ELBO improves both the generative model and the inference model. There are, however,
some difficulties in optimising both θ and ϕ at the same time. While for θ we get:

∇θ(Lθ,ϕ(x) = ∇θEqϕ(z|x) [log pθ(x, z)]− Eqϕ(z|x) [log qϕ(z|x)]) ≃ ∇θ log pθ(x, z) (3.3)

Doing the same for ϕ is more difficult since the expectation is taken with respect to a
function of ϕ itself. In order to make it possible, the reparametrisation trick is used:

Theorem 7 (Reparametrization trick) Given an inference model qϕ(z|x), a function
of the latent variables f(z) and random noise ϵ ∼ p(ϵ) such that z = g(ϕ, ϵ, x), then:

∇Eqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(z)] = Ep(ϵ)[∇ϕf(z)] ≃ ∇ϕf(z) (3.4)

In practice, the random component is moved to another variable so that it is possible
to decouple gradient and expectation.

Figure 3.2: Visualization of the reparametrisation trick Kingma et al. [2019]

3.2 Generative Adversarial Networks
Generative Adversarial Networks Goodfellow et al. [2014] are a class of generative models
that work by training two neural networks simultaneously. One network is called the
generator, and it is responsible for generating new data points. The other network
is called the discriminator, and it is responsible for distinguishing between real and

21

Machine Learning and Generative modelling

generated data points. The two networks are trained in a minimax game, where the
generator tries to generate data points that are indistinguishable from real data points,
while the discriminator tries to distinguish between real and generated data points. The
objective function of the GAN is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.5)

Where pdata(x) is the distribution of the real data points and pz(z) is the distribution
of the noise that the generator G uses to generate new data points. The GAN objective
function is non-convex and it is difficult to optimise. In practice, the GAN is trained using
a two-step process:

1. The discriminator is trained to maximise the objective function.

2. The generator is trained to minimise the objective function.

This process is repeated until the generator is able to generate data points that are
indistinguishable from real data points.

3.3 Learning with diffusion models
Diffusion processes can be used to learn to sample from a target distribution Sohl-Dickstein
et al. [2015]. Consider a diffusion process, modelled by the probability distribution pθ(x0),
where, by elementary probability:

pθ(x0) =
Ú
p(x0|x[1:T])dx[1:T] (3.6)

This is called the reverse process, and it is the process that generates the initial con-
dition x0 given the final condition xT . We can assume that the reverse process behaves
as a Markov chain, hence we can write:

pθ(x0) =
Ú
p(x0|x1)p(x1|x2)...p(xT−1|xT)dx[1:T] (3.7)

If the marginal distribution at time T is normally distributed:

pθ(xT) ∼ N (0, I) (3.8)

Then we can know the distribution of the conditional probabilities as well:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ2
θ(xt, t)) (3.9)

Where µθ(xt, t) and σθ(xt, t) are the mean and variance of the distribution at time t.
Similarly, we have the following form for the posterior of the distribution process:

q(xt−1|xt, x0) = N (xt−1;
ð

1− βtxt, βtI) (3.10)

Where βt is the variance of the noise injected in the diffusion model from step t − 1 to
step t. This kind of model can be trained by minimising the following objective:

22

3.4 – Score-based diffusion models

L := Eq[− log pθ(x0)] ≤ Eq

− log p(xT)−
Ø
t≥1

log pθ(xt−1|xt)
q(xt|xt−1)

 (3.11)

Additionally, if we set αt = 1− βt and αt =
rt
s=1 αs, we can directly sample from the

diffusion process at any time t by using the following distribution:

q(xt|x0) ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I) (3.12)

This notation also helps in rewriting the training objective to make it more inter-
pretable in terms of marginal distributions:

Eq

DKL (q(xT | x0) ∥ p(xT))ü ûú ý
LT

+
Ø
t>1

DKL (q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))ü ûú ý
Lt−1

− log pθ(x0 | x1)ü ûú ý
L0

(3.13)

In particular, this objective is tractable since we know the distribution of the posterior
q(xt−1|xt, x0), and we can sample from it:

q(xt−1|xt, x0) ∼ N (xt−1; µ̃t(xt, x0), β̃tI) (3.14)
Where:

µ̃t(xt, x0) =
√
αt−1βt

1− αt
x0 +

ð
αt(1− αt−1)

1− αt
xt β̃t = 1− αt

1− αt−1
βt (3.15)

3.4 Score-based diffusion models
In 2019 Song and Ermon introduced a new class of generative models based on score
matching and Langevin dynamics Song and Ermon [2019]. The score of a probability
distribution p(x) is the gradient of the log-density of the distribution:

s(x) = ∇x log p(x) (3.16)
In the score-matching task, the objective is to train a score sθ network which is able

to minimise the following objective:

1
2Ep(x)[||sθ(x)−∇x log p(x)||2] (3.17)

This formulation, however, is intractable, as we do not know the true score of the
distribution. In order to circumvent this problem, it is possible to estimate the true
gradient using small Gaussian noise perturbations. In this way, we have a posterior
distribution qσ(x̃|x) and for small noise scales qσ ∼ p. Using these elements, it has been
proven that the following formulation is equivalent to 3.17 for small noise scales:

1
2Eq(x̃|x),p(x)[||sθ(x̃)−∇x log q(x̃|x)||2] (3.18)

23

Machine Learning and Generative modelling

In fact the optimal score network that minimises 3.18 achieves sθ∗(x) = ∇x log qσ(x),
which is very similar to ∇x log p(x) for small σ.

Langevin Sampling In order to sample new data points we can use Langevin dynamics,
starting from a prior distribution π(x), usually pure noise, and iterating the following
procedure:

x̃t = x̃t−1 + ϵ

2∇x log p(x) +
√
ϵz (3.19)

Where ϵ is a step size and z ∼ N (0,1). For a sufficiently large number of steps T and
a sufficiently small ϵ, we can guarantee x̃T ∼ p(x) with a negligible error. As we do not
know the true value of the score, in practice we use a score network to approximate it.

Drawbacks of unconditional score matching Score matching as we have described
so far suffers from the following drawbacks:

• Manifold hypothesis: the manifold hypothesis states that data lie in lower dimen-
sional space with respect to its representation. This does not allow score networks
to be consistent.

• Lower density region: lower density regions are not well represented, as a conse-
quence the score network cannot represent the score accurately.

• Slow mixing: the score network cannot recover the weights of components of mixed
distributions. Consider p(x) = (1− a)p1(x) + ap2(x), where p1 and p2 have disjoint
support, then ∇x log p(x) = ∇x log p1(x) +∇x log p2(x).

Song and Ermon found that adding random Gaussian noise was beneficial to these prob-
lematics as adding noise to data helped to lift data to high dimensions, covered low
density regions and helped to mix disjoint mixtures. Building upon this intuition, they
devised noise-conditional score networks, which estimate the score of the perturbed dis-
tribution given the noise scale σ. By learning a score network which approximated
sθ(x, σ) ∼ ∇x log qσ(x), they were able to sample from the true distribution p(x) by
using Langevin dynamics with diminishing noise scales {σi}i=1...N . For this reason, the
new objective to minimise becomes a weighted sum of terms similar to the one introduced
in 3.18:

Ø
i

λ(i)Eqσ(x̃)[||sθ(x̃, σ)−∇x log qσ(x̃)||2] (3.20)

Where λ(i) is a weighting factor. The work Song and Ermon [2019] presented the
following algorithm for using Langevin dynamics with noise-conditional score networks 1.

24

3.4 – Score-based diffusion models

Algorithm 1 Annealed Langevin Dynamics
1: procedure AnnealedLangevinDynamics(σ1, σ2, ..., σN , ϵ, T)
2: x̃0 ∼ N (0,1)
3: for i = 1 to N do
4: αi = ϵ

σ2
i

σ2
N

5: for t = 1 to T do
6: x̃t = x̃t−1 + αi

2 sθ(x̃t−1, σi) +√αiz, z ∼ N (0,1)
7: end for
8: x̃0 = x̃T
9: end for

10: return x̃T
11: end procedure

This methodology for generative modelling will be called Score matching with Langevin
dynamics (SMLD).

3.4.1 Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models (DDPM) Ho et al. [2020] are a class of gen-
erative models based on the principles of score-based generative modelling. They offer
a reparametrisation of the original work Song and Ermon [2019] by parametrizing the
posterior of the generative process as:

pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t), σ2
θ(xt, t)) (3.21)

In particular, they set σθ(xt, t) = σ2
t I as not trained parameters, while keeping µθ(xt, t)

trainable. Using this reparametrisation, they found that the following objective is equiv-
alent to the objective highlighted in 3.13:

Eq
5
|| 1

2σ2
t

µ̃t(xt, x0)− µθ(xt, t)||2
6

+ C (3.22)

Where:

• C is a constant independent of θ.

• µ̃t(xt, x0) is the posterior mean of the forward process, defined as in 3.15.

• q(xt−1|xt, x0) ∼ N (xt;
ñ

1− σ2
t xt, σ

2
t I)

Moreover, if we expand terms we can rewrite the objective as:

Ex0,ϵ

 1
2σ2

t

..... 1
√
αt

3
xt(x0, ϵ)− βt√

1− ᾱt
ϵ

4
− µθ (xt(x0, ϵ), t)

.....
2
 (3.23)

We can notice that we only need to predict the noise term, since xt is already available.
Hence, we can simply train a noise prediction model ϵθ as follows:

25

Machine Learning and Generative modelling

Ep(x),t

C
β2
t

2σ2
tαt(1− αt)

...ϵ− ϵθ(√ᾱtx0 +
√

1− ᾱtϵ, t)
...2
D

(3.24)

However, in practice, the weighting factor is discarded, and the training objective is
just a mean square error over the noise predictions. Additionally, this simplified version
relates strongly with score matching as they both try to perform denoising at different
time scales.

3.4.2 Score based generative modelling through SDEs
In their work Song et al. [2020], Song and Ermon provided the foundations for using SDEs
to model generative processes. The intuition lies its fundamental in modelling the noising
process of diffusion models through SDEs by using the diffusion equation:

dXt = f(Xt, t)dt+ g(t)dWt (3.25)
By reversing the diffusion equation is then possible to obtain a generative process:

dYt = (f(Yt, T − t)− g2(t)∇x log p(Yt))dt+ g(t)dW̃t (3.26)
Theoretically, Yt represent a reverse process with respect to Xt, in the sense that

limT→∞ YT ∼ X0 However, the score ∇x log p(Xt) is an unknown quantity. This is where
score matching comes into play. The authors propose to parametrise the score using a
time-dependent neural network sθ:

dYt = (f(Yt, T − t)− g2(t)sθ(Xt, t))dt+ g(t)dW̃t (3.27)
The score network is trained by explicit score matching, including a time-weighting

function λ(t):

θ∗ = arg min
θ
Et
î
λ(t)EX0EXt|X0 [||sθ(Xt, t)−∇x log p0t(Xt|X0)||22]

ï
(3.28)

More informally, we try to minimise the error in the score for all choices of initial
condition and all choices of time. In practice, to obtain the ground truth for the score,
we simulate the path of the SDE by sampling a training point, a training time and diffuse
the training point with the noise according to the SDE path.
In their work, Song and Ermon have also shown that the noise schedules used in DDPM
and SMLD correspond to the discretization of two different SDEs. For example, the
DDPM performs perturbation with the following Markov chain:

xi+1 =
ð
βixi +

ð
1− βiz, z ∼ N (0, I) (3.29)

In continuous time, this corresponds to the following SDE:

dXt = 1
2β(t)Xtdt+

ñ
β(t)dWt (3.30)

This SDE is called variance preserving (VP) sde.

26

3.4 – Score-based diffusion models

Similarly, for SMLD, the perturbation and the corresponding SDE are:

xi+1 = xi +
ñ
σ2
i+1 − σ2

i z, z ∼ N (0, I) (3.31)

dXt =

ó
dσ2(t)
dt

dWt (3.32)

This last SDE is called variance exploding (VE) sde. Additionally, the authors
proposed a new type of SDE, called sub-VP sde where the variance of the associated
stochastic process is always upper-bounded by the corresponding variance of the VP sde:

dXt = −1
2β(t)Xtdt+

ò
β(t)(1− e−2

s t

0
β(s)ds)dWt (3.33)

The advantage of this type of SDEs is that the perturbation kernel can be computed
in closed form, allowing for an efficient training. In this way, during training we can
perturb our samples in a single step and denoise them to compute the gradients for
backpropagation.

Figure 3.3: An example of diffusion process Song et al. [2020]

3.4.3 Sampling from the generative model

Once we trained a score network, we need to solve the reverse SDE to sample from the
generative model. Several algorithms have been proposed to solve this problem, such as
the Euler-Maruyama method, the Milstein method and the Runge-Kutta method.

27

Machine Learning and Generative modelling

Euler-Maruyama method

The Euler-Maruyama method Kloeden and Platen [2013] is a simple and efficient method
to solve SDEs. In particular, given the SDE:

dXt = f(Xt, t)dt+ g(Xt, t)dt (3.34)

And a discretization {tk}k∈[1,N], we can discretize the SDE as follows:

Xk+1 = Xn + f(Xk, tk)(tk+1 − tk) + g(Xk, tk)(Wk+1 −Wk) (3.35)

Notice that we can set time steps to be equal, tk+1 − tk = ∆t. As a consequence the
increments of the Brownian motion will be identically independently distributed ∆W ∼
N (0,∆t). Hence, we can rewrite:

Xk+1 = Xn + f(Xk, tk)∆t+ g(Xk, tk)∆W (3.36)

This allows us to solve the SDE in a recursive manner, starting from the initial condition
X0. For the random increments we can use random number generators to sample from
the normal distribution.

Milstein’s method

For simplicity, we discuss this method in the case of a monodimensional SDE. Considering
the same SDE as 3.34, the Milstein method Kloeden and Platen [2013] augment the Euler
method by adding a term to the discretization:

Xk+1 = Xk + f(Xk, tk)∆t+ g(Xk, tk)∆W + 1
2g(Xk, tk)g′(Xk, tk)(∆W 2 −∆t) (3.37)

Where g′(Xk, tk) is the derivative of g with respect to X. The additional correction
term, helps the algorithm converge faster than the Euler method.

Runge-Kutta method

The Runge-Kutta method Kloeden and Platen [2013], again builds on top of the Euler
method:

Xk+1 = Xk+f(Xk, tk)∆t+g(Xk, tk)∆W+ 1√
2∆t

(g(tk, γk)−g(tk, Xk))(∆W 2−∆t) (3.38)

Where γk = Xk + α∆t + g(Xk, tk)
√

∆t and α is a parameter. This method is again
more accurate than the Euler method.

28

3.4 – Score-based diffusion models

3.4.4 Solving the reverse diffusion SDE
In their work, Song and Ermon proposed a PC method to solve the reverse SDE Song
et al. [2020]. Given a reverse diffusion SDE of the form:

dXt = [f(Xt, t)− g(Xt, t)gT (Xt, t)sθ(Xt, t)]dt+ g(t)dW̃t (3.39)

And its discretization:

Xk−1 = Xk − [f(Xk, tk)− g(Xk, tk)gT (Xk, tk)sθ(Xk, tk)]∆t+ g(Xk, tk)∆W̃ (3.40)

We can use the Predictor Corrector (PC) method to generate new samples by solving
the SDE. It involves two steps:

• A prediction step, which can be done with one of the methods illustrated before, like
the Euler method.

• An iterative application of a correction step.

In particular, for the correction step Song and Ermon employed Langevin Markov
Chain Monte Carlo (MCMC) sampling as in alg. 1. We illustrate an example of the PC
method in alg. 2.

Algorithm 2 Predictor-Corrector Sampling for VP SDE
1: procedure PCSampling(X0, ϵ, β, g, sθ,∆t, T)
2: X ← X0
3: for k = N to 0 do
4: Xk−1 ← (2−

√
1− βk)Xk + βksθ(Xk, tk) ▷ Prediction step

5: for i = 1 to N do
6: z ∼ N (0, I)
7: Xk−1 ← Xk−1 + ϵksθ(Xk−1, tk−1) +

√
2ϵkz ▷ Correction step

8: end for
9: end for

10: return X
11: end procedure

It must be denoted that experiments Song et al. [2020] have shown that, while predictor-
only algorithms perform well, corrector-only algorithms tend to present remarkably worse
performances. The best performance is obtained by the joint application of prediction
and correction steps.

3.4.5 A variational perspective on score-based generative mod-
elling

In this work Huang et al. [2021], seek to understand how minimising a score-matching loss,
like LESM = E[1

2 ||sθ(Xt, t)−∇x log p(Xt)||2] will impact the so-called plug-in reverse SDE:

29

Machine Learning and Generative modelling

dXt = (ggT∇xsθ(Xt, t)− f)dt+ gdWt (3.41)

In particular, this analysis is carried out with the objective X ∼ Y , where Y solves
the diffusion SDE:

dY = f(Yt, t)dt+ g(t)dW̃t (3.42)

The authors provide a framework for estimating the likelihood of diffusion-based gen-
erative models. In particular, given a Itô SDE:

dXt = µ(Xt, t)dt+ σ(t)dWt (3.43)

They were able, by using the FPK equation and the Feynman-Kac formula, to provide
a probabilistic solution of the likelihood at time T given initial condition x:

p(XT , T) = E
C
p0(YT)exp

AÚ T

0
−∇µ(Ys, T − s)ds

B
|Y0 = x

D
(3.44)

Where Ys is a process solving:

dYs = −µ(Ys, T − s)ds+ σ(T − s)dW̃s (3.45)

However, computing the likelihood in this way is intractable as it would require com-
puting the expectation over all possible paths of Ys. For this reason, the authors employed
a change of measure to simplify the computation using Jensen’s inequality:

log p(x, T) ≥ EQ

C
log dP

dQ + log p0(YT)−
Ú T

0
∇ · µ ds

---- Y0 = x

D
=: E∞ (3.46)

Where the quantity dP
dQ is a Radon-Nikodym derivate and it can be easily computed

using Girsanov’s theorem:

dP
dQ(ω) := exp

AÚ T

0
a(ω, s) · dB′

s −
1
2

Ú T

0
∥a(ω, s)∥2

2 ds

B
(3.47)

Where a(ω, s) is a function such that the process dB̂s, described by the following SDE,
is a Brownian motion under measure Q:

dB̂s = dBs − a(ω, s)ds (3.48)

Taking into account that the expectation over all the paths of the Brownian motion
for

s T
0 a(ω, s)dB′

s is zero, we can rewrite the ELBO as:

E∞ := EB̂s

C
−1

2

Ú T

0
∥a(ω, s)∥2

2 ds+ log p0 (YT)−
Ú T

0
∇ · µds

---- Y0 = x

D
(3.49)

30

3.5 – Continuous-time functional diffusion processes

Where Ys is a process solving the following SDE:

dYs = (−µ+ σa)ds+ σdB̂s (3.50)

Minimising this lower bound allows to learn the parameters of both the forward and
reverse SDEs through numerical solvers. We can use this fact in the context of score-based
generative modelling. Take the generative and the reparametrised diffusion equation:

dXs = f(Xs, s)ds+ g(s)dW̃s (3.51)
dYt = (g(t)gT (t)sθ(Xt, t)− f(Xt, t))dt+ g(t)dWt (3.52)

by setting a := gT sθ and rewriting 3.49 as:

E∞ := EB̂s

C
log p0 (YT) (3.53)

− 1
2

Ú T

0

...gT (s)sθ(Ys, s)
...2

2
ds

−
Ú T

0
∇ · (g(s)gT (s)sθ(Ys, s)− f(Xs, s))ds

---- Y0 = x

D

we can use the ELBO to train the score network sθ and the generative process char-
acterised by f and g. The key connection with score-based generative modelling emerges
as the score matching objective maximises E∞.

3.5 Continuous-time functional diffusion processes
A continuous-time functional diffusion process over the time interval [0, T] is defined by
the following H-valued, infinite-dimensional SDE, where H is a Hilbert space:I

dXt = (AXt + f(Xt, t))dt+ dWt

X0 ∼ ρ0
(3.54)

Where A is an infinitesimal generator of the strongly continuous semigroup of operators
At, f : H× [0, T]→ H is a function, and Wt is a H-valued Wiener process characterised
by the covariance operator R. The system is characterised by a path measure Q and a
time varying measure ρt.
If the covariance operator R is trace-class (Tr(R) < +∞) or cylindrical (R = I), then the
process is described by the following reverse-time system:I

dX̂t = (−AX̂t − f(X̂t, T − t) +RDx log ρT−t(X̂t))dt+ dŴt

X̂T ∼ ρT
(3.55)

31

Machine Learning and Generative modelling

The reverse process is characterised by a reverse path measure Q̂. Note that we
cannot define a density on an infinite-dimensional space through a Lebesgue measure. For
this reason, we use marginal densities ρ(d)

t (xi|xi /=j), where dρt(xi|xi /=j) = ρ
(d)
t (xi|xi /=j)dxi

and dxi is a Lebesgue measure. In this way, by denoting {ek} the basis of H, we can
characterise the process as an infinite system of SDEs:I

dX̂k
t = (⟨−AX̂t − f(X̂t, T − t), ek⟩+ rk δ

δxk log ρ(d)
T−t(X̂))dt+ dŴ k

t

X̂T ∼ ρT
(3.56)

Where rk is the projection of the covariance operator over ek. As by Franzese et al. [2024]
and Millet et al. [1989], we require the following assumptions for the densities:

Assumption 1 The assumption is divided in two parts:

• Assume that the condition law xi given xj for j /= i has density ρ(d)
t (xi|xi /=j) w.r.t.

the Lebesgue’s measure on R.

• Assume that
s 1
t0

s
DJ
|ri d

dxi (ρ(d)
t (xi|xi /=j))|dxiρt(dxj /=i)dt < ∞, for fixed subset J ⊂

N, t0 > 0 and DJ =
î

(
r
j∈J Kj)× (

r
j /∈JR), Kj compact in R

ï
∩ L2(R).

Where L2(R) =
)
x ∈ H :

q
ri(xi)2 <∞

*
. The second point of the assumption is tech-

nically involved and it informally requires all the possible paths of the process to be well-
behaved.

In addition, if the covariance operator is trace-class and the drift term is linear and
bounded bk ∈ (−K,0), then the reverse diffusion process behaves as in 3.56.
In principle, we can use the system above to generate samples starting from noise. How-
ever, like in a standard diffusion-based model, we do not know the value of Dx log ρ(d)

T−t(x).
For this reason, we need a parametrised score function to approximate it. We define that
score function as sθ(x, t) : [0, T]×H× Rm → H.
When we try to approximate the generative dynamics with the score function, we obtain
a different reverse system of SDEs:I

dX̂t = (−AX̂t − f(X̂t, T − t) +Rsθ(X̂t, T − t))dt+ dŴt

X̂T ∼ χT
(3.57)

Notice that this process is characterised by a different path measure P̂, moreover the
starting distribution is also different, as we can say χT ∼ ρT only in the limit T → +∞.
In Franzese et al. [2024], the dynamics are simplified by setting f(x, t) = 0. Moreover, we
simplify the drift term with the operator bXt = AXt + f(Xt, t). Additionally, the drift
term is set to be linear, so that ⟨bXt, e

k⟩ = bkXk
t . In this way we can describe the reverse

process with the following system of SDEs:I
dX̂k

t = (bkX̂k
t + rk δ

δxk log ρ(d)
T−t(X̂))dt+ dŴ k

t

X̂T ∼ ρT
(3.58)

32

3.5 – Continuous-time functional diffusion processes

For the training objective, we can define the quantity:

γθ(Xt, t) = R(sθ(X̂t, t)−Dx log ρ(d)
T−t(X̂t)) (3.59)

and we can minimise the following loss function:

L(θ) = EQ

CÚ T

0
∥γθ(X̂t, t)∥2dt

D
(3.60)

In particular, this optimisation problem is equivalent to optimising the ELBO Franzese
et al. [2024]. Unfortunately, the true score is not available. However, we can make use of
the conditional score to create an equivalent optimisation problem:

EQ

CÚ T

0
∥γθ(X̂t, t)∥2dt

D
= EQ

CÚ T

0
∥γ̃θ(X̂t, X̂0, t)∥2dt

D
+ I (3.61)

Where I is a quantity independent of θ and

γ̃θ(x, x0, t) = R(sθ(x, T − t)−Dx log ρ(d)
T−t(x|x0)) (3.62)

In the context of the simplified system, it is possible to compute the true score ana-
lytically:

Dx log ρ(d)
T−t(x) = −S(t)−1(x− exp(At)E[X0|Xt = x]) (3.63)

Dx log ρ(d)
T−t(x|x0) = −S(t)−1(x− exp(At)x0) (3.64)

Where S(t) is a function of time and the drift and diffusion terms. This allows us to
compute the conditional score analytically. The main effort of the work is to find a good
denoiser for computing x0.

3.5.1 Practical implementation
In practical implementation we cannot manage quantities in a Hilbert space H. For
this reason, we need to approximate the Hilbert space with a finite-dimensional space.
Our data points {x̃i}i, which can be images or audio tracks, for example, are samples
in Rm. We treat those points are samples taken from their corresponding samples {xi}i
in H. In this case, we define an N -sized grid {pj}j , such that x̃ij = xi[pj] ∀i, j. We
can reconstruct xi by interpolating x̃i. Under some assumptions, we can have exact
reconstruction Franzese et al. [2024]. When exact reconstruction is not possible, we can
still compute the reconstruction error.

Interpolating data in a Hilbert space We can reconstruct data points in a Hilbert
space given a finite collection of samples in a grid by using a set of interpolation functions
{ξi}i. Franzese et al. [2024] employ a set of functions obtained from the Fourier basis

33

Machine Learning and Generative modelling

{ek}k := {exp(j2πkp)|k ∈ Z} and p is a coordinate of the grid. In this way, we can define
the interpolating functions as follows:

ξi =
NØ
k=1

ekexp
3
−j2πk i

N

4
=

NØ
k=1

exp
3
j2πk

3
p− i

N

44
(3.65)

Notice that the interpolating functions are a linear combination of the Fourier basis. We
can then recover x ∈ H from the corresponding x̃ by the following general procedure:

x =
NØ
i=1

ξix̃i (3.66)

In our particular case, we can write:

x =
NØ
i=1

ξix̃i =
NØ
i=1

NØ
k=1

exp
3
j2πk

3
p− i

N

44
x̃i (3.67)

Projecting data from a Hilbert space For practical implementation, we also need to
define a projection operator mapping H to RL. Franzese et al. [2024] define a projection
scheme through a set of {ζi}i such that ⟨x, ζi⟩ = x[pi]. This, together allows us to describe
the reverse process as a finite system of SDEs of the same size as the grid:I

dX̂t[pk] = (−⟨A
q
i X̂t[pi]ξi, ζk⟩+R⟨sθ(

q
i X̂t[pi]ξi, T − t), ζk⟩)dt+ dŴt[pk]

X̂T ∼ χT
(3.68)

In our particular case, Franzese et al. [2024] has shown that the finite system of SDEs
can be written in terms of the Fourier transform F(zi) =

qN
i=1 z

iexp(j2π i
N) and its inverse

F−1(zi) = 1
N

qN
i=1 z

iexp(−j2π i
N):I

dX̂t[pk] = (−F−1(blF(X̂t[pi])l)k + F−1(rlsθ(
q
i X̂t[pi]ξi, T − t)))dt+ dŴt[pk]

X̂T ∼ χT
(3.69)

Where bl is the projection of the drift term over the basis ζl and rl is the projection of
the covariance operator over the basis ζl.

Finite representation of Hilbert space functions When computing the score for
some x ∈ H and t ∈ [0, T], we need a finite representation for our function, since we cannot
manage infinite-dimensional vectors. More formally, we need a mapping g : [0, T]×H×θ →
Rm. Franzese et al. [2024] used Implicit Neural Representations (INRs) and transformers
to infer finite representations of the score function.

3.6 Implicit Neural Representations (INRs)
Any data point x ∈ H, where H is a generic Hilbert space over the field of real numbers,
can be represented as a function f : I → R, where I is some index space which we

34

3.6 – Implicit Neural Representations (INRs)

use to index the components of any x ∈ H. This type of data representation is called
Implicit Neural Representation (INR). INRs offer many advantages over traditional
neural networks, such as the ability to represent complex functions with fewer parameters
and the ability to represent functions in a continuous space. In practical implementations,
they found success in modelling 3D scenes; Park et al. [2019] employed INRs to model 3D
shapes. In particular, they used a neural network to represent the signed distance function
of a 3D shape. That is, a function fx : R3 → R associated to a scene x which, given any
3D point in x it returns the distance of that point from the surface of the targeted object.

3.6.1 Architectures for INRs
The authors of Park et al. [2019] used a neural network to represent the signed distance
function of a 3D shape. They employed a feed-forward neural network with a series of fully
connected layers with rectified linear units (ReLu) Agarap [2018] as activation functions.
However, this kind of architecture struggles in modelling signals with high level of details,
in particular they fail to accurately model the temporal and spatial derivates of the signals.
For this reason, the authors of Sitzmann et al. [2020] proposed to introduce periodic
activation functions in the neural network. They showed that by using periodic activation
functions, the network can model signals with high level of details. In particular, they
used the sine activation function sin(ωx), where ω is a hyperparameter. The authors
called this kind of networks Sinusoidal Neural Networks (SIREN).
A SIREN Φ is trained by minimizing a set of m constraints on data points and their
derivatives {Cm(a(x),Φ(x),∇Φ(x), ...)}. In particular, they minimise the following loss
function:

L =
Ú

Ω

MØ
m=1

1Ωm ||Cm(a(x),Φ(x),∇Φ(x), ...)||dx (3.70)

In practice, this loss function is enforced by sampling a set of coordinates of the desired
data point x, {xi}i and computing the loss function on those points. The authors showed
that SIRENs can model complex functions with fewer parameters than traditional neural
networks.
Regrettably, this approach forces the user to infer a set of parameter for each of the data
points, increasing the need for compute and overall training time.

MLP modulations

In their work Dupont et al. [2022], the authors proposed an alternative methodology
for extracting INRs using SIRENs. They proposed to use the SIREN to extract the
common structure of many similar data points and then use modulations to extract the
specific structure of each data point. In particular, they have shown that it is possible
to extract modulations for each data point with a meta-learning approach involving just
three stochastic gradient descent (SGD) Amari [1993] steps. More formally, modulations
ψ are a set of additional parameters, with respect to the base network Φ with to base
parameters θ and, while θ are shared among all the data points, ψ are specific to each
data point. In general, modulations can be used to modify the existing network arbitrarily

35

Machine Learning and Generative modelling

using a user-specified methodology f(Φ, θ, ψ). In practice, we only consider the following
approaches:

• Parameter modulations Franzese et al. [2024]: the modulations are used to modify
the parameters of the network. This approach is very versatile and powerful, but it
scales with the number of parameters of the network.

• Shift and scale modulations Dupont et al. [2022]: the modulations are used to
shift and scale the output of the base network at every layer. In this case, the
modulations are defined as ψ = (γ, β), where γ is a scaling factor and β is a shift
factor. In the case of an MLP, the number of modulations scale as the number of
layers of the network.

• Latent modulations Dupont et al. [2022]: this approach is similar to shift and scale
modulations, except that it uses a shallow network to encode the modulations. In this
way, it is possible to preserve the dimensionality of the modulations, independently
of the size of the network.

3.7 Reinforcement learning
Reinforcement learning (RL) is a paradigm of machine learning; informally, it focuses on
maximizing the goodness of the final outcome of a sequence of decisions. More formally,
this paradigm assumes the following elements:

• Agent: the entity that learns the policy.

• Environment: the world in which the agent operates. It can assume different
states.

• Action: the set of actions that the agent can perform on the environment.

• Reward: the feedback that the agent receives from the environment.

The agent performs actions on the environment, which can change state accordingly. In
return, the environment provides a reward to the agent. The agent perceives the environ-
ment through observations and constructs an internal representation of the environment
SAt . In general internal observations of agents are not isomorphic to the environment
states. We have:

• Fully observable environment: the agent can observe the complete state of the
environment: the internal representation is isomorphic to the environment state.

• Partially observable environment: the agent can only observe a part of the
environment: the internal representation is not isomorphic to the environment state.

The agent’s goal is to find a policy that maximises the expected reward in the long run.
The reward is a way to encode the goals of the agents. Depending on the task this may
be feasible or not:

36

3.7 – Reinforcement learning

• Episodic task: the agent interacts with the environment for a finite number of
steps. The agent’s goal is to maximise the reward: Gt =

qT
u=tRu+1.

• Continuing task: the agent interacts with the environment for an infinite number
of steps. The agent’s goal is to maximise the expected discounted reward: Gt =qT
u=t γ

uRu+1.

Using the discounted reward we can define the value function of a state given a policy
π as:

Vπ(s) = Eπ[Gt|St = s] (3.71)

Similarly, we can define a function that gives the value of a state-action pair:

Qπ(s, a) = Eπ[Gt|St = s, At = a] (3.72)

Markov decision processes (MDP) MDPs are an environment for RL agents. They
are fully observable and rely on the Markov property: the next state of the environment
only depend on the immediately previous one. When an MDP receives an action a in state
s, it returns a reward r and a new state s′. The probability of transitioning from state s
to state s′ given action a is given by P (s′|s, a). We can exploit this property to compute
the expected reward:

p(s′, r|s, a) = P (s′|s, a)R(r|s, a, s′) =⇒ E[r|s, a] =
Ø
r

r
Ø
s′

p(s′, r|s, a) (3.73)

If we include the policy of the agent, we can use it to compute the expected reward
(Bellman’s equation):

Vπ(s) =
Ø
a

π(a|s)
Ø
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (3.74)

We say that a policy is optimal with respect to another policy if its expected reward is
larger in all the possible states.

3.7.1 Q-learning
Model free approaches to reinforcement learning are possible, they do not use a model
of the environment and proceeds by trial and error. Q-learning is a model free approach
to reinforcement learning. It is based on the concept of Q-value, which is the expected
reward of a state-action pair. The Q-value is updated as follows:

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′)) (3.75)

Where α is the learning rate and γ is the discount factor. The Q-value is updated using
the temporal difference between the current Q-value and the expected Q-value. The
Q-value is used to select the action to perform in the environment. In this case, the Q
function is a Q-table, where we store values for each state-action pair. In this way it can

37

Machine Learning and Generative modelling

be difficult to map all the states, this is why it is crucial to represent the environment
well, playing with symmetries. Modern approaches use deep learning methods to estimate
the Q function, this is called deep Q-learning. The Q function is approximated using a
neural network, which is trained using the temporal difference error.

3.7.2 Reinforcement learning for diffusion models

Sampling in the context of diffusion models can accept a formulation as an MDP, intu-
itively the reverse diffusion process entails a sequence of steps, and we are interested only
in the final outcome of the sampling process. The authors of Black et al. [2023] mod-
ified Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. [2020] proposing two
techniques: Reward-Weighted Regression(RWR) and Denoising Diffusion Policy
Optimisation (DDPO). RWR models the sampling task as a single step MDP, where,
given a reward signal r, a dataset of samples x0 and context c with conditional distribution
p(x0|c), the DDPM loss is weighted by a factor wRWR:

wRWR(x0|c) = 1
Z

exp(βr(x0, c)) (3.76)

Where Z is a normalizing constant and β is the inverse temperature. However, the authors
admit that this approach does not translate well to a RL problem as the loss in DDPM
does not involve the exact computation of the log-likelihood but just a variational bound.

Denoising Diffusion Policy Optimisation (DDPO) is an approach that interprets
the sampling process as a multistep MDP, with the following mapping:

• State: the triple st = (c, xt, t).

• Action: the next denoised data point at = xt−1.

• Policy: the conditional distribution pθ(xt|xt−1, c).

• Reward: a reward signal valid only for the final stepR(st, at) = 0 if t > 0 else r(x0, c).

This formulation, allows the exact computations of the gradients of Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)].
In turn, this allows the authors to use the REINFORCE algorithm Mohamed et al. [2020]
to optimise the policy.

3.8 Transformers

In this section, we will cover the theory behind transformers and their application in
diffusion-based generative modelling.

38

3.8 – Transformers

3.8.1 Attention
The transformer architecture firstly encountered wide success and application in the Natu-
ral Language Processing domain. This architecture builds upon the attention mechanism;
in NLP attention weighs the importance of each word with respect to the other words.
More formally, given the key matrix K and the query matrix Q, the attention is the matrix
of weights:

w = softmax(QK
T

√
dk

) (3.77)

Where dK is the dimension of the matrix K. Then, we can construct an attention
layer: given a value matrix V in addition to the matrices K and Q, the attention is:

Att(Q,K, V) = softmax(QK
T

√
dk

)V (3.78)

Attention resembles the concept of retrieval in databases, this is why the Q,K and V
matrices have their name. The actual meaning of these matrices depends on the user,
when Q = K = V we talk about self-attention, whereas if they differ we talk about
cross-attention. Modern transformer architectures employ multi-head attention, which
is composed of multiple attention heads. In turns, each attention head projects its inputs
with a learnable projection layer to form the Q, K and V matrices. Afterwards the
attention of the head is computed and the output of each head is concatenated or passed
through a linear layer to form the output of the multi-head attention.

3.8.2 The original transformer architecture
The original transformer architecture was designed for NLP tasks. It employs an encoder-
decoder configuration where each block of the decoder attends to the output of its cor-
responding block. The encoder block is composed by multi-head attention followed by a
linear layer, whereas the decoder uses three subcomponents:

• A masked multi-head attention, where tokens in the sequence can only attend to
past tokens.

• A multi-head attention which attends to the output of the decoder block.

• A linear layer to project the output on an embedding space with a different dimen-
sion.

The attention mechanism does not retain spatial information, for this reason the input
of the transformer is summed with the positional encoding. In the work by Vaswani
et al. [2017], the authors employed sine and cosine functions to embed spatial information.

3.8.3 Vision transformer
Following the NLP revolution with transformer-based models like BERT and GPT, a
similar approach was taken by computer vision scientists to create more powerful deep

39

Machine Learning and Generative modelling

Figure 3.4: The architecture of the transformer Vaswani et al. [2017]

learning architectures. The authors of Dosovitskiy et al. [2020] proposed an architecture
similar to BERT, with the differences being the creation of the input tokens. In this case
the input tokens are flattened overlapping 2D patches. The authors retained the same
positional embeddings as in the original transformer architecture. The key difference
with CNNs is that they do not make large use of the inductive bias given by the image
structure, instead that bias must be recovered with larger training times. For this reason,
ViT has been put to test to verify its capabilities, and it was shown that it had a higher
advantage with larger datasets. Additionally, like BERT, ViT takes great advantage with
self-supervised pretraining. In particular, it employs a masked patch prediction task in
order to produce good-quality general purpose image representations.

3.8.4 Vision transformer for diffusion models
The original ViT architecture is not specified for diffusion models or, more in general,
pixel-level prediction tasks, such as semantic segmentation. For this reason, the authors
of Bao et al. [2023], inspired by the U-net design Ronneberger et al. [2015], devised U-ViT.
U-ViT parametrises a noise prediction function ϵθ(xt, t, c), where:

• xt is the noise image.

• t is the time.

40

3.8 – Transformers

Figure 3.5: The architecture of ViT Dosovitskiy et al. [2020]

• c is the condition for adapting to conditional generation.

The architecture is similar to ViT, including using patches as input tokens, while the main
differences lie in the embedding of time and condition. Time can be embedded either as
a token in input or as adaptive layer normalization (AdaLn), which takes the embedding
of the transformer block h and the projection of the time embedding into a linear layer
to modulate the standard layer norm:

AdaLn(h, y) = ysLn(h) + yb (3.79)

The condition, instead, is treated as an input token. Additional changes with respect to
ViT include long range connections, like in U-net, and the addition of a 3×3 convolutional
block after the last transformer layer. This block has shown to be effective in reducing
the number of artefacts in the generated image.

41

Machine Learning and Generative modelling

Figure 3.6: The architecture of U-ViT Bao et al. [2023]

42

Chapter 4

Proposed method

In this chapter, we highlight the methodologies for:

1. Computing Implicit Neural Representations (INRs) without meta-learning.

2. Reparametrise the Stochastic Differential Equations (SDEs) of the score-based gen-
erative model with fewer hyperparameters.

4.1 Modulation networks for INRs
In the previous chapter, we saw how a data point can be modelled as a function. Addi-
tionally, we explored methodologies to learn INRs efficiently, without the need to relearn
from scratch the network for each data point. Recalling some elements from the previous
chapter, we can define a data point x ∈ H as a function x : I → R, where I is some index
space which we use to index the components of any x ∈ H. Additionally, we define a base
network f(x[pi], t; θ, ϕ), where:

• θ are the base parameters of the network.

• ϕ are the modulations of the network.

• t is the time.

• x is the input data point, that is, for example, an image or a soundtrack.

• pi is the i-th coordinate of the input data point, that is, for example, the position of
a pixel.

In their work Franzese et al. [2024], the authors used a meta-learning approach to learn
the modulations of the denoising network, using the following optimisation objective:

arg min
θ

Ø
x

Ø
p

∥f(p, t; θ, g(θ, x))− x̃[p]∥2
2 (4.1)

Where x̃ is the original, not noisy, sample and g is a meta-learning procedure:

43

Proposed method

g(θ, x) = arg min
ϕ

Ø
p

∥f(p, t; θ, ϕ)− x[p]∥2
2 (4.2)

This procedure is needed so that we can make f a functional representation of our
input data point and specialise the network to any data point at choice. In this work,
we use other networks to compute modulations to avoid performing meta-learning. In
particular, we use a modulation network g, like a ViT, for inferring the modulations ϕ of
the base network, in our case an MLP. It follows that g(x;ψ) is simply another network
with its set of parameters ψ. For this reason, we can rewrite the training objective as
follows:

arg min
θ,ψ

Ø
x

Ø
p

∥f(p, t; θ, g(x;ψ))− x̃[p]∥2
2 (4.3)

It must be remarked that the modulation network treats the input sample as a whole,
and it does not manipulate coordinates directly. This allows to use the inductive bias of
modern deep learning architectures, whereas the meta-learning approach must learn the
specific structure of the data point from scratch.

Figure 4.1: The mechanism of the modulation network for skipping meta-learning

In the practical implementation, we used an MLP as a base network and a ViT as a
modulation network. In order to produce the right number of parameters, the ViT was
modified to include two linear layers on top of the latent representations. The two layers
were used to implement the latent modulation approach as in Dupont et al. [2022]: one
layer produced the latent modulations, while the second layer decoded the latent vector
into the modulations of the MLP.

44

4.2 – Reparametrisation of the score-based generative model

4.2 Reparametrisation of the score-based generative
model

Functional diffusion processes suffer from higher instabilities than standard score based
diffusion models due to having to deal with infinite dimensional data. In particular, we
have additional parameters such as the bk terms, as in the simplified system of SDEs for
the forward process: I

dXk
t = bkXk

t dt+ dW k
t

X0 ∼ ρ0
(4.4)

Additionally, we have the terms due to the projection of the covariance operator rk,
as we can see from the simplified reverse process:I

dX̂k
t = (−bkX̂k

t − rk δ
δxk log ρ(d)

T−t(X̂))dt+ dŴ k
t

X̂T ∼ ρT
(4.5)

These parameters are not learned and must be inferred from the data. This leads to
a larger expense of time and compute resources. Additionally, (bk, rk) are infinite sets
of parameters, as they correspond to the basis of the Hilbert space H of the diffusion
process. In the practical implementation, however, we employ a finite set of functions
derived from the Fourier basis {ek}k. In this case, we have N (bk, rk) parameters, where
N is the number of points that we have sampled for our function x ∈ H, or, in a more
practical scenario, the number of pixels in an image. Importantly, this also implies that
the number of hyperparameters scale with the dimensionality of the data, which makes it
more difficult to adapt functional diffusion processes to higher dimensional data.
For this reason, in this section we propose different methodologies to simplify functional
diffusion processes as follows:

1. We reformulate the SDE by removing the drift terms bk.

2. We estimate the covariance operator R directly from the data.

4.2.1 The driftless diffusion process
In this section, we propose to remove the drift parameters bk. In this way, we can obtain a
simpler formulation for continuous-time functional diffusion processes that are also easier
to train. We propose two different derivations of the same result, one more grounded
to theory and the other more practical. The most practical derivation is based on Tay-
lor expansions which allow us to approximate the SDE under the assumption of a very
small drift term. The more theoretical derivation is based on the concept of infinitesimal
generators and semigroups, which allow us to rewrite the SDE without approximations.

Removing the drift term with Taylor approximation We start by setting bk ∼
O((dt)2). In this way, we can approximate the diffusion process as follows:

45

Proposed method

I
dXk

t = dW k
t + o(dt)

X0 ∼ ρ0
(4.6)

Moreover, if we require rk ∼ O(dt), we also have that bk ∼ o(rk). This can help us in
approximating factors for the reverse process:I

dX̂k
t = −rk δ

δxk log ρ(d)
T−t(X̂)dt+ dŴ k

t + o(dt)
X̂T ∼ ρT

(4.7)

Additionally, we can also simplify the analytical expression of the score, as by Franzese
et al. [2024], in the case of the Fourier transform F and its inverse J we have:

d

dxi
log ρ(d)

t (xi|xi /=j) = −(si)−1
A
xi −

Ú
xi

0

exp(tbi)xi0ρ
(d)
t (xi0|x)dxi0

B
(4.8)

Where si = ri exp(2bit)−1
2bi . By using Taylor’s expansion, one can easily prove that we

get the following approximation:

d

dxi
log ρ(d)

t (xi|xi /=j) ≃ − 1
tri

A
xi −

Ú
xi

0

xi0ρ
(d)
t (xi0|x)dxi0

B
(4.9)

In this way, the SDE is completely characterised by the covariance operator R, similarly
to the Variance Exploding SDE Song et al. [2020].

Reformulating the SDE We now proceed with an approach more grounded to theory,
given the infinite dimensional SDE:I

dXt = AXt + dWt

X0 ∼ ρ0
(4.10)

We design A to be the infinitesimal generator of the following semigroup S(t):

S(t)x = x (4.11)

That is A always generates the identity operator. We can verify A is indeed an
infinitesimal generator as the following limit holds for any x ∈ H:

Ax = lim
t→0

S(t)x− x
t

= lim
t→0

x− x
t

= 0 (4.12)

Hence, we can rewrite the SDE as follows:I
dXt = dWt

X0 ∼ ρ0
(4.13)

Moreover, by Da Prato and Zabczyk [2014], we can write a weak solution of the previous
system as:

46

4.2 – Reparametrisation of the score-based generative model

Xt = X0 +
Ú t

0
dWs (4.14)

Additionally, as per Franzese et al. [2024], we have a closed form for the score function:

Dx log ρ(d)
t (x) = −S(t)−1(x− exp(tA)E[X0|Xt = x]) (4.15)

Where:

S(t) =
Ú t

s=0
exp((t− s)A)Rexp((t− s)A†)Tds (4.16)

Which in our case simplifies as:

S̃(t) =
Ú t

s=0
Rds = tR (4.17)

This allows us to simplify 4.15 as:

Dx log ρ(d)
t (x) = −S̃(t)−1(x− E[X0|Xt = x]) (4.18)

Then, we must verify if the SDE is time reversible. In the case R = I, one can easily
verify that assumption I from Franzese et al. [2024] is feasible:

Ú T

0

1
bi(Xt, t)

22
dt+

Ø
j /=i

E
CÚ T

0

1
bj(Xt, t)− E

è
bj(Xt, t) | F (i)

t

é22
dt

D
<∞, Q(i) a.s.

(4.19)
We can notice that it is always valid if bi(Xt, t) = 0. In the case of trace-class operators,

we must verify the feasibility of another set of assumptions, namely assumptions II, III,
IV and VI from Franzese et al. [2024]. We start from assumption II, where we must have
a constant K such that, for every pair of data points (x, y):

∀x ∈ L2(R), sup
t

IØ
i

ri
1
bi(x, t)

22
J

+
Ø
i

(ri)2 ≤ K

A
1 +

Ø
i

ri(xi)2
B

(4.20)

∀x, y ∈ L2(R), sup
t

IØ
i

ri
1
bi(x, t)− bi(y, t)

22
J
≤ K

Ø
i

ri(xi − yi)2 (4.21)

We can see that in our case, having bi(x, t) = 0, we observe:

Ø
i

(ri)2 ≤ sup
t

IØ
i

ri
1
bi(x, t)

22
J

+
Ø
i

(ri)2 ≤ K

A
1 +

Ø
i

ri(xi)2
B

(4.22)

0 ≤ sup
t

IØ
i

ri
1
bi(x, t)− bi(y, t)

22
J
≤ K

Ø
i

ri(xi − yi)2 (4.23)

47

Proposed method

Which means that this assumption can be satisfied only counting on ri.
Assumption III, instead, corresponds to H5 from Millet et al. [1989]. By the same work
we have that H5 is satisfied if the following holds:

1. bi(x, t) does not depend on t.

2. bi(x, t) only depends on xi.

3. Assumption I is satisfied.

We can clearly see that bi(x, t) = 0 satisfies all the conditions.
Assumption IV requires the following condition or another condition from Millet et al.
[1989]. We stick with just the following because it is always satisfied for bi(x, t) = 0:

∀x, y ∈ L2(R), sup
t

IØ
i

ri
1
bi(x, t)− bi(y, t)

22
J
≤ K

Ø
i

(ri)2(xi − yi)2 (4.24)

Finally, assumption VI does not involve a restriction on b(x, t). This implies that
equation 4.13 is time-reversible and its time-reverse formulation reads as follows:I

dX̂t = RDx log ρ(d)
T−t(X̂t)dt+ dŴt

X̂0 ∼ ρT
(4.25)

with the same expression for the score function as the right-hand side of equation 4.9,
which in functional terms reads as follows:I

dX̂t = −t−1(X̂t − E[X0|Xt = X̂t])dt+ dŴt

X̂0 ∼ ρT
(4.26)

4.2.2 Estimating the covariance operator from data
The goal of generative modelling is to generate good quality samples, which translates in
the ability to sample from the distribution ρ0. In our case, intuition tells us it will be
easier for the model to capture the distribution of the data points if we set the covariance
operator R to be the empirical covariance of the data points. It follows that the model
can start sampling to a distribution which is close to ρ0 and then refine the samples with
the reverse diffusion process.
In order to extract this ideal prior distribution ρT , we start with the simplified process as
discussed in the previous section: I

dXt = dWt

X0 ∼ ρ0
(4.27)

In particular, we know that as T → ∞, the distribution of XT will converge to the
distribution of the Wiener process, which is a Gaussian distribution with mean 0 and
covariance operator R. Our aim is to choose the closest possible Gaussian distribution to
the data points, which can be done by estimating the covariance operator R from data:

48

4.2 – Reparametrisation of the score-based generative model

R̂ =
NØ
i

|F(xi)|2
N

(4.28)

In this way, the covariance does not change space, it just increases in intensity. This
allows the model to start sampling from a distribution close to the data points and then
refine the samples with the reverse diffusion process. While estimating the covariance
operator would require estimating infinite parameters, it is important to denote that we
only need to estimate the projection of the covariance operator for some choice of functions
used in our implementation to represent the data points.
In our case, we can play with the Fourier basis as in Franzese et al. [2024]. Firstly, we
recall the forward system:I

dXt[pk] = ⟨A
q
iXt[pi]ξi, ζk⟩+ dWt[pk]

X0[pk] ∼ ρ0[pk]
(4.29)

In our case this system simplifies as:I
dXt[pk] = dWt[pk]
X0[pk] ∼ ρ0[pk]

(4.30)

The reverse system, instead, is more complicated, as shown by Franzese et al. [2024]:

I
dX̂t[pk] = (−F−1(blF(X̂t[pi])l)k + F−1(rlF(sθ(

q
i X̂t[pi]ξi, T − t))l))dt+ dŴt[pk]

X̂T ∼ χT
(4.31)

Again, this simplifies in our case by the removal of the drift term:I
dX̂t[pk] = F−1(rlF(sθ(

q
i X̂t[pi]ξi, T − t))l)dt+ dŴt[pk]

X̂T ∼ χT
(4.32)

Additionally, if we explicitate the score function using the equivalent of 4.18 using a
denoiser to approximate the expectation:

sθ(Xt, t) = −S̃−1(t)(Xt − E[X0|Xt]) (4.33)
We can then write the reverse system as:I

dX̂t[pk] = −1
t (X̂t[pk]− f(pk, t; θ, g(θ,

q
i X̂t[pi]ξi)))dt+ dŴt[pk]

X̂T ∼ χT
(4.34)

As we can see, this approach simplifies the SDE and allows a more stable computation
of the reverse process due to the absence of parameters in the drift term and the fact that
the Fourier transform is rendered unnecessary. Importantly, we must stop the reverse
diffusion at a time t > 0 in the simulation due to numerical instabilities as it is the case
for the Variance Exploding SDE Song et al. [2020].
It follows that we can implement the sampling procedure through the following algorithm:

49

Proposed method

Algorithm 3 Sampling from driftless SDE
1: procedure Driftless SDE Sampling(X0, fθ, N, T)
2: ∆T ← 1

N T
3: for k = N to 1 do
4: t← k

N T

5: Xk ← Xk−1 −∆T (Rt)−1(Xk−1 − fθ(Xk−1, t))
6: Xk ← Xk + (R∆T) 1

2 Re(F−1(F(N (0,1)) · exp(2πjN (0,1))))ü ûú ý
Reverse noise ∆W

7: end for
8: return fθ(X1,∆T)
9: end procedure

Note that if one sets σ2 = Rt, the algorithm is equivalent to the predictor sampling
algorithm of the Variance Exploding SDE Song et al. [2020]. This algorithm can be
improved following the Euler-Maruyama method and adding predictor steps as in Song
et al. [2020]. In the experiments, we employ the Euler-Maruyama version of the same
algorithm with a corrector step.

50

Chapter 5

Experiments

We dedicate this chapter to the description of the experiments and their results.

5.1 Data
For this project, we employed the MNIST dataset LeCun et al. [1998] as a benchmark for
our generative model. We refrained from using more complex datasets, such as CIFAR-10
Krizhevsky et al. [2009], due to the computational cost of training the model and due
to the highly theoretical nature of this work, whose methodology is unexplored in the
literature. The MNIST dataset is composed of 28 × 28 grayscale images of handwritten
digits from 0 to 9. We rescaled the dataset to 32 × 32 pixels as done by Franzese et al.
[2024].

Figure 5.1: Example of images from the MNIST dataset

51

Experiments

5.2 Software and code
The code for this work has been written in Python, using mainly the PyTorch library
Paszke et al. [2019] and Huggingface libraries such as Diffusers Team [2024] and Trans-
formers Wolf et al. [2020]. The codebase was developed by following the structure of
Franzese et al. [2024]; however, the aforementioned work was developed in Jax, while we
decided to rely on PyTorch and Huggingface. Therefore, with this work we contributed
in making the codebase more accessible to the public, as PyTorch is a more widely used
library than Jax. Additionally, the usage of the transformers library allows us to upload
the model to the Huggingface Hub, making it easier to share the model with the commu-
nity. It is also worth noting that the modularity of the network allows for more creative
approaches with modulation network. For example, one can try different modulations
networks, such as convolutional neural networks or multi-layer perceptrons.

5.3 Experimental settings
This work gives the opportunity to try many experimental setups. Firstly, we compare
a pure, transformer-based approach with a modulation network approach. Secondly, we
experiment with the new SDE using a transformer-based approach.
For our experiments we used a U-ViT network with O(1M) parameters, as in Bao et al.
[2023]. For what concerns the modulation network, we used a ViT with O(1M) parame-
ters, while for the base network we employed an MLP with O(100K) parameters.
We first compare the performances of different architectures over the MNIST dataset us-
ing the SDE by Franzese et al. [2024], and then compare the performances of the same
architectures using the driftless SDE. All the models used for evaluation have been trained
for 500000 iterations, with a batch size of 64 and adaptive learning rate with a warm-up
period of 1000 iterations. We used the Adam optimiser with a learning rate of 10−5 and a
weight decay of 0.03. Additionally, we used the same data augmentation techniques as in
Franzese et al. [2024], namely random horizontal flipping. The models used for evaluation
also employ Exponential Moving Average (EMA) Song et al. [2020] for their weights, with
an EMA rate of 0.9999.

5.3.1 Results with general SDE
We illustrate some samples generated by the modulation network approach and by the
U-ViT network. The samples have been generated with a PC algorithm, using one cor-
rection step. In particular, we show the samples generated by training our models on the
type of noise constructed appositely for MNIST by Franzese et al. [2024]. We can notice
that the samples are of similar quality, however, the ones produced by the modulation
network approach are smoother, as in fig. 5.2, with respect to the samples produced by
the U-ViT in fig. 5.3.
We also compared the two models trained on white noise, in this case we got similar
results, with the samples produced by the modulation network approach being smoother
than the ones produced by the U-ViT network (fig. 5.5 and fig. 5.4).

52

5.3 – Experimental settings

Figure 5.2: Samples generated by the
modulation network approach trained on
coloured noise

Figure 5.3: Samples generated by the U-
ViT network trained on coloured noise

Figure 5.4: Samples generated by the
modulation network approach trained on
white noise

Figure 5.5: Samples generated by the U-
ViT network trained on white noise

Performance as denoisers We also compared the performance of the two models in
terms of denoising capabilities. First, we show an original batch of data and we perturb
it with some random noise:

53

Experiments

Figure 5.6: Real batch of data Figure 5.7: Noisy batch of data

Then, we show the denoised batch of data produced by the modulation network ap-
proach and by the U-ViT network:

Figure 5.8: Data denoised using the
modulation network approach

Figure 5.9: Data denoised using the U-
ViT network

We can see that both models are able to denoise the data, however, both may produce
different digits than the real ones in presence of high noise. We repeat the same procedure
with coloured noise, with similar results:

54

5.3 – Experimental settings

Figure 5.10: Real batch of data Figure 5.11: Noisy batch of data

Figure 5.12: Data denoised using the
modulation network approach

Figure 5.13: Data denoised using the U-
ViT network

5.3.2 Results with driftless SDE
In this section, we experiment with the driftless SDE. We use the U-ViT architecture to
focus on the diffusion equation and employ different diffusion times T = {10,20,100} to see
how the model behaves. In this case, the samples have been generated using a predictor-
only algorithm. Additionally, we compare the performances when the covariance operator
is set to the identity, that is in the case of white noise, and when it is estimated from the
data. We show the samples generated by the U-ViT network with the driftless SDE for
different diffusion times with white noise:

55

Experiments

Figure 5.14: Images generated with T =
10 and white noise

Figure 5.15: Images generated with T =
20 and white noise

Figure 5.16: Images generated with T = 100 and white noise

We can notice how diffusion times affect the quality of the samples. In particular,
we can see that the samples generated with T = 100 are of worse quality than the ones
generated with T = 10 and T = 20.
Now, we repeat the same analysis when estimating the covariance operator from the data.
However, we denote that models trained with T = 10 and T = 20 benefitted by increasing
the diffusion time during inference by a factor of 1.5.

56

5.3 – Experimental settings

Figure 5.17: Images generated with es-
timated covariance operator and T = 20
in both training and inference

Figure 5.18: Images generated with es-
timated covariance operator and T = 20
in training and T = 30 in inference

Figure 5.19: Images generated with esti-
mated covariance operator and T = 100
in both training and inference

Figure 5.20: Images generated with es-
timated covariance operator and T = 10
in training and T = 15 in inference

In order to correct this behaviour, we tried training the model sampling diffusion times
from the distribution such that log(t) ∼ Uniform(log(Tmin), log(Tmax)), similarly to what
is done for training diffusion models for the VE SDE, where the noise scales are sampled
with the same distribution during training.

57

Experiments

Figure 5.21: Images generated with es-
timated covariance operator, estimated
covariance operator, T = 20 and follow-
ing VE SDE best practises

Figure 5.22: Images generated with es-
timated covariance operator, estimated
covariance operator, T = 100 and fol-
lowing VE SDE best practises

Figure 5.23: Images generated with estimated covariance operator, estimated covariance
operator, T = 1000 and following VE SDE best practises

Our experiments have shown that following the practises of the VE SDE, we can
improve the robustness of the model towards arbitrary choices of diffusion times in training
and inference.

58

5.3 – Experimental settings

5.3.3 Evaluation
In order to evaluate our models, we employed the Fréchet Inception Distance (FID) Heusel
et al. [2017]. The FID is a metric that measures the similarity between two sets of images,
in our case the real images and the generated images. The FID is calculated by first
computing the statistics of the activations of the Inception network Szegedy et al. [2016]
for the real images and the generated images. Then, the FID is calculated as the Fréchet
distance between the two multivariate Gaussian distributions. The lower the FID, the
more similar the generated images are to the real images.
The drawback of this metric is that it does not measure abstraction, since it is based on
the similarity of the generated samples with respect to an existing dataset. In our case,
however, we can use the FID to compare the quality of the samples generated by the
different models since we are not aiming to generate new digits but to recreate existing
ones with plausible writing styles.
Firstly, we show the FID scores for the models trained with the general SDE:

Modulation approach U-ViT
White noise 22.26 14.88
Coloured noise 26.01 13.00

Table 5.1: Results of the FID score for the models trained with the general SDE

As we can see, the U-ViT outperforms the modulation network approach in terms of
FID score. However, as shown by the previous generated samples, the quality of the sam-
ples is similar, with the modulation network approach producing smoother samples. This
difference in FID score can be explained by hyperparameters tuning and network config-
uration, since transformers networks are widespread in applications and more heuristic is
available to tune them.
We also trained a modulation approach model with O(10M) parameters with white noise
to verify if the quality of the samples could improve. From the generated samples in
fig. 5.24, we can verify that this approach shows promise in scaling with respect to the
number of parameters. For what concerns the driftless SDE, instead, we can see that
the performances come close to the performances with the general SDE. In particular, we
show the FID scores for the models trained with the driftless SDE:

T = 10 T = 20 T = 100
R = R̂ 19.97 22.24 63.52
R = I 40.99 23.56 140.63

Table 5.2: Results of the FID score for the models trained with the driftless SDE

We can notice how estimating the covariance operator from data improves perfor-
mances with respect to setting R = I.
We also experiment by including the best practises for training and sampling with the VE
SDE, however they significantly reduce the performances.

59

Experiments

T = 20 T = 100 T = 1000
43.83 41.38 47.19

Table 5.3: Results with VE SDE best practises

This shows that the driftless SDE still requires appropriate heuristic to be trained and
sampled to its full potential. In particular, the heuristic of the VE SDE could reason-
ably be altered without revolutionizing them, as we can see samples produced with this
approach have a higher level of details and do not show oversmoothing.

Figure 5.24: Images generated with a bigger modulation approach model using the general
SDE

60

Chapter 6

Conclusions

In this work, we have explored the intricacies of continuous-time functional diffusion
processes. These processes allow diffusion in infinite-dimensional spaces, which enable
interesting properties such as resolution invariance in image synthesis. We have proposed
a new architecture, which is able to integrate transformers with modulation networks,
allowing for a more stable training while preserving properties of infinite-dimensional
diffusion.
We have also proposed a new formulation of the SDE: the driftless SDE, which removes the
drift term, making the model easier to train and more stable. Interestingly, we discovered
that the driftless SDE can be seen as a generalization of the Variance Exploding SDE,
which is a well-known model in the literature. This allowed us to use the same best
practises for the Variance Exploding SDE to improve the driftless SDE. Our experiments
confirm that the proposed methodologies perform similarly as the approaches present in
the literature, with similar scaling properties and denoising capabilities.
Different research directions can be explored starting from this work:

• The driftless SDE can be further improved with techniques such as importance sam-
pling, or tested with different SDE solvers.

• The model can be tested on more complex datasets, such as CIFAR-10, to see how
it scales with higher dimensional data.

• The proposed method can be extended to different modalities and multimodal envi-
ronments, such as audio and video.

• The model can be tested on different tasks, such as super resolution of images.

Further development in these directions can be beneficial for many practical use cases.
For instance, our approach can be extended for the generation of videos at arbitrary
resolution and arbitrary frame rate. It must also be remarked that this work could be
used for malicious intents, such as the generation of deepfakes.

61

62

Bibliography

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocom-
puting, 5(4-5):185–196, 1993.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and
their Applications, 12(3):313–326, 1982.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All
are worth words: A vit backbone for diffusion models, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training
diffusion models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Salamon Bühler. Functional analysis. https://people.math.ethz.ch/~salamon/
PREPRINTS/funcana.pdf, 2017.

Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Cam-
bridge university press, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From
data to functa: Your data point is a function and you can treat it like one. arXiv
preprint arXiv:2201.12204, 2022.

Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and
Pietro Michiardi. Continuous-time functional diffusion processes. Advances in Neural
Information Processing Systems, 36, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

63

https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf
https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf

BIBLIOGRAPHY

Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/
2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Allen Hatcher. Notes on introductory point-set topology. http://pi.math.cornell.
edu/~hatcher/Top/TopNotes.pdf, 2009.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on
diffusion-based generative models and score matching. Advances in Neural Information
Processing Systems, 34:22863–22876, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equa-
tions, volume 23. Springer Science & Business Media, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Annie Millet, David Nualart, and Marta Sanz. Time reversal for infinite-dimensional
diffusions. Probability theory and related fields, 82(3):315–347, 1989.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo
gradient estimation in machine learning. Journal of Machine Learning Research, 21
(132):1–62, 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. Deepsdf: Learning continuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 165–174, 2019.

64

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf
http://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf

BIBLIOGRAPHY

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.
org/abs/1505.04597.

Dietmar A. Salamon. Measure and integration. https://people.math.ethz.ch/
~salamon/PREPRINTS/measure.pdf, 2020.

Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cam-
bridge University Press, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. Advances in
neural information processing systems, 33:7462–7473, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International conference
on machine learning, pages 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s
wrong: An analysis of iterative prompting for reasoning problems. arXiv preprint
arXiv:2310.12397, 2023.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

Diffusers Team. Diffusers: A pretrained diffusion model library, 2024. URL https:
//github.com/huggingface/diffusers. Version 0.27.2.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

65

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf
https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

BIBLIOGRAPHY

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Huggingface’s transformers: State-of-the-art natural language processing, 2020.

66

	List of Tables
	List of Figures
	Introduction
	Escaping the inductive bias
	Contribution

	Mathematical Foundations
	Measure theory
	Functional analysis
	Semicontinuous Semigroups

	Stochastic calculus
	The diffusion equation
	Reversing the diffusion equation

	Girsanov's theorem
	Stochastic calculus in infinite dimensions
	SDEs in infinite dimensions

	Machine Learning and Generative modelling
	Variational autoencoders
	Evidence Lower Bound

	Generative Adversarial Networks
	Learning with diffusion models
	Score-based diffusion models
	Denoising Diffusion Probabilistic Models
	Score based generative modelling through SDEs
	Sampling from the generative model
	Solving the reverse diffusion SDE
	A variational perspective on score-based generative modelling

	Continuous-time functional diffusion processes
	Practical implementation

	Implicit Neural Representations (INRs)
	Architectures for INRs

	Reinforcement learning
	Q-learning
	Reinforcement learning for diffusion models

	Transformers
	Attention
	The original transformer architecture
	Vision transformer
	Vision transformer for diffusion models

	Proposed method
	Modulation networks for INRs
	Reparametrisation of the score-based generative model
	The driftless diffusion process
	Estimating the covariance operator from data

	Experiments
	Data
	Software and code
	Experimental settings
	Results with general SDE
	Results with driftless SDE
	Evaluation

	Conclusions

