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Summary

This thesis was conducted in collaboration with Marelli S.p.A. Our objective was to
develop a network capable of recognizing humans in real-time, intended for use in
an alert system in the World Rally Championship (WRC). The WRC is the premier
rally competition globally. Despite the high standards of this sport, the safety
marshals responsible for overseeing the season’s events face challenges in efficiently
monitoring all sections of the circuit to ensure spectator safety. In response, Marelli
S.p.A. aims to develop an alert system for these marshals, which will help identify
individuals in hazardous positions, allowing for timely intervention and enhanced
safety across the entire track. A critical preliminary step in developing this system
is real-time human detection. Although object detection has been extensively
studied, the unique challenges presented by rally racing necessitate additional
research specific to this domain. The main challenge was to work with a single
camera installed inside the vehicle, which travels at high speeds and needs to
recognize people at considerable distances from the vehicle’s position. To address
this task, we utilized the YOLO (You Only Look Once) network and experimented
with various training combinations to optimize its performance for our specific use
case and certain challenging situations. We also examined the impact of image
quality on the network’s performance. After initial evaluation of existing datasets,
we decided to create a custom dataset to enhance the network’s performance in
our domain and ensure robustness against potential scenario changes, despite the
limited number of video samples available. The resulting network meets Marelli’s
standards for accuracy, speed, and performance, having been thoroughly tested on
a hardware configuration very similar to the one that will be installed in the car.
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Chapter 1

Introduction

1.1 The impact of Object Detection

Object detection is a significant field within computer vision, a branch of artificial
intelligence (AI) that deals with enabling computers to interpret and understand
the visual world. Object detection involves identifying and locating objects within
images or videos. Unlike image classification, which assigns a label to an entire
image, object detection provides more detailed information by identifying the
presence of objects, their categories, and their specific locations within the image.
The journey of object detection began with basic feature-based methods, which
relied on hand-crafted features for tasks such as face detection. However, these
methods were limited in accuracy and adaptability. The advent of deep learning
and convolutional neural networks (CNNs) marked a significant leap forward.
Models like R-CNN and its successors introduced more efficient and accurate object
detection and innovations such as YOLO (You Only Look Once) brought real-
time object detection capabilities, making it feasible to detect objects in a single
evaluation. The development and advancement of object detection technologies have
had a profound impact on numerous industries and applications. In autonomous
driving, object detection is critical for perceiving the environment, detecting
pedestrians, vehicles, traffic signs, and obstacles. It also enhances security through
automated surveillance, identifying suspicious activities and unauthorized access.
Advanced systems can track multiple individuals, recognize abnormal behaviors,
and detect specific objects like weapons, thus improving public safety. In healthcare,
object detection is used in medical imaging to identify and localize abnormalities
such as tumors in X-rays or MRI scans. Retail applications include inventory
management, automated checkout systems, and customer behavior analysis. In
agriculture, drones equipped with object detection systems monitor crop health,
detect pests, and assess yield. The diverse range of fields where object detection
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Introduction

is applied and its proven effectiveness make it one of the most intriguing and
extensively studied tasks in deep learning.

1.2 Real-Time Human Detection
Real-time human detection is a complex and critical task within the field of object
detection and computer vision. One of the primary challenges is ensuring accurate
detection in varying and complex environments. Changing lighting conditions,
occlusions, and dynamic backgrounds can negatively impact the system’s perfor-
mance. For example, a person may be partially hidden behind an object or be
detected in scenes with low or variable lighting, complicating the model’s task.
Furthermore, detection models must generalize to new environments and scenarios
that may not have been present in the training data. Real-time human detection
requires models to be computationally efficient, particularly when deployed on
devices with limited resources such as cameras, drones, or smartphones. This means
the models need to be lightweight and capable of processing data quickly without
compromising accuracy. In this Thesis, we investigated the state-of-the-art (SOTA)
models for this task, specifically interfacing with the YOLO (You Only Look Once)
model, which demonstrates strong performance despite all the aforementioned
complications that are inherent of real-time human detection.

1.3 The choice of YOLO and the challenges
The advent of YOLO was groundbreaking in this particular task. It is designed
to be extremely fast, processing the entire image in a single pass (forward pass).
This makes it highly efficient for real-time applications. Despite its speed, YOLO
maintains a high level of accuracy. Its ability to balance speed and precision makes
it ideal for critical applications. The last main advantage is relatively lightweight
and can run on hardware with limited resources, such as mobile devices or embedded
cameras. This is crucial for human detection in scenarios where computational
resources are constrained.

Despite its excellent performance, YOLO has some limitations that are important
to highlight, especially concerning our work. YOLO’s architecture is less effective
at detecting small objects compared to some other object detection frameworks.
This is because the spatial resolution of the feature maps used for detection may
be too coarse to capture the fine details of small objects. In addition, it can have
difficulty handling occlusions, where parts of the objects are obscured by other
objects. In real-world scenarios, objects are often partially occluded, and the
ability to accurately detect and classify these partially visible objects is essential.
Nonetheless, in scenes with a high density of objects, YOLO may struggle to
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maintain high detection accuracy. Finally, like other deep learning models, YOLO’s
performance heavily depends on the quality and diversity of the training data. If
the training data is biased or lacks variability, the model may fail to generalize well
to new, unseen environments.

1.4 WRC further complications
An additional complication arises from our specific use case. The thesis aims to
address the task of real-time human detection within the World Rally Championship
(WRC) context. Marelli S.p.A. is a leader in producing ECUs and hardware and
communication systems for diagnostics in major global motorsport championships,
including the WRC. This introduces unique challenges to an already complex
task. The practical application of this research would be to develop an alert
system for safety marshals overseeing the various races in the championship. This
system would help identify individuals in hazardous positions, enabling marshals to
intervene and enhance safety along the entire track. Real-time human detection is a
crucial preliminary step for developing this system, and this thesis aims to achieve
high performance and reliability on this task, providing a foundation for developing
a comprehensive system capable of identifying people in danger through domain-
specific knowledge. The added difficulties are significant. Firstly, one complication
is that we can only obtain data from a camera installed inside the vehicle. This
not only limits the field of view but also involves dealing with extremely high
speeds, resulting in more challenging video compression, significant frame-by-frame
image changes, and rapid scenario shifts. Additionally, this leads to the challenge
of recognizing individuals even when they are several tens of meters away, which,
in terms of image resolution, may translate to just a few pixels. Furthermore, the
variety of environments where rally races occur adds to the complexity. These races
can take place at night, in forests, on dirt tracks, in backlit conditions, and under
various weather conditions such as snow and rain. Additionally, due to privacy
concerns, we obtained a limited number of videos, many with short duration,
resulting in a relatively small dataset. Despite this, the dataset offers promise for
potential improvements with a larger number of videos.

1.5 Problem statement
The thesis aims to utilize YOLO’s architecture to develop a network capable of
effectively performing real-time human detection, meeting hardware requirements,
particularly in the complex context of the WRC. This environment introduces
several complexities to the task, compounded by the constraint of a limited dataset.
Our research involved a comprehensive analysis of YOLO’s performance, including
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the creation of a dataset tailored to our specific use case for network training. We
meticulously selected appropriate hyperparameters for training and explored meth-
ods for adapting to various challenging scenarios. Employing Data Augmentation
techniques enhanced our flexibility in accommodating potential contextual changes.
Lastly, we assessed the impact of image quality, which was notable given that our
videos were obtained from a streaming platform provided by the company, resulting
in lower compression compared to images directly captured by the vehicle’s onboard
system.

1.6 Structure
1. Related works contains a brief explanation of the history of Object detection

algorithms with a focus on the most important research in the field of real-time
human detection.

2. Methodology is where we analyze the structure of our dataset, with all the
implementation choices that we made and all the augmentation techniques
used.

3. Experimental results contains all the experimental details. These include
a description of the experimental settings, a description of the evaluation
metrics and an explanation of the architecture together with the reasoning
behind the choices made. Moreover, in the same chapter we will present the
results of the experiments, explaining and interpreting them using relevant
tables and plots.

4. Conclusions is the chapter where we summarize our works and results. We
also propose some ideas for future work on the subject.

5. Appendix contains additional material such as additional plots that would
have impacted the readability of this report if they were introduced in the
Experiments section.
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Chapter 2

Related Works

Object detection is a fundamental task in computer vision that involves identifying
and localizing objects within an image. This task requires not only recognizing
what objects are present but also drawing bounding boxes around each detected
object. This section explores the significant milestones and current advancements
in object detection, converging toward the specialized and highly impactful domain
of real-time object detection. It provides an overview of the state-of-the-art models
and serves as a foundation for understanding the experiments that will be conducted
in this thesis. In the following sections, we will begin with traditional methods that
laid the groundwork for this field, then delve into the transformative impact of deep
learning. Next, we will explore modern object detection techniques, distinguishing
between single-shot detectors and region-based approaches. Finally, we will focus
on the specialized domain of real-time object detection, examining the unique
challenges and innovations that drive this critical application.

2.1 Traditional Approaches to Object Detection
The initial strides in object detection were marked by the use of traditional methods,
which predominantly relied on handcrafted features and classical machine learning
algorithms. These approaches laid the foundation for modern object detection
techniques and provided valuable insights into the complexities of identifying and
localizing objects within images. One of the earliest and most influential methods
in object detection was the Viola-Jones detector[1], introduced by Paul Viola and
Michael Jones in 2001. This approach was groundbreaking due to its real-time face-
detection capabilities, which were achieved through the use of Haar-like features
and the AdaBoost algorithm. Haar-like features are simple rectangular features
that capture the contrast between different regions of an image, while AdaBoost is
a machine learning algorithm capable of selecting the most relevant features and
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combining them into a strong classifier, enhancing detection accuracy. Despite its
success in face detection, the Viola-Jones detector faced limitations when applied to
more general object detection tasks. Another significant advancement in traditional
object detection was the introduction of Histogram of Oriented Gradients (HOG)[2]
in 2005. HOG features capture the distribution of gradient orientations in localized
portions of an image, making them robust to variations in illumination and small
deformations. The combination of HOG features with a Support Vector Machine
(SVM)[3] classifier became a popular method for pedestrian detection. Despite their
historical significance, these methods had limitations in handling the variability
and complexity of real-world object appearances, especially regarding scalability,
computational efficiency and the extensive domain knowledge required to handcraft
features.

2.2 The Deep Learning Revolution
The advent of deep learning marked a significant paradigm shift in object detection,
revolutionizing the field with the introduction of convolutional neural networks
(CNNs)[4]. This section delves into the key developments and landmark models that
have led object detection to new heights, providing more powerful and generalizable
feature representations.

2.2.1 Regions with CNN features
The R-CNN model[5], introduced by Ross Girshick et al. in 2014, was a pioneering
effort that integrated CNNs into the object detection pipeline. It generated region
proposals using selective search to identify potential object locations within an
image. Features were extracted from each region proposal using a CNN, significantly
improving feature quality over handcrafted methods. The extracted features were
then classified using SVMs, which separated feature extraction from classification.
In [5] the authors demonstrate outperforming results in terms of accuracy for the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)[6] compared to the
classical methods. While R-CNN significantly improved detection accuracy, its
major drawback was computational inefficiency, as each region proposal needed to
be processed independently by the CNN.

2.2.2 Further enhancement of R-CNN
Fast R-CNN[7], also developed by Ross Girshick, was introduced to address the
computational inefficiencies of R-CNN. This model improved upon its predecessor
by incorporating several key innovations. Fast R-CNN performs a single forward
pass over the entire image, which allows for the extraction of feature maps from
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the image using a CNN. These feature maps are then used to compute features
for each region proposal through a process known as Region of Interest (RoI)
pooling. This technique allows the network to handle variable-sized input regions
efficiently. Fast R-CNN also integrates classification and bounding box regression
into a single network, allowing for end-to-end training, which significantly enhances
both efficiency and performance. The result is a model that is much faster during
both training and testing phases compared to the original R-CNN, making it more
suitable for practical applications and reaching a higher accuracy on PASCAL VOC
2012[8].

2.2.3 Faster R-CNN

Faster R-CNN[9], proposed by Shaoqing Ren et al., further streamlined the object
detection pipeline by introducing Region Proposal Networks (RPNs). This advance-
ment allowed for the generation of region proposals directly from the convolutional
feature maps produced by CNN, eliminating the need for external proposal methods
like selective search. The RPN component of Faster R-CNN shares full-image con-
volutional features with the detection network, thus enabling nearly cost-free region
proposals. By integrating RPNs with the Fast R-CNN detector, Faster R-CNN
creates a unified, end-to-end trainable network that improves both the speed and
accuracy of object detection. This innovative approach set new benchmarks for
object detection performance, combining high detection accuracy with enhanced
computational efficiency, and significantly reducing the processing time required
for generating region proposals.

2.3 Real-time Object Detection

Even if region-based approaches, particularly Faster R-CNN and its variants,
continue to lead in terms of detection precision, real-time constraints necessitate
a delicate balance between accuracy and speed, prompting the development of
lightweight architectures and optimization techniques. Contrasting with region-
based models the Single Shot Multibox Detector (SSD)[10] and You Only Look
Once (YOLO)[11] offer a streamlined approach to object detection. Both SSD
and YOLO eliminate the need for a separate proposal stage, opting instead for
single-pass architectures that achieve high speed and efficiency. These models are
particularly suited for real-time applications like surveillance systems, pedestrian
safety and autonomous vehicles, enabling responsive human-computer interaction
interfaces.
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2.3.1 Single Shot Multibox Detector
The Single Shot Multibox Detector (SSD)[10], introduced by Wei Liu et al., ad-
vanced object detection by merging speed and accuracy. It utilizes a single con-
volutional network to predict object classes and bounding boxes across multiple
scales and aspect ratios without a separate region proposal phase. SSD’s use of
multi-scale feature maps allows it to effectively detect objects of various sizes, while
its default boxes handle different shapes and scales. This results in a real-time
capable model that achieves a balance between speed and precision, making it ideal
for applications demanding quick and reliable detection.

2.3.2 You Only Look Once
YOLO[11], developed by Joseph Redmon et al., transformed object detection by
reimagining it as a single regression problem. In the first version, YOLO divides
the input image into a grid and predicts bounding boxes and class probabilities
for each grid cell simultaneously. This approach enables the entire detection
process to occur in a single forward pass, significantly boosting detection speed.
YOLO captures contextual information about objects and their locations, which
enhances detection accuracy. Its design allows for rapid image processing with high
accuracy. Over the years, various researchers have developed multiple versions of
YOLO, each introducing changes and improvements to the original model. These
enhancements have progressively boosted the network’s performance, enabling it
to achieve outstanding results in terms of both speed and accuracy.

2.3.3 The choice of YOLO
Our use case necessitates evaluating which network to select, given the critical
requirement for high accuracy coupled with the need for a very fast system capable
of streaming object detection results in real time. This evaluation is further
influenced by the constraint of using hardware that is not prohibitively expensive,
thus having fairly limited resources. After considering these factors, we leaned
towards choosing YOLO, specifically YOLOv8[12], due to its excellent balance
of speed, accuracy, and efficiency on resource-constrained hardware. Nonetheless,
YOLO is known for its superior speed, which is crucial for real-time applications.
YOLO achieves real-time processing capabilities by framing object detection as a
single regression problem, simplifying the pipeline and reducing computation time
significantly. Unlike SSD[10], which generates multiple feature maps for different
scales, YOLO uses a single neural network to predict both the bounding boxes
and class probabilities in one evaluation, resulting in faster detection times. As
depicted in [13] YOLO tends to be more efficient in terms of processing power. Its
architecture, particularly in its later versions like YOLOv3[14] and YOLOv4[15],
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is designed to balance accuracy and speed effectively. This makes it an excellent
choice for environments with limited computational resources where maintaining
high frame rates is essential. It was determined in [13] that YOLOv3[14] is the
fastest, with SSD following closely behind and Faster R-CNN[9] being the slowest.
However, the choice of algorithm depends on the specific use case. For instance,
if the dataset is relatively small and real-time results are not required, Faster
R-CNN[9] is preferable due to its higher accuracy. Conversely, YOLOv3[14] is the
best choice for analyzing live video feeds due to its superior speed. On the other
hand, SSD[10] provides a good balance between speed and accuracy. Comparing
YOLO directly with SSD[10], research on real-time pill identification systems[16] has
shown that YOLO can achieve high detection speeds while maintaining competitive
accuracy, making it a preferred choice in time-sensitive applications. All of these
analyses were conducted on versions of YOLO before YOLOv5[17]. Consequently,
the results from these studies, combined with the improvements found in newer
versions of YOLO, led us to choose YOLO as the foundation for our thesis.

2.4 History of YOLO
Understanding and analyzing the structure of YOLO is essential for grasping
its functionality. At the same time, examining the updates and improvements
introduced in each successive version is useful for comprehending the network’s
evolution step by step, culminating in the final form of the version we are using.

2.4.1 YOLOv1
YOLO[11] by Joseph Redmon et al. was published in 2016. It was the first
method that proposed a new point of view for object detection, as an end-to-
end method approaching real-time. This method differs significantly from earlier
techniques. Traditional approaches relied on sliding windows paired with a classifier,
necessitating numerous runs per image. More sophisticated strategies divided the
process into two stages: initially pinpointing potential object regions (region
proposals) and subsequently applying a classifier to these regions. YOLO, short
for "You Only Look Once", performs this task in a single pass through the network.
It simplifies this by combining these steps into one, making the detection process
faster and more efficient.

YOLOv1 treated object detection as a regression problem to spatially separated
bounding boxes and class probabilities directly from full images in one evaluation.
It divided the input image into an S × S grid and predicted B bounding boxes and
C class probabilities for each grid cell, leading to a unified prediction framework
outputting a tensor of size S × S × (B × 5 + C). The number 5 in the dimension
of the generated tensor is justified because each bounding box prediction includes
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five values: Pr, x, y, h, w. The variable Pr denotes the confidence score, which
reflects both the likelihood of the box containing an object and its accuracy. The
coordinates x and y represent the center of the box relative to the grid cell, while
h and w denote the height and width of the box relative to the entire image.

The YOLOv1 architecture comprises 24 convolutional layers followed by two
fully connected layers. These components serve the crucial function of predicting
bounding box coordinates and probabilities. Throughout the network, except for
the final layer, leaky rectified linear unit (leaky ReLU[18]) activations are employed.
To enhance computational efficiency and minimize parameter redundancy, YOLOv1
strategically incorporates 1×1 convolutional layers. Table 2.1 outlines the YOLOv1
architecture.

The authors started by pre-training the initial 20 layers of YOLOv1 on the
ImageNet dataset[20] at a resolution of 224 × 224. Following this, they appended
the last four layers with weights initialized randomly. To improve object detection
accuracy, the model went under fine-tuning on the PASCAL VOC 2007[19] and
VOC 2012[8], utilizing an increased resolution of 448 × 448 to capture finer details.
To augment the data, random scaling and translations were employed, adjusting
up to 20% of the input image size. Additionally, random exposure and saturation
were adjusted with a maximum factor of 1.5 in the HSV color space.

YOLOv1 utilizes a loss function composed of multiple sum-squared errors to
train the network:
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+
S2Ø
i=0

1
obj
i

Ø
c∈classes

[(pi(c) − p̂i(c))2]

(2.1)

where λcoord acts as a scaling factor that prioritizes the accuracy of bounding box
predictions, while λnoobj scales down predictions for boxes without objects. The first
two terms in the loss function account for localization loss, assessing the error in
predicted bounding box coordinates (x, y) and dimensions (w, h). These terms are
computed exclusively for boxes containing objects, as indicated by 1

obj
ij , ensuring

penalties are applied only when objects are present in the respective grid cells.
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Table 2.1: YOLOv1 structure. The sizes and outputs are referred to the original
YOLO paper[11]. In this paper, the authors employed the PASCAL VOC[19]
dataset comprising 20 classes (C = 20), utilizing a grid size of 7 × 7 (S = 7), and
allowing for a maximum of 2 classes per grid element (B = 2). Consequently, the
output prediction is structured as a 7 × 7 × 30 tensor.

Type Filters Size/Stride Output
Conv 64 7 × 7 / 2 224 × 224
Max Pool - 2 × 2 / 2 112 × 112
Conv 192 3 × 3 / 1 112 × 112
Max Pool - 2 × 2 / 2 56 × 56

1× Conv 128 1 × 1 / 1 56 × 56
Conv 256 3 × 3 / 1 56 × 56
Conv 256 1 × 1 / 1 56 × 56
Conv 512 3 × 3 / 1 56 × 56
Max Pool - 2 × 2 / 2 28 × 28

4× Conv 256 1 × 1 / 1 28 × 28
Conv 512 3 × 3 / 1 28 × 28
Conv 512 1 × 1 / 1 28 × 28
Conv 1024 3 × 3 / 1 28 × 28
Max Pool - 2 × 2 / 2 14 × 14

2× Conv 512 1 × 1 / 1 14 × 14
Conv 1024 3 × 3 / 1 14 × 14
Conv 1024 3 × 3 / 1 14 × 14
Conv 1024 3 × 3 / 2 7 × 7
Conv 1024 3 × 3 / 1 7 × 7
Conv 1024 3 × 3 / 1 7 × 7
FC - 4096 4096
Dropout 0.5 - - 4096
FC - 7 × 7 × 30 7 × 7 × 30
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The third and fourth terms contribute to confidence loss: the third term measures
confidence error when an object is detected, while the fourth term measures error
when no object is detected. Given that many boxes remain empty, λnoobjreduces
the weight of this loss. Finally, the classification loss component evaluates the
squared error of class conditional probabilities, applied only when an object(1obj

i )
is detected in the cell.

2.4.2 YOLOv2
YOLOv2[21], released in 2017, marked a significant advancement from YOLOv1[11],
maintaining speed while enhancing robustness. One key innovation was the inte-
gration of anchor boxes, predefined shapes tailored to typical object geometries.
Multiple anchor boxes per grid cell were used to predict coordinates and class
probabilities, directly influencing the network’s output size. To optimize anchor
box selection, the authors employed k-means clustering on training data, ultimately
adopting five anchor boxes that balanced recall and model complexity effectively.

As it can be seen at Table 2.2, batch normalization was universally applied
across all convolutional layers in YOLOv2, facilitating faster convergence and
acting as a regularizer to mitigate overfitting. By eliminating fully connected layers,
YOLOv2 achieved flexibility in handling inputs of varying sizes. During training,
the model’s adaptability to diverse input dimensions was reinforced by periodically
varying input sizes every ten batches. The backbone architecture, Darknet-19,
comprised layers 1 through 23, encompassing 18 convolutional and five max-pooling
layers. Notably, the 19th convolutional layer of Darknet-19 functioned as the object
detection head, containing 1000 filters, followed by an Average Pooling layer and a
Softmax layer in its original configuration.

2.4.3 YOLOv3
Here we present the main changes from YOLOv2[21] introduceb by YOLOv3[14],
published in 2018 by Joseph Redmon and Ali Farhadi.

In YOLOv3, bounding box prediction is handled similarly to earlier versions,
but with a significant change: the confidence score is replaced by an objectness
score calculated using logistic regression. This score is set to 1 for the anchor box
with the highest overlap with the ground truth object and 0 for all other anchor
boxes, ensuring each object is matched to a single anchor box. When an object
isn’t matched to any anchor box, only the classification loss is applied, which avoids
penalties for localization and confidence.

Moreover, YOLOv3 changes its approach to classification. Instead of using a
softmax function, it employs binary cross-entropy loss to train individual logistic
classifiers, treating classification as a multilabel problem. This change allows a
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Table 2.2: YOLOv2 structure. The sizes and outputs are referred to the original
YOLOv2 paper[21]

.

Num Type Filters Size/Stride Output
1 Conv/BN 32 3 × 3 / 1 224 × 224
2 Max Pool - 2 × 2 / 2 112 × 112
3 Conv/BN 64 3 × 3 / 1 112 × 112
4 Max Pool - 2 × 2 / 2 56 × 56
5 Conv/BN 128 3 × 3 / 1 56 × 56
6 Conv/BN 64 1 × 1 / 1 56 × 56
7 Conv/BN 128 3 × 3 / 1 56 × 56
8 Max Pool - 2 × 2 / 2 28 × 28
9 Conv/BN 256 3 × 3 / 1 28 × 28
10 Conv/BN 128 1 × 1 / 1 28 × 28
11 Conv/BN 256 3 × 3 / 1 28 × 28
12 Max Pool - 2 × 2 / 2 14 × 14
13 Conv/BN 512 3 × 3 / 1 14 × 14
14 Conv/BN 256 1 × 1 / 1 14 × 14
15 Conv/BN 512 3 × 3 / 1 14 × 14
16 Conv/BN 256 1 × 1 / 1 14 × 14
17 Conv/BN 512 3 × 3 / 1 14 × 14
18 Max Pool - 2 × 2 / 2 7 × 7
19 Conv/BN 1024 3 × 3 / 1 7 × 7
20 Conv/BN 512 1 × 1 / 1 7 × 7
21 Conv/BN 1024 3 × 3 / 1 7 × 7
22 Conv/BN 512 1 × 1 / 1 7 × 7
23 Conv/BN 1024 3 × 3 / 1 7 × 7
24 Conv 1000 1 × 1 / 1 7 × 7
25 Avgpool - Global 1000
26 Softmax - - -
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single box to have multiple labels, adapting to datasets with overlapping categories,
such as an object being labeled both as a Person and a Woman[22].

YOLOv3[14] introduces the Darknet-53 backbone architecture, detailed in Table
2.3. This architecture abandoned max-pooling layers, opting instead for strided
convolutions. A notable feature is the inclusion of residual connections, which
link the input from the 1 × 1 convolutions directly to the output of the 3 × 3
convolutions. Darknet-53 is composed of 53 convolutional layers, each equipped
with batch normalization, enhancing both the stability and efficiency of the network.

Table 2.3: Backbone of YOLOv3 structure. The sizes and outputs are referred to
the original YOLO paper[11]. The architecture presented here comprises solely the
backbone without including the detection head, which is responsible for making
multi-scale predictions.

Type Filters Size/Stride Output
Conv 32 3 × 3 / 1 256 × 256
Conv 64 3 × 3 / 2 128 × 128

1× Conv 32 1 × 1
Conv 64 3 × 3
Residual 128 × 128
Conv 128 3 × 3 / 2 64 × 64

2× Conv 64 1 × 1
Conv 128 3 × 3
Residual 64 × 64
Conv 256 3 × 3 / 2 32 × 32

8× Conv 128 1 × 1
Conv 256 3 × 3
Residual 32 × 32
Conv 512 3 × 3 / 2 16 × 16

8× Conv 256 1 × 1
Conv 512 3 × 3
Residual 16 × 16
Conv 1024 3 × 3 / 2 8 × 8

4× Conv 512 1 × 1
Conv 1024 3 × 3
Residual 8 × 8
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A significant enhancement in YOLOv3 is its ability to make multi-scale predic-
tions, effectively addressing the previous versions’ struggles with detecting smaller
objects. This feature involves generating predictions at different grid sizes, which
greatly improves the model’s versatility and accuracy across various object scales.

Here’s how the multi-scale detection mechanism operates: The initial predictions
are made on an 8 × 8 grid as the final output of the network. For the second set of
predictions, feature maps from the 2 previous layers of Darknet-53 are merged with
those from the Res ×8 layer. To permit this, the smaller 8 × 8 feature maps are
upsampled before concatenation with the larger 16 × 16 maps. This technique is
performed twice, therefore the final set of predictions involves combining the 16×16
feature maps with even larger 32 × 32 feature maps, again using an upsampling
step.

Regarding the establishment of bounding box priors, YOLOv3 continues the
practice of using k-means clustering. However, YOLOv3 implements a more
sophisticated approach by distributing three anchor boxes per grid cell across three
different scales. This change enhances the model’s ability to predict bounding
boxes more accurately across a wider range of object sizes.

2.4.4 YOLOv4
YOLOv4[15] was published in April 2020 by different authors. Its improvements and
performances made it considered the official YOLOv4 by the community. YOLOv4
introduced a variety of enhancements categorized as bag-of-freebies (Bof) and
bag-of-specials (Bos), aiming for an optimal balance between training complexity
and inference efficiency. The bag-of-freebies involves methods that modify the
training process, increasing training costs without affecting inference time, such
as data augmentation. Conversely, bag-of-specials comprises techniques that
slightly increase inference costs but significantly improve accuracy.

Within the bag-of-freebies, the authors extended beyond standard augmentations
like random brightness, contrast, scaling, cropping, flipping, and rotation adjust-
ments. They introduced mosaic augmentation, which combines four images into one.
This technique helps detect objects in varied contexts and reduces the need for large
mini-batch sizes in batch normalization. Additionally, they integrated CIoU loss[23]
and Cross mini-batch normalization (CmBN), which aggregates statistics across
the entire batch instead of individual mini-batches. To further strengthen model
robustness against perturbations, self-adversarial training (SAT) was implemented.
This method tricks the model into thinking the ground truth object is absent, yet
the original label leads to accurate detection.

For the bag-of-specials, various backbone architectures were explored. The
most effective one was a customized version of Darknet-53[14] enhanced with
cross-stage partial connections (CSPNet)[24], reducing computational load while
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maintaining accuracy, along with the Mish activation function[25]. The neck,
connecting the backbone to the head, aggregates and refines features, improving
spatial and semantic information across different scales. They used a modified
spatial pyramid pooling (SPP) that concatenates multiple max pooling outputs
with different kernel sizes k ×k where k = 1, 5, 9, 13, allowing a larger receptive field
without subsampling (stride = 1). Multi-scale predictions, similar to YOLOv3, were
employed, but with a modified path aggregation network (PANet)[26] where features
are concatenated rather than added. Additionally, a refined spatial attention module
(SAM)[27] was used, which slightly increases training calculations but does not
affect GPU inference speed and improves accuracy. Anchors were employed in the
detection head, following YOLOv3 principles, resulting in the model being named
CSPDarknet53-PANet-SPP.

2.4.5 YOLOv5
In 2020, Glen Jocher introduced YOLOv5[17] shortly after the release of YOLOv4.
This version integrated many of the advancements from YOLOv4 but was developed
using PyTorch instead of Darknet. YOLOv5 features an innovative algorithm called
AutoAnchor by Ultralytics, which optimizes anchor boxes according to the dataset
and training configurations, such as image size. Initially, the k-means algorithm is
applied to dataset labels to generate starting conditions for a Genetic Evolution
(GE) algorithm, which refines these anchors over 1000 generations using CIoU[23]
loss and Best Possible Recall as the fitness function.

YOLOv5’s architecture includes a modified CSPDarknet53 backbone. The
architecture also features the SPPF (Spatial Pyramid Pooling Fast) layer, which
speeds up network computation by pooling features of different scales into a fixed-
size feature map and upsample layers that enhance the resolution of feature maps.
Each convolution layer is followed by batch normalization and SiLU[28] activation.
The neck utilizes SPPF and a modified CSP-PAN, while the head maintains a
structure similar to that of YOLOv3.

For data augmentation, YOLOv5 employs several techniques, including Mosaic,
HSV augmentation, and random horizontal flips, along with additional augmen-
tations from the albumentations package. These augmentations help improve
the model’s robustness and performance. Furthermore, YOLOv5 enhances grid
sensitivity, making it more stable and less prone to runaway gradients.

YOLOv5 comes in five scaled versions to accommodate various hardware con-
straints and application needs: YOLOv5n (nano), YOLOv5s (small), YOLOv5m
(medium), YOLOv5l (large), and YOLOv5x (extra large). These versions vary
in the width and depth of their convolution modules, allowing users to select the
model that best fits their resource availability and performance requirements. For
instance, YOLOv5n and YOLOv5s are lightweight models designed for low-resource
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devices, while YOLOv5x is optimized for high performance, albeit with a trade-off
in speed.

In conclusion, YOLOv5 provides a robust, flexible, and efficient approach to
object detection, with its PyTorch implementation facilitating further development
and integration. The model’s scalability, advanced features like AutoAnchor, and
diverse augmentation techniques make it a versatile choice for a wide range of
applications, from edge devices to high-performance systems.

2.4.6 YOLOv6
Released on ArXiv in September 2022 by Meituan Vision AI Department, YOLOv6[29]
brings a series of innovations that enhance its efficiency and performance. At its core,
YOLOv6 integrates an advanced backbone featuring blocks such as RepVGG[30]
and CSPStackRep, which were initially presented in the CSPNet paper[24] and are
typically utilized in larger models. This structure includes a PAN[26] topology for
the neck and introduces a decoupled head, which separates the classification and
regression tasks. This separation helps address the misalignment issues between
classification confidence and localization accuracy[31][32], leading to improvements
in precision and faster model convergence.

YOLOv6 also adopts the Task Alignment Learning approach from the TOOD
paper[33] for more effective label assignment, which resolves ambiguities in over-
lapping box classifications[34]. Additionally, it employs enhanced quantization
techniques, such as post-training quantization[35] and channel-wise distillation[36],
contributing to faster and more accurate detectors. These innovations collectively
allow YOLOv6 to surpass the performance of previous state-of-the-art models,
including YOLOv5, by improving both accuracy and speed metrics.

2.4.7 YOLOv7
Published on ArXiv in July 2022 by the developers behind YOLOv4, YOLOv7[37]
introduces significant architectural upgrades and a suite of bag of freebies techniques,
aiming to enhance accuracy without sacrificing inference speed, though at the
expense of extended training times. One of the major architectural innovations
is the Extended Efficient Layer Aggregation Network (E-ELAN). Building on the
principles of ELAN[38], which focuses on optimizing learning and convergence
in deep models by efficiently managing gradient paths, E-ELAN furthers this by
employing a strategy of shuffling and merging cardinalities across different groups.
This technique enhances the network’s learning capabilities while maintaining the
integrity of the original gradient path.

YOLOv7 also redefines scaling methods for concatenation-based models. Tra-
ditional depth scaling adjusts input-output channel ratios in transition layers to

17



Related Works

conserve hardware resources. However, YOLOv7 introduces a unique scaling strat-
egy that proportionally scales both the depth and width of blocks, maintaining
the optimal structure of the model and achieving scalability across different model
sizes.

Several new bag of freebies elements stand out in YOLOv7. Drawing inspiration
from re-parameterized convolutions (RepConv) used in RepVGG[30] blocks, the
researchers discovered that identity connections within RepConv could eliminate the
residuals of network blocks. To counter this, they removed the identity connection,
resulting in a modified approach named RepConvN. Furthermore, they implemented
a balanced label assignment strategy that evenly distributes training responsibilities
between the auxiliary head, which aids in the training process, and the lead head,
which generates the final output. For the final inference model, the researchers
adopted the Exponential Moving Average (EMA), enhancing the model’s stability
and performance.

In summary, YOLOv7 integrates numerous innovations that significantly improve
its performance and scalability, making it a formidable advancement over its
predecessors.

2.4.8 YOLOv8
YOLOv8[12], introduced by Ultralytics in January 2023 as a successor to YOLOv5[17],
offers five different versions catering to various scales: YOLOv8n (nano), YOLOv8s
(small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large). This
iteration maintains a backbone similar to YOLOv5 while integrating substantial
enhancements to its architecture and functionality.

One of the notable upgrades in YOLOv8 is the C2f module, originally known
as the CSPLayer. This module, featuring cross-stage partial bottlenecks with
dual convolutions, plays a pivotal role in integrating contextual information with
high-level features, thereby significantly augmenting detection accuracy.

Furthermore, YOLOv8 incorporates a Spatial Pyramid Pooling Fast (SPPF),
utilizes the sigmoid function (SiLU[28]) to determine objectness scores, indicating
the likelihood of objects within bounding boxes, and employs softmax for class
probabilities, assessing the likelihood of objects belonging to different classes.

To refine object detection capabilities, YOLOv8 integrates advanced loss func-
tions such as CIoU[23] and DFL[39] for bounding box accuracy, alongside binary
cross-entropy for classification tasks. These methodologies have proven effective in
enhancing the model’s ability to detect smaller objects with precision.

From a practical standpoint, YOLOv8 supports seamless deployment via com-
mand line interface (CLI) execution and PIP installation, facilitating straightforward
integration into labeling, training, and deployment workflows. The ease of use we
just described surely influenced our decision to adopt the latest version, facilitating
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the development, training, and testing process in our specific context.
However, although it is not to be underestimated, the reason we chose to use

YOLOv8 is essentially because of its performance, both in terms of speed and
accuracy and in terms of its adaptability to our use case. As we have just seen, it is
well suited for small object recognition, which is still a very complex task, especially
for real-time applications, but at the same time improved as much as possible in this
version. Thus, considering the need to have to recognize people at large distances
from the camera, which therefore results in a negligible number of pixels in the
image, this feature prompted us to use this version. The architecture also was able to
adapt to the very limited hardware environment in which it was developed, ensuring
the desired applicability through the use of its smallest version, the YOLOv8n.
The latter can guarantee good accuracy, in a real-time environment that would
allow inference on the image and immediate return of the frame with the boxes
already drawn in a time under 50 fps with our hardware, the speed at which our
camera shoots the scene. Generally speaking, YOLOv8 demonstrates significantly
improved performance compared to its predecessors. Generally speaking, YOLOv8
demonstrates significantly improved performance compared to its predecessors.
This can be observed in [40], which illustrates that YOLOv8 achieves superior
results in terms of both accuracy and speed. Specifically, there is a noticeable
enhancement over previous release by Ultralytics, such as YOLOv5. Additionally,
YOLOv8 outperforms other versions like YOLOv6 and YOLOv7, neither of which
has a suitable version for our specific hardware environment.

This clearly depicts these advancements, highlighting YOLOv8 as the optimal
choice due to its compatibility with our hardware constraints and its superior
performance metrics across the board.

2.5 Human Detection Datasets
A key step in the development of our network involved adapting YOLO to our
specific use cases, as the initial version produced poor results due to the challenging
context of the WRC (World Rally Championship) compared to the typical images
used to train the basic version of YOLOv8[12], such as those in the COCO[41],
ImageNet[20] or PASCAL VOC[19] datasets. Factors such as the high speed of
the camera, the small size of the people to be recognized, and unique lighting
conditions necessitated the exploration of additional datasets that better aligned
with our domain. Over the years, numerous datasets have been created and refined
to provide benchmarks for the human detection task, aiding in the improvement
and evaluation of detection models. Each dataset offers unique attributes that
face different aspects of the detection task, ensuring comprehensive training and
evaluation of detection algorithms.
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For example, the KITTI[42] dataset is famous for autonomous driving research. It
provides a wide array of sensor data, including high-resolution stereo images and 3D
point clouds, collected in diverse driving scenarios directly from a camera installed
on the top of a vehicle. The videos include scenarios from cities, highways and
rural areas, tackling various driving speeds and densities of people in the collected
data. This dataset’s extensive annotations for object detection, tracking, and scene
understanding have set benchmarks for evaluating the performance of algorithms
in real-world driving environments. However, this dataset contained a limited
number of images and too few detections of individuals per image to significantly
and noticeably improve YOLO’s performance, particularly when applied to our use
case. Our use case involved samples with a very high density of individuals, such as
crowds gathered around strategic points of the circuits. Consequently, our research
focused on finding a dataset with a larger number of images and a significantly
higher average number of individual detections per image.

CrowdHuman[43], as depicted in Table 2.4, is specifically designed to address the
challenges of detecting humans in crowded scenes. It offers detailed annotations for
occluded and overlapping persons. This dataset is particularly useful for improving
the accuracy and robustness of human detection models in densely populated
environments, which is critical for applications like surveillance and public safety.
Despite the optimal characteristics of this dataset, the size of the individuals to be
detected was significantly smaller compared to that presented in the dataset, and
the network struggled to recognize entities of such a small scale.

KITTI COCOPersons CrowdHuman
# images 3,712 64,115 15,000
# persons 2,322 257,252 339,565
# ignore regions 45 5,206 99,227
# person/image 0.63 4.01 22.64

Table 2.4: Volume, density and diversity across the various human detection
datasets. To ensure equitable comparison, we exclusively present the statistics of
the training subsets.

TinyPerson[44] focuses on detecting small-scale persons in images, a task often
overlooked in standard datasets. This dataset includes images from various sources
with annotations for tiny persons, making it an excellent resource for enhancing
models’ ability to detect small, distant, or partially visible individuals. Unfortu-
nately, in addition to significantly worsening the detection of relatively nearby
individuals, which still needed to be maintained at a high level, the images did not
lead to improvements in identifying people with reduced sizes. This was likely due
to the substantial domain and viewpoint differences between the dataset images
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and our case. The dataset images were predominantly captured from helicopters or
high-mounted cameras along coastal areas for beach security, nothing comparable
to the world of rally.

In the end, our choice was to implement an ad-hoc dataset to train and test our
network. This led to a significant increase of the performance, facing all the issues
that we had just presented. It will be described in the next section.
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Methodology

In this chapter, we will thoroughly analyze our choices made to enhance the
YOLOv8 performance for our specific use case. We will describe the characteristics
of the dataset we created to effectively address our specific domain. Additionally,
we will discuss the application of data augmentation techniques, detailing the
parameters used to tune them.

3.1 Dataset creation
As outlined in Chapter 2, we conducted research to incorporate pre-trained datasets
for training our network with images and labels tailored to our specific use case.
Unfortunately, none of the datasets we evaluated met our performance criteria,
which was crucial for the success and applicability of our project. Initially, due to
restrictions regarding permissions and privacy concerns, we were limited to a single
video from a special rally race of the previous season, consisting of 7 minutes of
footage.

From this video, we created an initial dataset by excluding the stationary
segments at the beginning and end and sampling one image every 15 frames,
considering the camera’s 50 frames per second rate to avoid nearly identical images.
This approach yielded a dataset of 1121 images, manually annotated accordingly.
This dataset served as our starting point for testing the network.

During the training phase, we observed that the validation loss, as illustrated in
Figure 3.1a, continued to decrease even after an extended number of epochs, without
reaching a minimum point. Despite this apparent improvement, visual inspection
revealed that the network performed worse after 300 epochs compared to when
trained for just 100 epochs. This discrepancy led us to conclude that the network
was overfitting, likely due to the strong correlation between the training and testing
data, which were derived from an 80% and 20% split of the aforementioned 1121
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frames, respectively. These images were highly correlated, depicting the same track
and race session with almost identical backgrounds.

(a) Trained for 300 epochs on the first
dataset.

(b) Trained for 100 epochs on the final
dataset.

Figure 3.1: Comparison of the validation losses. (a) shows the training result
with 300 epochs. (b) shows the training result with 100 epochs on a final dataset.
The first does not reach a minimum, while the second shows a better curve, crucial
for selecting optimal weights for YOLOv8 inference.

To address this challenge, we secured access to another video featuring a race
on a different circuit. From this new video, we extracted 499 frames, meticulously
labeled them, and adopted this as our definitive testing dataset, while retaining the
initial 1121 images for the training dataset. This adjustment not only bolstered
the model’s resilience and performance but also effectively resolved the overfitting
issue, as evidenced by a more favorable trend in the validation loss graph (Fig.
3.1b), aligning with our expectations and allowing the architecture to choose the
best configurations of weights to make inference, based on the ability of YOLOv8
to keep in memory the best configuration all over the past epochs.

3.2 Dataset characteristics
In this section, we aim to analyze the choices made regarding the dataset in terms
of labeling and structure.

3.2.1 Person and Crowd
One primary objective was to identify humans or rather their presence, even when
they appeared very small in the images. A critical issue that needed to be addressed
was the presence of crowds. Often in WRC races, spectators are not spaced far
apart but frequently gather in substantial crowds. From an image perspective,
this makes it difficult to recognize the individual contours of people, rendering the
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resulting bounding boxes challenging to obtain and draw for training purposes. The
presence and individuation of these crowds are as important as that of individuals
watching the race separately, for whom labeling is considerably simpler.

Initially, we labeled both identifiable individuals and dense crowds of people
as part of the same class Person. However, since they both fell under the same
class despite having very different characteristics starting with the shape of the
bounding box (usually a vertical rectangle for standing individuals or a square-like
rectangle for seated ones, versus a horizontal rectangle often filled diagonally for
crowds), we decided to separate the two classes as Person and Crowd as depicted
in Figure 3.2. As shown in Figure 3.3, this significantly improved all the metrics
we used to evaluate the various training choices, outperforming the single-class
version. This likely arises from the fact that the network can create ad-hoc features
separately for the two classes, thus enabling more effective recognition.

Figure 3.2: An example of 8 images batch derived from our initial dataset. The
annotation corresponds to 0 for the Person class, or 1 for the Crowd class.
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Figure 3.3: Comparison of the evaluation metrics between dataset version with
only Person labels and the Double Class version including Crowd labels.

3.2.2 Risk recognition
The initial objective of this work was not only to identify the presence of humans
but also to distinguish between those at risk and those who are safe. A thorough
analysis supported by domain knowledge is crucial for advancing this task, likely by
adopting additional technologies. One solution could be to segment and recognize
the roadway and calculate the distance between the human and the road to
assess the level of danger. Alternatively, more specific information such as speed,
trajectory, and the person’s position relative to a curve could be considered.

An initial attempt was made by training the network with a dataset designed to
include these features. We introduced a distinction between the two main classes
and two additional classes: PersonAtRisk and CrowdAtRisk. Although the results
obtained, as shown in Figure 3.4, are somewhat sufficient, the reliability of this
approach is compromised by the highly imbalanced number of labels.

Unfortunately, the instances of humans in danger detected by our network were
very few and thus not reliable, as shown in Table 3.1. We believe that a postponed
classification approach, built with a more precise and efficient ad-hoc pipeline,
would be more effective and consistent.

Class Number of Instances
Person 1999
Crowd 168

PersonAtRisk 18
CrowdAtRisk 3

Table 3.1: Number of instances of the AtRisk dataset for each type of entity in
the testing dataset.
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Figure 3.4: Comparison of the evaluation metrics between the Double Class
version and dataset version with PersonAtRisk and CrowdAtRisk labels.

3.3 Data Augmentation
Data Augmentation techniques artificially increase the diversity of the training data
by modifying the initial set of images, thereby enhancing the model’s robustness
and generalization capabilities. The transformations applied to the images are
also applied to the corresponding bounding boxes. Each transformation has a
parameter controlling either the probability of its application or the magnitude
of the transformation itself. YOLOv8 provides a set of base augmentations and
functions that users can easily modify to adjust the parameters influencing these
augmentations, for which we present a summary in Table 3.2. An example of the
application of the data augmentation techniques can be seen in Fig 3.5.

Parameters Probability of application
degree 0

translate 0.1
scale 0.5
hgain 0.015
sgain 0.4
vgain 0.4
hflip 0.5
vflip 0

Mosaic prob 1.0
Mosaic n.images 4

copy-paste 0.5

Table 3.2: Parameters settings used for Data Augmentation
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Figure 3.5: An example of an augmented batch of 8 images used for network
training.

3.3.1 RandomPerspective

RandomPerspective is a class that includes rotation, translation, and scaling. Typi-
cally, the rotation parameter, which controls the degree of rotation, is set to 0. This
setting is beneficial when dealing with images that have different perspectives or ori-
entations. In our case, we maintained this policy due to the consistent perspective
of our images, all taken from the same camera with the same orientation.

The translation parameter is set to 0.1, indicating the fraction of the total width
and height for random translation in four directions. This means the image can be
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shifted by up to 10% of its dimensions, helping the model recognize objects even
when slightly displaced.

The scaling factor allows resizing within a selected range. We used a scaling
factor of 0.5, which permits resizing between 50% and 150% of the image’s original
size. This helps the model handle variations in object size more effectively.

3.3.2 Image Composition
In addition to the RandomPerspective class, other techniques modify the composi-
tion and positioning of elements within an image. One such tool is RandomFlip,
which flips images horizontally (and more rarely, vertically) to create mirrored
versions of the original images. This helps ensure that object orientation does
not interfere with the network’s ability to recognize them. The probability for
horizontal flipping was set to 0.5, while vertical flipping was set to 0.

Another technique used is Mosaic augmentation, which combines multiple (four
in our case) images into a single mosaic image. This augmentation was applied
with a probability of 1. Mosaic augmentation is particularly effective for improving
the detection of small objects and crowded scenes, as it allows the model to see
various contexts and object arrangements.

Lastly, we employed copy-paste augmentation with a probability of 0.5. This
technique involves copying objects or regions from one image and pasting them into
another. It has been described in [45] and is useful for creating diverse training
scenarios.

3.3.3 RandomHSV
The RandomHSV class modifies the Hue, Saturation, and Value (HSV) channels of
an image through random adjustments. Hue (H) determines the type of color and
is measured in degrees. Saturation (S) indicates the intensity or purity of the color,
while Value (V) represents its brightness. Randomly altering these parameters
helps the model adapt to varying color conditions, mimicking different times of day
and diverse lighting and environmental settings encountered in real-world scenarios.
The adjustments are constrained by default limits set by hgain, sgain, and vgain,
each set to 0.5. In our experiments, we used a hgain of 0.015 to avoid significant
color shifts in our images, while sgain and vgain were set to 0.4.
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Experimental results

This chapter provides a comprehensive overview of the experiments conducted
during this Master’s thesis. It begins with a detailed explanation of the experimental
settings and evaluation metrics employed. Following this, we present the results of
our work. Additionally, we explore specific scenarios of interest using a tailored
approach. Finally, we include a section dedicated to studying the impact of image
quality.

4.1 Experimental setup
The experiments were conducted using an NVIDIA T4 GPU with 16 GB of RAM,
provided by the Google Colab environment. Training for the main experiments was
carried out for 100 epochs with a batch size of 8 images. YOLOv8 includes an early
stopping algorithm based on validation loss, simply checking if an improvement
appears within 10 epochs from the best obtained so far. For most of the networks
trained, we observed that epochs before reaching the early stopping threshold
ranged between 90 and 100, with an average of approximately 93 epochs and none
below 88 epochs. This led us to enforce training for 100 epochs to uniformly
compare results. This was feasible because YOLOv8, even when forced to train for
more epochs, can save all specifications and weights of its best version up to that
point. The loss function referenced has already been introduced in the paragraph
on YOLOv8 architecture in Chapter 2. The network employs the AdamW optimizer
with weight decay equal to 0.0005, ϵ = 10−6, β1 = 0.9 and β2 = 0.99. YOLOv8
typically employs a fixed learning rate of 0.01, but using the AdamW optimizer the
architecture automatically selects the learning rate depending on the data structure
and adapts the learning rate during the different epochs of the training process.
Typically, in our experiments the final learning rate is in the order of 10−3. This is
reached using a cosine annealing technique, applied after a warm-up phase of some
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epochs. The learning rate is updated using this equation:

lr(e) =

lr0 · e+1
we

if e < we

lrf + (lr0 − lrf ) · 1+cos(π·e/ne)
2 else

(4.1)

where lr0 and lrf are the initial and final learning rate, e is the current epoch,
ne and we are the total number of epochs and the warm-up epochs, respectively.
The final trained version of our architecture was then tested using a JETSON
XAVIER UNIT, that contains an NVIDIA XAVIER GPU, with 8 GB RAM to
make inferences on videos and verify the applicability of the network to a real-world
application. This environment is very similar to the most probable camera hardware
setting that will be installed in the WRC cars when this project is completed and
applied. These resources were kindly provided by Marelli s.p.a.

4.2 Evaluation metrics
To assess the performance of the network we used typical evaluation metrics. These
metrics help determine how well the model is able to detect and classify persons
and crowds in our images. The most commonly used metrics in object detection
are precision, recall and mean average precision (mAP).

4.2.1 Precision and recall
Precision is the ratio of true positive detections to the total number of detections
made by the model (both true positives and false positives), while recall is defined
as the ratio of true positive detections to the total number of actual objects present
in the dataset (true positives and false negatives). The first measures how the
model identifies objects without mistakenly labeling background or other objects
as the target objects. On the other hand, High recall indicates that the model
is capable of detecting most of the objects present in the images, even if it also
produces some false positives.

4.2.2 Mean Average Precsion
The mean average precision (mAP) is a comprehensive metric that encapsulates
both precision(p) and recall(r) information. It is calculated as the mean of the
average precision (AP) across all classes. To compute the AP for a single class, we
plot the precision-recall curve and determine the area under this curve, providing a
scalar representation of the model’s performance for that class as:

AP =
Ú 1

r=0
p(r)dr (4.2)
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In evaluating YOLOv8, we utilize two methods: mAP50 and mAP50-95. The
distinction between these methods lies in the threshold value used to determine
whether an object is detected. This threshold is based on the Intersection over
Union (IoU), a metric that quantifies the overlap between the predicted bounding
box and the ground truth box. The IoU is calculated as the ratio of the area of
intersection to the area of union of the two boxes.

The mAP50 refers to the mean average precision for objects with an IoU of at
least 50%. It is computed as:

mAP50 = 1
N

nØ
i=1

APi (4.3)

where N is the number of classes.
On the other hand, mAP50-95 is a more stringent and comprehensive metric.

It averages the AP across multiple IoU thresholds, ranging from 50% to 95% in
increments of 5%. This can be expressed as :

mAP50 − 95 = 1
N

nØ
i=1

( 1
K

kØ
j=1

APi(IoUj)) (4.4)

where N is the number of classes and K is the number of IoU thresholds, that are
(0.5,0.55,0.6, ...,0.95).

This approach offers a more holistic view of the model’s performance by con-
sidering various IoU thresholds, making it a more robust and reliable evaluation
metric for object detection tasks. Analyzing mAP50 is still interesting because
this metric is particularly useful for evaluating the network’s efficiency in detecting
smaller objects, where achieving higher IoU values is challenging due to the limited
number of pixels, and minor detection inaccuracies can significantly reduce the
IoU.

By employing both mAP50 and mAP50-95, we can gain a nuanced understanding
of the model’s capabilities, ensuring that it performs well across different object
sizes and detection challenges.

4.3 Results
In this section, we aim to analyze the results in terms of both accuracy and com-
putational performance of the network. Figures 4.1 and 4.2 present the evaluation
metric curves and the two validation loss graphs for classification and bounding
box detection.

Numerically, the results are suboptimal, particularly regarding the metrics used.
Visually however, as we see in Figure 4.3, this discrepancy is not evident, meeting
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Figure 4.1: Plot of the evolution over the epochs of the 4 evaluation metrics for
the base version of our model.

Figure 4.2: Plot of the two validation loss graphs. On the left, the figure represents
the bounding box detection loss, while on the right it depicts the classification loss.

Marelli’s qualitative standards. This prompted us to investigate the underlying
cause.
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Figure 4.3: An example of 16 post-processed images batch, in which the predicted
bounding boxes are drawn along with the respective label and a number representing
the confidence of the prediction.

Figure 4.4 reveals a significant class imbalance. Consequently, we aimed to
obtain differentiated results for the two classes using our best model version.

Figure 4.4: Histogram representing the number of detections for Person and
Crowd classes considering both training and validation datasets.

The results, shown in Table 4.1, indicate that the performance for the Person
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class is markedly superior to that of the Crowd class across all metrics. Notably,
the mAP50 for Person recognition is very high, indicating effective detection of
small individuals. This is crucial because, as shown in Figure 4.5, the bounding box
sizes are relatively small, making high performance on the mAP50 metric optimal.

Class Instances Precision Recall mAP50 mAP50-95
all 5657 0.44 0.289 0.302 0.15

Person 5016 0.62 0.459 0.505 0.267
Crowd 641 0.261 0.12 0.0989 0.0337

Table 4.1: Evaluation metrics separated for each class considering the 499 valida-
tion images using the best weights for the network in the first 100 epochs.

Figure 4.5: Distribution of bounding boxes. On the left, the distribution of the
coordinates of the center of the bounding boxes. On the right, the distribution of
the dimensions.

The network’s challenges in recognizing crowds are likely due to class imbalance,
with fewer instances to train on, and the ambiguous nature of crowd boundaries.
Visually, this problem does not seem too impactful. Our goal was to recognize the
presence of humans, whether alone or in groups. From an image processing and
visual result perspective, this is achieved. However, the network assigns a single
bounding box to each entity, leading to a significant drop in metrics for crowds.
Many crowds are recognized as multiple closely packed Person entities, effectively
breaking down the Crowd into many small persons.

While the results are satisfactory from our objective’s perspective, numerically
they are lacking for this reason. Future research should focus on developing a
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dedicated metric that highlights the quality of our results, considering both the
Crowd label and a dense cluster of Person detections as equally accurate.

To demonstrate that the improvement achieved in the first 100 epochs is our
target, we repeated the experiments, extending the epochs to 400, as shown in
Figure 4.6. It is evident that after 100 epochs, both the classification and bounding
box validation losses begin to rise. Simultaneously, the evaluation metrics remain
constant or, in some cases, decline after the 100th epoch (Appendix A), confirming
the quality of our choice.

Figure 4.6: Validation loss graphs computed for 400 epochs. On the left, the
figure represents the bounding box detection loss, while on the right it depicts the
classification loss.

To validate the effectiveness of our augmentation techniques, we tested our
model with all augmentation parameters turned off. The comparison shown in
Figure 4.7 highlights the benefits of our approach, leading to improvements across
the entire set of evaluation metrics.

From a hardware performance standpoint, Marelli aimed to develop a real-time
system that could deliver processed images at the same speed or faster than the
camera’s capture rate. The camera used captures images at 50 fps. This requires
the system to capture an image and preprocess it, perform inference to detect
entities in it and return the processed image with bounding boxes in under 20 ms.

Achieving this exact target was hazardous, as even a few frames per second could
result in unclear image returns. However, by using the nano version of YOLOv8,
we successfully met these standards, remaining below the half of our threshold.
When testing the network on 499 validation dataset samples, the network averaged
0.2 ms for image preprocessing, 3.5 ms for inference, and 4.5 ms for post-processing.
Consequently, the total time from image receipt to the return of the post-processed
image averaged 8.2 ms, perfectly aligning with our goals.
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Figure 4.7: Comparison on the Evaluation Metrics between our base model with
applied augmentation techniques and the version without any data augmentation
process.

4.4 Special scenarios

The results displayed were obtained using the datasets described in Chapter 3.
These datasets, as previously mentioned, are sourced from WRC championship
races. While more significant than the original dataset, which only included data
from a single race, this dataset uses one race for training and another similar race
for testing, both with normal weather conditions and similar lighting and colors.
Although this reflects the most common scenario in rally races, about 10-15% of
WRC races occur under adverse conditions. This prompted us to investigate how
these conditions might impact our network’s performance.

To explore this issue, we obtained short videos from races with unusual conditions.
Five short videos were provided: one with a snow-covered track under normal
conditions, one with snow at night, another night race in a forest, one forest race
in the rain, and one on a dirt track nearly in full backlight. The specifics of these
new datasets are detailed in Table 4.2.

The limited data, compared to other dataset, produced less precise and smooth
curves for both losses and evaluation metrics, but evaluating these datasets was
necessary to understand our architecture’s performance in these rarer but significant
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Dataset Backlight Snow Night Night-snow Rain
tot images 215 227 262 205 221

train images 172 182 210 166 177
val images 43 45 52 41 44

Person tot instances 442 1357 294 204 1526
Person train instances 337 1105 243 146 1202
Person val instances 105 252 51 58 324
Crowd tot instances 5 182 27 10 98

Crowd train instances 4 152 23 8 76
Crowd val instances 1 30 4 2 22

Table 4.2: Dataset statistics for each special scenario dataset.

scenarios.
As shown in Figure, performance using the base model trained on the initial

dataset drops significantly when tested on the special scenario validation set. The
comparison was made considering the detections of Person entities, given the
negligible cardinality of Crowd entities, which would have led to insignificant
results.

While part of the decline is due to the dataset’s quality and size, the decrease
is most notable in conditions that significantly alter image brightness and colors.
Notably, the Snow scenario, despite not matching the training domain, performed
best among the special scenarios, likely because brightness and colors remained
largely unchanged. The Rain scenario also showed minimal issues. Interestingly,
the Night dataset performed better than the Night-Snow dataset, despite the latter
having higher brightness, probably due to differences in color distribution since in
the Night-Snow scenario, the camera rendering focused the brightness and color
primarily on the entirely white track. In contrast, for the nighttime forest in the
Night scenario the color and brightness were concentrated on the track’s sides.
Regardless, their poor performance is significantly impacted by the limited number
of instances even for the Person class, as depicted in Table 4.2.

We conducted various tests to address this problem. Initially, we retrained with
datasets specific to each domain, which yielded better results as described in Table
4.3, but was limited to the specific domain.

We then aimed to adapt our initial version to generalize across all special cases
(even the not yet considered scenarios), focusing on augmentation parameters.
Specifically, we modified HSV channel parameters, increasing sgain to 0.5, vgain to
0.8, and hgain to 0.1 to enhance color and brightness variability. This, shown in
Figure 4.9, did not yield significant improvements.

As observed, the only improvement was in the Night dataset, but it remains far
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Figure 4.8: Comparison of the performance of the base model in the special
scenarios. We highlighted also the initial dataset behavior to have a complete
overview.

from an acceptable result and is not comparable to the performance achieved with
the specific scenario dataset. Additionally, it degraded the performance of datasets
like Rain and Snow, which performed better with the base version of the model.

Next, we tested more drastic augmentation, setting all three values to 1 for
maximum variability of the network to explore limitless modifications on the three
different channels, but again, the results were unsatisfactory as shown in Figure
4.10.

Realizing that nearly unlimited variability was ineffective, we mathematically
normalized HSV channels to match the mean and standard deviation of the target
domain images. While theoretically ideal for generalization, this method also failed
to produce satisfactory results, worsening the performance by obtaining less than
half of the basic model results.

Ultimately, we opted for a solution that, while not generalizing to unforeseen
domains, ensured optimal performance in the considered special cases. We added
domain-specific images to the training dataset alongside the original images. This

38



Experimental results

Metric Dataset Backlight Snow Night Night-snow Rain
precision Initial 0.333 0.530 0.211 0.115 0.468

Specific 0.458 0.703 0.621 0.937 0.618
Delta +0.125 +0.173 +0.410 +0.822 +0.150

recall Initial 0.324 0.405 0.235 0.155 0.219
Specific 0.667 0.623 0.392 0.241 0.523
Delta +0.343 +0.218 +0.157 +0.086 +0.226

mAP50 Initial 0.219 0.421 0.160 0.088 0.297
Specific 0.619 0.681 0.467 0.450 0.581
Delta +0.400 +0.260 +0.307 +0.362 +0.284

mAP50-95 Initial 0.101 0.185 0.041 0.033 0.117
Specific 0.271 0.323 0.205 0.195 0.244
Delta +0.170 +0.138 +0.164 +0.162 +0.127

Table 4.3: Performance of each dataset tested using the base model with initial
images or the specific scenario images as the training dataset.

approach maintained effective performance in the new domains without compromis-
ing the base dataset’s performance under normal conditions, as depicted in Figure
4.11. Our final solution, which combines all domains with the original dataset,
performs optimally across all tested datasets, including the initial one.

4.5 Image quality impact
The videos we obtained were captured for live streaming of the race, resulting
in compression to half the original quality. This led us to consider that higher
image quality could potentially enhance our network’s performance. In practical
applications, the hardware setup that processes the images using our network is
mounted directly on the vehicle, allowing access to the original video file without
the need for streaming compression.

Lacking access to the original file quality, even with upscaling tools, we initially
turned to the literature. Papers such as [46] and [47] demonstrate that increasing
image quality generally improves performance, but the benefits diminish beyond
720p. However, these papers specify that this trend does not apply to small objects,
which constitute the majority of our detections.

To understand the impact of image quality on our architecture, we estimated the
effects by downscaling our dataset and then predicting the impact of higher quality.
We conducted downscaling to 50%, 25%, 12.5%, and 6.25% quality, trained on these
images and used regression to estimate the effect of image quality enhancement.
The results, shown in Figure 4.12, indicate that increasing image quality does not
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Figure 4.9: Comparison of the model’s performance with stronger augmentation
in special scenarios. The model with basic augmentation is slightly visible in the
background, allowing for a comparative analysis.

linearly enhance performance.
However, improvements in detecting small objects are significant, as we consid-

ered only the Person detections. While image quality increase eventually saturates
for object detection tasks, this effect is not seen for small objects. Since the pixel
count for these objects is low, we believe that higher definition significantly impacts
their detection, even with high-quality images.
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Figure 4.10: Comparison of the model’s performance with hard augmentation in
special scenarios. The model with less strong augmentation is slightly visible in
the background, allowing for comparative analysis.
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Figure 4.11: Comparison of the final model version in special scenarios. The
model with basic augmentation is slightly visible in the background, allowing for a
comparative analysis.
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Figure 4.12: Mean Average Precisions calculated using reduced quality of images.
The last point is calculated using Linear Regression considering the LogScale that
we adopted to do the downscaling.
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Conclusions

Our work focused on developing a robust alert system for safety in the World Rally
Championship (WRC) by identifying humans during rally races. Marelli S.p.A.
aimed to achieve real-time detection to enable marshals overseeing the races to
quickly intervene in dangerous situations on the circuit. Marelli’s standards were
met in terms of both accuracy and performance, with precise human detection
and image processing that outputs the detection results faster than the camera’s
capture speed.

We utilized YOLOv8n, which met our qualitative and computational objectives.
This involved an in-depth study of the network’s capabilities and parameter cali-
bration to enhance performance. A custom-labeled dataset reflecting our domain
was crucial, ensuring human detection under adverse conditions, such as distant
individuals or crowds, complicated by high rally speeds.

We also considered less common but significant scenarios, like races with unusual
weather or lighting. These conditions initially degraded our network’s performance.
We explored general solutions using image augmentation and mathematical adjust-
ments to color channels to adapt to various conditions independently. However,
these general solutions worsened performance metrics across all datasets. Instead,
combining data from all domains, including the initial dataset, allowed our network
to perform efficiently across all the considered scenarios while maintaining excellent
performance in normal conditions.

Additionally, we analyzed the impact of image quality on our results, demon-
strating that access to uncompressed original videos could further improve our
architecture. Future developments should focus on two areas: refining our ar-
chitecture as a foundation for the complete system and developing the system
itself. Improvements could include new technologies for real-time human detection,
leveraging newer YOLO versions, creating a unique metric to recognize both Crowd
and dense Person detections as equally exact, or developing data augmentation
methods to generalize across all domains, even the ones that we did not consider.
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The next steps involve developing the remaining technology. The ultimate goal
is a system that not only detects humans but also distinguishes between those in
danger and those safe. This requires domain knowledge to teach the network to
recognize trajectories, speeds, and distances. A first step could be track detection
through segmentation and monocular distance estimation added to our human
detection, maintaining the system’s real-time capabilities.
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Evaluation metrics after 400
epochs

In this section, we present the evaluation metrics results using the base version of
the model. As noted earlier, most metrics do not show improvement; in fact, there
is a slight decline. This observation, along with the considerations discussed in
Chapter 4, confirms the soundness of the decision to limit training to 100 epochs,
as the best results were obtained before reaching this threshold. This approach was
adopted based on these results, which are crucial in justifying our decision. The
slightly constant precision, without any increase, results in no real improvement in
detection accuracy. Overfitting is likely indicated by the observed decline in recall,
which produces fewer detections compared to the base version. This is probably
because the network, having overfitted, has features that are too specific to the
training dataset, preventing it from generalizing well to different environments.
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Figure A.1: Evaluation metrics computed for 400 epochs.
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