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Abstract

Federated learning has emerged in the last decade as a distributed optimization paradigm due to the
rapidly increasing number of devices, such as user smartphones, that support heavier computation
to train machine learning models synergically. Since its early days, federated learning has used
gradient-based optimization to minimize a shared loss objective across participating agents. In
this respect, the statistical heterogeneity between users’ datasets has always been a conspicuous
obstacle to the global convergence of the shared optimization procedure.

In the first part of this thesis, we propose a fresh interpretation of such heterogeneity through a
mathematical framework that reimagines any federated network as a similarity graph based on the
statistical discrepancies between clients’ data. Therefore, we reformulate an alternative notion
of heterogeneity and highlight its connection to the spectrum of the graph laplacian. Our model
shows how a network statistically evolves as we alter the overall dissimilarity between its clients.

In the second part of our dissertation, we focus on the convergence properties of federated
optimization algorithms, and we propose a novel framework where each client locally performs
a perturbed gradient step leveraging prior information about other statistically similar clients.
Furthermore, choosing the popular algorithm FEDPROX as a baseline, we provide its convex
and nonconvex convergence analysis under the smoothness assumption along with our algorithm.
Therefore, we theoretically claim that our procedure, due to a minor change in the update rule,
achieves a quantifiable speedup concerning the exponential contraction factor in the strongly
convex case compared with the baseline. Lastly, using FEDAVG as a term of comparison, we
legitimize our conclusions through experimental results on the CIFAR10 and FEMNIST datasets,
where we show that our algorithm hastens convergence by a margin of 30 rounds while modestly
improving generalization on unseen data in heterogeneous settings.
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1
Introduction

Federated learning is an emerging field of artificial intelligence that has grown significantly over
the last decade. The core idea consists of distributed training of a learning model across many
clients in a privacy-compliant setting. In this regard, the large availability of electronic devices
and respective local data on which to perform computations suggested an alternative way to build
an intelligent system capable of classifying clients’ samples without compromising their privacy.
The pioneering concept was envisioned by McMahan et al. [14], and federated learning has since
been researched to solve its non-negligible challenges related to its adoption in real-life scenarios.

1.1 Themes and objectives of this thesis

The main goal of this thesis is to tackle common challenges in federated learning, such as data
heterogeneity or global convergence, by analyzing the framework using alternatives and, to the
best of our knowledge, novel perspectives. Our dissertation will be divided into two main chapters
dedicated to rather different objectives.

In chapter 3, we focus our attention on the concept of statistical heterogeneity in a federated
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1 – Introduction

network. On this matter, we adapt some core principles from spectral graph theory to reinterpret,
and possibly define, the statistical (dis)similarity among multiple clients within the same network.
Therefore, by adopting a different viewpoint on the subject, we provide an innovative methodology
to gauge the nature of a network, intuitively modeled as a graph. Previous work has been carried
out in this direction, and, in particular, Dinh et al. [37] introduced a laplacian regularization
technique to perform personalized federated learning by imagining the network as a graph; yet, to
the best of our knowledge, no groundwork has been implemented to assess ahead the degree of
heterogeneity of a distributed network using the spectrum of its graph representation. Furthermore,
we realize a theoretical and experimental study about how our graph-based model reacts to
variations of its heterogeneity properties. Overall, this part provides a foundational concept
regarding the design of our algorithm presented in the subsequent chapter.

In chapter 4, we shift our focus to the theoretical analysis of federated algorithms. In this regard,
we first set up the mathematical backbone and the assumptions commonly used in literature to
analyze the convergence of federated algorithms. Therefore, in the first half of the chapter, we
examine the behavior of a well-established algorithm, that is FEDPROX devised by Sahu et al.
[20], and we derive its convergence rates in the strongly convex and nonconvex case. On the other
hand, the second half is devoted to proposing our distributed algorithm, conceived upon the graph
representation of the federated network introduced in chapter 3 and based on a perturbed gradient
update. On this matter, an extensive paragraph is destinated to explain the intuition behind our
algorithm, and its conceptual relationship with the graph-based model of a federated network.
Likewise, after inspecting its convergence, we run the experiments using multiple datasets under
different heterogeneity scenarios to validate our claims. Ultimately, we compare the theoretical
and experimental results of our algorithm with FEDAVG and FEDPROX, which serve as baselines.

1.2 Scientific contributions

The following points summarize the work carried out in the thesis.

• We offer a novel and elementary methodology to evaluate the pathological nature of a federated
network from a statistical point of view. Our approach reimagines such a network of agents
as a graph and leverages a measure proportional to the center of accumulation of the laplacian
spectrum of a graph to estimate the statistical "homogeneity" of the network. Additionally, we
design a rudimentary framework to assess the displacement of the aforementioned spectrum when
a perturbation is applied to the level of heterogeneity. Among the outcomes, we show that the

10



1.2 – Scientific contributions

mean squared deviation of the laplacian eigenvalues in a network of C clients is bounded as

ε2θ2C2 + o(C) <
1

C − 1

C∑
i=2

E
(
λ̃i − λi

)2
≤ ε2θ2C3 + o(C2)

where θ is the mean client dissimilarity1 and ε is the variation on this mean.

• We provide an alternative analysis of popular algorithm FEDPROX for strongly convex and
nonconvex objectives. Differently from some existing works, we consider both the cases in which
a fixed step size and a diminishing one are employed to scrutinize such distinct choices. For
instance, we prove that, for a certain step size, FEDPROX parameterized by α > 0 achieves the
following convergence rate in the nonconvex case.

O
(

1√
T

[
8(L+ α)∆√

E
+

LSσ2

(L+ α)
√
E

+
αE3/2G2

L+ α

]
+

2L2EG2

(L+ α)2T
+

α2L
√
EG2

16(L+ α)3T 3/2

)

The undertaken analysis acts as a baseline to subsequently compare our method. Similarly, in the
strongly convex case, we demonstrate that FEDPROX attains the following rate as the upper bound
on the optimality gap E f(wt,0)− f(w?) at round t.

O
(
L∆

µ

[
1− µ

3(α+ L)

]t
+

L

L+ α

[
Sσ2

4µ
+

3LΓ

2µ
+

2E2G2

µ

])

• We devise our distributed optimization algorithm that leverages the graph representation of a
federated network to perturb the gradient step. Such a perturbation, parameterized by β ∈ (0, 1),
allows us to introduce information about statistically similar clients in the update operation. In the
nonconvex scenario, we bound the committed error as follows.

O
(

1√
T

[
4L∆√
E

+
Sσ2

2
√
E

]
+
EG2

T

[
4 + (1− β)2 + 8

(
1− 1

β

)2
])

We also prove that our algorithm achieves the following rate in the strongly convex case.

O
(
L∆

µ

[
1− µ

(β + 2)L

]t
+
Sσ2

4µ
+

3LΓ

2µ
+
E2G2

4µ

[
32 + 64

(
1− 1

β

)2

+ (1− β)(8 + µβ)

])

We will discuss how this rate has a faster vanishing error term but an asymptotic error with a
harmful dependence on O(1/β2), rapidly growing as we increase the perturbation extent.

1Precisely, θ is the mean parameter of a lognormal distribution of misalignments from chapter 3.
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2
Introducing federated optimization

In this chapter, we introduce the main concepts behind stochastic gradient methods for optimiza-
tion, and, ultimately, we present the most recent distributed approach that implements privacy and
communication efficiency, namely federated optimization.

2.1 Basic concepts about optimization

This section outlines the most common assumptions on the nature of a function that has to be
optimized. In this regard, when mentioning optimization, we generally refer to the minimization
of a function f : RD → R for which we aim to identify a minimizer w?, if existing, such
that w? = arg minw∈RD f(w). The following paragraphs describe in detail the main ideas to
categorize such a function f(w).

2.1.1 Convexity

Before talking about convexity, it can be useful to talk about a convex set. Intuitively, the latter is
a set that, given two elements a and b, contains all linear combinations in the form λv+ (1−λ)w

13



2 – Introducing federated optimization

where λ ∈ [0, 1].

Definition 2.1 (Convex set from Bubeck [10]) A set S ⊆ RD is convex if and only if

λv + (1− λ)w ∈ S for any two elements v,w ∈ S and λ ∈ [0, 1].

This brings us to the definition of convex function. Specifically, this is a function f that always
lies beneath the line segment that connects two points (v, f(v)) and (w, f(w)).

Definition 2.2 (Convex function from Boyd and Vandenberghe [18]) A function f :

dom(f) ⊆ RD → R is convex if and only if dom(f) is a convex set and the function

satisfies f(λv + (1− λ)w) ≤ λf(v) + (1− λ)f(w) for any v,w ∈ S and λ ∈ [0, 1].

Convex functions have different interesting properties. Among the many, we present the first-order
characterization from Boyd and Vandenberghe [18] for this class of functions. In particular,
whenever the function is differentiable, the following property states that f is always above its
tangent plane for any v,w ∈ dom(f).

f(w) ≥ f(v) +∇f(v)>(w − v)

Moreover, convex functions have an advantageous property about the minimizers. In particular,
whenever a convex function f admits a local minimum w?, then this is also a global minimum.
The uniqueness of the minimizer is enforced by the strict convexity property, which is a special
case of general convexity. We omit further discussion on this topic, and many additional details
on convexity can be found in Boyd and Vandenberghe [18].

In the context of our analysis, we present the definition of a strongly convex function. This is
a stronger characterization of convexity parametrized by µ > 0. Especially, a strongly convex
function f always lies above its tangent paraboloid.

Definition 2.3 (Strongly convex function from Boyd and Vandenberghe [18]) Given f :

dom(f) ⊆ RD → R differentiable and convex, then f is µ-strongly convex whenever

f(w) ≥ f(v) +∇f(v)>(w − v) +
µ

2
‖w − v‖2

for all v,w ∈ dom(f) and some µ > 0.

Strong convexity also implies the existence and uniqueness of the minimizer w? for f .

14



2.2 – Iterative gradient-based optimization

2.1.2 Smoothness

The concept of smoothness is a Lipschitz characterization of the gradient of a differentiable
function f . We state the definition, and then its major implications.

Definition 2.4 (Smooth function from Bubeck [10]) Let f : dom(f) ⊆ RD → R be

differentiable, then f is L-smooth with L > 0 if and only if

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖

for any v,w ∈ dom(f).

This definition has an interesting effect on the nature of f . Precisely, having a Lipschitz gradient
implies that f is upper bounded by a tangent paraboloid.

f(w) ≤ f(v) +∇f(v)>(w − v) +
L

2
‖w − v‖2

This implies that whenever we have a function f that is µ-strongly convex and L-smooth, then f
is everywhere limited by two tangent paraboloids such that µ ≤ L. The analysis of convergence
that we perform across this thesis always assumes the analyzed function to be L-smooth.

2.2 Iterative gradient-based optimization

Before introducing stochastic gradient descent methods, we familiarize ourselves with the concept
of classic gradient descent as an iterative optimization method. On this matter, let f : RD → R be
a differentiable function that we wish to minimize. Furthermore, we assume that a minimizer w?

exists. Starting from an initial coordinate w0, the gradient descent is the iterative procedure for
t ≥ 0 that updates the current iterate wt as follows.

wt+1
def

= wt − γt∇f(wt)

The possibly time-dependent parameter γt > 0 is the step size, also called the learning rate in the
context of machine learning. At each iteration, the core idea that empowers gradient descent is
moving in the negative direction of the gradient in order to minimize the first-order characterization
of function1. However, gradient descent methods have different behaviors depending on the nature
of the underlying function f . More specifically, optimizing a convex function has the theoretical

1The negative direction of the gradient implies the steepest decrease in the function value.
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2 – Introducing federated optimization

guarantee that, whenever ∇f(w) = 0, then w is a global minimum for f . This ensures that,
by moving in the direction of the steepest decrease, the convergence to the global minimum is
feasible for the class of convex functions that have a minimizer. Unfortunately, this property does
not apply to nonconvex functions. Indeed, such functions have potentially different local minima.
When moving in the negative direction of the gradient, we might land on a local minimum w̃?, and
our algorithm would stop updating since ∇f(w̃?) = 0, without guaranteeing global convergence.
Independently of any convexity assumptions, minimizing a L-smooth function f provides the
assurance2 that f(wt+1) ≤ f(wt).

f(wt − γt∇f(wt)) ≤ f(wt)− γt‖∇f(wt)‖2 +
Lγ2t

2
‖∇f(wt)‖2

≤ f(wt)− γt
(

1− Lγt
2

)
‖∇f(wt)‖2

Evidently, any γt < 2/L guarantees a decrease in the function value as far as ∇f(wt) /= 0.

Convergence rates In convex optimization, the stopping criterion is usually in the form

f(wt)− f(w?) ≤ ε

where ε > 0 is a tolerance parameter. This allows us to express the iteration complexity as
O(g(ε)). Therefore, the lower g(ε) then the lower number of iterations t are asymptotically
required to reach an ε accuracy. However, in the context of this thesis, similarly to Bottou, Curtis,
and Nocedal [13], we will write convergence rates for strongly convex functions in the form
f(wt)− f(w?) ≤ O(h(t)). On the other hand, for nonconvex analysis, since we cannot assume
the convergence to the global minimum, the stopping condition becomes

1

T

T∑
t=0

‖∇f(wt)‖2 ≤ ε

Again, we present the rates of convergence as a decreasing function of T .

2.2.1 Stochastic gradient descent

Often in the context of machine learning, the gradient computation over an entire dataset can be
an expensive operation. In this respect, given a dataset D def

= { ξi }Mi=1, the loss function f has the

2This outcome appears in Bubeck [10].
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2.3 – Federated optimization

following structure.

f(w)
def

=
1

M

M∑
i=1

`(w; ξi)

Practically, the loss f is the addition of each sample loss from the dataset. Computing the full
gradient as in classic gradient descent involves summing all contributions, namely ∇f(w) =

M−1
∑M

i=1∇`(w; ξi). In many problems with huge datasets, this calculation turns into a bottle-
neck. To overcome this issue, Robbins [1] introduced a stochastic approach that is now widely
known as stochastic gradient descent. This technique approximates the true gradient by computing
the gradient in one random sample instead of all samples. We indicate such a stochastic gradient
as g(wt)

def

= ∇`(wt; ξ) where ξ is uniformly sampled from dataset D.

wt+1
def

= wt − γtg(wt)

A popular variant is minibatch stochastic gradient descent, where the gradient vector is given by
g(wt)

def

= |B|−1∑ξ ∈B∇`(wt; ξ) where B is a subset of random samples. In ordinary stochastic
gradient descent, the stochastic gradient is an unbiased estimate of the true gradient.

Eg(w) = Eξ∇`(wt; ξ) =
1

M

M∑
i=1

∇`(w; ξi) = ∇f(w)

However, the stochastic gradient might likely exhibit a large variance. In this thesis, we adopt the
assumption Vg(w) ≤ σ2 to bound the variance of the stochastic gradient.

2.3 Federated optimization

Federated optimization is a distributed optimization paradigm also known as federated learning.
This is an emerging sub-paradigm of artificial intelligence first introduced by McMahan et al.
[14]. The large availability of devices, such as smartphones or data centers, on which to scale
out computation made possible the advent of distributed machine learning. Existing approaches
consider training a model centrally and serving it locally on devices, implying the transmission of
clients’ data points over a network, to be collected centrally for training. In federated learning,
a central server coordinates the training of a shared statistical model, such as a convolutional
neural network classifier, across several clients whilst preserving their privacy constraints. In-
deed, no samples from clients are shared with the server and only locally-computed updates are
communicated at each round to optimize the centralized model.
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2 – Introducing federated optimization

2.3.1 Problem formulation

A central server coordinates training of a model w ∈ RD across C clients, whereas each one holds
its dataset Di def

= { ξj ∼ Pi }Nij=1 with minibatch or data samples drawn from data distribution
Pi(x, y). Each client i solves the local problem minw { fi(w)

def

= Eξ∼Pi [`(w; ξ)] }, expressed by
the local empirical risk minimization objective

fi(w)
def

=
1

Ni

Ni∑
j=1

`(w; ξj).

Given Q as the distribution of clients to be eligible for training, then, the server solves the global
problem minw { f(w)

def

= Ei∼Q[fi(w)] }, by minimizing the finite sum function

f(w)
def

=

C∑
i=1

pifi(w) where
C∑
i=1

pi = 1.

The optimization is performed during T rounds of training, and within round t participating
clients receive the shared model wt and complete E steps of stochastic gradient descent on their
respective datasets. The server collects the local updates as gradients or parameters and then
aggregates them to update the centralized model.

Observation Due to statistical heterogeneity, the minimizers w1
?, . . . ,w

C
? of local objectives

f1(w), . . . , fC(w) might be generally different from each other and the global minimizer w?
def

=

arg minw f(w), as observed by Cho, Wang, and Joshi [30].

2.3.2 Training procedure

The typical workflow behind federated learning involves a central server that repeats the following
training round until model convergence (or possibly other criteria).

1. Selection of participants: the server samples M devices involved in the training round
from the set C of qualified clients, according to their availability (battery power, Wi-Fi
connection, hardware capacity) or other policies.

2. Local optimization: the server sends the model weights wt,0 to each client eligible for
training, and every client performs optimization on the model and sends the updated model
wi
t,E back to the server. For example, in FEDAVG, clients locally execute E steps of

stochastic gradient descent with step size γt.

3. Local models aggregation: the server receives all updated models {wi
t,E }Mi=1. In this

phase, the provider may realistically ignore devices that did not fully complete their local
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2.3 – Federated optimization

optimization. Thus, the server computes the new model wt+1,0 as the aggregation of locally
updated ones.

The depicted strategy offers a standard algorithmic procedure for federated optimization, focusing
especially on FEDAVG. Nevertheless, many other additional operations may be nested within
each main step of the training round.

2.3.3 First example with FEDAVG

McMahan et al. [14] introduced FEDAVG as the first federated optimization algorithm ever. Since
its debut, due to its simplicity, it has been utilized as a baseline for comparisons with fresher and
more competitive algorithms in the context of federated learning. The aggregation phase simply
averages all updates from clients to optimize the global model.

1 w0 ← random weights initialization . global model
2 foreach round t = 0 to T − 1 do
3 St ← random sample of M clients from C . clients selection
4 foreach client i ∈ St in parallel do
5 wi

t,0 ← wt,0 . client receives model

6

{
ξit,0, . . . , ξ

i
t,E−1

}
← partition Di in E mini-batches

7 foreach local step k = 1 to E do
8 wi

t,k ← wi
t,k−1 − γtgi

(
wi
t,k−1

)
. local optimization

9 end
10 end
11 wt+1 ←

∑
i∈St piw

i
t,E . global aggregation

12 end

Algorithm 1. Pseudo code of FEDAVG.

In 1, code executed by clients is highlighted differently from the code of the central server.

2.3.4 Challenges

Among the many challenges regarding the adoption of federated learning in real-life scenarios,
we draw inspiration from Li et al. [26] and Wang et al. [41] to present the following.

Communication overhead In a network with a large number of agents, communication can
become a potential impediment, and various approaches might be undertaken in order to diminish
the workload on the whole network. Among the multiple reasons behind congestion, the advent
of stragglers is one of the most influential. These slow down the global iterative process since the

19



2 – Introducing federated optimization

server is forced to wait for those slow devices to proceed with the next global iteration. To address
this obstacle, selection strategies implying partial participation may be employed to speed up
communication, and therefore the whole training procedure. For instance, a server might choose
as participants only those clients with decent hardware capacity and reliable connection in order to
complete a training round. Nonetheless, other techniques such as compression algorithms might
be leveraged to further reduce the communication cost.

Statistical heterogeneity We fully dedicate chapter 3 to provide an alternative interpretation
and characterization of statistical dissimilarity between clients. However, it is common to dis-
tinguish between two scenarios, namely IID and non-IID. Such a distinction depends on two
sampling levels: client sampling and data sampling. During training, clients i, j are sampled
from distribution Q of availability, and their data are drawn from distributions Pi(x, y),Pj(x, y)

respectively. In this regard, we define a scenario as IID whenever any two clients share the same
likelihood of being selected, i.e. i, j iid∼ Q, and the local data distributions Pi(x, y),Pj(x, y)

overlap. Thus, each data point in each client (x, y) ∈ Di ∪ Dj is equally likely to be sampled,
namely every client samples from the same global distribution Pj(x, y). Naturally, this unlikely
holds in practice. Therefore, the concept of non-IID is utilized to identify those situations where
statistical discrepancy as well as uneven client selection take place. In the literature concerning
theoretical analysis, distinct assumptions are leveraged to depict the statistical heterogeneity
among agents. In chapter 4, we conduct convergence analysis using a specific heterogeneity
assumption based on the optimality gap between the global loss and the local objectives.

Privacy compliance The whole federated learning framework is conceived upon the premise
that no data is shared by the clients. Only the models are sent over the network. However, complex
practices might be exploited to reverse engineer the transmitted messages and gain sensitive
information. In this respect, differential privacy, formulated by Dwork and Roth [12], is the
most widely employed strategy to prevent the leakage of private information due to its theoretical
robustness and cheap computational expense. This approach applies random perturbation to the
intermediate data of each step. The higher the perturbation then the higher the privacy guarantee
but the lower the model’s accuracy.

2.4 Brief summary

In this chapter, we shortly introduce the main concepts of smooth and convex optimization
in section 2.1. Then, after presenting the idea of gradient-based optimization, we discuss the
established stochastic gradient descent algorithm in 2.2.1. Finally, section 2.3 depicts the federated
approach to distributed optimization.
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3
Spectral study of data heterogeneity

In this chapter, we address the common problem of client heterogeneity in federated optimization
and we specifically focus on the case of statistical discrepancy among local datasets to provide
a meaningful definition of heterogeneity in any federated network. Moreover, we illustrate the
significance of this simple method to discriminate through heterogeneous networks with the help
of experimental results.

3.1 Principles of spectral graph theory

In this section, we outline some elementary concepts from the well-established spectral graph
theory. In this regard, Chung [4] provided a comprehensive dissertation on this topic. These
fundamental ideas will be referenced across the current and following chapters.

3.1.1 Foundation

Graphs are mathematical entities used to model the flow of information across a network or to
encode proximity between nodes of a system. Formally, a graph G = (V, E ,w) is an object
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3 – Spectral study of data heterogeneity

with nodes V = { 1, . . . , N }, edges E = { e1, . . . , eE } ⊆ V × V such that (i, j) ∈ E if there
exists an edge from i to j, and weight function1 w : E → R≥0. Specifically, a graph is said
to be unweighted if all edges have unitary weight. In addition, a graph is undirected whenever
w(i, j) = w(j, i) for any pair of nodes (i, j), otherwise, it is directed.

Any graph G can be represented by an adjacency matrix A of size N ×N , whose entries express
the strength of the connections among nodes.

[A]ji = aji
def

= w(i, j) for any pair of nodes (i, j)

In particular, the adjacency matrix A is symmetric for undirected graphs. Another popular
representation for undirected graphs is the laplacian matrix L

def

= D−A, where the degree matrix
D has the sum of the weights of incident edges on each diagonal entry. In addition, we define the
set of adjacent neighboring nodes as Ni def

= { j ∈ V where (j, i) ∈ E }.

[L]ij
def

=


∑

j ∈Ni aij i = j

−aij i /= j
for any pair of nodes (i, j)

The quadratic form of a graph Before discussing the properties of the spectrum of the lapla-
cian and its quadratic form, we introduce the concept of local variability at a generic node i ∈ N .
Conceptually, given a vector v ∈ RN whose entry vi is a function of node i, then∑

j ∈Ni

aij(vi − vj)2

is the local variability at node i. This concept can be extended in such a way that, given
V = [v1, . . . ,vN ], vector vi ∈ RD is a function of node i. This translates to∑

j ∈Ni

aij‖vi − vj‖2

The quadratic form of the laplacian is built upon this concept.

Definition 3.1 (Laplacian quadratic form from Shuman et al. [9] and Ortega et al. [15]) The

quadratic form of an undirected graph represented by the laplacian matrix L is given by

Q(V)
def

= trace(V>LV) =
1

2

∑
i∈V

∑
j ∈Ni

aij‖vi − vj‖2

1We explicitly set w(i, j) = 0 if a connection between i and j does not exist.
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3.2 – Defining data heterogeneity

This expression quantifies the total variability of V ∈ RN×D across the graph, and it is

proportional to the sum of each node’s local variability.

Since the laplacian quadratic form consists of a sum of squared differences, we can observe
that any laplacian matrix L is positive semidefinite. Additionally, the quadratic form relates to
the concept of how much node-dependent vector function vi varies across the graph. Indeed,
computing the quadratic form on a constant vector or matrix c1 yields 0. Furthermore, Q(xi) = λi

where xi is the i-th eigenvector of the laplacian and λi the associated eigenvalue. We can order2

0 ≤ λ1 ≤ . . . ≤ λN according to the variability of associated eigenvectors 0 ≤ Q(x1) ≤ . . . ≤
Q(xN ). The first eigenvector x1 is constant and corresponds to eigenvalue λ1 = 0, whereas the
eigenvector xN is related to the largest eigenvalue λN .

3.2 Defining data heterogeneity

In the context of federated learning, data (or statistical) heterogeneity refers to the disparity
among the distributions of data held by each client. This phenomenon might be challenging to
assess beforehand due to the lack of a practical notion of statistical heterogeneity. However, the
estimation of data heterogeneity can positively lead to more advanced training algorithms that
leverage such prior information to improve the generalization capabilities of any learned model.

The concept of statistical heterogeneity has been widely researched, and multiple studies have
considered the degradation of the performance of federated algorithms under the premise of
heterogeneous data. In particular, Sahu et al. [20] introduced the FEDPROX algorithm and proved
its convergence under heterogeneity assumptions, Li et al. [27] studied the federated optimization
framework with partial client participation and showed that heterogeneity negatively affects the
convergence, and Wang et al. [35] proposed the FEDNOVA algorithm to overcome the convergence
of algorithms with simple aggregation schemes to a spurious optimum in heterogeneous networks.

Our approach to formulating the degree of heterogeneity of a network is based on the idea of
constructing the underlying graph of clients. Similarly, the latter idea has already been introduced
by Dinh et al. [37], whose algorithm uses laplacian regularization in server optimization to exploit
generic relationships among participants. Originally, Smith et al. [16] advanced the idea of a
global regularization term based on clients’ similarities through the MOCHA algorithm. This
concept, named multi-task learning, was further studied by Marfoq et al. [39], who assumed that
local samples are drawn from a mixture of unknown distributions, and suggested an EM-like
optimization approach.

2Whenever a graph (L symmetric) is undirected, eigenvalues are real and can be sorted.
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3 – Spectral study of data heterogeneity

Nevertheless, we take a distinct research path to evaluate the pathological nature of a federated
network by designing a graph based on specific statistical dissimilarities among clients.

3.2.1 Intuitive idea

The core principle behind our proposal is to devise a technique capable of discriminating across
different federated networks according to the rate of statistical heterogeneity among the clients.
In this regard, a natural choice is to rethink a federated network as a graph whose nodes are
represented by clients and each edge quantifies the statistical similarity between their local datasets.
Accordingly, we can measure the heterogeneity of any network by exploiting inherent information
from the constructed graph, which lets us observe the evolution of the latter under different kinds
of variations, such as changes in the local statistical distributions or biased client participation.

3.2.2 Mathematical graph-based model

To construct a reasonable, yet elementary, model to identify a heterogeneous network, we first
need to explain how to represent similarities among nodes, i.e. clients. We then move to the
definition of a similarity graph on which to numerically assess the pathological behavior given
by the disagreement of local data distributions, which negatively affects the convergence and
generalization capabilities of any model.

Inter-client relationships The concept of relationship between clients heavily translates to
the idea of dissimilarity between their data distributions. Since we cannot directly work on
probabilistic data distributions, we must infer such statistical properties from their datasets. In our
scenario, we allow each client i to share an initial message mi, coded as a unitary vector, that
embodies information about his local data distribution Pi(x, y), computed through his dataset Di.

Definition 3.2 (Client misalignment) Let i, j ∈ C be two clients with datasets Di,Dj ,
respectively. The client misalignment mis : RD × RD → [0, 1] is defined as the distance

mis(i, j)
def

=
1

2
(1−m>i mj) (3.1)

where unitary vectors mi,mj are messages initially shared from clients i and j.

Such a metric is devised to gauge inter-client dissimilarity efficiently. Given that messages
mi,mj are unitary vectors, computing client misalignment is equivalent to the squared norm
of the distance 1

4‖mi − mj‖22. Besides, client misalignment is strictly related to the cosine
dissimilarity between the given messages.
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3.2 – Defining data heterogeneity

Which message should clients exchange? In the context of a federated network, we consider the
first principal component of each client’s local dataset as the message that encodes information
about the statistical distribution of the data. In this regard, on each local dataset, we compute
an unscaled and uncentered version of the principal component analysis to capture information
about the scale and intercept of the first principal component, which represents the direction of
the highest variation in the data.

Characterization of federated networks The notion of statistical heterogeneity in a federated
network should directly follow from the given definition of client misalignment. Intuitively, we
imagine that the pathological nature on a statistical basis, due to the discrepancies between local
data distributions, increases 3 with the logarithm of the misalignment between clients.

Definition 3.3 (Federated network homogeneity) Given a federated network with clients C =

{ 1, . . . , C } and associated datasets D1, . . . ,DC , we define the relative network homogeneity

hom(C) def

=
1

2C(C − 1)

∑
i∈C

∑
j /=i

− ln(mis(i, j)) (3.2)

where we compute the misalignment for each pair of distinct clients i, j. Moreover, we

say a federated network is (θ, φ)-heterogeneous when we assume that all dissimilarities are

independently distributed as

mis(i, j) ∼ lnN (−θ, φ2) (3.3)

for any pair of distinct clients i, j ∈ C, where θ, φ ∈ R>0.

The logarithmic nature of our definition can differentiate between multiple networks when the
objective is to discern the heterogeneity of those. Indeed, 3.2 leverages the logarithm to expand
the [0, 1] misalignment range into the [0,+∞] similarity range between each pair of clients. In
addition, expression 3.3 controls the extent of similarity among clients, and as for θ � 0 and
φ ≈ 0, we assume potentially fully aligned clients (according to 3.1), while for θ decreasing up to
0, and increasing variance, we admit a higher degree of heterogeneity in the network.

Rethinking the model as a similarity graph The depicted model is inherently straightforward,
yet, if we try to redesign federated networks as similarity graphs, it reveals a hidden and interesting
nature that supports its discriminability against different heterogeneous scenarios. On this point,

3Due to our designed model, additionally motivated by experiment results.
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3 – Spectral study of data heterogeneity

the construction of such a graph naturally depends on the idea of the relationship between the
nodes. Common approaches, such as the one formalized by Belkin and Niyogi [6], involve
building the ε-similarities graph or the k-nearest neighbors graph and assigning connection
weights which are 0/1 or computed through a gaussian kernel. As shown in 3.2, our proposal
focuses on another characterization of the similarity that better discriminates even across slightly
dissimilar clients. For any federated network, the formulation of the underlying graph is expressed
through its adjacency matrix. To develop coherently this notion, we rely on 3.1 and 3.2.

Definition 3.4 (Graph representation of a federated network) Given a federated network

with clients C = { 1, . . . , C }, we define the adjacency matrix A associated to its graph

representation as

[A]ij
def

=

− ln(mis(i, j)) for i /= j

0 for i = j
(3.4)

The underlying graph is undirected and complete.

Given definition 3.4, it is straightforward to establish the degree matrix as D def

= diag(A1) and the
laplacian matrix L

def

= D−A. Furthermore, we can reformulate the idea of network homogeneity,
conceptually complementary to its heterogeneity, through the graph model previously defined.

hom(C) def

=
1

2C(C − 1)
trace(D) (3.5)

This redefinition has some curious implications that are reflected in the spectral domain of the
laplacian matrix of any federated network.

Proposition 3.1 (Spectral interpretation of network homogeneity) The network homogeneity

hom(C) of a network C is proportional to the average of the non-zero eigenvalues λ2, . . . , λC
of its laplacian matrix L.

hom(C) =
1

2C(C − 1)

C∑
k=2

λk (3.6)

Proof. This result follows from the fact that the trace of any matrix is equivalent to the sum of its
eigenvalues, except for the first eigenvalue λ1 which is always zero for any laplacian matrix.

More interestingly, expression 3.6 corresponds to the center of accumulation of the laplacian
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eigenvalues4 minus a multiplicative constant. As a consequence, by analyzing the distribution
of its spectrum, we can devise a discriminative assessment of the heterogeneity of a federated
network, based on the measurement of statistical dissimilarities (see 3.1) among the nodes.

3.3 Discussion

In this paragraph, we are interested in characterizing the behavior of the network homogeneity as
in 3.5 under realistic variations of some of its properties. We analyze the case when a variation is
applied to the misalignment distribution, possibly due to changes in the local datasets which can
introduce a higher rate of heterogeneity in the system.

Proposition 3.2 (Network homogeneity under statistical alteration) Let C be a (θ, φ)-

heterogeneous network on which we apply the relative variations ε ∈ (0, 1), δ ∈ (−1,∞),

respectively on the mean and variance of the misalignment distribution. Then, the resulting

(θ(1− ε), φ
√

1 + δ)-heterogeneous network C̃ satisfies

P
(

hom(C̃) < hom(C)
)

= Φ

(
θε

φ

√
C(C − 1)

2 + δ

)

when the number of clients C stays fixed.

Proof. Let us start with the assumption that mis(i, j) ∼ lnN (−θ, φ2) for any pair of distinct
nodes i, j ∈ C. These share a connection whose weight is − ln(mis(i, j)) ∼ N (θ, φ2). Since the
sum of normally distributed random variables is a normal variable itself, then

hom(C) ∼ N
(
θ

2
,

φ2

4C(C − 1)

)

The random variable S def

= hom(C̃)− hom(C) is accordingly distributed as

N
(
θ̃

2
− θ

2
,

φ̃2

4C(C − 1)
+

φ2

4C(C − 1)

)

4The first laplacian eigenvalue is discarded in our computation because it is always zero.
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where θ̃ = (1− ε)θ and φ̃2 = (1 + δ)φ2 are the altered properties. Thus,

P
(

hom(C̃) < hom(C)
)

= P(S < 0) = P

 S +
θ

2
ε

φ

2

√
2 + δ

C(C − 1)

< 0


Introducing Φ(s) as the cumulative normal distribution of S, we obtain expression 3.2.

This small result allows us to discuss how the network is affected when the misalignment
distribution is shifted. In this regard, by increasing the mean of the distribution lnN (−θ, φ2), we
explicitly induce a higher degree of heterogeneity into the system. Specifically, if we consider the
realistic case of C � 1, and we consider a negligible change in the variance of the distribution,
i.e. δ ≈ 0, then we can approximate the probability in 3.2 as

Φ

(
θεC

φ
√

2

)
Since Φ(s) is monotonically increasing, it becomes evident how variation ε ∈ (0, 1) contributes
to raising the likelihood of having higher heterogeneity in the altered network C̃. it is worth
mentioning that increasing the variance through amount δ or changing the number of clients
without influencing the mean of the misalignment distribution would not affect the probability of
increasing the heterogeneity of the system.

Another curious objective is to relate the alteration of a network to the change in the spectrum of
its laplacian L. In this regard, we can formulate the network homogeneity as 3.6. Accordingly,
given a laplacian matrix L ∈ RC , we suggest a measure of discrepancy for the altered eigenvalues
of the obtained laplacian L̃ ∈ RC . Hence

1

C − 1

C∑
i=2

(λ̃i − λi)2

denotes the relative spectral deviation given λ2, . . . , λC and λ̃2, . . . , λ̃C as the eigenvalues of L
and L̃, respectively. For our elementary analysis, we consider again the simplified case in which
the number of agents C remains constant, and only the statistical properties of the misalignment
distribution are affected through the aforementioned relative variations.

Proposition 3.3 (Average spectral deviation) Given a (θ, φ)-heterogeneous network C, let

C̃ be the resulting (θ(1 − ε), φ
√

1 + δ)-heterogeneous network after altering C, where ε ∈
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(−∞, 1), δ ∈ (−1,∞). When the number of agents C remains constant, we have that

AC2 <
1

C − 1

C∑
i=2

E
(
λ̃i − λi

)2
≤ AC2(C − 1)

where

A =
2 + δ

C(C − 1)
φ2 + ε2θ2.

In addition, {λi }Ci=2 and { λ̃i }Ci=2 are the eigenvalues of L and L̃, respectively.

Proof. To prove our result, we proceed by proving the lower and upper bound separately. Let us
start with an alternative formulation of 3.3, indeed

1

C − 1

C∑
i=2

(λ̃i − λi)2 =
1

C − 1
tr
(

(L̃− L)2
)

From the property of the trace that states that tr(A2) ≤ (tr(A))2, and considering that tr(L) =

tr(D), where D is the degree matrix, follows that

1

C − 1
tr
(

(L̃− L)2
)
≤ 1

C − 1

(
tr(L̃− L)

)2
=

1

C − 1

(
tr(L̃)− tr(L)

)2
= 4C2(C − 1)

(
1

2C(C − 1)
tr(D̃)− 1

2C(C − 1)
tr(D)

)2

= 4C2(C − 1)
(

hom(C̃)− hom(C)
)2

= 4C2(C − 1)S2

Where we define S def

= hom(C̃)− hom(C) for the future. For the lower bound, let us apply Jensen
inequality since the square function is strictly convex, and summing (C − 1)−1 for C − 1 times
yields 1. Thus

C∑
i=2

1

C − 1
(λ̃i − λi)2 >

(
C∑
i=1

1

C − 1
(λ̃i − λi)

)2

=

(
C∑
i=2

1

C − 1
λ̃i −

C∑
i=1

1

C − 1
λi

)2
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= 4C2

(
1

2C(C − 1)

C∑
i=2

λ̃i −
1

2C(C − 1)

C∑
i=1

λi

)2

= 4C2

(
1

2C(C − 1)
tr(L̃)− 1

2C(C − 1)
tr(L)

)2

= 4C2S2

Having established both bounds

4C2S2 <
1

C − 1

C∑
i=2

(λ̃i − λi)2 ≤ 4C2(C − 1)S2

we can exploit the monotonicity of the expected value to state that

E
[
4C2S2

]
< E

[
1

C − 1

C∑
i=2

(λ̃i − λi)2
]
≤ E

[
4C2(C − 1)S2

]
4C2 ES2 <

1

C − 1

C∑
i=2

E
[
(λ̃i − λi)2

]
≤ 4C2(C − 1)ES2

Let us recall, from previous proof, that S is distributed as

N
(
−ε

2
θ,

2 + δ

4C(C − 1)
φ2
)

Since VX = EX2 − [EX]2, we have

ES2 = VS + [ES]2 =
2 + δ

4C(C − 1)
φ2 +

ε2

4
θ2

which concludes our digression.

It is also straightforward to verify that, in the case of many participants, which is a natural
assumption, expression 3.4 reduces to

ε2θ2C2 + o(C) <
1

C − 1

C∑
i=2

E
(
λ̃i − λi

)2
≤ ε2θ2C3 + o(C2)

In any case, the dominating term depends on ε, which affects the mean of the misalignment
distribution. This implies that the gap of the bound is O(ε2θ2C3). On this point, we emphasize
that highly heterogeneous networks have mean θ smaller than in homogeneous networks, given
the definition of misalignment distribution in 3.3. Consequently, with the same number of clients,
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any variation ε would have a lower impact on highly heterogeneous systems. In other words,
a homogeneous network, according to our model, will degrade much faster than an already
pathological network.

Alternatively, we may be interested in assessing the alteration of the spectrum according to the
average absolute deviation. Therefore, given the same context of 3.3, we formulate the spectral
absolute deviation as

1

C − 1

C∑
i=2

∣∣∣λ̃i − λi∣∣∣
Our analysis will change according to this new formalization of the concept.

Proposition 3.4 (Average spectral absolute deviation) Given a (θ, φ)-heterogeneous network

C, let C̃ be the resulting (θ(1− ε), φ
√

1 + δ)-heterogeneous network after altering C, where

ε ∈ (−∞, 1), δ ∈ (−1,∞). When the number of participants C remains constant, we have

εθC(2Φ(A)− 1) + 2φ

√
C(2 + δ)

C − 1
Φ′(A) ≤ 1

C − 1

C∑
i=2

E
∣∣∣λ̃i − λi∣∣∣ ≤ (2− ε)θC

where Φ(·) is the cumulative normal distribution, Φ′(·) is its density function, and

A =
εθ

φ

√
C(C − 1)

2 + δ
.

Furthermore, {λi }Ci=2 and { λ̃i }Ci=2 are the eigenvalues of L and L̃, respectively.

Proof. To attain our result, we shall start by identifying the lower bound. Thus, given the convexity
of the absolute value, we have

C∑
i=2

1

C − 1

∣∣∣λ̃i − λi∣∣∣ ≥
∣∣∣∣∣
C∑
i=2

1

C − 1
(λ̃i − λi)

∣∣∣∣∣
=

∣∣∣∣∣ 1

C − 1

C∑
i=2

λ̃i −
1

C − 1

C∑
i=2

λi

∣∣∣∣∣
= 2C

∣∣∣∣ 1

2C(C − 1)
tr(L̃)− 1

2C(C − 1)
tr(L)

∣∣∣∣
= 2C

∣∣∣hom(C̃)− hom(C)
∣∣∣

Concerning the upper bound, we employ the triangular inequality. We remind that all eigenvalues
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of the laplacian are positive, therefore |λ| = λ ≥ 0.

1

C − 1

C∑
i=2

∣∣∣λ̃i − λi∣∣∣ ≤ 1

C − 1

C∑
i=2

(∣∣∣λ̃i∣∣∣+ |λi|
)

= 2C

(
1

2C(C − 1)

C∑
i=2

λ̃i +
1

2C(C − 1)

C∑
i=2

λi

)

= 2C

(
1

2C(C − 1)
tr(L̃) +

1

2C(C − 1)
tr(L)

)
= 2C

(
hom(C̃) + hom(C)

)
If we denote S = hom(C̃) − hom(C), and T = hom(C̃) + hom(C), then we can bound the
spectral absolute deviation as follows.

2C|S| ≤
C∑
i=2

1

C − 1

∣∣∣λ̃i − λi∣∣∣ ≤ 2CT

We take the expectation to highlight the dependency on the variation parameters.

E[2C|S|] ≤ E

[
C∑
i=2

1

C − 1

∣∣∣λ̃i − λi∣∣∣] ≤ E[2CT ]

2C E |S| ≤
C∑
i=2

1

C − 1
E
[∣∣∣λ̃i − λi∣∣∣] ≤ 2C ET

First, we compute ET . We recall that hom(C) ∼ N
(
θ/2, φ2/(4C(C − 1))

)
, thus

T ∼ N
(

2− ε
2

θ,
2 + δ

4C(C − 1)
φ2
)

which is a normal distribution whose mean is our expected value ET . On the other hand, the
computation of E |S| requires the use of the definition of absolute value and expected value. If
Φ(s) is the cumulative normal distribution, then Φ′(s) denotes the density function.

E |S| =
∫ ∞
−∞
|s|Φ′(s)ds

=

∫ 0

−∞
(−s)Φ′(s)ds+

∫ ∞
0

sΦ′(s)ds

We proceed by a change of variable to obtain the standard normal Φ′(z). Specifically, we set
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z = (s− θ(S))/φ(S). Since ds = φ(S)dz, the change of variable has the following effect

∫
sΦ′(s)ds =

∫
s

1

φ(S)
√

2π
exp

(
−1

2

(
s− θ(S)

φ(S)

)2
)
ds

=

∫
(φ(S)z + θ(S))

1

φ(S)
√

2π
exp

(
−z

2

2

)
φ(S)dz

=

∫
(φ(S)z + θ(S))Φ′(z)dz

Consequently,

E |S| = −
∫ z0

−∞
(φ(S)z + θ(S))Φ′(z)dz +

∫ ∞
z0

(φ(S)z + θ(S))Φ′(z)dz

= −φ(S)

∫ z0

−∞
zΦ′(z)dz − θ(S)

∫ z0

−∞
Φ′(z)dz + φ(S)

∫ ∞
z0

zΦ′(z)dz + θ(S)

∫ ∞
z0

Φ′(z)dz

where z0 = −θ(S)/φ(S) is the new extreme of integration. Due to the property that Φ′′(z) =

−zΦ′(z), we evaluate the integral to

E |S| = φ(S)Φ′(z)
∣∣∣z0
−∞
− θ(S)Φ(z)

∣∣∣z0
−∞
− φ(S)Φ′(z)

∣∣∣∞
z0

+ θ(S)Φ(z)
∣∣∣∞
z0

= φ(S)Φ′(z0)− θ(S)Φ(z0) + φ(S)Φ′(z0) + θ(S)(1− Φ(z0))

= θ(S)

(
1− 2Φ

(
− θ(S)

φ(S)

))
+ 2φ(S)Φ′

(
− θ(S)

φ(S)

)
By leveraging our prior knowledge of the distribution of S, and after substituting the bounds in
our expression, we reach our conclusion.

Concerning 3.3, we may assume again C � 1, which reasonably holds in real-world scenarios.
As a result, the inequality simplifies to

|ε|θC + o(C) ≤ 1

C − 1

C∑
i=2

E
∣∣∣λ̃i − λi∣∣∣ ≤ (2− ε)θC

Curiously, as ε approaches 1, the interval becomes narrower. The gap of the bound resolves to
O(2θC), where we consider the ε maximizing such bound.

3.4 Experimentation

In this section, we inspect the results of the experiments conducted on multiple federated datasets.
Besides, from this examination, we argue the motivations that support the mathematical model we
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Table 3.1. Grid of parameters for the generation of the federated datasets.

C Number of clients 100

κ−1 Class imbalance 0, 1, 10, 100

φ2 Data imbalance 0, 1

s Random seed 0, 1, 41

define to measure and explain the heterogeneity of federated networks.

3.4.1 Settings

The generation of a federated dataset from the centralized version is achieved by partitioning
the latter into C disjoint subsets of samples, where C is the number of clients. The degree of
heterogeneity for the generated dataset is controlled through two parameters: the class imbalance
and the data imbalance. The class imbalance expresses the disproportion in the number of samples
of a certain class that are assigned across all clients. This measure is parameterized through
κ−1 ≥ 0 where κ−1 ≈ 0 corresponds to perfect class balance, while larger values imply higher
imbalance. Inspired by Hsu, Qi, and Brown [23], to achieve this, we sample the number of
samples of a specific class assigned to each client from a Dirichlet distribution Dir(κ) with
concentration parameter κ def

= κ1 ∈ RC . On the other hand, the data imbalance represents the
discrepancy between the number of data points given to each client. We parameterize such a
measure through φ2 > 0, which is employed to sample the size of each client’s dataset from
a log-normal distribution lnN (bN/Cc, φ2), where N is the total amount of samples across all
participants. Again, by using φ2 ≈ 0 we expect all clients to share almost the same number of
samples. Both these two parameters let us construct accurately a federated dataset by calibrating
the extent of imbalance that we aim to introduce in the resulting network of clients. Furthermore,
whenever some samples are left in the partitioning phase, these are then divided among clients to
approximately ensure the extent of class and data imbalance requested. All experiments exposed
in this chapter, whose grid of parameters is depicted in table 3.1, are repeated with multiple seeds,
and their results are then averaged.

Implementation We loaded the datasets using Pytorch from Paszke et al. [28] on an Ubuntu
22.04 laptop with 16GB DDR4 RAM and Intel Core i7-7500U CPU 2.7GHz.
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3.4.2 Datasets

The datasets taken into consideration for our experiments are described in the following paragraphs.
Concerning the choice of the datasets, we explicitly opt for those which are common for image
recognition tasks, since they are widely well-known and already studied.

CIFAR10 CIFAR10, introduced by Krizhevsky [7] in addition to CIFAR100, is a dataset of
60000 RGB images of size 32× 32 belonging to 10 classes, where each class takes exactly 6000
samples. The 10 classes correspond to daily observable objects such as airplace, truck, and others.

horse deer horse truck dog deer automobile

Figure 3.1. Visualization of samples from CIFAR10 dataset.

CIFAR100 CIFAR100, similarly to CIFAR10, is composed of RGB 60000 images of the same
size but belonging to 100 classes. All 100 labels can be further grouped into 20 more generic
superclasses. Nonetheless, we will consider the finer subdivision for our experiments.

FEMNIST Caldas et al. [19] published the FEMNIST dataset to deliberately study federated
learning and to establish a common benchmark on which to investigate the performance of
distributed optimization algorithms. The original dataset contains 805263 grayscale images
of size 28 × 28 subdivided into 62 classes. We utilize a subset of 382705 samples picturing
handwritten digits from 0 to 9.

1 1 2 5 2 2 2

Figure 3.2. Visualization of samples from FEMNIST dataset.
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3.4.3 Results

The following paragraphs illustrate the various experiments that have been performed to advocate
the development of the theoretical methodology introduced in this chapter.
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m
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)

CIFAR10

0.0 1.0 10.0 100.0
class imbalance
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10−3

10−2

CIFAR100

0.0 1.0 10.0 100.0

10−4

10−3

10−2

10−1

100

FEMNIST

data imbalance
0.0
1.0

Figure 3.3. Client misalignment (see 3.1) for the three datasets under examination. The
misalignment distributions are computed for each level of class imbalance and data imbalance.
When increasing the imbalance, the distributions are remarkably shifted toward a higher
extent of misalignment.

How imbalance governs client misalignment In this paragraph, we apply the definition of
client misalignment (see 3.1) on the federated datasets, which are generated using the aforemen-
tioned approach. In this regard, following the idea presented in 3.2.1, the allocated subsets are
interpreted as the clients that constitute the federated network, whereas each one corresponds
to a node of the graph. Therefore, repeating the experiment for multiple choices of imbalance,
we compute the misalignment between each pair of clients inside each generated network. Con-
cerning the assumption 3.3, we witness that the real misalignment distributions resemble the
shape of a log-normal distribution. This empirical observation enforces the theoretical usage of
the log-normality assumption in the derivation of 3.2. As we may expect, by augmenting the
class imbalance, we notably affect the misalignment distribution. Specifically, the mean of the
distribution is incremented as we exponentially increase the class imbalance. Likewise, with
fixed class imbalance, higher data imbalance negatively affects both the skewness and kurtosis of
the misalignment distributions, since these present shifted peaks and longer tails. To conclude,
such results suggest that client misalignment mis(i, j) could be a representative measure of the
statistical dissimilarity between different clients, and, therefore, can be reasonably leveraged to
interpret federated networks as similarity graphs.

Spectral justification for network homogeneity Since our pursuit is to devise an approach to
discriminate the heterogeneity between agents who are statistically different, we now analyze

36



3.4 – Experimentation
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Figure 3.4. Distribution of the laplacian eigenvalues under different conditions of imbalance. The
spectrum is highly skewed toward lower eigenvalues as the heterogeneity increases.

the sets of laplacian eigenvalues related to the graph representation of federated networks, from
definition 3.4. Our aim originates from the spectral interpretation of the network homogeneity,
namely 3.6, which states that the latter can be strongly linked to the average non-zero eigenvalue
of the laplacian matrix L. On this subject, we purposefully compare the spectra of multiple
federated networks, conceived with different rates of imbalance. The results of our simulation are
accurately portrayed in figure 3.4. Noticeably, the behavior of the spectrum is heavily determined
by the degree of class imbalance. Indeed, by increasing this, we remarkably move the spectrum to
lower eigenvalues. Additionally, the spectra of highly homogeneous networks (class imbalance =

0.0) are more altered by an increment in data imbalance than highly heterogeneous networks
(class imbalance � 0.0), and this fact is manifested through a reduction in the kurtosis of the
eigenvalues distribution.

The inspection of the laplacian spectrum offers us insights into the nature of the graph-based
approach we developed to model the statistical dissimilarity among clients. Accordingly, we are
also interested in understanding how the network homogeneity changes in relation to the extent
of imbalance introduced in the system. This phenomenon is well pictured in figure 3.5. The
homogeneity exponentially decays as the class imbalance grows. Such a phenomenon seems to be
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more relevant with a fewer number of classes, while, with many (see CIFAR100), the decay is
less pronounced. Furthermore, the highest drop of homogeneity is exhibited when increasing the
class imbalance from 0 to 10, whereas, over 10, the change is almost negligible.
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Figure 3.5. Behavior of network homogeneity in relation to class imbalance.

It is worth saying that the results of our simulation encourage the design choice in 3.2 used
to model a network of clients with highly heterogeneous data. Principally, our framework
provides an elementary yet exotic explanation of the statistical dissimilarity in the spectral domain
of the graph. Particularly, after the injection of statistical discrepancy in the system through
imbalance parameters, our formulation 3.6 relates the notion of heterogeneity (homogeneity)
to the instantiation of the spectrum of the laplacian matrix L, which embodies the federated
network. Also, it should be pointed out that the network homogeneity is invariant to the number
of participants involved, and it is exclusively affected by the statistical similarities among these.

3.5 Brief summary

In this chapter, we devote our attention to the problematic idea of statistical heterogeneity, which
is a phenomenon that spontaneously occurs in federated networks. Specifically, in 3.2.1, we
attempt to formalize this idea in terms of statistical dissimilarity, and we provide an operative
definition in 3.2.2. In section 3.2.2, after reformulating the model of the network as a similarity
graph, we highlight the connection between the given definition of network homogeneity and the
spectrum of the laplacian matrix of the graph. Moreover, in 3.3, we investigate in simple terms the
behavior of a federated network under variations of the statistical distribution of the dissimilarities.
Finally, in section 3.4, we present some experimental results in support of the graph-based model
we devised to explain the statistical heterogeneity within a network of agents.
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4
How perturbation affects convergence

In this chapter, we provide our convergence analysis of FEDPROX as a pioneering federated
algorithm, under common theoretical assumptions adopted in federated optimization. Secondly,
we propose our framework based on a perturbation of the gradient update that exploits the graph
representation of the federated network that we devised in the previous chapter. Lastly, we analyze
the convergence of our algorithm, and we provide experimental results on his performance.

4.1 General federated optimization problem

In this section, differently from 2.3, we provide a more detailed formulation of federated opti-
mization. Specifically, we employ the structure of FEDAVG, introduced by McMahan et al. [14],
to present the vanilla optimization procedure adopted in federated learning. In this regard, the
empirical risk minimization problem can be formulated as

min
w∈RD

{
f(w)

def

=

C∑
i=1

pifi(w)

}
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where { 1, . . . , C } is the set of agents such that
∑C

i=1 pi = 1, and fi(w)
def

= Eξ∼Pi [`(w; ξ)] is the
objective of agent i, who draws samples from the distribution Pi. In FEDAVG, the local update
rule for client i at round t ≥ 0 and step k ∈ { 0, . . . , E − 1 } is

wi
t,k+1

def

= wi
t,k − γtgi

(
wi
t,k

)
where gi

(
wi
t,k

)
is the stochastic gradient and γt is the step size. To study the convergence of

federated algorithms, the average iteration sequence 4.1 is widely employed (see Stich [21]).

wt,k+1
def

= wt,k − γt
∑
i∈St

pigi
(
wi
t,k

)
(4.1)

The average iterate is defined as w def

=
∑C

i=1 piwi. The set St denotes the agents participating in
server round t. Globally, this is perturbed stochastic gradient descent, because agent i computes
the stochastic gradient in the local iterate wi

t,k instead of wt,k. We remind that wi
t,0 = wt,0 holds

for every agent at the beginning of any round t.

4.1.1 Theoretical setting

In this part, we propose some theoretical assumptions that are often leveraged to conduct the
convergence analysis of optimization algorithms in the context of federated learning. These
premises are well presented by Wang et al. [41]. Furthermore, we perform our study under these
mild suppositions to simplify the establishment of theoretical outcomes.

Full participation In each server round t, all agents of the network take part in the training

process and communicate their updates, namely St = { 1, . . . , C }.

Bounded variance Stochastic gradients are unbiased and have bounded variance

Egi
(
wi
t,k

)
= ∇fi

(
wi
t,k

)
and E

∥∥gi(wi
t,k

)
−∇fi

(
wi
t,k

)∥∥2 ≤ σ2
in expectation within agent i ∈ { 1, . . . C } where σ > 0.

Bounded stochastic gradient norm The norm of any stochastic gradient is bounded

E
∥∥gi(wi

t,k

)∥∥2 ≤ G2

in expectation for any agent i ∈ { 1, . . . C } and (t, k) ∈ { 0, . . . , T − 1 } × { 0, . . . , E }.

Smoothness Each local objective is L-smooth, namely

‖∇fi(w)−∇fi(v)‖ ≤ L‖w − v‖
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or equivalently

fi(w) ≤ fi(v) +∇fi(v)>(w − v) +
L

2
‖w − v‖2

for any agent i ∈ { 1, . . . C } and v,w ∈ RD where L > 0.

Strong convexity Each local objective is µ-strongly convex

fi(w) ≥ fi(v) +∇fi(v)>(w − v) +
µ

2
‖w − v‖2

for any agent i ∈ { 1, . . . C } and v,w ∈ RD.

In the rest of this document, we briefly denote the total expectation as E[·]. Again, under the
smoothness assumption, we emphasize that our analyses are limited to strongly convex and
nonconvex local loss objectives. For simplicity, we omitted the general convex case. Finally, we
employ a common definition for quantifying the heterogeneity among clients.

Definition 4.1 (Statistical heterogeneity from Li et al. [27]) The statistical heterogeneity is

represented through the gap between the global objective minimum w?
def

= arg minw f(w) and

the expected value of the local objective minimum, therefore

Γ
def

= f? −
C∑
i=1

pifi
(
wi
?

)
(4.2)

where f?
def

= f(w?) and wi
?

def

= arg minw fi(w) for any agent i ∈ { 1, . . . C }.

This notion of statistical heterogeneity has already been widely adopted in the literature. For
instance, Li et al. [27] studied the convergence of FEDAVG for strongly convex and smooth losses.
In addition, Cho, Wang, and Joshi [30] made use of the same definition to study how different
client selection strategies impact convergence.

4.2 Our analysis of proximal algorithm FEDPROX

Sahu et al. [20] introduced the federated algorithm FEDPROX to tackle the issues related to
statistical heterogeneity and local divergence. The latter, often indicated as client drift, refers to
the phenomenon for which the local iterate wi

t,k of client i diverges from the global average iterate
wt,k. This algorithm modifies the local update rule by introducing a proximal term that forces the
local iterate to be close to the average one. In this section, we provide our convergence rate for
FEDPROX for smooth objective functions, both strongly convex and nonconvex. The analysis that
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we undertake and some specific techniques used are inspired by many other established works.
For instance, Reddi et al. [34] formalized the theoretical setting for analyzing the convergence of
federated algorithms, and Li et al. [27] provided insights in non-IID scenarios, and Bottou, Curtis,
and Nocedal [13] who analyzed stochastic gradient descent algorithms in a similar setting to ours.

4.2.1 Formulation

The optimization procedure of FEDPROX differs from plain FEDAVG as follows. The update rule
on iterate wi

t,k tries to solve inexactly the local problem

arg min
w∈RD

{
fi(w) +

α

2
‖w −wt,0‖2

}
to compute the next iterate wi

t,k+1. Therefore, by updating wi
t,k in the negative direction of the

quantity gi

(
wi
t,k

)
+ α

(
wi
t,k −wt,0

)
, the update rule is defined as

wi
t,k+1 = (1− αγt)wi

t,k + αγtwt,0 − γtgi
(
wi
t,k

)
. (4.3)

Parameter α > 0 controls the proximal term, which should counteract the local divergence effect
of each agent. When α = 0, we obtain the formulation of FEDAVG. Under our premise of full
participation, the average iterate sequence becomes

wt,k+1 = (1− αγt)wt,k + αγtwt,0 − γt
C∑
i=1

pigi
(
wi
t,k

)
. (4.4)

The following lemmas help us obtain the main outcomes of our analysis. In particular, lemma
4.1 bounds the deviation of local iterate wi

t,k for each agent i from the initial and common iterate
wt,0 at the beginning of each round t.

Lemma 4.1 (Single round local deviation of FEDPROX) Assuming that γt ≤ 1/α, and 4.1 to

4.4 hold, then the local deviation in one global round satisfies

E
∥∥wi

t,k −wt,0

∥∥2 ≤ γ2tE2G2

Proof. See proof in B.1.

On the other hand, the following result from lemma 4.2 describes how client drift is bounded
during a single round of training. A similar result can be found in the analysis conducted by Yu,
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Yang, and Zhu [22] on parallel stochastic gradient descent, alias FEDAVG. As in lemma 4.1, the
choice of the step size γt depends on parameter α which controls the proximal regularization term.

Lemma 4.2 (Single round local divergence of FEDPROX) Assuming that γt ≤ 1/α, and 4.1

to 4.4 hold, then the local divergence in one global round is bounded as

E
∥∥wt,k −wi

t,k

∥∥2 ≤ 4γ2tE
2G2

Proof. See proof in B.1.

4.2.2 Convex convergence analysis

In this part, we present the theoretical results concerning our analysis of FEDPROX under the
aforementioned assumptions. Originally, Sahu et al. [20] introduced the algorithm and the relative
examination under different assumptions and notations. In our case, we consider the strongly
convex scenario, and we derive a bound for a dual choice of the step size, either constant or
linearly decaying. This has been heavily inspired by the study of Bottou, Curtis, and Nocedal
[13] on stochastic gradient descent. However, our technical approach has also other influences.
Specifically, similarly to Wang et al. [41], we first provide our results for a single iteration
(communication round), and then in relation to the whole iterative process (see appendix B for
more details). Moreover, both the study of FEDAVG led by Li et al. [27] and the inquiry on the
adoption of biasing strategies in federated optimization from Cho, Wang, and Joshi [30] impacted
the way that we analyzed the chosen algorithm FEDPROX.

Theorem 4.1 (Convergence of FEDPROX for strongly convex loss) Under assumptions 4.1 to

4.5, we run algorithm FEDPROX with α > 0.

I) When choosing fixed step size γ =
1

2LαE
for t ≥ 0, the algorithm satisfies

E f(wt,0)− f? ≤
L∆

µ

[
1− µ

3(α+ L)

]t
+

L

Lα

[
Sσ2

4µ
+

3LΓ

2µ
+

2E2G2

µ

]

II) If we pick diminishing step size γt =
4

µE(8Lα/µ+ t)
for t ≥ 0, we have

E f(wt,0)− f? ≤
L

µ

[
8Lα/µ

8Lα/µ+ t

][
∆ +

Sσ2

LαE
+

6LΓ

LαE
+

8EG2

Lα

]

Lastly, we define ∆
def

= f(w0,0)− f?, S def

=
∑C

i=1 p
2
i and Lα

def

= α+ L.
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Proof. See proof in B.2.

As in ordinary stochastic gradient descent, the usage of a fixed step size does not guarantee the
convergence to the minimum w?, but to a neighborhood whose size depends on the magnitude of
the norm, the variance of stochastic gradient and the extent of statistical heterogeneity. On the
other hand, relying on a decreasing step size slows down convergence but ensures landing exactly
on the critical point.

Lower bounding the complexity on a specific class of problem To further explore the con-
vergence properties of FEDPROX, we lower bound its optimality gap at round t on a specific
and artificially constructed problem. The study of lower bounds for distributed algorithms, in
particular FEDAVG, has already been undertaken in multiple works, and we draw inspiration
regarding the techniques and approaches that have been introduced to tackle this objective. In par-
ticular, Karimireddy et al. [24] provided a lower bound for FEDAVG on a chosen strongly convex
problem assuming full participation and no stochasticity. On the other hand, Woodworth et al.
[36] investigated the lower bound on a quadratic problem expressly designed such that FEDAVG

performs poorly, and represented stochasticity using random variables uniformly distributed. In
our case, we replicate a distributed and strongly convex scenario analogous to the one presented by
Karimireddy et al. [24] regarding FEDAVG, where our global loss is designed comparably to the
one employed by Safran and Shamir [29] concerning the inspection of lower bounds for stochastic
gradient descent with shuffling. Additionally, we model the stochastic gradients using Gaussian
random variables equivalently to Glasgow, Yuan, and Ma [38]. Therefore, the following theorem
summarizes our findings concerning the examination of FEDPROX for the aforementioned class
of strongly convex objectives when using a sufficiently small step size.

Theorem 4.2 (Lower bound of FEDPROX for some strongly convex loss) Given any

µ, α, σ,G ∈ R>0, E ≥ 2, C ≥ 2, an initial point w0,0 and any step size γ ≤ [E(α + µ)]−1,

there exists a positive A ≤ 1−e−1 and a µ/2-strongly convex objective f(w) where algorithm

FEDPROX with parameter α satisfies the following statement for any t ≥ 0.

E f(wt,0)− f? ≥ min

{
∆

[
1− 3µ

4(α+ µ)

]2t
,

1

(t+ 1)2

[
3µ3A2G2

128E2(α+ µ)4
+

3µSσ2

64E(α+ µ)2

]}

Additionally, we define ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. See proof in B.4.
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4.2.3 Nonconvex convergence analysis

This part is dedicated to the study of FEDPROX in the absence of convex guarantees for the local
loss objectives. In our analysis for nonconvex losses, we are influenced by the techniques used by
Bottou, Curtis, and Nocedal [13] on the convergence of vanilla stochastic gradient descent, and by
Yu, Yang, and Zhu [22] who addressed the performance of FEDAVG with fixed and decreasing
step size. In this respect, we derive our specialized rates for FEDPROX as we did in the previous
part for convex objectives. However, we need to replace assumption 4.5 with 4.6, while all other
assumptions remain equally valid.

Lower bounded objective The global loss f(w) is lower bounded by value finf .

This assumption has been already used by Bottou, Curtis, and Nocedal [13], and prevents our
analysis from requiring the existence of a global minimum. Differently from convex analysis, the
convergence will be expressed through the average of the squared norms of the global gradient in
different instants. This means that if the average goes to zero for large values of T , then also each
gradient term is approaching zero. This is well explained by Bottou, Curtis, and Nocedal [13].

Theorem 4.3 (Convergence of FEDPROX for nonconvex loss) We suppose 4.1 to 4.4 and 4.6

hold, and we run algorithm FEDPROX with parameter α > 0 for T ≥ 1 rounds.

I) When adopting fixed step size γ =
1

2Lα
√
TE

, we have the following rate.

E ‖∇f(ŵT )‖2 ≤ 1√
T

[
8Lα∆√
E

+
LSσ2

Lα
√
E

+
αE3/2G2

Lα

]
+

2L2EG2

L2
αT

+
α2L
√
EG2

16L3
αT

3/2

where we uniformly sample ŵT from {wt,k }t,k for any 0 ≤ t ≤ T − 1 and 0 ≤ k ≤ E − 1.

II) The usage of diminishing step size γt =
1

2Lα
√
E(t+ 1)

leads to

E ‖∇f(ŵT )‖2 ≤ 1

ln(T + 1)

[
8Lα∆√
E

+
2LSσ2

Lα
√
E

+G2

[
2αE3/2

Lα
+

3L2E

L2
α

+
α2L
√
E

12L3
α

]]

where Σ =
∑T−1

r=0 γr. Additionally, we sample ŵT from {wt,k }t,k uniformly in relation to

0 ≤ k ≤ E − 1, and with probability γt/Σ concerning 0 ≤ t ≤ T − 1.

Furthermore, we define ∆
def

= f(w0,0)− finf , S def

=
∑C

i=1 p
2
i and Lα

def

= α+ L.

Proof. See proof in B.3.

Regarding our choice of decreasing step size, we choose a linear decaying one to be consistent
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4 – How perturbation affects convergence

with strongly convex analysis. This is not the best option in order to achieve a faster convergence
rate, and Yu, Yang, and Zhu [22] show that choosing an appropriate diminishing step size leads to
a better rate of O(ln(T )/

√
T ). Nevertheless, the result we attain allows for comparisons with our

algorithm across this chapter.

4.3 Our variability-based perturbed gradient method

In this section, we propose a novel and alternative framework to perform federated optimization.
Before introducing our approach, we discuss which problem we aim to tackle and the related
works. We underline that our objective is not to compete with state-of-the-art techniques but to
explore an alternative way to look at federated optimization and its challenges. Moreover, we
perform an extensive analysis regarding the convergence of our algorithm. Finally, we discuss the
potential advantages and limitations of this approach in theory and practice.

The pioneering algorithm FEDAVG was introduced by McMahan et al. [14] to classify written
digits using a CNN (LeCun et al. [3]) and predict the next word in a sentence with an LSTM
(Hochreiter and Schmidhuber [5]). It was shown to largely outperform single epoch decentralized
stochastic gradient descent (FEDSGD). FEDAVG, also known as LOCALSGD and initially
proposed by Zinkevich et al. [8] as SGD (Robbins [2]) with periodic model averaging, has since
been studied to assess its behavior under different assumptions. Most works, including ours,
assume the local objective losses to be smooth and analyze the convergence of FEDAVG leveraging
distinct prior information. For instance, Li et al. [27] and Stich [21] derived the convergence
rates of FEDAVG for strongly convex losses and diminishing step sizes while bounding the
norm of gradients. Li et al. [27] used the gap between the global optimal value f? and the
expectation of local optimal values E fi

(
wi
?

)
as heterogeneity measure. On the other hand,

Khaled, Mishchenko, and Richtárik [25] and Karimireddy et al. [24] extended the known analysis
to generally convex and nonconvex functions. The diverse nature of clients’ losses, exacerbated by
the statistical heterogeneity, induces locally-optimized models to diverge from the global model.
This phenomenon, called client drift (or local divergence), has been tackled by multiple studies.
In this respect, Sahu et al. [20] introduced a generalization of FEDAVG named FEDPROX, which
exploits a proximal term in clients’ objectives to constrain the local iterates to stay close to the
global one as optimization takes place. Due to its elementary nature, we choose FEDPROX as
our baseline algorithm for future comparisons. Furthermore, Karimireddy et al. [24] suggested
SCAFFOLD, a framework that employs control variates to reduce the extent of client drift.

Personalized federated learning In personalized federated learning, instead of learning a
single global model that does not account for the different distributions from which data samples
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4.3 – Our variability-based perturbed gradient method

are drawn, each client learns a tailored model that better fits the nature of its dataset. Hanzely
and Richtárik [33] initially proposed algorithm L2GD that mixes local and global models while
reducing the overall communication. Fallah, Mokhtari, and Ozdaglar [32] suggested PER-FEDAVG

as a personalized version of FEDAVG that easily alters the global model to suit local datasets, and
Dinh, Tran, and Nguyen [31] conceived PFEDME, which regularizes local losses using Moreau
envelopes. In particular, our work shares a similarity with algorithm FEDU, introduced by Dinh
et al. [37] and proposed as a generalization of several works made in the direction of personalized
federated learning. Specifically, FEDU performs a regularization step at the end of each round that
uses a generic laplacian graph representation of the federated network to smooth local iterates. On
the other hand, by relying on a specific graph representation based on statistical clients’ similarities
(Section 3.2.2), we disrupt the local optimization structure by exploiting a perturbed gradient
update whose argument minimizes the local variability relative to the iterates of neighboring
clients, and we show that this strategy expedites convergence by some margin. Lastly, FEDU is
entirely decentralized, and clients independently optimize their local objectives. In contrast, our
approach is fully centralized.

Multi-task federated learning Multi-task federated learning aims to learn multiple models
concomitantly where each corresponds to a task (node in a network). This strategy leverages
existing relationships between the nodes of a network, such as statistical affinity or availability.
For instance, Smith et al. [17] introduced the multi-task framework MOCHA that accounts for
issues related to communication expense or partial participation. Marfoq et al. [40] proposed
an EM-based algorithm that assumes that local samples belong to a mixture of unknown data
distributions. Concerning multi-task learning, our novel framework explores how convergence
and generalization benefit from defining node relationships as mutual statistical similarities based
on an inherent graph structure.

4.3.1 Intuitive idea

The core concept is to complete an inexact local optimization on each agent. This translates to
making perturbed moves at each local iteration k. Specifically, the update step is performed by
taking into consideration the minimization of the variability against other neighboring agents.
The idea of neighborhood refers to those agents who share a remarkable statistical similarity
(which has already been addressed in 3.2.2 from the previous chapter). When updating the current
iterate wi

t,k, each agent i computes the local stochastic gradient in a shifted coordinate w̃i
t,k. This

encodes information about the current local iterate wi
t,k and the latest progress made by each

neighboring agent j ∈ Ni in the previous t− 1 round. Code 2 shows in detail our algorithm using
different colors to separate the code executed on the server from the one run on clients.
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1 w0,0 ← random weights initialization . global model
2 foreach client i ∈ C in parallel do
3 mi ← statistically-significant message as 3.1 . client sends his message vector
4 ui0 ← w0,0 . initialization of local averages
5 end
6 [A]in ← − ln(mis(i, n)) · 1i /=n (∀i, n ∈ C) . messages-based adjacency matrix
7 pin ← [A]in/(1

>A1) (∀i, n ∈ C) . mutual similarity weight initialization
8 pi ←

∑
n∈Ni pin (∀i ∈ C) . aggregation weight initialization

9 foreach round t = 0 to T − 1 do
10 St ← random sample of M clients from C . clients selection
11 foreach client i ∈ St in parallel do
12 wi

t,0 ← wt,0 . client receives model

13

{
ξit,0, . . . , ξ

i
t,E−1

}
← partition Di in E mini-batches

14 foreach local step k = 1 to E do
15 w̃i

t,k−1 ← βwi
t,k−1 + (1− β)uit . perturbed iterate

16 gi

(
w̃i
t,k−1

)
← ∇fi

(
w̃i
t,k−1; ξ

i
t,k−1

)
. perturbed gradient

17 wi
t,k ← wi

t,k−1 − γtgi
(
w̃i
t,k−1

)
. local optimization

18 end
19 end
20 uit+1 ← p−1i

∑
n∈Ni pinw

n
t,E (∀i ∈ C) . server updates local averages

21 wt+1,0 ←
∑

i∈St piw
i
t,E . global aggregation

22 end

Algorithm 2. Pseudocode of our algorithm. Colored instructions are executed on each client.

4.3.2 Formulation

Formally, we aim to implement an inexact local update rule of the form

wi
t,k+1 = wi

t,k − γtgi
(
w̃i
t,k

)
at step k of round t. Variable w̃i

t,k is the perturbed iterate in which the stochastic gradient is
evaluated. This forces the update that minimizes fi(w) to be executed in an imprecise direction
in relation to the starting point wi

t,k. We carry out this investigation to comprehend whether this
would benefit or harm the convergence to the global minimum w?. Particularly, the nature of w̃i

t,k

is fundamental and determines the properties of our algorithm. In this regard, we consider the
graph-based representation of a federated network that we developed in 3.2.2, and we wish to
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choose w̃i
t,k as the solution of the problem

min
w∈RD

 β

2

∥∥w −wi
t,k

∥∥2 +
1− β
2pi

∑
j ∈Ni

pij

∥∥∥w −wj
t−1,E

∥∥∥2
 (4.5)

where wj
t−1,E is the last iterate of neighboring client j from the previous round. The solution to

this formulation minimizes the distance from the exact iterate wi
t,k as well as the local variation,

namely the sum of squared deviations from the models of neighbors. In this respect, each iterate
wj
t−1,E is weighted according to the similarity measure pij ∝ [A]ij between i and j. However,

these are normalized, since are divided by pi
def

=
∑

j ∈Ni pij , which directly corresponds to the
concept of degree of agent i, when interpreted as a graph-node. Interestingly, we also choose
pi as the weighting factor for client i during aggregation. This favors agents that have a higher
degree, namely those who share many statistically similar neighbors. Additionally, those who are
generally dissimilar and are not representative of the majority will be given less importance. As a
solution of problem 4.5, we accordingly obtain

w̃i
t,k = βwi

t,k + (1− β)uit where uit
def

=
1

pi

C∑
j ∈Ni

pijw
j
t−1,E (4.6)

The central server sends uit as well as wi
t,0 = wt,0 = wt−1,E to client i at the beginning of global

round t. Note that the update rule for the average sequence wt,k is

wt,k+1 =

C∑
i=1

piw
i
t,k+1 = wt,k − γt

C∑
i=1

pigi

(
w̃i
t,k

)
(4.7)

Concerning 4.6, while uit remains fixed across the round, iterate w̃i
t,k is updated at every local

step k due to its dependence on wi
t,k. In another perspective, w̃i

t,k is the mean between the
current iterate and the weighted average of the latest updates from neighbors. Clearly, by setting
β = 1, we recover the iterative rule of FEDAVG. However, by picking β < 1, we purposefully
contaminate the progress made in each step.

Observation In order to define weights pi such that they sum up to 1 over all clients, we normalize

each similarity weight [A]ij by the quantity 1>A1, thus pij
def

= [A]ij/(1
>A1) where A is the

adjacency matrix that we defined in 3.4. Notice that 1>A1 coincides with trace(L). This quantity

is linked to the definition of statistical homogeneity that we provided in 3.2. Specifically, for any

agent i, we have pi = [A1]i/[2C(C − 1)hom(C)].

Without loss of generality, we relax expression 4.6 so that each neighborhood contains all the
agents, that is Ni ≡ C. Precisely, whenever two clients i and j are not neighbors, their connection
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4 – How perturbation affects convergence

strength pij is set to zero, and pii = 0 for any client i. In addition, all assumptions adopted for
our analysis of FEDPROX remain valid. Before exposing our main results, we present simple
preliminary statements to further ease our examination. Interestingly, lemma 4.3 states that the
average perturbed iterate corresponds to the weighted average between the current iterate wt,k

and the initial one wt,0.

Lemma 4.3 The aggregated average of perturbed iterates corresponds to

C∑
i=1

piw̃
i
t,k = βwt,k + (1− β)wt,0

at local step k of global round t.

Proof. We recall definition 4.6 and the fact that pj
def

=
∑C

i=1 pij to prove our statement.

C∑
i=1

piw̃
i
t,k = βwt,k + (1− β)

C∑
i=1

C∑
j=1

pijw
j
t−1,E

= βwt,k + (1− β)

C∑
j=1

C∑
i=1

pijw
j
t−1,E

= βwt,k + (1− β)

C∑
j=1

pjw
j
t−1,E

= βwt,k + (1− β)wt,0

This concludes the proof.

On the other hand, lemma 4.4 bounds the deviation between the averages of the latest neighbors’
updates for two different clients i and j. The result has a curious dependence on the step size γt−1
from the previous global round.

Lemma 4.4 At round t, the deviation between uit and ujt follows the rule

E
∥∥∥uit − ujt

∥∥∥2 ≤ 1t≥ 14γ
2
t−1E

2G2

for any pair of agents i, j ∈ C. In addition, assume 4.1 to 4.4 hold.

Proof. The first case, when t = 0 is trivial, since uit = w0,0 for every agent i. Therefore, the
deviation between uit and ujt would be zero. For t ≥ 1, we introduce variable wt−1,0 and we
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indicate the aforementioned deviation as ∆uijt .

∆uijt =
∥∥∥uit − ujt

∥∥∥2
=
∥∥∥uit −wt−1,0 + wt−1,0 − ujt

∥∥∥2
≤ 2
∥∥uit −wt−1,0

∥∥2 + 2
∥∥∥ujt −wt−1,0

∥∥∥2 (4.8)

≤ 2

∥∥∥∥∥ 1

pi

C∑
l=1

pilw
l
t−1,E −wt−1,0

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

pj

C∑
l=1

pjlw
l
t−1,E −wt−1,0

∥∥∥∥∥
2

(4.9)

≤ 2

pi

C∑
l=1

pil

∥∥∥wl
t−1,E −wt−1,0

∥∥∥2 +
2

pj

C∑
l=1

pjl

∥∥∥wl
t−1,E −wt−1,0

∥∥∥2 (4.10)

where we use Young’s inequality in equation 4.8, definition 4.6 in 4.9, and Jensen’s inequality in
4.10. We replace wl

t−1,E −wt−1,0 in equation 4.11 using recursion.

∆uijt ≤
2

pi

C∑
l=1

pil

∥∥∥∥∥−γt−1
E−1∑
k=0

gl

(
w̃l
t,k

)∥∥∥∥∥
2

+
2

pj

C∑
l=1

pjl

∥∥∥∥∥−γt−1
E−1∑
k=0

gl

(
w̃l
t,k

)∥∥∥∥∥
2

(4.11)

≤ 2γ2t−1E

pi

C∑
l=1

pil

E−1∑
k=0

∥∥∥gl(w̃l
t,k

)∥∥∥2 +
2γ2t−1E

pj

C∑
l=1

pjl

E−1∑
k=0

∥∥∥gl(w̃l
t,k

)∥∥∥2 (4.12)

We leverage Jensen’s inequality in 4.12. To conclude, we have E∆uijt ≤ 4γ2t−1E
2G2 under

expectation using assumption 4.3.

p12 ∝ [A]12 � 0

p 1
3
∝

[A
] 13
>

0 p
23 ∝

[A
]23 ≈

0

w
1
t−1,

E

u
1
t
, wt,0

w 2
t−1,E

u 2
t , w

t,0

w
3 t−

1
,E

u
3 t
,w

t,
0

D1 D2

D3

Figure 4.1. Illustration of our framework with three
clients having binary class samples, and the server
computing wt,0 and each uit at every round t.

Additionally, the following lemma 4.5 bounds
the deviation of a locally perturbed iterate from
the global average one. This result, as well as
the one from the previous lemma 4.4, will help
us to present our main convergence claims.

Lemma 4.5 The deviation between wt,k and

w̃i
t,k is bounded as

E
∥∥∥wt,k − w̃i

t,k

∥∥∥2 ≤ 4γ2tE
2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

for any agent i ∈ C at step k of round t. More-

over, assume 4.1 to 4.4 hold.
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Proof. Denoting D̃i
t,k =

∥∥∥wt,k − w̃i
t,k

∥∥∥2, we use our lemma 4.3 to replace wt,k in 4.13.

D̃i
t,k =

∥∥∥∥∥∥ 1

β

C∑
j=1

pj

(
w̃j
t,k − w̃i

t,k

)
+

(
1− 1

β

)(
wt,0 − w̃i

t,k

)∥∥∥∥∥∥
2

(4.13)

≤ 2

β2

∥∥∥∥∥∥
C∑
j=1

pj

(
w̃j
t,k − w̃i

t,k

)∥∥∥∥∥∥
2

+ 2

(
1− 1

β

)2
∥∥∥∥∥∥
C∑
j=1

pjw̃
j
t,0 − w̃i

t,k

∥∥∥∥∥∥
2

(4.14)

≤ 2

β2

C∑
j=1

pj

∥∥∥w̃j
t,k − w̃i

t,k

∥∥∥2︸ ︷︷ ︸
A

+2

(
1− 1

β

)2 C∑
j=1

pj

∥∥∥w̃j
t,0 − w̃i

t,k

∥∥∥2︸ ︷︷ ︸
B

Again, using 4.3 with k = 0, we leverage the fact that wt,0 =
∑C

j=1 pjw̃
j
t,0 to rewrite wt,0 in

expression 4.14. First, we bound the term A as

A =
∥∥∥β(wj

t,k −wi
t,k

)
+ (1− β)

(
ujt − uit

)∥∥∥2
=

∥∥∥∥∥−γtβ
k−1∑
m=0

(
gj

(
w̃j
t,m

)
− gi

(
w̃i
t,m

))
+ (1− β)

(
ujt − uit

)∥∥∥∥∥
2

(4.15)

≤ 2γ2t β
2

∥∥∥∥∥
k−1∑
m=0

(
gj

(
w̃j
t,m

)
− gi

(
w̃i
t,m

))∥∥∥∥∥
2

+ 2(1− β)2
∥∥∥ujt − uit

∥∥∥2 (4.16)

≤ 2γ2t β
2k

k−1∑
m=0

∥∥∥gj(w̃j
t,m

)
− gi

(
w̃i
t,m

)∥∥∥2 + 2(1− β)2
∥∥∥ujt − uit

∥∥∥2 (4.17)

≤ 4γ2t β
2k

k−1∑
m=0

[∥∥∥gj(w̃j
t,m

)∥∥∥2 +
∥∥∥gi(w̃i

t,m

)∥∥∥2]+ 2(1− β)2
∥∥∥ujt − uit

∥∥∥2 (4.18)

using recursion on the update rule in expression 4.15, Young’s inequality in 4.16, Jensen’s
inequality in 4.17, Young’s inequality again in 4.18. Eventually, we recall assumption 4.3 and the
result of lemma 4.4 as well as the fact that k ≤ E to bound EA ≤ 8γ2t β

2E2G2 +1t≥ 18γ
2
t−1(1−

β)2E2G2. Let us focus on term B.

B =

∥∥∥∥∥γtβ
k−1∑
m=0

gi

(
w̃i
t,m

)
+ (1− β)

(
ujt − uit

)∥∥∥∥∥
2

(4.19)

≤ 2γ2t β
2

∥∥∥∥∥
k−1∑
m=0

gi

(
w̃i
t,m

)∥∥∥∥∥
2

+ 2(1− β)2
∥∥∥ujt − uit

∥∥∥2 (4.20)
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≤ 2γ2t β
2k

k−1∑
m=0

∥∥∥gi(w̃i
t,m

)∥∥∥2 + 2(1− β)2
∥∥∥ujt − uit

∥∥∥2 (4.21)

In equation 4.19, using definition 4.6, we exploit the fact that

w̃j
t,0 = βwt,0 + (1− β)ujt

w̃i
t,k = βwt,0 − γtβ

k−1∑
m=0

gi

(
w̃i
t,m

)
+ (1− β)uit

In addition, we use Young’s inequality in equation 4.20, again Jensen’s inequality in 4.21, and
fact k ≤ E. Finally, using assumption 4.3 and result of lemma 4.4, we are able to bound term
EB ≤ 2γ2t β

2E2G2 + 1t≥ 18γ
2
t−1(1− β)2E2G2. Combining the bounds on A and B together in

the main expression gives

E D̃i
t,k ≤ 16γ2tE

2G2 +
1t≥ 116γ2t−1E

2G2

β2
[
(1− β)2 + (1− β)4

]
+ 4γ2t (1− β)2E2G2

Using approximation (1− β)4 ≤ (1− β)2 since β ∈ (0, 1), we obtain the desired result.

4.3.3 Convex convergence analysis

In this part, we dive into the theoretical analysis of our algorithm. Analogously to the exposition
of the results for FEDPROX, we simply present our convergence rates for strongly convex losses,
and we leave the proofs in the appendix C.

Theorem 4.4 (Convergence of our algorithm for strongly convex loss) Let assumptions 4.1

to 4.5 hold. We run our algorithm with the parameter β ∈ (0, 1).

I) When adopting fixed step size γ =
1

2LE
for t ≥ 0, we have the following rate.

E f(wt,0)− f? ≤
L∆

µ

[
1− µ

(β + 2)L

]t
+
Sσ2

4µ
+

3LΓ

2µ
+

2AE2G2

µ
+
β(1− β)EG2

8L

where A def

= 4 + (1− β)2 + 8

(
1− 1

β

)2

.

II) Using diminishing step size γt =
4

µE(8L/µ+ t)
for t ≥ 0 yields

E f(wt,0)− f? ≤
L

µ

[
8L/µ

8L/µ+ t

][
∆ +

Sσ2

LE
+

6Γ

E
+

8AEG2

L
+
µβ(1− β)G2

2L2

]
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where A = 4 + (1− β)2 + 32

(
1− 1

β

)2

.

In addition, we denote ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. See proof in C.2.

The error term of our algorithm has an evident dependence on (1− 1/β)2. This forces the error
to grow at a rate of O(1/β2) as β becomes smaller. This reveals a potential limitation of our
approach. We defer such a discussion to section 4.4 of this chapter.

Lower bounding the complexity on a specific class of problem In a similar fashion to theorem
4.2, we present a lower bound for our algorithm on the same class of one-dimensional and strongly
convex problems. Once again, we adopt some restrictions to simplify our dissertation such as the
initialization step uit

def

= wt,0, and we consider the case where a step size γ ≤ 1/(µE) is utilized.
This allows for further comparisons in section 4.4 regarding the nature of the exposed rates.

Theorem 4.5 (Lower bound of our algorithm for some strongly convex loss) For all µ, σ,G ∈
R>0, β ∈ (0, 1), E ≥ 2, C ≥ 2, an initial point w0,0 and any step size γ ≤ (µE)−1, there

exists a positive A ≤ 1− e−1 and a µ/2-strongly convex objective f(w) where our algorithm

with parameter β satisfies the following claim for any t ≥ 0.

E f(wt,0)− f? ≥ min

{
∆

(
β

4

)2t

,
1

(t+ 1)2

[
3A2G2

128E2µ
+

3Sσ2

64Eµ

]}

Ultimately, we define ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. See proof in C.4.

4.3.4 Nonconvex convergence analysis

This part is dedicated to the study of our algorithm in a nonconvex regime. We present the results
similarly to the nonconvex analysis of FEDPROX in 4.2.3.

Theorem 4.6 (Convergence of our algorithm for nonconvex loss) Supposing that 4.1 to 4.4

and 4.6 hold, we run our algorithm with parameter β ∈ (0, 1) for T ≥ 1 rounds.

I) We choose fixed step size γ =
1

2L
√
TE

. Hence, we have

E ‖∇f(ŵT )‖2 ≤ 1√
T

[
4L∆√
E

+
Sσ2

2
√
E

]
+
EG2

T

[
4 + (1− β)2 + 8

(
1− 1

β

)2
]
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where ŵT is uniformly chosen from {wt,k }t,k for 0 ≤ k ≤ E − 1 and 0 ≤ t ≤ T − 1.

II) When using decreasing step size γt =
1

2L
√
E(t+ 1)

for t ≥ 0, we attain

E ‖∇f(ŵT )‖2 ≤ 1

ln(T + 1)

[
4L∆√
E

+
Sσ2√
E

+
3EG2

8

[
4 + (1− β)2 + 32

(
1− 1

β

)2
]]

where we sample ŵT from {wt,k }t,k uniformly in relation to 0 ≤ k ≤ E − 1, and with

probability γt/Σ concerning 0 ≤ t ≤ T − 1. Further, Σ =
∑T−1

r=0 γr.

Moreover, we have ∆ = f(w0,0)− finf and S def

=
∑C

i=1 p
2
i .

Proof. See proof in C.3.

Once more, we make a calculated decision concerning the step size in order to stay consistent
with the analysis carried out in section 4.2.3. Furthermore, as Yu, Yang, and Zhu [22] did in the
analysis of local stochastic gradient descent for FEDAVG, we might question if there is an optimal
Eopt depending on known T that further minimizes the error complexity. The following result
affirmatively answers our inquiry.

Corollary 4.1 Consider the case I from theorem 4.6, and choose a number of local steps

E = O(T 1/3). Then, the error asymptotically decreases as O(T−2/3).

Proof. We rewrite the convergence rate from the case I of theorem 4.6 as a function of E, namely
r(E) = A/

√
TE +BE/T where

A = 4L∆ + Sσ2/2 and B = G2

[
4 + (1− β)2 + 8

(
1− 1

β

)2
]

Minimizing r(E) in relation to E leads to the critical point Eopt = [A/(2B)]2/3T 1/3. After
replacing Eopt in r(E), we obtain r(Eopt) = 3/22/3A2/3B1/3T−2/3. We conclude by ignoring
the constants that depend on A and B in the O(·) notation.

4.4 Discussion

In this part, we point out the main insights from the analysis of our algorithm. Moreover, based
on our studies of their theoretical performances, we compare our approach with FEDAVG and its
proximal generalization FEDPROX.
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The antithetic role of α and β in the strongly convex case In the first place, we inspect the
contraction rate of FEDPROX and our algorithm for fixed step size. We recall the results obtained
from theorems 4.1 and 4.4. Interestingly, we have(

1− µ

(β + 2)L

)t
︸ ︷︷ ︸

Ours

≤
(

1− µ

3L

)t
︸ ︷︷ ︸

FEDAVG

≤
(

1− µ

3(α+ L)

)t
︸ ︷︷ ︸

FEDPROX

for any choices of β ∈ [0, 1] and α ≥ 0. Specifically, the same contraction rate, that is (1 −
µ/(3L))t, is attained in both cases for β = 1 and α = 0, respectively. From these specific choices,
we retrieve the FEDAVG base case. Curiously, this suggests that any choice of α > 0 would
worsen the contraction rate for FEDPROX, making it inevitably larger than FEDAVG’s one but no
larger than 1. On the other hand, choosing positive β < 1 would improve the contraction rate for
our algorithm. Indeed, it would be smaller than (1− µ/(3L))t but no smaller than (1− µ/(2L))t.
Therefore, does this mean that our algorithm has generally a better convergence rate than FEDAVG

and FEDPROX? Not exactly, indeed, decreasing β up to 0 does boost the contraction factor, yet it
dramatically aggravates the asymptotic error, due to the presence of terms depending on 1/β2,
which is undeniably a theoretical drawback of our algorithm. Contrarily, for FEDPROX, increasing
α would shrink its asymptotic error because of factor L/(α+ L).

Optimal number of local steps for strongly convex losses As already highlighted and dis-
cussed by Li et al. [27] concerning the convergence of FEDAVG for strongly convex losses, it is
possible to determine an efficient value of E that minimizes the vanishing error term when using
decreasing step size. This is again confirmed in our analysis for both FEDPROX and our algorithm,
respectively in theorems 4.1 and 4.4 (case II). Such a vanishing error term is often in the form

Aσ2

E
+
BΓ

E
+ CEG2

where A, B and C are problem specific constants. This quantity is minimized when

E =
1

G

√
Aσ2

C
+
BΓ

C

which reasonably hints that the smaller the norm of the stochastic gradient, then the larger the
number of local steps required in a single round. Furthermore, less local epochs are required when
the stochastic variance and the statistical heterogeneity are less significant.

What the lower bounds tell us about the contraction rates In theorems 4.2 and 4.5, for a
chosen class of strongly convex problem, we derive the lower bounds on the error committed at
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round t by FEDPROX and our algorithm, respectively. Notably, in both algorithms, the contraction
of the initial optimality gap ∆ exhibits a behavior that is consistent with the results on the upper
bounds from 4.1 and 4.4 (case I).(

β

4

)2t

︸ ︷︷ ︸
Ours

≤
(

1− 3µ

4(α+ µ)

)2t

︸ ︷︷ ︸
FEDPROX

Setting α = 0 (FEDPROX) or β = 1 (our algorithm) yields the lower bound related to the
contraction of the optimality gap for FEDAVG, that is Ω(∆/42t).

Attaining ε-accuracy in the nonconvex scenario In this paragraph, we limit our consideration
to theorems 4.3 and 4.6 (case I). In particular, we wonder how the minimum number of iterations
Tε changes across the studied algorithms to achieve an ε-accuracy, namely E ‖∇f(ŵT )‖2 ≤ ε. In
this regard, FEDPROX requires a minimum number of iterations that grows asymptotically as

O
(

64L2
α∆2

Eε2

)
+O

(
L2S2σ4

L2
αEε

2

)
+O

(
α2E3G4

L2
αε

2
+

2L2EG2

L2
αε

+
α4/3L2/3E1/3G4/3

162/3L2
αε

2/3

)
.

The existence of terms O(G4/ε2) and O(G4/3/ε2/3) is uniquely motivated by parameter α > 0.
Further, the former could potentially be a major factor in slowing down convergence. Indeed, these
additive contributions are absent in FEDAVG. Contrarily, our algorithm presents the following
complexity to satisfy the same ε-accuracy.

O
(

16L2∆2

Eε2

)
+O

(
S2σ4

4Eε2

)
+O

(
EG2

ε

[
4 + (1− β)2 + 8

(
1− 1

β

)2
])

Under the hypothesis of a limited magnitude of the last term for a given value of β ∈ (0, 1),
we observe that the iteration complexity is asymptotically inferior compared with FEDPROX.
However, we remark that any β close to 0 would degrade the bound with a rate of O(1/β2).

4.5 Experimentation

In this section, we put into practice the theory that we developed to support our framework.
Specifically, we conduct multiple experiments on different datasets to extensively assess the
performance of our algorithm, and we compare this against FEDAVG (FEDPROX with α = 0).
Our goal is to empirically measure both the convergence speed of the considered algorithms as
well as their capacity to generalize on unseen data. In this respect, we rely on the same dataset
generation process presented in chapter 3. Finally, we argue about the potential advantages and
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Table 4.1. Grid of parameters used for the convergence simulations on FEMNIST and CIFAR10.
We use this grid to compare our algorithm against the baseline methods and to study the effect of
the variation of both E and G on our algorithm while keeping the other parameters fixed.

FEMNIST CIFAR10

A Federated algorithm FEDAVG, Ours FEDAVG, Ours
W Aggregation scheme ADJACENCY ADJACENCY

α Proximal parameter 0 0
β Our algorithm’s parameter 0.5, 0.7, 0.9 0.5, 0.7, 0.9
γ Local step size 10−3 10−3

λ L2 regularization 10−4 10−4

B Minibatch size 256 256
C Number of clients 100 100
E Number of local epochs 10 10
T Number of rounds 200 200
κ−1 Class imbalance 0, 10 0, 100
φ2 Data imbalance 0, 1 0, 1
c Convergence threshold 0.75 0.30
s Random seed 0 0

limitations of our method in practice.

4.5.1 Settings

We repeat our main experiment on every dataset D for each federated algorithm A. Specifically,
we run T global iterations, namely rounds, on C agents where each one undertakes E local
optimization steps on its dataset. We clarify that all clients participate in the optimization process.
As in the work carried out by Reddi et al. [34] on adaptive federated algorithms, every agent
passes over its entire dataset sampling minibatches of size |B| for E epochs instead of estimating
E stochastic gradients once per round. In addition, we leverage a local and fixed step size γ and
the L2 penalty coefficient λ. No gradient clipping is applied, even though this would ensure that
assumption 4.3 holds. Finally, we implement the ADJACENCY scheme to aggregate the updates
from the clients. This scheme defines clients’ weights pi and similarities pij as in 3.2.2 and 2.

Implementation To implement the algorithms, we used the Pytorch library from Paszke et al.
[28]. All experiments were scheduled on an Ubuntu 22.04 laptop mounting 16GB DDR4 RAM,
Intel Core i7-7500U CPU 2.7GHz processor, and Nvidia GeForce 940MX (2GB VRAM) GPU.
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Each single run took roughly 9 to 24 hours when enabling the CUDA accelerator.

4.5.2 Datasets

To train and validate the performance of the optimization algorithms, we use some of the federated
datasets from section 3.4.2 of the previous chapter, namely CIFAR10 and FEMNIST (only the
subset associated with the 10 digits classes). Each dataset D is partitioned into training and
testing subgroups (approximately 80:20 split). Each subgroup is further divided among C agents
according to the class and data imbalance parameters (replicating the same process exposed
in 3.4.1 to inject statistical heterogeneity in the generation of such local subsets). Ultimately,
"training" clients are uniquely employed for learning the model while "testing" clients for its
evaluation on local subsets. Such an arrangement allows us to gauge the generalization capabilities
of each algorithm A and the relative learned model.

4.5.3 Loss objective

In this part, we describe the two kinds of loss functions that we use in practice conforming with
our convex and nonconvex theoretical analysis.

Strongly convex Since part of our theoretical analysis applies to smooth and strongly convex
loss objectives, we employ a multinomial logistic regression model with L2 penalty of the
parameters w def

= {vk }Kk=0 where each vk ∈ RD for k = 0, . . . ,K. We denote the number of
classes as K, and dataset Di def

= { (xn,yn) }Nin=1 for each agent i ∈ { 1, 2, . . . , C }. Therefore, we
define the local loss function for agent i as follows.

fi(w)
def

=
1

Ni

Ni∑
n=1

`(w; (xn,yn)) +
λ

2

K∑
k=0

‖vk‖2

Notice that the label vector y is a one-hot encoded vector where the true class is 1 and other
entries 0. In addition, we deliberately decide to include the bias v0 in the computation of the linear
mappings, where ei is the i-th column vector of the canonical basis. The sample loss `(w; (x,y))

is chosen as the cross entropy on the output of the multinomial logistic regression, that is

`(w; (x,y))
def

= −
K∑
k=1

yk

[
zk − ln

[
K∑
s=1

exp(zs)

]]
where zi

def

= v>i x + v>0 ei.

The predicted class is chosen as arg maxk(zk).
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Table 4.2. Numerical results on FEMNIST and CIFAR10. We compare FEDAVG (FEDPROX with
parameter α = 0), and our algorithm Ours{β} with parameter β ∈ { 0.5, 0.7, 0.9 }.

Convex Testing accuracy (%) / Rounds to converge (speedup)

CIFAR10 FEMNIST

Balanced Imbalanced Balanced Imbalanced

FEDAVG
Yes 38.70 / 11 (1.0×) 36.53 / 20 (1.0×) 84.42 / 28 (1.0×) 80.20 / 80 (1.0×)

No 36.14 / 68 (1.0×) 34.04 / 74 (1.0×) 86.07 / 44 (1.0×) 80.94 / 94 (1.0×)

Ours{0.9}
Yes 38.68 / 11 (1.0×) 36.67 / 19 (1.0×) 84.48 / 27 (1.0×) 80.40 / 79 (1.0×)

No 36.15 / 68 (1.0×) 34.26 / 72 (1.0×) 86.15 / 43 (1.0×) 81.05 / 87 (1.1×)

Ours{0.7}
Yes 38.70 / 11 (1.0×) 36.98 / 18 (1.1×) 84.54 / 24 (1.2×) 80.81 / 67 (1.2×)

No 36.16 / 68 (1.0×) 34.87 / 68 (1.1×) 86.25 / 41 (1.1×) 81.21 / 80 (1.2×)

Ours{0.5}
Yes 38.67 / 11 (1.0×) 37.49 / 15 (1.3×) 84.57 / 23 (1.2×) 81.24 / 50 (1.6×)

No 36.13 / 68 (1.0×) 35.37 / 63 (1.2×) 86.26 / 39 (1.1×) 81.43 / 80 (1.2×)

Nonconvex In a nonconvex scenario, we choose an elementary neural network with a single
hidden layer composed of 128 neurons using ReLU activation. The input layer accepts flattened
images and the output layer emits class probabilities fed to a cross entropy loss. Moreover, the
weights are subject to L2 regularization as in the strongly convex case.

4.5.4 Validation metrics

To measure how well each algorithm generalizes on unseen (testing) clients, we compute the
accuracy of the learned model as the weighted average of each client’s accuracy using the local
amount of samples as weights. Additionally, to evaluate the convergence speed, we count the
required number of rounds such that the accuracy exceeds 75% (30%) on FEMNIST (CIFAR10).

4.5.5 Results

In this section, we analyze the results of our simulations, and we question whether our experiments
confirm the theoretical claims that we demonstrated in this chapter.

Decreasing β does improve convergence Table 4.2 shows that diminishing β positively and
consistently affects convergence on unseen data. Indeed, having β = 0.5 quite significantly
hastens convergence by 30 rounds and yields a 1.6 times speedup compared with FEDAVG. As
pictured in Figure 4.2, such an empirical outcome corroborates our theoretical result concerning
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strongly convex objectives. As already discussed, concerning the exponentially decaying term,
our algorithm has a faster contraction factor than FEDAVG (α = 0) or FEDPROX (α > 0) for
comparable step sizes, which explains why it accelerates as we increase the perturbation by
decreasing β.
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Figure 4.2. Simulation of FEDAVG and our algorithm on FEMNIST dataset. We display both the
testing loss and accuracy for balanced and imbalanced scenarios. We explicitly zoom in on regions
of interest within the displayed plots.

Our algorithm is more effective on heterogeneous data Contrarily to the imbalanced case,
Table 4.2 evinces that the relative improvement shown by our algorithm in the analyzed balanced
scenario is marginal, and the gain in accuracy over unseen clients is almost nonexistent after T
rounds. Figure 4.2 highlights that the trajectory of the convex loss is relatively stable and smooth
as far as β ∈ { 0.7, 0.9 }. Instead, when β = 0.5, the same curve becomes comparatively unstable.
Reducing β magnifies error term O(G2/β2) (see 4.4). Why is this episode less relevant in the
imbalanced case? If we adapt our empirical result to the theory, we might expect heterogeneity
term O(Γ) to significantly outweigh O(G2/β2) in imbalanced settings. Contrarily, when Γ ≈ 0

in balanced contexts, O(G2/β2) becomes dominant for smaller β, and our algorithm possibly
outshoots at every step, which could explain the repeated trajectory correction that generates
visible oscillations in the testing accuracy plot.

The efficacy of our algorithm persists as E changes In this set of experiments, we test our
algorithm and FEDAVG for T = 50 rounds on unseen data in imbalanced scenarios when using
the multinomial logistic regression as strongly convex loss. We again draw the values of the
parameters from Table 4.1. We only vary the number of epochs E ∈ { 1, 5, 10, 20 } devoted to
local optimization on each client, and our algorithm’s parameter β ∈ { 0.5, 0.7 }. Differently
from our theoretical results where γ ∝ 1/E, we keep the same step size γ = 10−3 across all
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Figure 4.3. We run FEDAVG and our algorithm for multiple values of β on the imbalanced
FEMNIST, specifically on unseen clients. We vary the number of local epochs E using
our strongly convex loss.
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Figure 4.4. We run the same strongly convex simulation of Figure 4.3 on the imbalanced CIFAR10.

experiments, regardless of the value of E. Figure 4.3 and 4.4 show that our algorithm consistently
improves over FEDAVG for multiple configurations of E.

Studying the effect of gradient clipping on our algorithm We now consider studying the
performance of our algorithm in comparison with the baseline FEDAVG on unseen clients (testing
dataset) as we vary the maximum allowed norm G ∈ { 1.0, 10.0,∞ (unbounded) } of stochastic
gradients. We accomplish this task by applying the gradient clipping operation implemented
by PyTorch. For this simulation, we consider the strongly convex loss, namely the multinomial
logistic regression, and we pick β ∈ { 0.5, 0.7 }. We again run the experiments for T = 50 rounds
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Figure 4.5. In this strongly convex simulation on the imbalanced FEMNIST, we observe the
behavior of the baseline FEDAVG and our algorithm when gradient clipping is applied. Specifically,
we set the maximum norm of the stochastic gradient as G in each depicted experiment. Having
G = 1.0 significantly slows down convergence.
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Figure 4.6. As in figure 4.5, we run the same strongly convex simulation on the
imbalanced CIFAR10. We observe that the consequence of clipping the gradient is
practically imperceptible when G ≥ 10.

on the imbalanced datasets. We choose all the other parameters from Table 4.1. From Figure 4.5
and 4.6, we discern that our algorithm performs comparably to the baseline if not better.

How the step size impacts the stability of convergence We now assess how the convergence
our algorithm for β ∈ { 0.5, 0.7, 0.9 } is affected when employing a different step size γ ∈
{ 10−3, 10−2, 10−1 } in the strongly convex case. Once more, we utilize FEDAVG as our baseline,
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Figure 4.7. We vary the step size when running our algorithm with a strongly convex loss, namely
the multinomial logistic regression, on the imbalanced FEMNIST dataset.
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Figure 4.8. On the imbalanced CIFAR10 dataset, we run the same set of experiments of Figure 4.7.

and we run these simulations for T = 50 rounds on the imbalanced CIFAR10 and FEMNIST
datasets. All other parameters are fixed and chosen from Table 4.1. In both Figure 4.7 and 4.8,
we observe that the combination of the step size γ and the perturbation parameter β is crucial to
guarantee a stable convergence for our algorithm. Precisely, and in line with our theoretical result
from theorem 4.4, a large step size γ and small β (high perturbation) imply evident spikes in the
(testing) loss and accuracy curves. However, when β is sufficiently large (minimal perturbation)
and the step size is limited enough, our algorithm visibly performs better than FEDAVG.

64



4.6 – Limitations

4.6 Limitations

We already argued that the major theoretical defect of our method is given by term O(G2/β2),
which worsens the convergence rates from theorems 4.4 and 4.6. It is also worth mentioning that
our procedure has a higher communication cost than FEDAVG or FEDPROX since the amount of
data exchanged over the network includes the current global iterate wt,0 ∈ RD plus an additional
component uit ∈ RD related to neighboring information, thus the expense still increases linearly
with the dimensionality of the data. Practically, exchanging an initial message mi summarizing
the statistical nature of the local dataset might be problematic in relation to privacy constraints and
data leak risks. Accordingly, advanced strategies should be undertaken to preserve confidentiality
in real-world applications.

4.7 Brief summary

In section 4.2, we analyze the popular FEDPROX algorithm as a generalization of FEDAVG with
proximal updates, and we provide its convergence rates for strongly convex and nonconvex loss
objectives. Subsequently, in section 4.3, we introduce our framework that leverages a perturbed
gradient step to integrate information related to statistically similar clients into the update rule.
We prove that this introduced adaptation provides a faster contraction rate than FEDAVG and
FEDPROX in the strongly convex case, and we discuss the attained results in 4.4. In section
4.5, we present the empirical evidence about the performance of our algorithm on the CIFAR10
and FEMNIST datasets in the convex and nonconvex scenarios. We utilize FEDAVG, namely
FEDPROX with α = 0, as a term of comparison across the simulations. We show that our
algorithm consistently hastens convergence compared with the baseline while modestly improving
generalization. Lastly, we face the practical limitations affecting our framework in section 4.6.
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5
Conclusions

We conclude this dissertation by restating the purpose and utility of our contributions.

5.1 A novel outlook on data heterogeneity

In chapter 3, we suggest an unconventional way to look at data heterogeneity in the context of a
federated network. Our approach is rather practical and requires clients to exchange messages
that significantly represent their local datasets. By computing the dissimilarities among these
messages, namely client misalignments, we define a measure called network homogeneity, which
quantifies the degree of non-heterogeneity of the network. When rethinking any network as a
similarity graph, we reveal that the network homogeneity has a spectral interpretation related to
the distribution of the associated laplacian eigenvalues.

We proceed by studying the displacement of the laplacian spectrum associated with the graph
of the network when the distribution of the client misalignments is affected by a perturbation.
In simple words, we assess how the distribution of the eigenvalues is shifted when we alter the
network homogeneity by increasing the extent of heterogeneity among clients’ local datasets.
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Ultimately, we visualize the numerical results concerning the displacement of the distribution
of client misalignments as well as laplacian eigenvalues as we manually increase the degree of
imbalance in the generation of the federated datasets. In this regard, we employ the CIFAR10,
CIFAR100, and FEMNIST datasets.

5.2 Balancing convergence stability and perturbation

As pointed out by Wang et al. [41], an intrinsic problem of federated learning is represented by
the update operation each client independently carries out for multiple local steps. McMahan et al.
[14] introduced this scheme as FEDAVG, where each client undertakes more than one stochastic
gradient update to reduce the synchronization steps with the server and thus the communication
cost. However, when the server aggregates the computed updates from the clients, the whole
procedure results in an inexact gradient descent in terms of the average iterate wt,k since the
clients evaluate local gradients in their respective local iterates in place of wt,k. We discuss in
Section 4.3 how previous works attack this issue and the related client drift phenomenon.

Nevertheless, our new approach from chapter 4 is different yet elementary regarding how it
addresses the previously mentioned problem and corrects the optimization procedure performed
on each client’s device. To better mimic the classic and centralized stochastic gradient descent, we
believe it is worth finding a locally perturbed iterate w̃i

t,k closer than wi
t,k to the global average

wt,k. Specifically, we realign locally computed gradients through calculated and "personalized"
perturbations that carry information about other clients based on statistical affinity. We introduce
our framework in detail in Section 4.3.

Both theorem 4.4 and 4.6 highlight how much we have to pay in terms of expected convergence
error when raising the extent of perturbation (by reducing β). In other words, a higher perturbation
implies injecting more mutual similarity information uit into the update, to the detriment of
wi
t,k. We achieve this by defining the perturbed iterate as the weighted mean βwi

t,k + (1− β)uit.
Although our theoretical results agree that lowering β destabilizes the convergence to optimality,
the empirical evidence shows that the proposed scheme consistently outperforms the baseline
FEDAVG across multiple scenarios when making an appropriate choice of β (sufficiently large)
and γ (sufficiently small).

However, it becomes clear that our method has a more general and simple structure that can be
useful in developing other federated algorithms. In this respect, there are no limitations on how
the perturbed iterate w̃i

t,k can be defined, and we present a possible and specific way to do so.
We hope such a consideration opens up unexplored possibilities for devising algorithms where
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clients implement more informed optimization steps while complying with the communication
and privacy constraints imposed by federated learning.
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A
Inequalities

In this appendix, the inequalities that are leveraged to write our proofs are presented. We invite
the reader to consult Bubeck [10] for general details on convex optimization, and Calafiore and
Ghaoui [11] for additional information on the inequalities shown below.

Convex, smooth and differentiable inequalities Let f : RD → R be differentiable, convex
and L-smooth. Then f satisfies

1

L
‖∇f(w)−∇f(v)‖2 ≤ (∇f(w)−∇f(v))>(w − v) ≤ L‖w − v‖2

for any v,w ∈ RD. Also, when f admits a minimum w?, the following holds.

1

2L
‖∇f(w)‖2 ≤ f(w)− f(w?) ≤

L

2
‖w −w?‖2
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Linear combination of smooth functions Let fi : RD → R be and Li-smooth for i =

1, 2, . . . , N . In addition, we define

f(w) =

N∑
i=1

λifi(w)

for some λ1, λ2, . . . , λN such that
∑N

i=1 λi = 1. Then f is smooth with parameter
∑N

i=1 λiLi.

Strongly convex and differentiable inequalities Let f : RD → R be differentiable, µ-strongly
convex. Thus f surely admits one unique minimum w? and f satisfies

µ

2
‖w −w?‖2 ≤ f(w)− f(w?) ≤

1

2µ
‖∇f(w)‖2

for any v,w ∈ RD and the following also holds

1

2µ
‖∇f(w)‖2 ≤ f(w)− f(w?) ≤

µ

2
‖w −w?‖2

Jensen’s inequality Let f : RD → R convex. Then f satisfies

f

(
n∑
i=1

λiwi

)
≤

n∑
i=1

λif(wi)

for any λi ≥ 0 such that
∑n

i=1 λi = 1.

Cauchy-Schwartz’s inequality Given any vectors v,w ∈ RD, then

−‖v‖ · ‖w‖ ≤ v>w ≤ ‖v‖ · ‖w‖

Young’s inequality Given any numbers a, b, the following holds.

ab ≤ 1

2
a2 +

1

2
b2

Peter–Paul’s inequality Given any numbers a, b and ζ > 0, the following holds.

ab ≤ 1

2ζ
a2 +

ζ

2
b2
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B
Analysis of FEDPROX

This appendix is entirely dedicated to our analysis of FEDPROX. In this regard, we repeat all the
results, and we provide our deferred proofs of them.

B.1 Preliminary results

This section includes technical lemmas that help us establish the main outcomes of our study of
FEDPROX. This first lemma bounds the local deviation of each agent in relation to the initial
iterate of the current global round.

Lemma 4.1 (Single round local deviation of FEDPROX) Assuming that γt ≤ 1/α, and 4.1 to

4.4 hold, then the local deviation in one global round satisfies

E
∥∥wi

t,k −wt,0

∥∥2 ≤ γ2tE2G2
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Proof. From the definition of local update rule

wi
t,k+1 −wt,0 = (1− αγt)

(
wi
t,k −wt,0

)
− γtgi

(
wi
t,k

)
we use dt,k to denote wi

t,k −wt,0, and we obtain by recursion

dt,k+1 = (1− αγt)dt,k − γtgi
(
wi
t,k

)
= (1− αγt)

(
(1− αγt)dt,k−1 − γtgi

(
wi
t,k−1

))
− γtgi

(
wi
t,k

)
. . .

= (1− αγt)k+1dt,0 − γt
k∑

m=0

(1− αγt)mgi
(
wi
t,k−m

)
Since wi

t,0 = wt,0, by definition dt,0 = 0. Therefore,

∥∥wi
t,k −wt,0

∥∥2 = γ2t

∥∥∥∥∥
k−1∑
m=0

(1− αγt)mgi
(
wi
t,k−1−m

)∥∥∥∥∥
2

≤ γ2t

(
k−1∑
m=0

(1− αγt)m
)

k−1∑
m=0

(1− αγt)m
∥∥gi(wi

t,k−1−m
)∥∥2 (B.1)

≤ γ2t k
k−1∑
m=0

∥∥gi(wi
t,k−1−m

)∥∥2 (B.2)

where we apply Jensen’s inequality in equation B.1, and we notice that (1− αγt)m ≤ 1 in B.2.
Finally, we bound norms of gradients recalling assumption 4.3.

E
∥∥wi

t,k −wt,0

∥∥2 ≤ γ2t k k−1∑
m=0

E
∥∥gi(wi

t,k−1−m
)∥∥2

≤ γ2t k2G2

≤ γ2tE2G2

Taking total expectation concludes our proof.

On the other hand, this second lemma bounds the local divergence of each agent with respect to
the average global iterate1.

1This deviation from the global average iterate is often named client drift in other studies.
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Lemma 4.2 (Single round local divergence of FEDPROX) Assuming that γt ≤ 1/α, and 4.1

to 4.4 hold, then the local divergence in one global round is bounded as

E
∥∥wt,k −wi

t,k

∥∥2 ≤ 4γ2tE
2G2

Proof. We apply Jensen’s inequality for ‖ · ‖2.

E
∥∥wt,k+1 −wi

t,k+1

∥∥2 = E

∥∥∥∥∥∥
C∑
j=1

piw
j
t,k+1 −wi

t,k+1

∥∥∥∥∥∥
2

≤
C∑
j=1

pi E
∥∥∥wj

t,k+1 −wi
t,k+1

∥∥∥2

Under 4.1, we denote δijt,k = wj
t,k −wi

t,k and ∆gijt,k = gi

(
wi
t,k

)
− gj

(
wj
t,k

)
. Thus, from the

definition of local update rule, we have

δijt,k+1 = (1− αγt)δijt,k − γt∆g
ij
t,k

Similarly to proof of lemma 4.1, we obtain by recursion

δt,k+1 = (1− αγt)δt,k − γt∆gijt,k
= (1− αγt)

(
(1− αγt)δt,k−1 − γt∆gijt,k−1

)
− γt∆gijt,k

. . .

= (1− αγt)k+1δt,0 − γt
k∑

m=0

(1− αγt)m∆gijt,k−m

Since wi
t,0 = wj

t,0 = wt,0, by definition dt,0 = 0. Hence,

δt,k = γ2t

∥∥∥∥∥
k−1∑
m=0

(1− αγt)m∆gijt,k−1−m

∥∥∥∥∥
2

≤ γ2t

(
k−1∑
m=0

(1− αγt)m
)

k−1∑
m=0

(1− αγt)m
∥∥∥∆gijt,k−1−m

∥∥∥2 (B.3)

= γ2t k

k−1∑
m=0

∥∥∥∆gijt,k−1−m

∥∥∥2 (B.4)

In equation B.3, we recall Jensen’s inequality, while, in equation B.4, we leverage the fact that
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(1− αγt)m ≤ 1. Therefore, we bound
∥∥∥∆gijt,k−1−m

∥∥∥2 using Young’s inequality (A) and recalling
assumption 4.3.

E
∥∥∥wj

t,k+1 −wi
t,k+1

∥∥∥2 ≤ γ2t k k−1∑
m=0

E
∥∥∥∆gijt,k−1−m

∥∥∥2
≤ 2γ2t k

k−1∑
m=0

E
[∥∥gi(wi

t,k

)∥∥2 +
∥∥∥gj(wj

t,k

)∥∥∥2]
≤ 4γ2t k

2G2

≤ 4γ2tE
2G2

After combining into B.1 and taking total expectation, we conclude our proof.

B.2 Main results for strongly convex analysis

Lemma B.1 expresses the global progress made in a single round of communication. This result
is limited to the scenario in which the local objectives are strongly convex. We felt inspired by
Wang et al. [41] to provide this intermediate lemma to aid the development of further statements.
The following result highlights the issue that arises when choosing the step size γt. Particularly, a
higher step size will rapidly shrink the previous distance from the global minimum w?, yet it will
amplify the effect of term A which reflects all the pathological properties of the federated setting,
namely the statistical heterogeneity of the network and the stochastic gradient behavior.

Lemma B.1 (Single round progress of FEDPROX, strongly convex) Assume that

γt ≤ min

{
1

2L
,

1

α+ µ

}
and 4.1 to 4.5 hold, then the progress in one global round satisfies

E ‖wt+1,0 −w?‖2 ≤ κE ‖wt,0 −w?‖2 +A

where we define κ =
α+ µ(1− γt(α+ µ))E

α+ µ
≤ 1− γtµ and

A = γ2tEσ
2

C∑
i=1

p2i + 6γ2t LEΓ + 8γ2tE
3G2
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Proof. We denote ‖wt,k −w?‖2 as Dt,k. Our aim is to arrive to the following inequality.

EDt,k+1 = aEDt,k + bEDt,0 + c

where a, b, c are problem-related coefficients. By definition of update rule 4.4, we have that

wt,k+1 −w? = (1− αγt)(wt,k −w?) + αγt(wt,0 −w?)− γt
C∑
i=1

pigi
(
wi
t,k

)
= (1− αγt)(wt,k −w?) + αγt(wt,0 −w?)− γt

C∑
i=1

pi∇fi
(
wi
t,k

)
+

γt

C∑
i=1

pi∇fi
(
wi
t,k

)
− γt

C∑
i=1

pigi
(
wi
t,k

)
︸ ︷︷ ︸

v

We have that Ev = 0 due to assumption 4.2 on unbiased stochastic gradient, thus all mixed
products of nature E

[
2v>u

]
are erased under expectation. Therefore

EDt,k+1 = (1− αγt)2 EDt,k + (αγt)
2 EDt,0+

E

2αγt(1− αγt)(wt,k −w?)
>(wt,0 −w?)︸ ︷︷ ︸

a1

+

E

−2γt(1− αγt)(wt,k −w?)
>

[
C∑
i=1

pi∇fi
(
wi
t,k

)]
︸ ︷︷ ︸

a2

+

E

−2αγ2t (wt,0 −w?)
>

[
C∑
i=1

pi∇fi
(
wi
t,k

)]
︸ ︷︷ ︸

a3

+

E

γ2t
∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+ γ2t

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)
− γt

C∑
i=1

pigi
(
wi
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a4


First, we bound term a1 using the law 2u>v = ‖u‖2 + ‖v‖2 − ‖u− v‖2. Therefore,

a1 = αγt(1− αγt)
[
Dt,k +Dt,0 − ‖wt,k −wt,0‖2

]
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≤ αγt(1− αγt)[Dt,k +Dt,0]

We bound term a2 by adding and subtracting term wi
t,k.

a2 = −2γt(1− αγt)
C∑
i=1

pi
(
wt,k −wi

t,k

)>∇fi(wi
t,k

)
+

−2γt(1− αγt)
C∑
i=1

pi
(
wi
t,k −w?

)>∇fi(wi
t,k

)
We apply Peter-Paul’s inequality on the first term of the sum and strong convexity on the second
term.

a2 ≤ γt(1− αγt)
C∑
i=1

pi

[
1

γt

∥∥wt,k −wi
t,k

∥∥2 + γt
∥∥∇fi(wi

t,k

)∥∥2]+
γt(1− αγt)

C∑
i=1

pi

[
2
(
fi(w?)− fi

(
wi
t,k

))
− µ

∥∥wi
t,k −w?

∥∥2]
By convexity of the squared norm

−µγt(1− αγt)
C∑
i=1

pi
∥∥wi

t,k −w?

∥∥2 ≤ −µγt(1− αγt)‖wt,k −w?‖2

and by smoothness of fi(·)

γ2t (1− αγt)
C∑
i=1

pi
∥∥∇fi(wi

t,k

)∥∥2 ≤ 2Lγ2t (1− αγt)
C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi

(
wi
?

))
Thus, considering that

∑C
i=1 pifi(·) = f(·), we obtain

a2 ≤ (1− αγt)
C∑
i=1

pi
∥∥wt,k −wi

t,k

∥∥2 + 2Lγ2t (1− αγt)
C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi

(
wi
?

))
+

2γt(1− αγt)
C∑
i=1

pi
(
fi(w?)− fi

(
wi
t,k

))
− µγt(1− αγt)Dt,k

We bind term a3 in a similar fashion to a2.

a3 ≤ αγ2t
C∑
i=1

pi

[
1

γt

∥∥wt,0 −wi
t,k

∥∥2 + γt
∥∥∇fi(wi

t,k

)∥∥2]+
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αγ2t

C∑
i=1

pi

[
2
(
fi(w?)− fi

(
wi
t,k

))
− µ

∥∥wi
t,k −w?

∥∥2]
= αγt

C∑
i=1

pi
∥∥wt,k −wi

t,k

∥∥2 + 2Lαγ3t

C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi

(
wi
?

))
+

2αγ2t

C∑
i=1

pi
(
fi(w?)− fi

(
wi
t,k

))
− µαγ2tDt,k

We bound term a4 directly under expectation.

E a4 = γ2t E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)
− γt

C∑
i=1

pigi
(
wi
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a41

+γ2t E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a42

To bound term ‖a41‖2, again, we apply assumption 4.2 to erase the dot products between terms in
a41 and bound the squared norms. Thus, we have

E ‖a41‖2 =

C∑
i=1

p2i E
∥∥gi(wi

t,k

)
−∇fi

(
wi
t,k

)∥∥2 ≤ σ2 C∑
i=1

p2i

Now, to bound term ‖a42‖2, we utilize Jensen’s inequality since ‖ · ‖2 is convex.

E ‖a42‖2 =

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

≤
C∑
i=1

pi E
∥∥∇fi(wi

t,k

)∥∥2
We combine these results to establish a bound for a4. Finally we apply smoothness on the squared
norm of the true gradient.

E a4 ≤ γ2t σ2
C∑
i=1

p2i + γ2t

C∑
i=1

pi E
∥∥∇fi(wi

t,k

)∥∥2
≤ γ2t σ2

C∑
i=1

p2i + 2Lγ2t

C∑
i=1

pi E
[
fi
(
wi
t,k

)
− fi

(
wi
?

)]
Combining all the bound in the main equation under expectation leads to

EDt,k+1 ≤ (1− γt(α+ µ))EDt,k + αγt EDt,0 + γ2t σ
2

C∑
i=1

p2i+

83



B – Analysis of FEDPROX

(1− αγt)
C∑
i=1

pi E
∥∥wt,k −wi

t,k

∥∥2 + αγt

C∑
i=1

pi E
∥∥wt,0 −wi

t,k

∥∥2+

E

4Lγ2t

C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi

(
wi
?

))
+ 2γt

C∑
i=1

pi
(
fi(w?)− fi

(
wi
t,k

))
︸ ︷︷ ︸

b1


We introduce (4Lγ2t /C)

∑C
i=1 fi(w?) in term b1 as

b1 = −2γt(1− 2Lγt)

C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi(w?)

)
+ 4Lγ2t

C∑
i=1

pi
(
fi(w?)− fi

(
wi
?

))
= −2γt(1− 2Lγt)

C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi(w?)

)
+ 4γ2t LΓ (B.5)

where, in B.5, we use
∑C

i=1 pifi(·) = f(·), and we exploit the definition 4.2 of statistical
heterogeneity. Adding and subtracting fi(wt,k) in the summation from B.5, we have

b1 = −2γt(1− 2Lγt)

C∑
i=1

pi(fi(wt,k)− fi(w?)) + 4γ2t LΓ+

−2γt(1− 2Lγt)

C∑
i=1

pi
(
fi
(
wi
t,k

)
− fi(wt,k)

)
= −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi
(
fi(wt,k)− fi

(
wi
t,k

))
≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi∇fi(wt,k)
>(wt,k −wi

t,k

)
(B.6)

≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi

[
γt
2
‖∇fi(wt,k)‖2 +

1

2γt

∥∥wt,k −wi
t,k

∥∥2] (B.7)

≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi

[
Lγt
(
fi(wt,k)− fi

(
wi
?

))
+

1

2γt

∥∥wt,k −wi
t,k

∥∥2] (B.8)
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We use convexity in B.6, while we employ Peter-Paul’s inequality in expression B.7, and property
A in B.8. In expression B.8, we introduce term 2Lγ2t (1− 2Lγt)f(w?).

b1 ≤ −2γt(1− 2Lγt)(1− Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2Lγ2t (1− 2Lγt)

(
f(w?)−

C∑
i=1

pifi
(
wi
?

))
+

C∑
i=1

pi
∥∥wt,k −wi

t,k

∥∥2 (B.9)

= −2γt(1− 2Lγt)(1− Lγt)(f(wt,k)− f(w?)) + 2LΓγ2t (3− 2Lγt)+

C∑
i=1

pi
∥∥wt,k −wi

t,k

∥∥2 (B.10)

≤ 6LΓγ2t +

C∑
i=1

pi
∥∥wt,k −wi

t,k

∥∥2 (B.11)

In expression B.9, we recall that 1 − 2Lγt ≤ 1, and we note that (1 − 2Lγt)(1 − Lγt) ≥ 0 in
equation B.11. These facts follow from assumption B.1 on the step size. Eventually, we reuse the
definition 4.2 of heterogeneity in B.10. We replace b1 into our main bound.

EDt,k+1 ≤ (1− γt(α+ µ))EDt,k + αγt EDt,0 +
γ2t σ

2

C
+ 6LΓγ2t +

(2− αγt)
C∑
i=1

pi E
∥∥wt,k −wi

t,k

∥∥2 + αγt

C∑
i=1

pi E
∥∥wt,0 −wi

t,k

∥∥2
Now, we use lemmas 4.1 and 4.2 to bound our main term, and we approximate 8− 3αγt ≤ 8.

EDt,k+1 ≤ (1− γt(α+ µ))EDt,k + αγt EDt,0 + γ2t σ
2

C∑
i=1

p2i + 6LΓγ2t +

(8− 3αγt)γ
2
tE

2G2

≤ (1− γt(α+ µ))EDt,k + αγt EDt,0 + γ2t σ
2

C∑
i=1

p2i + 6LΓγ2t + 8γ2tE
2G2

We are interested in relating EDt+1,0 = EDt,E to EDt,0. Accordingly, we define

a = (1− γt(α+ µ))

b = αγt

c = γ2t σ
2

C∑
i=1

p2i + 6LΓγ2t + 8γ2tE
2G2

Using parameters a, b and c, we have an expression of the form B.2. The application of recursion,
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where we use the notion of geometric series, would lead to the following results. Note that we use
a coarser approximation for the summation that multiplies c. The reason lies in the fact that we
want to preserve factor γ2t within term c for future results.

EDt,k+1 ≤ ak+1 EDt,0 +

(
b

k∑
m=0

am

)
EDt,0 + c

k∑
m=0

am

≤
[
ak+1 + b

1− ak+1

1− a

]
EDt,0 + c(k + 1)

=
b+ (1− a− b)ak+1

1− a EDt,0 + c(k + 1)

For the sake of our proof, we replace k + 1 = E, namely the maximum number of stochastic
gradient descent updates per round.

EDt,E ≤
α+ µ(1− γt(α+ µ))E

α+ µ
EDt,0 + cE

By substituting c and taking total expectation, we attain our expected result.

Here, we present the convergence guarantees of FEDPROX in case of full participation. Moreover,
we state the result in case of constant step size and diminishing step size. Specifically, in lemma
B.2, by setting proximal parameter α = 0, we recover the optimality gap given by vanilla
FEDAVG.

Lemma B.2 (Convergence of FEDPROX with fixed γt, strongly convex) Assume that 4.1 to

4.4 hold. Moreover, for any t ≥ 0, we have fixed step size γt ≡ γ > 0 such that

γ ≤ min

{
1

2L
,

1

α+ µ

}
for some α > 0. Then, for any t ≥ 0, the algorithm satisfies

E f(wt,0)− f(w?) ≤
L

µ

[
α+ µ(1− γ(α+ µ))E

α+ µ

]t
(∆− S) +

LS

µ

t→∞−−−−→ LS

µ

where ∆ = f(w0,0)− f(w?), and S =
γEσ2

2

∑C
i=1 p

2
i + 3γLEΓ + 4γE3G2.

Proof. To prove the statement, we first apply the principle of recursion on the result of lemma B.1
in equation B.12. Namely, if we denote E ‖wt,0 −w?‖2 as Dt, we have

Dt ≤ κDt−1 +A (B.12)
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≤ κ(κDt−2 +A) +A

. . .

≤ κtD0 +A

t−1∑
m=0

κm

≤ κtD0 +A

t−1∑
m=0

1− κt
1− κ

≤ κtD0 +A
1− κt

1− (1− γµ)
(B.13)

≤ κt
(
D0 −

A

γµ

)
+

A

γµ

where we use the coarser but simpler approximation κ ≤ 1− γµ in equation B.13. Finally, under
total expectation, we invoke property A for smooth functions.

E f(wt,0)− f(w?) ≤
L

2
Dt ≤

L

2
κt
(
D0 −

A

γµ

)
+

L

2γµ
A

Strong convexity (A) for D0 ≤ 2(f(w0,0)− f(w?))/µ concludes our proof.

In lemma B.3, we analyze the behavior of FEDPROX with a time-varying step size. Differently
from having a fixed step size, the asymptotic error is zero in this case. Such a behavior is
comparable to the one of ordinary stochastic gradient descent. In this respect, Bottou, Curtis, and
Nocedal [13] studied in depth the convergence of stochastic gradient descent in different settings.

Lemma B.3 (Convergence of FEDPROX with diminishing γt, strongly convex) Assume 4.1

to 4.5 hold. Furthermore, for any t ≥ 0, suppose that the step size follows the rule

γt =
υ

τ + t
such that γ0 ≤

1

E
·min

{
1

2L
,

1

α+ µ

}
(B.14)

for some υ >
2

µE
, τ > 1, and α > 0. Then, for any t ≥ 0, the algorithm yields

E f(wt,0)− f(w?) ≤
L

µ

(
1

τ + t

)
(∆τ +R)

t→∞−−−−→ 0

where ∆ = f(w0,0)− f(w?), and R =
µυ2

υµE/2− 1

[
Eσ2

2

∑C
i=1 p

2
i + 3LEΓ + 4E3G2

]
.

Proof. To prove the theorem, we proceed by induction. In the first place, we roughly approximate
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factor κ

κ =
α+ µ(1− γ(α+ µ))E

α+ µ

=
1

α+ µ

α+ µ

[(
1 +

1

−1/(γt(α+ µ))

)− 1

γt(α+µ)

]−(α+µ)Eγt
≤ α+ µe−(α+µ)Eγt

α+ µ
(B.15)

≤ 1

α+ µ

[
α+

µ

(α+ µ)Eγt + 1

]
(B.16)

= 1− µEγt
(α+ µ)Eγt + 1

≤ 1− µEγt
2

(B.17)

where we leverage fact (1 + 1/x)x ≤ e in B.15, and inequality e−x ≤ 1/(x+ 1) for all x > −1

in expression B.16. Ultimately, in B.17, (α+ µ)Eγt ≤ (α+ µ)Eγ0 ≤ 1 due to B.14. In addition,
using the same notation from the proof of lemma B.2, we recall lemma B.1.

Dt+1 ≤
(

1− µEγt
2

)
Dt +A

Before proceeding, considering that 1− αγt ≤ 1, we rewrite A as

A = γ2t

[
Eσ2

C∑
i=1

p2i + 6LEΓ + 8E3G2

]
= γ2t a (B.18)

We aim at proving that the contraction of distances follows the rule

Dt ≤
ω

τ + t
(B.19)

for some υ > 2/(µE), τ > 1, and with decreasing step size

γt =
υ

τ + t

where

ω = max

{
τ‖w0,0 −w?‖2,

aυ2

υµE/2− 1

}
(B.20)

The first case for t = 0 is already satisfied for ω ≥ τD0 as in B.20. Denoting tτ = τ + t, and
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assuming that the inequality is satisfied for t ≥ 0, we have that

Dt+1 ≤
(

1− µEγt
2

)
Dt + γ2t a (B.21)

≤
(

1− µυE/2

tτ

)
ω

tτ
+
aυ2

t2τ
(B.22)

=
ω(tτ − µυE/2) + aυ2

t2τ

=
ω(tτ − 1)

t2τ
+
ω(1− µυE/2) + aυ2

t2τ

≤ ω(tτ − 1)

t2τ − 1
+
ω(1− µυE/2) + aυ2

t2τ
(B.23)

≤ ω

tτ + 1
(B.24)

where we use the bound on A from B.18 in B.21, we recall equation B.19 in B.22 and we use
the fact t2τ ≥ t2τ − 1 = (tτ + 1)(tτ − 1) in equation B.23. In order for B.19 to hold for Dt+1, we
recall assumption B.14 in equation B.24. Finally, by applying the properties A and A for smooth
objectives, and by taking overall expectation, we obtain

E[f(wt,0)− f(w?)] ≤
L

2
Dt

≤ ωL/2

tτ
(B.25)

≤ L/2

tτ

[
τ‖w0,0 −w?‖2 +

aυ2

µυE/2− 1

]
invoking B.19 in equation B.25 and the fact max{a, b} ≤ a+b. Using A forD0 ≤ 2(f(w0,0)− f(w?))/µ,
we conclude our proof.

Conclusively, we present the convergence guarantees given by specific choices of step size. In
this respect, we specialize lemmas B.2 and B.3. This approach let us highlight the speed of
convergence in the different scenarios depicted.

Theorem 4.1 (Convergence of FEDPROX for strongly convex loss) Under assumptions 4.1 to

4.5, we run algorithm FEDPROX with α > 0.

I) When choosing fixed step size γ =
1

2LαE
for t ≥ 0, the algorithm satisfies

E f(wt,0)− f? ≤
L∆

µ

[
1− µ

3(α+ L)

]t
+

L

Lα

[
Sσ2

4µ
+

3LΓ

2µ
+

2E2G2

µ

]
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II) If we pick diminishing step size γt =
4

µE(8Lα/µ+ t)
for t ≥ 0, we have

E f(wt,0)− f? ≤
L

µ

[
8Lα/µ

8Lα/µ+ t

][
∆ +

Sσ2

LαE
+

6LΓ

LαE
+

8EG2

Lα

]

Lastly, we define ∆
def

= f(w0,0)− f?, S def

=
∑C

i=1 p
2
i and Lα

def

= α+ L.

Proof. Let us prove our arguments separately.

I) From lemma B.2, we bound term κ by replacing step size γ with our choice.

κ =
α+ µ(1− (α+ µ)/(2E(α+ L)))E

α+ µ

=
α+ µ

[
(1− (α+ µ)/(2E(α+ L)))−2E(α+L)/(α+µ)

]− α+µ

2(α+L)

α+ µ

≤ α+ µe
− α+µ

2(α+L)

α+ µ
(B.26)

≤ 1− µ

3α+ 2L+ µ
(B.27)

We use fact (1 + 1/x)x ≤ e in equation B.26, and e−x ≤ 1/(x + 1) for any x > −1 in B.27.
Additionally, we notice that 3α+ 2L+ µ ≤ 3(α+ L). In term S, we replace γ and notice that
2− αγ ≤ 2. To finish, we discard negative term S in the bound.

II) Using our choice of step size γt, we retrieve υ = 4/(µE) and τ = 8(L + α)/µ from the
assumption B.14 of lemma B.3 on decreasing step size. Lastly, we replace τ and υ in the result of
theorem B.14 to obtain the desired bound.

This concludes the proof.

B.3 Main results for nonconvex analysis

As we already did for strongly convex analysis, we formulate the global progress made in a single
round in a nonconvex scenario before stating the convergence behavior. Differently from convex
analysis, the convergence is expressed in terms of the average of squared gradients computed in
each iteration.
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Lemma B.4 (Single round progress of FEDPROX, nonconvex) Assume that

γt ≤ min

{
1

L
,

1

2α

}
(B.28)

and assumptions 4.1 to 4.4 and 4.6 hold. Then the global progress in a round satisfies

1

E

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
4

γtE
E[f(wt,0)− f(wt+1,0)] +A

where we define A = 2γtLσ
2
∑C

i=1 p
2
i + 2γtαE

2G2 + 8γ2t L
2E2G2 +

γ3t α
2LE2G2

2
.

Proof. The only property that we can exploit in nonconvex analysis is smoothness, therefore we
apply its first order characterization on iterates wt,k+1 and wt,k.

f(wt,k+1)− f(wt,k) ≤ ∇f(wt,k)
>(wt,k+1 −wt,k) +

L

2
‖wt,k+1 −wt,k‖2

Leveraging the definition of update rule, we have

wt,k+1 −wt,k = αγt(wt,0 −wt,k)− γt
C∑
i=1

pigi
(
wi
t,k

)
which we substitute to obtain

f(wt,k+1)− f(wt,k) ≤ αγt∇f(wt,k)
>(wt,0 −wt,k)︸ ︷︷ ︸
a1

+

−γt
[
C∑
i=1

pi∇fi
(
wi
t,k

)]>
∇f(wt,k)︸ ︷︷ ︸

a2

+

−γt
[
C∑
i=1

pi
(
gi
(
wi
t,k

)
−∇fi

(
wi
t,k

))]>
∇f(wt,k)︸ ︷︷ ︸

ã2

+

L

2

∥∥∥∥∥αγt(wt,0 −wt,k)− γt
C∑
i=1

pigi
(
wi
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a3

We add and subtract
∑C

i=1 pi∇fi
(
wi
t,k

)
in terms ã2 and a2. When taking expectation over the
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previous expression, term ã2 is erased because of assumption 4.2. We use Peter-Paul’s inequality
to bound a1.

a1 ≤
αγ2t

2
‖∇f(wt,k)‖2 +

α

2
‖wt,0 −wt,k‖2

Leveraging the law 2u>v = ‖u‖2 + ‖v‖2 − ‖u− v‖2, we rewrite a2 as follows.

a2 = −γt
[
C∑
i=1

pi∇fi
(
wi
t,k

)]>
∇f(wt,k)

≤ γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)
−∇f(wt,k)

∥∥∥∥∥
2

+
γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

−γt
2
‖∇f(wt,k)‖2

=
γt
2

∥∥∥∥∥
C∑
i=1

pi
(
∇fi

(
wi
t,k

)
−∇fi(wt,k)

)∥∥∥∥∥
2

− γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (B.29)

≤ γt
2

C∑
i=1

pi
∥∥∇fi(wi

t,k

)
−∇fi(wt,k)

∥∥2 − γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (B.30)

≤ γtL
2

2

C∑
i=1

pi
∥∥wi

t,k −wt,k

∥∥2 − γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (B.31)

We consider that ∇f(·) =
∑C

i=1 pi∇fi(·) in B.29, and we leverage Jensen’s inequality in B.30.
Additionally, we use the Lipschitz gradient property in equation B.31 due to the smoothness of
the objectives. We bound a3 under expectation by applying Peter-Paul’s inequality. We use the
same strategy from the proof of lemma B.1 to bound the squared sum of local stochastic gradients.
On the other hand, a3 is directly bounded in expectation.

E a3 ≤
γ2t L

2
E

∥∥∥∥∥
C∑
i=1

pigi
(
wi
t,k

)∥∥∥∥∥
2

+
γ2t α

2L

8
E ‖wt,0 −wt,k‖2

=
γ2t L

2
E

∥∥∥∥∥
C∑
i=1

pi
(
gi
(
wi
t,k

)
− fi

(
wi
t,k

))
+

C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2

+
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γ2t α
2L

8
E ‖wt,0 −wt,k‖2

=
γ2t L

2
E

∥∥∥∥∥
C∑
i=1

pi
(
gi
(
wi
t,k

)
− fi

(
wi
t,k

))∥∥∥∥∥
2

+

∥∥∥∥∥
C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2
+

γ2t α
2L

8
E ‖wt,0 −wt,k‖2

=
γ2t L

2
E

 C∑
i=1

p2i
∥∥gi(wi

t,k

)
− fi

(
wi
t,k

)∥∥2 +

∥∥∥∥∥
C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2
+

γ2t α
2L

8
E ‖wt,0 −wt,k‖2

≤ γ2t Lσ
2

2

C∑
i=1

p2i +
γ2t L

2
E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+
γ2t α

2L

8
E ‖wt,0 −wt,k‖2

Under expectation, we combine all the bounds in the main expression.

E[f(wt,k+1)− f(wt,k)] ≤ −
γt(1− Lγt)

2
E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

+

−γt(1− αγt)
2

E ‖∇f(wt,k)‖2+
α

2

(
1 +

αLγ2t
4

)
E ‖wt,0 −wt,k‖2︸ ︷︷ ︸
b1

+

γtL
2

2

C∑
i=1

pi E
∥∥wt,k −wi

t,k

∥∥2
︸ ︷︷ ︸

b2

+
γ2t Lσ

2

2

C∑
i=1

p2i

Due to assumption B.28, we have that−γt(1−Lγt) ≤ 0, and−γt(1−αγt) ≤ −1/2. Furthermore,
to bound b1, we apply Jensen’s inequality on ‖ · ‖2, and we use lemma 4.1.

b1 =
α

2

(
1 +

γ2t αL

4

)
E

∥∥∥∥∥wt,0 −
C∑
i=1

piw
i
t,k

∥∥∥∥∥
2

≤ α

2

(
1 +

γ2t αL

4

) C∑
i=1

pi E
∥∥wt,0 −wi

t,k

∥∥2
≤ γ2t αE

2G2

2

(
1 +

γ2t αL

4

)
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Concerning b2, we use lemma 4.2, therefore b2 ≤ 2γ3t L
2E2G2. Eventually, we attain

E[f(wt,k+1)− f(wt,k)] ≤
αγ2tE

2G2

2

(
1 +

αLγ2t
4

)
+ 2γ3t L

2E2G2 +
γ2t Lσ

2

2

C∑
i=1

p2i︸ ︷︷ ︸
c

+

−γt
4
E ‖∇f(wt,k)‖2

Therefore, we swap the terms and we sum over k from 0 to E − 1.

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
4

γt
E[f(wt,0)− f(wt,E)] +

4Ec

γt

We highlight that wt,E ≡ wt+1,0. Dividing by E (local steps) concludes our proof.

The following lemma presents the general convergence guarantee when adopting a fixed step size.
As we can observe, the choice of the latter is fundamental to balance the magnitude of the two
additive terms in the bound.

Lemma B.5 (Convergence of FEDPROX with fixed γt, nonconvex) Assume that

γt ≤ min

{
1

L
,

1

2α

}
for t ≥ 0, and assume 4.1 to 4.4 and 4.6 hold. Then, for any value of T ≥ 1, we have

1

TE

T−1∑
t=0

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
4∆

γTE
+A

where we define ∆ = f(w0,0)− finf , and

A = 2γLσ2
C∑
i=1

p2i + 2γαE2G2 + 8γ2L2E2G2 +
γ3α2LE2G2

2

Proof. In the first place, using fixed step size γ, we leverage the result of lemma B.4 by summing
both sides for t = 0, 1, . . . , T − 1 and dividing by T . Lastly, we use assumption 4.6 to state that
f(w0,0)− f(wT,0) ≤ f(w0,0)− finf .

On the other hand, employing a diminishing step size complicates our investigation, and we
need to restrict the choice of the step size as proposed by Bottou, Curtis, and Nocedal [13].
Theoretically, given a decreasing step size, the series constructed with γt diverge to∞, while the
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series that adds the squared step sizes should converge. As explained in the following lemma, this
criterion ensures the convergence of the algorithm.

Lemma B.6 (Convergence of FEDPROX with diminishing γt, nonconvex) For t ≥ 0, pick

γt ≤ min

{
1

L
,

1

2α

}
such that Σ =

∞∑
r=0

γr diverges and
∞∑
r=0

γ2r converges

and assume 4.1 to 4.4 and 4.6 hold. Therefore, for any value of T ≥ 1, it is true that

1

ΣE

T−1∑
t=0

E−1∑
k=0

γt E ‖∇f(wt,k)‖2 ≤
1

Σ

[
4∆

E
+

T−1∑
t=0

Rt

]
T →∞−−−−→ 0

where we define ∆ = f(w0,0)− finf , and

Rt = 2γ2t Lσ
2

C∑
i=1

p2i + 2γ2t αE
2G2 + 8γ3t L

2E2G2 +
γ4t α

2LE2G2

2

Proof. Using the outcome of lemma B.4, we multiply each side by γt and we sum over t from 0

to T − 1. We bound f(w0,0)− f(wT,0) as in the proof of theorem B.5. Finally, we divide by Σ,
as defined in B.6.

Finally, we construct a specific instance of previous lemmas for some chosen values of the step
size. Similarly to strongly convex analysis, for a time diminishing step size, we deliberately pick
a linear decaying option.

Theorem 4.3 (Convergence of FEDPROX for nonconvex loss) We suppose 4.1 to 4.4 and 4.6

hold, and we run algorithm FEDPROX with parameter α > 0 for T ≥ 1 rounds.

I) When adopting fixed step size γ =
1

2Lα
√
TE

, we have the following rate.

E ‖∇f(ŵT )‖2 ≤ 1√
T

[
8Lα∆√
E

+
LSσ2

Lα
√
E

+
αE3/2G2

Lα

]
+

2L2EG2

L2
αT

+
α2L
√
EG2

16L3
αT

3/2

where we uniformly sample ŵT from {wt,k }t,k for any 0 ≤ t ≤ T − 1 and 0 ≤ k ≤ E − 1.

II) The usage of diminishing step size γt =
1

2Lα
√
E(t+ 1)

leads to

E ‖∇f(ŵT )‖2 ≤ 1

ln(T + 1)

[
8Lα∆√
E

+
2LSσ2

Lα
√
E

+G2

[
2αE3/2

Lα
+

3L2E

L2
α

+
α2L
√
E

12L3
α

]]
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where Σ =
∑T−1

r=0 γr. Additionally, we sample ŵT from {wt,k }t,k uniformly in relation to

0 ≤ k ≤ E − 1, and with probability γt/Σ concerning 0 ≤ t ≤ T − 1.

Furthermore, we define ∆
def

= f(w0,0)− finf , S def

=
∑C

i=1 p
2
i and Lα

def

= α+ L.

Proof. Let us cover both scenarios independently.

I) From lemma B.5, we only replace γ with the chosen step size. Eventually, the definition of ŵT

ensures that

E ‖∇f(ŵT )‖2 =
1

TE

T−1∑
t=0

E−1∑
k=0

E ‖∇f(wt,k)‖2

II) Before proceeding, we state the following inequality from the integral test on a harmonic
function of power a. This will help us to bound our terms.

∫ T

0

dτ

(τ + 1)a
<

T−1∑
t=0

1

(t+ 1)n
< 1 +

∫ T−1

0

dτ

(τ + 1)n
(B.32)

We first recall general lemma B.6 with diminishing step size. Having our definition of γt, we need
to upper bound 1/Σ.

Σ =

T−1∑
t=0

1

2
√
E(α+ L)(t+ 1)

=
1

2
√
E(α+ L)

T−1∑
t=0

1

t+ 1

≥ 1

2
√
E(α+ L)

∫ T

0

dτ

τ + 1
(B.33)

=
[ln(τ + 1)]T0
2
√
E(α+ L)

=
ln(T + 1)

2
√
E(α+ L)

In equation B.33, we apply inequality B.32 with a = 1. To upper bound the series
∑T−1

t=0 γ
a
t

where a ∈ { 2, 3, 4 }, we use the same criterion.

T−1∑
t=0

γat =
1

2a
√
Ea(α+ L)a

T−1∑
t=0

1

(t+ 1)a

96



B.4 – Lower bound for some strongly convex problem

≤ 1

2a
√
Ea(α+ L)a

[
1 +

∫ T−1

0

dτ

(t+ 1)a

]
=

1

2a
√
Ea(α+ L)a

[
1 +

[
− 1

(a− 1)(t+ 1)a−1

]T−1
0

]

=
1

2a
√
Ea(α+ L)a

[
1 +

1

a− 1
− 1

(a− 1)T a−1

]
≤ a

2a
√
Ea(α+ L)a(a− 1)

We apply these bounds in the rate of lemma B.6. Finally, we leverage ŵT to state that

E ‖∇f(ŵT )‖2 =
1

ΣE

T−1∑
t=0

E−1∑
k=0

γt E ‖∇f(wt,k)‖2

Therefore, we finish our argument.

B.4 Lower bound for some strongly convex problem

In this section, we derive a lower bound on the error committed by FEDPROX at global round t. To
fulfill our objective, we construct an artificial instance of a strongly convex and one dimensional
problem assuming full participation. Moreover, we point out that the designed scenario does
not strictly enforce assumption 4.3 due to the unconstrained nature of the optimization problem.
Indeed, limiting the latter to a bounded ball of R, namely |w| ≤ B, would ensure that assumption
4.3 holds. However, we confine our analysis to satisfing assumptions 4.1, 4.2, 4.4 and 4.5. We
begin by introducing some technical results that will ease our main proof. Specifically, the
following lemma lower bounds the multiplicative constant associated to the aggregation local
gradients, which arises due to the local divergence phenomenon (client drift as explained by
Karimireddy et al. [24]).

Lemma B.7 Let 0 < λ < ν ≤ 1/E, E ≥ 2 and ak = (1− λ)k − (1− ν)k, then there exists

a constant A ∈ (0, 1− e−1] such that

E−1∑
k=0

ak ≥ A
(

1− λ

ν

)

97



B – Analysis of FEDPROX

Proof. We decompose ak as follows.

ak = [(1− λ)− (1− ν)]

[
k−1∑
m=0

(1− λ)m(1− ν)k−1−m

]

≥ (ν − λ)

[
k−1∑
m=0

(1− ν)m(1− ν)k−1−m

]
= k(ν − λ)(1− ν)k−1

Since a0 = 0, then
∑E−1

k=0 ak =
∑E−1

k=1 ak. Therefore, we have

E−1∑
k=0

ak ≥
E−1∑
k=1

k(ν − λ)(1− ν)k−1

= (ν − λ)

E−2∑
j=0

(j + 1)(1− ν)j

≥ (ν − λ)

E−2∑
j=0

(1− ν)j

=

(
1− λ

ν

)(
1− (1− ν)E−1

)
We indicate 1 − (1 − ν)E−1 as a constant A which is strictly lower bounded by 0 since ν > 0.
Regarding the upper bound, we have ν ≤ 1/E, thus

A ≤ 1−
(

1− 1

E

)E−1
≤ 1− exp

(
− 1/E

1− 1/E

)E−1
= 1− e−1

We used the fact that 1− x ≥ e−x/(1−x) for 0 ≤ x < 1. This concludes the proof.

This second lemma focuses on lower bounding the impact of stochasticity within a single round.
This is a consequence of the random nature of each ζik. The following result is general, and
each ζik has actually zero mean in the context of our main theorem, since we want the stochastic
gradients to be unbiased.

Lemma B.8 Let λ ∈ (0, 1/E] and all ζik ∈ RD be independent random variables for

i ∈ { 1, . . . ,M } and k ∈ { 0, . . . , E − 1 } such that E ζik = Zi and V ζik = σ2. Thus,

E

∥∥∥∥∥
E−1∑
k=0

(1− λ)k
M∑
i=1

piζ
i
k

∥∥∥∥∥
2

≥ Eσ2

e2

M∑
i=1

p2i +
E2

e2

∥∥∥∥∥
M∑
i=1

piZi

∥∥∥∥∥
2
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Proof. We denote ξk
def

=
∑M

i=1 piζ
i
k. We can easily see that

Eξk =

M∑
i=1

pi E ζik =

M∑
i=1

piZi (B.34)

and

Vξk = E

∥∥∥∥∥ξk −
M∑
i=1

piZi

∥∥∥∥∥
2

= E

[
M∑
i=1

p2i
∥∥ζik − Zi

∥∥2 + 2

M∑
m=0

M∑
n=m+1

pmpn(ζmk − Zm)>(ζnk − Zn)

]

= σ2
M∑
i=1

p2i (B.35)

Therefore, we consider our initial claim, and we compute the mean using equation B.34.

E
E−1∑
k=0

(1− λ)kξk =

[
E−1∑
k=0

(1− λ)k

][
M∑
i=1

piZi

]

To compute the variance, we use the result of expression B.35.

V
E−1∑
k=0

(1− λ)kξk = E

∥∥∥∥∥
E−1∑
k=0

(1− λ)k

[
ξk −

M∑
i=1

piZi

]∥∥∥∥∥
2

= E

E−1∑
k=0

(1− λ)2k

∥∥∥∥∥ξk −
M∑
i=1

piZi

∥∥∥∥∥
2
+

E

2

E−1∑
r=0

E−1∑
s=r+1

(1− λ)r+s

[
ξr −

M∑
i=1

piZi

]>[
ξs −

M∑
i=1

piZi

]
= σ2

[
M∑
i=1

p2i

][
E−1∑
k=0

(1− λ)2k

]

Combining the pieces, we use the fact that E ‖x‖2 = Vx + ‖Ex‖2. Thus,

E

∥∥∥∥∥
E−1∑
k=0

(1− λ)kξk

∥∥∥∥∥
2

= σ2

[
M∑
i=1

p2i

][
E−1∑
k=0

(1− λ)2k

]
+

[
E−1∑
k=0

(1− λ)k

]2∥∥∥∥∥
M∑
i=1

piZi

∥∥∥∥∥
2
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≥ Eσ2
[
M∑
i=1

p2i

]
(1− λ)2(E−1) + E2(1− λ)2(E−1)

∥∥∥∥∥
M∑
i=1

piZi

∥∥∥∥∥
2

≥ Eσ2
[
M∑
i=1

p2i

](
1− 1

E

)2(E−1)
+ E2

(
1− 1

E

)2(E−1)
∥∥∥∥∥
M∑
i=1

piZi

∥∥∥∥∥
2

In the last expression, we recall that λ ≤ 1/E. Finally, it is sufficient to use the inequality
1− x ≥ e−x/(1−x) for any 0 ≤ x < 1 to conclude the proof.

Ultimately, we present the main theorem which lower bounds FEDPROX on the chosen class of
problem. We state the following result when adoping a step size γ ≤ 1/[E(α+ µ)], comparably
to theorem 4.1 (part II).

Theorem 4.2 (Lower bound of FEDPROX for some strongly convex loss) Given any

µ, α, σ,G ∈ R>0, E ≥ 2, C ≥ 2, an initial point w0,0 and any step size γ ≤ [E(α + µ)]−1,

there exists a positive A ≤ 1−e−1 and a µ/2-strongly convex objective f(w) where algorithm

FEDPROX with parameter α satisfies the following statement for any t ≥ 0.

E f(wt,0)− f? ≥ min

{
∆

[
1− 3µ

4(α+ µ)

]2t
,

1

(t+ 1)2

[
3µ3A2G2

128E2(α+ µ)4
+

3µSσ2

64E(α+ µ)2

]}

Additionally, we define ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. We consider a scenario with an even number of clients C ≥ 2 (with an odd C we would
one local objective to 0), where each one locally optimizes a strongly convex loss. Moreover,
we consider a full participation regime. Additionally, the clients are deliberately grouped into
two equally sized and weighted sets C1 def

= { 1, . . . , C/2 } and C2 def

= { 1 + C/2, . . . , C }. To
further simplify the situation, we employ one dimensional loss objectives parameterized by
h,H,G ∈ R>0 where h < H .

fi(w)
def

=


Hw2

2
+Gw where i ∈ C1

hw2

2
−Gw where i ∈ C2

We define the global loss objective as f(w)
def

=
∑C

i=1 pifi(w) = w2(h + H)/4 such that∑
i∈C1 pi =

∑
i∈C2 pi = 1/2. Thus, f(w) is also h-strongly convex and H-smooth. More-

over, this global objective is minimized in w? = 0. We model the unbiased stochastic gradient of
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each local loss as

gi(w
i
t,k) = ∇fi

(
wit,k

)
+ ζit,k

where ζit,k ∼ N (0, σ2) is the random component independently distributed for each agent
i ∈ C1 ∪ C2 and step (t, k). In our setting, given τ > 0, we run the algorithm with any step size
γ ≤ 1/[E(α+H)] for any round t ≥ 0. Recalling the update rule 4.3 of FEDPROX, we have

wit,k+1
def

=

{
(1− αγ)wit,k + αγwt,0 − γ(Hwit,k +G+ ζit,k) where i ∈ C1
(1− αγ)wit,k + αγwt,0 − γ(hwit,k −G+ ζit,k) where i ∈ C2

We apply recursion over a single round t, and we compute the average iterate wt,k+1. In addition,
we set k + 1 = E to obtain wt,E = wt+1,0. This will let us work on wt+1,0 afterward.

wt+1,0 =
1

2

[
κEH + κEh + αγ

E−1∑
k=0

(
κkH + κkh

)]
wt,0︸ ︷︷ ︸

a

+
γG

2

E−1∑
k=0

(
κkh − κkH

)
︸ ︷︷ ︸

b

+

− γ
E−1∑
k=0

κkH
∑
i∈C1

piζ
i
t,k︸ ︷︷ ︸

c

− γ
E−1∑
k=0

κkh
∑
i∈C2

piζ
i
t,k︸ ︷︷ ︸

d

We define κh
def

= 1−γ(α+h) and κH
def

= 1−γ(α+H) to ease the overall notation. Assuming that
we select a random initial iterate such that Ew0,0 > 0, we can prove by induction that any wt+1,0

is positive in expectation. This holds because E a > 0 by hypothesis, b > 0 since κh > κH and
E c = E d = 0 due to the definition of ζit,k. Our objective is to lower bound w2

t+1,0 in expectation
in order to retrieve E f(wt+1,0).

Ew2
t+1,0 = E a2 + 2bE a+ b2 + E c2 + E d2 > E a2 + b2 + E c2 + E d2 (B.36)

The last statement B.36 follows from the fact that 2bE a > 0 since both a and b are positive
quantities as aforementioned. Equivalently, if we chose w0,0 such that Ew0,0 < 0, inverting the
sign of additive term Gw in the local objectives for C1 and C2 would ensure that 2bE a is positive,
although both terms would be independently negative in expectation. We provide an initial lower
bound for term E a2.

E a2 =
1

4

[
κEH + κEh + αγ

E−1∑
k=0

(
κkH + κkh

)]2
Ew2

t,0
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>

[
κEH + αγ

E−1∑
k=0

κkH

]2
Ew2

t,0 (B.37)

=

[
α+HκEH
α+H

]2
Ew2

t,0 (B.38)

In expression B.37, again, we leverage the fact that κh > κH , while we develop the geometric
series in B.38. Lemma B.7 let us bound b2 for some constant A ∈ (0, 1− e−1] since γ(α+ h) <

γ(α+H) ≤ 1/E.

b2 ≥ γ2A2G2

4

(
1− γ(α+ h)

γ(α+H)

)2

=
γ2A2G2

4

(
H − h
α+H

)2

Using the result of lemma B.8, we identically lower bound both E c2 and E d2.

E c2 ≥ γ2Eσ2

e2

∑
i∈C1

p2i

Combining the previous results, we have

Ew2
t+1,0 ≥

[
α+HκEH
α+H

]2
Ew2

t,0︸ ︷︷ ︸
a1

+

[
A2G2

4

(
H − h
α+H

)2

+
Eσ2

e2

C∑
i=1

p2i

]
γ2t︸ ︷︷ ︸

b1

(B.39)

We separate the problem into two cases regarding the choice of γ.

• The first case considers interval 1/(t+ τ + 1) < γE(α+H) ≤ 1. From B.39, since both
a1 and b1 are positive, it is also true that Ew2

t+1,0 ≥ a1 and Ew2
t+1,0 ≥ b1. We characterize

the first inequality using recursion where we recall the inequality (α+H)γt < 1/E in B.40
and (1− 1/E)E ≥ 1/4 since E ≥ 2 in equation B.41.

Ew2
t+1,0 ≥ Ew2

t,0

[
α+H(1− 1/E)E

α+H

]2
(B.40)

≥ Ew2
t,0

[
1− 3H

4(α+H)

]2
(B.41)

≥ Ew2
0,0

[
1− 3H

4(α+H)

]2(t+1)

︸ ︷︷ ︸
a2

(B.42)
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Regarding the inequality Ew2
t+1,0 ≥ b1, we use γ > 1/[E(α+H)(t+ τ + 1)].

Ew2
t+1,0 >

1

E2(α+H)2(t+ τ + 1)2

[
A2G2

4

(
H − h
α+H

)2

+
Eσ2

e2

C∑
i=1

p2i

]

When we join these inequalities, we have that Ew2
t+1,0 ≥ min{a2, b1}.

• The remaining case is 0 < γE(α + H) ≤ 1/(t + τ + 1). Since γ > 0, then b1 > 0, and
this implies that Ew2

t+1,0 > a1. Thus, we lower bound the latter.

Ew2
t+1,0 > Ew2

t,0

[
α

α+H
+

H

α+H

[
1− 1

E(t+ τ + 1)

]E]2

≥ Ew2
t,0

[
α

α+H
+

H

α+H

[
1− 1

2(t+ τ + 1)

]2]2
(B.43)

> Ew2
0,0

[
α

α+H
+

H

α+H

[
1− 1

2(t+ τ + 1)

]2]2(t+1)

≥ Ew2
0,0

[
α

α+H
+

H

α+H

[
1− 1

2(τ + 1)

]2]2
(B.44)

> a2

We used the fact that E ≥ 2 in equation B.43, and t ≥ 0 in equation B.44. The final bound
is redundant since B.44 is always larger than a2 (see B.42).

Combining both, we have that Ew2
t+1,0 ≥ min{a2, b1}. It is sufficient to multiply both sides by

(h+H)/4 to retrieve f(wt+1,0) on the left. By subtracting f(w?) = 0, we retrieve the optimality
gap. Ultimately, we setH = µ, h = µ/2, τ = 1 and we approximate e2 < 8 to attain the expected
result.
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C
Analysis of our algorithm

We include in this appendix all the results, including the missing proofs, related to the study of
our algorithm.

C.1 Preliminary results

This first technical fact will support us in stating future claims on our algorithm.

Lemma 4.3 The aggregated average of perturbed iterates corresponds to

C∑
i=1

piw̃
i
t,k = βwt,k + (1− β)wt,0

at local step k of global round t.

Furthermore, we delimitate the difference between the iterates used to perturb the local computa-
tion of stochastic gradients.
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Lemma 4.4 At round t, the deviation between uit and ujt follows the rule

E
∥∥∥uit − ujt

∥∥∥2 ≤ 1t≥ 14γ
2
t−1E

2G2

for any pair of agents i, j ∈ C. In addition, assume 4.1 to 4.4 hold.

Such a result lets us upper bound the deviation between the average iterate and the local perturbed
one for each client.

Lemma 4.5 The deviation between wt,k and w̃i
t,k is bounded as

E
∥∥∥wt,k − w̃i

t,k

∥∥∥2 ≤ 4γ2tE
2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

for any agent i ∈ C at step k of round t. Moreover, assume 4.1 to 4.4 hold.

C.2 Main results for strongly convex analysis

The subsequent lemma eventually presents the progress made by our algorithm in a single round
of communication in a strongly convex scenario. In this respect, parameter β heavily impacts the
contraction of the distance measure. Moreover, it also controls the growth of term A since the
choice β = 1 (as in FEDAVG) nullifies two potentially large terms depending on it.

Lemma C.1 (Single round progress of our algorithm, strongly convex) Assume

γt ≤ min

{
1

2L
,

1

βµ

}
and 4.1 to 4.4 hold, then the progress in one global round satisfies

E ‖wt+1,0 −w?‖2 ≤ κE ‖wt,0 −w?‖2 +A

where κ = 1− 1

β
+

1

β
(1− βµγt)E ≤ 1− µγt, and

A = 8γ2tE
3G2

[
4 + (1− β)2 + 1t≥1

8γ2t−1
γ2t

(
1− 1

β

)2
]

+ µγ3t β(1− β)E3G2+

γ2tESσ
2 + 6γ2t LEΓ
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Proof. To begin our proof, we denote ‖wt,k −w?‖2 as Dt,k, and we recall the definition 4.7 of
update rule for the average sequence in the following equation C.1.

wt,k+1 −w? = wt,k −w? − γt
C∑
i=1

pigi

(
w̃i
t,k

)
(C.1)

= wt,k −w? − γt
C∑
i=1

pi∇fi
(
w̃i
t,k

)
+ γt

C∑
i=1

pi

[
∇fi

(
w̃i
t,k

)
− gi

(
w̃i
t,k

)]
︸ ︷︷ ︸

v

Since Ev = 0 because of assumption 4.2, when we take expectation over the squared norm Dt,k,
all mixed products 2v>u are erased in expectation. Hence, we have

EDt,k+1 = EDt,k + E

−2γt(wt,k −w?)
>

(
C∑
i=1

pi∇fi
(
w̃i
t,k

))
︸ ︷︷ ︸

a1

+

E

γ2t
∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

+ γ2t

∥∥∥∥∥
C∑
i=1

pi

[
∇fi

(
w̃i
t,k

)
− gi

(
w̃i
t,k

)]∥∥∥∥∥
2

︸ ︷︷ ︸
a2


First we bound term a1 in expectation

a1 = −2γt(wt,k −w?)
>

(
C∑
i=1

pi∇fi
(
w̃i
t,k

))
(C.2)

= −2γt

C∑
i=1

pi∇fi
(
w̃i
t,k

)>
(wt,k −w?)

= −2γt

C∑
i=1

pi∇fi
(
w̃i
t,k

)>(
wt,k − w̃i

t,k

)
+

−2γt

C∑
i=1

pi∇fi
(
w̃i
t,k

)>(
w̃i
t,k −w?

)
≤ γt

C∑
i=1

pi

[
γt

∥∥∥∇fi(w̃i
t,k

)∥∥∥2 +
1

γt

∥∥∥wt,k − w̃i
t,k

∥∥∥2]+ (C.3)

2γt

C∑
i=1

pi

[
fi(w?)− fi

(
w̃i
t,k

)
− µ

2

∥∥∥w̃i
t,k −w?

∥∥∥2] (C.4)
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≤ 2Lγ2t

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi

(
wi
?

))
+

C∑
i=1

pi

∥∥∥wt,k − w̃i
t,k

∥∥∥2︸ ︷︷ ︸
a12

+ (C.5)

2γt

C∑
i=1

pi

(
fi(w?)− fi

(
w̃i
t,k

))
−µγt

C∑
i=1

pi

∥∥∥w̃i
t,k −w?

∥∥∥2︸ ︷︷ ︸
a11

where we use assumption 4.2 in equation C.2, Peter-Paul’s inequality in equation C.3, strong
convexity in equation C.4, and smoothness property A in C.5. Addressing a11, we use Jensen’s
inequality in equation C.6, the result of lemma 4.3 in equation C.7, and the rule −2u>v =

‖u− v‖2 − ‖u‖2 − ‖v‖2 in equation C.8.

a11 ≤ −µγt
∥∥∥∥∥
C∑
i=1

piw̃
i
t,k −w?

∥∥∥∥∥
2

(C.6)

≤ −µγt‖βwt,k + (1− β)wt,0 −w?‖2 (C.7)

= −µγt‖β(wt,k −w?) + (1− β)(wt,0 −w?)‖2

= −µγtβ2Dt,k − µγt(1− β)2Dt,0 − 2µγtβ(1− β)(wt,k −w?)
>(wt,0 −w?)

= −µγtβ2Dt,k − µγt(1− β)2Dt,0+

−µγtβ(1− β)Dt,k − µγtβ(1− β)Dt,0 + µγtβ(1− β)‖wt,k −wt,0‖2 (C.8)

= −µγtβDt,k − µγt(1− β)Dt,0 + µγtβ(1− β)‖wt,k −wt,0‖2

Using the definition 4.7, we rewrite wt,k −wt,0 in C.9 by applying recursion.

a11 ≤ −µγtβDt,k − µγt(1− β)Dt,0 + µγtβ(1− β)

∥∥∥∥∥γt
k−1∑
m=0

C∑
i=1

pigi

(
w̃i
t,m

)∥∥∥∥∥
2

(C.9)

≤ −µγtβDt,k − µγt(1− β)Dt,0 + µγ3t β(1− β)k

k−1∑
m=0

C∑
i=1

pi

∥∥∥gi(w̃i
t,m

)∥∥∥2 (C.10)

Here, we recall Jensen’s inequality in equation C.10, then we use assumption 4.3 in C.11. Under
expectation, we have that k ≤ E − 1 in equation C.12.

E a11 ≤ −µγtβDt,k − µγt(1− β)Dt,0 + µγ3t β(1− β)k2G2 (C.11)

≤ −µγtβDt,k − µγt(1− β)Dt,0 + µγ3t β(1− β)E2G2 (C.12)
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Finally, after bounding E a12 using the result of lemma 4.5, we bound A1 in expectation.

E a1 ≤ −µγtβ EDt,k − µγt(1− β)EDt,0+

4γ2tE
2G2

[
4 + (1− β)2 + 1t≥1

8γ2t−1
γ2t

(
1− 1

β

)2
]

+ µγ3t β(1− β)E2G2+

E

[
2Lγ2t

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi

(
wi
?

))
+ 2γt

C∑
i=1

pi

(
fi(w?)− fi

(
w̃i
t,k

))]

Now, we bound term a2.

E a2 = γ2t E

∥∥∥∥∥
C∑
i=1

pi

[
gi

(
w̃i
t,k

)
−∇fi

(
w̃i
t,k

)]∥∥∥∥∥
2

︸ ︷︷ ︸
a21

+γ2t E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a22

To bound term a21, we recall assumption 4.2 to nullify the dot products between terms in a21, and
we further use assumption 4.2 to bound the squared norms. Hence, we obtain

E a21 =

C∑
i=1

p2i E
∥∥∥gi(w̃i

t,k

)
−∇fi

(
w̃i
t,k

)∥∥∥2 ≤ σ2 C∑
i=1

p2i

We recall Jensen’s inequality on ‖ · ‖2 to bound term a22.

E a22 = E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

≤
C∑
i=1

pi E
∥∥∥∇fi(w̃i

t,k

)∥∥∥2
After combining these intermediate results, we eventually use smoothness in C.13.

E a2 ≤ γ2t σ2
C∑
i=1

p2i + γ2t

C∑
i=1

pi E
∥∥∥∇fi(w̃i

t,k

)∥∥∥2
≤ γ2t σ2

C∑
i=1

p2i + E

[
2Lγ2t

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi

(
wi
?

))]
(C.13)

In expectation, we combine the bounds on a1 and a2 into our main equation.

EDt,k+1 ≤ (1− µγtβ)EDt,k − µγt(1− β)EDt,0 + µγ3t β(1− β)E2G2+

γ2t σ
2

C∑
i=1

p2i + 4γ2tE
2G2

[
4 + (1− β)2 + 1t≥1

8γ2t−1
γ2t

(
1− 1

β

)2
]

+
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E

2γt

C∑
i=1

pi

(
fi(w?)− fi

(
w̃i
t,k

))
+ 4Lγ2t

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi

(
wi
?

))
︸ ︷︷ ︸

b1


We rewrite term b1 as follows by adding and subtracting 4Lγ2t

∑C
i=1 pifi(w?).

b1 = −2γt(1− 2Lγt)

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi(w?)

)
+ 4Lγ2t

C∑
i=1

pi
(
fi(w?)− fi

(
wi
?

))
= −2γt(1− 2Lγt)

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi(w?)

)
+ 4γ2t LΓ (C.14)

In equation C.14, we use the fact that
∑C

i=1 pifi(·) = f(·), and we recall the definition of
statistical heterogeneity Γ from 4.2. Now, we introduce term fi(wt,k) in the summation from
expression C.14.

b1 = −2γt(1− 2Lγt)

C∑
i=1

pi(fi(wt,k)− fi(w?)) + 4γ2t LΓ+

−2γt(1− 2Lγt)

C∑
i=1

pi

(
fi

(
w̃i
t,k

)
− fi(wt,k)

)
= −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi

(
fi(wt,k)− fi

(
w̃i
t,k

))
≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi∇fi(wt,k)
>
(
wt,k − w̃i

t,k

)
(C.15)

≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi

[
γt
2
‖∇fi(wt,k)‖2 +

1

2γt

∥∥∥wt,k − w̃i
t,k

∥∥∥2] (C.16)

≤ −2γt(1− 2Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2γt(1− 2Lγt)

C∑
i=1

pi

[
Lγt
(
fi(wt,k)− fi

(
wi
?

))
+

1

2γt

∥∥∥wt,k − w̃i
t,k

∥∥∥2] (C.17)
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Peculiarly, we leverage convexity in C.15, Peter-Paul’s inequality in expression C.16, and smooth-
ness property A in C.17. From C.17, we add and subtract 2Lγ2t (1− 2Lγt)f(w?).

b1 ≤ −2γt(1− 2Lγt)(1− Lγt)(f(wt,k)− f(w?)) + 4γ2t LΓ+

2Lγ2t (1− 2Lγt)

(
f(w?)−

C∑
i=1

pifi
(
wi
?

))
+

C∑
i=1

pi

∥∥∥wt,k − w̃i
t,k

∥∥∥2 (C.18)

= −2γt(1− 2Lγt)(1− Lγt)(f(wt,k)− f(w?)) + 2LΓγ2t (3− 2Lγt)+

C∑
i=1

pi

∥∥∥wt,k − w̃i
t,k

∥∥∥2 (C.19)

In expectation, again we have

E b1 ≤ 6LΓγ2t + 4γ2tE
2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

(C.20)

Again, we use the definition of heterogeneity in C.19. On the other hand, in expression C.20, we
exploit the fact that (1 − 2Lγt)(1 − Lγt) ≥ 0 since γt ≤ 1/(2L) due to assumption C.1, and
also 1− 2Lγt ≤ 1 in C.18 and C.20. Eventually, we use the outcome of lemma 4.5 in C.20. In
expectation, we utilize this bound back into our main expression where

EDt,k+1 ≤ (1− µγtβ)EDt,k − µγt(1− β)EDt,0 + γ2t σ
2

C∑
i=1

p2i + 6γ2t LΓ+

8γ2tE
2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

+ µγ3t β(1− β)E2G2

Defining variables

a = 1− µγtβ
b = −µγt(1− β)

c = 8γ2tE
2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

+ µγ3t β(1− β)E2G2+

γ2t σ
2

C∑
i=1

p2i + 6γ2t LΓ

we apply the usual recursion technique on the following expression.

EDt,k+1 ≤ aEDt,k + bEDt,0 + c
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. . .

≤
[
ak+1 + b

k∑
m=0

am

]
EDt,0 + c

k∑
m=0

am

≤
[
ak+1 + b

1− ak+1

1− a

]
EDt,0 + c(k + 1) (C.21)

=
b+ (1− a− b)ak+1

1− a EDt,0 + c(k + 1)

In expression C.21, we roughly approximate the geometric series that multiplies term c using
the fact that (1− µγtβ)m ≤ 1 to preserve γ2t within c. To conclude, after setting k + 1 = E to
establish the bound for a round of communication, we replace a, b and c.

The following lemma C.2 establishes the first convergence result for our algorithm using a fixed
step size. As we already did in the analysis of FEDPROX, we will investigate the convergence rate
also for a time-decreasing step size, and we will devote some attention to specific choices of the
step decay, both fixed and diminishing.

Lemma C.2 (Convergence of our algorithm with fixed γt, strongly convex) Assume that 4.1

to 4.4 hold. Moreover, for any t ≥ 0, the step size γt ≡ γ > 0 is fixed such that

γ ≤ min

{
1

2L
,

1

βµ

}
for some β ∈ (0, 1). Then, for any t ≥ 0, the algorithm satisfies

E f(wt,0)− f(w?) ≤
L

µ

[
1− 1

β
+

1

β
(1− βµγ)E

]t
(∆− S) +

LS

µ

t→∞−−−−→ LS

µ

where ∆ = f(w0,0)− f(w?) is the initial objective gap, S def

=
∑C

i=1 p
2
i and

S =
γSEσ2

2
+ 3γLEΓ + 4γE3G2

[
4 + (1− β)2 + 8

(
1− 1

β

)2
]

+
µγ2β(1− β)E3G2

2

Proof. To prove the statement, we first apply the principle of recursion on the result of lemma C.1
in equation C.22. Namely, if we denote E ‖wt,0 −w?‖2 as Dt, we have

Dt ≤ κDt−1 +A (C.22)

≤ κ(κDt−2 +A) +A

. . .
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≤ κtD0 +A

t−1∑
m=0

κm

= κtD0 +A

t−1∑
m=0

1− κt
1− κ

≤ κtD0 +
A

1− (1− γµ)

(
1− κt

)
(C.23)

≤ κt
(
D0 −

A

γµ

)
+

A

γµ

where we use the coarser but simpler approximation κ ≤ 1− γµ in equation C.23. Finally, under
total expectation, we invoke property A for smooth functions.

E f(wt,0)− f(w?) ≤
L

2
Dt ≤

L

2
κt
(
D0 −

A

γµ

)
+

L

2γµ
A

Strong convexity property A for D0 ≤ 2(f(w0,0)− f(w?))/µ concludes our proof.

Ultimately, we inspect the convergence behavior of our algorithm with diminishing step size. Our
analysis manages a slight variation with respect to the study of FEDPROX in the same scenario.
Such a variation is given by the presence of γt−1, which we bound through a proper choice of
parameter τ .

Lemma C.3 (Convergence of our algorithm with diminishing γt, strongly convex) Assume

4.1 to 4.4 hold, and, for any t ≥ 0, suppose that the step size follows the rule

γt =
υ

τ + t
such that γ0 ≤

1

E
·min

{
1

2L
,

1

βµ

}
(C.24)

for some υ >
2

µE
, τ ≥ 1, and β ∈ (0, 1). Hence, for any t ≥ 0, we have

E f(wt,0)− f(w?) ≤
L

µ

(
1

τ + t

)
(τ∆ +R)

t→∞−−−−→ 0

where ∆ = f(w0,0)− f(w?), S def

=
∑C

i=1 p
2
i , and we define

R =
µυ2

υµE/2− 1

[
ESσ2

2
+ 3LEΓ + 4AE3G2 +

µβ(1− β)E2G2

4L

]
A =

[
4 + (1− β)2 + 32

(
1− 1

β

)2
]
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Proof. First, we approximate κ before proceeding with the proof by induction.

κ = 1− 1

β
+

1

β
(1− βµγt)E

= 1− 1

β
+

1

β

[(
1 +

1

−1/(βµγt)

)− 1

βµγt

]−βµγtE
≤ 1− 1

β
+

1

β
e−βµγtE (C.25)

≤ 1− 1

β
+

1

β

1

1 + βµγtE
(C.26)

= 1− µγtE

1 + βµγtE
(C.27)

≤ 1− µγtE

2

In equation C.25, we use the fact that (1 + 1/x)x ≤ e, and, in equation C.26, we leverage the
inequality e−x ≤ 1/(x+ 1) for any x > −1. We recall that βµγtE ≤ βµγ0E ≤ 1 in C.27 using
assumption C.24. Moreover, we abuse the notation from the proof of C.2, and we employ the
result of lemma C.1.

Dt+1 ≤
(

1− µγtE

2

)
Dt +A (C.28)

Our objective is to prove that Dt satisfies

Dt ≤
ω

τ + t
(C.29)

for some υ > 2/(µE) and τ ≥ 1, and with decreasing step size

γt =
υ

τ + t

where

ω = max

{
τ‖w0,0 −w?‖2,

aυ2

υµE/2− 1

}
(C.30)

From C.28, we break down term A as

A = γ2t

[
ESσ2 + 6LEΓ + 8E3G2

[
4 + (1− β)2 + 32

(
1− 1

β

)2
]

+
µβ(1− β)E2G2

2L

]
︸ ︷︷ ︸

a
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where we use the assumption on τ to bound 1t≥ 1γt−1 ≤ 2γt, and γt ≤ 1/(2LE) in previous
expression. Concerning C.29, the base case for t = 0 is satisfied according to C.30. Assuming the
validity of C.29 for t ≥ 0, we proceed as follows from expression C.29, where tτ = τ + t.

Dt+1 ≤
(

1− µγtE

2

)
Dt + γ2t a

≤
(

1− µυE/2

tτ

)
ω

tτ
+
aυ2

t2τ

=
ω(tτ − µυE/2) + aυ2

t2τ

=
ω(tτ − 1) + ω(1− µυE/2) + aυ2

t2τ

≤ ω(tτ − 1)

t2τ − 1
+
ω(1− µυE/2) + aυ2

t2τ
(C.31)

≤ ω

tτ + 1
(C.32)

We use the fact that 1/tτ ≤ 1/(t2τ − 1) in equation C.31, and assumption C.30 in C.32. By
recalling smoothness, and using equation C.29 under total expectation, we have

E f(wt,0)− f(w?) ≤
L

2
Dt

≤ ωL/2

tτ

≤ L/2

tτ

[
τD0 +

aυ2

υµE/2− 1

]
(C.33)

We use the fact that max{a, b} ≤ a + b in expression C.33, and the smoothness property
D0 ≤ 2(f(w0,0)− f(w?))/µ before attaining our final result.

Eventually, we present the rates with specific choices of step size for our algorithm in a strongly
convex setting. We repeat the result for both fixed and decreasing step size.

Theorem 4.4 (Convergence of our algorithm for strongly convex loss) Let assumptions 4.1

to 4.5 hold. We run our algorithm with the parameter β ∈ (0, 1).

I) When adopting fixed step size γ =
1

2LE
for t ≥ 0, we have the following rate.

E f(wt,0)− f? ≤
L∆

µ

[
1− µ

(β + 2)L

]t
+
Sσ2

4µ
+

3LΓ

2µ
+

2AE2G2

µ
+
β(1− β)EG2

8L

where A def

= 4 + (1− β)2 + 8

(
1− 1

β

)2

.

115



C – Analysis of our algorithm

II) Using diminishing step size γt =
4

µE(8L/µ+ t)
for t ≥ 0 yields

E f(wt,0)− f? ≤
L

µ

[
8L/µ

8L/µ+ t

][
∆ +

Sσ2

LE
+

6Γ

E
+

8AEG2

L
+
µβ(1− β)G2

2L2

]

where A = 4 + (1− β)2 + 32

(
1− 1

β

)2

.

In addition, we denote ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. We distinguish between the two cases.

I) From lemma C.2, we bound the contraction factor κ using step size γ = 1/(2EL).

κ = 1− 1

β
+

1

β

(
1− βµ

2EL

)E
= 1− 1

β
+

1

β

[(
1− βµ

2EL

)− 2EL

βµ

]− βµ
2L

≤ 1− 1

β
+

1

β
e−

βµ

2L (C.34)

≤ 1− 1

β
+

1

β

2L

βµ+ 2L
(C.35)

= 1− µ

βµ+ 2L

We use fact that (1 + 1/x)x ≤ e in equation C.34, and e−x ≤ 1/(x+ 1) for any x > −1 in C.35.
Moreover, we replace the chosen γ in the error term. Lastly, we approximate βµ+2L ≤ L(β+2),
and we neglect the negative term in the bound.

II) From this specific choice of γt, we obtain υ = 4/(µE) and τ = 8L/µ > 1 using assumption
C.24 from lemma C.3. Consequently, we compute γ0 = 1/(2EL). We substitute τ and υ in the
optimality gap retrieved from theorem C.24.

Our proof is complete.

C.3 Main results for nonconvex analysis

The following lemma quantifies the progress made by our algorithm in a global round for
nonconvex loss objectives.

116



C.3 – Main results for nonconvex analysis

Lemma C.4 (Single round progress of our algorithm, nonconvex) Assume that γt ≤ 1/L and

assumptions 4.1 to 4.4 and 4.6 hold. Then, in a single round, we have

1

E

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
2

γtE
E[f(wt,0)− f(wt+1,0)] +A

where A = γtLσ
2
∑C

i=1 p
2
i + 4γ2t L

2E2G2

[
4 + (1− β)2 + 1t≥ 1

8γ2t−1
γ2t

(
1− 1

β

)2
]

.

Proof. This proof is very similar to the one of lemma B.4 with problem-specific adjustments.
Therefore, we begin by stating the definition of the update rule for the average iterate.

wt,k+1 −wt,k = −γt
C∑
i=1

pigi

(
w̃i
t,k

)
Iterates wt,k+1 and wt,k are replaced in the definition of smoothness from 4.4. We also define
δt,k = f(wt,k+1)− f(wt,k).

E δt,k ≤ E

−γt
C∑
i=1

pi∇fi
(
w̃i
t,k

)>
∇f(wt,k)︸ ︷︷ ︸

a1

+ E

γ
2
t L

2

∥∥∥∥∥
C∑
i=1

pigi

(
w̃i
t,k

)∥∥∥∥∥
2

︸ ︷︷ ︸
a2



E

−γt
C∑
i=1

pi

[
gi

(
w̃i
t,k

)
−∇fi

(
w̃i
t,k

)]>
∇f(wt,k)︸ ︷︷ ︸

ã1


Because of assumption 4.2 on the unbiasedness of the stochastic gradient, we observe that
E ã1 = 0. Let us bound a1 first.

a1 ≤
γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)
−∇f(wt,k)

∥∥∥∥∥
2

− γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

−γt
2
‖∇f(wt,k)‖2 (C.36)

=
γt
2

∥∥∥∥∥
C∑
i=1

pi

(
∇fi

(
w̃i
t,k

)
−∇fi(wt,k)

)∥∥∥∥∥
2

− γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (C.37)
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≤ γt
2

C∑
i=1

pi

∥∥∥∇fi(w̃i
t,k

)
−∇fi(wt,k)

∥∥∥2 − γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (C.38)

≤ γtL
2

2

C∑
i=1

pi

∥∥∥w̃i
t,k −wt,k

∥∥∥2 − γt
2

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

+

−γt
2
‖∇f(wt,k)‖2 (C.39)

In equation C.36, we use the fact that 2u>v = ‖u‖2 + ‖v‖2 − ‖u − v‖2, while we leverage
∇f(·) =

∑C
i=1 pi∇fi(·) in C.37, and we recall Jensen’s inequality in C.38. To conclude, in

equation C.39, we use the Lipschitz gradient consequence from the smoothness assumption. To
bound term a2, we exploit assumptions 4.2 as we already did in previous proofs.

a2 =
γ2t L

2

∥∥∥∥∥
C∑
i=1

pi
(
gi
(
wi
t,k

)
− fi

(
wi
t,k

))
+

C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2

=
γ2t L

2

∥∥∥∥∥
C∑
i=1

pi
(
gi
(
wi
t,k

)
− fi

(
wi
t,k

))∥∥∥∥∥
2

+

∥∥∥∥∥
C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2


=
γ2t L

2

 C∑
i=1

p2i
∥∥gi(wi

t,k

)
− fi

(
wi
t,k

)∥∥2 +

∥∥∥∥∥
C∑
i=1

pifi
(
wi
t,k

)∥∥∥∥∥
2


Taking expectation, we have

E a2 ≤
γ2t Lσ

2

2

C∑
i=1

p2i +
γ2t L

2
E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
wi
t,k

)∥∥∥∥∥
2

We join the bounds on a1 and a2. Thus, under expectation, we attain

E δt,k ≤ −
γt(1− Lγt)

2
E

∥∥∥∥∥
C∑
i=1

pi∇fi
(
w̃i
t,k

)∥∥∥∥∥
2

− γt
2
E ‖∇f(wt,k)‖2 +

γ2t Lσ
2

2

C∑
i=1

p2i+

γtL
2

2

C∑
i=1

pi E
∥∥∥wt,k − w̃i

t,k

∥∥∥2︸ ︷︷ ︸
b

We notice that −γt(1− Lγt) ≤ 0 because of assumption C.4, and we replace b using the result of
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lemma 4.5. Eventually, we attain

E δt,k ≤ 2γ3t L
2E2G2

[
4 + (1− β)2 +

1t≥ 18γ
2
t−1(1− β)2

γ2t β
2

]
+
γ2t Lσ

2

2

C∑
i=1

p2i︸ ︷︷ ︸
c

+

−E γt
2
‖∇f(wt,k)‖2

After rearranging the terms, we sum from k = 0 to E − 1.

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
2

γt
E[f(wt,0)− f(wt,E)] +

2Ec

γt

We replace wt,E ≡ wt+1,0, and we conclude our proof by dividing by E.

We now address the convergence behavior when opting for a constant step size.

Lemma C.5 (Convergence of our algorithm with fixed γt, strongly convex) Assume that

γt ≤ 1/L for t ≥ 0, and 4.1 to 4.4 and 4.6 hold. Then, for any T ≥ 1, we have

1

TE

T−1∑
t=0

E−1∑
k=0

E ‖∇f(wt,k)‖2 ≤
4∆

γTE
+A

where we define ∆ = f(w0,0)− finf , and

A = γLσ2
C∑
i=1

p2i + 4γ2L2E2G2

[
4 + (1− β)2 + 8

(
1− 1

β

)2
]

Proof. We follow the same principle from the proof of B.5.

On the other hand, in our derivation of the rate for a diminishing step size, we should also consider
the presence of multiplier γt−1, which we again bound in relation to γt.

Lemma C.6 (Convergence of our algorithm with diminishing γt, strongly convex) Assume

4.1 to 4.4 and 4.6 hold. In additition, for t ≥ 0, choose a step size

γt ≤
1

L
such that Σ =

∞∑
r=0

γr diverges and
∞∑
r=0

γ2r converges
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Moreover, assume that γt ≤ 2γt+1 for t ≥ 0. Therefore, for all T ≥ 1, we observe that

1

ΣE

T−1∑
t=0

E−1∑
k=0

γt E ‖∇f(wt,k)‖2 ≤
1

Σ

[
2∆

E
+

T−1∑
t=0

Rt

]
T →∞−−−−→ 0

where we define ∆ = f(w0,0)− finf , and

Rt = γ2t Lσ
2

C∑
i=1

p2i + 4γ3t L
2E2G2

[
4 + (1− β)2 + 32

(
1− 1

β

)2
]

Proof. Using C.4, we multiply both sides by γt, and we average from t = 0 to T − 1. Recalling
assumption 4.6, and leveraging the fact 1t≥ 1γ

2
t−1 ≤ 4γ2t , we conclude the proof.

We develop the following theorem as a consequence of specific step size choices.

Theorem 4.6 (Convergence of our algorithm for nonconvex loss) Supposing that 4.1 to 4.4

and 4.6 hold, we run our algorithm with parameter β ∈ (0, 1) for T ≥ 1 rounds.

I) We choose fixed step size γ =
1

2L
√
TE

. Hence, we have

E ‖∇f(ŵT )‖2 ≤ 1√
T

[
4L∆√
E

+
Sσ2

2
√
E

]
+
EG2

T

[
4 + (1− β)2 + 8

(
1− 1

β

)2
]

where ŵT is uniformly chosen from {wt,k }t,k for 0 ≤ k ≤ E − 1 and 0 ≤ t ≤ T − 1.

II) When using decreasing step size γt =
1

2L
√
E(t+ 1)

for t ≥ 0, we attain

E ‖∇f(ŵT )‖2 ≤ 1

ln(T + 1)

[
4L∆√
E

+
Sσ2√
E

+
3EG2

8

[
4 + (1− β)2 + 32

(
1− 1

β

)2
]]

where we sample ŵT from {wt,k }t,k uniformly in relation to 0 ≤ k ≤ E − 1, and with

probability γt/Σ concerning 0 ≤ t ≤ T − 1. Further, Σ =
∑T−1

r=0 γr.

Moreover, we have ∆ = f(w0,0)− finf and S def

=
∑C

i=1 p
2
i .

Proof. Let us discuss both points.

I) We substitute our γ in the rate of lemma C.5, and we use the definition of ŵt,k.
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II) We first notice that our choice of γt satisfies the assumption 1t≥ 1γt−1 ≤ 2γt from C.6. Then,
we establish an lower bound for Σ as in the proof of theorem 4.3.

Σ ≥ ln(T + 1)

2L
√
E

Likewise, referring to the same proof, we upper bound
∑T−1

t=0 γ
a
t where a ∈ { 2, 3 }.

T−1∑
t=0

γat ≤
a

2aLa
√
Ea(a− 1)

We finish by using these bounds in the result of C.6, and recalling the notion of ŵt,k.

This concludes the discussion.

Finally, we refine the convergence rate of the previous theorem when using a fixed step size.
Specifically, we focus on a choice of E that minimizes the bound.

Corollary 4.1 Consider the case I from theorem 4.6, and choose a number of local steps

E = O(T 1/3). Then, the error asymptotically decreases as O(T−2/3).

C.4 Lower bound for some strongly convex problem

In this section, we present a lower bound for our algorithm in the same theoretical setting used for
FEDPROX. Furthermore, we assume further restrictions on the problem that aids our dissertation.

Theorem 4.5 (Lower bound of our algorithm for some strongly convex loss) For all µ, σ,G ∈
R>0, β ∈ (0, 1), E ≥ 2, C ≥ 2, an initial point w0,0 and any step size γ ≤ (µE)−1, there

exists a positive A ≤ 1− e−1 and a µ/2-strongly convex objective f(w) where our algorithm

with parameter β satisfies the following claim for any t ≥ 0.

E f(wt,0)− f? ≥ min

{
∆

(
β

4

)2t

,
1

(t+ 1)2

[
3A2G2

128E2µ
+

3Sσ2

64Eµ

]}

Ultimately, we define ∆
def

= f(w0,0)− f? and S def

=
∑C

i=1 p
2
i .

Proof. This proof is structured as the one of theorem 4.2 and assumes the same operative setting.
Therefore, we will limit ourselves to stating the main differences. For some τ > 0, we construct
the problem using step size γ ≤ 1/(EH) for any t ≥ 0. We rewrite the update rule of our
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algorithm.

wit,k+1
def

=

{
wit,k − γ

(
Hw̃it,k +G+ ζit,k

)
where i ∈ C1

wit,k − γ
(
hw̃it,k −G+ ζit,k

)
where i ∈ C2

By definition of perturbed iterate, we know that w̃it,k
def

= βwit,k + (1− β)uit. To further simplify
our problem, we assume again that

∑
i∈C1 pi =

∑
i∈C2 pi = 1/2 as in the proof of 4.2, and that

the server broadcasts uit
def

= wt,0 to each client i ∈ { 1, . . . , C }. Therefore,

wit,k+1
def

=

{
(1− γβH)wit,k − γ(1− β)Hwt,0 − γG− γζit,k where i ∈ C1
(1− γβh)wit,k − γ(1− β)hwt,0 + γG− γζit,k where i ∈ C2

Therefore, after recurring, we compute the average iterate wt+1,0
def

=
∑C

i=1 piw
i
t,E , and we define

κH
def

= 1− γβH and κh
def

= 1− γβh.

wt+1,0 =

[
1− 1

β
+
κEH + κEh

2β

]
wt,0︸ ︷︷ ︸

a

+
γG

2

E−1∑
k=0

(
κkh − κkH

)
︸ ︷︷ ︸

b

+

− γ
E−1∑
k=0

κkH
∑
i∈C1

piζ
i
t,k︸ ︷︷ ︸

c

− γ
E−1∑
k=0

κkh
∑
i∈C2

piζ
i
t,k︸ ︷︷ ︸

d

Once again, in order to retrieve E f(wt+1,0), we compute Ew2
t+1,0, and we leverage the fact that

Ew2
t+1,0 > E a2 + b2 + E c2 + E d2. To better characterize E a2, we use κh > κH in expression

C.40.

E a2 >
[
1− 1

β
+

(1− γβH)E

β

]2
Ew2

t,0 (C.40)

To bound terms b2, E c2 and E d2, we follow the same principles as in the proof of 4.2.

Ew2
t+1,0 ≥

[
1− 1

β
+

(1− γβH)E

β

]2
Ew2

t,0︸ ︷︷ ︸
a1

+

[
A2G2

4

(
H − h
H

)2

+
Eσ2

e2

C∑
i=1

p2i

]
γ2︸ ︷︷ ︸

b1

(C.41)

Let us consider the following two cases.

• We pick the interval 1/(t+ τ + 1) < γEH ≤ 1. Our last inequality implies that Ew2
t+1,0 ≥

a1 and Ew2
t+1,0 ≥ b1 since a1 and b1 are positive terms. When unrolling recursively the
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inequality Ew2
t+1,0 ≥ a1, we have

Ew2
t+1,0 ≥

[
1− 1

β
+

(1− γβH)E

β

]2
Ew2

t,0

≥
[
1− 1

β
+

(1− β/E)E

β

]2
Ew2

t,0 (C.42)

≥
[
1− 1

β
+

(1− β/2)2

β

]2
Ew2

t,0 (C.43)

= Ew2
t,0

(
β

4

)2

≥ Ew2
0,0

(
β

4

)2(t+1)

︸ ︷︷ ︸
a2

We leveraged the fact that γH ≤ 1/E in C.42, the inequality (1− β/E)E ≥ (1− β/2)2 in
C.43 since E ≥ 2 by definition. On the other hand, concerning Ew2

t+1,0 ≥ b1, we use the
information γ > 1/[EH(t+ τ + 1)].

Ew2
t+1,0 >

1

E2H2(t+ τ + 1)2

[
A2G2

4

(
H − h
H

)2

+
Eσ2

e2

C∑
i=1

p2i

]

From C.41, the union of such inequalities gives Ew2
t+1,0 ≥ min{a2, b1}.

• The other case is 0 < γEH ≤ 1/(t+ τ + 1). Replacing such assumption in C.41, we have
Ew2

t+1,0 > a1 since b1 > 0.

Ew2
t+1,0 > Ew2

t,0

[
1− 1

β
+

1

β

(
1− β

E(t+ τ + 1)

)E]2

≥ Ew2
t,0

[
1− 1

β
+

1

β

(
1− β

2(t+ τ + 1)

)2
]2

(C.44)

> Ew2
0,0

[
1− 1

β
+

1

β

(
1− β

2(t+ τ + 1)

)2
]2(t+1)

≥ Ew2
0,0

[
1− 1

β
+

1

β

(
1− β

2(τ + 1)

)2
]2

(C.45)

> a2

Therefore, after using the fact that E ≥ 2 in C.44 and then t ≥ 0 in C.45, we proved by
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recursion that this lower bound is redundant in relation to a2.

The union of the two cases yields Ew2
t+1,0 ≥ min{a2, b1}. Lastly, we undertake the same steps

as in the proof of theorem 4.2 to claim our final result.
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