
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

AR-Sim: A High-fidelity 3D Simulator for

Autonomous Racecars

Supervisors

Prof. Andrea TONOLI

MSc Felix JAHNCKE

MSc Eugenio TRAMACERE

Candidate

Giovanni SCAPICCHI

July 2024

Abstract

This thesis introduces a versatile simulation environment for autonomous
racing vehicles, developed at the TUM Autonomous Vehicle System Lab.
Initially created for F1Tenth cars, the simulator is adaptable for any vehicle
type, including full-scale models. It feature a C++ API and a custom
Unity executable for realistic graphics and sensor simulations. A ROS2
extension package is included for easy software-in-the-loop testing, while a
Python wrapper implements a Gymnasium environment for machine learning
algorithms.

The project not only addresses the limitations of the current F1Tenth
gym simulator, which is confined to 2D environments and lacks capabilities
to include camera and 3D LiDAR sensors, but overcome the lack of open
source autonomous racing simulators for vehicles. The existing simulators
are few and with limited generalizability, resulting in a trade off between
customization of vehicle dynamic modeling and 3D realism. On the other
side autonomous road vehicle simulation environments present advanced
capabilities but are very complex and demand substantial computational
resources, in addition none of them allow fully customization of the vehicle
dynamic model employed and mostly only rely on the PhysX physics engine.

This new simulator bridges the gap with unique features, offering both
PhysX and external physics engines, and provides an easy-to-use API for
custom dynamic models. User-friendly YAML configuration files enable
seamless setup of the simulation environment. Custom race tracks can be
integrated from pre-made 3D models, CSV files, or generated randomly using
varied barriers and materials. The simulator also features a LiDAR model
and an RGB camera sensor, both of which are fully parameterized to match

real sensor specifications. Multiple sensors can be placed on a car, with the
option to include more than one of each type.

This open-source simulator is a valuable tool for research and education,
especially in the F1Tenth community, and its flexibility makes it suitable for
a broad spectrum of autonomous racing vehicle applications.

ii

ii

Acknowledgements

I am thankful to everyone who supported me throughout my thesis journey.
First and foremost, I owe a huge debt of gratitude to Felix Jhancke for
welcoming me into the AVS lab at TUM for his constant trust and support,
and for giving me the freedom to pursue my ideas on this project. A special
thanks also to Professor Johannes Betz, for giving me the opportunity to be
part of their research team.

Additionally, I’d like to thank Daniel Gebhart and Yichao Gao, who
collaborated with me on the project, for their assistance and teamwork.

I also want to extend my appreciation to Professor Tonoli for allowing me
to take on this project and to Eugenio for his advice and assistance.

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Background . 1
1.2 Level of Autonomous Driving 2
1.3 Impact of Autonomous driving 3
1.4 Autonomous racing . 6

1.4.1 Historical development 6
1.5 Scaled research Test Beds 8

1.5.1 1:43 Vehicles . 8
1.5.2 Low Budget . 8
1.5.3 Scaled Urban Driving 9
1.5.4 1:10 Advanced Sensor Suite 9

1.6 Autonomous racing software stack 10
1.6.1 End to End autonomous driving 12

1.7 Thesis Outline . 13

2 Simulation Environments for Autonomous Vehicles 14

v

2.1 Introduction . 14
2.1.1 Historical Context and Evolution 15

2.2 Classification . 17
2.2.1 Vehicle Dynamics Simulators 18
2.2.2 Driving Policy Simulator 19
2.2.3 Full Featured Simulators 19
2.2.4 autonomous racing simulator 20

2.3 Application and Use Cases 20
2.3.1 End-to-End and Machine Learning 21

2.4 Building blocks . 21
2.4.1 Physic Engine . 22
2.4.2 Rendering Engine . 28
2.4.3 Sensor Model . 30
2.4.4 Communication and API 31

2.5 State of the Art review . 32
2.5.1 F1TENTH Simulator 32
2.5.2 CARLA . 33
2.5.3 AWSIM . 36
2.5.4 AutoDrive simulator 37
2.5.5 Flightmare . 38
2.5.6 Other Simulators . 40

3 Methodology 42
3.1 Unity Server . 45

3.1.1 Environment Scenes 46
3.1.2 Race Tracks . 47
3.1.3 Random Track Generator 49
3.1.4 Back end . 52
3.1.5 Car model and physic engine 55
3.1.6 Sensors . 56

vi

3.1.7 Rendering . 58
3.2 Core C++ Library . 59

3.2.1 Car and Dynamic 60
3.2.2 Sensors . 63
3.2.3 Settings . 63
3.2.4 Bridge . 64
3.2.5 Wrapper . 65

3.3 Ros2 Bridge Package . 65
3.4 Python wrapper . 67

4 Conclusions 68
4.1 Results . 68
4.2 Future work . 71

A AR-Sim Code Examples 73

Bibliography 78

vii

List of Tables

2.1 Main properties that can be set with the Unity Wheel Collider 29
2.2 Comparison of simulation environments 41

3.1 messages topic and payload 54
3.2 LiDAR sensor options . 57
3.3 Camera parameters . 58
3.4 AR-Sim main classes and functionalities 60

4.1 . 70
4.2 Simulation rate for different LiDARS 70
4.3 . 70
4.4 Performance with combined sensor setup 70

viii

List of Figures

1.1 SAE Level of Autonomous driving 4
1.2 F1Tenth car . 10
1.3 AV Software Pipeline [12] 12

2.1 Caption . 25
2.2 PhysX wheel friction curve 26
2.3 Unity wheel collider component 27
2.4 F1Tenth gym simulator . 34
2.5 CARLA Simulator . 35
2.6 AWSIM . 37
2.7 AutoDrive Simulator . 39
2.8 Flightmare simulator . 40

3.1 AR-Sim Software Architecture 43
3.2 AR-Sim Unity Home page 46
3.3 AR-Sim: F1Tenth race car PoV in 2 different scenes. 47
3.4 Track Generation from AR-Sim GUI 49
3.5 Track created with same csv file but different mesh options. . 50
3.6 Random race track generation 51
3.7 Unity Editor of the project 53
3.8 Car Prefab in Unity . 56
3.9 2D LiDAR . 57

ix

3.10 Single track dynamic model collaboration diagram 62
3.11 Parameter class collaboration diagram 62
3.12 RViz2 visualization of the ROS2 AR-Sim package 66

4.1 Simulation rate with different cameras configurations 69

x

Acronyms

AI Artificial Intelligence

RL Reinforcement Learning

E2E End-to-End

IAC Indy Autonomous Challenge

AV Autonomous Vehicles

AD Autonomous Driving

ODE Ordinary Differential Equation

GSS Ground Speed Sensor

SIL Software In the Loop

HIL Hardware In the Loop

ML Machine Learning

xi

Chapter 1

Introduction

Autonomous driving technology is revolutionizing the transportation sector,
offering significant benefits in terms of safety, efficiency, and accessibility.
Autonomous racing competitions have emerged as a driver for advancements
in this technology and as a means to increase public acceptance by showcasing
its capabilities.

In academia, the field of autonomous driving is expanding with new, acces-
sible platforms like F1Tenth that provide valuable testbeds for prototyping
new solutions. In these applications, simulation environments are crucial
tools that enable safe, cost-effective development and testing.

In this context, this thesis explores the development of an autonomous
racing simulator designed to enhance training and research for autonomous
race vehicles.

1.1 Background

Autonomous cars are expected to be one of the biggest revolutions in trans-
portation systems, the benefits will concern safety, traffic efficiency, and
accessibility to transportation, at the same time there are consequences not

1

Introduction

yet sure what will be the impact on the job market or from the environmental
point of view [1], [2]. Autonomous driving (AD) is a rapidly evolving technol-
ogy where a lot of effort is displayed by researchers and companies to solve
the present questions concerning the complexity of the technology. Anyway,
autonomous driving is no longer a fiction, with several companies already
providing shared mobility solutions with robo-taxi as Waymo, and Cruise in
the U.S. already available, starting to become a real business [3]. There are
also cars with up to level 3 autonomous driving, such as the Mercedes EQS,
available to the customers. The economic perspective is also very significant
with a projected value on the global market of $615 Billion by 2026 [4].
This chapter aims to give an overview of autonomous driving technology
and contextualize this thesis in respect to trends in this sector. The last
paragraph of this chapter outlines the structure of the rest of this writing.

1.2 Level of Autonomous Driving

Autonomous driving is divided according to SAE into 6 levels going from
0-5 based on the level of automation the system provides. Most commercial
ADAS (advanced driving assistance systems) on vehicle fall between categories
0-3. The six levels are:

• Level 0: No driving automation, automation, if any, is only present for
warning purposes.

• Level 1: Driver Assistance.The vehicle features a single automated
system for example adaptive cruise control. There can’t be at the same
time later and longitudinal control.

• Level 2: Partial driving automation. The vehicle can control both
lateral and longitudinal dynamic at the same time. It required active
driver supervision. Tesla Autopilot is currently on this level.

2

Introduction

• Level 3: Conditional Driving Automation.The vehicle can perform all
driving functions but only under certain conditions and the system may
request the driver to take control when does conditions are no longer
met. Some companies providing level 3 autonomy are Audi, Honda, and
Mercedes-Benz.

• Level 4: High Automation. The vehicle can operate completely au-
tonomously in specific conditions or environments differently from level
3 no request is made to the driver to take control. At this level though
vehicles can only operate in specific environments. Examples of this are
robotaxi services like Waymo.

• Level 5: Full automation.The vehicle can drive by itself in every scenario
or location.

1.3 Impact of Autonomous driving

Autonomous Driving will impact several areas of transportation systems
solutions in a deeper way but will also affect and shape our society differently,
briefly in this chapter are presented some of the most relevant consequences,
outlining both positive but also possible negative ones.

Safety - Safety will be one of the major positive influences of autonomous
driving, every year the causalities due to accident involve millions of people
worldwide, and more than 90% of those accidents are due to human errors.
More than half of all road accident deaths involve young adults ages 15-44
and are the leading cause of death for young people ages 15-29. [1]

Accessibility - Autonomous vehicles can increase the accessibility to
transportation to physically disabled people or people who don´t possess a
license, giving them more independence.

3

Introduction

Figure 1.1: SAE Level of Autonomous driving

Traffic Efficiency - Traffic congestion can be reduced thanks to the use
of autonomous driving since this technology allows cars to better cooperate
and make them respect speed limits, safety distance and also the increased
use of car sharing and carpooling can increase the per-car vehicle occupancy
while reducing the number of vehicles parked on the road. V2X communi-
cation could also allow experimenting with technology like platooning, and
efficient routing since cars could communicate with each other and with the
infrastructure to optimize the path taken for going to the destination based
on the current state of the roads.[2]

Environmental Impact - It’s complex to predict the environmental

4

Introduction

impact of this, while on one side the functionalities of Autonomous cars can
reduce GHG emissions thanks to the more efficient use of the vehicles, on the
other side the increased facility and ease of access to transportation could
increase the number of people traveling by cars. Also, cars could go faster on
highways due to the increased safety causing an increase of fuel consumption
as high as 40% or more [2]. On the other side, they can provide a more
tailored on-demand service that can substitute public transportation in rural
areas [5].

Employement Impact - The commercial vehicle sector of taxis and
trucks are expected to be using AV technology since this will allow to trans-
port more people and goods at a lower cost, this implies that professional
drivers will be among the first to become unemployed [6]. New unexpected
jobs will also emerge as it happened with web-based services like Amazon,
but this is indeed complex to predict. Anyway [6] found that those who
profit from the newly available jobs aren´t usually the same as the ones
losing it.

Mobility on Demand - Several studies report that privately owned
cars can be replaced with a single robotic taxi in cities, but also in rural
areas where access to mobility is more restrictive, can be improved with
mobility-on-demand services where, for examples, train from point A to B
can be replaced with multiple robotaxis.[5]

Shared Mobility - Autonomous vehicle technology can enhance shared
mobility by offering extensive service coverage without necessitating a large
fleet. This is because autonomous vehicles can reach users directly, elim-
inating the need for users to walk several minutes to access a vehicle [7],
[8].

5

Introduction

1.4 Autonomous racing

Autonomous racing provides a unique and demanding environment that is
pushing forward the development of autonomous vehicle (AV) technologies.
This field not only advances AV technology but also increases public accep-
tance by showcasing the capabilities and reliability of autonomous systems
in complex environments [7]. Additionally, autonomous racing introduces a
new type of motorsport focused on engineering and innovative strategies, at-
tracting a technology-enthusiast audience and inspiring future advancements.
[9].

1.4.1 Historical development

To advance the research on the AD field autonomous racing competitions
emerged starting in the 21 century, as happened with the traditional race
competition, which serves as an innovation laboratory for commercial vehicles.
In 2004 the first DARPA challenge held place with a prize of $1M for the
car able to navigate 142 miles through the Mojave desert. No one of the
107 times enrolled in the competition was able to perform more than 5% of
the race. In 2005 the second competition, with a doubled prize of $2M took
place, this time Standford’s robot "Stanley" finished the race [4],[10]. That
challenge was an occasion to push the state of the art of autonomous driving
to a new level.

The increased interest in the field in AV, fueled also by companies like
Google launching its research on autonomous driving in 2009, and traditional
car manufacturing introducing the use of Advance Driver Assistance Systems
(ADAS), led to the establishment of new autonomous racing categories. In
2017, the Formula Student Driverless category was introduced, enabling lots
of students and researchers to get involved in the field and produce new
advanced results, such as the software stack developed by the AMZ team

6

Introduction

from Zurich [11]. Roborace, the first global championship for autonomous
racing, took place on different occasions from 2016 to 2021. All teams were
equipped with the same hardware and the competition was based only on
software development. The Roborace was initially tested during Formula E
events during the 2016-2018 season, in 2018 it was the first autonomous car
to complete the Goodwood Hillclimb. Roborace was fatigued to find success,
after trying to integrate some metaverse functionalities to have augmented
reality races it ceased to exist in 2022. In 2019 started the Indy Autonomous
Challenge competition where 9 teams from 21 universities participated [12].
The first race of the IAC was at Indianapolis, here the scope of the competi-
tion was reduced to a time trial event with an obstacle avoidance test, on
this occasion the $1M prize was wined by the TUM autonomous Motorsport
Team. In 2022 the second IAC took place at Las Vegas Motor Speedway
as the final event of the 2022 edition of the Consumer Electronics Show
(CES). This was the first time two full scale autonomous racing vehicles raced
against each other on track even if the race event was simplified with respect
to a normal competition, in this occasion the Polimove team from Milan won
the competition. The Indy Autonomous Challenge was held on an oval race
track until the new challenge was the 2023 race at the Autodromo Nazionale
di Monza, due to the increased complexity of the road circuits this race was
once again based on time and only one vehicle at a time run on the track.
With a different intention the the new A2RL (autonomous racing league),
aims to have wheel-to-wheel races like normal race car competitions. The
first of this event took place in 2024 at the Yas Marina Circuit where multiple
autonomous racing cars compete against each other racing on the track at
the same time. On another occasion the was an event where for the first
time a human-driven car and AI-driven car ran on the same track at the
same time. The winner of the multi-agent race was obtained by the TUM
autonomous racing team.

7

Introduction

1.5 Scaled research Test Beds

Full-scale autonomous vehicles are anyway quite expensive and so are outside
the reach of most researchers and students. Also testing new algorithms on
those vehicles can be quite risky, for this reason, scaled autonomous vehicles
are gaining a lot of interest since they allow researchers to exploit new ideas
without the risk of damaging costly hardware or having to need large space
to test the newly designed software. A different number of examples of this
are present in academia.

1.5.1 1:43 Vehicles

The ORCA project [13] from ETH Zurich, is an internal 1:43 scaled vehicles
testbed used to research advanced controllers for race cars, such as MPC
[14], or reinforcement learning application [15]. Though was made using
a completely different perception stack with respect to 1:1 vehicle since
perception was carried out with external capturing motion systems, which
also make them very expensive.

1.5.2 Low Budget

Instead, low budget (400-600$) scaled autonomous test-bed with exterocep-
tive sensors mounted on the car is the Amazon AWS DeepRacer [16] or the
Donky car [17]. Both of these cars mount a camera sensor to experiment with
reinforcement learning agents able to drive the car on different race tracks
and propose extensive documentation and a 3D simulation environment.

8

Introduction

1.5.3 Scaled Urban Driving

Other small race cars instead focuses more on road applications like the
Duckietown [18] or the Autodrive Nighel platform [19]. This car is thought
to research the theme of urban autonomous driving using scaled versions of
city scenarios like intersections to teach and research.

1.5.4 1:10 Advanced Sensor Suite

In the last category are 1:10 scaled vehicles with more high prices that are
aiming to develop autonomous racing platforms with more expensive and
performing equipment. Different institutions have developed and documented
1:10 scale remote-controller cars converted to autonomous vehicles. Berkeley
Autonomous Racecar [20], the MIT Racecar [21], the RoSCAR [22], and the
F1TENTH vehicle [23]. These vehicles feature interchangeable sensor setups,
allowing the use of monocular cameras (e.g., Raspberry Pi, OpenCV OAK-
1), stereo cameras (e.g., ZED, Intel Realsense), 2D LiDARs (e.g., Hokuyo
models), IMUs, indoor GPS, and wheel speed sensors. They utilize embedded
GPU systems like Nvidia Jetson (TX1, TX2, NX, AGX Xavier, Nano) for
efficient deep neural network inference, facilitating advanced autonomous
driving experiments.

F1Tenth

Being an affordable, open-source, and integrated autonomous vehicle test-
bed the F1Tenth vehicle stands out as the one becoming more popular with
already 20+ universities worldwide using it and with annual competitions
that take place around the globe. Also, the F1tenth is employed for teaching
practical courses on autonomous driving [24] .F1Tenth provides open-source
documentation of both the Hardware and software setup that explains how
to build the car step by step, and this guide is actively maintained by a

9

Introduction

community of users, besides different open source project can be found, as
the [25] which provide a full stack autonomous racing software that user can
directly install on the car. The F1Tenth also is fully standardized to make
use of the ROS2 framework and its associated libraries.

The vehicle’s chassis is based on a fast radio-controlled electric vehicle,
the Traxxas 4x4, which can reach up to 100km/h and provides an Ackerman
steering mechanism, for the computational side it mounts an NVIDIA Jetson
TX2 GPU computer which allows for processing all the data coming from
the sensor ob-board.

Figure 1.2: F1 Tenth car https://f1tenth.org/build.html

1.6 Autonomous racing software stack

The classical approach for autonomous driving that emerged is to divide
the software into different modules, each targeting a different task, namely
perception, planning, and control. More specifically:

10

https://f1tenth.org/build.html

Introduction

• Perception: consists of using data coming from sensors like Cameras,
LiDARS, and Radar to understand the environment around the car, such
understanding aims to identify where there are obstacles and where is
free space allowed to travel. Given the high dimensionality of the sensor
measurements, in this step are found several AI ML techniques like the
Yolo for analyzing camera images or the DBSCAN. The perception step
can also include the localization and mapping which is usually performed
with a SLAM (simultaneous localization and Mapping) algorithm.

• Planning: the goal of this module is to compute the path that the car
should follow based on the understanding of the environment built on the
previous step. In global planning, an optimal path is constructed based
on the knowledge of the full racetrack. This method allows to build
the optimal race line but it’s only possible if a full map of the track is
available, further, it doesn’t consider other vehicles or dynamic obstacles
that are present. Local planning compensates for this by providing
a finite time horizon path to follow based on the current observation
available. In combination with global planning, this allows for both an
optimal and safe path to follow. Behavioral planners run on top of the
previous two and deal with high-level decisions like if performing an
overtake maneuver. The output of the planner is usually a path and a
velocity profile to follow.

• Control: This last module is responsible for making the vehicle follow
the desired trajectory by reducing the lateral and heading error with
respect to the reference provided while at the same time keeping the
velocity target. The control actions at a higher level are steering and
throttle commands, which then are passed to lower-level controllers. A
lot of different control methods can be used, from classic control theory
to model predictive control and learning-based approaches.

11

Introduction

Figure 1.3: AV Software Pipeline [12]

1.6.1 End to End autonomous driving

The traditional modular pipeline is advantageous due to its interpretability
and ease of debugging since each task is separated from the other. However,
a negative effect of this is that the solution obtained can be sub-optimal
since each software stack is optimized with respect to a different target and
not for the overall unique target [26].

For this, an always increasing interest is a new approach where the above
modular design is replaced, totally or partially, by a neural network in the
so-called End-to-End approach or Partial End-to-End 1.3. This method
processes directly the raw input data to produce motion plans or low-level
control actions [27]. The End-to-End approach it’s appealing because it can
produce a more optimal solution and efficient use of the computing resources
even though this comes with other downsides, which are less interpretability
and the need for a lot of data to learn and which often require the setup
of sophisticated simulation environments [28]. Training in simulation has
the advantage of producing a large amount of data at a low cost and it

12

Introduction

guarantees to test a lot of edge case scenarios, on the other side a problem
when using synthetic data is that often the simulated environment lacks
sufficient realism and the policy learned can’t transfer to real-world [29].
This problem is known as Sim-to-Real (S2R) transferability [30], [15].
In the automotive field, this End-to-End approach is still in the early develop-
ing phase, but it is presumed that will play a crucial role in future technology
[26], while E2E methods have shown promising results in other areas, such
as quadcopter control, where AI-driven models have outperformed human
pilots [31]. In addition to deep neural networks, reinforcement learning (RL)
is another promising approach. In RL, the autonomous car acts as an agent
that interacts with its environment, receiving observations and computing
actions that maximize a reward signal. This method requires extensive trial
and error, making it well-suited for simulation environments.

1.7 Thesis Outline

The thesis is organized as follows:

1. Chapter 2 : This chapter introduces simulation environments for au-
tonomous driving, categorizing them based on their features. It provides
an overview of the submodules or building blocks of such software and
concludes with a state-of-the-art review of the most relevant simulators.

2. Chapter 3 : This chapter presents the AR-Sim simulator, detailing the
motivations for its development and the target requirements. Each
software component is then examined in detail.

3. Chapter 4 : This chapter concludes with a discussion of the obtained
results and presents suggestions for future improvements.

13

Chapter 2

Simulation Environments
for Autonomous Vehicles

2.1 Introduction

Simulation environments are software aimed to replicate real-world systems
for the purpose of analysis, testing, and development of engineering solu-
tions. In the automotive industry, these tools are essential for developing
advanced driver-assistance systems (ADAS), autonomous driving technolo-
gies, vehicle dynamics, and powertrain optimization, enabling engineers to
test and refine solutions in a controlled, virtual environment before physical
prototypes are created. They simulate various physical processes providing a
controlled environment that allows to test hypotheses, validate designs, and
optimize performance without the risk and costs associated with real-world
testing. The adoptions of these tools additionally allow the comparison
of performance metrics under a wide range of conditions including rare or
dangerous conditions that would be impossible to reproduce in real-world
tests. Simulation environments can also be used to create dataset used to
train artificial intelligence AI and machine learning models, this application

14

Simulation Environments for Autonomous Vehicles

is very important due to the enormous quantity of data needed by those
to improve. Is exactly this trend, of using data-driven algorithms, that
has caused a great increase in the effort to develop high-fidelity simulation
environments for robotics and autonomous driving applications [32]. This is
because training an AI model in simulation is only useful if the synthetic
data generated is a realistic reproduction of real-world data, otherwise, the
model trained in simulation is only capable of working in the simulation and
not in the real world. This problem in the literature is known as Sim-to-Real
transfer [30].

An effective simulator must meet several key criteria to ensure compre-
hensive and accurate testing. According to [33], the ideal simulator should
be:

1. fast: to get a large amount of data faster than real-time

2. physically-accurate: realistic proprioceptive measurement

3. photo-realistic: realistic exteroceptive measurements

These requirements are in contrast with each other, however, the emerging
software and hardware allow to mitigate the trade-off.

2.1.1 Historical Context and Evolution

The first simulators for automotive began to appear in the 1990s with the
main focus on traffic flow and vehicle dynamics. Examples of this are SUMO
[34]for the former and CarSim [35] for the latter. Those kinds of simulators
demanded relatively modest computational resources since rendering high
quality images was of no need. Between 2000 to 2015 there was the "Dormient
period", as named in [36], technology hardware reached a bottleneck resulting
in a stagnation of new simulation tool development. During this time also

15

Simulation Environments for Autonomous Vehicles

there was not yet interest in learning-based algorithms. However, a notable
new simulator released in this phase was VI-GRADE [37].

In the last decade, numerous new simulators have been developed. Unlike
automotive simulators developed before, which were predominantly com-
mercial,a growing ecosystem of open-source tools has emerged. These also
cover new aspects of automotive technology and are designed to support
the development and testing of autonomous driving technologies. Private
manufacturers are also contributing to this open-source ecosystem with
companies like Waymo providing for free their simulator and large dataset
[38]. Additional other companies like Intel or the Toyota Institute are spon-
soring the widely-used CARLA simulator [28]. Nevertheless there are also
important commercial and closed-source simulators such the one from Ansys,
VI-GRADE, Hexagon, and many others. These commercial simulators are
primarily used in industrial applications, while open-source simulators are
predominantly utilized in research. The adoption of open-source simulators
facilitates resource sharing by defining standard data formats and allows
researchers to avoid the time-consuming task of developing new simulation
platforms [36].

The reasons for the increase in the number of simulators is twofold. First,
the advent of autonomous driving has required the need for new requirements
for simulation environments. Autonomous driving simulators must not only
simulate vehicle dynamics but also accurately replicate the surrounding
environment, including static obstacles or dynamic agents like other vehicles.
This shift in requirements has led to the development of more sophisticated
tools that integrate complex rendering engines and comprehensive sensor
models such as cameras or LiDAR. The need for a more sophisticated tool
can be noted in [39] where the GTA-V video game was used to train a
convolutional neural network (CNN) to drive a car. This approach yielded
good results in simulation, demonstrating both the utility and the necessity

16

Simulation Environments for Autonomous Vehicles

of more specialized tools.
Secondly, more resources have become available to ease the use and de-

velopment of very realistic simulation environments. An always-increasing
computing power is available on the market, with today’s computers having
multiple-core CPUs and next-generation high-performance GPUs. At the
same time also the software technology available improved a lot, with very
sophisticated rendering engines capable of representing advanced features
such as material shaders, real-time reflections, and advanced illuminations
pipelines. These solutions are now easily accessible and user-friendly, with
game engines like Unreal Engine and Unity Engine providing all these fea-
tures for free, along with high-level, well-documented APIs. Other software
components that spread in popularity and performance have been the physics
engines. Those software are now available for free in most cases and are
already integrated or easy to integrate with a rendering engine. This combi-
nation is always available in game engines, which are software frameworks
born for game development but are increasingly being used to enhance
simulation software for robotics applications, as can be seen with [28] or
[33]. Prior to this new trend way more limited capabilities were available
to engineers or researchers with tools like Gazebo or Matlab offering very
good physics engine and API to implement simulators but with the lack of
realistic rendering functionalities.

2.2 Classification

Due to the very challenging technology related to autonomous driving the
importance of simulators has been widely recognized, from 2022 to 2023 over
50 % of the methods published in this field were either trained or tested in
simulation environments [36], for this a variety of simulation tools, specific
for different use case are today available. Traditionally autonomous driving

17

Simulation Environments for Autonomous Vehicles

simulators were only using a simplified vehicle model since they are intended
to operate far away from the vehicle handling limits, but now with the born
of autonomous racing competition and data-driven controllers like RL also
accurate physic simulations are needed. In this section, a brief categorization
of these tools is described.

2.2.1 Vehicle Dynamics Simulators

Vehicle dynamics simulators have long been used in the automotive sector,
due to the large research in this field very detailed vehicle models have
been available for a long time but most reliable simulators are typically
commercial and developed in collaboration with car manufacturers. They
allow engineers to model and simulate vehicle behavior, including all aspects
from power-train, aerodynamics, and suspensions under various conditions
to optimize vehicle design. Examples of widely used simulators in this sector
include:

• ADAMS which is a powerful multi-body dynamics simulation tool
used for the design of complex mechanical systems, in particular for
automotive are very well-known Adams/Car and Adams/Tire for the
analysis and design of the suspension.

• VI-GRADE: A simulation platform that offers real-time vehicle dy-
namics simulation for automotive applications.

• CARSim: A software package for simulating the dynamic behavior
of vehicles, widely used in the automotive industry for developing and
testing vehicle systems.

• Simulink/Matlab: A versatile tool for modeling, simulating, and
analyzing dynamic systems, including vehicle dynamics.

18

Simulation Environments for Autonomous Vehicles

These traditional simulators provide robust tools for testing and optimizing
vehicle performance. However, they primarily focus on the vehicle’s dynamics
and require less or no emphasis on the surrounding environment.

2.2.2 Driving Policy Simulator

Driving policy simulators are used to design and train algorithms concerning
the driving policy of autonomous vehicles. This type of simulator, usually,
uses a simplified representation of the environments and of the underlying
vehicle dynamics, their goal is to ease the simulation complexity and only
focus on what concerns the trajectory planning or behavioral decision. For
road applications, the common functionalities consist of allowing to simulation
of different traffic scenarios intersections, and road layouts. Examples of this
kind of simulator are for example CommonRoad [40], Matlab, Waymax [38]
and Nuplan [41]. This simulator can be used both in a classical pipeline
approach or for E2E training.

2.2.3 Full Featured Simulators

These types of simulators allow us to gather realistic sensory data, simulate
complex enough vehicle dynamics models and evaluate/train driving policy
algorithms. This category of simulators allows to evaluate the full perfor-
mance of the vehicle and software stack from perception, planning to control,
at the same time they allow to experiment with E2E training. For road
applications the most famous available today that are still maintained are
CARLA [28] and AWSIM [42] which are open-source, while licensed simulator
are, for example, the ones provided Ansys, VI-GRADE and Hexagon.

19

Simulation Environments for Autonomous Vehicles

2.2.4 autonomous racing simulator

Autonomous racing simulators are different in respect to the above category
because the environments are different, being limited to race tracks, and the
physical accuracy of the dynamic model is more important since the car is
required to drive at the handling limits. In this category, there are very few, if
any, open-source solutions. Learn-to-Race [43] is the only simulator available
that is realistic from both rendering and dynamics viewpoints. However,
it has not gained much popularity in the research community, probably
because there is a strict license agreement to get access to it since the core
functionality is provided by the private company Arrival. Instead, a fully
commercial solution is the Ansys simulator which was also used in the IAC,
while today the new series of virtual racing for the IAC is going to use a
new simulator, not yet available, which will be developed by the Autoware
Foundation in collaboration with the start-up Autonoma. On the other hand
are some simplified simulation environments for scaled autonomous vehicles
but this lacks some of the key requirements needed today to advance research
in this area. A more detailed comparison of all these simulators will be given
later in a subsequent chapter. What emerges is the noticeable fact that
currently, no open source simulator is present which is target for autonomous
racing, this is the exact need from which this project has been carried out.

From this point forward, the term "simulation environment" will refer
specifically to the autonomous racing simulators discussed in this category,
not the general simulators mentioned previously.

2.3 Application and Use Cases

In developing autonomous driving software simulators are used in two ways:
Software in the loop (SIL), conducted in the early stage of development and
Hardware in the Loop (HIL), which is more complex and expensive and so

20

Simulation Environments for Autonomous Vehicles

done in later stages.
Software in the loop consists in testing the code making use of the simulator

as a replacement of the real car. The consequences of this are numerous,
first, it implies that the software doesn’t need a real car to be tested so
can be performed from a desktop computer making it easier and faster.
Secondly, the simulation can be run faster than in real life, with this it’s
meant that 1 second of real-time can correspond to multiple seconds in
simulation, provided that the simulation software is well designed and the
computer running it is powerful enough. To speed the development also
parallel programming can be exploited by running concurrently multiple
instances of the simulation to test more cases. Hardware in the loop instead
is the testing of the actual hardware by making use of a simulator to emulate
the input received from sensors in order to understand if the hardware is
faulty or capable to run real-time.

2.3.1 End-to-End and Machine Learning

Specifically the context of End-to-End, and more generally machine learning
approach, simulation environments are fundamental because the car before
being able to perform some meaningful action requires a lot of training which
usually corresponds to a lot of crashes as well [44]. On the other side policy
learned in simulation can be hard to transfer to real-life robotics systems
because the simulated environments usually are only a limited representation
of the environment. To this end of great use is domain randomization of
observation and model used, as outlined in [15].

2.4 Building blocks

This section is devoted to identify which are the different building blocks
or modules that constitute a simulator, the aim is to develop a general

21

Simulation Environments for Autonomous Vehicles

framework that will be useful to better compare different simulators and to
locate the newly created AR-SIM. These modules are not to be confused with
the functionalities of the simulators but they serve as a matter of logically
subdividing the implementation of this complex software. The individual
modules that can be identified are:

1. Physic Engine: all that concern the simulation of the physical system
acting on the scene and the interaction of this with each other

2. Rendering Engine: rendering of the environment

3. Sensor Models: sensors simulation capability

4. Framework Compatibility and API: which framework or programming
language is compatible with the simulator.

2.4.1 Physic Engine

Physics engines are crucial for simulating physical systems by modeling
the laws of physics to provide realistic movement and interactions within
virtual environments. Core components of a physics engine include rigid
body dynamics, which manage the motion and interaction of solid objects;
collision detection and response, which handle object collisions; and solvers,
which compute the equations of motion and resolve constraints.

Advanced real-time physics engines like NVIDIA’s PhysX, Bullet Physics,
and MuJoCo offer additional features such as soft body dynamics for de-
formable objects, fluid dynamics for simulating liquids and gases, and particle
systems for effects like smoke and fire. These engines are optimized for real-
time performance and are widely used in interactive applications, from video
games and virtual reality to robotics and scientific simulations. These physics
engines typically construct ordinary differential equations (ODEs) internally,

22

Simulation Environments for Autonomous Vehicles

requiring users only to specify the properties of objects and their connections,
with the engine handling the equation derivation.

In contrast, tailored physics engines used in engineering, particularly for
vehicle dynamics simulation, focus specifically on solving the equations of
motion and deriving an analytical model through some assumptions. These
custom engines, often developed using tools like MATLAB, Python, or C++,
involve explicitly coding the ODEs governing the vehicle’s dynamics and
employing specialized models for handling vehicle-specific phenomena such
as tire-road interactions, suspension behavior, and aerodynamic effects.

Different levels of assumptions and simplifications can be applied in
modeling. One important factor to consider is the capability to identify the
parameters required by the model. It is counterproductive to use a highly
complex dynamic model if the parameters cannot be accurately identified.
More complex vehicle dynamic descriptions require additional parameters,
which are often difficult to identify and may necessitate expensive setups.
For instance, precise mathematical models of tire dynamics exist [45], but the
tests needed to determine their parameters are highly complex. Additionally,
more sophisticated models increase computational complexity, making real-
time simulations challenging.

For these reasons, simplified vehicle descriptions are often used in academia
as they offer a suitable trade-off between the richness of the dynamics de-
scribed and the feasibility of parameter identification. These models provide
effective simulations without overwhelming computational resources. A great
open-source collection of commonly used models, along with implementations
in Python and MATLAB, can be found on [40].

In the context of open-source autonomous driving simulators, the most
prominent physics engine is NVIDIA PhysX. This is because many open-
source simulators utilize either Unity or Unreal game engines, which come
with NVIDIA PhysX pre-integrated due to their open-source nature and

23

Simulation Environments for Autonomous Vehicles

optimization for real-time performance. However, trade-offs in NVIDIA
PhysX prioritize visualization over precise physics behavior. The new release
of Unreal Engine is changing to a new physics engine called Chaos Physics so
projects like CARLA are switching to it, nevertheless, NVIDIA is developing
a new simulation tool called Omniverse [46] that is using Physx.

Both methodologies are good depending on the situation, to perform
handling limit maneuvers it’s needed to accurately describe the dynamic
model or at least the user should be conscious of the underlying assumption
made. This is easier to do if one is using an explicit analytical model over
a physics Engine implementation. On the other side using a Physic engine
allows the functionalities to detect and resolve collisions which are complex
to implement.

The NVIDIA PhysX SDK implements a specialized vehicle dynamics
instance, which is less commonly discussed in automotive literature and
will be treated in the next sub-chapter. Conversely, the well-known vehicle
dynamics models for analytical models will not be further detailed here, as
they are extensively covered elsewhere like in [40].

PhysiX Vehicle Model

The PhysX physics engine includes a dedicated vehicle dynamics Software
Development Kit (SDK), known as the PhysX Vehicle SDK. This SDK
extends the core PhysX SDK by providing specialized components for sim-
ulating wheels, tires, suspensions, and the chassis of vehicles. It computes
the forces acting on the vehicle due to tire and suspension interactions, with
the vehicle’s rigid body dynamics being handled by the broader PhysX SDK.
This includes considering forces from other actors in the scene to update the
vehicle’s acceleration.

In the PhysX Vehicle SDK, the vehicle is modeled as a collection of sprung
masses, one for each wheel. To determine the forces acting on the vehicle,

24

Simulation Environments for Autonomous Vehicles

a ray cast is performed for each suspension to detect the road geometry
beneath each wheel. This helps to determine the wheel’s position and the
suspension force generated. The tire forces are then calculated based on this
vertical force, camber, and wheel slip. The aggregation of these forces is used
to update the vehicle’s position, factoring in external and inertial forces.

Figure 2.1: Caption

The PhysX Vehicle SDK also allows for the simulation of engine dynamics,
clutch, gears, and differential mechanisms. However, these features are not
implemented in Unity’s PhysX API and are only available in older releases of
Unreal Engine, which directly expose the PhysX API. With Unreal Engine
transitioning away from PhysX, and AR-SIM being developed in Unity, the
subsequent discussion will focus solely on Unity’s implementation, which
simplifies these functionalities.

25

Simulation Environments for Autonomous Vehicles

Unity Wheel Colliders

In Unity, wheel colliders are components that encapsulate the functionality
of the PhysX Vehicle SDK. The wheel friction model in Unity is simplified,
comprising two spline segments: one representing the friction curve from the
origin to the peak value and another from the peak to the asymptote. The
Unity documentation does not specify whether this friction value changes
with vertical load or if it solely depends on slip.

Figure 2.2: PhysX wheel friction curve

Suspensions in Unity can be tuned by defining the rest position as a
normalized value between 0 and 1, corresponding to the wheel hub’s position
at maximum compression and maximum elongation. These two values can be
set relative to the nominal position of the wheel center. Users can also adjust
the suspension stiffness (in Newtons per meter) and damping (in Newtons
per second). Additionally, it is possible to set the mass of the wheel collider
and the vertical application point of the force relative to the wheelbase. The
figure 2.3 represents the wheel collider of Unity where all the key elements
can be visualized. The large 2D circle indicates the size of the physics wheel,
which can be adjusted using the Wheel Collider’s Radius property. The
horizontal green line represents the halfway point of the Wheel Collider
along the X-axis, with its angle indicating the rotation of the wheel. A small
3D sphere shows the point where the wheel forces are applied; this can be

26

Simulation Environments for Autonomous Vehicles

modified using the Wheel Collider’s Force App Point Distance property. The
vertical orange line marks the maximum distances the wheel can move up and
down along the vertical Y-axis from its central point due to applied forces.
This distance is adjustable via the Wheel Collider’s Suspension Distance
property. The intersection of the orange and green lines denotes the "resting"
point of the wheel when no forces or equal forces are acting upon it, which
can be altered using the Wheel Collider’s Target Position property.

Figure 2.3: Unity wheel collider component

The PhysX physics engine includes a dedicated vehicle dynamics SDK,
known as the PhysX Vehicle SDK. This SDK extends the core PhysX SDK
by providing specialized components for simulating wheels, tires, suspensions,
and the chassis of vehicles. It computes the forces acting on the vehicle due
to tire and suspension interactions, with the vehicle’s rigid body dynamics
being handled by the broader PhysX SDK. This includes considering forces
from other actors in the scene to update the vehicle’s acceleration.

In the PhysX Vehicle SDK, the vehicle is modeled as a collection of sprung

27

Simulation Environments for Autonomous Vehicles

masses, one for each wheel. To determine the forces acting on the vehicle,
a ray cast is performed for each suspension to detect the road geometry
beneath each wheel. This helps to determine the wheel’s position and the
suspension force generated. The tire forces are then calculated based on this
vertical force, camber, and wheel slip. The aggregation of these forces is used
to update the vehicle’s position, factoring in external and inertial forces.

The main criticism of Unity’s implementation is its focus on visual behavior
rather than physical accuracy. The available parameters are designed to
allow users to tune how the vehicle responds to commands, but accurately
reproducing a real car’s behavior is challenging due to the difficulty in deriving
these parameters from actual vehicle data. The underlying assumptions and
simplifications are not exposed to the end user, making it difficult to close
the simulation-to-reality (S2R) gap. However, this approach facilitates the
simulation of various road profiles and their effects on the vehicle.

2.4.2 Rendering Engine

Rendering Engine are software tool that allows to reproduce complex 2D or
3D scenes by simulated light sources, texture and material properties. These
software are vastly used in other domains like graphic design, architecture or
video games. Especially for game development are available free software
licenses for two very powerful game engines Unreal Engine and Unity Engine.
Game engine are software that usually combines together a physic engine and
a rendering engine in addition to a set of facilities to develop games. Both
of the two aforementioned provide great rendering capabiliy and indeed are
very popular used also for engineering simulation in various fields including
autonomous driving. Since these two software are the most used a brief
comparison of the two is reported in the following.

28

Simulation Environments for Autonomous Vehicles

Property Description
radius The radius of the wheel collider.
suspensionDistance The maximum extension distance of the suspension,

measured in meters. Orange segment of 2.3
suspensionSpring Defines the suspension’s spring force and damping

characteristics.
mass The mass of the wheel.
wheelDampingRate The damping rate of the wheel’s rotation.
forwardFriction The friction properties of the wheel in the direction

it is moving.
sidewaysFriction The friction properties of the wheel perpendicular

to the direction it is moving.
center The position of the wheel relative to the vehicle’s

transform.
forceAppPointDistance The distance from the wheel to the point where the

force is applied.
motorTorque The torque applied to the wheel to make it rotate.
brakeTorque The torque applied to slow down the wheel.
steerAngle The angle at which the wheel steers.

Table 2.1: Main properties that can be set with the Unity Wheel Collider

Unreal Engine

Unreal Engine, known for its high-fidelity graphics and powerful rendering
capabilities, offers a rich simulation environment for autonomous driving
research. Unreal Engine’s Blueprint visual scripting system and its C++
API provide flexibility in developing complex simulations that can replicate
real-world scenarios with high precision. Unreal Engine is considered to have
a more steep learning curve with respect to Unity Engine, making it less
appealing for nonexperts of the field.

29

Simulation Environments for Autonomous Vehicles

Unity Engine

Unity Engine is a versatile and widely used platform for game development
and interactive experiences. Known for its user-friendly interface and exten-
sive documentation, Unity is accessible to beginners and small studios, as
well as large development teams. It supports both 2D and 3D rendering,
making it suitable for a variety of applications, from mobile games to virtual
reality simulations. Unity’s primary scripting language is C#, and it offers
robust cross-platform capabilities, allowing developers to deploy their cre-
ations across multiple devices and operating systems. Unity is widely used
in simulation applications due to the more simple API.

Gazebo

Gazebo is also a valid option since is very well integrated in ROS but it
outperforms in terms of rendering capability by both unity and unreal.
Gazebo though is way less computationally intensive to run and can be a
great solution, as been until now, for all such cases where the rendering is
not so important.

2.4.3 Sensor Model

All autonomous driving simulators need to provide both exteroceptive and
proprioceptive sensor models. With exteroceptive sensors are meant sensor
that measures information outside the ego vehicle and so allow to understand
the environment and interact with it. Examples of used sensors in this
category are cameras, LiDAR, radar and ultrasonic sensors. Proprioceptive
sensors instead provide information about the internal state of the vehicle
as position, velocity and acceleration. For this often are found on vehicles’
wheel encoder to measure wheel velocity, IMUs for acceleration and in some
advanced cases also ground speed sensors (GSS) sensors to directly measure

30

Simulation Environments for Autonomous Vehicles

the velocity of the vehicle.
The availability of a rendering engine highly influences which kind of

sensor can be simulated, for instance without a rendering engine camera
sensor is impossible to simulate. Instead, there are solutions to simulate
LiDAR or ranging measurement sensors without a rendering engine but due
to the complexity of it, this is only found in 2D environments like in the
F1Tenth gym [47]. Usually, the use of a rendering engine allows to perform
this task more easily and with more accuracy for 3D environment as well.

Proprioceptive sensor instead only requires a model of the dynamic equa-
tion and so are more easy to implement.

When dealing with sensor simulation, it is crucial to simulate the underly-
ing noise because real-world data is always affected by noise. Additionally
sensors operate at different acquisition frequencies between each other, also
the software processing this data could run at another different frequency,
meaning not all data is available at every processing interval. Moreover,
non-solid-state LiDARs exhibit noise due to their rotational motion. These
characteristics make the sensor simulation quite challenging and so more
often only a simplified model is possible to implement.

2.4.4 Communication and API

End users of a simulation environment typically want to use the sensor data
from the simulator in their own development framework which can be a
specific programming language or operating system. In robotics applications,
for example, ROS2 is commonly used as a base framework to manage different
nodes and topics that send command and transport sensor data. However,
this may not be the only case, for example in reinforcement learning the most
used framework is Gymnasium, which is a specialized Python API. Therefore
the simulator needs to be able to communicate with those environments
efficiently.

31

Simulation Environments for Autonomous Vehicles

One approach is to develop the simulator in the same framework as the
end-user application. However this constrains the usability of the software to
that framework or forces to introduce some overhead with bridges or wrappers
to interface with other frameworks. Alternatively, a more versatile solution is
to design a simulator that is independent of the end user framework used and
then provide an efficient communication mechanism to enable the simulator’s
use in various frameworks. In addition by using a more general framework,
the simulator does not restrict the end user to a specific environment but
allows them to use the one they prefer the most.

To illustrate, a user developing autonomous driving software likely prefers
to write the software in C++ and run it in ROS, rather than writing it in C#
within Unity. Therefore, the simulator should interface seamlessly with ROS.
Similarly, users working in reinforcement learning prefer to use Python and
the Gymnasium API, so an interface with Gymnasium should be available.

2.5 State of the Art review

The following section provides a more detailed examination of well-known
simulators for autonomous driving, Table 2.2 summarizes and compares the
features of these simulators with those of AR-Sim. The chapter discusses
and compares the different modules described in the section before.

2.5.1 F1TENTH Simulator

F1Tenth Simulator [47] is a 2D simulator that doesn’t make use of a rendering
engine, so no camera model can be simulated in this context. With 2D it’s
intended that the environment simulated is two dimensional and so also the
LiDAR model is 2D. This is not a limitation since the default configuration
of the F1Tenth is with a 2D LiDAR model, but it limits other further
experimentation for users. The core library is developed on Python as a

32

Simulation Environments for Autonomous Vehicles

Gym OpenAI interface, therefore reinforcement learning solutions can be
easily developed. Besides this, a wrapper over the gym API is made to
develop a ROS2 simulator that allows to perform some SIL. Visualization
is performed using RVIZ and collision detection is implemented manually
with a Gilbert–Johnson–Keerthi algorithm. A new map can be easily added
using the one generated with the SLAM toolbox running on the real car.
The simulator is designed to simulate up to 2 cars at the same time, The
coordinate system used to place the car is Cartesian, which makes it not
immediate to start the vehicle in a different position with respect to the
origin. The main limitation of this simulator is that the vehicle can’t be
configured with different kinds of sensors, also is not possible to simulate
camera sensors. In addition, the dynamic model implemented is only one
and it’s not present a way to allow users to choose different dynamic models.
No, the sentence I provided could be more polished for an academic context.
On the other hand, this simulator is resource-efficient, allowing it to run on
a vast range of laptops.

Another known simulator for F1Tenth is [48]. This F1tenth simulator is a
modular, ROS, and Gazebo-based autonomous racing simulator designed to
mimic a physical F1/10 race car. It features highly adaptable architecture,
used in virtual sensing and actuation components, a robust ROS Python
API, and the use of XML macros for racecar descriptions. The simulator
supports running several autonomous racecars, each controlled independently
through ROS namespaces for communication. However, using Gazebo for
rendering limits the realism of camera sensors, moreover, the simulator does
not offer a built-in environment for reinforcement learning.

2.5.2 CARLA

The CARLA simulator [28] stands out in autonomous driving research due
to its reach capabilities and API functionalities. It provides freely reusable

33

Simulation Environments for Autonomous Vehicles

Figure 2.4: F1Tenth gym simulator

digital assets, including urban layouts, buildings, and vehicles. Built on
Unreal Engine 4, it was the first large open-source simulator, released in
2016, to provide state-of-the-art rendering quality, ensuring high fidelity and
realism of the environment. This was a big innovation in the field because
for the first time allowed researchers to collaborate on the development of
autonomous driving and provided a standardized data format and benchmark
that wasn’t present before. The simulator uses a client-server architecture,
where the server runs and renders the simulation, and the client provides an
interface for interaction. It can operate with ROS or directly with Python
in different configurations allowing both the classic modular pipelines or to
train deep learning models via imitation or reinforcement learning. CARLA

34

Simulation Environments for Autonomous Vehicles

supplies high-fidelity sensory data to support a majority of sensors, including
RGB cameras, LiDARs, and event cameras. A variety of urban scenarios can
be reproduced under various weather conditions, this controlled environment
provided by CARLA allows large-scale, rapid sensor data synthesis, making
it possible to reproduce extreme conditions and safely test algorithms.

Despite being a great open source software,CARLA is not optimized for
racing, and most of the simulation effort and computational resources are for
urban scenarios, which are unnecessary for racing applications. Furthermore,
the user does not have full control over the customization of the vehicle
dynamics model. In CARLA By default, only the PhysX vehicle dynamics
model is available, and although there are extensions to link CARLA with
CarSim, this is not an open-source solution. Therefore there is very little
control that the user can have over the dynamic model. Besides, CARLA is
a very high-volume software package, good for high-performance computers,
but its function is not so smooth on an average laptop. Usability might
therefore be limited for students.

Figure 2.5: CARLA Simulator

35

Simulation Environments for Autonomous Vehicles

2.5.3 AWSIM

AWSIM by Autoware [42] is another sophisticated open source simulation tool
that can be considered as a competitor to CARLA. Developed in Unity Engine
it delivers a high-fidelity simulation environment with detailed representations
of road networks, traffic signals, pedestrians, and other vehicles. Fully
integrated with ROS2, AWSIM enables seamless communication between
the simulation and the vehicle’s software stack, facilitating development and
testing in a controlled and reproducible environment. The simulator supports
various sensors, including LiDAR, radar, cameras, and GPS, generating
realistic sensor data for testing sensor fusion algorithms and perception
systems. Additionally, AWSIM allows for the creation and execution of
complex driving scenarios, encompassing diverse weather conditions, lighting
changes, and traffic variations, essential for evaluating the robustness of
autonomous driving systems.

However, AWSIM has certain drawbacks when compared to CARLA.
Being a relatively newer tool, AWSIM has a smaller user base and less
community support, resulting in fewer resources, tutorials, and third-party
extensions. While AWSIM allows for the creation of complex scenarios,
the diversity and range of pre-built scenarios are more limited compared
to CARLA, which offers a wide variety of urban and rural scenarios and
traffic configurations. In terms of environmental detail and realism, AWSIM’s
simulation environment might not match the graphical fidelity of CARLA’s
urban environments built on the Unreal Engine. AWSIM moreover doesn’t
support an end-to-end or machine learning framework but it’s limited to
ROS2 usage.

As CARLA, AWSIM lacks control over vehicle dynamic models, a feature
that can be critical for detailed vehicle dynamics simulation.

36

Simulation Environments for Autonomous Vehicles

Figure 2.6: AWSIM

2.5.4 AutoDrive simulator

The AutoDRIVE Simulator [19] was primarily conceived for the AutoDRIVE
platform, developed by the same team, to facilitate the testing and develop-
ment of autonomous driving algorithms in scaled, city-like environments that
include intersections and traffic signals. A subsequent release introduced an
F1Tenth model, featuring a mesh and dynamic parameters compatible with
NVIDIA’s PhysX engine. This makes the simulator a viable alternative for
F1Tenth, offering superior rendering capabilities compared to previously men-
tioned F1tenth simulators. AutoDRIVE simulator is developed within Unity.
Multiple vehicle models are implemented, all of them using the NVIDIA
PhysX engine and are equipped with sensors such as 2D LIDAR, RGB cam-
eras wheel encoders, and IMU. All simulator functionalities are developed
in C# and executed within the Unity environment, ensuring compatibility
with Unity’s ML agents for machine learning applications. Furthermore, the
simulator supports integration with the Robot Operating System (ROS) and

37

Simulation Environments for Autonomous Vehicles

provides APIs for direct scripting in Python and C++, by using web sockets.
However, the simulator does have some limitations. While reinforcement
learning applications are available, they are designed to be used within Unity
using the Unity ML asset, which is not commonly adopted by researchers who,
instead, are more familiar with Python Gymnasium, since it integrates with
all the standard libraries available for RL. Moreover, C# is not a commonly
used programming language in the robotics community. Other critique can
be made on the vehicle models, since the sensor configuration is fixed, with
the LIDAR limited to a 2D type. Additionally, the ROS2 integration is
unconventional and hard-coded for specific use cases, lacking a proper library
developed in C++ or Python. Users must call WebSocket functions and
parse JSON message data, which diminishes the simulator’s user-friendliness
and modularity. Additionally, the implementation of the ROS2 node does
not follow standard procedures. One node runs continuously and writes
messages to a configuration file about the car’s steering and throttle values,
while another waits for a reply from the Unity server. Upon receiving a reply,
it reads the latest configuration file, parses the values into a JSON message
string, and publishes the message to the corresponding topic. This approach
is not designed to be modular concerning the number of vehicles in the scene.
Furthermore, camera and LIDAR data are copied into JSON messages, a
resource-inefficient process that involves converting and reconverting strings
for each image and LIDAR dataset.

2.5.5 Flightmare

Flightmare is a modular, flexible quadrotor simulator based on a general
architecture, composed of a configurable rendering engine developed in Unity
and a flexible, user-configurable physics engine for dynamics simulation.
These components are decoupled and this allows for the high-speed regime

38

Simulation Environments for Autonomous Vehicles

Figure 2.7: AutoDrive Simulator

of the simulator. The simulator supports advanced rigid body dynamics, in-
cluding frictions and rotor drags, and yields high-fidelity graphical rendering
with realistic lighting in 3D environments. The Flightmare simulator can
simulate hundreds of quadrotors in parallel, which makes it excellent and
rapid for data collection for large-scale reinforcement learning. It interfaces
with important robotic simulators like Gazebo to enable human-robot inter-
actions in realistic scenarios and safe pilot training through virtual reality
headsets. In addition to this, Flightmare comes with a rich camera sensor
suite that includes RGB cameras, depth cameras, semantic segmentation,
and a functionality to extract 3D point cloud. The core library is developed
in C++ but also a Python wrapper implementing an API for reinforcement
learning is present. The C++ library can also be used to develop ROS2
simulation environments. This modularity is also made possible by the under-
lying communication mechanism implemented between the Unity server and

39

Simulation Environments for Autonomous Vehicles

the application. It’s implemented on top of ZMQ, a powerful synchronous
messaging library designed for distributed or concurrent applications. These
features, along with the successful experimentation conducted with it [31],
make this simulator a significant reference point, as no current autonomous
vehicle simulator offers the capability to customize all these aspects of the
simulation. Indeed, Flightmare has greatly inspired the development of the
ARSim simulator.

Figure 2.8: Flightmare simulator

2.5.6 Other Simulators

Several other simulation environments provide distinct features for au-
tonomous vehicle research and development. The LGSVL Simulator is
noteworthy for its robust capabilities, including high-fidelity sensor simu-
lation and realistic urban environments; however, it is no longer actively

40

Simulation Environments for Autonomous Vehicles

maintained, limiting its long-term viability. Amazon’s DeepRacer [16] and
Donkey Gym [17] are entirely focused on an end-to-end learning approach
using only camera sensors, which may restrict their applicability to more
complex sensor fusion tasks. Learn-to-Race [49] was developed for Roborace
competitions and offers sophisticated racing simulations, but it is not truly
open-source as it requires users to sign a Software License Agreement, and
it is likely no longer maintained following the cessation of Roborace. There
are several reinforcement learning extensions available for TORCS (The
Open Racing Car Simulator), and it’s been used for research on end-to-end
approach as in [50]. However, it is limited in terms of modern graphics
and advanced sensor integration, making sim-to-real transfer challenging for
cutting-edge research.

CARLA F1Tenth Gym AWSIM AutoDrive DonkeyCar
Sim Flightmare AR-Sim

High Fidelity
Rendering
Capabilties

✓ ✗ ✓ ✓ ✓ ✓

Physic Engine
Customization Limited ✗ ✗ ✗ ✗ ✓ ✓

Physc Engine
Compatibility

PhysX,
CarSim

Single Track,
Not Flexible

API
PhysX PhysX PyhsX C++ ,

External

Physx ,
C++ API,
External

Configurable
Sensor setup ✓ ✗ ✓ ✗ ✗ ✓ ✓

Collision Resolution ✓ Limited ✓ ✓ ✓ ✗
Only for

PhysX Engine

Framework &
Programming
Languages

ROS1/2,
Python

ROS2,
OpenAI Gym ROS2

Limited API for:
C++,Python,

ROS1/2.
ML inside Unity

OpenAI
Gym

OpenAI Gym,ROS,
C++ API

Gymnasiuam,
C++ API,

ROS2

Sensors Available Complete 2D LiDAR Complete

IMU, 2D LiDAR,
GNNS,

Encoders,
RGB Camera

Camera,
IMU,
GNSS

IMU, GNSS,
RGB,Depth,

and Segmentation
Cameras

2D/3D LiDAR,
IMU, GNSS,
RGB Camera

Race Track
Modeling ✗ 2D image ✗ Prefab mesh Built in

Scenes
Run-time gate

positioning

csv to 3D mesh ,
random generation,

prefab mesh
Urban Scene
Modeling

Hyper
realistic ✗

Hyper
realistic

Scaled urban
environments ✗ ✗ ✗

Table 2.2: Comparison of simulation environments

41

Chapter 3

Methodology

The Autonomous Racing Simulator AR-SIM implements a new kind of sim-
ulator in the field of autonomous driving, and it’s a unique open-source
simulator in the niche of autonomous racing simulators. It combines all
the positive features of the existing simulators, providing a very flexible
and modular framework that is possible to further extent by the user. The
AR-Sim is composed of two main components: a C++ library, which imple-
ments all available API functionalities, and a Unity standalone application
which implements photo-realistic environments used for high-fidelity sensor
simulations. The unity executable can run either as an arcade mode, thanks
to an interactive GUI, to allow fast experimentation of all the function-
alities, or in conjunction with a custom C++ application written by the
user. This is made possible by a communication library developed using
ZeroMQ, a C library that was used to handle socket messages over IP/TCP
protocol. In addition to these two modes the AR-SIM also make available
also parametrized ROS2 simulator and a Python wrapper that allows the
implementation of Gymnasium gym environments for E2E. The simulator
core library is compatible only with Linux-based operating systems, whereas
the Unity executable can also run on macOS and Windows. To extend

42

Methodology

Figure 3.1: AR-Sim Software Architecture

the simulator’s usability across different operating systems, a Docker file is
provided. This allows the core library to run inside a container while the
Unity executable runs directly on the host system, extending the support to
all major operating systems.

The simulator presented in the state of the Art review AR-Sim do not offer
an easily customizable framework, requiring users to adapt to the simulator’s
specifications. In contrast, this simulator allows users to tailor it to their
needs, as in the flightmar simulator [33], but further extends the degree
of customization with easy track creation, friendly Unity Editor and C++
Macros, and the possibility to use both PhysX and custom dynamic model.
All existing simulators either provide only PhysX basic dynamical models,
such as AutoDrive, DonkySim, or AWSIM, or they don’t allow to use it at
all such as in Flightmare. Some simulators like CARLA allow to use not
only PhysX and provide some plugins for CARSim but it’s not available to
fully customize it with ease. The AR-Sim instead consents to use both the

43

Methodology

PhysX model and the custom analytical equation, users can easily integrate
the custom model they want by deriving a specified class from the base class
available in the simulator API by leveraging C++ polymorphism. In the
scene is possible to run instances of multiple vehicles each using a different
dynamic model and physic engine, this is also a new feature. The flexible
Unity editor functionalities implemented enable one to easily add custom
scenes, vehicle models, and tracks without requiring much knowledge about
the Unity editor, with just some drag and drop operation it’s possible to
make these new elements available in the simulator both in the GUI and
from the C++ API by additionally writing just a single line of code calling
a custom macro. Also for the track a novel feature is made available that
allows the creation complex 3D mesh circuit layout just from a simple CSV
file composed of x-y coordinates of the center-line and the width. This
kind of file format is common in autonomous racing, a vast collection of
race tracks saved in this format in [51] for full-scale race tracks and [52] for
1:10 race tracks, also a collection of algorithms is present to create optimal
race trajectory starting from those file thanks to the work developed at
TUM for autonomous racing motorsport [53]. Besides this is also available
functionality to randomly create a 3D racetrack, features that isn’t available
in any other 3D simulator.

Even if supporting all these functionalities the simulator it’s easy to use
while still computationally efficient. This is made possible by providing
a YAML-based configuration of the scene and agent present on it while
providing an efficient C++ backend. Also, the target platform isn’t only
high-performing and costly computers but also, and mostly, the average
laptop that any student or researcher can have at its disposal. This is
achieved by optimizing the unity resource management of data and rendering
quality, which can also be customized by the user at run time by choosing
different quality levels.

44

Methodology

A complete list of the requirements that drove the realization of this
simulator is given in the following list:

1. ease of use: quick learning curve to get to use it

2. ability to run on medium computing platform: large target end users

3. flexible physic engine: model complexity match system identification
feasibility

4. high fidelity sensor simulation

5. Gymnasium interface

6. ready to use ROS2 simulator as F1Tenth gym

7. Reinforcement learning capability: domain randomization

8. ease to create custom racetracks and environments.

The rest of this chapter will give details about how each of these require-
ments has been reached through specific implementation choices by going
into the details of the four modules.

3.1 Unity Server

The Unity executable is a binary file built with Unity, available for Linux,
Windows, and MacOS. This binary is a standalone application that provides
rendering functionalities, PhysX dynamics, and sensor simulation. Upon
startup, the executable connects to a default IP address and socket port,
listening for messages from the C++ library. However, this isn’t the only way
to run the executable. It also features a user-friendly GUI, allowing direct
interaction with the simulator without the need for the external C++ API.
The first mode is called in the GUI Autonomous Mode, while the alternative

45

Methodology

Manual Mode. In both cases, the user can interact with the GUI to select
environment simulation options. If then the mode is switched to Manual
it’s also possible to spawn the selected car model in the scene and drive
it along the track. Additionally, the GUI allows users to select the port
address for connections. All the functionalities provided by the GUI, plus
some additional more, are accessible through C++ API and can be easily
configured using a YAML configuration file.

Figure 3.2: AR-Sim Unity Home page

3.1.1 Environment Scenes

The simulated environment consists of two components, the first is the actual
environment, or scene, which represents a virtual reproduction of the real
environment on which the track is positioned. The second component is the
track itself. This modular configuration allows the creation of one single
Unity scene that can be used to load a variety of race tracks for both scaled

46

Methodology

and full-scale vehicles, on the other hand, the same track can be loaded on
different scenes.

The computational complexity of the simulated environment largely de-
pends on the scene. More realistic scenes with complex material shaders and
multiple sources of light are more computationally demanding, at the same
time they allow to close the gap between simulation and reality for the extero-
ceptive sensor viewpoint. Constructing realistic scenes that closely represent
real-world ambient is quite complex and is outside the scope of this thesis
work, which instead aims at giving the user a simulation environment with
the possibility to add custom scenes. Nevertheless, some scenes are already
present on the simulator. Some of them are very basic to save computer
resources in the case where more complex features are not required, others
show more advanced ones like the Industry one. Also, since this simulator
aims to be used in the F1Tenth lectures held at TUM at the FTM(Institute
of Automotive Technology) warehouse, a simple scene of it is present.

Figure 3.3: AR-Sim: F1Tenth race car PoV in 2 different scenes.

3.1.2 Race Tracks

Race tracks can be represented and stored in multiple file formats which
allows for different levels of complexity and fidelity of the model created as
well as the effort and time needed to build them. The first way is to create a

47

Methodology

3D model of the track manually in 3D modeling software as Blender1 and
import the file as a "fbx" format inside the unity editor. This method has
the advantage that users can create complex and realistic race tracks by
accurately modeling race track boundaries and elements in the scene. The
disadvantage of this approach is the double side of this flexibility which is
that is time-consuming and can be a repetitive process in the case of simple
track profiles such as in F1Tenth where they are made of simple pipe barriers.
The second file format instead permits the rapid and easy creation of new
tracks but with smaller customization capabilities. The file format used to
store tracks in the second case is based on CSV files that store the center-line
x-y position and width of the racetrack. This CSV file is converted at run
time to a race track mesh using a unity package called Dreamteck Spline2

that consents the extrusion of a mesh profile along a predefined path. Users
in this way only need to store a CSV file, which in the case of F1Tenth can
be easily created using the Hector slam and the python script developed by
University of Waterloo3. Another source of multiple CSV files compatible
with the one required by the track generator features can be found in [tum
betz file] for both 1:10 and full-scale vehicles. In this second method, the user
can choose, besides the CSV file, which kind of mesh to use for representing
the track barrier and road path as well as which material to apply to it.
This allows a great variety of track configurations with just a minimal effort.
Users just need to add a mesh of the profile of the custom barrier and a
texture to create a 3D model of the race track. This is a novel feature that is
not present in any of the other simulators and it can improve the usability of
this simulator in the research community, especially for working on F1Tenth.

Figure 3.4 shows the Unity GUI of the AR-Sim simulator to create race

1https://www.blender.org/
2https://dreamteck.io/dreamteck-plugins/
3https://github.com/CL2-UWaterloo/Raceline-Optimization

48

Methodology

tracks. After having selected a scene, is possible to choose how to generate the
track, by clicking on the Track menu. The first two options,Load from File

and Random Generation, if selected allow also to specify the pipe mesh and
the road profile to use, an example of a different result obtained with the
same CSV file input is given in figure 3.5. The other elements available in
the drop-down view of the track menu instead are examples of track prefabs
made before run-time and saved as Unity’s prefabs.

Figure 3.4: Track Generation from AR-Sim GUI

3.1.3 Random Track Generator

Another interesting and novel feature is the random track generator that
enables the creation of random 3D track mesh at run time with some random
track profile and material chosen between a set specified by the user. This
feature is useful, especially in domain randomization during the training
phase of machine learning algorithms. The algorithm to generate a random

49

Methodology

Figure 3.5: Track created with same csv file but different mesh options.

Left: track created extruding pipe profile. Right: track created extruding a
beam profile and with a road mesh with a yellow center-line and dark asphalt
material.

track is developed from scratch and requires as input just the number of
waypoints, the two-dimensional space that the race track can occupy, the
minimum turn radius, and the minimum track width. The generated track
will then combine all these metadata attributes and create a 3D random
track. It is also possible to implement a varying track width, useful as is the
case of F1Tenth race tracks. The algorithm consists of three parts, first a set
of random points is generated and sorted in a clockwise order. These points
are filtered and adjusted to obtain a polygon that will give rise to a feasible
spline when those vertexes are used as control points for a Catmull-Roll
spline. Then such spline is created using the DreamTeck spline package and
two additional splines are added on the right and on the left to create the
barriers. The result of the creation of the center-line is depicted in Figure 3.6.
The track can be saved as a CSV file so that it can be reused in the future.
The random track generator can also be used as a way to manually create
race tracks in the Unity editor. Indeed the user can run the algorithm and

50

Methodology

Figure 3.6: Random race track generation. White: original random polygon,
Yellow: final center-line of the race track

then manually customize the obtained racetrack for more specific needs
using the run time editor capabilities provided by the DreamTeck Spline.
The generated track can then be saved as prefab and added to the list of
available options. These functionalities are implemented in a C# script class
named TrackGenManager. This script is attached, together with the track
generation manager, to a game object present in the GUI scene. A custom
editor panel has been developed to easily add new track barrier profiles and
road materials.

51

Methodology

3.1.4 Back end

With the back end are intended all the scripts that bring together the
functionalities of the simulators. From this category are excluded the sensor
model and the vehicle controller which are instead treated in a separate
subsequent section. Two main classes are used by the simulator, the first one
is named simManager and is responsible for implementing all the simulation
logic such as updating and simulating vehicle physics, spawning objects on
the scene, and handling the message request replay pattern. The second
main component is the UIHandler that handles all the callback of the GUI
and on startup dynamically updates the GUI menus based on the option the
user sets in the Unity Editor, Figure 3.7. In this way, custom options added
by the user are automatically visible also in the GUI without any additional
effort.

There is also another important part of the back-end that implements
the data structure for message serialization and de-serialization using C#
structure and a third part JSON parser library developed for the DotNet
framework.

Simulation Manger

The simulation manager is the core Monobehaviour class that runs at startup
on the simulator and is responsible for establishing the connection on the
socket and listening for incoming messages. The runtime of this object
terminates if the user enables the Manual mode via the GUI and restarts
when the Autonomous mode is re-enabled. In this way is possible to seamlessly
switch between GUI GUI-based mode of the simulator or the script-based one.
The messages, composed of a topic header and a payload, are implemented
using a header-only binding of ZMQ called zmqpp4. The message’s topics

4https://github.com/zeromq/zmqpp

52

Methodology

Figure 3.7: Unity Editor of the project. The SimManager Game object is
selected, and on the left its inspector is shown. From this menu is possible
to add more options, such as car model, scene, tracks, and track profiles.
Changes made here are automatically displayed on the GUI and callable
from the C++ API.

are given in Table 3.1.
The initial setting topic message contains information for the scene, track,

and vehicles configuration, an example of the initial setting message is given
in the code snippet Code A.5.

53

Methodology

Topic Payload

Initial Settings marks the start of the simulation. Contains initial settings
that include the settings for the simulated scene with track,
scene, and vehicle configuration

Update topic used to send and receive vehicle information updates
about the position, collision, sensors data

Ready Topic sent by Unity to the client application that marks
that the server is ready to run.

Table 3.1: messages topic and payload

Upon receiving this message the server starts to prepare the simulation
environments by asynchronously loading the scene. Once the scene is loaded
the track is placed in the specified position and the car(s) with their specific
sensors are placed in the pose. Also, the message specifies if the car instance
dynamic should be managed by Physx or if it will be handled by some
external solver with respect to Unity, this can be shown in the Code A.5 in
the keyword is_kinematic: if set to false it means that PhysX is used. At
this point, the simulation is ready to start and the unity server sends a Ready

message to the socket. After this initial phase, the messages are sent using
the Update topic. The C++ API sends Updates topic containing different
payloads for each vehicle based on the type of solver used. If the solver
chosen for the vehicle is Unity then command action, composed of steer
target and throttle percentage, are sent; otherwise if the solver is external
pose updates are sent. On the Unity side, that information is parsed to the
appropriate vehicle instance. After this, the physic solver is called and all the
car poses are updated and packed into a new message. At this time also the
LiDAR sensor is simulated for the specified delta time of the simulation step,
which is defined at the beginning in the initial setting message. At the end
of the frame then a synchronous GPU read is made to transfer camera data

54

Methodology

from the GPU to the CPU, this task is very computationally expensive since
the CPU has to wait for the GPU command buffer to execute the request
and transfer image data. This may take some milliseconds depending on the
GPU workload which can’t be controlled fully from Unity. Practically this
means that the simulation speed depends heavily on the image quality and
GPU workload caused by other processes running. On the other side, the
reply message update that Unity sends to the C++ executable contains the
vehicle’s updated position, if simulated in Unity, vehicle collision information,
and sensor information. The first two are sent using a JSON serialized
message while the latter are sent using raw bite data to reduce runtime due
to the message serialization.

3.1.5 Car model and physic engine

Car models are represented in unity as prefab composed of a mesh model,
wheel colliders for physic simulation, and box colliders for collision detection.
In addition, a set of reference frames can be specified for LiDARs and
Cameras. These reference frames are used as relative reference frames for
positioning sensors on the car. The dynamic of the car is simulated using the
wheel colliders together with a C# script that implements some additional
controller and that manages the input received. Users can further extend this
script to implement custom logic for managing the wheel colliders. Figure
Figure 3.8 depicts an example of car prefab, where a box collider has been
used to reduce the runtime cost of computing collisions. Collisions detected
by any of the colliders present on the car are detected and passed to the C++
client, in addition, if the model is using the PhysX engine those collisions
are also resolved by PhysX.

55

Methodology

Figure 3.8: Car Prefab in Unity

Green: wheel colliders and box collider for collision detection

3.1.6 Sensors

Unity is used to simulate RGB cameras and LiDAR. RGB cameras are
simulated using the functionalities already provided by Unity URP Camera
and the cameras are rendered manually at the end of each frame. The option
available allows one to set the quality of the camera by specifying the pixel
size in the horizontal and vertical dimensions, the horizontal field of view, and
the relative position with respect to the camera reference frame of the vehicle.
The LiDAR sensor instead is custom and implements a parameterized model
that can simulate both 2D or 3D LiDARs. This sensor is simulated using
Unity raycast. Raycast permits casting a ray from a starting point up
to a maximum distance and detecting the distance at which objects are
intersected.

The parameter that can be set permits simulation of LiDAR with different
numbers of vertical channel and horizontal channels, also both the horizontal
and vertical field of view can be set together with the initial position of the
field of view. The sensor model enables also the simulation of the effect
of the revolution frequency by implementing the rotation behavior of the
LiDAR: for each time interval of physic simulation, the LiDAR rotates by an
angle that depends on the revolution frequency. The sensor data is stored in

56

Methodology

Figure 3.9: In red are displayed the rays cast by the LiDAR sensor present
on the F1Tenth car. By specifying the direction of each beam is possible to
simulate different LiDAR models.

a buffer which is updated and published on the "Update" topic only when a
full revolution is made.

LiDAR Parameters

relPosition relative position of the LiDAR sensor respect to the LiDAR
reference frame of the vehicle prefab

relRotation
specify the relative rotation of the LiDAR sensor
respect to the LiDAR reference frame
of the vehicle prefab

scanFreq rotation frequency of the LiDAR motor
horizontalFOV horizontal FOV

sartHorizontalFOV
start horizontal angle at which is performed the
first measurement, measured respect
to the forward direction anti-clockwise.

horizontalResolution number of channels in the horizontal direction
verticalFOV field of view in the vertical direction

startVerticalFOV
start vertical angle at which is performed the first acquisition.
Measured respect to horizontal plane. Negative value corresponding
to the beam facing downward

verticalResolution number of channels in the vertical direction
maxLinearRange max distance at which an object can be detected

Table 3.2: LiDAR sensor options

57

Methodology

Camera parameters
height number of vertical pixel
width number of horizontal pixel
fov horizontal FoV
nearClipPlane nearest plane the camera render
farClipPlane furhter plane the camera render

Table 3.3: Camera parameters

3.1.7 Rendering

Several rendering engine options are available in Unity, including the Built-in
Render Pipeline, the Universal Render Pipeline (URP), and the High Defini-
tion Render Pipeline (HDRP). Rendering pipelines in Unity are frameworks
that manage how graphics are rendered on the screen, each tailored for
different levels of visual quality and performance requirements. The Built-in
Render Pipeline is the default option, providing basic rendering capabilities
with minimal customization. In contrast, the URP is designed for optimized
performance on a wide range of devices, offering a good balance between
realism and computational efficiency. HDRP, on the other hand, targets
high-end platforms, delivering advanced visual effects and high fidelity at
the cost of increased computational demands.

For this project, the URP was chosen as it offers a good balance between
realism and computational requirements, making it ideal for simulations
that demand both performance and visual fidelity. Baked lighting, which
pre-calculates the lighting information and applies it to static objects, is also
used since it provides significant advantages in run-time performance without
compromising on visual quality. Additionally, an option to specify the quality
of the rendering was implemented, allowing users to adjust the visual settings
according to their specific needs and the computational resources available.
This flexibility ensures that the simulation can run efficiently on a variety of

58

Methodology

hardware configurations while maintaining an adequate level of realism.

3.2 Core C++ Library

AR-SIM implements its core library and API, which allows it to interact
with the Unity engine, in C++. The choice of C++ goes against one of
the requirements of an ease-to-use simulator since more beginner-friendly
languages are available like Python, but more access to memory management
and better performance motivate the choice of C++. To compensate for
the less friendliness to not expert programmers, who may have little or no
knowledge of C++, all the functionalities of the simulator are configurable
by a YAML file ?? and ??. In this way, a user doesn’t need to write any
line of code to use the simulator and can just use it out of the box with
a simple configuration file that can be used to create ROS2 simulators or
gym environments in Python. On the other side, for more experienced
programmers, a rich and flexible C++ API is made available to further
customize the simulation. The AR-SIM library is managed using CMake
and can be installed as a shared or static library. All the dependencies
are managed with CMake to provide an easy build, also a Docker file is
available to build it. The library can only run on Linux-based OS since the
communication library used to exchange data with Unity, ZeroMQ, it’s only
available for Linux. The availability of the Docker file though allows running
the C++ application inside a container while the unity executable can run on
the host machine. This library provides different classes and functionalities,
in this paragraph and subsequent ones only the main ones are presented with
some code example, full documentation of the implementation is available
on the website of the simulator that is linked to the GitHub page.

59

Methodology

AR-Sim main classes and functionalities
Unity Bridge handle all objects in the scene and communicate with unity.
Car main class that represents the vehicle.
Sensor class for lidar and camera to handle unity data.

Dynamics interface abstract class for dynamic and states models,
solvers.

Wrapper wrapper class that manages all the functionalities.

Table 3.4: AR-Sim main classes and functionalities

3.2.1 Car and Dynamic

The Car class represents all car functionalities and allows for full customiza-
tion of its instances, reflecting the properties and actions of a real car.
Each car instance stores various properties such as sensors, dynamic models,
collision status, and dynamic state. A key feature of the Car class is its
decoupling from a specific dynamic model, it just provides methods to inter-
act with the underlying dynamical model employed in the specific instance.
Each dynamic model is derived from ICarDynamics<Paramete,State>, a
templatized class based on the parameters and dynamic state used, which
in turn derives from IDynamics. The reason is that the API aims to be
flexible to any dynamic model, which is assumed to need a specific parameter
structure and state space representation, as can be seen in [40]. The use
of the ICarDynamics<Parameter,State> allows for compile time polymor-
phism on the parameter and state used within the car dynamic model. While
the use of a non-templatize base class IDynamics consents to use run-time
polymorphism. The dynamic model takes as input a generic vector u of
command values. The parameters are derived from IParameters, which
provides a pure virtual method load that must be overridden by derived
parameters classes. This method defines a common API to read a YAML

60

Methodology

file. The dynamic state of each dynamical model derives from a base class
that provides methods to retrieve and set the state.

This structure facilitates the customization of the dynamic model used
in simulations while still providing a common interface to make them work
together. Consequently, each dynamic model can have a different parameter
structure and appropriate state space representation.

The Car class stores a smart pointer of IDynamics coupled with the dy-
namic state achieving run-time polymorphism, ??. A Collaboration diagram
for dynamic models implementation, taken from the Doxygen5 documenta-
tion of the library, is shown on the Figure 3.10, while Figure 3.11 pertains to
the parameters.

An external solver can also be used to simulate the dynamic, in this
setting the Car instance is used to update the underlying state values with
the one computed from the external solver. The implemented physics solver,
used for integrating the dynamic model implemented within the library, is a
Runge-Kutta 4. To make it possible to use both C++ solver and PhysX a
common interface is defined. The car accepts as input a command structure
composed of throttle and steering values, which is then converted to the
underlying vector input of the dynamic model. In this way, from the user’s
viewpoint is indistinguishable which of the two solvers is used. The input of
the command then is simulated by the C++ library if the model is defined
in C++, otherwise, it is sent to Unity as it is and then is stimulated in Unity.
It is also possible to define a more complex Additionally, for interfacing
with ROS2 Ackermann drive messages, a function can transform a velocity
target into a duty cycle or throttle command. This common API is made
to ease the use of both solvers at the same time but is not considered a
limitation since for more tailored use it’s possible to simulate the dynamic

5https://www.doxygen.nl/index.html

61

Methodology

model externally from the car class using the input vector of the dynamic
model. The car also stores an enumeration used to identify the mesh model
used in unity. The parameters of the car dynamics are stored and loaded
using YAML files and a custom parser can be defined to load a variety of
car dynamic parameters. An example of this is Figure 3.11 where it’s shown
how the interface class IParameters, defined in the library, can be used to
define a custom parameter structure for a specific dynamic model such as
the single track.

Figure 3.10: Single track dynamic model collaboration diagram

Figure 3.11: Parameter class collaboration diagram

Sensors can be easily added to the vehicle and are stored as shared pointers
in dynamically allocated vectors. All the car instances can be configured
using a single YAML file ??.

62

Methodology

3.2.2 Sensors

Exteroceptive sensors are simulated in Unity and then the data is sent to the
C++ runtime application. The C++ library has API facilities and classes
to store and retrieve sensor data as well as to set the corresponding settings
in the code that are then sent to Unity.

RGB Camera

The camera data is stored using a deque, which is a double-ended queue
allowing efficient insertion and deletion from both ends, containing structures
with two cv::Mat elements. To avoid race conditions, a mutex, which is
a synchronization mechanism, is used to ensure safe access to the data
structure. Camera settings can be configured either through the API or via
a YAML file.

LiDAR

The LiDAR class, like the Camera, enables to handle the LiDAR data and to
set the LiDAR configuration options. Data is stored in pre-allocated vectors.

3.2.3 Settings

The settings structure is designed to store and configure the various parame-
ters required for simulation, which are subsequently published to Unity to set
the simulation. This structure includes options such as the simulation time
step and the substep size, both of which are fundamental for defining the
temporal resolution and accuracy of the simulation. Additionally, the settings
allow for the selection of different tracks and scenes, enabling the customiza-
tion of the simulation environment. These options provide a high degree of
flexibility and control over the simulation setup. Users can configure these

63

Methodology

settings through both an API and YAML files, ensuring that the configura-
tion process can be integrated into automated workflows and scripts, as well
as manually adjusted through user-friendly interfaces. The tracks and scenes
stored in Unity are defined as enumeration, with the values corresponding to
the order of those items in the Unity Editor. Adding a new track or scene
is made easy with a custom macro, REGISTER_UNITY(Enum,<Scene name>)

that registers the track to a static factory method pattern.

3.2.4 Bridge

The bridge is the class enabling the connection between the C++ executable
and unity. It is the C++ counterpart of the simManager class in Unity.
The bridge instance stores a vector of shared pointers to all car instances
in the simulation environment and a publisher/subscriber ZeroMQ sockets
pairs. The user needs first to add all the instances of the car to the bridge,
using the apposite API, once this is done the bridge has a method called
connectToUnity that sends to unity messages on the topic InitialSettings

that are used to set the simulation. The bridge blocks the process until
it receives a ready message. At this point, two methods of the Bridge
are used to communicate with Unity. One is SendToUnity which updates
the car pose or sends the car command to unity and is intended to be
called after having updated the command to all vehicles, the other is called
ReceiveFromUnity and is responsible for parsing the information of sensors
and car pose sent by Unity. The bridge is also the component that allows
the synchronization of the two process simulated times, this is achieved by
the receive ReceiveFromUnity method that blocks the thread waiting for
the update message from unity. In this way, the simulated time in C++ and
Unity are updated with the same speed.

64

Methodology

3.2.5 Wrapper

The wrapper class is called Asim and allows wrapping all the above function-
alities in one class instance that simplifies the definition of the simulation
environment with one single YAML file and class instance. This class stores a
Bridge instance and a Settings instance and provides a method to retrieve
them directly with the API. Also, it provides a step command that advances
the simulation time step by the delta time specified in the simulation settings.
An example of the use of this class is given in Code A.1.

3.3 Ros2 Bridge Package

The simulator library can be used, as any other library, inside Ros/Ros2
since it is sufficient to include the CMake target defined in the library
CMakeList.txt file, so it’s possible to build custom simulators and applica-
tions within ROS frameworks. Nevertheless, the idea of creating a custom
ROS simulator can be time-consuming and could discourage beginners from
using the simulator, so, for this reason, a fully YAML file parameterized
ROS2 simulator has been developed as an external package. This simulator
can also be used as a reference for more custom user-defined ones since
provides a great example of how to use the AR-Sim library.

With YAML file parameterized it meant that all publisher and subscribers
nodes are created at run time based on the YAML file passed to the launch
file of the package. This is achieved using 2 YAML files, one is the same used
in the wrapper class and the second one instead is specific to ROS2. This
second YAML contains information about the topic name for the different
information and the namespace to use for the ego car, all the opponent cars
instead have as a prefix car<id> where "id" specifies the car number based
on the order in which are placed inside the setting YAML file. Then each
sensor type in the car is created a topic, with the right namespace. In this

65

Methodology

way is possible to easily customize topic names in order to have them match
the ones used in the real car. This simulator is mainly thought to be used
with the F1tenth since it reproduces the same topics available in the already
existing F1Tenth simulators with additional topics for 3D point-cloud and
images, anyway its flexibility makes it easy to adapt to other platforms.

Each vehicle subscribes to two topics: the drive topic and the command
topic. The drive topic is used to send Ackermann drive messages, which are
the ones used in the F1Tenth vehicles, the callback of this function calls the
car dynamic method Ackermann2Command that converts the drive message
to a command structure passed to the vehicle dynamic. This method needs
to be overridden in a derived class of IDynamics class only if used. The
other subscribed topic command drive is used to exchange custom messages
defined in the ROS2 package of the ROS2 simulator which contain throttle
and steer angle targets.

Figure 3.12: Rviz2 visualization of the ROS2 AR-Sim package. On the
right is visible the Unity executable, while on the left the Rviz visualization
showing the camera image and the 2D LiDAR data.

66

Methodology

3.4 Python wrapper

The development of a Python wrapper aims at providing high-performance
computational capabilities of C++ with the user-friendly and flexible envi-
ronment of Gymansium6, a widely-used toolkit for reinforcement learning.
Gymnasium provides a standardized API for RL application, making it easier
to develop and benchmark RL algorithms. This integration has been created
using pybind117, a lightweight header-only library that exposes C++ types
in Python and vice versa. One of the critical aspects of this integration is
managing memory and data ownership between C++ and Python. For this
purpose it’s been developed some custom capsules to transfer data ownership
to the Python garbage collector, ensuring that resources are correctly man-
aged without the user having to care about them and keeping a Pythonic
style. Capsules in Python are objects that can store pointers to C++ data
and define a destructor to manage the object’s lifetime.

These functionalities have been used to create a gym environment in
Python to train a single car to be driven, users can then use this environment
as a reference to define more custom-specific ones.

6https://gymnasium.farama.org/
7https://github.com/pybind/pybind11

67

Chapter 4

Conclusions

This thesis has detailed the design and implementation of AR-Sim, a com-
prehensive simulator for autonomous racing vehicles, developed to address
the limitations of existing open-source tools, and enhance the development
of autonomous driving technologies, especially in the context of F1Tenth
racing vehicles.

AR-Sim integrates advanced components including a C++ library, Unity
for visual simulations and sensor models, a ROS2 package, and a Python
wrapper implementing a gymnasium environment for reinforcement learning.
Besides the ROS2 package, the C++ API can be used to create custom
simulation setups both within the ROS2 framework and without, providing
a very versatile customization. AR-sim can also generate random 3D race
tracks for domain randomization and can simulate IMU, GNS, LiDAR, and
fully customizable RGB cameras.

4.1 Results

AR-Sim demonstrated appealing performances in terms of simulation speed.
Several tests have been made on a system with an Intel i7 processor, 16GB

68

Conclusions

of RAM, and an NVIDIA GeForce GTX 1050 GPU. All measurements have
been carried out using the Wharehouse scene and with a graphic quality
level set to medium. The measured metric is the simulation rate, which
corresponds to the time it takes to simulate the car dynamics and receive back
the sensor readings from the Unity executable. Figure Figure 4.1 illustrates
the simulator performance concerning the number and resolution of camera
sensors. It can be seen that the resolution of the camera highly influences
the simulation speed, the reason is due to the cost of transferring the data
from the GPU to the CPU. Table 4.2 reports the simulation rate obtained
for different LiDAR models, what influences the performance is only the
number of channels and not the other LiDAR options.

1 2 4
0

20

40

60

80

100

120

140

Number of Cameras

Si
m

ul
at

io
on

R
at

e
[H

z]

64x64x3
256x256x3

1024x1024x3

Figure 4.1: Simulation rate with different cameras configurations

Table4.4 compares the simulator performances for combined sensor setups,
indicating the simulator’s efficiency even on commonly available, mid-range
hardware with a simulation. In particular, the first two rows indicate that it

69

Conclusions

LIDAR Sensor
Model Resolution: (horizontalxvertical) Simulation Rate [Hz]
Hokuyo 1080x1 140
Ouster OS1 512x32 93
Ouster OS1 1024x32 58
Ouster OS1 1024x64 33

Table 4.1

Table 4.2: Simulation rate for different LiDARS

satisfies the requirement of enabling camera-based algorithms simulation for
the F1Tenth vehicles.

Combined car configuration
Cameras Lidar Simulation Rate [Hz]
2 cameras: 256x512x3 Hokuyo 84
1 camera: 1024x760x3 Hokuyo 63
1 camera: 1024x760x3 Ouster OS1 1024x32 28
1 camera: 256x512x3 Ouster OS1 91024x32 33

Table 4.3

Table 4.4: Performance with combined sensor setup

The simulator can effectively handle multi-agent scenarios with different
physic solvers running at the same time, such as the PhysX model, Gazebo,
or any analytical equation model, e.g. the single track model. It also supports
both autonomous operation and user input via ROS2 topics. Further, it
integrates seamlessly with existing F1Tenth algorithms and can be used with
packages like Hector SLAM. From Hector SLAM, it is possible to generate
a CSV file of the map, using other open source software, which can then
be used to create a 3D race track model inside the simulator with custom
barrier meshes and materials.

70

Conclusions

Despite not yet being tested for end-to-end learning and Sim2Real transfer-
ability, the foundational aspects of AR-sim have been successfully established.
The Python environment functions correctly, and future benchmarks will
focus on these areas.

4.2 Future work

AR-sim is an evolving open-source software, continuously updated to include
new features and improvements. An upcoming paper will be published, and
it will provide comprehensive benchmark results, alongside its publication,
the software will be released with a set of algorithms and detailed API
documentation on the TUM-AVS Lab GitHub 1.

Future work will concern the development of more realistic Unity envi-
ronments to close the simulation-to-reality gap by exploiting more advanced
methods as photogrammetry to reproduce the TUM-AVS lab inside the vir-
tual environments. Also, future work will include additional dynamic models
and more camera simulation options such as depth images. The creation of
random tracks will be enhanced adding the possibility to not only create 3D
tracks by extruding a mesh profile but also by placing objects alongside the
track, such as cones, to delimit the race track. For the F1Tenth use case, an
additional useful feature would be the capability to place obstacles along the
tracks as this is commonly used to test reactive autonomous algorithms.

Another aspect that hasn’t been addressed is the system identification
of the PhysX model of the F1Tenth race cars. This procedure requires
external measurement equipment, such as the ViCon2 motion capture system
to obtain ground truth data, which was not available at the the time in the
lab.

1https://github.com/TUM-AVS
2https://www.vicon.com/

71

Conclusions

Additionally, further work is needed to implement a parallelized simulation
environment to speed up data gathering for ML application. At the moment,
it is possible to simulate multiple vehicles simultaneously but they interact
with each other. Instead would be beneficial to have them operate as ghosts
for other viewpoints, allowing data collection for multiple vehicle instances
at the same time within a single simulation epoch.

The work presented in this thesis marks a significant step forward in
autonomous racing vehicle simulation, offering a robust, flexible, and user-
friendly platform that enhances accessibility for researchers and students to
experiment and test autonomous driving algorithms.

72

Appendix A

AR-Sim Code Examples

73

AR-Sim Code Examples

Code A.1: Arim C++ code example
1 int main ()
2 {
3 Arsim sim(ARSIM_LOAD_YAML (" parameters / setting .yaml"));
4 bool unity_ready = sim. connect2Unity ();
5

6 // simulation commands
7 Commands_t c;
8

9 //* Simulation loop example :
10 while (unity_ready) {
11

12 sim.step ();
13 sim.bridge_ptr -> receiveFromUnity ();
14

15 // Computing command using the data , just example
16 c = ComputeCommand (sim.cars () [0])
17

18 // apply the command to the car
19 sim.cars ()[0]-> setCommand (c);
20

21 // send the command to unity
22 sim.bridge_ptr -> sendToUnity ();
23 }
24 return 0;
25 }

74

AR-Sim Code Examples

Code A.2: Simulation yaml file settings
1 S imu la t i onSe t t ing s :
2 asyncMode : f a l s e
3 t rack : Track02
4 scene : WareHouse
5 s i m u l a t i o n I n t e r v a l : 0 .02 # seconds
6 s t e p S i z e : 0 .01
7 opt ionPhysxSolver : s tep
8

9 CarList :
10 car0 :
11 p r o f i l e : redcar1tenth_parameters . yaml # r e l a t i v e path from

t h i s f i l e to the car yaml f i l e
12 p o s i t i o n : [1 , 0 , 1] # opt i ona l : s e t p o s i t i o n o f

the car , i f not pre sent use the p o s i t i o n i n s i d e the p r o f i l e
13 r o t a t i o n : [0 , 0 , 1 0] # opt i ona l : s e t the r o t a t i o n

o f the car , i f not pre sent use the r o t a t i o n i n s i d e the
p r o f i l e

75

AR-Sim Code Examples

Code A.3: Car yaml file configuration
1 i n i t i a l P o s i t i o n : [0 , 0 , 0]
2 i n i t i a l O r i e n t a t i o n : [0 , 0 , 0] # RPY in degree s
3

4 model : SingleTrack_cmroad # dynamic model
5 pre fab : F1Tenth # pre fab used in unity
6

7 CarParameters :
8 l f : 0 .15875
9 l r : 0 .17145

10 h : 0 .074
11 m: 3 .74
12 I z : 0 .04712
13 mu: 1 .0489
14 TireParameters :
15 C_sf : 4 .718
16 C_sr : 5 .456
17 MotorParameters :
18 C1 : 21 .85
19 C2 : 3 .17
20 Longitudina lParameters :
21 Cr : 3 .24
22 Cd: 0 .05
23 v_switch : 0 . 5 # change between kinemat ic and dynamic
24 v_max : 20
25 v_min : −5
26 a_max : 9 .51
27 Steer ingParameters :
28 max_angle : 0 .418
29 v_max : 3 .2
30

31 Lidars :
32 Lidar :
33 # h o r i z o n t a l
34 hor i zonta lFov : 270 # [degree]
35 s ta r tHor i zonta lFov : −135 # [degree]
36 h o r i z o n t a l R e s o l u t i o n : 1080
37 # v e r t i c a l
38 ve r t i c a lFov : 0
39 s t a r tVe r t i c a lFov : 0
40 v e r t i c a l R e s o l u t i o n : 1
41 #
42 maxLinearRange : 10 # [m]
43 minLinearRange : 0 # [m]
44 r e l P o s i t i o n : [1 , 0 , 0]
45 r e lRo ta t i on : [0 , 0 , 0] # degree s
46 scanFreq : 10
47

48 #Add here more Lidars
49 Cameras :
50 camera :
51 he ight : 760
52 width : 1024
53 fov : 60
54 nearCl ipPlane : 0 . 1 # near e s t plane the camera render
55 f a rC l ipP lane : 1000 # f u r t h e r plane the camera render
56 r e l P o s i t i o n : [1 , 1 , 1] # [m]
57 r e lRo ta t i on : [0 , 0 , 0] # RPY ang l e s in degree s

76

AR-Sim Code Examples

Code A.4: dynamic model API
1 int main ()
2 {
3 std :: unique_ptr < cmroad :: SingleTrack > single_track ;
4 single_track -> loadParameters (ARSIM_LOAD_YAML (" parameters /

f1tenth_parameters .yaml"));
5

6 CarPtr f1tenth = std :: make_shared <Car >(single_track);
7 IDynamics * dynamic_model = f1tenth -> getDynamicModel ();
8 }

Code A.5: JSON setting message
1 {
2 " settings ": {
3 " asyncMode ": true ,
4 " sceneID ": 2,
5 " simInterval ": 0.001 ,
6 " solver ": 1,
7 " stepSize ": 0.002 ,
8 " trackID ": 0
9 },

10 " vehicles ": [
11 {
12 "ID": "car0",
13 " cameras ": [
14 {
15 "ID": " camera_0 ",
16 " farClipPlane ": 1000.0 ,
17 "fov": 60.0 ,
18 " height ": 760,
19 " nearClipPlane ": 0.100000001490116 ,
20 " positionRel ": [-1.0, 1.0, 1.0] ,
21 " rotationRel ": [0.0 , -0.0, -0.0, 1.0] ,
22 "width": 1024
23 }
24],
25 " commands ": {
26 " steering ": 0.0,
27 " throttle ": 0.0
28 },
29 " is_kinematic ": true ,
30 " lidars ": [],
31 " position ": [-3.0, 1.0, 5.0] ,
32 " prefabID ": 0,
33 " rotation ": [0.0 , -1.0, -0.0, 0]
34 }
35]
36 }

77

Bibliography

[1] Arshardh Ifthikar and Saman Hettiarachchi. «Analysis of Historical
Accident Data to Determine Accident Prone Locations and Cause of
Accidents». en. In: 2018 8th International Conference on Intelligent
Systems, Modelling and Simulation (ISMS). Kuala Lumpur, Malaysia:
IEEE, May 2018, pp. 11–15. isbn: 978-1-5386-6539-8. doi: 10.1109/

ISMS.2018.00012. url: https://ieeexplore.ieee.org/document/

8699325/.

[2] Moneim Massar, Imran Reza, Syed Masiur Rahman, Sheikh Muhammad
Habib Abdullah, Arshad Jamal, and Fahad Saleh Al-Ismail. «Impacts
of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or
Negative?» en. In: International Journal of Environmental Research
and Public Health 18.11 (May 2021), p. 5567. issn: 1660-4601. doi:
10 . 3390 / ijerph18115567. url: https : / / www . mdpi . com / 1660 -

4601/18/11/5567.

[3] Alan Ohnsman. A Robotaxi Business Is A Dream For Elon Musk–But
Already A Reality For Waymo. en. url: https://www.forbes.com/

sites/alanohnsman/2024/06/17/a- robotaxi- business- is- a-

dream-for-elon-muskbut-already-a-reality-for-waymo/.

[4] B. Padmaja, Ch. V. K. N. S. N. Moorthy, N. Venkateswarulu, and
Myneni Madhu Bala. «Exploration of issues, challenges and latest
developments in autonomous cars». en. In: Journal of Big Data 10.1

78

https://doi.org/10.1109/ISMS.2018.00012
https://doi.org/10.1109/ISMS.2018.00012
https://ieeexplore.ieee.org/document/8699325/
https://ieeexplore.ieee.org/document/8699325/
https://doi.org/10.3390/ijerph18115567
https://www.mdpi.com/1660-4601/18/11/5567
https://www.mdpi.com/1660-4601/18/11/5567
https://www.forbes.com/sites/alanohnsman/2024/06/17/a-robotaxi-business-is-a-dream-for-elon-muskbut-already-a-reality-for-waymo/
https://www.forbes.com/sites/alanohnsman/2024/06/17/a-robotaxi-business-is-a-dream-for-elon-muskbut-already-a-reality-for-waymo/
https://www.forbes.com/sites/alanohnsman/2024/06/17/a-robotaxi-business-is-a-dream-for-elon-muskbut-already-a-reality-for-waymo/

BIBLIOGRAPHY

(May 2023), p. 61. issn: 2196-1115. doi: 10.1186/s40537-023-00701-

y. url: https://journalofbigdata.springeropen.com/articles/

10.1186/s40537-023-00701-y.

[5] L. Sieber, C. Ruch, S. Hörl, K. W. Axhausen, and E. Frazzoli. «Improved
public transportation in rural areas with self-driving cars: A study on
the operation of Swiss train lines». In: Transportation Research Part A:
Policy and Practice 134 (Apr. 2020), pp. 35–51. issn: 0965-8564. doi:
10.1016/j.tra.2020.01.020. url: https://www.sciencedirect.

com/science/article/pii/S0965856418314083.

[6] Alexandros Nikitas, Alexandra-Elena Vitel, and Corneliu Cotet. «Au-
tonomous vehicles and employment: An urban futures revolution or
catastrophe?» In: Cities 114 (July 2021), p. 103203. issn: 0264-2751.
doi: 10.1016/j.cities.2021.103203. url: https://www.scienced

irect.com/science/article/pii/S0264275121001013.

[7] TechCamp POLIMI. Autonomous mobility: present and future, starting
from the Indy Autonomous Challenge experience. 2023. url: https:

//www.youtube.com/watch?v=oleuy8JXPH4.

[8] Harprinderjot Singh, Mohammadreza Kavianipour, Mehrnaz Ghamami,
and Ali Zockaie. «Adoption of autonomous and electric vehicles in
private and shared mobility systems». In: Transportation Research
Part D: Transport and Environment 115 (Feb. 2023), p. 103561. issn:
1361-9209. doi: 10.1016/j.trd.2022.103561. url: https://www.

sciencedirect.com/science/article/pii/S136192092200387X.

[9] Abu Dhabi Autonomous Racing League in UAE | A2RL. en. url:
https://a2rl.io.

[10] Sebastian Thrun et al. «Stanley: The robot that won the DARPA
Grand Challenge». en. In: Journal of Field Robotics 23.9 (Sept. 2006),

79

https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00701-y
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00701-y
https://doi.org/10.1016/j.tra.2020.01.020
https://www.sciencedirect.com/science/article/pii/S0965856418314083
https://www.sciencedirect.com/science/article/pii/S0965856418314083
https://doi.org/10.1016/j.cities.2021.103203
https://www.sciencedirect.com/science/article/pii/S0264275121001013
https://www.sciencedirect.com/science/article/pii/S0264275121001013
https://www.youtube.com/watch?v=oleuy8JXPH4
https://www.youtube.com/watch?v=oleuy8JXPH4
https://doi.org/10.1016/j.trd.2022.103561
https://www.sciencedirect.com/science/article/pii/S136192092200387X
https://www.sciencedirect.com/science/article/pii/S136192092200387X
https://a2rl.io

BIBLIOGRAPHY

pp. 661–692. issn: 1556-4959, 1556-4967. doi: 10.1002/rob.20147.
url: https://onlinelibrary.wiley.com/doi/10.1002/rob.20147.

[11] Juraj Kabzan et al. AMZ Driverless: The Full Autonomous Racing
System. May 2019. doi: 10.48550/arXiv.1905.05150. url: http:

//arxiv.org/abs/1905.05150.

[12] Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip
Karle, Madhur Behl, Venkat Krovi, and Rahul Mangharam. «Au-
tonomous Vehicles on the Edge: A Survey on Autonomous Vehicle
Racing». en. In: IEEE Open Journal of Intelligent Transportation Sys-
tems 3 (2022), pp. 458–488. issn: 2687-7813. doi: 10.1109/OJITS.2022.

3181510. url: https://ieeexplore.ieee.org/document/9790832/.

[13] Autonomous Challenge @ CES Rules. en-US. url: https://www.indy

autonomouschallenge.com/autonomous-challenge-ces-rules.

[14] Alexander Liniger. «Path Planning and Control for Autonomous Rac-
ing». en. PhD thesis. ETH Zurich, 2018. doi: 10 . 3929 / ETHZ - B -

000302942. url: http://hdl.handle.net/20.500.11850/302942.

[15] Eugenio Chisari, Alexander Liniger, Alisa Rupenyan, Luc Van Gool,
and John Lygeros. Learning from Simulation, Racing in Reality. en.
May 2021. url: http://arxiv.org/abs/2011.13332.

[16] AWS DeepRacer: il modo più rapido per partire con il machine learning.
it-IT. url: https://aws.amazon.com/it/deepracer/.

[17] Donkey® Car - Home. url: https://www.donkeycar.com/.

[18] Liam Paull et al. «Duckietown: An open, inexpensive and flexible
platform for autonomy education and research». In: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA). May 2017,
pp. 1497–1504. doi: 10 . 1109 / ICRA . 2017 . 7989179. url: https :

//ieeexplore.ieee.org/abstract/document/7989179.

80

https://doi.org/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/10.1002/rob.20147
https://doi.org/10.48550/arXiv.1905.05150
http://arxiv.org/abs/1905.05150
http://arxiv.org/abs/1905.05150
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/OJITS.2022.3181510
https://ieeexplore.ieee.org/document/9790832/
https://www.indyautonomouschallenge.com/autonomous-challenge-ces-rules
https://www.indyautonomouschallenge.com/autonomous-challenge-ces-rules
https://doi.org/10.3929/ETHZ-B-000302942
https://doi.org/10.3929/ETHZ-B-000302942
http://hdl.handle.net/20.500.11850/302942
http://arxiv.org/abs/2011.13332
https://aws.amazon.com/it/deepracer/
https://www.donkeycar.com/
https://doi.org/10.1109/ICRA.2017.7989179
https://ieeexplore.ieee.org/abstract/document/7989179
https://ieeexplore.ieee.org/abstract/document/7989179

BIBLIOGRAPHY

[19] Tanmay Vilas Samak, Chinmay Vilas Samak, and Ming Xie. «Auto-
DRIVE Simulator: A Simulator for Scaled Autonomous Vehicle Research
and Education». en. In: 2021 2nd International Conference on Control,
Robotics and Intelligent System. Aug. 2021, pp. 1–5. doi: 10.1145/

3483845.3483846. url: http://arxiv.org/abs/2103.10030.

[20] Goldeneye. url: https://goldeneye.studentorg.berkeley.edu/

barc.html.

[21] Süleyman Eken, Muhammed Şara, Yusuf Satılmış, Münir Karslı, Muham-
met Furkan Tufan, Houssem Menhour, and Ahmet Sayar. «A re-
producible educational plan to teach mini autonomous race car pro-
gramming». en. In: International Journal of Electrical Engineering
& Education 57.4 (Oct. 2020), pp. 340–360. issn: 0020-7209. doi:
10.1177/0020720920907879. url: https://doi.org/10.1177/

0020720920907879.

[22] Kyle Hart, Corey Montella, Georges Petitpas, Dylan Schweisinger,
Armon Shariati, Ben Sourbeer, Tyler Trephan, and John Spletzer.
«RoSCAR: robot stock car autonomous racing». In: Proceedings of the
2014 workshop on Mobile augmented reality and robotic technology-based
systems. MARS ’14. New York, NY, USA: Association for Computing
Machinery, June 2014, pp. 3–8. isbn: 978-1-4503-2823-4. doi: 10.1

145/2609829.2609837. url: https://doi.org/10.1145/2609829.

2609837.

[23] Matthew O’Kelly et al. F1/10: An Open-Source Autonomous Cyber-
Physical Platform. en. Jan. 2019. url: http://arxiv.org/abs/1901.

08567.

[24] Johannes Betz et al. «Teaching Autonomous Systems Hands-On: Lever-
aging Modular Small-Scale Hardware in the Robotics Classroom». In:

81

https://doi.org/10.1145/3483845.3483846
https://doi.org/10.1145/3483845.3483846
http://arxiv.org/abs/2103.10030
https://goldeneye.studentorg.berkeley.edu/barc.html
https://goldeneye.studentorg.berkeley.edu/barc.html
https://doi.org/10.1177/0020720920907879
https://doi.org/10.1177/0020720920907879
https://doi.org/10.1177/0020720920907879
https://doi.org/10.1145/2609829.2609837
https://doi.org/10.1145/2609829.2609837
https://doi.org/10.1145/2609829.2609837
https://doi.org/10.1145/2609829.2609837
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567

BIBLIOGRAPHY

(2022). doi: 10.48550/ARXIV.2209.11181. url: https://arxiv.

org/abs/2209.11181.

[25] Nicolas Baumann et al. ForzaETH Race Stack – Scaled Autonomous
Head-to-Head Racing on Fully Commercial off-the-Shelf Hardware. en.
Mar. 2024. url: http://arxiv.org/abs/2403.11784.

[26] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas
Geiger, and Hongyang Li. End-to-end Autonomous Driving: Challenges
and Frontiers. en. Apr. 2024. url: http://arxiv.org/abs/2306.

16927.

[27] Mariusz Bojarski et al. End to End Learning for Self-Driving Cars. en.
Apr. 2016. url: http://arxiv.org/abs/1604.07316.

[28] Alexey Dosovitskiy. «CARLA: An Open Urban Driving Simulator». en.
In: ().

[29] Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia Moseyko,
Rohan Banerjee, Sertac Karaman, and Daniela Rus. «Learning Robust
Control Policies for End-to-End Autonomous Driving From Data-Driven
Simulation». en. In: IEEE Robotics and Automation Letters 5.2 (Apr.
2020), pp. 1143–1150. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.

2020.2966414. url: https://ieeexplore.ieee.org/document/

8957584/.

[30] Sebastian Höfer et al. Perspectives on Sim2Real Transfer for Robotics:
A Summary of the R:SS 2020 Workshop. en. Dec. 2020. url: http:

//arxiv.org/abs/2012.03806.

[31] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias
Müller, Vladlen Koltun, and Davide Scaramuzza. «Champion-level
drone racing using deep reinforcement learning». en. In: Nature 620.7976
(Aug. 2023), pp. 982–987. issn: 0028-0836, 1476-4687. doi: 10.1038/

82

https://doi.org/10.48550/ARXIV.2209.11181
https://arxiv.org/abs/2209.11181
https://arxiv.org/abs/2209.11181
http://arxiv.org/abs/2403.11784
http://arxiv.org/abs/2306.16927
http://arxiv.org/abs/2306.16927
http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/LRA.2020.2966414
https://doi.org/10.1109/LRA.2020.2966414
https://ieeexplore.ieee.org/document/8957584/
https://ieeexplore.ieee.org/document/8957584/
http://arxiv.org/abs/2012.03806
http://arxiv.org/abs/2012.03806
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4

BIBLIOGRAPHY

s41586-023-06419-4. url: https://www.nature.com/articles/

s41586-023-06419-4.

[32] Yueyuan Li, Wei Yuan, Songan Zhang, Weihao Yan, Qiyuan Shen,
Chunxiang Wang, and Ming Yang. «Choose Your Simulator Wisely:
A Review on Open-source Simulators for Autonomous Driving». en.
In: IEEE Transactions on Intelligent Vehicles (2024), pp. 1–19. issn:
2379-8904, 2379-8858. doi: 10.1109/TIV.2024.3374044. url: http:

//arxiv.org/abs/2311.11056.

[33] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and
Davide Scaramuzza. Flightmare: A Flexible Quadrotor Simulator. en.
May 2021. url: http://arxiv.org/abs/2009.00563.

[34] Eclipse SUMO - Simulation of Urban MObility. en. url: https://www.

eclipse.dev/sumo/.

[35] CarSim | Speedgoat. url: https://www.carsim.com/.

[36] Yueyuan Li, Wei Yuan, Songan Zhang, Weihao Yan, Qiyuan Shen,
Chunxiang Wang, and Ming Yang. «Choose Your Simulator Wisely:
A Review on Open-source Simulators for Autonomous Driving». en.
In: IEEE Transactions on Intelligent Vehicles (2024), pp. 1–19. issn:
2379-8904, 2379-8858. doi: 10.1109/TIV.2024.3374044. url: http:

//arxiv.org/abs/2311.11056.

[37] Driving Simulator | VI-grade. en. url: https://www.vi-grade.com/

en//.

[38] Cole Gulino et al. «Waymax: An Accelerated, Data-Driven Simulator
for Large-Scale Autonomous Driving Research». In: Proceedings of
the Neural Information Processing Systems Track on Datasets and
Benchmarks. 2023.

83

https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://doi.org/10.1109/TIV.2024.3374044
http://arxiv.org/abs/2311.11056
http://arxiv.org/abs/2311.11056
http://arxiv.org/abs/2009.00563
https://www.eclipse.dev/sumo/
https://www.eclipse.dev/sumo/
https://www.carsim.com/
https://doi.org/10.1109/TIV.2024.3374044
http://arxiv.org/abs/2311.11056
http://arxiv.org/abs/2311.11056
https://www.vi-grade.com/en//
https://www.vi-grade.com/en//

BIBLIOGRAPHY

[39] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex
Yablonski, and Alain Kornhauser. Beyond Grand Theft Auto V for
Training, Testing and Enhancing Deep Learning in Self Driving Cars.
en. Dec. 2017. url: http://arxiv.org/abs/1712.01397.

[40] Matthias Althoff, Markus Koschi, and Stefanie Manzinger. «Common-
Road: Composable benchmarks for motion planning on roads». en.
In: 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA,
USA: IEEE, June 2017, pp. 719–726. isbn: 978-1-5090-4804-5. doi:
10.1109/IVS.2017.7995802. url: http://ieeexplore.ieee.org/

document/7995802/.

[41] nuPlan. en. url: https://www.nuplan.org/nuplan.

[42] AWSIM document. url: https://tier4.github.io/AWSIM/.

[43] James Herman et al. Learn-to-Race: A Multimodal Control Environment
for Autonomous Racing. en. Aug. 2021. url: http://arxiv.org/abs/

2103.11575.

[44] Benjamin D. Evans, Hendrik W. Jordaan, and Herman A. Engelbrecht.
«Safe reinforcement learning for high-speed autonomous racing». en.
In: Cognitive Robotics 3 (2023), pp. 107–126. issn: 26672413. doi: 10.

1016/j.cogr.2023.04.002. url: https://linkinghub.elsevier.

com/retrieve/pii/S2667241323000125.

[45] Hans B. Pacejka and Egbert Bakker. «The Magic Formula Tyre Model».
In: Vehicle System Dynamics 21.sup001 (Jan. 1992), pp. 1–18. issn:
0042-3114. doi: 10.1080/00423119208969994. url: https://doi.

org/10.1080/00423119208969994.

[46] NVIDIA Omniverse. it-it. url: https://www.nvidia.com/it-it/

omniverse/.

84

http://arxiv.org/abs/1712.01397
https://doi.org/10.1109/IVS.2017.7995802
http://ieeexplore.ieee.org/document/7995802/
http://ieeexplore.ieee.org/document/7995802/
https://www.nuplan.org/nuplan
https://tier4.github.io/AWSIM/
http://arxiv.org/abs/2103.11575
http://arxiv.org/abs/2103.11575
https://doi.org/10.1016/j.cogr.2023.04.002
https://doi.org/10.1016/j.cogr.2023.04.002
https://linkinghub.elsevier.com/retrieve/pii/S2667241323000125
https://linkinghub.elsevier.com/retrieve/pii/S2667241323000125
https://doi.org/10.1080/00423119208969994
https://doi.org/10.1080/00423119208969994
https://doi.org/10.1080/00423119208969994
https://www.nvidia.com/it-it/omniverse/
https://www.nvidia.com/it-it/omniverse/

BIBLIOGRAPHY

[47] Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik, and Rahul Mang-
haram. «F1TENTH: An Open-source Evaluation Environment for Con-
tinuous Control and Reinforcement Learning». In: NeurIPS 2019 Com-
petition and Demonstration Track. PMLR. 2020, pp. 77–89.

[48] Varundev Suresh Babu and Madhur Behl. «f1tenth.dev - An Open-
source ROS based F1/10 Autonomous Racing Simulator». en. In:
2020 IEEE 16th International Conference on Automation Science
and Engineering (CASE). Hong Kong, Hong Kong: IEEE, Aug. 2020,
pp. 1614–1620. isbn: 978-1-72816-904-0. doi: 10.1109/CASE48305.

2020.9216949. url: https://ieeexplore.ieee.org/document/

9216949/.

[49] Jonathan Francis et al. Learn-to-Race Challenge 2022: Benchmarking
Safe Learning and Cross-domain Generalisation in Autonomous Racing.
en. May 2022. url: http://arxiv.org/abs/2205.02953.

[50] Kıvanç Güçkıran and Bülent Bolat. «Autonomous Car Racing in Sim-
ulation Environment Using Deep Reinforcement Learning». In: 2019
Innovations in Intelligent Systems and Applications Conference (ASYU).
2019, pp. 1–6. doi: 10.1109/ASYU48272.2019.8946332.

[51] TUM-Institute of Automotive Technology. global race trajectory opti-
mization. url: https://github.com/TUMFTM/global_racetrajecto

ry_optimization.

[52] f1tenth/f1tenth_racetracks. May 2024. url: https://github.com/

f1tenth/f1tenth_racetracks.

[53] Alexander Heilmeier, Alexander Wischnewski, Leonhard Hermansdorfer,
Johannes Betz, Markus Lienkamp, and Boris Lohmann. «Minimum
curvature trajectory planning and control for an autonomous race car».
en. In: Vehicle System Dynamics 58.10 (Oct. 2020), pp. 1497–1527.
issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.2019.1631455.

85

https://doi.org/10.1109/CASE48305.2020.9216949
https://doi.org/10.1109/CASE48305.2020.9216949
https://ieeexplore.ieee.org/document/9216949/
https://ieeexplore.ieee.org/document/9216949/
http://arxiv.org/abs/2205.02953
https://doi.org/10.1109/ASYU48272.2019.8946332
https://github.com/TUMFTM/global_racetrajectory_optimization
https://github.com/TUMFTM/global_racetrajectory_optimization
https://github.com/f1tenth/f1tenth_racetracks
https://github.com/f1tenth/f1tenth_racetracks
https://doi.org/10.1080/00423114.2019.1631455

BIBLIOGRAPHY

url: https://www.tandfonline.com/doi/full/10.1080/00423114.

2019.1631455.

86

https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Level of Autonomous Driving
	Impact of Autonomous driving
	Autonomous racing
	Historical development

	Scaled research Test Beds
	1:43 Vehicles
	Low Budget
	Scaled Urban Driving
	1:10 Advanced Sensor Suite

	Autonomous racing software stack
	End to End autonomous driving

	Thesis Outline

	Simulation Environments for Autonomous Vehicles
	Introduction
	Historical Context and Evolution

	Classification
	Vehicle Dynamics Simulators
	Driving Policy Simulator
	Full Featured Simulators
	autonomous racing simulator

	Application and Use Cases
	End-to-End and Machine Learning

	Building blocks
	Physic Engine
	Rendering Engine
	Sensor Model
	Communication and API

	State of the Art review
	F1TENTH Simulator
	CARLA
	AWSIM
	AutoDrive simulator
	Flightmare
	Other Simulators

	Methodology
	Unity Server
	Environment Scenes
	Race Tracks
	Random Track Generator
	Back end
	Car model and physic engine
	Sensors
	Rendering

	Core C++ Library
	Car and Dynamic
	Sensors
	Settings
	Bridge
	Wrapper

	Ros2 Bridge Package
	Python wrapper

	Conclusions
	Results
	Future work

	AR-Sim Code Examples
	Bibliography

