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Abstract

Machine translation (MT) has come a long way since Deep Neural Net-
works (DNNs) arrived. The introduction of Transformer architecture, with its
flexible data handling, opened the door to a new field: Multimodal Machine
Translation (MMT). MMT aims to combine text with other information, like
images, to improve translation accuracy. While MMT is a rapidly growing field,
there are still challenges. One is the lack of data that combines different modalities
with translations. Another is how to represent different data types effectively and
then combine them in a way that captures the overall meaning.

This thesis proposes a new architecture using three transformers: one for the
text, one for a general image representation, and one for detecting objects in
the image. The goal is to see if using both general and specific image features
improves translation quality. Additionally, this research focuses on a lightweight
architecture compared to the current trend of using increasingly complex models.
Experiments were conducted using two Transformer sizes ("Tiny" and "Small") for
translating English to German, French, and Czech. The results show that the
proposed approach works well for German and French, but for Czech, only the
general image representation led to improvements so far.
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Chapter 1
Introduction

Artificial intelligence (AI) is a vast field that studies how we can simulate
human behaviours with machines. One particularly exciting subfield is Natural
Language Processing (NLP), focused on combining techniques and knowledge
from linguistics and computer science to find an optimal way to make understand-
able, interpretable, and even generate human language to machines. This opens
doors for a variety of applications and tasks, with Machine Translation (MT)
being a prime example of it. Machine translation utilizes NLP techniques to
automatically translate a text corpora from one language to another. Early MT
systems relied on rule-based approaches, but today’s most effective methods employ
sophisticated statistical and neural network models. These models are trained
on massive amounts of bilingual data, allowing them to capture the subtleties of
language and produce increasingly accurate translations to become more and more
like those made by humans.

Machine translation, thanks to Neural Network’s flexibility of processing dif-
ferent kinds of data, has been developed another field, the one of Multimodal
Machine Translation (MMT). This innovative approach goes beyond just words,
incorporating different types of data like images, speech, etc. to create a richer
understanding of what’s being communicated. Researchers worldwide have been
pushing the boundaries of MMT (with usage of visual data) for years, focusing on
three key challenges: identifying the most relevant visual information for translation
, developing efficient methods to extract it , and seamlessly combining it with text
Processing.

The Transformer, an innovative encoder-decoder architecture introduced by “At-
tention is all you need” (Vaswani, et al, 2017) [1], marked a turning point in both
NLP and Computer Vision. Unlike previous models, it forgoes sequential processing.
Instead, it analyzes all parts of an input sequence, be it text or image (in this
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Introduction

case called Vision Transformer), simultaneously. This is achieved through a clever
mechanism called "Attention”. Attention allows the Transformer to understand how
different elements within the sequence relate to each other, even if they’re far apart.
This ability to capture long-range dependencies is crucial for tasks like machine
translation, where understanding the relationship between words across sentences is
key, or image captioning, where identifying objects and their interactions is essential.

This thesis presents an approach, inspired by the previous research “Adding Mul-
timodal Capabilities to a Text-only Translation Model” (Vijayan, et al. 2024) [2]
and “Tackling Ambiguity with Images: Improved Multimodal Machine Translation
and Contrastive Evaluation” (Futeral, et al 2023) [3] that leverages three distinct
Transformer architectures which aim to increase the accuracy of translations by
adding two types of visual information collected from the same image. While the
sequence-to-sequence Transformer is necessary for text processing, the true core of
this model lies in the two visual transformers. These pre-trained Transformer
models act as the foundation, tasked with extracting visual features from the ac-
companying image (always provided as a caption). The first visual encoder focuses
on global features, extracting information that describes the overall context of
the scene. Adding another layer of detail, the second visual encoder functions as
an object detector extracting regional/local visual information. This fine-
grained analysis provides crucial information to disambiguate context-dependent
terms and capture the subtleties of the visual information.

We analyzed this architecture by studying its behaviour and the quality of transla-
tions on multiple levels: A text-only analysis that acts as a baseline to verify the
impact of visual features, an analysis for each type of visual feature isolated from
the other (for assessing its individual impact) and finally the joint analysis of these
two to understand the true potential of using two types of visual features along with
the text. Along with this study, we also analyzed performance differences between
a configuration “Tiny” and “Small” for the sequence-to-sequence transformer.

To thoroughly assess the proposed model’s capabilities, we conducted training and
testing across three distinct target languages: German, French, and Czech. The
Multi30k [4] dataset served as the foundation, providing 30,000 English- Target
Language pairs, each accompanied by a reference image. Employing three lan-
guages allows for a comprehensive analysis of the model’s effectiveness on diverse
linguistic structures. Three test sets were proposed in the dataset, containing 1000
sentence-image pairs each, namely 2016, 2017 and 2018.



Chapter 2

Deep Learning

The aim of this introductory chapter is to discuss the foundations of the entire
Artificial Intelligence (AI) context and the technological steps made to reach
the state of the art of the tools commonly used nowadays. Starting from the various
building blocks of a Neural Network (NN) up to the Convolutional Neural
Networks (CNN) which are essential in my research of Multimodal Architectures,
I will analyze in detail each of the steps required to train efficiently a Deep Neural
Network (DNN).

I will not cover the entire scope of Machine Learning (ML) , as it is not entirely
relevant for my research despite Deep Learning being a subset of it; the purpose is
to illustrate the concepts and methodologies necessary to delve into the relevant
characteristics of the ML fundamental for the understanding of my research.

2.1 Neural Networks

In order to understand in detail the functioning of a DNN we must necessarily
analyze its functioning. Inspired by the functioning of the human brain and the
progress in understanding it, two researchers Warren McCulloch, a neurophysiolo-
gist, and Walter Pitts, a mathematician, layed the groundwork that will lead to the
development of the first Artificial Neural Networks (ANN) illustrated in their
paper A logical calculus of the ideas immanent in nervous activity [5] in which
they explore the capabilities of performing computation by a simplified model of
neurons.

Frank Rosenblatt, inspired by the previously cited work, engineered and built the
first hardware implementation of an NN, Mark I Perceptron [6] designed for the
Image recognition task.

This architecture, represents the fundamental of the DNN, which is characterized
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by having three or more layers, one for the input, one for the output and an "hidden
layer", which is what differentiates a DL architecture concerning a traditional ML.

The most relevant building blocks of Mark I Perceptron are organized in 3 layers.

o An array of 400 photocells arranged in a 20x20 grid, named "sensory units'
(S-units), or "input retina'. Each S-unit can connect to up to 40 A-units.

A hidden layer of 512 perceptrons, named "association units" (A-units).

« An output layer of 8 perceptrons, named "response units" (R-units).
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Figure 2.1: Mark I Perceptron - Source: Perceptron. (2024, June 18). In
Wikipedia. https://en.wikipedia.org/wiki/Perceptron
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2.1.1 Neurons

Going into detail, we want to analyze the functioning of a single artificial neuron to
understand better how it is connected to its peers in the architecture of an ANN.
Neurons are simple mathematical models, inspired by biological neurons, that take
as input one or more numerical inputs (it could represent image pixel values, word
embeddings, or any other data), multiply it by a Weight which represents the
particular importance of that input to the neuron’s activation; weighted inputs
are then summed together. The weighted sum of the input is then passed to an
Activation Function, (a non-linear function) (This aspect will be deeply
analyzed in Section 2.1.3) which will determine if the neuron can switched on
or not by a predefined threshold. The output of this function is then passed to
other neurons in the network.

weights
inputs

X
1

activation

function

X @ net input
net;
J (p E—)
activation

X ._,@
transfer

: : function
x, 9
threshold
Figure 2.2: Functioning Schema of an Artificial Neuron - Source : [7]

This basic process is performed by all neurons in the NN, which through training
learn to adjust weights and biases to perform activities such as detecting objects in
an image, classifying images, text and more.

a=f (g: wixT; + b) (2.1)

=1

a (activation) : output of the neuron

f : activation function

N : number of inputs

o w; : weight associated with each input (influence of each input on neuron’s
activation)
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e x; : individual input
e b : bias term, used to shift activation threshold

In the equation of a basic neuron, there is also included a bias (b) term which
has been introduced to allow neurons to use different activation thresholds, helping
NN to have an increased generalization capability. The generalization capability
that stands for the ability of a neural network to train efficiently and identify
increasingly complex patterns.

2.1.2 Multi-layers Perceptron

As stated at the beginning of this chapter, the first ANN was the Mark I Percep-
tron, nowadays what is commonly used by every DNN algorithm is a MultiLayer
Perceptron (MLP) which is also called Feedforward network, because of the
a-cyclic graph structure of the net, the information flows the input to the output,
without any feedback connections.
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Figure 2.3: Simple graph of an MLP with only 1 Hidden Layer - Source: [§]

MLP leverage a multi-layer structure so it can exploit the efficiency of matrix-vector
computations, essentially there are 3 kinds of layers:

o Input layer : It receives the input information, in different forms (text, image
pixels, numbers and every data that can be numerable

o Qutput layer : It is the last layer of the network, and gives the result of the
computations of the N middle layers
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o Hidden layer(s) : Core of the network, they process the information received
from the input layer and through very heavy computations extract patterns
and other features from the data. Their number determines the depth of
the network. In the case of a Perceptron, npiqden = 1, in the case of a DNN,
Nhidden > 1

2.1.3 Activation functions

In Section 2.1.1 we talked about how the Artificial Neuron resembles the internal
functioning mechanism of the one inside the brain, here’s it is very important
to dive deep into the concept of activation, which basically defines whether a
weighted sum of input should be passed to the other neurons, namely fire or activate
it.

Activation functions act as gatekeepers, introducing non-linearity in the network
along with shaping the network’s input into a specific range, a fundamental step
to interpreting the network’s output and make predictions. Now we're going to
explore the most important:

» Sigmoid/Logistic Function: output a value between 0 and 1, suitable where
output is a probability.

1
= 2.2
o) = (2.
1
0.5
a | J
-6 -4 -2 0 2 4 6

Figure 2.4: Sigmoid/Logistic Function - Source : [9]

« Hyperbolic Tangent (Tanh): output a value between -1 and 1, computa-
tionally more expensive than Sigmoid

er —e’ %

_— 2.3
er 4+ e % ( )

tanh(z) =
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Figure 2.5: Hyperbolic Tangent Function - Source : [10]

+ Rectified Linear Unit (ReLU): most used in hidden layers, output the
input if positive and 0 if negative, in this case, there is no scaling performed

on the input.
f(2) = max(0, z) (2.4)

y=0

Figure 2.6: ReLU Activation Function - Source : [11]

« Gaussian Error Linear Unit (GELU): combines a linear function with
cumulative distribution function of standard normal distribution. Unlike
ReLLU, it has a smooth, non-monotonic transition around zero but with an
increased computational cost.

gelu(z) = 0.52(1 + erf(z/V2)) (2.5)
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GELU Activation Function
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Figure 2.7: GELU Activation Function - Source : [12]

2.2 Training of a DNN

In the last section, we discussed the architecture and functioning of a typical
ANN, but, what makes it relatable to ML and brings out its true potential is the
possibility of adjusting the weights and biases of each neuron. In this section, we
will discuss how the training of a DINN is done and how the network learns to
identify patterns within the often huge amount of data we fed in.

2.2.1 Back-Propagation

We have already discussed the forward pass, data go into input neurons, and
through a network-size dependent number of computations get out in the form of
probability from the output neurons. We can now measure how precise the output
is concerning our ground truth, this measure is called Loss and measures the error
between the network’s output and our data. This measure is then iterated back-
wards through the network using the mathematical tools of: Partial Derivatives
and Chain rule.

Starting from the output layer, we compute the partial derivative of the Loss
function for the activation function of that neuron, we then apply the chain rule to
propagate backwards, in simpler terms, it helps to understand how previous layers
contributed to error in the current layer so we can know how much each weight
contributed to the overall error.

Now that we have all the information we need to adjust the weights we can apply
another function called Optimizer to update the weight of each neuron or learned
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—< Error-backpropagation( VF(w,) , V*F(w,) )|4— o= e e .
Neuron ;

Input Hidden Output

Activation
Func.

weights  bias

Update

W, =W,

where,
w: weight
k: epoch

Error (E) Yes

< Tolerance

Training

Input Neuron Hidden Neuron Qutput Neuron [ Error (E) where, J

N 5 N:number of data set
—DI Feedforward Calculation( W, ) E= Z(Obsf —Model})"  Ops: observations
P

Model: model results

Figure 2.8: Training schema of a DNN - Source : [13]

parameter. This optimizer uses one of the most important hyperparameters (tunable
parameters) of the whole DL context: Learning rate (n). It controls the step size
taken during weight updates, if chosen too large, it leads to faster learning but
a possible overshoot of the minimum error, conversely, a smaller learning rate is
more time-consuming but converges better to the minimum error.

This whole process:

1. Forward pass

2. Computing loss

3. Backward pass

4. Weights update ( Optimizer step )

is repeated for a fixed number of steps (Epochs) in which the whole dataset is
completely fed into the network, the objective is to reduce at minimum the loss to
achieve the maximum accuracy of the network concerning the data we fed reaching
a point in which there is nothing more to improve, so-called Convergence.

It usually means that the deeper and larger is the architecture, and the more are
the data fed, the more the network will be accurate and capable of performing
increasingly complex tasks. One of the goals of my study is to understand, through
various training techniques, how to reach comparable results in the translation task
with lighter architectures and smaller amounts of data.

10
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2.2.2 Loss

Further exploiting the concept of Loss function (or Cost function), previously
mentioned, and its contribution to the training phase and evaluation of a DNN.
This measure comes from ML in which, for linear models, is a convex function,
that will guarantee to find a global minimum (for convex domains) using a convex
optimization algorithm.

For DL the situation is different since the Neural Networks introduce non-linearity,
also some of the loss functions become non-convex and so losing the guarantee of
finding a global minimum, in the optimization step the optimizer can get stuck in
a local minimum that is not representative of the best performances.

There are various loss functions specific to the task the network has been designed
to perform, some of the most important in the field are:

« Mean Squared Error (MSE): the average square difference between pre-
dicted values and the ground truth, used mostly for regression tasks.

1 N
MSE = E * Z(ypredi - ytruei)Q (26)

i=1
Where:

— n : number of samples
— X : summation over all data points (from i to n)
« Mean Absolute Error (MAE): the average absolute difference between

predicted values and ground truth, used for regression, particularly with a
high presence of outliers in the data.

1 N
MAE = E * Z |ypred¢ — Ytrue;

i=1

(2.7)

« Cross Entropy Loss (Log Loss): Measures difference between probability
distributions of predicted values and ground truth. Specifically designed for
classification tasks, in which the network computes different probabilities from
different categories. It requires probabilities as the network’s outputs

H(p,q) = =Y a(y:) * log(p(ys)) (2.8)

i=1
Where:
11
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— 3 : summation over all possible class labels (i from 1 to C, where C is
the number of classes)

— q(y;) : the true probability of correct class for data point i
— p(y;) : network predicted probability for class i for data point i
« Kullback-Leibler Divergence Loss (KLDiv Loss): like cross-entropy it

measures the difference between two probability distributions, in particular
how much one diverges from the other.

KLPIIQ) = 3 Pl) «toa( G ) 29)

Where:

— 3 : summation over all possible events (i from 1 to n, n number of events)
— P(y;) : represents the probability of event y; under distribution P
— Q(vy;) : represents the probability of event y; under distribution Q

2.2.3 Optimizer

The objective of the training of a Neural Network is to minimize the Loss function
to its global minimum, this is possible with the iterative approach proposed earlier
and to adjust all the internal weights and biases of the network come in our help a
set of Optimization techniques, namely Optimizers.

Most of them build upon the mathematical concept of Gradient Descend (GD),
an iterative approach for which the derivative (Gradient) of the loss function is
computed with respect to each parameter of the network, then, guided by the
learning rate, a small step in the negative direction of the gradient is taken towards
reaching the minimum.

update; = parameter; —n*V (2.10)

This vanilla approach has quite some limitations, most important of all, it can get
stuck in local minima. For this reason more sophisticated optimizers have been
developed, here I will show you the most important ones:

» Stochastic Gradient Descend (SGD) : along with the gradient descent, it
updates parameters based on a single data point (or small mini-batch) at a
time.

Wi = W — NV L(Wy, X4, Y;) (2.11)

Where:
12
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— w; : weight vector at iteration t
— w1 . updated weight vector
— 7 : learning rate

— VL(wy,x;,y;) : gradient of loss function L with respect to weights at
iteration t, evaluated in a single data point (input z; , target output y;)

Batch Gradient Descent Mini-Batch Gradient Descent

@ E

Stochastic Gradient Descent

Figure 2.9: Visual representation of SGD variations - Source : [14]

« RMSprop (Root Mean Squared Propagation) : adapts the learning
rate for each parameter based on its recent square gradients, addressing issues
with gradients of varying magnitudes.

Ui

\/ﬁgt

(2.12)

Wit1 = Wy —

Where:

— g; : gradient of loss function at iteration t

— g2 : exponentially decaying average of squared gradients up to iteration t,
computed as:

g =0Bgl 1 +(1-p8)(z08) (2.13)
with § as a hyperparameter controlling the decay rate (usually 0.9)

— ¢ : small value for numerical stability (usually between le-7 to 1e-9)

e Momentum : it introduces a velocity term, which captures direction and
magnitude of past updates, accumulating gradients with a decay factor

Wil = Wy — B(Vt + UVL(Wt, Xi, yz)) (2-14)

where v, is the velocity term at iteration t

13
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« Adaptive Moment Estimation (Adam) : combining the features of
momentum and SGD, it estimates the first and second moments of the gradients
using the exponentially decaying averages with correction factors to account
for bias at the initial steps.

1, (2.15)

Wip1 = Wy — 1 ©
Vit e
Where 1, is the bias-corrected estimate of the first moment (mean) of gradients
and v, is the second moment (variance) of gradients.

There is also a slight variant called AdamW that incorporates the concept
of Weight decay, a regularization technique that penalizes large weight values,
this helps to prevent overfitting and improve generalization.

Wil = (1 — )\)Wt — ® Iflt (216)

n
vV \A’t +€
where (1 — \) is the weight decay term, applied to the weights before Adam
update.

2.3 Convolutional neural networks

The nature of my research involves the use of multimodal data, specifically text and
images. It is therefore natural to also talk about another type of neural network,
specific to processing images, the so-called Convolutional Neural Network
(CNN) or ConvNet. Exactly how the neural network was designed taking
inspiration from the functioning of the human brain. The convolutional neural
network was developed taking inspiration from the visual cortex, responsible for
processing vision. The main characteristic in the biological counterpart is that some
neurons are activated only in specific areas of the visual field; CNNs capture this
behavior through layers of filters that scan the image extrapolating specific features.
Like, CNNs are composed of Input, Output and FCN layers, along with two layers
specific to these architectures, which we will delve into in the next sections:

« Convolutional Layers : applies filters (also called Kernels to the image
through a sliding window, the filter extracts shapes and other features building
a feature map

» Pooling Layers : Used to reduce the dimensionality of the data from convo-
lutional layers (image processing tends to be high-dimensional), they help to
reduce overfitting.

All the new layers inserted, working with the images, are distributed along the
three spatial dimensions: width, height and depth. CNNs are commonly used to
perform image-related tasks such as Image Classification, Object Detection, Image
Segmentation and more.

14
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Convolution Neural Network (CNN)

Output
Pooling Pooling Pooling

SoftMax
Activation

Convilution Convglution Convglution Eunction

Kernel RelU RelU RelU Flatten
Layer

Fully

Feature Maps Connected
Layer
| | |
Feature Extraction Classification Probabilistic

Distribution

Figure 2.10: Simple CNN architecture for Image Classification - Source : [15]

2.3.1 Convolutional Layers

The Convolutional Layer is the core component for this architecture, it allows
the network to extract features from the input images that can be processed to
perform classification or, as the case of my research, combined with other kinds of
data for different multimodal applications. They are based on the mathematical
operation of Convolution :

Outputli, j] =Y _(Input[m,n] - Filter[i —m,j — n]) + Bias (2.17)

Where:
o Outputli, j|: represent the element at position (i, j) on the feature map.
o Input[m,n]: represent the element at position (m,n) of the input image.
o Filter[i - m, j - n]: represent the corresponding element in the sliding filter.

This operation is performed through a Sliding window that extrapolates features
by performing element-wise multiplication with the input images, this is also
called Convolving, the result of this operation is a 2-dimensional Feature map
(or Activation Map) that stores the response of the filter at every spatial position.
Since the filter is a learnable parameter, through each training step the network
will learn to recognize which features are most important/useful to perform the
task for which it was designed.

Along with the filter (or Kernel) size, that determines the so called Receptive Field
of the neuron, another parameter is fundamental to operating these calculations,

15



Deep Learning

the Stride which determines the space of moving of the filer, based on how large
this parameter is, then we’ll have a smaller feature map.

A very important technique related to this layer is the Shared weights, the image is
analyzed with the same filter (and so retain weights and biases) in each region of
it, this reduces the computational overhead of learning new parameters, and helps
with overfitting.

The output of this layer is then passed through a non-linear activation function
(such as ReLU), for the same reason that is used in the NN’s classical layers,
allowing to extract more and more complex patterns in the data.

Input Filter 1

- Output
562|403 3x3
L 4x4x3
2|4 |5 |4 5|23k ReLU +b >—
I Filter 2 /

Jx3x=2 3x3x2 3x3xz2

3x3
4x4x3 https: //indoml.com

Figure 2.11: Convolutional Layer - Source : [16]

2.3.2 Pooling Layers

Along with the Convolutional Layer, in a CNN architecture, there is another es-
sential component which is the Pooling Layer. It comes after every convolution
and it is used in order to reduce computational cost by reducing dimensionality in
the data and control overfitting, smaller data size can prevent the network from
memorizing unnecessary or redundant data improving the generalizability.
Another fundamental characteristic is that Pooling Layers perform a feature sum-
marization, retaining the invariant features extracted regardless of their exact
location in the feature map.

Like the convolution operation, the pooling layer divides the input feature map
into a grid, for each element in the grid is applied the pooling function and the
result is a feature map with reduced width and height but with the same depth.
Since pooling is also a windowed function, the two main parameters are Size and
Stride which works exactly as the previous layer. (Stride = 1 means no overlap
between regions, while if stride >= 2 the resulting feature map will be smaller).
There are two kinds of Pooling functions:
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o Max Pooling: the function takes the maximum value in the pooling window,
emphasizing the most prominent features in the region.

12 120 | 30 | O

§ (122 0 2 x 2 Max-Pool 20 | 30

34 | 70 | 37 | 4 112 37

1121100 | 25 | 12

Figure 2.12: Max pooling example with a 2x2 grid and stride of 2 - Source : [17]

« Average Pooling: the function takes the average value in the pooling window,
providing a smoother representation of the features, and capturing the overall
characteristics.

Rectified feature map
1 2 7 Pooled feature map

2 LS R — 2B
0| 7 2.5 2.7
3|1

/3
Average(3,4,1,2)=2.5

—nymn

Figure 2.13: Average pooling example with a 2x2 grid and stride of 2 - Source :
[18]

2.4 Natural Language Processing

The human language is one of the most complex and challenging research areas
of the entire spectrum of knowledge. The field of NLP was born from the need
to combine the automatic processing of a computer with the complexity and
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articulation of human language (verbal and otherwise), making use in the current
era of innovations in the field of Als. In recent years, the increase in available
computational power has revolutionized this field of application, making it possible
to apply Neural Networks, and very large data sets, where previously only statistical
models with small to no amount of data could be used.

2.4.1 Text Encoding

As previously mentioned in Section 2.1.1, NN’s can accept as input only numerical
values, for its nature of a non-linear model. Crucially, the network’s ability to
differentiate between words within large datasets (often containing thousands of
words) necessitates the application of text-to-number conversion techniques. The
objective is to obtain multidimensional vector representations of text, also known as
Embeddings, suitable to extract semantic and syntactical relationships between
words that can be further processed in down-stream tasks such as Sentiment
Analysis, Text Classification and Neural Machine Translation.

Words As Vectors

10
gran dfather
9

/Iman adul woman

Age

infant

| looy child irl
e ¢

Gender

Figure 2.14: An Example of vectorized words in 2D Vectors with two features,
Age and Gender - Source : [19]

Tokenization

Tokenization is the fundamental step to process text to be suitable for an NN, it
consists of subdividing the text into smaller sub-units called Tokens (tokens can
be words, subwords and also characters) and assigning to each of them a number,
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each unique couple (text-unit, number) is stored inside a Vocabulary. There are
plenty of tokenization strategies, these are the ones applied in this research:

« Word-Based Tokenization: The most simple approach, the text is split
into individual words based on whitespace (spaces, tabs and other separators.
One of the disadvantages is that it struggles with Out-of-Vocabulary (OOV)
words.

« Byte Pair Encoding (BPE) [20] : This technique splits the text into the
most frequent pairs of characters or subwords. It creates a dynamic vocabulary
that can adapt to unseen words during the training.

« SentencePiece (SPM) [21] : Based on BPE, offers additional features like
multilingual support and vocabulary control.
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Chapter 3
Transformers

This chapter will develop an explanation of the family of architectures that has
revolutionized the entire field of Artificial Intelligence but was primarily born
to exploit the sequential data in NLP tasks: the Transformer; leading to the
development of all the technologies most used nowadays.

3.1 Transformers

To initiate a discussion on the current best practices within the Machine Translation
task (a prominent area of NLP) it is essential to first establish the fundamental
architecture underpinning this field: The Transformer, published by Google in
2017 in the paper "Attention is all you need" [1]. This architecture has demonstrably
achieved state-of-the-art performance across a wide range of NLP tasks, and, as we
will explore further, its influence extends beyond NLP, impacting other domains
within Deep Learning (DL) such as computer vision and audio processing.

Predating the Transformer’s introduction in 2017, a significant body of research
focused on a specific type of neural network architecture known as Recurrent
Neural Networks (RNNs), with a particular emphasis on Long Short-Term Memory
(LSTM) networks. LSTMs are characterized by their gating mechanisms, which
empower them to learn long-range dependencies within sequential data.
This capability makes them particularly well-suited for tasks that involve temporal
information, such as speech recognition and machine translation.

While a detailed examination of the Long Short-Term Memory (LSTM) architecture
falls outside the scope of this present investigation, a comprehensive exploration of
all Transformer architecture components is essential. This in-depth understanding
is necessary to facilitate the comprehension of the architectures proposed in this
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RNN Unit LSTM Unit

Figure 3.1: A quick overview of RNN and LSTM architectures - Source : [22]

research.

3.1.1 Architecture

The paper’s title directly identifies the attention mechanism as the most critical
component of the proposed model. Notably, the underlying architecture lever-
ages the encoder-decoder strategy, a concept introduced by Google’s 2014 LSTM
Seq2Seq model [23]. To fully grasp the functionality of this architecture, we will
delve into the various steps that follow the tokenization process.

Word Embeddings and Positional Encoding

The initial processing stage, preceding those depicted in (Figure 3.3), involves
Input and Output Embedding (respectively, the first for the Encoder and
the second for the Decoder. This step maps individual words within the input
sequence to dense, low-dimensional vectors. This process, known as Word Em-
bedding, aims to capture the semantic meaning and relationships between words
(Section 3.1.1). However, unlike traditional sequential models, the Transformer
architecture lacks inherent mechanisms to capture the order of words within a
sequence, which is fundamental to capturing relationships within a sentence. To
address this limitation, the Transformer employs an additional technique called
Positional Encoding. This process injects information about the relative position
of each word within the sequence into the embedded vectors. The combination
of word embeddings and positional encodings provides the Transformer with the
necessary information to understand the context and meaning of the input sentence.
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Figure 3.2: Transformer architecture from "Attention is all you need" [1]

Positional Encoding:
. pos e
sin (7100001-/(1) if i is even

3.1
cos (gyohéza) if i is odd (3.1)

PE(pos,i) =

Where:

e PEpos;) is the positional encoding for position pos and dimension i of the
embedding vector.

* pos is the position of the word within the sequence (sequence starts from 0).

« i is the index of specific dimension within the embedding vector ( e.g : for a
256-dimensional vector, ¢ would range from 0 t 255)
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Figure 3.3: Positional Encoding of sentences of dim 1,128, 256 and 384 - Source :
[24]

« d is the Dimension of the word embedding vector (i.e fixed number of
features extracted from a word).

e 10.000 is a scaling factor, in the paper is suggested as this but can be hyper-
parameter tuned.

Positional encoding’s usage of sin and cos allows the positional information to have
different frequencies across different dimensions, aiding the model in distinguishing
between close and distant positions.

Attention Mechanism

The seminal work "Attention Is All You Need" by Vaswani et al. (2017) intro-
duced a revolutionary concept to the Transformer architecture: the self-attention
mechanism. This mechanism departs from traditional methods and empowers the
model to discern the most critical components within a sentence. By doing so,
the Transformer gains the ability to comprehend the diverse contextual nuances
embedded within the sentence.

Self-Attention

The core principle underlying Self-Attention resides in its ability to compare
each element (word) within a sentence to every other element. This comprehensive
comparison process culminates in the creation of a matrix that encapsulates the
relevance scores between all elements.

To facilitate this intricate comparison, each element in the vector undergoes a linear
transformation via a fully connected layer (FCL). This transformation results in
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the creation of three distinct vectors: query (Q), key (K), and value (V). Each of
these vectors plays a specific and crucial role:

e Query (Q) Vectors: These vectors represent the focal point of attention for
a particular element. They essentially embody the model’s specific "question”
regarding the element’s significance within the context of the sentence.

» Key (K) Vectors: These vectors embody the information content held by
each element. They function as a response to the query vectors, conveying
the inherent meaning and relevance of each element.

« Value (V) Vectors: These vectors represent the current content associated
with each element. They essentially capture the raw information that the
model can potentially leverage based on the attention scores determined
through the query-key interactions.

The attention scores are then computed using the formula of Scaled do:

: QKT

Attention(Q, K, V') = softmax( i 1% (3.2)
To ensure the stability of gradients during the training process, the query (Q) and
key (K) vectors undergo normalization. This normalization is typically achieved by
dividing them by the square root of the embedding size. This scaling technique
mitigates the vanishing or exploding gradient problem, which can hinder the
training process in deep neural networks.
Following the normalization step, a softmax function is applied. The softmax
function transforms the resulting vectors into a probability distribution. This
distribution ranges from 0 to 1, where higher scores correspond to elements within
the sequence that are deemed more relevant by the model based on their interaction
with the query vector. In essence, the softmax function assigns a weight (attention
score) to each element, indicating the degree to which it contributes to the final
attention output.

Multi-Head Attention

In Figure 3.3 is proposed a Multi-Head Attention Block which is a direct
evolution of the Self-Attention mechanism, instead of performing the scaled-dot
product only one time, it is performed h (heads) times in parallel using different
learned linear projection. The heads are then concatenated and projected once
again shown in the following figure taken from [1] :
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Figure 3.4: Self-Attention Mechanism Schematics - Source : [25]
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Figure 3.5: Multi-Head Attention Mechanism Schematics - Source : [26]

MultiHead(Q, K, V) = Concat(head, ..., head),)W*

Where : heaQ%i = Attention(QWg, KWj., VIWy,) (3.3)
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This concurrent processing architecture facilitates the acquisition of heterogeneous
representations of the input sequence. This, in turn, yields a more intricate
and multifaceted comprehension of the data. Additionally, it fosters enhanced
generalizability and potentially augmented efficiency.

Position-wise FFN

Within both the encoder and decoder layers of a transformer architecture, a
Position-Wise FFN block is incorporated. This FFN block functions similarly
to a standard FFN, applying identical non-linear transformations — typically two
with a ReLU activation function interposed — to each element within a sequence.
However, these transformations are applied independently, preserving positional
information.

Importantly, while the general structure of the transformations remains consistent
across positions, the underlying parameters differ between layers. This architecture
leverages a hidden layer dimension significantly exceeding the embedding dimension,
enabling the network to capture intricate interactions between elements in the
sequence.

FFN(X) = mam(O, ZL‘Wl + bl)WQ + b2 (34)

Encoder and Decoder

Having examined the innovative self-attention mechanism introduced in the "At-
tention is all you need" paper [21], we now turn our attention to the transformer’s
encoder-decoder architecture. This structure was fundamentally designed to
facilitate the transformation of an input sequence into a compressed representation.
Subsequently, the decoder leverages this representation, through the employment
of a cross-attention block, to generate the corresponding output sequence. This
architectural design empowers transformers with the remarkable capability of effec-
tively modelling long-range dependencies within sequential data.

The encoder is comprised of a sequential stack of identical encoder layers. This
implies that the input data undergoes processing by each layer in succession,
progressing from encodery to encoder, , where n represents the total number of
layers. Internally, each encoder layer incorporates two sub-modules: a self-attention
mechanism and a position-wise feed-forward network (FFN), as previously described.

Following the application of each sub-module, an element-wise addition opera-
tion termed a residual connection, is employed. This ensures that the output of
each layer retains the information from the previous layer. Finally, a normalization
layer is applied to rescale the activations within the network. This step contributes
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to stabilizing the training process and mitigating overfitting.

The decoder leverages the same fundamental components as the encoder layer but
arranges them in a distinct configuration. Unlike the encoder’s initial Multi-Head
Attention mechanism, the decoder employs a variant termed Masked Multi-Head
Attention. As the name implies, this mechanism masks each subsequent token
within the output sequence. This masking strategy compels the transformer to
generate the output sequence one token at a time, ensuring an autoregressive
fashion. Following the Masked Multi-Head Attention, a Cross-Attention module is
incorporated. This module utilizes the encoded representation generated by the en-
coder’s stacked layers as both its key and value vectors. This design element fosters
alignment between the generated output sequence and the semantic understanding
captured by the encoder.

3.2 Vision Transformers

Our exploration has thus far focused on understanding how the transformer archi-
tecture processes textual features, as this was its original design intent. However,
the scope of this research extends into the realm of Multimodality. Therefore, it
becomes necessary to introduce a distinct architecture derived from transformers:
the Vision Transformer (ViT), introduced in 2020 , by Google researcher in
the paper "An Image is worth 16x16 words" [27]. This architecture prioritizes the
processing of image features. Notably, it has demonstrated superior performance
compared to traditional CNNs commonly employed in the field of Computer Vision.

While transformers typically operate on inherently sequential data like text, vision
transformers (ViTs) adapt this architecture to process images, which lack a natural
sequential order. To address this challenge, ViTs employ a preprocessing step that
subdivides the input image into fixed-size square patches. These patches are then
flattened into vectors and subsequently projected using a linear transformation.
Additionally, a special token, denoted as "[CLS]", is prepended to the sequence at
position zero. This token serves a crucial role, as it embodies the class of the image
that the network aims to predict. It’s important to note that ViTs do not innately
capture positional information from the processed image patches. To compensate
for this limitation, the model incorporates a positional encoding mechanism before
feeding the data into the encoder layers. This encoding process injects information
about the relative or absolute positions of the patches within the original image,
enabling the ViT to learn relationships between these elements.
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Figure 3.6: Overall ViT Architecture - Source : [2§]

Within the context of this research, our primary interest lies not in image classifica-
tion but rather in leveraging the ViT’s capability to generate informative encodings
of the image data. These encodings, ideally, should exhibit compatibility with text
encodings, facilitating their integration within various multimodal settings.

3.2.1 Object Detector

The emergence of Vision Transformers has spurred a paradigm shift in computer
vision tasks, particularly in the domain of Object Detection (OD). Traditionally
dominated by Convolutional Neural Networks , OD now sees transformer-based
architectures achieving competitive, and often surpassing, performance.

Object Detection: Core Functionality and Challenges

Object Detection is a fundamental computer vision task that aims to analyze a
digital image and identify two key aspects of objects present within it:

o Classification: Recognizing the type of object in the image. This could
involve classifying objects into pre-defined categories like pedestrians, vehicles,
animals, or specific objects like furniture or tools.
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o Localization: Accurately pinpointing the location of each detected object
within the image. This is typically achieved by drawing a bounding box around
the object’s extent in the image frame.

rm {

Traffic Lights.

77 /4411

Figure 3.7: Example of Object Detection - Source : [29]

DETR

The year 2020 witnessed a significant breakthrough in object detection with the
introduction of the DETR (DEtection TRansformer) architecture by researchers
at Facebook AI [30]. DETR deviates from traditional CNN-only object detection
frameworks by incorporating a transformer-based approach, leading to several key
distinctions:

o Feature Extraction Backbone: While DETR retains a CNN as its founda-
tion, its role is relegated to feature extraction. This extracted feature map
serves as the input for the subsequent transformer architecture.

o Transformer for Contextual Analysis: The core of DETR lies in its
encoder-decoder structure. The encoder leverages the self-attention mechanism
to analyze relationships between different image regions. This enables the
model to capture the global context within the image, crucial for accurate
object detection.

» Object Query-based Decoding: Unlike classical Vision Transformers (ViT),
DETR introduces a novel approach in the decoder stage. It employs a pre-
defined set of learnable object queries. These queries act as placeholders for
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the number of objects the model is expected to predict. The decoder then
utilizes the self-attention mechanism to associate these queries with specific
image regions containing the detected objects.

Prediction Head and Directed Set Prediction: After exiting the decoder,
the object queries are fed into the prediction head. This head extracts the
confidence scores, bounding boxes, and class labels for each detected object.
Notably, DETR formulates the task as a directed set prediction problem. This
strategy allows the model to predict all objects in an image simultaneously,
leveraging the previously captured global context.

-----------------------------------------------------
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Figure 3.8: DETR Schematics - Source [30]
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3.3 Multimodal Architectures for Combining Vi-
sual and Textual Features

Following the exploration of the core principles and visual applications of Trans-
former architectures, this section delves into two specific models employed within
this research. These models exemplify the expanding field of text-image multi-
modality by addressing distinct task types.

The first model under consideration is CLIP [31], which stands for Contrastive
Language-Image Pre-Training. The second model, MDETR [32], refers to Modu-
lated DEtection TRansformer.

Contrastive Language-Image Pre-Training (CLIP)

Authored by OpenAI in their 2021 publication "Learning Transferable Visual
Models From Natural Language Supervision” [31], the CLIP model presents a
novel multimodal architecture. Its core objective lies in establishing a unified
embedding space for both textual and visual data. This shared space empowers
CLIP to address two key multimodal tasks, ultimately enriching the knowledge
base for further advancements in multimodal learning.

(1) Contrastive pre-training (2) Create dataset classifier from label text

- [obe B Encoder
(3) Use for zero-shot prediction Y v [ |

1 LT | LT | LT, 1T, Lt LT

Image 1 LTy | LTy | 1T 15T [
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Figure 3.9: Training and zero-shot prediction done by CLIP model - Source: [31]

The CLIP model architecture is characterized by a dual-encoder structure (as
shown in Figure 3.9, with both encoders leveraging the Transformer architecture.
This choice aligns well with the inherent sequential nature of textual data. The:

o Text Encoder: employs a classic Transformer architecture, effectively pro-
cessing sequential text data.

« Image Encoder: In contrast, utilizes a Vision Transformer (ViT) to extract
pertinent visual features from the input images.
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Contrastive Learning serves as the core training paradigm for CLIP. The model
is presented with image-text pairs, where it progressively learns to align the gen-
uinely corresponding pairs while distinguishing them from unrelated pairings. This
process facilitates the creation of the aforementioned shared embedding space, which
serves as the foundation for subsequent tasks.

The model’s strength lies in its remarkable generalization capabilities and
adaptability to analogous tasks. This characteristic positions CLIP as a corner-
stone for the development of more intricate multimodal systems.

Multimodal DEtection TRansformer (MDETR)

MDETR, is a multimodal model introduced in 2021 by the paper "MDETR -
Modulated Detection for End-to-End Multi-Modal Understanding” [32] that tackles a
specific task within text-image multimodality: object detection conditioned on text
queries. Unlike CLIP, which focuses on general image-text relationships, MDETR
delves deeper, pinpointing specific objects in an image based on textual descriptions.

Its core functioning is taking an image and a corresponding text input (typically
a caption or a question) as input, and jointly analyzes them to identify objects
relevant to the textual information. This approach shares similarities with the
End-to-End architecture of DETR, where both image and text data are processed
simultaneously.

It operates within a domain closely related to both Visual Question Answering
(VQA) and Phrase Grounding, albeit with distinct nuances:

« Visual Question Answering (VQA): VQA focuses on generating natural
language answers to open-ended questions posed about an image. In contrast,
MDETR prioritizes object detection based on textual descriptions. While it
might not provide full sentence answers, it effectively highlights the relevant
objects within the image.
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Figure 3.10: MDETR VQA Pre-training - Source : [32]
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nightstand in the photograph?”

1 Questions !
J

queries  queries

o Phrase Grounding: Phrase grounding aims to localize specific image regions
corresponding to a given phrase. This aligns with MDETR’s functionality;
however, the provided phrase might not necessarily be a complete question.
For example, grounding the phrase "red car" would simply locate the red car,
not answer a question about its characteristics.
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Figure 3.11: MDETR Phrase Grounding - Source : [32]

This model lies at an intersection between these two tasks. It leverages textual
descriptions, which can be either questions or phrases, to guide the object detection
process within an image. The model’s output is not a comprehensive answer in
natural language, but rather bounding boxes and class labels for the identified
objects of interest.
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Chapter 4

Method and Contribution

This chapter delves into the domain from which this research emerges — Multi-
modal Machine Translation (MMT). We embark on a journey to explore the
core concepts and the captivating evolution of MMT research, tracing its trajectory
from 2016 to the present day. Over the past eight years, this field has witnessed a
remarkable surge in advancements, punctuated by significant paradigm shifts due
to the inherent complexity and the multitude of approaches envisioned to tackle
multimodal settings.

Following this exploration, we will turn our attention to the Multi30k dataset, which
currently stands as the preeminent (and arguably the sole) resource specifically
designed for MMT research. While other multimodal datasets exist, the Multi30k
remains uniquely distinguished by its inclusion of multiple target languages along-
side images that are described by the corresponding sentences within the dataset.

However, the focal point of this chapter lies in a thorough examination of the
architectural innovation proposed in this research. We will detail how this
architecture leverages the Transformer as its foundational element, while
ingeniously recombining elements from various tasks within the MMT domain.
This detailed analysis will elucidate the rationale behind these design choices and
their significance in furthering the capabilities of MMT models.

4.1 State of the art and Related Works

The year 2016 marked a pivotal moment in the evolution of Machine Translation
(MT). While significant progress had been made in various related tasks like visual
question answering, image captioning, and text-based image retrieval, a crucial
limitation emerged: these tasks were predominantly monolingual and centered
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largely on the English language. Recognizing this gap, the research community
embarked on a new frontier - Multimodal Machine Translation (MMT).

A cornerstone in this pursuit was the introduction of a "Shared Task on Multimodal
Machine Translation" by Specia et al. (2016) [33] during the Machine Translation
conference (WMT16). This initiative provided a critical benchmark for MMT re-
search — the Multi30k dataset [34]. This dataset, an extension of existing resources,
incorporated three additional target languages: German, French, and Czech (fur-
ther details on the Multi30k will be explored in the next section). The "Shared
Task" itself comprised two key challenges: Multimodal Machine Translation
and Crosslingual Image Description. By offering a standardized benchmark
and fostering competition among researchers, this initiative significantly spurred
advancements in the field of MMT. One of the early approaches to MMT focused on
the seemingly straightforward idea of merging text and visual features. Pioneering
works like "Multimodal Attention for Neural Machine Translation" by Caglayan
et al., 2016 [4] explored architectures that combined a standard encoder-decoder
model for text processing with a visual feature extractor. These visual features
were often derived from pre-trained image recognition models, capturing essential
information about the content of the accompanying image. The combined features
were then fed into the decoder to generate the translated text. While these initial
attempts were relatively simple, they demonstrated the potential of leveraging
visual information to enhance translation accuracy, particularly for sentences that
relied heavily on the context provided by the image.

Next, research such as [35], [36] showed that the architecture can be augmented
with an additional attention mechanism. This mechanism is specifically designed
to extract visual context from the input image. The extracted visual context is
then strategically recombined with the attention produced by the text decoder.
While CNNs (like ResNet) were initially popular for visual feature extraction
in MMT, recent research suggests a shift towards Visual transformers. These
transformers, often paired with gating mechanisms (see Chapter 3), offer a more
nuanced approach to extracting relevant visual context, as explored in works like
"On Vision Features in Multimodal Machine Translation" [37] and "Good for Mis-
conceived Reasons: An Empirical Revisiting on the Need for Visual Context in
Multimodal Machine Translation" [38]. As visual transformers have solidified their
position as state-of-the-art in computer vision and multimodal tasks, we reaffirmed
their use as our visual backbone. Furthermore, these two studies demonstrate the
benefits of global feature extraction in terms of regularization, while maintaining
the quality of the generated translation. This observation is supported by [37],
which decides to also study the effect of an Object Detector backbone along with an
Image Captioner one. Extracting the regional feature approach is gaining traction,
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with several works adapting these models for their specific needs. For instance,
[37] utilizes the model for regional feature extraction only, while [39] employs
it to investigate the effectiveness of asymmetric contrastive training. In order
to investigate architectural approaches at a reduced scale, we opted to focus on
the object detection pathway, given its documented success in the relevant literature.

The current state-of-the-art in this field primarily explores two avenues: integration
of Pre-trained Language Models (LMs) as in [2], [3]; Text or Visual Masking
Incorporation as in [40],[41] and the same [37]. However, since this last cited paper
utilizes a very extensive pre-training approach to investigate the capabilities of these
architectures at a reduced scale, we opted to forgo these established approaches.

4.2 Multi30k

The Multi30K [34] dataset stands as a pivotal resource in the field of Multi-
modal Machine Translation (MMT). It builds upon the foundation laid by the
Flickr30k dataset [41], which offers a collection of 30,000 images, each accompanied
by five distinct English captions. The Multi30K dataset significantly expands upon
this concept by introducing multilingual elements. For each image, it provides not
only an English description, but also three additional human-translated captions in
German, French, and Czech. This expansion has established the Multi30K dataset
as the preeminent benchmark for MMT research.

1. Brick layers constructing a wall. . The two men on the scaffolding are

W helping to build a red brick wall.
2. Maurer bauen eine Wand. iu 2. Zwei Mauerer mauern ein Haus

Zusammen.

1. Trendy girl talking on her cellphone
while gliding slowly down the street

. There is a young girl on her cell-
phone while skating.
2. Ein schickes Madchen spricht mit
dem Handy wihrend sie langsam die
Strabe entlangschwebt.

. Eine Frau im blauen Shirt telefoniert
beim Rollschuhfahren.

{4

(a) Translations (b) Independent deseriptions

Figure 4.1: Multi30k example - Source : [34]

However, it is essential to acknowledge certain limitations inherent to the dataset.
One key limitation is its relatively small scale compared to some more recent datasets.
Despite this limitation, the size aligns well with the specific research methodologies
employed in our investigation. Another limitation, as highlighted by [3], pertains
to the representation of disambiguation, which is a central challenge addressed by
MMT. The Multi30K dataset may not fully capture this complexity, as a relatively
small percentage of the sentences require visual cues to fully comprehend the context.
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This characteristic suggests that further exploration with datasets that emphasize
disambiguation may be necessary for a more comprehensive understanding of MMT
capabilities.

English sentence length statistics in Multi30K Test2016 English sentence length statistics in MultiJ0K Test2017 English sentence length statistics in Multi30K MSCOCO

nnnnnn

Figure 4.2: Multi30K 2016, 2017, MSCOCO test dataset English sentence length
statistical analysis - Source: [42]

T length

4.3 Our Contribution and Main Inspiration

Our methodology leverages various techniques established in the literature, mainly
2] and [3]. Crucially, we aimed to minimize model size while maintaining train-
ability. Considering the reference benchmark’s limitations, we experimented with
Transformer Tiny and Small architectures. Figure 4.1 and 4.2 shows the archi-
tecture components and their interconnections.

4.3.1 Overall architecture

The core of our architecture is the traditional sequence-to-sequence model
introduced by [1]. Building upon this foundation, we incorporate two visual
information streams complementing the textual input:

» Global Visual Features: These capture general scene information not readily
identifiable locally. We extract these features using the CLIP model [31]
(with a ViT backbone) described in respectively described in Section 3.2 and
3.3, inspired by the success of transfer learning in textual modalities ([40],[41]).
However, we apply this strategy to the visual domain.

* Regional Visual Features: We extract these features using MDETR, a
multimodal variant of DETR ([32]) described in Section 3.3, which excels in
tasks like phrase grounding (identifying labels based on textual descriptions)
and visual question-answering (identifying objects or characteristics based on
textual questions).
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process

Feature Processing:

The two feature types undergo separate processing:

» Global Visual Features: Inspired by video processing techniques, we lever-
age the Perceiver Resampler [43] to reduce the dimensionality of the global
features. This is particularly useful for managing the computational cost and
focusing on the most informative aspects of the scene. The Perceiver Resam-
pler operates by employing a learnable number of queries to extract the
most important features from the global feature set. These queries essentially
act as a filter, identifying the most relevant information within the global
features for the task at hand.

* Regional Visual Features: We construct a Guided Attention Mask
using the regional features and their corresponding labels, drawing inspiration
from [3]. This mask plays a crucial role in directing the model’s attention
during the translation process. It assigns higher attention scores to words in
the reference text that directly correspond to objects identified in the image
through regional feature extraction. This mechanism essentially guides the
model to prioritize translating words that describe the visual content present
in the image.
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By processing the visual features in these ways, we ensure that the model effectively
leverages both global scene information and specific object detections to create a
more accurate and informative translation based on the visual context.

The Figure 4.3 illustrates the pipeline for visual feature extraction, highlighting
the specific modules these features interact with before entering the encoder.

Encoder-Decoder Interaction:

The core of our architecture lies in the interaction between the visual and
textual representations within the encoder-decoder framework. Here’s a
breakdown of this interplay:

o Cross Attention: At each layer of the encoder, the Vision-Text Encoder
performs a "cross-attention" operation with the reference text. This mechanism
allows the encoder to attend to specific parts of the text based on the visual
information it has processed. In simpler terms, the encoder uses visual features
to determine which parts of the reference text are most relevant for generating
the target language translation.
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o Gating Mechanism for Visual Feature Integration: A critical inspi-
ration in our model is the incorporation of a gating mechanism within the
encoder. This mechanism controls how the global visual features are gradually
introduced during the training process. It utilizes two trainable parameters
to determine the importance of each visual feature based on its contribution
to the translation task. By introducing global visual features selectively, the
model can focus on the most relevant information at each stage of the training
process, leading to more efficient learning.

e Transformer Decoder: The decoder component of the model remains
unaltered. Since its primary function is textual generation, it solely operates
on the processed information received from the encoder, which has been
already influenced by both the visual contributions.

Figure 4.4 illustrates the key enhancements made to the encoder component of
our architecture through the incorporation of visual features. These figures will
visually represent the integration of global and regional features, along with the
mechanisms employed for their effective utilization

In the next sections will be provided a comprehensive exploration of the individual
modules that constitute our proposed architecture. Each section will delve into
the specific functionality and design choices behind each module, offering a deeper
understanding of their contributions to the overall translation process.

This in-depth examination will not only elucidate the inner workings of each module
but also shed light on the rationale behind our design decisions. By dissecting each
component, we aim to provide a clear picture of how these modules interact to
achieve the task of generating accurate and visually grounded translations.

4.3.2 Perceiver Resampler and Learned Latent Queries

A significant challenge in multimodal architectures arises from the inherent disparity
between the dimensionality of visual features and textual tokens. For instance, a
ViT model trained on 224x22j pixzel images generates 196 patches and a single
class token, while the average length of a textual sequence can range from 20 to 50
tokens. This vast discrepancy in feature count presents two key drawbacks:

o Computational Bottleneck: The sheer volume of visual patches significantly
increases the model’s computational and memory requirements.

e Information Dilution: The abundance of patches, many of which may
contain irrelevant background details or corner/edge artifacts, can negatively
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impact model performance. These extraneous features dilute the model’s focus
on the essential visual information crucial for translation.

To address this challenge, [43] introduced the Perceiver Resampler module
within their Flamingo model (Figure 4.3). This concept was further adapted by
[2] to function effectively with static images rather than video frames.

The Perceiver Resampler leverages a structure akin to an encoder with multi-
head attention and feed-forward networks (FFNs). However, instead of incorporat-
ing visual features directly into the queries, it employs a set of pre-defined, learned
latent queries. These queries have a fized size, making them suitable for reducing
the dimensionality of visual features. Crucially, the model is trained to select the
most critical features for the translation task by focusing on the most relevant
latent queries. This mechanism effectively reduces the computational burden
and mitigates the negative effects of information dilution caused by irrelevant visual
details.

t T K=V=[X,,X] ] T 1 0=[x]

t=0 t=1 t=2 Learned
.é. .é- é latent
HEEE BEEE

[ 1] ] ;
EEE queries
EEE BEEE BEER

Vision Vision
Encoder Encoder

Figure 4.5: Perceiver Resampler introduced by [43], it differs from [2] for the
usage of single-frame media instead of multiple-frame
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Let w denote the input visual embeddings. Learned latent queries, are repre-
sented by vector A = (Aq, ..., \;), these latent queries have a fixed dimensionality,
significantly lower than that of w.

The resampling process iterates through multiple layers (R layers). Each layer
refines the latent queries based on their interaction with the visual features. Here’s
the breakdown of a single layer:

e Query Update: The latent queries are projected and concatenated with
the visual embeddings: [w, A\] = concat(w, A) This combined representation
is then fed into a multi-head attention (MHA) layer, allowing the queries to
attend to relevant parts of the visual features:

N = MHA(K = [w, A,V = [w,\],Q = ) (4.1)

o Feed-Forward Refinement: The output of the MHA layer is further pro-
cessed by a feed-forward network (FF) to refine the queries:

N =FF(X) (4.2)

o Iterative Update: The updated queries (/\/) are then combined with the
original latent queries to form the input for the next layer:

A=A+ N (4.3)
This iterative process continues for all R layers.

Finally, the output of the last Perceiver Resampler layer, denoted by p, represents
the reduced-dimensionality visual tokens suitable for further processing within the
multimodal architecture:

P A (4.4)

Our implementation builds upon the work presented in [2]. This decision is
motivated by the computational efficiency that this approach reached concerning a
classical transformer encoder or an MLP

4.3.3 Vision-Text Layer and Gated Cross Attention

Inspired by the work in [43] and [2], we introduce a key element within our encoder
architecture: the Vision-Text Layer. This layer plays a crucial role in gradually
integrating visual context with textual information during the translation process.
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Structure and Functionality:

The Vision-Text Layer is strategically positioned within the encoder, sharing the
same number of layers. This placement fosters a close interaction between visual
and textual representations throughout the encoding process. The core mechanism
employed within the Vision-Text Layer is cross-attention. However, in this specific
context, the text acts as the query, while the visual features extracted by CLIP
serve as both the key and value. This cross-attention operation allows the model to
focus on specific parts of the visual features that are most relevant to the textual
information.

Gated Integration for Controlled Information Flow:

To ensure a controlled and gradual introduction of visual context, we incorporate
a gating mechanism within the Vision-Text Layer. This mechanism leverages
two trainable parameters, denoted by 7, and 7¢, which are processed using the
Hyperbolic Tangent Function (TANH) for normalization. The resulting values
range between -1 and 1, effectively acting as gating factors.

o Gating Parameter ~,: This parameter controls the portion of the calculated
attention that is ultimately incorporated into the encoder output. By adjusting
Ya, the model can regulate the influence of visual context on the evolving
textual representation.

o Gating Parameter v: This parameter acts as a filter on the output of the
cross-attention mechanism before it is passed through a feed-forward network
(FFN). Similar to v,, v allows for a controlled flow of information, ensuring
that only the most relevant aspects of the visual features are integrated into
the encoding process.

The key benefits of the gating mechanism introduced by [2] compared to previous
approaches like those presented in [38] and [37] lie in its simplicity and efficiency.
Our design requires only two trainable parameters (v, and ), significantly re-
ducing the overall model complexity. Additionally, by analyzing the learned
values of these parameters, we can gain valuable insights into the model’s reliance
on visual information for translation tasks.

The use of a gating mechanism within the encoder is motivated by two primary
reasons:

e Gradual Integration: This approach allows the model to progressively
incorporate visual context into the encoding process, potentially leading to a
more stable and controlled learning of the multimodal relationships.
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o Targeted Filtering: By leveraging the gating mechanism, we can selec-
tively filter the global features extracted by CLIP and reduced by the Perceiver
Resampler, ensuring that only the most relevant information is utilized for
translation. This complements the role of the regional features, which are
directly integrated without gating to capture finer details within the image.

In contrast to previous work like [2] and [43], which employed gating mechanisms
to gradually make pre-trained language models multimodal, our focus here is on
using gating as a filter to process only the necessary global features. This
distinction allows for more efficient utilization of visual information specifically
tailored to the task of image-to-text translation.

4.3.4 Regional Features and Guided Attention

This concluding section delves into the innovation driving our architecture’s effective-
ness: the strategic exploitation of regional features alongside a meticulously
designed attention mechanism focused on objects identified within the image. This
approach has been introduced from cutting-edge research presented in [3].

Guided Self-Attention Mask

By constructing a correlation matrix that meticulously maps visual features
extracted by MDETR to their corresponding labels identified in the text (meeting
a predefined probability threshold), a powerful tool has been created: the Guided
Self-Attention Mask. This mask serves as a guiding light within the transformer
encoder, effectively highlighting the specific words in the reference text that
directly correspond to objects identified within the image. By providing this
explicit guidance, the model is relieved of the burden of learning to ignore
irrelevant visual features. As the name "Guided" suggests, the model is directly
instructed on which visual elements to attend to, leading to more efficient learning
and improved translation accuracy.

Alignment Matrix

The process of generating the alignment matrix is meticulously crafted. MDETR
extracts visual features corresponding to bounding boxes and labels found in the
text (surpassing a specific confidence threshold). Each element within the alignment
matrix is assigned a value of 1 if the visual features directly correspond to the
assigned label, and 0 otherwise (Figure 4.4).

Through this intricate process, the model learns to establish strong correlations
between specific textual elements describing objects present in the image,
while simultaneously learning to disregard irrelevant visual information.
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Two men
wearing hats.

—

Figure 4.6: MDETR alignment matrix from [3]

Since the attention mechanism is not even calculated for these uncorrelated pairs,
the model avoids wasting computational resources and focuses solely on the most
relevant features for accurate translation.

In essence, the Guided Self-Attention Mask acts as a bridge between the
textual and visual domains, enabling the model to precisely align words with their
corresponding objects within the image. This targeted focus on relevant information

significantly improves the model’s ability to generate accurate and visually-grounded
translations.
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Chapter 5

Results

5.1 Experimental Settings

Model Selection and Configuration:

Our Seq2Seq transformer architecture leverages pre-trained models from the
Hugging Face library [44] to benefit from optimized implementations and readily
available generation code. The MarianMT model [45], specifically designed
for machine translation and based on the Marian transformer framework, was
chosen for its efficiency (originally written in C++ and later ported to Python for
research purposes). Similarly, the CLIP model was obtained from Hugging Face,
utilizing the version featuring a 32-patch ViT-Base backbone, which generates
768-dimensional embeddings. In contrast, the MDETR model was sourced di-
rectly from its original TorchHub repository and has Efficientnet B5 [46] as visual
backbone. All the code was written using the Pytorch Library with Cuda up to the
latest version.

w . Hugging Face

HuggingFace Library: a platform for data science containing pre-trained models,
libraries and resources for research - Source of logo : https://huggingface.co/brand
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In Table 5.1 are shown the configurations employed: N Layers indicates the number
of encoder and decoder layers (equating to those in the Vision-Text module), d,oger
specifies the feature dimension utilized by the model, d;s denotes the dimension of
the Feed Forward Network (FFN), and h represents the number of heads used in
multi-head attention. Both configurations incorporate parameters for the Perceiver
Resampler, where L signifies the number of layers (set to 2 in this case) and Num
Learnable refers to the learnable latent queries (both values maintained as in [2]).
Additionally, h denotes the number of multi-attention heads, and dj represents the
head size.

Table 5.1: Configuration used for experiments "Tiny" and "Small", both for
Transformer and Perceiver Resampler

Seq2Seq Configuration

N Layers d__model d_ff h Trainable Parameters
Tiny 4 128 256 4 2,975,360
Small 6 512 1024 8 38,144,512
Perceiver Resampler Configuration
L Num Learnable h d h
Tiny 2 64 4 1024
Small 2 64 8 2048

Training Parameters:

The Adam optimizer was selected, employing an initial learning rate of 1e-7,
betas of (0.9, 0.98) — consistent with prevailing MMT research — and an epsilon
of 1e-9. The learning rate scheduling follows the original implementation of the
transformer [1], incorporating a linear increase during a warmup period of 4000
steps, followed by an inverse square root decay thereafter. Cross-entropy Loss
was chosen due to its suitability for the research domain.

Evaluation and Generation Strategies:

All experiments were trained for 30 epochs, with the checkpoint exhibiting the
highest BLEU score (calculated via Greedy Search at the conclusion of each
epoch) designated as the optimal model. During the final generation phase, a
Beam Search algorithm was employed with a beam size of 5. Both generative
algorithms were sourced directly from the Hugging Face libraries.

Evaluation Metrics:

We used to evaluate the quality of translation, the two most common metrics in
MMT: BLEU (BiLingual Evaluation Understudy) [47] and METEOR Score [48].
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Both aim to assess how well a generated translation aligns with a human-created
reference translation.

« BLEU: focuses on n-gram precision, meaning it calculates the percentage of
n-word sequences (e.g., unigrams, bigrams) in the generated text that also
appears in the reference. It penalizes translations that are too short compared
to the reference.

« METEOR: on the other hand, takes a more comprehensive approach. It
considers not only exact word matches but also synonyms and paraphrases.
This allows for a more nuanced evaluation, capturing the meaning conveyed
even if the wording differs slightly.

Hardware settings:

Experiments were conducted on a computer equipped with an Intel Core i7-13700K
processor (16 cores, maximum frequency 5.40 GHz), an NVIDIA RTX 4070 graphics
card with 12GB of video memory, and 5,888 CUDA cores.
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5.2 Results for EN—DE , EN—FR, EN—CS

This section details the experiments conducted to evaluate the effectiveness of
incorporating visual features into a transformer-based machine translation model.
The settings used for these experiments were established in Section 5.1. A compre-
hensive evaluation was performed, encompassing a total of 24 experiments. These
experiments were divided equally between two model configurations: Tiny and
Small, with 12 experiments conducted for each configuration.

The upcoming tables present the experiment design categorized by target language
(German, French, and Czech). For each language, a systematic approach was
employed to assess the impact of visual features on translation quality. This
approach involved three stages:

» Baseline Experiment: To establish a baseline for comparison, an initial
experiment was conducted utilizing the base transformer architecture without
incorporating any visual features.

e Individual Feature Analysis: Subsequently, two separate experiments were
performed to analyze the influence of each individual visual feature type:
global and regional features. These experiments aimed to isolate the effect of
each feature type on the translation process.

o Combined Feature Exploration: Finally, experiments were conducted that
utilized both global and regional visual features simultaneously. This stage
investigated the potential for synergistic effects when combining these feature
types. The extracted values of |tanh(ga)| and |tanh(gf)| for each layer within
the Visual-Text module, which are crucial for understanding the model’s
internal behaviour, will be presented and analyzed in subsequent sections.

The tables report BLEU and METEOR scores calculated on all three available
test sets (2016, 2017, and 2018) for each language. It is important to note that the
Czech language dataset was not included in the 2018 test set. Additionally, each
experiment displays the absolute and relative percentage improvements compared
to the baseline text-only model, allowing for a clear evaluation of the impact of
visual features on translation quality.
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English to German

Table 5.2: Global and Regional Visual Features - Transformer Tiny - EN — DE

Test 2016 Test 2017 Test 2018
BLEU METEOR BLEU METEOR BLEU METEOR
Text-Only 34,473 62,244 26,423 53,927 24,269 50,722
w\Global Feat 34,568 62,350 27,364 54,520 25,028 51,334
Increment 0,095 0,106 0,941 0,593 0,759 0,612
w.r.t. text-only  (+0.28%) (+0.17%)  (+3.56%) (+1,10%)  (+3.13%) (+1,21%)
w\Regional Feat 33,835 62,054 25,913 53,888 24,057 50,492
Increment -0,638 ~0,190 -0,510 -0,039 -0,212 -0,230
w.r.t. text-only (-1.85%) (-0,31%) (-1,95%) (-0,07%) (-0,.87%) (-0.45%)
w\Glob, Reg Feat 36,164 63,905 28,335 56,583 26,205 53,302
Increment 1,691 1,661 1,912 2,656 1,936 2,580
w.r.t. text-only  (+4,91%) (+2.67%) (+7.24%)  (+4.92%) (7,98%) (+5,09%)

Table 5.3: Global and Regional Visual Features - Transformer Small - EN — DE

Test 2016 Test 2017 Test 2018
BLEU METEOR BLEU METEOR BLEU METEOR
Text-Only 32,787 59,940 23,654 51,985 23,458 48,987
w\Global Feat 33,970 61,983 26,481 53,278 24,929 50,834
Increment 1,183 2,043 2,828 1,293 1,471 1,847
w.r.t. text-only (+3,61%)  (+3,41%)  (+11,95%)  (+2,49%) (+6,27%) (+3,77%)
w\Regional Feat 31,281 58,52 21,827 48,83 21,147 46,377
Increment -1,506 -1,420 -1,827 -3,155 -2,811 -2,610
w.r.t. text-only (-4,59%) (-2,37%) (-7,72%) (-6,07%) (-9,85%) (-5,33%)
w\Glob, Reg Feat 31,009 58,640 23,523 50,330 21,672 47,120
Increment -1,778 -1,300 -0,131 -1,655 -1,786 -1,867
w.r.t. text-only (-5,42%) (-2,17%) (-0,55%) (-3,18%) (-7,61%) (-3,81%)
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English to French

Table 5.4: Global and Regional Visual Features - Transformer Tiny - EN — FR

Test 2016

Test 2017

Test 2018

BLEU METEOR

BLEU METEOR

BLEU METEOR

Text-Only

51,559 73,486 12,537 66,086 30,045 56.108
w\Global Feat 52,117 74,027 13,320 67,251 30,856 57,274
Increment 0,558 0,741 1,283 1,165 0,811 1,166
w.r.t. text-only  (+1,08%) (+1.01%)  (+3.02%) (+1,76%) (+2.70%)  (+2.08%)
w\Regional Feat 56,963 77,626 48,425 70,85 33,398 59,723
Increment 5,404 4,140 5,888 4,764 3,359 3,615
w.r.t. text-only  (+10,48%) (+5.63%) (+15,84%) (+7.21%) (+11,16%) (+6,44%)
w\Glob, Reg Feat  57.457 77,010 47,603 70,492 33,860 60,498
Increment 5,898 4,424 5,066 4,406 3,815 4,390
w.r.t. text-only  (+11.44%) (+06,02%) (+11.91%) (+06.67%) (+12,70%) (+7.82%)

Table 5.5: Global and Regional Visual Features - Transformer Small - EN — FR

Test 2016 Test 2017 Test 2018
BLEU METEOR BLEU METEOR BLEU METEOR
Text-Only 51,731 73,657 42,119 65,395 30,308 56,526
w\Global Feat 53,647 76,026 45,136 68,673 32,723 58,576
Increment 1,916 2,369 3,017 3,278 2,415 2,050
w.r.t. text-only (+3,70%) (+3,22%) (+7,16%) (+5,01%) (+7,97%) (+3,65%)
w\Regional Feat 49,272 72,076 40,878 64,553 28,746 54,85
Increment -2,459 -1,581 -1,241 -0,842 -1,562 -1,676
w.r.t. text-only (-4,75%) (-2,15%) (-2,95%) (-1,29%) (-5,15%) (-2,97%)
w\Glob, Reg Feat 50,303 72,973 41,138 65,038 29,881 56,078
Increment -1,428 -0,68/ -0,981 -0,357 -0,427 -0,448
w.r.t. text-only

(-2,76%)  (-0,93%)

(-2,33%)  (-0,55%)

(-141%)  (-0,79%)
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English to Czech

Table 5.6: Global and Regional Visual Features - Transformer Tiny - EN — CS

Test 2016 Test 2017
BLEU METEOR  BLEU METEOR
Text-Only 27,235 53,629 19,861 44,497
w\Global Feat 30,807 55,446 24,261 48,537
Increment 3,572 1,817 4,400 4,040
w.r.t. text-only  (+13,12%) (+3,39%) (+22,15%) (+9,08%)
w\Regional Feat 28,655 55,669 23,263 47,735
Increment 1,420 2,040 3,402 3,238
w.r.t. text-only  (+5.21%)  (+3.80%) (+17,13%) (+7.28%)
w\Glob, Reg Feat 29,031 55,565 22,991 46,773
Increment 1,796 1,950 3,150 2,276

w.r.t. text-only (+6,59%)  (+3,61%) (+15,76%) (+5,11%)

Table 5.7: Global and Regional Visual Features - Transformer Small - EN — CS

Test 2016 Test 2017
BLEU METEOR BLEU METEOR
Text-Only 25,279 51,204 18,079 40,813
w\Global Feat 26,727 52,756 20,392 43,809
Increment 1,448 1,552 2,313 2,996
w.r.t. text-only (+5.73%) (+3.03%) (+12,79%) (+7.84%)
w\Regional Feat 23,819 49,895 16,8 38,91
Increment -1,460 -1,309 -1,279 -1,903
w.r.t. text-only  (-5.78%)  (-2.56%)  (-1.07%)  (-4.66%)
w\Glob, Reg Feat 25,051 50,958 17,026 39,482
Increment -0,228 -0,246 -1,058 -1,551

w.r.t. text-only  (-0,90%)  (-0,48%) (-5,82%) (-3,26%)
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5.3 Impact of Regional Features

5.3.1 English to German Translation

Table 5.2 analysis reveals that incorporating solely regional features yields perfor-
mance metrics nearly equivalent to those achieved by the text-only model (with a
maximum decrease of 1.93%). This suggests that the model fails to leverage the vi-
sual information provided by the object detector within these specific inference sets.
As will be demonstrated later, the inclusion of global visual features significantly
alters this dynamic. It is noteworthy that the reduction in METEOR scores remains
minimal. This can be attributed to the model’s ability to effectively reconstruct
the syntactic structure, which remains unaffected by incorporating regional features.

Table 5.3 replicates the experiments above, employing the transformer architecture
in its small size. This iteration reveals a more pronounced performance decline,
reaching a maximum decrease of 10% in the 2018 test set (where the corresponding
Tiny model exhibited the least degradation). These findings suggest that the small
architecture is inherently unsuited to the limited size of the dataset. Consequently,
incorporating regional features without a corresponding data volume expansion
compromises the model’s stability, rendering it more susceptible to overfitting.

5.3.2 English to French Translation

Intriguingly, when the identical experiment is conducted on the Tiny configuration
for the French language (results presented in Table 5.4), highly encouraging
outcomes are observed. The model demonstrates significant improvements across
both metrics (BLEU and METEOR). Notably, the French language achieves the
highest performance due to its numerous syntactic similarities to English. En-
hancements surpass 5% on all datasets, reaching a peak of 13% in the 2017 test
set. These findings strongly suggest the promise of incorporating regional features,
especially considering the dataset’s richness in extractable visual information that
demonstrably aids translation in the French language.

Unlike the Tiny version, Table 5.5 shows us a rather clear decrease across all
performances. The Small version is unable to take advantage of the regional
features, which we have proven to have a great impact on the quality of the
translation, losing up to 5% in the 2018 test while in the Tiny version (Table
5.4) it is the one that achieves the greatest improvements. Considering the results
obtained from the German language together we can see how the size of the dataset
on the chosen architecture has a large negative influence, making it not suitable
for the processing of small quantities of data.
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5.3.3 English to Czech Translation

Compared to French, Czech exhibits the greatest divergence from English in mor-
phosyntactic structure. This disparity significantly hinders its performance on
BLEU scores, resulting in the lowest scores among all languages tested. However,
Table 5.6 reveals a substantial positive impact from incorporating visual features,
particularly in accurate term identification. These features yield improvements of
up to 15%. Similar to French, the Czech version of the multi30k dataset evidently
possesses sufficient visual detail and object information to enhance translation
performance.

In contrast to the Tiny transformer model, the small transformer architecture,
whose results are represented in Table 5.7, demonstrates a clear inability to
surpass the limitations imposed by overfitting. This results in a substantial decline
(reaching a maximum decrease of 7%) in its overall generalization capabilities. The
model fails to effectively leverage the incorporated regional features, leading to a
significant deterioration in performance across all evaluated metrics.
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5.4 Impact of Global Features

5.4.1 English to German Translation

This subsequent analysis focuses solely on global features extracted by CLIP and
filtered through the Perceiver Resampler (Table 5.2). Similar to the obser-
vations with regional features, the dataset appears to lack visually informative
details that could enrich and enhance translation precision. Consequently, the
results exhibit negligible improvements in the 2017 and 2018 datasets, while the
2016 dataset shows virtually no change. These findings corroborate the observa-
tions from the previous experiment employing only regional features (Table 5.2).
Notably, the METEOR metric remains the least affected metric once again, further
emphasizing the significant morphosyntactic similarities between the two languages.

As illustrated in Table 5.3, the small transformer model exhibits notable im-
provements, reaching a peak of 12% in the 2017 test set, despite its lower initial
performance baseline. While the larger architecture’s limitations for smaller datasets
allow it to benefit from visual features, it is unable to surpass the performance
of its smaller counterpart. This disparity can be attributed to the small model’s
more efficient utilization of visual features to mitigate performance degradation,
enabling it to achieve superior generalization capabilities.

5.4.2 English to French Translation

In contrast to the positive results observed with regional features (Table 5.4), this
experiment presents a distinct trend for global features. While the results exhibit
a modest improvement, the magnitude of this enhancement suggests a potential
limitation in the dataset’s richness of global information compared to its wealth of
object-specific details. Despite this limitation, the Tiny model demonstrates con-
tinued effectiveness, albeit with minimal performance gains, reaching a maximum
increase of 3% and 2% for BLEU and METEOR scores, respectively.

A dramatic shift is observed in the results for the small transformer model presented
in Table 5.5. This iteration achieves peak improvements of 8% on the 2018 test set,
further solidifying the notion that the latest dataset possesses a significantly greater
wealth of information exploitable for translation enhancement. It is important to
acknowledge that the initial baseline performance for the text-only model in this
scenario is marginally higher. This factor may partially contribute to the observed
discrepancy in results.
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5.4.3 English to Czech Translation

The Czech language exhibits a trend that stands in stark contrast to the observations
made for French (Table 5.6). The demonstrably substantial performance improve-
ments suggest that global features provide further enrichment for specific Czech
language terminology, yielding peak enhancements of up to 22%. When compared
to the results obtained with regional features, it becomes evident that the uti-
lization of any kind of visual feature types significantly enhances Czech terminology.

Our investigation into the Czech language using the minimal model configuration
(Tiny) reveals a significant performance increase solely through the utilization
of global features. This trend persists in the Small model configuration (Table
5.7), where, in contrast to the performance with regional features, we observe
substantial improvements as well. However, the evidence continues to support
the superior performance of Tiny models for these types of datasets. While the
observed improvements in the Small model are substantial, reaching as high as
13.7%, they are nevertheless insufficient to surpass the textual baseline established
by the Tiny model.
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5.5 Overall Impact of both Visual Features

5.5.1 English to German Translation
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Figure 5.1: Evolution of [tanh(ga)| and [tanh(gf)| values in each layer for configu-
ration tiny for EN — DE

This section delves into the impact of visual features on translation precision,
analyzing not only the final experimental results concerning both regional and
global features but more importantly, the broader implications for leveraging visual
information in translation tasks. We begin our examination with the German
language (Table 5.2). Here, the scalar and percentage data represent the im-
provements achieved by the model variant incorporating both visual features. The
results presented offer a promising outlook. Notably, the Tiny model exhibits a
significant improvement by utilizing both feature types, achieving gains ranging
from nearly 5% to a record-breaking 7% within this language. This compelling
evidence suggests that the German language may be particularly receptive to the
combined application of visual features, potentially influencing both the selection of
appropriate terminology and the construction of syntactically sound sentences. In
essence, this finding underscores the potential of visual information to enhance the
accuracy of translations, particularly for languages like German that demonstrably
benefit from such multimodal inputs.

Figure 5.1 suggests a diminishing impact of global features throughout training,
eventually reaching a stable state. This observation aligns with the final values of
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the parameter |tanh(gf)|, which indicate a utilization rate of less than 2% by the
model. Consequently, the modest performance improvement observed in Table 5.2
due to global features is unsurprising. However, the combined application of global
and regional features, as evidenced by the results, appears to yield a synergistic
effect, leading to superior translation quality.

Training of parameter |tanh(ga)| through 30 epochs Training of parameter [tanh(gf)| through 30 epochs
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Figure 5.2: Evolution of |tanh(ga)| and [tanh(gf)| values in each layer for configu-
ration small for EN — DE

A stark contrast emerges when examining the Small model (Table 5.3). Here,
the anticipated benefits of combining both feature types are entirely absent. In
fact, the results plummet, with losses reaching nearly 10%. This detrimental
effect extends to the METEOR metric as well, although thankfully, METEOR
scores remain marginally higher than those achieved with the model utilizing only
regional features. This unexpected outcome suggests a potential explanation. By
incorporating global features, the model may have partially recovered the intended
syntactic structures through the extraction of more accurate information. However,
this inclusion appears to have also introduced additional confusion, leading to a
decline in BLEU score despite the positive impact on METEOR. In light of these
findings, it becomes clear that the Tiny architecture demonstrably exhibits greater
suitability for this task. It appears to possess a superior ability to leverage the
information gleaned from the dataset images. Conversely, the Small architecture in
German lacks the same level of stability and performs considerably worse when
presented with both regional and global features. Further investigation is warranted
to fully elucidate the underlying mechanisms at play and to determine how to
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optimize the utilization of visual features within the Small model for the German
language.

An analysis of the two gating parameters depicted in Figure 5.3 corroborates
these findings. The figure suggests that the model experiences significant instability
during the initial incorporation of global visual information. This instability
manifests as a concerning pattern of performance degradation, ultimately hindering
the model’s ability to generalize effectively.
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5.5.2 English to French Translation
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The French language presents a rather encouraging scenario, as illustrated in Table
5.4. Here, we observe a positive synergy between regional and global features.
When combined, they yield further performance improvements compared to the
text-only baseline and the model utilizing only regional features. Notably, these
gains represent the most promising results obtained thus far for the French language.
While it appears that global features, on their own, may not offer a significant
amount of additional information, our proposed approach within the Tiny model
successfully harnesses their potential in conjunction with regional features. This
finding reiterates the primacy of regional visual information in influencing transla-
tion precision, likely due, in part, to the effectiveness of the resampler in selecting
the most relevant visual elements. However, importantly, the combination of both
feature types does not appear to compromise the stability of the model, suggesting
a complementary relationship between the two visual information sources.

In the case of the Small model, as evidenced in Table 5.5, the attempt to balance
the gains achieved through the incorporation of global features with the substantial
losses incurred due to regional features proves unsuccessful in maintaining model
stability. Consequently, the model exhibits minimal, albeit negative, deviations
from the baseline performance, registering a decline of approximately 2.7%. This
outcome aligns with the observations made for the German and Czech languages,
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Figure 5.4: Evolution of [tanh(ga)| and [tanh(gf)| values in each layer for configu-
ration tiny for EN — FR

suggesting that the limitations inherent to the Small architecture are a key con-
tributing factor. The reduced capacity of this model variant appears to hinder its
ability to effectively leverage the combined influence of both regional and global
visual information. Further investigation is required to elucidate the underlying
mechanisms at play and to explore potential strategies for mitigating these lim-
itations in the Small model, particularly in the context of exploiting small-scale
multimodal data for translation tasks.

Figure 5.4 and 5.5 provide direct evidence for the limited utility of global visual
information. In the Tiny configuration, the final layers of the Vision-Text module
exhibit values close to zero. This suggests that the model, during training, failed to
identify any significant visual details within the images that could be meaningfully
incorporated into the translation process. The model appears to rely primarily on
the class token used in conjunction with regional features.

This trend persists in the Small configuration, where only the initial layer indicates
some integration of image data. However, the final layer encodings remain below 1%,
signifying minimal influence of global visual information on the final translation
quality. It should be noted that the small model reports the same degree of
instability already seen in Figure 5.2 for the German language.
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5.5.3 English to Czech Translation
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In contrast to the positive outcomes observed for German and French, the Czech
language dataset exhibits a diminished response to the combined application of both
regional and global visual features. While improvements relative to the baseline
model are still evident, the utilization of regional features appears to counteract
the positive influence of global features. This phenomenon is also observed within
the Tiny model configuration (Table 5.6). These findings suggest that further
refinement of the training configuration might be necessary for the Czech language.
The current configuration may not be fully optimized for the effective integration
of both regional and global visual information within the chosen architecture. A
deeper investigation into the training process and potential adjustments to the
configuration could yield valuable insights into optimizing the model’s ability to
exploit the complementary nature of these visual information sources in the context
of Czech language translation tasks.

This last result (Table 5.7) serves as a further confirmation that the Small architec-
ture struggles to effectively process regional features. Consequently, its combination
with global features yields suboptimal results, mirroring the trend observed in the
Czech language dataset. This suggests that the dataset itself might not contain a
sufficient number or quality of regional information elements to be optimally utilized
by the model. While this configuration does manage to partially mitigate some of
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the losses incurred with regional features alone, it falls short of fully exploiting its
potential and achieving significant improvements over the baseline model. Further
investigation into alternative training strategies or model architectures specifically
tailored for datasets with limited regional information content may be necessary to
unlock the full potential of this approach in the context of the Czech language.

The instability observed in the Tiny and Small configurations (Tables 5.3 and
5.5) is also evident for the Czech language, as illustrated in Figures 5.5 and
5.6. This instability likely contributes to the performance degradations observed
in Czech translation. Further investigation is warranted to definitively assess the
impact of global features on Czech translation quality. It is evident that global
features may have a distinct influence on Czech translation compared to other
languages.
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Chapter 6

Conclusion and Future
works

6.1 Final Consideration

This research has yielded significant findings that contribute to the ongoing ad-
vancements in Multimodal Machine Translation (MMT) and shed light on
the complex interplay between visual information, language translation, and model
architecture. The proposed architecture, inspired by [2] and [3], integrates a classic
sequence-to-sequence transformer with a visual encoder and an object detector. This
combination has achieved exceptional results, demonstrably improving performance
across nearly the entire Multi30k [34] dataset.

The most substantial improvements were observed in the translation of English
and French texts. By leveraging both global and object-based visual features, the
model achieved an impressive increase of 8% for German and a remarkable 12%
for French translations. Interestingly, the Czech language translations exhibited a
different pattern. Improvements were solely observed when using global features,
but the magnitude of improvement was even more pronounced, reaching a signifi-
cant 22%.

Our studies suggest that for expansive datasets like Multi30k, smaller transformer
architectures are more suitable. These models achieve stable training without
succumbing to overfitting within a reasonable number of epochs. Conversely, the
Small version of the architecture we tested resulted in performance degradation
compared to the text-only baseline model in most cases. This highlights the impor-
tance of tailoring model complexity to the specific characteristics of the training
data.

64



Conclusion and Future works

We further investigated the influence of the Vision-Text Layer when integrated
with regional visual features. This analysis revealed a surprising finding: the
proportion of global visual information utilized by the model never surpassed 2/3%.
This suggests that a significant portion of sentences within the Multi30k dataset
can be accurately translated without the aid of a multimodal model. Furthermore,
the associated images often lack supplementary information pertaining to general
characteristics. In contrast, the impact of regional features was demonstrably
more pronounced, particularly when translating into French. This disparity
highlights the potential importance of focusing on specific objects and
their relationships within images, as opposed to relying solely on global scene
information, for certain language pairs within MMT tasks.

6.2 Future Works

The implementation choices for our contribution made us discard many ideas that
were certainly impactful, such as the use of LMs already fully trained on larger
datasets or the usage of masking strategies (visual and textual) to improve and
stabilize the phase of training. Since many of these ideas have not been implemented
for computational reasons, it would certainly be interesting to see how our proposal
interacts with these techniques. However, what has certainly come to light is that
there is a great need for further benchmarks for this specific task, which
to date can only be traced back to Multi30k, whose small scale we have exploited
to study the results on restricted architectures but which nevertheless suggest a
serious lack within the community. The further benchmark (CoMMuTe) also
introduced by [3] is certainly interesting for having a further evaluation of our
model, but since it is only less than 200 sentences wide it certainly cannot be
used for training.

To conclude, our results show us a certainly profitable scenario for small
architectures, possibly finding space within environments in which the scarcity
of resources is the main characteristic such as embedded systems (which
however use much smaller scales than these) and real-time translation applications
that can be used in video conferences or to quickly search for products in different
languages.
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