
POLITECNICO DI TORINO

DIPARTIMENTO DI ELETTRONICA E TELECOMUNICAZIONI
CORSO DI LAUREA MAGISTRALE IN MECHATRONIC ENGINEERING

TESI DI LAUREA
in

INFORMATICA

Development of a simulation environment for precision agriculture applications
with Unmanned Aircraft Systems

Relatore:

Chiar.mo Dr.
Stefano Primatesta

Laureando:

Alessandro Cavalli

Anno Accademico 2023-2024



Contents

Contents 1

Introduction 3

1 Solutions available and state of the art 5
1.1 Drone Autopilots . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Robotic middleware . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Robotic Simulators . . . . . . . . . . . . . . . . . . . . . . 6

2 Simulator configuration 8
2.1 Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Dynamical model . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Official Gazebo plugins . . . . . . . . . . . . . . . . 12
2.2.2 Custom plugins . . . . . . . . . . . . . . . . . . . . 14

2.3 GUI plugins . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Autopilot configuration 21
3.1 PX4 architecture . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Safety functionalities . . . . . . . . . . . . . . . . . . . . . 23
3.3 PX4 operational functionalities . . . . . . . . . . . . . . . 23
3.4 Setup of the SIL environment . . . . . . . . . . . . . . . . 24

4 ROS2 26
4.1 ROS2 abstraction . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Patterns of communication . . . . . . . . . . . . . . 27
4.1.2 Node features . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Package structure . . . . . . . . . . . . . . . . . . . 29

4.2 Implemented nodes . . . . . . . . . . . . . . . . . . . . . . 30

5 Simulation results 35
5.1 Takeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Spraying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Wind gust compensation . . . . . . . . . . . . . . . . . . . 38

6 Conclusions 40

Appendix A - Point-clouds 41

Appendix B - Official Gazebo Plugins 45

1



Acknowledgments 49

References 50

2



Introduction
Mankind has always searched ways to predict future. In ancient time tran-
scendent rituals were adopted by figure such as oracles and augures. In
modern days, instead, a quantifiable, logical and systematic approach has
been studied and mathematical models has been developed. A great ex-
ample of the effectiveness in future prediction of such models is weather
forecast, which has proven its reliability with the massive adoption in
nautical and aeronautical sectors. Nowadays, computer and high level ab-
stractions for model description make the creation, validation, maintaining
and operation of a model based simulator way cheaper than before. Thus,
new sectors, which historically hardly adopted high complexity solutions
for their problems, are starting to invest in simulation technology, be-
cause the cost reduction achievable from a more precise management of
resources can be important and the initial investment is no longer pro-
hibitive. In this perspective simulators are essential because, with the
increase in complexity of the adopted solutions, the difficulty in the pre-
diction of their possible issues increases. The agricultural sector is one of
the main sectors where the industrial approach used in the past decades,
consisting in applying a standard solution for the whole crop, has proven
to be highly sub-optimal since the natural organisms are far from being
uniform in needs. Precision agriculture studies how to overcome the prob-
lem by tuning the treatments depending on the specific circumstances.
This new approach requires the use of robots in order to be cost efficient,
thus a development and testing environment for these robots is mandatory.
There are three main categories of robots adopted in precision agriculture
applications: rovers, multi-copters and fixed wing drones. Each of them
has its optimal use case. The "Department of Mechanical and Aerospace
Engineering" of the "Politecnico di Torino" is studying the development of
a precision aerial spraying system to be used along the rows of vineyards.
The long term objective of the research consists in developing a system
to perform selective spraying based on the data collected in real time by
the drone. In this kind of application a multi-copter appears to be the
most convenient choice, since it can handle heavy payloads remaining a
flexible and versatile vehicle. Therefore, this work aims to provide a multi-
copter simulation environment to be used as a starting point for the future
research activities of the department.

This document is structured in five chapters, each of them describes
a different phase of the work. The first chapter provides an overview of
the available technologies which could be used to implement the simula-
tion environment and explains the reasons which brought to the selection
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of the adopted solutions. In the second chapter all the details about the
setup of the simulator has been addressed. The third chapter describes
the autopilot architecture, its features and the integration effort spent to
achieve a modular environment. In the fourth chapter the ROS2 technol-
ogy has been presented in detail as well as its use in the context of this
work. The fifth and last chapter resumes the achieved performances of the
complete simulation environment developed in this work.
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1 Solutions available and state of the art
The increased request in low cost automation has brought to the develop-
ment of many powerful Open Source solutions, which are becoming com-
petitive in terms of features with other proprietary products. In the follow-
ing paragraphs will be presented an overview of the available options and
the reasons that brought these technologies to be adopted in this work.

1.1 Drone Autopilots
In the aviation sector there are many autopilot solutions certified to be
compliant with the in force safety regulations. Anyway such solutions are
not meant to be applied to service drones, since they are too expensive
for a non mission-critical application. In this perspective a new market of
budget autopilots appeared. Right now, open source solutions seems to be
leader in this new sector.

1. Ardupilot
This autopilot is the evolution of a project started in the hobby
sector. It is the most cost effective solution on the market and it is
compatible with the ROS2 environment and Gazebo sim. It is also
compatible with many ground station software solutions.

2. PX4
This other autopilot was created for the hobby sector as well, but
the definition of the open standard "Pixhawk" and the highly mod-
ular and reliable design allowed it to be adopted by the industry
sector. In particular the Pixhawk standard created a specific mar-
ket of a PX4 compatible electronics where companies have precise
information about what is an interface requirement and what can be
modified during the design phase for minimizing cost or maximizing
performances. In this way the PX4 ecosystem allows to build highly
customizable systems by means of a modular and reliable plug and
play hardware. As Ardupilot, PX4 is compatible with ROS2, many
simulators and ground stations. For all the aforementioned reasons
PX4 is the autopilot that has been chosen for this application.

1.2 Robotic middleware
The development of a robot can involve many sensors, actuators and in-
termediate logical elements. The complexity of handling directly all these
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components into a single piece of software grows exponentially, because the
bare organization of software into libraries can create a modular ecosys-
tem at compile time only, whereas at run-time all this disparate logical
elements are grouped together. Furthermore, a monolithic approach im-
pedes the development of a distributed architecture, which is known to be
more reliable and easier to maintain. The solution used in industry in the
last decades was to organize software into functional elements intercon-
nected by means of a specific communication protocol. In the past, many
industries had its own technology to implement this kind of architecture,
but nowadays seems that the industry is converging into the use of the
platform ROS. Since ROS is an open source project and in its second ver-
sion, ROS2, solves many reliability issues of the ancestor, there were no
doubts that it would be the middleware adopted in this application.

1.3 Robotic Simulators
There are many solutions on the market to provide the user the ability
to perform simulations. Anyway, a simulator must be chosen according to
the application to be tested on. So a brief overview of the available options
in the robotic sector will be proposed.

1. Nvidia Isaac
This simulator is part of the "Omniverse" platform, which is the pro-
prietary solution provided by Nvidia. Through the plugins Nvidia
Isaac ROS and Nvidia Pegasus it is possible to support communica-
tions with ROS2 and PX4. Anyway, if there are viable open source
solutions, it is not advisable to use a proprietary platforms even if it
is available in freemium version. In fact, using an open source prod-
uct there is no exposure to vendor lock-in and there is more control
on the technology in use, without third party influences.

2. Gazebo
There are two versions of Gazebo, an older one, which is reaching
the end of life in 2025 and a newer one, which is taking its place.
Both versions are open source simulators compatible with ROS2 and
PX4, but clearly it is wise to choose the newer one, even if not all the
features are yet ready. Furthermore, ROS2 and PX4 developers, in
most cases, already use this newer version as default, therefore the
new version of Gazebo appeared to be the most convenient choice.

3. FlightGear
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This open source simulator is not directly compatible with ROS2 be-
cause has been specifically developed to test flying vehicles, therefore
it is possible to simulate sensors measurements only for the standard
sensors of an aircraft. Since in this particular application it is re-
quired to simulate a depth camera sensor, FlightGear cannot be se-
lected in this case. Anyway this simulator is worth to be mentioned
because it is based on the flight dynamics model JSBSim, which has
been validated by NASA, and also has an advanced weather model,
which is able to precisely predict the interaction between the vehicle
and the wether conditions. Therefore, in case of a fixed wing drone
mounting a simple camera, this would have been the optimal choice.
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2 Simulator configuration
The new version of Gazebo is constituted by an highly modular architec-
ture based on plugins. Therefore, what is call Gazebo is the platform, i.e.
a set of libraries, where plugins can share data, plus a number of official
plugins to carry out the most common operations. From an architectural
point of view, there is no difference between a custom plugin and an official
one, this allows the user to build very complex and powerful plugins.

Figure 1: Gazebo architecture

In Figure 1 it is possible to see all the abstraction layers used in the
Gazebo architecture 1. First of all, there is a distinction between front-
end and back-end services, allowing to decouple calculations and rendering
of the simulation. Then both client and server run a number of plugins
which can exchange model data through the Entity Component Manager
(ECM). Finally, each plugin is based on a set of libraries which enable the
inspection and modification of the elements of the ECM and the creation
of data distribution services (DDS) to enable communications with other
programs such as ROS2 or PX4. The primary way in which a simulation
environment can be configured in Gazebo is by means of an XML descrip-
tion known as Simulation Description Format (SDF). In the old version of
Gazebo there was also a GUI for a graphical configuration, but this feature
in the new version has not been implemented yet. The SDF allows the
configuration of the kinematic and dynamic parameters of robots as well
as the parameters of their sensors and actuators. In the SDF it is possible
to define also the world informations as weather condition, terrain shape,
initial position of the robots and illumination sources. The details of the

1Soruce of image: staging.gazebosim.org/docs/garden/architecture
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configurations of the key elements of the simulation will be explained in
the following sections.

2.1 Terrain
In order to configure a realistic model of the terrain in Gazebo there are
two different approaches: using a heightmap or a mesh. In both cases the
starting point is to collect some data of the environment of interest and
converting them into a format compatible with Gazebo. In this specific
case a GeoTIFF file representing a laser scan of the field was provided.
This kind of data are common in the geographic sector and are classified
as Digital Surface Models (DSM). In order to evaluate the performances
of the two different terrain descriptions the input file has been converted
into both heightmap and mesh description.

Table 1: On the right: four meshes of the same 3D object with a differ-
ent level of detail. On the left an heightmap with its corresponding 3D
representation.

1. Heightmaps
An heightmap is a raster image to be interpreted as a two-dimensional
square matrix where row and column indexes represent unitary dis-
placements along x and y, while the pixels in gray scale represent the
height along z. An example of such data format is shown in the bot-
tom left figure2 of Table 1. This kind of description is the simplified
version of a DSM. In fact, a DSM file, in addition to the heightmap,
contains additional metadata to precisely localize the data in the real
world. Anyway Gazebo is able to take in input a square DSM, so the
only modification needed to load the GeoTIFF into the simulator is

2Source: njb.design/en/about/10/heightmap-generation
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to cut it into a square, using an open source program called GDAL.
Such program is specific for converting and manipulating geographic
rasters, thus it has been used also to perform a down-sampling of
the square DSM, in order to reduce noise in the data and compu-
tational effort for the simulator, due to an excess of details. To be
precise, Gazebo documentation mentions Digital Elevation Models
(DEM) instead of DSM when explains how to load an heightmap.
The difference between the two models is not in the structure of the
data type but in the meaning of the data stored. In fact, a DSM file
stores the raw data collected by the sensors containing vegetation,
buildings and all the other elements that are on the terrain surface.
In the other hand, a DEM file stores the processed data that try to
reconstruct the actual terrain height filtering out the disturbance of
the surface elements interposed. The implication is that a DEM is
generally smoother than a DSM, so its information loss after a down-
sampling is lower. This is relevant because in a precision agriculture
simulator, vegetation has paramount importance, thus it must not be
lost after a large down-sampling. Unfortunately, the gazebo physics
engines, are not efficient in handling big and detailed heightmaps,
so, in this work, meshes has been adopted to model the terrain.

2. Meshes
A mesh is a collection of vertices, edges and faces that defines the
shape of a 3D object. The faces usually consist of triangles or other
simple convex polygons. This kind of data structure is used in com-
puter graphics for rendering objects because it is very versatile and
allows to model even complex shapes that show particular features
only from specific perspectives, e.g. the ears of the rabbit in the
right images3 of Table 1. In fact, by construction, heightmaps can-
not model features like caves into mountains, since they can only
store details measurable from a "top view" perspective, achievable
for instance from an airplane. Therefore, any other information re-
lated to other points of view, in that data structure, would be lost.
Furthermore, meshes are computationally efficient, because do not
require a fixed step sampling of the space, like heightmaps, but in-
stead they add information only where needed, like a variable step
sampling does. This allow to have a detailed model of the terrain,
with a clear distinction of the vineyard lines, while keeping the bi-
nary representation lightweight. In order to convert the GeoTIFF

3Source: www.researchgate.net/figure/3D-mesh-triangles-with-different-resolution-3D-Modelling-
for-programmers-Available-at fig2 322096576
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file into a mesh a geographic tool is required. In this work the open
source program Qgis has been used. To further optimize the handling
of the physics engine it is a good practice to partition the obtained
mesh into several smaller meshes, this allows the collision engine to
skip the collision checks for meshes far away from the mobile robot
position, that clearly cannot collide with it.

Figure 2: The Google Earth satellite image of the scansioned field

Figure 3: The Mesh representation of the scansioned field

2.2 Dynamical model
Other than the world model, the simulator needs a dynamical model to
compute how the robot is interacting with the environment. The official
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Gazebo plugins are meant mainly for terrestrial robotics applications, so,
for some aspect relevant to this work, they are not enough to correctly
describe the system. To add the missing features, two custom plugins has
been developed. In the following sections will be described the function-
ality of each plugin adopted.

2.2.1 Official Gazebo plugins

The official Gazebo plugins used are the following:

1. Physics plugin
The developers of this plugin designed it on the premise that there is
not a single physics engine that is universally best for all simulation
contexts, so, instead of implementing directly a single engine, this
plugin provides an abstract interface for several physics engines. In
this way the user can easily select the best engine according to its
needs. In this particular case the engine adopted is Dynamic Ani-
mation and Robotic Toolkit (DART), the default physics engine of
Gazebo. According to the study presented in [7], DART appears to
be less precise than Bullet, the other engine officially supported by
the simulator. Anyway, since the differences are in many cases neg-
ligible and the default choice is usually better documented, DART
was selected to be the physics engine of this work.

2. Multi-copter motor plugin
In order to make the drone able to fly, it is necessary to model an
actuation system, which is the purpose of multi-copter motor plu-
gin. As the name suggests, for sake of simplicity, instead of modeling
with two separate generic plugins the motor torque and the rotating
propeller fluid dynamic forces, this plugin is specific for the standard
configuration of a real actuation system in a multi-copter. In par-
ticular it is assumed that the motor is an ideal velocity controlled
motor and that the propellers’ fluid dynamic forces can be described
by means of the standard quadratic relation of aerodynamics. In
this way, according to [6], thrust, drag and moment of a propeller
are quantified using the following formulas:

Thrustz = Kmotor · ω2
motor

Dragz = Kdrag · ωmotor · V ⊥
apparentWind

Momentx = Croll · ωmotor · V ⊥
apparentWind + Cmdrag

· Thrustz
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In the first expression the thrust is function of the rotor angular ve-
locity because the lift has been integrated along the propeller length
and all the information is converted into the rotational domain by
means of the constant Kmotor. The second expression represents the
force known as H-force or rotor drag in the helicopter literature,
where what here is named Kdrag is generally called "rotor inflow
ratio" [4]. The H-force can be seen as the resistance produced by
the propeller disk on the normal component of the apparent wind,
which is proportional to the angular velocity. The last formula ac-
counts for the rotational momenta described in [6]. Finally, since
the drone motors are usually brush-less ones driven by Electronic
Speed Controllers (ESC), it is reasonable to consider the rotor an-
gular velocity a known quantity to be used as input variable for the
previous formulas. All these formulas are valid in the "near hovering"
assumption, where holds that the velocity of the drone is lower than
a seventh of the propeller tip speed. An other important assumption
which greatly simplifies the calculations requests a null rotor blade
flapping. This second assumption is equivalent of stating that the
propeller can be modeled as a perfectly rigid body.

3. Sensor plugins
In order to test the control algorithms some quantities must be ex-
tracted from the simulation and published in dedicated topics. The
set of plugins considered here enable this extraction as well as the
simulation of measurement difficulties due to the noise or the instal-
lation of a sensor in a sub-optimal position e.g. a gyroscope mounted
far from the center of mass. To better model the behavior of a real
sensor it is possible to configure also the sampling rate and the mea-
surement accuracy of the sensor, introducing for instance a quan-
tization. For the depth-camera there are available many advanced
configurations including depth of field and resolution.
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2.2.2 Custom plugins

Figure 4: The generic archi-
tecture of a Gazebo plugin

The official Gazebo plugins has been ini-
tially developed by Open Robotics with the
purpose of providing the users a general set
of tools mainly focused on classical robotics
applications. With the increase in popu-
larity of the simulator, some other official
plugins has been developed to enable sim-
ulation of physical phenomena related to
underwater or aerial activities. Unfortu-
nately, due to the complexity of the fluid-
dynamic relations, these plugins could not
be too much generic and in this specific case they resulted not applicable.
Therefore, the development of some custom plugin become mandatory.
Anyway, in Appendix B some plugins, related to fluid handling, has been
analyzed in detail and the specific reasons which led to this conclusion
has been presented. Before starting describing in detail the actual plugins
implemented, it is worth to describe the general structure of a plugin. A
plugin is a C++ derived class of the super class System, included into the
Gazebo library. The class System provides four abstract methods which
can be implemented by a plugin:

• Configure

• PreUpdate

• Update

• PostUpdate

Each method is invoked in a specific point of the simulation execution,
enabling different features in the different plugins. In Figure 4 it is rep-
resented4 the timing of each method call. It is possible to see that the
Configure method is invoked once, to initialize the plugin class with the
parameters passed from SDF. Instead, the PreUpdate, Update and Pos-
tUpdate methods are invoked in each simulation step. In particular the
PreUpdate has reading and writing privileges on the model parameters,
allowing the plugin to apply forces and momenta; while the PostUpdate
method has only reading privileges, allowing to extract model data and
make them available to third programs. The Update method is mainly

4Source of image: download.ros.org/downloads/roscon/2022/ROS%202%20and%20Gazebo%20In-
tegration%20Best%20Practices.pdf
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used by physics engines to update the model state, so it is not very in-
teresting in the perspective of developing a standard plugin. The custom
plugins developed are the following:

1. Wind-drag
Using the aforementioned official plugins, the effect of the wind is
not yet taken into account. The primary purpose of this plugin is to
overcome this issue applying a drag force to the simulation objects,
such as the drone frame, according to the well known expression:

Fdrag =
1

2
· ρ · surface · CD0

· |apparentWind|2 · dragDirection

= coefdrag · |apparentWind|2 · dragDirection

It is important to note that the linearized drag coefficient CD =
CD0

+ CDα
· α, where α is the angle of attack of the drone’s body,

is approximated with a constant. This simplification greatly reduces
the complexity of the plugin and its computational burden, still re-
maining reasonable in this specific case, since the interest is limited
to predict the disturbance attenuation of the autopilot in the worst
case scenario, where the drag coefficient is maximum.
With this new feature active in the simulator, become interesting to
vary the wind speed and direction according to a known law. In order
to do so, the plugin was made capable of subscribing a topic where it
takes in input the wind velocity vector. For debugging purposes, the
relevant quantities computed by the plugin has been made available
to ROS2 by means of some publishing nodes.

Figure 5: SDF used for the configuration of the Wind-Drag plugin

Finally, an API for the plugin configuration through SDF has been
developed. This interface allows to configure the topic names and a
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different drag coefficient for each link. The SDF configuration used
in this work is shown in Figure 5.
In Figure 6 it is possible to check the correct application of the
designed mathematical relations. In particular the vectors of the
true wind and drone velocity are explicited so that the apparent
wind velocity can be derived. Then, using those data, the drag
force has been computed using an external program and compared
with the result of the plugin. In the red box are shown the plugin
data, while in the green box is shown the result of the computation
performed with the external program. Since the two results are very
close, it is clear that the differences can be addressed only to different
approximations in the data representation of the two used programs.
In chapter 5 is performed a more detailed analysis of the plugin
behavior.

2. Sloshing-force
An other characteristic that cannot be directly handled by the official
plugins is a variable mass. Furthermore, a spraying drone not only
presents a variable mass, but also some kind of sloshing effect. In
fact, the fluid inside the tank, that gradually decreases over time as
the spraying activity continues, produces forces that cannot be quan-
tified using only the theory applicable for inertial and gravitational
forces. To overcome these issues this second plugin was developed.
The base requirement for the plugin is to provide a variable mass to
the simulator, to allow the correct sizing of the motors and to eval-
uate the performances of the autopilot in controlling a drone with
variable inertia. There are two possible approaches to achieve this
requirement: modifying the mass component of the tank link and
let the physics engine apply the gravitational and inertial forces; or
storing the information related to the tank status in a class vari-
able and from that variable directly compute and apply the forces
to the model. This second approach was adopted since it provides
more flexibility and paves the way for the modeling of the sloshing
effect force, whose description is outside the scope of this work but
nevertheless will be relevant to be added to the simulator in future
updates. The mechanism which enables the update of the tank sta-
tus is based on the subscription to a topic containing the flow rate
of the spraying system outlet. With this information a backward
rectangular integration is performed and the new tank level is com-
puted. Furthermore, a dedicated node publishes the topic to drive a
particle emitter plugin attached to the drone to enable a visual feed-

16



Fi
gu

re
6:

Va
lid

at
io

n
of

th
e

dr
ag

fo
rc

e
ap

pl
ie

d
on

th
e

dr
on

e
du

e
to

an
ap

pa
re

nt
w

in
d

17



back of the spraying activity, shown in Figure 7. Also in this plugin,
for debugging purposes, the computed relevant quantities has been
made available to ROS2 by means of some publishing nodes. Finally,
an API has been developed to allow the user to configure the plugin
using the SDF description. The configuration adopted in this work
is shown in Figure 8.

Figure 7: Spraying activity visualization

Figure 8: SDF used for the configuration of the Sloshing-Effects plugin

2.3 GUI plugins
The Gazebo front-end is composed by a number of plugins that allows
the user to interact with the simulation by visualizing data and sending
inputs. A GUI plugin can be visible or hidden, depending on its purpose.
The hidden plugins are used to enable new features in the front-end that
will be used by other visible plugins to provide their functionalities. The
visible plugins can be displayed under the form of windows, toolbars or
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buttons to provide the actual user interface of the client. There are three
main category of plugins used in this work that will be described in detail
the in the following sections. The final form for the GUI of the simulator
is shown in the left side window in Figure 6. All the GUI configurations
can be stored directly into the SDF configuration of the single world or
in a separated configuration file which can be shared with many different
worlds.

1. Plugins for simulation visualization
In the Gazebo client the graphical visualization of the world is not
mandatory, it must be enabled with the Minimal-Scene plugin. In
the plugin configuration it is possible to select the 3D graphics engine
to be used to render the scene. The only engine supported is OGRE,
which is an open source engine available in two version: OGRE and
OGRE Next. OGRE Next, also identified with OGRE2, is the en-
gine adopted in this work, since is much faster in rendering and has
an improved ray tracing approximation, which leads to a more nat-
ural illumination of the scenes. In order to complete the simulation
visualization it is necessary to activate:

• The hidden plugin GzSceneManager, which enables the updat-
ing of the 3D model as the simulation proceeds

• The WorldControl plugin, which provides play and pause but-
tons to control the simulation status from the client window

• The WorldStats plugin, which provides a small dialog to resume
the simulation information such as the time elapsed and the real
time factor.

2. Plugins for world navigation and model inspection
With the aforementioned set of plugins is enabled only the visualiza-
tion of the scene from a fixed perspective. In order to add the navi-
gation functionalities, expected from a modern graphical interface of
a 3D environment, some other plugins must be used. In particular:
the InteractiveViewControl hidden plugin enables mouse navigation;
the SelectEntities hidden plugin enables selection of a model; the
EntityContextMenuPlugin visible plugin provides a pop-up menu,
callable by right clicking on a model, with some action such as "show
[reference] frames" or "follow [with the camera]". Anyway, the Entity-
ContextMenuPlugin requires the hidden plugins VisualizationCapa-
bilities and CameraTracking to enable the "show frames" and "follow"
menu entries, respectively. Therefore both the hidden plugins have
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been added. For debugging purposes the EntityTree visible plugin
has been used extensively because it allows to inspect the world enti-
ties in a convenient manner. Anyway, it has been removed from the
default plugins loaded at the startup of the Gazebo client because
its window is too cluttered to be always active. Finally, the Plotting
visible plugin enables the visualization of numerical topics in a 2D
Cartesian graph, which, for the same reason of the EntityTree, has
been disabled by default.

3. Plugins for world and model editing
In the world creation phase it is handy to have some tool to edit the
model in a graphical way. In fact, Gazebo can export a graphically
configured world into an SDF file. This is not the recommended
procedure to create SDF configurations, but it is helpful to perform
some activity that result inconvenient in a text based procedure. For
instance, tuning the pose of a model is easier in a graphical environ-
ment which feedbacks the current position and orientation, enabling
to modify them in an interactive way. In fact, the graphical inter-
face allows to spawn and translate models using drag and drop and
rotating them by means of gimbal circles. This is more convenient
than directly tuning the coordinates and the quaternion in the SDF
file. When the pose is determined by means of the graphical proce-
dure, it can be pasted into the original SDF file configured with the
text based procedure. In this way it is possible to take advantage
of the benefits of both the procedures. The TransformControl vi-
sual plugin enables the aforementioned features by adding a toolbar
with the tools for translations and rotations of models. Similarly,
the Spawn hidden plugin enables the spawn of new models, while
the CopyPaste hidden plugin activates copy and paste capabilities
in the menu entry of the EntityContextMenuPlugin.
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3 Autopilot configuration
In a physical drone an autopilot is constituted by a dedicated electronics
programmed with an autopilot software. In this work, the platform chosen
is PX4, which consists in a Pixhawk compliant hardware programmed
with the PX4 software. In simulation stages the PX4 software can be
run on a standard computer without the dedicated hardware, using the
data streams coming from a simulator as sensor readings. Since this work
consists in a simulation setup, the software architecture only has been
used and therefore analyzed. All the high level drone control logic, such
as the ROS2 nodes, is executed in a separated board, which the official
documentation calls companion computer.

3.1 PX4 architecture
The PX4 architecture has been designed by its developers according to the
reactive manifesto5, which is a guideline to achieve responsiveness, relia-
bility, scalability and modularity. In Figure 9 it is shown the high level
architecture6 of the PX4. The first important thing to note in the figure is
the subdivision in functional elements, which are very similar to the ROS
nodes. In fact, the autopilot, to be compliant with the reactive design,
has to implement a middleware with publisher-subscriber communication.
Here, instead of ROS2, Micro Object Request Broker (uORB) has been
used, which is a shared memory based bus, optimized for embedded ap-
plications. The advantage of the uORB in this context consists in its nar-
rowed scope to a single board communication, that makes it smaller and
more computationally efficient with respect to a more general middleware
like ROS2. The uORB bus has been adopted for all the internal commu-
nications between sensors, processor, memory and interfaces. For what
concerns external communication a different protocol must be used, since
the access to the shared memory is no longer available. In this case the
PX4 developers have chosen MAVLink and uXRCE-DDS. MAVLink is a
lightweight protocol that was designed for efficiently sending messages over
unreliable low-bandwidth radio links and it is mainly used by the ground
station to send commands to the autopilot. Instead, the uXRCE-DDS is
the protocol used to bridge the uORB topics with the ROS2 environment.
In order to provide time sensitive services, PX4 assumes to be running on
a real time operating system such as the Open Source Apache NuttX, any-
way using the PX4 SIL binaries it is possible to test it on general purpose

5www.reactivemanifesto.org
6Source of image: docs.px4.io/main/en/concept/architecture.html
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Figure 9: High level architecture of PX4 autopilot
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operating systems, such the standard GNU/Linux distributions.

3.2 Safety functionalities
An autopilot runs in a separated hardware from the actual controller due
to safety reasons. In fact this separation decouples the safety functional-
ities from the operational ones, providing the user more freedom in the
development and allowing more complex implementations of the control
algorithm. In particular, the separation allows the autopilot to handle a
failure and transit to a safe state even in case an exception in the con-
troller’s code arise or a glitch in the companion computer occurs. For
instance, it is possible to program the autopilot to have an operational
space limited by a well defined geographic boundary, this is called geo-
fence; in case of an high level controller in the companion board requests a
perimeter violation for any reason, the autopilot can autonomously switch
to a safe state to handle the exception, such as hovering in the last allowed
position, landing in place or returning home.

3.3 PX4 operational functionalities
The main purpose of the PX4 autopilot is to abstract the details on how
the actuators should be driven in order to achieve a specific task. Since
the autopilot operates primarily as a controller, the achievable tasks are
determined by the sensors available on board and are based on the control
of the position and/or the velocity of the drone, considered in the gener-
alized sense of both the linear and angular quantities. Furthermore, the
high level references for the autopilot can be provided via a radio chan-
nel, stored directly on the memory on board or computed in real time
by the companion computer. In this work, all the commands has been
sent using the Open Source ground station software QGroundControl. In
order to provide the best noise rejection capabilities, the PX4 adopt one
or more sensor fusions of the available physical sensors. Each of them
estimates, by means of the Extended Kalman Filter, not only the global
position and orientation of the drone and its generalized velocity, but also
the biases on the inertial and magnetic sensors and the wind velocity. The
PX4 autopilot can operate on a broad family of vehicles ranging from
multi-copters to rovers passing through planes, so a vehicle description is
required to provide it the mechanical parameters needed to compute the
correct control action and predict its effects. This description, within the
PX4 environment, is called airframe. There are many official airframes
that can be used as starting point for the customization of the description
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of the specific drone in use. In this work a simple custom airframe has
been configured according to the modeled drone setup.

3.4 Setup of the SIL environment
The Software In the Loop (SIL) testing approach is based on the idea that
the code implementing the control algorithm tested in simulation must be
the very same code to be deployed on field. This allows to identify logi-
cal problems peculiar to the control algorithm as well as implementation
problems due to the specific infrastructure used. The PX4 repository pro-
vides a build system which allows to compile the hardware’s firmware as
well as the software in the loop binaries and launch them with an already
connected simulator. This is very user friendly for simple projects, where
a good handling of the complexity is not needed. In fact, to configure
the simulator’s world it is just necessary to replace the default world con-
figuration in the PX4 repository and re-run the build system command.
Anyway it is not a good architecture the one that divides resources which
are logically related. Thus, some effort has been spent to manually con-
nect the two pieces of software by means of the additional configurations
available in the PX4 SIL binaries, without relying on the PX4 build sys-
tem, in order to gain more control on the organization of the resources.
In particular, the solution consisted in launching a Gazebo world with
the /clock topic running, i.e. with the simulation not in pause, and then
launching the PX4 compiled as bare SIL executable configured to connect
to a specific model within the running simulation. An other advantage
of this manual setup is that the drone model is not spawn by the PX4
script, as in the default case, but instead an existing model is linked to the
PX4 SIL instance. This allows to test separately the simulation environ-
ment alone or the simulation environment connected with the autopilot.
To get the connection between a running Gazebo world and a PX4 SIL
instance it is necessary to configure in the PX4, by means of an appro-
priate environment variable, the name of the model which will represent
the drone into the simulator and to set in Gazebo the sensor topics to
the specific names expected by the PX4/Gazebo bridge. In this way the
PX4/Gazebo bridge embedded in the SIL binaries can translate all the
sensor topics from Gazebo to the uORB middleware and all the actuation
commands from the middleware back to the simulator. The only sensor
which it is not possible to bridge is the Global Navigation Satellite System
(GNSS) receiver, which remains simulated within the PX4 environment.
This slightly reduces the modularity of overall system since, changing the
simulated world, the PX4 cannot localize itself without an explicit con-
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figuration in the airframe. Furthermore, loosing the control on the GNSS
model also the control on the simulation of its noise is lost, which reduces
the possible test activities that the simulator can perform. Finally, all
the resources has been stored in a dedicated repository and a hierarchy
of ROS2 launch files has been created to startup the environment in the
most neat and tidy way. The details of the structure of this repository will
be discussed in the 4.1.3 paragraph.
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4 ROS2
The Robotic Operating System 2 (ROS2) is a set of libraries that imple-
ments an abstract interface which provides the core functionalities of a
Data Distribution System (DDS) while simplifies many details in order to
keep the configuration effort low as in the ROS1 interface. A DDS is an
open international middleware standard issued by the Object Management
Group (OMG) addressing publish-subscribe communications for real-time
and embedded systems. This standard has been adopted in many sectors
among which railway, aerospace, military and financial [10].

Figure 10: Traffic comparison
between centralized and de-
centralized architecture.

The main features that ROS2 inherited
from DDS are the node discovery function-
alities in a single host, Local Area Net-
work (LAN) or Virtual Private Network
(VPN) and the communication layer func-
tionalities. The actual implementation of
these features depends on the DDS ven-
dor adopted. ROS2 has been designed to
be vendor agnostic, in order to achieve in-
teroperability with existing DDS. The de-
fault DDS adopted is eProsima Fast DDS,
which is an open source implementation of
the standard. The default node discovery
functionality in ROS2 has a distributed ar-
chitecture, i.e. each node periodically ad-
vertise its presence and the services that
makes available on the network through a multicast IP address and waits
the acknowledgment from every other node. This approach is very con-
venient when the number of nodes is low because it requires zero setup
and it is intrinsically fault tolerant. It is worth to point out that the zero
setup property holds in all the networks where the multicast traffic is sup-
ported7. Anyway, the distributed node discovery functionality generates
lots of traffic only related to the discovery of new nodes. To overcome
this problem some DDS, like Fast DDS, support a centralized architec-
ture which is based on a backbone of discovery servers that regulates the
advertisement of the new nodes. Clearly, in this settings additional config-
uration effort is required. In Figure 10 it is possible to see a comparison8

between the number of packets produced by the default decentralized ar-

7Some VPN do not have this support enabled by default
8Source of data: docs.ros.org/en/humble/Tutorials/Advanced/Discovery-Server/Discovery-

Server.html#setup-discovery-server
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chitecture and the centralized one. The data used in the comparison are
related to the traffic of both discovery and data packets of one publisher
and fifty listeners, collected for fifteen seconds. It is clear that the traffic
reduction is dramatic in the centralized case. Furthermore, it is worth to
notice that, after the discovery phase, the communication between nodes
remains peer-to-peer also in the centralized architecture, therefore a cen-
tralized system with limited resources but with some redundancy at the
discovery server level still remains reasonably fault tolerant. The default
communication layer of ROS2 is based on a shared memory protocol for
the intra-process communications and the UDP/IP stack for the others.
Since the UDP protocol can support only a "best effort" quality of ser-
vice, the DDS standard implemented a custom transport protocol on top
of it, enabling the user to configure the desired behavior. Furthermore, in
order to ensure secure communication, an official ROS2 package enables
the DDS feature of encrypting the whole nodes’ traffic. Finally, in case
of many ROS2 applications must be run on the same network, to avoid
mixing the nodes together, the DDS provide a mechanism of logical sep-
aration in domains. Therefore, the nodes will discover each other only in
case the identifier of the logical network, called domain id, is the same.

4.1 ROS2 abstraction
Since the naming convention and the mechanisms available in a DDS are
similar, but still different from the ones used by ROS2, in this section will
be proposed the ROS2 abstraction regardless the actual implementation
in the underlying DDS.

4.1.1 Patterns of communication

The available communication patterns in ROS2 are handled by default by
asynchronous non blocking calls based on:

1. Topics
A topic is an unidirectional data stream exiting from a single node,
named publisher, and entering in multiple other nodes, named sub-
scribers. It enables the publisher-subscriber communication which is
the most flexible pattern available in ROS2, since it allows to handle
a generic data stream which can be produced or utilized by both low
level nodes, such as sensors and actuators, and high level nodes such
as controllers, estimators and filters.

2. Services
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A service is a single request-response interaction between nodes. It
enables the client-server communication which is usually more suit-
able for high level task such as requesting quick calculations or for
sending acknowledged commands.

3. Actions
An action is the most complex node interaction in ROS2. It is the
generalization of the client-server communication and allows to han-
dle the difficulties related to long task executions. In fact, in case of
long tasks, the bare request-response pattern is not flexible enough
to manage the various needs related to the changes due to the pas-
sage of time. Furthermore, long tasks are more likely to result in
race conditions so a resolution mechanism becomes necessary.

Figure 11: The logical elements composing a ROS2 action

To overcome these problems, actions provides the user an unified in-
terface to: set the task objective, receive updates on the task status
and receive the task results. This complex behavior is implemented
in ROS2 by means of a combination of services and topics that can
be resumed, with some simplifications, in the diagram9 in Figure 11.
During the setting of the task objective the action server applies a
user configurable policy to solve the race conditions. Finally, if the
task objective become outdated, while waiting the end of the execu-
tion, the action client has the possibility to request a cancellation.

9Source of image: docs.ros.org/en/foxy/ images/Action-SingleActionClient.gif
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4.1.2 Node features

Figure 12: State machine of a
managed node

In ROS1 a node is a unit of computation
in a ROS graph performing a single logi-
cal operation. ROS2 inherits the concept
of node of ROS1 and enhances its capabil-
ities in terms of decentralization and reli-
ability. In fact the ROS1 nodes depended
on the parameter server on the rosmaster
to store their dynamical configurations. In
this second version of the library each node
embeds a parameter server which hosts
the parameters relevant for its configura-
tion. Furthermore, the concept of "man-
aged node" has been introduced to ensure
that all components have been instantiated
correctly before any component begin exe-
cuting its behavior. This feature will also allow nodes to be restarted,
reconfigured or replaced on-line. The states of a node are shown in the
blue boxes of Figure 12. The only state that has been neglected for sake
of simplicity from the figure is the "Finalized" state, that can be reached
from any state in case of node shutdown or fatal error. The entry point
of the state machine10 after the node creation is "Unconfigured", to trig-
ger the subsequent transitions it is mandatory to have received an explicit
signal from an other process, such as the ROS2 command line tool or an
other node. The transition success is regulated by the related implemen-
tation of the abstract callback in the node class. All the abstract callbacks
are shown in the yellow boxes of Figure 12. Finally, in order to optimize
the communications, it is possible to make minimal changes to a node
definition and add a predisposition to be composed into a single process
in a launch file definition11. This allows to adopt zero-copy intra-process
communications, based on shared pointers.

4.1.3 Package structure

A ROS2 application is structured in packages which follow a set of best
practices12 that standardize their form in order to create a consistent
ecosystem of packages to improve readability and modularity. In particu-
lar it has a fixed organization in folders typical of a build system such as

10Source of image: www.youtube.com/watch?v= GXHBP5sA70
11docs.ros.org/en/rolling/Tutorials/Intermediate/Writing-a-Composable-Node.html
12docs.ros.org/en/rolling/The-ROS2-Project/Contributing/Developer-Guide.html#package-layout
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CMake. Other than the source code folders, a package contains the launch
file declarations as well as the URDF models and Rviz2 configurations.

The root folder of the project, in the ROS ecosystem, is called workspace
and it contains an src, a build and an install folder. As usual, the src folder
contains all the source code of the packages which compose the application
while the build and install folders contains all the compiled resources, or-
ganized in such a way that the build system can avoid to re-build them in
case their corresponding source code has not been changed. Furthermore,
the install folder contains the scripts that allows to make available the fi-
nal executable of the application to the standard ROS environment. This
process is not a standard installation with a copy of the executable in the
standard search path of the operating system, rather it is a volatile change
in the shell’s search path environment variable. The advantage of this ap-
proach is based on the improved modularity of the resulting installation.
In fact, it is possible to install on the same system, in different times,
multiple sets of packages without any conflict. Furthermore, this installa-
tion type, based on the modification of the search path variable, enables
to port at the package level the concept of variables shadowing, present
in high level programming languages. In particular, this concept in the
ROS2 abstraction is called overlay and it is particularly useful to replace
a subset of packages provided by a ROS2 application without changing its
source code or launch files definition.

In order to automate the build of each dependency, ROS2 provides
colcon, a build tool which determines the dependency graph and invokes
the specific build system for each package in topological order. This build
tool can compile both ROS1 and ROS2 packages as well as Gazebo plugins
[9]. The main build system adopted in ROS2 packages are ament cmake
and python setuptools.

4.2 Implemented nodes
In this work the ROS2 environment has been adopted to:

1. Start the simulation environment
The simulation environment depends on a number of element that
must be started in the correct order. This requirement is taken into
account by the launch file hierarchy shown in Figure 13. Anyway,
the same functionality can be provided by a single launch file. The
reason why a more complex architecture has been used, is that it
enables to have a more granular control on the nodes startup during
the debug phase. In fact, for some activities, such as unit testing, it is
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useful to activate the least possible nodes to check the performances
of a module which provides a single logical functionality.

Figure 13: Adopted launch files hierarchy

An other advantage of this modular hierarchy of launch files is that
all the operational nodes, which are the actual nodes that will run in
the physical implementation of the drone, can be launched by means
of the same launch file with different input parameters.

2. Develop the aforementioned Gazebo custom plugins
In the paragraph 2.2.2 the generic structure of a Gazebo plugin
and the mathematical description of the specific custom plugins has
been discussed. Here will be discussed the development environment
adopted to implement such plugins and its connection with the ROS
ecosystem. In fact, as has been discussed in the paragraph 4.1.3, the
Gazebo build tool has been unified with the ROS2 one and there-
fore a Gazebo plugin can be developed alongside the standard ROS2
nodes and built with them. This is what has been done in this work:
two separate libraries dependencies which shares the same building
environment. The adopted approach achieves the highest modular-
ity, enabling to develop pure Gazebo plugins independent from the
ROS2 environment. The main drawback of this approach is the lack
of flexibility because, in order to enable a connection with ROS2, it
is mandatory the use of the ROS/GZ bridge, which does not support
many topic data types, limiting the communication capabilities. In
some applications, though, a clear distinction where Gazebo ends
and ROS2 begins is not needed, therefore it is possible to adopt a
much more flexible approach. In fact, since both the dependencies of
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Gazebo and ROS2 are handled by the same software, such software
can build programs which use the two libraries at the same time, en-
abling to create Gazebo plugin with embedded ROS2 nodes. In this
way the Gazebo plugin does not require a bridge to communicate
with ROS2 and has more options to configure the quality of service
of the communications as well as the data types transmitted.

3. Develop the wind controller
The wind controller is a ROS2 node which takes in input, from the
launch file configuration, the parameters of the desired sinusoidal
wind law that will describe the wind behavior in the simulation. In
Figure 14 it is shown the parameterized wind law adopted for the
tests performed in this work. To customize the wind law with a
different signal it is necessary to change the source code of the node
and rebuild the package. Afterwards, the node periodically publishes
the corresponding sampling of the wind law in the update topic of
the wind-drag plugin.

Figure 14: Wind law configuration provided to the user

4. Configure the robot proprioception’s simulator
A robotic simulation environment is not complete if it simulates only
the external dynamics of the robot. In fact, it is relevant also the
simulation of the understanding that the robot has of itself. In partic-
ular, in this work this understanding consists in retrieving and inter-
preting the odometry from the autopilot and in correctly locating the
acquired point-cloud from the depth-camera. The precise descrip-
tion adopted to achieve these purposes will be discussed in the point
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number five of this paragraph. Here will be addressed a methodolog-
ical problem related to complexity management of a robot model in
projects where both Gazebo and Rviz2 are used. Rviz2 is the sim-
ulation software embedded in ROS2 which allows to visualize the
information that the robot has about itself. In order to work, this
second simulator needs at least a minimal description of the robot
kinematics. Unfortunately this description is not compliant with the
SDF specification so, in the early stages of ROS2, a second model of
the drone should have been configured and maintained in the URDF
format, the native description of Rviz2. Tanks to the sdformat urdf
package this redundant description is no longer needed since this offi-
cial package allows to translate, during the launch phase, the Gazebo
model into the URDF description needed by Rviz2 nodes. Anyway,
in this work the drone model has been kept as simple as possible, so
only a minimal URDF description has been provided. In the cases
where only a URDF model is available, the conversion to SDF is
directly supported by Gazebo. In this way the migration to SDF-
only descriptions, which very likely will be the predominant format
adopted in the years to come, is simplified.

5. Develop the operational nodes
The operational nodes perform two logical tasks: defining the refer-
ence frame hierarchy against which the data are expressed and the
actual high level controller of the drone. The hierarchy of reference
frames, shown in Figure 15, embeds the information of the drone
pose, therefore it is necessary to collect the odometry data from the
PX4 and interpret them correctly. This data are published in a topic
in the form of position and orientation of a Forward Right Down
(FRD) mobile frame with respect to a North East Down (NED) in-
ertial frame. This convention is common among aerospace engineers,
but it tends to be less intuitive than the more standard Forward Left
Up (FLU) and East North Up (ENU), for this reason in this work
the frames configured in both Gazebo and Rviz2 follow these latter
conventions. In order to translate the information coming from the
odometry of the PX4 to something that Rviz can correctly inter-
pret, some geometrical transformations are required. In particular,
the final objective is to translate all the data into the ENU inertial
frame, therefore two transformations are needed. The first one con-
verts the NED frame directly to the ENU frame, implemented with a
static TF publishing the quaternion (0, [

√
2
2 ,

√
2
2 , 0]), which represents

the left matrix of Table 2. The second one converts the FLU frame
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into the FRD frame, by means of an other static TF publishing the
quaternion (0,[1,0,0]), which represent the right matrix of Table 2.
Finally, a node publishes the PX4 odometry as a dynamic TF be-
tween the FRD frame and the NED frame, closing the path from the
mobile FLU frame to the ENU inertial frame. In order to correctly
interpret the point-cloud an additional reference frame for the rela-
tive pose of the camera with respect to the FLU frame of the drone
is required. This can be achieved with a static TF configured with
the mechanical parameters of the specific drone in use.

Table 2: On the left the NED frame expressed with respect to an ENU
frame. On the right a FLU frame expressed with respect to FRD frame.

XNED YNED ZNED XFLU YFLU ZFLU
0 1 0 1 0 0
1 0 0 0 -1 0
0 0 -1 0 0 -1

Figure 15: Reference frame hierarchy
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5 Simulation results
The simulation environment has been tested and all the elements seems to
work as they should, with no noticeable misbehavior. For this reason the
plugins that has been analyzed in detail in this work are the custom ones
only. The experiment adopted to test them together is a simple hovering.
In fact, all the data collected observing a takeoff, the spraying activity and
all the countermeasures deployed by the PX4 to contrast a strong wind
gust are enough to check the correct behavior of such software. In the
following sections each part of the test with the relative results will be
analyzed.

Figure 16: Actual path traveled by the drone, disturbed by the wind

5.1 Takeoff
During the takeoff phase it is possible to check the gravitational and in-
ertial forces produced by the sloshing-effects plugin. In particular, before
the takeoff the resultant of the sum of the two forces should be equal to
the weight of the tank, since a still body does not have any inertial force.
In the other hand, after the takeoff an inertial component appears and
increases in magnitude the resultant force computed by the plugin. The
tank has been initially filled with one liter of water, which has mass of
one kilogram. Instead, the empty tank mass has been unified to the drone
frame mass configured in the SDF model.
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Figure 17: Gravitational and inertial forces along the z axis produced by
the tank filled with one liter of water

In Figure 17 it is shown a detail of the takeoff phase. In particular, it is
clear that the resultant force cease to be constant and have a jump right
before the drone leaves the ground, in other words when the acceleration is
maximum. Furthermore, when the climbing rate reaches the steady state,
the acceleration returns near zero as well as the inertial force; this behavior
is evident during the last seconds of the graph when the resultant force
settles near to the tank weight force value.

The takeoff phase also allows to test the quality of the modeling of the
drone actuation system by means of the multi-copter motor plugin. In fact
a good model should be able to predict the maximum payload that the
specific multi-copter can carry. In this work the configurations adopted for
the motors were provided by the drone manufacturer so they performed
very well without any tuning. This feature has been tested in a simula-
tion configured with a payload exceeding the manufacturer specification
and in that case drone was correctly unable to takeoff because the thrust
generated by the motors was not enough.
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Figure 18: Analysis component by component of the drag force produced
by the given wind, on x and y axis, and by the drone velocity on the z axis

An other effect that can be seen during the takeoff and landing phases is
the drag force opposing the motion. In fact along the z axis the true wind
speed has been imposed to be zero, so cannot interfere with the apparent
wind speed generated by the vertical drone motion. This behavior is shown
in the third graph of the Figure 18.

5.2 Spraying
The spraying activity reduces the quantity of liquid inside the tank, mod-
ifying the inertial and gravitational forces on the whole drone. In Figure
19 it is possible to see how the "sloshing-effects" custom plugin quantifies
such behavior given a flow rate control signal. In particular, when the
spraying flow rate is imposed different to zero the liquid inside the tank
decreases and the corresponding weight with it. This variation in weight
can be detected also in Figure 20, where around the twentieth second the
motor speed start reducing due to the reduction of the fluid in the tank.
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Figure 19: Variation of the fluid in the tank due to the spraying activity

5.3 Wind gust compensation
In hovering condition, other than the influence of the tank on the drone,
the wind is a source of disturbance for the PX4 controller. The Figure
20 resumes how the autopilot handles all the disturbances active on the
system. After the twenty-fourth second the tank is completely discharged
and all the command sent to the motors is due to the wind compensation.
Since in this specific simulation the wind has been set with a sinusoidal
shape, it is possible to match such shape also in the motor speed.
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Figure 20: Motor activity compared with the factors which influence its
behavior

Anyway, in order to explain why the drone exhibits such small increase
in motors’ speed in front of a strong wind, it is necessary to observe how
the drone’s attitude changes over time. This is resumed in Figure 21,
where it is clear that the PX4 is pitching and rolling the drone in order to
orient the propellers against the wind during the peak of the gust. In this
way the thrust direction is optimized to compensate the effect of the wind
drag.

Figure 21: Change of the drone orientation to compensate the wind drag

39



6 Conclusions
In this work many software has been integrated in order to provide the
"Department of Mechanical and Aerospace Engineering" of the "Politecnico
di Torino" a simulation environment to test the control algorithms related
to their research activity. This environment has been designed to be as
modular as possible, allowing the users to startup only the minimal set
of tools required to perform their tests and to incentive the re-use of each
module. The outputs of the test simulations are coherent with the expected
behavior, therefore the environment started to be used by the researchers
as planned. Anyway there are still some important improvements that can
increase the representativeness of the simulator, such as the introduction
of a real sloshing effect formula in the sloshing-effect plugin, rather than
using a simple variable mass relation, and the adoption of the geometry of
the actual drone that will be used by the research group, instead of relying
on a default model.
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Appendix A - Point-clouds
A point-cloud is a discrete set of points in space. These datasets can
represent 3D objects and usually are collected from the physical world to
re-create a solid model. Since this kind of representation is usually expen-
sive in term of disk space and computational resources, there are different
formats to store the data, optimized for specific tasks. Furthermore, there
are many techniques to filter out the sensor noise and to convert them into
solid meshes, much more convenient to be used.

Acquisition
A point-cloud can be collected in many ways, in this section the four more
common methodology will be discussed.

Range finder scansion

A range finder is a tool which allows to measure the distance of an object
with specific characteristics. Nowadays, the more common range find-
ers are sonar, radar and lidar. All these names are acronyms standing
for SOund Navigation And Ranging, RAdio Detection And Ranging and
LIght Detection And Ranging. Since they can measure the distances of
objects with respect to a specific point in space, they can collect a point-
cloud performing a scansion of the space. The sonar technology performs
poorly outside water, so it is mainly used in maritime applications such
as mapping the seabed. The radar technology is highly effective in long
ranges with big objects, so, other than detecting airplanes and ships, it is
used in military satellites to map the earth’s surface. The lidar technology
has shorter ranges, but it has an outstanding precision in measurements,
so it is used in many contexts, such as robotics, where precision rather
than range is needed. All these range finders can work in real time and
outdoor, but they cannot measure colors in their base form, which is a big
drawback in some sectors.

Stereoscopic Vision

In nature many animals, among which the humans, have eyes on the same
side of the body. This enables the sensing of depths by means of the so
called stereoscopic vision. Using two cameras is it possible to implement
computer vision systems based on such phenomenon.
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Figure 22: The Depth cam-
era’s working principle

In fact, since the relative position of
the cameras is known, the parallax phe-
nomenon can be exploited to calculate the
distance of some features of the same scene,
viewed from two different but close per-
spectives as in Figure 22. This method-
ology can be implemented by means of
standard cameras with an external elab-
oration unit or using embedded systems
called depth-cameras13. Both the imple-
mentations have high quality outputs and
can work outdoor in real time. Further-
more, the coloring of the resulting point-cloud is maintained.

Light projection and detection

Figure 23: The Depth cam-
era’s working principle

A cheaper solution than a depth camera
is a system composed by a single infrared
camera and a infrared projector. This
technology was made famous by the Xbox
Kinect developed by Microsoft. The idea
is to avoid the computational burden due
to the feature matching process between
the stereoscopic images, enabling the use of
the parallax phenomenon by evaluating the
distortions on a projected pattern. In par-
ticular, if an infrared light beam is filtered
through a diffractive element its transver-
sal section shape will be dependent on the
traveled distance. By capturing, with an
infrared camera, the distorted diffraction
pattern it is possible to measure the dis-
tance of each point where the pattern is projected from the light source,
creating the point-cloud [11]. This method is less precise and it is suitable
for indoor environments where the infrared noise remains low. Further-
more, the range of such devices is limited and in their base form they
do not support colors. Anyway, an additional RGB camera can added to
provide the color layer to the point-cloud. As a matter of fact, even if
the performances are relatively poor, the real time acquisition speed and
the low prices make the devices based on this technology still a viable

13Image: www.intelrealsense.com/stereo-depth-vision-basics
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alternative [5].

Image post processing

Capturing images of the same object from many perspectives with a con-
stant illumination allows to match the same features, triangulate them
and create the point-cloud. This procedure is called photogrammetry and
requires at least one resolution camera with a system to change framing or
several fixed high resolution cameras. An environment with a controlled
illumination is highly recommended, therefore it is not suitable for generic
outdoor applications. Finally, a good computational power to perform the
post process of the data is required, anyway the real time acquisition speed
is out of reach. This method is expensive in terms of elaboration time, but,
in the other hand, it produces high quality outputs. Furthermore, the
collected point-cloud keeps the information regarding the coloring of the
object, making the photogrammetry the principal digitalization method
adopted in the art conservation field. On the market many proprietary
photogrammetry software as well as open source ones, such as Meshroom
and Regard3D, are available.

Data formats, filtering and conversions
In the past, point clouds were invented independently by various parties
to fulfill different purposes. Therefore, there are many data formats to
accomplish the task of storing a point-cloud [3, 8]. Anyway, each data
format has been optimized to perform the specific task for which it was
designed, but the scope was usually too narrow to be efficient also in other
contexts [8]. The open source project Point Cloud Library (PCL) defined
a flexible format for efficient point-cloud general purposes elaborations.
The library allows to elaborate and convert the point-clouds in many for-
mats. An other important open source tool for point-cloud elaboration
and conversion is Cloud Compare, which integrates many libraries other
than PCL to extend the overall processing capability. The last relevant
open source software to consider is MeshLab, which enables to editing the
point-cloud by means of a convenient graphical interface. A particularly
useful capability of this software is to unify the filtering and re-sampling
functionalities, useful for the data complexity reduction, with the algo-
rithms needed to convert the point-cloud into a mesh. This passage is
non trivial and there are many options to fit a point-cloud with a solid
shape. In this work some tests has been carried out to estimate the main
difficulties of the creation of a terrain model starting from a point-cloud.
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Using some freely available point-clouds14 a simple but effective procedure
has been identified. In particular, the raw point-cloud has been first re-
sampled into a uniform 3D grid of points and then the surface has been
reconstructed into a mesh by means of the Ball Pivoting algorithm.

14geoslam.com/sample-data
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Appendix B - Official Gazebo Plugins
In order to write the custom plugins some official ones has been studied
since the documentation about the new version of Gazebo is too little to
be exhaustive. This study has been useful, other than to learn some best
practices and coding techniques, which are not relevant to this document,
to have a precise idea of the level of detail introduced in the model by these
plugins and what kind of applications can be simulated with the default
suite. In the following paragraphs will be described the mathematical
representation of each plugin.

Buoyancy
This plugin adds a buoyancy force to all the objects which have a collision
domain and has been enabled to be buoyant. In particular, the z axis of
the fixed frame is divided into layers and each layer is characterized by a
fluid density. This allows to model a lumped density change due to the
increase of depth or altitude. Then the collision domain of each object is
partitioned according to the layers and for each partition is computed the
center of buoyancy and the volume. With this information the Archimedes
buoyancy force is computed for each layer and applied to the center of
buoyancy according to the formula reported below. It is worth to notice
that this plugin is suitable for both maritime and aerial simulations, since
the airships dynamics can be modeled in first approximation with the same
rule.

Fbuoyancy(layer, pose) = density(layer) ∗ volume(layer, pose) ∗ gravity

Hydrodynamics
The scope of this plugin is specifically for the maritime simulations. In air,
all the effects modeled with this plugin can be neglected due to a small fluid
density. Unlike the buoyancy plugin, here the density has been assumed
constant along the z axis. This further reduces the plugin applicability to
only displacement ships and submarines in a fixed range of depth. The
effects modeled by the plugin will be described in the following paragraphs.

Ocean currents

Underwater, the currents act similarly to the wind, therefore the plugin
provides an API to configure the topics where the local current velocity
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experienced by each link is published. This allows to compute the apparent
linear velocities of the link with respect to the water.

Added mass

In fluid mechanics, when a moving body accelerates or decelerates, it needs
to deflect some of the fluid around it. This phenomenon is called added
mass and it is modeled through a second order tensor which bounds the
generalized fluid acceleration vector to the resulting force vector on the
body [2]. Anyway, in many cases it is not necessary to keep the six degrees
of freedom of the system coupled, so it is convenient to set to zero the off-
diagonal terms of the matrix. The formula using the convention adopted
in the plugin API is the following:

FaddedMass =



xU̇ xV̇ xẆ xṖ xQ̇ xṘ

yU̇ yV̇ yẆ yṖ yQ̇ yṘ

zU̇ zV̇ zẆ zṖ zQ̇ zṘ

kU̇ kV̇ kẆ kṖ kQ̇ kṘ

mU̇ mV̇ mẆ mṖ mQ̇ mṘ

nU̇ nV̇ nẆ nṖ nQ̇ nṘ




linAccXapparent

linAccYapparent

linAccZapparent

angAccRoll
angAccP itch
angAccY aw


Linear and quadratic damping

The linear and quadratic damping are modeled as decoupled relations ac-
tive on each degree of freedom. In particular in the linear damping the
force is proportional to the generalized velocity where in the quadratic
damping the force is proportional to the square of the generalized veloc-
ity. Letting j a generalized coordinate and Vj the associated generalized
velocity, holds for each j:

Fdampj = β1j · Vj

F
damp2

nd
j

= β2j · |Vj| · Vj

Lift and Drag
The lift and drag plugin is directly related to a specific link, therefore for
each airfoil a different plugin must be configured. The scope of the plugin
is to quantify on a 2D plane lift, drag and pitching moment of the given
aerodynamic profile with a flap to modify its behavior. The mathematical
relations bounding the apparent wind with the wrench applied on the
airfoil are presented below. In the convention adopted here, the suffix I
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denotes a vector expressed with respect to the inertial reference frame.
The fluid dynamic forces are computed according to:

F(L/D)/Mp =
1

2
· ρ · |velIProjectedOnLiftDragP lane|2 · C(L/D/M) · S · direction

Where FL refers to the lift, FD refers to the drag, Mp refers to the pitch-
ing moment [1], ρ represents the fluid density and S the airfoil surface. The
direction of pitching moment, lift and drag are spanwiseI, liftI and dragDi-
rectionI respectively and they will be discussed in the next lines together
with the apparent wind velocity velI vector. The lift, drag and pitching
moment coefficients depend on the airfoil polars plus a contribution due
to the flap control action.

CM = Cmpolar + (cmδ · controlJointPosition)

CL = Clpolar + (controlJointRadToCl · controlJointPosition)

CD = Cdpolar

The polar coefficients are linearized with respect to the angle of inci-
dence α and during normal operations are computed according to:

C(m/l/d)polar = C(m/l/d)α · α · cos(sweepAngle)

While in stall condition the line used is Cl0+Clαstall · αafterStall, which
has negative angular coefficient.

C(m/l/d)polar = C(m/l/d)α·αstall·cos(sweepAngle)+C(m/l/d)αstall·(α−αstall)

The apparent wind velocity not only considers the relative linear veloc-
ity between the body and the surrounding fluid, but also the contribution
of the instantaneous velocity of the airfoil center of pressure due to a non
zero angular velocity.

velI = normalize(linkLinV elI − windLinearV elI

+ linkAngV elI × centerOfPressureI)

The versor of the pitching moment i.e. the normal to the lift drag plane
is defined as:

spanwiseI = normalize(forwardI × upwardI)

The lift versor is defined as:

liftI = normalize(spanwiseI × velIProjectedOnLiftDragP lane)
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The drag versor is defined as:

dragDirectionI = −normalize(velIProjectedOnLiftDragP lane)

In the formulas of the polar coefficients the sweepAngle is used to
neglect the velocity component normal to the lift-drag plane. In fact,
sweepAngle is defined as the angle between velI and the lift-drag plane.

sweepAngle = asin(velI · spanwiseI);note : sin(x) = cos(90− x)

The incidence angle is computed starting from the zero lift angle α0
and summing the angle between the profile normal and the apparent wind
normal.

alpha = α0 + acos(liftI · upwardI)
Other than the Lift and Drag plugin, Gazebo provides the Advanced

Lift and Drag plugin, which provides similar functionalities but taking into
account the three-dimensionality of the airfoil and all the effects active on
the six degrees of freedom of the body.
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