
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Efficient Multi-Processor Interfacing in
RISC-V Systems Using Interrupt-Driven

Communication and Shared Memory

Supervisor

Prof. Daniele Jahier PAGLIARI

Candidate

Mustafa Bin TAHIR

July 2024

Abstract

This thesis investigates the interfacing of two RISC-V processors using interrupt
handlers to provide efficient communication and data transfer. The study focuses on
developing a method that uses interrupt-driven systems to optimize performance,
particularly for IoT applications that require energy efficiency while providing
relatively high performance. The thesis begins with an in-depth examination of
the RISC-V architecture, including a detailed discussion of the RV32I subset, and
progresses to the development of an interfacing methodology that employs shared
memory and synchronization mechanisms.

It then shows how a primary low-power RISC-V processor can communicate with
a secondary high-power accelerator processor using interrupt signals to manage
data transfer through shared memory. The provided SystemVerilog and C code
demonstrate the implementation of this methodology, highlighting the roles of
interrupt handlers and memory management techniques.

Experimental validation was conducted entirely in a software simulation environ-
ment, employing tools such as the Xcelium Logic Simulator. Tests focused on
verifying interrupt handling, data transfer accuracy, synchronization, and overall
performance metrics. The experimentation, while preliminary, indicated the feasi-
bility and efficiency of the proposed system, demonstrating the potential for reliable
communication and high-performance data exchange between the processors.

Key contributions of this thesis include a robust framework for multi-processor
interfacing using interrupt-driven communication and shared memory, along with
practical insights into memory utilization and data synchronization. The research
findings suggest a lot of potential for enhancing the performance and scalability of
RISC-V based systems, particularly in resource-constrained environments.

Future work could extend these findings through hardware-based implementations
and explore asynchronous processing techniques to further reduce power consump-
tion and improve system responsiveness. This thesis lays a solid foundation for
advancing the design and implementation of efficient multi-processor systems in
various application domains.

i

Acknowledgements

I would like to express my sincere gratitude to my unversity supervisor, Professor
Daniele Jahier Pagliari, for his assistance and support in various aspects of my
thesis. His contributions have been invaluable and has helped me to complete this
thesis successfully.

I would like to extend my heartfelt thanks to my family for their endless support,
love, and encouragement. Their constant support and motivation have kept me
going during the challenging times.

Finally, I would like to thank all the participants who took part in my thesis
and shared their valuable insights and experiences. Without their cooperation, this
thesis would not have been possible.

ii

Table of Contents

Acronyms viii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Structure . 3

2 Technical Background 4
2.1 RISC-V Architecture . 4

2.1.1 ISA: Instruction Set Architecture 4
2.1.2 RISC (Reduced Instruction Set Computing) 4
2.1.3 CISC (Complex Instruction Set Computing) 5
2.1.4 RISC vs CISC . 5
2.1.5 RISC-V Overview . 6
2.1.6 RISC-V RV32I . 6

2.2 Communication Protocols . 7
2.2.1 Interrupts . 8
2.2.2 Buses . 8
2.2.3 Networks on Chip . 10
2.2.4 Conclusion . 10

3 Methodology for Interfacing RISC-V Processors 11
3.1 Introduction . 11
3.2 Overview of Interrupts . 12

3.2.1 Types of Interrupts . 13
3.2.2 Interrupt Triggers . 14
3.2.3 Benefits of Using Interrupts 15
3.2.4 IBEX Processor Overview 15

3.3 Using Interrupt Handlers for Interfacing 20
3.3.1 Setting Up Interrupt Sources 21
3.3.2 Interrupt Service Routine (ISR) 24

3.4 Memory Utilization . 27

iv

3.4.1 Memory Mapping . 27
3.4.2 Synchronization . 28
3.4.3 Read/Write Flags . 29

3.5 Data Transfer Mechanism . 29
3.5.1 Direct Memory Access (DMA) 29
3.5.2 Shared Memory with Flag Synchronization 30
3.5.3 Memory Passing . 30
3.5.4 Data Transfer Process . 30

3.6 Challenges and Considerations . 31
3.7 Conclusion . 32

4 Experimentation and Testing 33
4.1 Introduction . 33
4.2 Experimental Setup . 33

4.2.1 Software Environment . 33
4.3 Testing Methodology . 34

4.3.1 Objectives . 34
4.3.2 Test Script . 35

4.4 Challenges and Observations . 37
4.4.1 Challenges . 37
4.4.2 Observations . 38

4.5 Conclusion . 38

5 Asynchronous Architecture and its Potential 39
5.1 Introduction to Asynchronous Processors 39
5.2 Key Concepts in Asynchronous Processing 40

5.2.1 Handshake Circuits . 40
5.2.2 Bundled Data Protocol . 41
5.2.3 The Muller C Element . 43
5.2.4 The Muller Pipeline . 44
5.2.5 Classification of Asynchronous Circuits 48

5.3 Use of Asynchronous Processors in the Studied Dual-Processor System 48
5.3.1 Differences Between Asynchronous and Synchronous Processors 49
5.3.2 Disadvantages of Asynchronous Processors 50
5.3.3 Summary . 51

6 Conclusion 52
6.1 Methodology . 52
6.2 Memory Utilization . 52
6.3 Data Transfer Mechanism . 53
6.4 Experimentation . 53

v

6.5 Conclusion and Future Work . 53

Bibliography 55

vi

Acronyms

IOT
Internet of Things

RISC
Reduced Instruction Set Computing

CPU
Central Processing Unit

GPU
Graphics Processing Unit

RV32I
RISC-V 32 Bit Integer

ISA
Instruction Set Architecture

CISC
Complex Instruction Set Computing

IRQ
Interrupt Request

i/o
Input/Output

ISR
Interrupt Service Routine

viii

IVT
Interrupt Vector Table

CSR
Control Status Register

NMI
Non-Maskable Interrupt

mepc
MAchine Exception Program Counter

MIE
Machine Interrupt Enable

MPIE
Machine Pending Interrupt Enable

MPP
Machine Previous Privilege

mie
Machine Interrupt Enable

mip
Machine Interrupt Pending

mtvec
Machine Trap Vector

WARL
Write Any Values, Reads Legal Values

DMA
Direct Memory Access

PVT
Process Voltage Temperature

ix

REQ
Request

ACK
Acknowledge

EMI
Electromagnetic Interference

PCI
Peripheral Component Interconnect

PCIe
Peripheral Component Interconnect Express

USB
Universal Serial Bus

SATA
Serial Advanced Technology Attachment

PATA
Parallel Advanced Technology Attachment

CAN
Controller Area Network

AMBA
ARM Advanced Microcontroller Bus Architecture

SoC
System on Chip

AXI
Advanced eXtensible Interface

x

Chapter 1

Introduction

1.1 Motivation

The contemporary computing landscape is marked by a relentless pursuit of effi-
ciency and performance optimization. With the advent of the Internet of Things
(IoT), computing systems are confronted with the challenge of operating within
strict constraints of power consumption, area utilization, and performance. As IoT
applications continue to be adapted across diverse domains, there is an increasing
demand for processing power, driving the need for innovative solutions to address
these evolving requirements.

At the forefront of this technological evolution is the RISC-V architecture, cele-
brated for its simplicity, scalability, and open-source nature. Within the IoT context,
RISC-V processors offer an attractive proposition, providing a customizable and
energy-efficient foundation for embedded systems. However, standalone RISC-V
processors may prove insufficient to meet the diverse computational demands of
IoT applications.

This thesis delves into the exploration of synchronous RISC-V processors’ inter-
facing, particularly within heterogeneous multi-CPU configurations. The primary
processor employed in this study is a straightforward RV32I RISC-V CPU [1],
chosen for its simplicity and energy efficiency. Despite its modest capabilities, the
RV32I CPU serves as the cornerstone of the system, efficiently handling routine
tasks while conserving energy.

In conjunction with the primary CPU, a secondary RV32I RISC-V processor
with higher processing capabilities [2] is integrated as an accelerator. This accel-
erator processor is intended to execute complex and computationally intensive

1

Introduction

operations that surpass the capabilities of the primary CPU. By delegating such
tasks to the accelerator, the overall system performance is improved, facilitating
efficient utilization of computational resources.

The term "accelerator" in this context refers to a specialized processing unit
engineered to offload specific tasks from the main CPU, thereby enhancing over-
all system performance. Accelerators are finely tuned for particular workloads,
encompassing domains such as signal processing, machine learning inference, or
cryptographic operations. By entrusting such tasks to dedicated hardware accelera-
tors, the main CPU can concentrate on its primary functions, leading to heightened
efficiency and responsiveness.

Additionally, this thesis delves into the emerging frontier of asynchronous
RISC-V processing as a potential avenue for future advancements. In contrast
to traditional synchronous designs, asynchronous circuits eschew a global clock
signal, relying instead on local timing signals to synchronize individual components.
This asynchronous approach offers several advantages, including reduced power
consumption, improved noise immunity, and enhanced scalability. However, it also
poses challenges such as heightened design complexity and potential timing hazards.

In summary, the thesis aims to develop efficient and adaptable computing sys-
tems tailored for IoT applications. By delving into the interfacing of synchronous
RISC-V processors and investigating the prospects of asynchronous designs, this
thesis aspires to contribute to the ongoing evolution of energy-efficient and high-
performance computing solutions.

2

Introduction

1.2 Thesis Structure
This thesis is structured as follows:

• Chapter 1 introduces the motivation behind the research and outlines the
structure of the thesis.

• Chapter 2 presents the technical background that will become the basis
for this thesis, which includes RISC, while also briefly shedding light on the
potential method of communication to be used.

• Chapter 3 elaborates on the methodology used to interface the two syn-
chronous RISC-V processors, while also detailing the techniques utilized for
data transfer and memory sharing.

• Chapter 4 presents the experimentation and testing approach used to verify
the methodology used in the previous chapter, while shedding light on the
challenges and further avenues of improvement.

• Chapter 5 discusses the implications of the findings, including the potential
applications of asynchronous RISC-V and future directions for research in this
area.

• Chapter 6 provides a conclusion summarizing the key findings of the thesis
and suggesting avenues for further research.

Through this structured approach, this thesis aims to provide valuable insights
into the design and implementation of efficient and scalable computing systems
based on the RISC-V architecture.

3

Chapter 2

Technical Background

2.1 RISC-V Architecture

2.1.1 ISA: Instruction Set Architecture
The Instruction Set Architecture (ISA) is defined as the interface between the
hardware and software of a computer system, which gives the set of instructions
that a processor can execute, how these instructions are encoded, the format of
instructions, and the behavior of the processor in response to these instructions. It
is basically a bridge between the developers of software, and the digital designers
of the hardware, in order to come to terms on a common ground to understand
how the processor works and which instructions it can take.

Depending on the complexity of the instructions, data types, number of operands
etc., ISA can be of various types Reduced Instruction Set Computing (RISC) and
Complex Instruction Set Computing (CISC).

2.1.2 RISC (Reduced Instruction Set Computing)
RISC defines a family of simple ISAs focused on speed. Processors based on this
architecture usually feature a small set of instructions, which all performs a single,
well-defined task. This reduces the complexity of instructions, which allows them
to improve performance, simplify hardware design, and provide efficient pipelining
and optimization techniques.

Key features of RISC architectures include fixed-length instruction formats, a
large number of general-purpose registers, simple addressing modes, and a load/s-
tore architecture where arithmetic and logical operations operate only on data in

4

Technical Background

registers. Examples of RISC architectures include RISC-V, MIPS, SPARC, ARM
etc.

2.1.3 CISC (Complex Instruction Set Computing)

CISC architecture has a rich instruction set that includes complex instructions
that can perform multiple tasks. Therefore, CISC processors normally feature a
larger set of instructions. The goal of CISC architectures is minimize the number
of instructions during writing complex tasks.

CISC architectures often include instructions that perform multiple operations
in a single instruction, such as memory accesses, arithmetic operations, and control
flow operations. For the execution, these complex instructions are broken down
into smaller and simpler instructions, which are then passed through the execution
unit. Examples of CISC architectures include Intel x86, Motorola 68k, and DEC
VAX.

2.1.4 RISC vs CISC

The comparison between RISC and CISC architectures has been debated for a long
time in computer architecture. While RISC architectures prioritize simplicity and
efficiency, CISC architectures focus a rich set of complex instructions. Choosing
between the two completely depends on factors such as performance requirements,
power consumption, instruction set design philosophy, and application domain.

RISC architectures are noramlly preferred in embedded systems, mobile devices,
and other resource-constrained environments where power efficiency and perfor-
mance are critical. In contrast, CISC architectures are used more in desktop and
server environments, where compatibility with existing software and legacy systems
is important.

Despite their differences, modern processors often have a combination of RISC
and CISC techniques, blurring the lines between the two architectures. Many
modern processors use a RISC-like core with an instruction decoder that translates
the complex CISC instructions into simpler ones for execution.

5

Technical Background

2.1.5 RISC-V Overview
The history of RISC-V traces back to research conducted at the University of
California, Berkeley, by Prof. David Patterson, Prof. Krste Asanović, and their
students. Beginning in 2010, the RISC-V project aimed to create an open-source
ISA to support research and education in computer architecture. The project
gained momentum with the formation of the RISC-V Foundation in 2015, further
supported by the collaboration among industry and academic institutions to de-
velop and promote the RISC-V ISA.

RISC-V was designed to address the shortcomings of existing ISAs, including
proprietary licenses, limited extensibility, and lack of standardization. Since its
beginning, RISC-V has witnessed a widespread adoption across various domains,
including academia, and industry. Key features of the RISC-V architecture include:

• Open Standard: RISC-V is an open standard ISA maintained by the RISC-
V Foundation, allowing for widespread adoption and collaboration in the
development of hardware and software tools.

• Modularity: The architecture is designed in a modular fashion, enabling
customization and extension through the addition of optional instruction set
extensions (e.g., RV32I, RV64I, RV128I).

• Simplicity: RISC-V ISA offers a minimalistic instruction set, comprising a
small set of basic instructions optimized for performance and efficiency.

• Scalability: RISC-V supports different register widths (e.g., 32-bit, 64-bit,
128-bit) and instruction set variants, allowing for scalability across a wide
range of applications and performance requirements.

2.1.6 RISC-V RV32I
RISC-V RV32I [3] is a subset of the RISC-V ISA, characterized by its 32-bit
register width and integer arithmetic and logic operations. It serves as a founda-
tional instruction set for many RISC-V-based systems, offering a balance between
simplicity and performance. Key features of RV32I include:

• Instruction Set: RV32I includes a set of basic instructions for integer
arithmetic, logical operations, control flow, and memory access.

• Registers: RV32I architecture comprises 32 general-purpose registers (GPRs),
each 32 bits wide, providing storage for data and intermediate computation
results.

6

Technical Background

• Load and Store Instructions: RV32I supports load and store instructions
for transferring data between memory and registers.

• Arithmetic and Logic Instructions: Basic arithmetic and logical opera-
tions, such as addition, subtraction, bitwise AND/OR, and shift operations,
are supported.

• Control Transfer Instructions: RV32I includes instructions for control
flow operations, such as branching and jumping.

• Immediate Instructions: Immediate instructions allow for arithmetic and
logical operations with immediate values.

Figure 2.1: RISC-V base instruction formats showing immediate variants

Figure 2.1 shows the RISC-V base instruction formats. The simplicity of the
RV32I instruction set facilitates efficient implementation and optimization, making
it a popular choice for embedded systems and IoT devices where resource utilization
is critical.

2.2 Communication Protocols
A method of back and forth communication is required between the two RISC-V
CPUs for the purpose of data and commands transfer. Following is the overview of
some possible protocols for this purpose, which will be discussed later in detail in
the thesis.

7

Technical Background

2.2.1 Interrupts
Interrupts are essential mechanisms in computer systems for handling asynchronous
events and prioritizing tasks. In RISC-V processors, interrupts are managed through
a dedicated interrupt controller, which handles interrupt requests (IRQs) from
various sources. Key aspects of interrupts in RISC-V systems include:

• Interrupt Sources: Interrupts can originate from external devices (e.g.,
timers, I/O devices), internal events (e.g., exceptions, software interrupts), or
other processor cores in multi-core systems.

• Interrupt Handling: When an interrupt occurs, the processor suspends
its current execution and transfers control to an interrupt handler routine
specified by the interrupt vector table. Once the handler completes execution,
the processor resumes its previous task.

• Interrupt Prioritization: Interrupts may be prioritized based on their
urgency and importance, ensuring critical tasks are handled promptly.

Interrupts are used in various applications, including real-time systems, embed-
ded systems, and multitasking operating systems, to handle events such as user
inputs, hardware errors, and communication between hardware components.

In our case, these will be the primary method for communication between the
two processors, utilized in the form of handshakes. During the Write Operation,
when CPU1 wants to send data to CPU2, it will write the data to a designated
location in shared memory. CPU1 sets the memory address and data, and then
signals the write operation. Once the data is written to the shared memory, CPU1
triggers an interrupt to CPU2.

Similarly during the read Operation, when CPU2 receives the interrupt, CPU2
reads the data from the shared memory. CPU2 sets the memory address and signals
the read operation. The data is then read from the shared memory and processed
by CPU2.

To summarize, interrupts will be used not to transfer data, but to transfer the
control between the two processors, which will then enable transfer of data through
a data bus, which will also be discussed.

2.2.2 Buses
Buses are communication pathways that enable data transfer between the CPU,
memory, peripherals, and other system components. They serve as the backbone

8

Technical Background

of a computer system, aiding in efficient communication and coordination among
different components. They can be categorized based on their protocols and charac-
teristics. One major way is through System bus protocols or Peripheral protocols.

System bus protocols are used for communication between the CPU, memory,
and other major components within a computer system. These protocols usually
offer high bandwidth and low latency to support the performance requirements
of the system. For example, AXI (Advanced eXtensible Interface) supports high-
bandwidth, low-latency data transfers, making it a good choice for interfacing
multiple processors in high-performance SoCs (System on Chip). Another example
is AHB (Advanced High-performance Bus), which is used for high-performance
modules with a multi-layer shared bus structure.

Peripheral protocols are used to connect external devices such as keyboards, mice,
storage devices, and network cards to the motherboard. For example APB (Ad-
vanced Peripheral Bus) provides a simplified, low-power protocol for low-bandwidth
devices. Peripheral Component Interconnect (PCI) and its advanced version, PCIe,
are high-speed interfaces for peripherals, with PCIe using a point-to-point architec-
ture to reduce latency and increase bandwidth. USB (Universal Serial Bus) is a
widely used interface for peripherals, supporting plug-and-play and hot-swapping,
with versions offering higher data rates and power delivery. SATA (Serial Advanced
Technology Attachment) is primarily used for connecting storage devices, offering
better performance with a point-to-point architecture.

Buses can also be categorized based on their communication types. Parallel
protocols transfer multiple bits simultaneously and are used in older technologies
like PATA (Parallel Advanced Technology Attachment) and some earlier versions of
PCI, while serial protocols transfer data one bit at a time and are used in modern
interfaces like USB, SATA, and PCIe. Additionally, buses can be synchronous
or asynchronous. Synchronous protocols, such as AXI and AHB, use a global
clock signal, ensuring coordinated operations, whereas asynchronous protocols use
handshaking signals, providing greater flexibility and power efficiency.

Furthermore, buses can be categorized based on whether the system is single-
master or multi-master. Single-master buses have one master device controlling the
communication, which simplifies design but may limit performance. On the other
hand, multi-master configurations can improve system robustness and flexibility
by allowing multiple masters to connect to the bus, but they may require more
complex arbitration mechanisms to avoid conflicts. An example of a multi-master
bus is the Controller Area Network (CAN) bus, widely used in automotive and
industrial applications.

9

Technical Background

2.2.3 Networks on Chip
Networks on Chip (NoCs) is another method, which can be used for interconnecting
components within a chip. However, instead of traditional bus architectures, it
uses a network-based approach, which are shared communication pathways, NoCs
use multiple interconnected routers and switches to form a network that facilitates
communication between components.

In our proposed multi-CPU configuration, the primary RISC-V processor is a
low-power CPU, while the secondary processor acts as a high-power accelerator.
Incorporating a NoC architecture can facilitate high-speed, low-latency communi-
cation between these processors, enhancing the overall system performance and
efficiency.

2.2.4 Conclusion
Methods like buses and NoCs play a important role in the internal communication
of computer systems, allowing various components to exchange data efficiently,
the choice of which would impact the overall system performance, scalability, and
compatibility with peripheral devices.

While AXI was a compelling option for the communication between two proces-
sors, we proceeded to implement a shared memory configuration where the two
CPUs are connected to a common memory space in which data can be written by
one CPU and read by the other. Hence, making it the actual medium for data
transfer between the two processors. For the two-way interfacing, an interrupt
handler is utilized for the purpose of handshakes. A data bus is used as the primary
data communication method between the CPU and the shared memory. This setup
ensures efficient data transfer between the two RISC-V processors by enabling
direct access to shared memory.

10

Chapter 3

Methodology for Interfacing
RISC-V Processors

3.1 Introduction
In this chapter, we will take a deep dive into the methodology used to interface
two RISC-V processors. Our configuration, demonstrated in figure 3.1, includes
two RISC-V CPUs: a primary low-power processor and a secondary high-power
accelerator. Both of these processors are connected to a common memory space
where data can be written by one CPU and read by the other. Therefore, this
will be the actual medium for the data transfer. For the two-way interfacing, an
interrupt handler will be utilized for the purpose of handshakes. After CPU1 sets
the memory address and data and signals the write operation, it will trigger an
interrupt to CPU2. Similarly, Once the CPU2 receives the interrupt, it will read
the data from the shared memory by setting the memory address and signaling the
read operation. After the calculations/process is performed, the same process is
done except CPU2 and CPU1 replace each other’s role. The primary focus is on
utilizing an interrupt handler to establish a communication link between these two
processors. The approach of offloading complex tasks to the secondary processor
results in an efficient configuration from which IoT applications can potentially
benefit.

In order to implement the interrupt mechanism in our configuration, we will
first study the interrupt structure present in the IBEX processor, which is a 32-bit
RISC-V CPU designed for low-power, embedded applications and implements
the RV32IMC instruction set. It will be discussed shortly in this chapter before
shedding light on the interrupt configuration of our own, tailored to our needs for
the linking for the two RV32I CPUs.

11

Methodology for Interfacing RISC-V Processors

Figure 3.1: General Structure

3.2 Overview of Interrupts
Interrupts [4] are mechanisms used in computer systems to manage and respond to
asynchronous events, allowing processors to handle various tasks efficiently without
continuous polling. Generally, an interrupt is basically a signal that is either sent
by either hardware or software to the CPU in order to point that there is an
event that requires immediate action, which is defined as something that needs
attention at the expense of pausing whatever the processor was currently working on.

When such an event occurs, the processor stops working on everything in it’s
normal routine and directs control to the interrupt handler, also known as Interrupt
Service Routine (ISR). The actions performed at this point depend on the instruc-
tions that are written inside the Interrupt Handler. Moreover, there is a list of
functions that the processor has linked corresponding to handle various operations
like exceptions, faults, requests from devices etc. This list is known as the Interrupt
Vector Table (IVT). Overall, the role of an interrupt can be summarized into these

12

Methodology for Interfacing RISC-V Processors

three parts:

• Save Current Progress: Before the control is actually transferred to the
interrupt handler, the current progress of whatever the CPU was working on
has to be saved. For this purpose, program counter, registers and some other
important data is saved somewhere, due to which the CPU can return to this
state after performing the operations in the handler.

• Perform the Task: The control is transferred to the Interrupt Handler
and the instructions in it are followed by the processor. These instructions
range from ordinary tasks to operations that are performed in case of an
emergency/fatal errors, depending on a case-by-case basis.

• Load the Saved Progress: After the interrupt has been processed, the
handler restores the state of the processor to the point where the interrupt
occurred, based on the information it saved earlier (program counter, register
information etc).

In the context of RISC-V processors, interrupt handlers play a crucial role in
facilitating inter-processor communication and coordination.

3.2.1 Types of Interrupts
There are generally two types of interrupts: Software and Hardware Interrupts,
which are discussed as follows:

Software Interrupts

When an interrupt is produced by a software (for example an Operating System).
Primary examples include traps and exceptions. For example, an exception is
normally called by the system when a certain function has to be called to respond
to a fatal error. Normally, a software interrupt can be triggered by utilizing an
instruction known as “interrupt instructions”, which results in processor stopping
it’s current process and switching control to the line of code present in the interrupt
handler for general tasks such as error handling.

Hardware Interrupts

The other type of interrupt, known as Hardware Interrupt, is the one which is
more relevant to our example. It occurs when the trigger is from a hardware

13

Methodology for Interfacing RISC-V Processors

device instead of software. The devices in question are connected through an
Interrupt Request Line and then, the interrupts can be configured to trigger on
either logic 0 or 1. However the more common method is to configure the interrupts
for rising/falling edge instead. The overall interrupt is the OR of all the devices
in question that are connected to the Line. In our case, the Line will be a simple
path between the two RV32I CPUs.

These Interrupts can further be classified into the two types defined below:

• Maskable Interrupt: The types of interrupts that can be activated/deacti-
vated by choice, normally because of a mask register in the processor where
each bit corresponds to a specific interrupt signal. When a bit in the mask
register is enabled, the corresponding interrupt is set. Similarly, the interrupt
is disabled when the bit in the mask register changes to 0. With the help of
this framework, it can be decided when to ignore or consider an interrupt.

• Non Maskable Interrupt (NMI): The type of interrupt that cannot be
ignored or masked by the processor. Instead, the NMI overrides the masks
and always interrupts the current process as they have the highest priority
among all interrupts to ensure they are handled immediately. NMIs are used
for critical events that require immediate attention, such as hardware failures,
power failures, or other emergency situations.

3.2.2 Interrupt Triggers
For an interrupt to be triggered, its input signal needs to be either level or edge
sensitive. This depends on the continuity of the request in question, with level-
sensitive inputs making constant requests depending on the specific logic level (0
or 1). However, edge-sensitive inputs respond to the rising or falling of a signal
edge. Hence, the two types of triggers can be defined as follows:

• Level Trigger: In order to request this type of interrupt, the input signal
needs to be held at the required logic level (0 or 1). A level-triggered interrupt
is triggered when the device gives the input signal and keeps maintains it at
the active level.

• Edge Trigger: In order to request this type of interrupt, the interrupt signal
must undergo a level change (raising or lowering edge). An edge-triggered
interrupt is triggered when a signal transitions from low to high (rising edge)
or high to low (falling edge). However, dedicated hardware may be needed to

14

Methodology for Interfacing RISC-V Processors

detect the pulses if the I/O is unable to originally do due to the pulse’s short
duration.

3.2.3 Benefits of Using Interrupts
Following are some of the benefits for using interrupts:

• Real Time Processing: They allow for real time processing, since the system
can respond to the signals or events outside of it’s working.

• Efficiency: Since interrupts allow the processors to keep performing their
normal tasks (until the interrupt is triggered), it allows them to also remain in
an idle state if no task is being performed. Without implementing an interrupt
mechanism, the processor would likely be required to perform a routinely
check for the external condition, making it less energy efficient.

• Multitasking: Interrupts allow the processor to perform multiple tasks
concurrently, potentially resulting in better performance.

• Throughput: Since interrupts are asynchronous, they allow the device to
overlap computation with other operations instead of waiting for their turn,
which further increases the overall performance of the system.

3.2.4 IBEX Processor Overview
The IBEX processor [5], developed by the LowRISC project, is a 32-bit RISC-V
CPU designed for low-power, embedded applications. It implements the RV32IMC
instruction set, which makes it very suitable for a variety of lightweight computing
tasks. The IBEX processor consists of a simple, two-stage pipeline and supports
various power-saving modes, making it highly efficient in resource-constrained
environments.

Interrupt Handling in IBEX

Interrupt handling in the IBEX processor is managed through the RISC-V standard
interrupt architecture. The IBEX processor includes a Machine-Level Interrupt
Controller (MLIC) that handles multiple interrupt sources and prioritizes them
based on predefined criteria. The reason we decided to use the IBEX interrupt as
an inspiration was because it follows the same general rules of functioning that
we have discussed above. However, it is more complex due to having multiple
functionalities that will not be required in our case, which include the variety of

15

Methodology for Interfacing RISC-V Processors

control status registers, from which the relevant ones will be discussed shortly.
Moreover, we will only use interrupt as handshakes for reading or writing data
onto the shared memory, so the interrupt requests for non-maskable interrupts,
fast interrupts, timer module etc. will not be required. Some of the features of
IBEX interrupt are as follows:

• Various Interrupt Sources: The IBEX processor can receive interrupts
from external devices, internal timers, and software-generated events.

• Interrupt Vector Table: The processor uses an interrupt vector table to
map interrupt requests to their corresponding interrupt service routines (ISRs).

• Machine-Level Interrupts: The IBEX handles interrupts at the machine
level, providing precise control over interrupt priorities which allows for efficient
context switching.

When an interrupt occurs, the IBEX processor suspends its current execution
and transfers control to the ISR specified in the interrupt vector table. The ISR
executes the required tasks and then returns control back to the main program, in
order to make sure that minimal disruption to ongoing processes.

Types of Supported Interrupts

In order to understand the main working of an IBEX interrupt, it is important to
mention the types of interrupts that are supported by this processor, which are
mentioned in figure 3.2. In case of multiple pending interrupts, they are handled
in a pre-defined priority order.

Figure 3.2: Supported Interrupt types by IBEX

16

Methodology for Interfacing RISC-V Processors

Fast interrupts have priority over all other types, and among themselves, the
interrupt with the lowest ID gets the highest priority. All interrupts except for
the non-maskable interrupt (NMI) are controlled via the mstatus, mie and mip
Control Status Registers (CSR). After reset, all interrupts are disabled.

Interrupt Procedure

The CSRs are utilized in the functionality of interrupts. In particular, these are
mepc, mstatus, mie, mip, mtvec. Their use-case will be discussed shortly.

Figure 3.3: Bits of the mstatus CSR

The procedure for an interrupt taking place in IBEX is as follows:

• When an interrupt or an exception is called, the current program counter is
storred in a CSR named mepc (Machine Exception Program Counter).
This CSR has a label of 0x341.

• The bits of the CSR named mstatus (which has a label of 0x300) are adjusted
in the following way:

mstatus.MPIE = mstatus.MIE

Here, mstatus.MPIE is the status for the previous interrupt enable i.e., Before
entering the interrupt. It is the R/W bit 7 of the mstatus CSR. Meanwhile,
mstatus.MIE is the current interrupt enable. For example, if it is set to 1’b1,
the interrupts become globally enabled. This is the R/W bit 3 of the mstatus
CSR. In general, the MIE has to be 1 for interrupts to be allowed, and when

17

Methodology for Interfacing RISC-V Processors

the actual interrupt happens, MPIE is then set to 1, which signifies that an in-
terrupt is pending, hence setting MPIE to MIE, which has the value 1 currently.

• More bits of the mstatus register are adjusted, which involve the setting of
the required privilege mode which are of two types: Machine Mode (M-Mode)
and User Mode (U-Mode). The core resets into M-Mode and will jump to
M-Mode on any interrupt or exception. The R/W 12:11 bits of the mstatus
register, called mstatus.MPP (Machine Previous Privilege Mode) will be
set to the current privilege mode. On execution of an MRET instruction, the
core will return to the Privilege Mode stored in mstatus.MPP.

• Next, the CSR register mie (Machine Interrupt Enable) (which has
the label x304) is adjusted where the corresponding interrupt enable bit
in this CSR needs to be set. This CSR is WARL register that allows to
individually enable/disable local interrupts, all of which get disabled after a
reset (0x0000_0000). Figure 3.4 shows the types of interrupts supported by
mie, which is everything except NMI (Non Maskable Interrupt).

Figure 3.4: Bits of the mie CSR

• Adjustments are made to the CSR named mip (Machine Interrupt Pend-
ing), which has a label of 0x344. This is a read-only register indicating
pending interrupt requests. A particular bit in the register reads as one if the
corresponding interrupt input signal is high and if the interrupt is enabled in
the mie CSR. The bits of mip CSR are shown in Figure 3.5 and a comparison
of bits of mip and mie CSR is given in Figure 3.6.

• Lastly, the core jumps to the base address specified in the mtvec (Machine
Trap-Vector Base Address, 0x305) CSR, the bits of which are shown in Figure
3.7. Initially, the base address of the vector table is set to the boot address
during the core’s booting process. This address must be aligned to 256 bytes,

18

Methodology for Interfacing RISC-V Processors

Figure 3.5: Bits of the mip CSR

Figure 3.6: Comparison of the standard portions for both mie and mip

meaning its least significant byte should be 0x00. The base address can be
modified after bootup by writing to the mtvec CSR.
Upon reset, the core starts fetching instructions from an address constructed
by concatenating the most significant 3 bytes of the boot address with the
reset value (0x80) as the least significant byte. This design assumes that the
boot address is provided via a register to minimize signal path lengths to the
instruction fetch unit.

The core starts fetching at the address made by concatenating the most sig-
nificant 3 bytes of the boot address and the reset value (0x80) as the least
significant byte. It is assumed that the boot address is supplied via a register
to avoid long paths to the instruction fetch unit.

The interrupts are handled in Vector mode, so when an interrupt occurs, the

19

Methodology for Interfacing RISC-V Processors

Figure 3.7: Bits of the mtvec CSA

core calculates the address for the interrupt service routine (ISR) using the
formula:

ISRAddress = mtvec + 4 ∗ InterruptID

At this calculated ISR address, there is typically a jump instruction that
directs the processor to the actual ISR. This ensures that ach interrupt has
a unique and specific address for its ISR. For example, if the base address is
0x80000000 and the interrupt ID is 5, the ISR address will be 0x80000014.
The entry at this address will contain a jump instruction to the actual ISR
code, such as jmp ISR_5, which could be located at 0x80001000. This process
is explained in figure 3.8.

• When the CPU has to return to its normal routine i.e., by executing the
MRET instruction, the core jumps to the program counter that was previously
saved in the mepc CSR. The mstatus CSR has the following change to it:

mstatus.MIE = mstatus.MPIE

Finally, the privilege mode is restored from the bit mstatus.MPP.

• It is to be noted that the NMI is enabled independent of the values in the
mstatus and mie CSRs, and it is not visible through the mip CSR. It has
interrupt ID 31, i.e., it has the highest priority of all interrupts and the core
jumps to the trap-handler base address (in mtvec) plus 0x7C to handle
the NMI. During which all interrupts including the NMI are ignored. Nested
NMIs are not supported.

3.3 Using Interrupt Handlers for Interfacing
Now, using the above-mentioned IBEX interrupt handling method as reference, we
will now Interface two RISC-V CPUs via an interrupt handler in which we set up
a communication protocol where the primary processor can signal the secondary

20

Methodology for Interfacing RISC-V Processors

Figure 3.8: Process flow for handling interrupts in IBEX

processor to perform specific tasks and vice versa. This section outlines the steps
and components involved in this process. The hardware aspects will be modeled
by the module in SystemVerilog, whereas the Interrupt Service Routine and Main
Program Logic for both the CPUs will be handled by the module written in C
Language. The steps will be detailed as follows.

3.3.1 Setting Up Interrupt Sources
The first step in interfacing the two processors is to configure interrupt sources.
These can be hardware interrupts triggered by specific events or software-generated

21

Methodology for Interfacing RISC-V Processors

interrupts initiated by the processors. The interrupt sources must be defined in
both the primary and secondary processors to enable communication.

Primary Processor Configuration

• The primary processor is configured to handle and generate interrupts that
signal the secondary processor when data is available in the shared memory.

• Each CPU has an interrupt vector table, which maps interrupt IDs to their
corresponding interrupt service routines (ISRs). This setup is initialized in
the system initialization phase (system_init_cpu1). This is demonstrated
by the following code snippet for CPU1. The primary processor’s interrupt
vector table is initialized during system startup to map interrupt IDs to their
corresponding ISRs.

1 #inc lude <s t d i n t . h>
2 // Def ine the addre s s e s o f the i n t e r r u p t c o n t r o l l e r and shared memory
3 #d e f i n e INTERRUPT_PENDING_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000000

)
4 #d e f i n e INTERRUPT_CLEAR_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000004

)
5 #d e f i n e INTERRUPT_ID_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000008

)
6 #d e f i n e SHARED_MEMORY_ADDR ((v o l a t i l e uint32_t ∗) 0x50000000)
7

8 // Function prototype f o r the ISR
9 void ISR_Handler_CPU1(void) ;

10

11 // In t e r rup t vec to r t ab l e f o r CPU1
12 void (∗ interrupt_vector_table_cpu1 [2]) (void) ;
13

14 // Function to i n i t i a l i z e the system f o r CPU1
15 void system_init_cpu1 (void) {
16 // I n i t i a l i z e the i n t e r r u p t vec to r t ab l e
17 interrupt_vector_table_cpu1 [0] = ISR_Handler_CPU1 ;
18 interrupt_vector_table_cpu1 [1] = ISR_Handler_CPU1 ;
19 }

Secondary Processor Configuration

• The secondary processor is configured similarly to handle interrupts and read
data from the shared memory.

22

Methodology for Interfacing RISC-V Processors

• Similarly to the primary processor, the secondary processor’s interrupt vector
table is initialized during system initialization phase (system_init_cpu2),
which maps the interrupt IDs to their corresponding ISRs. This is demon-
strated by the following code snippet.

1 #inc lude <s t d i n t . h>
2 // Def ine the addre s s e s o f the i n t e r r u p t c o n t r o l l e r and shared memory
3 #d e f i n e INTERRUPT_PENDING_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000000

)
4 #d e f i n e INTERRUPT_CLEAR_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000004

)
5 #d e f i n e INTERRUPT_ID_REG_CPU1 (∗ (v o l a t i l e uint32_t ∗) 0x40000008

)
6 #d e f i n e SHARED_MEMORY_ADDR ((v o l a t i l e uint32_t ∗) 0x50000000)
7

8 // Function prototype f o r the ISR
9 void ISR_Handler_CPU1(void) ;

10

11 // In t e r rup t vec to r t ab l e f o r CPU1
12 void (∗ interrupt_vector_table_cpu1 [2]) (void) ;
13

14 // Function to i n i t i a l i z e the system f o r CPU1
15 void system_init_cpu1 (void) {
16 // I n i t i a l i z e the i n t e r r u p t vec to r t ab l e
17 interrupt_vector_table_cpu1 [0] = ISR_Handler_CPU1 ;
18 interrupt_vector_table_cpu1 [1] = ISR_Handler_CPU1 ;
19

20 }

In addition to this, a hardware module has to be defined which facilitates all
the above mentioned aspects i.e. internal signals, shared memory interface, flags
and the necessary parameters required to support the read and write operations for
both CPUs, which will be discussed shortly in the Memory Utilization and Data
Transfer Section. The following code snippet demonstrates the general structure of
this module.

1 module p r o c e s s o r _ i n t e r f a c e (
2 input l o g i c c lk ,
3 input l o g i c r e s e t ,
4

5 // In t e r rup t s i g n a l s
6 output l o g i c irq_cpu1_to_cpu2 ,
7 output l o g i c irq_cpu2_to_cpu1 ,
8

23

Methodology for Interfacing RISC-V Processors

9 // Shared memory i n t e r f a c e
10 input l o g i c [3 1 : 0] cpu1_wdata ,
11 input l o g i c [3 1 : 0] cpu2_wdata ,
12 output l o g i c [3 1 : 0] cpu1_rdata ,
13 output l o g i c [3 1 : 0] cpu2_rdata ,
14 input l o g i c cpu1_write ,
15 input l o g i c cpu2_write ,
16 input l o g i c cpu1_read ,
17 input l o g i c cpu2_read
18) ;
19

20 // I n t e r n a l shared memory
21 l o g i c [3 1 : 0] shared_memory [1 : 0] ;
22 l o g i c data_ready_flag_cpu1_to_cpu2 ;
23 l o g i c data_ready_flag_cpu2_to_cpu1 ;
24

25 // Reset l o g i c
26 always_ff @(posedge c l k or posedge r e s e t) begin
27 i f (r e s e t) begin
28 irq_cpu1_to_cpu2 <= 0 ;
29 irq_cpu2_to_cpu1 <= 0 ;
30 data_ready_flag_cpu1_to_cpu2 <= 0 ;
31 data_ready_flag_cpu2_to_cpu1 <= 0 ;
32 end
33 end
34 endmodule

3.3.2 Interrupt Service Routine (ISR)
Now, we need to configure the routine that needs to be followed once the interrupt
is triggered. In our case, it must perform the necessary actions that are required
to manage communication between the two processors. These are described as
follows.

Primary Processor ISR

When an interrupt occurs, the corresponding ISR is executed based on the interrupt
ID. The ISR performs specific tasks, for example reading from or writing to the
shared memory. The following code snippet demonstrates a simple example in
which read and write operations are performed in the ISR via a case statement.

1 void ISR_Handler_CPU1(void) {
2 uint32_t inte r rupt_id = INTERRUPT_ID_REG_CPU1;
3

24

Methodology for Interfacing RISC-V Processors

4 switch (in te r rupt_id) {
5 case 0 :
6 // Write data to shared memory atomica l l y
7 __atomic_store_n(&SHARED_MEMORY_ADDR[1] , 0xCAFEBABE,

__ATOMIC_SEQ_CST) ;
8 break ;
9 case 1 :

10 // Read data from shared memory atomica l l y
11 uint32_t data = __atomic_load_n(&SHARED_MEMORY_ADDR[0] ,

__ATOMIC_SEQ_CST) ;
12 // Process the data
13 break ;
14 d e f a u l t :
15 // Unknown i n t e r r u p t
16 break ;
17 }
18

19 // Clear the i n t e r r u p t
20 __atomic_store_n(&INTERRUPT_CLEAR_REG_CPU2, 1 , __ATOMIC_SEQ_CST) ;
21 }

Secondary Processor ISR

Similarly to the primary Processor, we perform the same steps for the CPU2. i.e.,
When an interrupt occurs, the corresponding ISR is executed based on the interrupt
ID. The following code snippet demonstrates a simple example in which read and
write operations are performed in the ISR of CPU2.

1 void ISR_Handler_CPU2(void) {
2 uint32_t inte r rupt_id = INTERRUPT_ID_REG_CPU2;
3

4 switch (in te r rupt_id) {
5 case 0 :
6 // Write data to shared memory atomica l l y
7 __atomic_store_n(&SHARED_MEMORY_ADDR[1] , 0xCAFEBABE,

__ATOMIC_SEQ_CST) ;
8 break ;
9 case 1 :

10 // Read data from shared memory atomica l l y
11 uint32_t data = __atomic_load_n(&SHARED_MEMORY_ADDR[0] ,

__ATOMIC_SEQ_CST) ;
12 // Process the data
13 break ;
14 d e f a u l t :
15 // Unknown i n t e r r u p t

25

Methodology for Interfacing RISC-V Processors

16 break ;
17 }
18

19 // Clear the i n t e r r u p t
20 __atomic_store_n(&INTERRUPT_CLEAR_REG_CPU2, 1 , __ATOMIC_SEQ_CST) ;
21 }

Simulating Hardware Interrupts (ISR)

Furthermore, we also need to configure both CPUs in such a way that they keep
on checking for the pending interrupts.

Primary Processor

In the main loop of each CPU, a function call_isr_cpu1 checks for pending inter-
rupts and invokes the appropriate ISR from the vector table. This is shown in the
code snippet below for CPU1 where INTERRUPT_PENDING_REG_CPU1 is the
address to check pending interrupts for CPU1 and INTERRUPT_ID_REG_CPU1
is the address to read the interrupt ID for CPU1.

1 // This func t i on s imu la t e s the hardware ’ s i n t e r r u p t c a l l mechanism
2 void ca l l_is r_cpu1 (void) {
3 // Check f o r pending i n t e r r u p t s
4 uint32_t pending_interrupt = INTERRUPT_PENDING_REG_CPU1;
5 i f (pending_interrupt) {
6 // Get the i n t e r r u p t ID
7 uint32_t inte r rupt_id = INTERRUPT_ID_REG_CPU1;
8 // Cal l the cor re spond ing ISR from the vec to r t ab l e
9 interrupt_vector_table_cpu1 [in te r rupt_id] () ;

10 }
11 }

Secondary Processor

Similarly to CPU1, the call_isr_cpu2 function checks for pending interrupts
and triggers and invokes the appropriate ISR based on the vector table defined.
Here, INTERRUPT_PENDING_REG_CPU2 is the address to check for pending
interrupts for CPU2 and INTERRUPT_ID_REG_CPU2 is the address to read
the interrupt ID for CPU2. This process is demonstrated by the following code
snippet.

26

Methodology for Interfacing RISC-V Processors

1 // This func t i on s imu la t e s the hardware ’ s i n t e r r u p t c a l l mechanism
2 void ca l l_is r_cpu2 (void) {
3 // Check f o r pending i n t e r r u p t s
4 uint32_t pending_interrupt = INTERRUPT_PENDING_REG_CPU2;
5 i f (pending_interrupt) {
6 // Get the i n t e r r u p t ID
7 uint32_t inte r rupt_id = INTERRUPT_ID_REG_CPU2;
8 // Cal l the cor re spond ing ISR from the vec to r t ab l e
9 interrupt_vector_table_cpu2 [in te r rupt_id] () ;

10 }
11 }

3.4 Memory Utilization
Memory utilization plays an important role in the interfacing two RISC-V pro-
cessors via interrupt handlers. Efficient memory management is required so that
data is accurately transferred, stored, and retrieved without conflicts or corruption.
In this section, we will delve into the key considerations for memory utilization,
including memory mapping, synchronization, and access control.

3.4.1 Memory Mapping
Memory mapping ensures both CPUs have a common understanding of where the
shared memory resides and how to access it. It involves defining specific memory
regions for different types of data and operations. In a system with two RISC-V
processors, the shared memory must be strategically mapped to ensure efficient
data exchange. Considering the above-mentioned code snippets for both CPUs,
Following are some of the parameters that contribute to this process.

Shared Memory Location

Defined in the SystemVerilog module to keep track of the direction of data flow,
given as follows:

• shared_memory[0]: Used for data written by CPU1 and read by CPU2.

• shared_memory[1]: Used for data written by CPU2 and read by CPU1.

27

Methodology for Interfacing RISC-V Processors

Control Registers

Defined in the Initialization of the two CPUs, these registers are used to read, clear
and check for pending interrupts. They are listed as follows:

• INTERRUPT_PENDING_REG_CPU1: Address to check for pending
interrupts for CPU1.

• INTERRUPT_CLEAR_REG_CPU1: Address to clear interrupts for
CPU1

• INTERRUPT_ID_REG_CPU1: Address to read the interrupt ID for
CPU1.

• INTERRUPT_PENDING_REG_CPU2: Address to check for pending
interrupts for CPU2.

• INTERRUPT_CLEAR_REG_CPU2: Address to clear interrupts for
CPU2

• INTERRUPT_ID_REG_CPU2: Address to read the interrupt ID for
CPU2.

3.4.2 Synchronization
Synchronization is essential to prevent data corruption when both CPUs access
shared memory. In our case, we use flags for reading and writing data onto the
shared memory. As writing data to shared memory and setting the interrupt flag
are two separate operations, it could lead to race conditions where the interrupt is
raised before the data is fully written. Similarly, clearing the interrupt flag and
reading the data are also separate operations, which can lead to similar issues.

In order to avoid this problem, we use atomic operations to ensure that writing
data to shared memory and setting the interrupt flag are performed atomically.
Similarly, we ensure that clearing the interrupt flag and reading the data are also
atomic operations. This is demonstrated in the code snippets for the ISR handlers
of both CPU1 and CPU2. Moreover, In the SystemVerilog processor interface
module, we ensure that the setting and clearing of flags along with the data transfer
are in the same always_ff block. The blocks for the read/write operations for both
CPUs will be discussed in the Data Transfer section.

28

Methodology for Interfacing RISC-V Processors

3.4.3 Read/Write Flags
For the purpose of Synchronization, CPU1 sets a flag and generates an interrupt
to notify CPU2 when data is written to shared memory. On the other hand, CPU2
reads the data, clears the flag, and then generates an interrupt back to CPU1.
These flags are specified as follows:

• data_ready_flag_cpu1_to_cpu2: Indicates when CPU1 has written
data to shared memory for CPU2.

• data_ready_flag_cpu2_to_cpu1: Indicates when CPU2 has written
data to shared memory for CPU1.

This infrastructure will also ensure that that only one CPU accesses a specific
memory region at a time, preventing race conditions and ensures data integrity.

3.5 Data Transfer Mechanism
In a dual-processor system, efficient data transfer mechanisms are critical to ensure
smooth communication between the two processors. Various methods can be
employed to achieve this, such as direct memory access (DMA), shared memory
with flag synchronization, and message passing. This section will focus on these
methods, In our case, shared memory with flag synchronization is utilized for the
purpose of communicating between CPU1 and CPU2.

A CPU writes data to shared memory, sets a flag to indicate data availability,
and generates an interrupt to notify the other CPU. Then, the receiving CPU
checks the flag, reads the data from shared memory, processes it, clears the flag,
and may generate an interrupt back to signal completion.

3.5.1 Direct Memory Access (DMA)
DMA is a technique that allows peripherals or processors to directly read from or
write to memory without involving the CPU for each transaction. This method
offloads the data transfer work from the CPU, allowing it to perform other tasks
while the data transfer is in progress. DMA is particularly useful for large data
transfers. DMA is not used utilized in our thesis, but the concept can be applied
for more efficient data transfer without involving the CPU.

29

Methodology for Interfacing RISC-V Processors

3.5.2 Shared Memory with Flag Synchronization
As discussed earlier, this is the method we implement in our case. Shared memory
with flag synchronization involves both processors accessing a common memory
space for data exchange. Flags are used to indicate the status of the data (e.g.,
ready to be read, processed, or written). This method ensures that both processors
are synchronized and data integrity is maintained.

3.5.3 Memory Passing
Message passing involves sending data encapsulated in messages between processors.
This method can be implemented using interrupts to notify the receiving processor
of a new message. Message passing is useful for smaller, discrete data transfers and
commands.

3.5.4 Data Transfer Process
Taking shared memory with flag synchronization and the above mentioned code
snippets from interrupt and shared memory into account, the data transfer in our
configuration follows the following steps:

CPU1 Writing Data

• Writes data to shared_memory[0].

• Sets the data_ready_flag_cpu1_to_cpu2 flag.

• Generates the interrupt signal irq_cpu1_to_cpu2.

• CPU1 writing data onto the shared memory is demonstrated by the following
code snippet.

1 // CPU1 Write Operation
2 always_ff @(posedge c l k) begin
3 i f (cpu1_write) begin
4 shared_memory [0] <= cpu1_wdata ;
5 data_ready_flag_cpu1_to_cpu2 <= 1 ;
6 irq_cpu1_to_cpu2 <= 1 ;
7 end
8 end
9

30

Methodology for Interfacing RISC-V Processors

CPU2 Reading Data

• Checks the data_ready_flag_cpu1_to_cpu2 flag.

• Reads data from shared_memory[0].

• Clears the data_ready_flag_cpu1_to_cpu2 flag after reading the data.

• Generates the interrupt signal irq_cpu2_to_cpu1 for starting the next
transfer from CPU2 back to CPU1.

• CPU2 Reading data from the shared memory us demonstrated by the following
code snippet.

1 // CPU2 Read Operation
2 always_ff @(posedge c l k) begin
3 i f (cpu2_read && data_ready_flag_cpu1_to_cpu2) begin
4 cpu2_rdata <= shared_memory [0] ;
5 data_ready_flag_cpu1_to_cpu2 <= 0 ;
6 irq_cpu2_to_cpu1 <= 1 ;
7 end
8 end
9

For the communication from CPU2 back to CPU1, similar steps are implemented
as above, except shared_memory[1] is utilized instead of shared_memory[0].

3.6 Challenges and Considerations
While using interrupt handlers provides numerous benefits, there are also challenges
and considerations to address:

• Complexity: Designing and debugging interrupt-driven systems can be
complex, requiring careful synchronization and coordination.

• Latency: Interrupt handling introduces some latency due to context switching
and ISR execution, which must be minimized for high-performance applica-
tions.

• Resource Management: It is important to efficiently manage shared re-
sources and prevent contention so that system stability and performance
becomes possible to maintain.

31

Methodology for Interfacing RISC-V Processors

3.7 Conclusion
Interfacing RISC-V processors via an interrupt handler provides a powerful and
efficient means of managing communication and task offloading. By leveraging the
strengths of interrupt-driven systems and efficient memory utilization, it is possible
to achieve responsive and scalable multi-processor systems capable of handling
complex workloads in a coordinated manner.

In our case, through the above-mentioned sections on configuring interrupt
sources, defining ISRs, memory mapping, synchronization, and data transfer mech-
anisms, along with the provided SystemVerilog and C code, we are able to demon-
strate how shared memory with flag synchronization and interrupts can be used
for efficient data transfer between two RISC-V processors. By carefully managing
memory access and employing interrupt-driven communication, the system ensures
reliable and high-performance data exchange.

32

Chapter 4

Experimentation and Testing

4.1 Introduction
This chapter outlines the experimentation and testing methodologies employed
to validate the interfacing mechanism between two RISC-V CPUs using interrupt
handlers, as described in Chapter 3. Here, we aim to demonstrate the feasibility
and effectiveness of the proposed approach through a series of carefully designed
tests and simulations conducted entirely in a software-based environment.

4.2 Experimental Setup

4.2.1 Software Environment
The experiments were carried out in a simulation environment to model the be-
havior of the two IBEX RISC-V processors. The key components of the software
environment included:

• C Language: Used for initializing the vector tables for both CPUs (for
mapping interrupt IDs to corresponding ISRs) and implementing the interrupt
service routines executed by the processors.

• SystemVerilog: used to define a hardware module which facilitates the
internal signals, shared memory interface, flags and the necessary parameters
required to support the read and write operations for both CPUs.

• Simulation Tools: Xcelium Logic Simulator was used for simulating the
hardware design and verifying the behavior of the system.

33

Experimentation and Testing

• Visual Studio Code was used for the purpose of writing code and modifying
the files.

• Virtual Platforms: Cadence Virtual System Platform was utilized to emulate
the behavior of the hardware components and processors.

4.3 Testing Methodology

4.3.1 Objectives

We organize a test plan to cover various scenarios to verify the correctness and effi-
ciency of the interrupt-based interfacing mechanism. The key aims and objectives
of this plan are as follows:

• Interrupt Generation and Handling: Verify that interrupts are correctly
generated by one processor and handled by the other in the simulated envi-
ronment. Before this step, we first tested primarily the working on CPU1 by
arbitrarily generating an interrupt and observing the response to see if it’s
working as intended. After this, it should be ensured that CPU1 is capable of
generating an interrupt and CPU2 is able to handle it.

• Data Transfer Verification: Verify that the data transfer through shared
memory in the simulation is accurate and without any problems. This involves
writing data in CPU1 and trying to read it from CPU2, observing whether
the data in both cases is the same or not.

• Synchronization Mechanism: Verify that the synchronization via flags is
working as intended within the simulation environment. This involves checking
the status of each of the flags/registers that were described in the previous
chapter. They should all be correctly set and reset during the data transfer
process while being in the simulation.

• Performance Metrics: After ensuring that everything in the system is
working as intended, the next step is to measure latency and throughput of
the data transfer process in the software simulation and observe the overall
performance of the system. For this purpose, we use some test scripts written
in C and passed to CPU1. They are described in more detail in the next
section.

34

Experimentation and Testing

4.3.2 Test Script
For the Purpose of testing the performance of our configuration, we have orga-
nized a test script in which a multiplication loop has to be performed where the
CPU2 is used as an accelerator to perform intensive computations while CPU1
handles the coordination and less demanding tasks. CPU1 initiates the computa-
tion by signaling CPU2, which performs the entire task as an accelerator. CPU2
handles the computationally intensive workload and signals CPU1 upon completion.

In order to avoid racing conditions, we utilize functions like atomic_store,
atomic_load, and atomic_fetch_add to perform atomic operations, so that
that read-modify-write sequences are not interrupted.

Script for CPU1

In the script, we define the number of iterations for the multiplication loop. A flag
variable is declared to indicate the status of the interrupt signal, and a pointer to
shared_memory is declared to facilitate data sharing between CPUs.

The ISR is defined to handle the interrupt signal SIGUSR1. When the ISR is
triggered, it sets the flag to 1, indicating that the interrupt has been received.

The CPU1_task function is the main function for CPU1. Here, the interrupt
handler is registered using signal (SIGUSR1, ISR_handler). The Shared
memory is allocated using mmap to allow both CPUs to access the result.

CPU1 signals CPU2 to start its task using kill (getpid() + 1, SIGUSR1)
and then waits for CPU2 to complete the remaining part of the task by checking
the flag. Once the flag is set by CPU2, CPU1 reads the final result from the shared
memory and prints it. The main function simply calls the CPU1_task function
to start the process. These steps are demonstrated in the following code snippet.

1

2 #d e f i n e ITERATIONS 10000000
3 v o l a t i l e atomic_int f l a g = 0 ;
4 v o l a t i l e atomic_int ∗shared_memory ;
5

6 // In t e r rup t Se rv i c e Routine (ISR) f o r handl ing i n t e r r u p t
7 void ISR_handler (i n t signum) {
8 atomic_store(& f l ag , 1) ;

35

Experimentation and Testing

9 }
10

11 // Function to i n i t i a t e the task and wait f o r CPU2 to complete
12 void CPU1_task () {
13 // Reg i s t e r the i n t e r r u p t handler
14 s i g n a l (SIGUSR1 , ISR_handler) ;
15

16 shared_memory = mmap(NULL, s i z e o f (atomic_int) , PROT_READ |
PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, −1, 0) ;

17 atomic_store (shared_memory , 0) ;
18

19 // S igna l CPU2 to s t a r t the e n t i r e task
20 k i l l (ge tp id () + 1 , SIGUSR1) ;
21

22 // Wait f o r CPU2 to complete i t s task
23 whi le (! atomic_load(& f l a g)) ;
24

25 // Read the r e s u l t from shared memory
26 p r i n t f (" F ina l Result : %d\n " , atomic_load (shared_memory)) ;
27 }
28

29 i n t main () {
30 CPU1_task () ;
31 re turn 0 ;
32 }

Script for CPU2

Similar to CPU1, we define the number of iterations for the multiplication loop.
Moreover, the flag variable and pointer to shared_memory are declared and the
ISR is defined to handle the interrupt signal SIGUSR1, which sets the flag to 1
when the ISR is triggered.

The CPU2_task function is the main function for CPU2 where shared memory
is allocated using nmap. The interrupt handler is registered using signal (SI-
GUSR1, ISR_handler). CPU2 waits for the signal from CPU1 to start the task
by checking the flag. Once the flag is set, CPU2 performs the multiplication loop,
stated in the workload function i.e., (workload, shared_memory)). After its
completion, CPU2 signals CPU1 that it is done using kill (getppid(), SIGUSR1
). The main function simply calls the CPU2_task function to start the process.
These steps are demonstrated in the following code snippet.

1

36

Experimentation and Testing

2 #d e f i n e ITERATIONS 10000000
3 v o l a t i l e atomic_int f l a g = 0 ;
4 v o l a t i l e atomic_int ∗shared_memory ;
5

6 // In t e r rup t Se rv i c e Routine (ISR) f o r handl ing i n t e r r u p t
7 void ISR_handler (i n t signum) {
8 atomic_store(& f l ag , 1) ;
9 }

10

11 // Function to perform the e n t i r e workload
12 void workload (v o l a t i l e atomic_int ∗ r e s u l t) {
13 f o r (i n t i = 0 ; i < ITERATIONS; ++i) {
14 atomic_fetch_add (r e s u l t , i ∗ i) ;
15 }
16 }
17

18 void CPU2_task () {
19 shared_memory = mmap(NULL, s i z e o f (atomic_int) , PROT_READ |

PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, −1, 0) ;
20

21 // Reg i s t e r the i n t e r r u p t handler
22 s i g n a l (SIGUSR1 , ISR_handler) ;
23

24 // Wait f o r the s i g n a l from CPU1 to s t a r t the task
25 whi le (! atomic_load(& f l a g)) ;
26

27 // Perform the e n t i r e workload
28 workload (shared_memory) ;
29

30 // S igna l CPU1 that CPU2 i s done
31 k i l l (getppid () , SIGUSR1) ;
32 }
33

34 i n t main () {
35 CPU2_task () ;
36 re turn 0 ;
37 }

4.4 Challenges and Observations

4.4.1 Challenges
There were some challenges that were encountered while in the experimentation
phase, which were primarily related to the testing of the Interrupt handler. Because
of the difficulties faced in this stage, the rest of the procedure was unable to be
followed. Some of the challenges encountered are as follows:

37

Experimentation and Testing

• Simulation Accuracy: Ensuring the simulation accurately models the
behavior of the actual hardware components and processors.

• Timing Issues: Managing timing issues in the simulation to prevent race
conditions and ensure proper timing for interrupt signals.

• Debugging: Identifying and resolving issues in the SystemVerilog code and
ensuring correct operation of the interrupt handlers within the simulation.

4.4.2 Observations
Despite the challenges, some valuable observations were made:

• Preliminary Validation: Initial tests in the simulation showed that inter-
rupts were correctly generated and handled, though some timing issues needed
resolution.

• Synchronization: While not being able to be properly tested, the flag
mechanism showed potential for effective synchronization. With additional
testing, concurrent scenarios within the virtual environment could also be
verified, indicating this method as a viable solution for data transfer between
the two processors via shared memory.

4.5 Conclusion
This chapter detailed the experimental setup and testing methodology used to
validate the interfacing mechanism between two RISC-V CPUs in a software-based
simulation environment. While the experiments faced some challenges and the steps
were not fully executed, the observations indicated that the proposed approach
is feasible. With Further testing and optimization, the desired performance and
reliability could be achieved, making the configuration viable for applications where
relatively high performance is required while being lower power.

38

Chapter 5

Asynchronous Architecture
and its Potential

5.1 Introduction to Asynchronous Processors

The majority of devices nowadays utilize synchronous processors at their core. But
with time, some development has been made in the asynchronous sector, which rep-
resents a paradigm shift from the normal tradition. These processors, also known
as clockless or self-timed processors have 1 fundamental key difference: While
synchronous processors rely on a global clock signal to coordinate the timing of all
operations across the processor, asynchronous processors do not depend on a central
clock. Instead, their operations are driven by the completion of preceding tasks.
This means that each part of an asynchronous processor proceeds independently
based on local conditions and the readiness of data, leading to potentially more
efficient and adaptive processing. This key difference can lead to various potential
advantages like power efficiency, speed as well as robustness against the Process,
Voltage, Temperature (PVT) variations.

In this chapter, we will look into the key components that define an asyn-
chronous processor [6], how it works, and how these factors can be advantageous
or disadvantageous compared to synchronous processors.

39

Asynchronous Architecture and its Potential

5.2 Key Concepts in Asynchronous Processing

5.2.1 Handshake Circuits

Handshake circuits manage communication between different parts of the processor.
They ensure that data is transferred only when the sender and receiver are both
ready, eliminating the need for a global clock to synchronize these operations.

In order to explain how handshake works, let us first consider a synchronous
circuit as shown in figure 5.1. During the process of designing digital circuits of this
type, the designers usually focus on the data processing and simply just assume a
global clock for their operations. For example, in this figure the data clocked in R3
is obtained through the function CL3, performed at the data from R2 occurring at
the previous clock.

Figure 5.1: A Synchronous circuit

Whereas in an asynchronous circuit, a handshaking protocol is used between
two registers instead of a clock signal. An example of such a protocol is given in
figure 5.2 where a sender has to send data to a receiver but before the actual data
transfer, the sender must inform the receiver of their availability (REQ), as well
as confirming that the information has been received before changing or removing
the data. The receiver on the other hand, receives the data and informs the sender
of its confirmation (ACK).

40

Asynchronous Architecture and its Potential

Figure 5.2: An Asynchronous circuit

5.2.2 Bundled Data Protocol
This is an expansion on the handshake protocol discussed previously, in which the
data signals are encoded using normal Boolean levels and separate request and
acknowledge wires are bundled alongside the main data path. Figure 5.3 represents
a bundled data path.

Figure 5.3: Bundled Data Path

This bundled data path may be categorized into two further types, which are as
follows.

41

Asynchronous Architecture and its Potential

4-Phase Bundled Protocol

This protocol consists of 4 distinct phases, which are described as follows:

• When the data is ready, the sender sends the data and issues a request signal
(REQ = 1), which means that the availability of signals is conveyed.

• The receiver receives the data and issues an acknowledge signal (ACK = 1),
which means that the data has been acquired and now can be safely discarded.

• The sender responds by cancelling the request signal (REQ = 0), which means
that the data may no longer be valid.

• The receiver responds by cancelling the acknowledge signal (ACK = 0), which
means that the sender can now start a new communication cycle.

Figure 5.4: 4-Phase Bundled Protocol

This 4-step procedure, illustrated in figure 5.4, has a disadvantage which ulti-
mately may result in more consumption of energy and time. This is due to the
return-to-0 states which lack any meaningful information.

2-Phase Bundled Protocol

The disadvantage of 4-Phased protocol may be solved by the 2-Phased Bundled
Protocol, shown in figure 5.5. It is similar to the previously discussed method
except that the information on the request and acknowledge paths is now encoded
as a signal transition, which results in no difference between (0 to 1) and (1 to 0)

42

Asynchronous Architecture and its Potential

Figure 5.5: 2-Phase Bundled Protocol

change. Now, they both represent a “signal transition”.

In theory, this solves the issue of time and energy consumption caused by the
4-Phased bundle, but practical implementation has shown that these circuits often
end up being more complex, leading to no right or wrong choice between the two
protocol and instead depending on a case-by-case basis.

5.2.3 The Muller C Element
In order to explain the principle of C element, we need to first consider the concept
of “indication” or “acknowledgement”. For example, we have a simple OR gate
with it’s truth table (as shown in figure 5.6). Looking at the output of the gate
from the truth table, we can extract some useful information. If there is a (1 to
0) transition, we can conclude that both the inputs are 0. Similarly for a (0 to 1)
transition, we can conclude that one of the inputs is 1 and the other is 0, although
we cannot identify them individually.

Not having the signal transitions indicated or acknowledged in other transitions
can lead to hazards. In synchronous circuits, as long as the signal is stable at
the rising or falling edge of the clock, the hazards won’t functionally cause any
problems. However in asynchronous circuits, these hazards should be avoided at
all times as there is no global clock and each transition produces an output.

This is the reason why Muller C element (shown in figure 5.7) is critical to
the function of such circuits. It is a state holding element and can be described
as the asynchronous equivalent of a Set-Reset latch. The output is 0 when both
the inputs are 0, and the output is 1 if both the inputs are 1 as well. If there are
other input combinations, the output does not change. In terms of the concept of

43

Asynchronous Architecture and its Potential

Figure 5.6: Truth Table for OR Gate

Figure 5.7: Muller C Element

“acknowledgement”, the (0 to 1) transition will conclude that both the inputs are 1
and a (1 to 0) transition would mean that both the inputs are 0.

5.2.4 The Muller Pipeline
When a bundled protocol utilizes Muller’s C elements in it, it becomes a Muller
Pipeline. Each stage of this pipeline consists of a C element and an inverter, in

44

Asynchronous Architecture and its Potential

which the input is the Request (REQ) from the previous stage and an
Acknowledge (ACK) from the next stage. The output of the current stage is
REQ for the next stage and ACK for the previous stage. A demonstration
of this transition is given in figure 5.8.

Figure 5.8: Muller Pipeline

The direction of propagation of this pipeline is from left to right. If all the C
elements are initialized to 0, the request is taken from the left, while the handshake
is down to the right, from where they receive the acknowledge signal. It is also
worth noting that every C element propagates 0 only if the next state is 1, and
similarly propagates 1 if the next state is 0. Therefore, the integrity remains, and
no two back-to-back signals can be merged with each other, resulting in the aversion
of potential hazards discussed previously.

The Muller Pipeline (4-phase bundled data)

The 4-phase bundled data pipeline resembles the synchronous model the most as
local clock pulses are generated, where the pulses from one stage overlap with
the pulse generated in the surrounding stages resulting in a carefully interlocked
pipleline. As an example, a FIFO has been considered and demonstrated in figure
5.9 in which combination circuits are added between the latches. Each combination
circuit (function block) comes with its own delay. Therefore, in order to retain the
correct behavior and timing across the circuit, matching delays also have to be
placed on the request signal paths.

45

Asynchronous Architecture and its Potential

Figure 5.9: 4-phase bundled pipeline with function blocks and matching delays

This configuration could be viewed as similar to traditional synchronous data
path in the sense that it consist of latches and combinational circuits clocked by a
distributed clock-driver. Or it could be also viewed as an asynchronous data path
consisting of latches and function blocks as it’s handshake components. Either
way, this similarity also results in some drawbacks, one of which occurs when
the C elements store alternate states consecutively (0, 1, 0, 1,. . .). This means
that it is no different than a traditional master-slave flip-flop with only ever next
latch storing meaningful data. Although this condition could be avoided on a
case-by-case basis with some custom design.

The Muller Pipeline (2-phase bundled data)

In order to understand the functioning of the 2-phase bundled data pipeline, the
working of a Capture-Pass latch has to be considered first. It is an element used
for data storage and is utilized in the pipeline here by being activated alternatively.
The switches connected to the input of the latch change according to the capture
line while the switches connected to the output of the latch change according to
the Pass line.

The working of this latch is demonstrated in figure 5.10. At time t0, the latch
is transparent (pass mode) and signals C and P are both 0. The Latch is turned
into capture mode when an event on the C line happens. Similarly, an event on
the Pass line means that the content of the latch has been used, therefore the latch
being transparent again to receive new data.

46

Asynchronous Architecture and its Potential

Figure 5.10: Working of a Capture Pass Latch

Figure 5.11: 2-phase bundled pipeline

Based on this latch, the configuration of a 2-phase bundled pipeline can be
formed, as shown in figure 5.11. In theory, this method is more efficient and
organized compared to the 4-phase bundled approach as it avoids the power and
performance loss caused by the return-to-0 part of the handshaking as discussed
previously. However, practical implementation has shown that these circuits often
end up being more complex [7], leading to no right or wrong choice between the

47

Asynchronous Architecture and its Potential

two protocol and instead depending on a case-by-case basis.

5.2.5 Classification of Asynchronous Circuits
In order to explain this, let us consider figure 5.12, which includes 3 gates A, B
and C and the output of A is connected to both B and C through a fork, with each
of them having their corresponding delay elements. Asynchronous circuits and be
classified as follows:

• Speed independent: If we assume that components A, B and C have positive
but unknown delay (dA, dB, dC), but the wires have 0 delay (d1=d2=d3=0),
then this circuit becomes speed independent and is working correctly. Practi-
cally speaking, a wire cannot have 0 delay, so if we work under the assumption
that d1, d2 and d3 have arbitrary lags and the two branched wires have equal
delay (d2=d3), the condition for speed-independence still holds true.

• Delay-insensitive: A circuit will become delay-insensitive when both the
components and the wires have arbitrary delays, which makes it a lot more
robust than a speed independent circuit. However, there are only two circuits
that follow up on this condition, which are C elements and inverters. Circuits,
where the fork delays of wires d2 and d3 are the same, are known as Quasi
Delay Insensitive, which are more common. A branch which has equal
delays for all it’s wires is called isochronic.

• Self-timed: These are the circuits in which the operation do not follow
the basic delay assumptions described above and are instead based on more
elaborate timing assumptions.

5.3 Use of Asynchronous Processors in the Stud-
ied Dual-Processor System

Based on the characteristics and principles of asynchronous processors which have
been discussed above, there is room for a lot of development in this aspect. Further
research and practical experimentation in this area for the implementation of
our multi-processor configuration is highly recommended, for reasons described in
relation to the key differences between asynchronous and synchronous processors,
as well as the advantages the former has over the latter.

48

Asynchronous Architecture and its Potential

Figure 5.12: A circuit consisting of gates and delay elements

5.3.1 Differences Between Asynchronous and Synchronous
Processors

Understanding the distinctions between asynchronous and synchronous processors
is crucial for appreciating the unique benefits they present:

• Clock Dependency: Synchronous circuits operate based on a global clock
that is used to coordinate all the operations. Which means that all operations,
regardless of being major or minor, will have to operate on a fixed timing.
Instead, asynchronous processors operate without a global clock while using
handshakes and completion signals. This allows for designs that are much
more suited and optimized for specific use-cases. The lack of a global clock
also reduces the regular switching noise, leading to Reduced Electromagnetic
Interference (EMI).

• Power Consumption: Synchronous processors consume more power due
to a common clock signal which is constant, even when no meaningful work
is being done. On the other hand, asynchronous processors can potentially
result in improved power efficiency, as they only consume energy when an
operation is active.

• Speed and Performance: In synchronous processors, the performance may
be limited by the slowest operation in the clock cycle. However in case of
asynchronous processors, higher performance can be achieved without relying
on the wait for slower operations bottlenecking the faster operations.

49

Asynchronous Architecture and its Potential

• Robustness: A traditional system with a common clock is more prone
to changes from the variations in process, voltage and temperature. As
asynchronous processors lack a clock, they are more tolerant to these changes
and become much more suitable in areas with fluctuating conditions.

As IoT applications continue to be adapted across diverse domains, there is an
increasing demand for processing power, driving the need for innovative solutions
to address these evolving requirements. Our proposed multi-CPU configuration
aims to deliver on these requirements. However, utilizing asynchronous architecture
in the same configuration instead of a traditional synchronous combination could
further improve not only the performance, but also the power consumption and
robustness of the system allowing for expanded use cases in various environments.

In this context, an asynchronous processor could be integrated either as the
main processor or as an accelerator, depending on the specific application require-
ments. If used as the main processor, the asynchronous architecture would handle
general-purpose tasks with increased efficiency and reduced power consumption,
particularly benefiting scenarios with variable workloads and dynamic performance
needs. On the other hand, if used as an accelerator, the asynchronous processor
could be dedicated to handling computationally intensive tasks, such as signal
processing, machine learning inference, or cryptographic computations, where its
ability to operate independently of a global clock could lead to significant perfor-
mance gains and energy savings.

By utilizing the strengths of asynchronous processors in these roles, we can
enhance the overall system performance, making it more adaptable to the fluc-
tuating demands of IoT applications. This flexibility allows for more robust and
energy-efficient solutions, especially in environments where power efficiency and
responsiveness are critical.

5.3.2 Disadvantages of Asynchronous Processors
Despite their benefits, asynchronous processors are not without its challenges and
drawbacks, some of which are mentioned as follows:

• Design Complexity: The design and verification of asynchronous circuits
are more complex due to the lack of a global clock, requiring specialized
knowledge and tools.

• Limited Tool Support: Fewer design tools and methodologies are available
for asynchronous processors compared to synchronous ones.

50

Asynchronous Architecture and its Potential

• Compatibility Issues: Integration with existing synchronous systems and
standards can be challenging.

• Market Adoption: Lower market adoption and support due to the dominance
of synchronous designs in the industry.

5.3.3 Summary
For the above mentioned factors, asynchronous architecture is a promising aspect
in the application of Internet of Things (IoT). While they have some drawbacks
which require further work and support, the potential benefits when it comes to
performance, energy efficiency and robustness make them a worthwhile topic for
research and further development.

51

Chapter 6

Conclusion

This thesis explored the interfacing of two RISC-V processors, specifically focusing
on utilizing interrupt handlers for effective communication and data transfer. The
primary aim was to develop a method that uses the strengths of interrupt-driven
systems to improve performance, especially in IoT applications requiring energy
efficiency and high processing power.

6.1 Methodology
The methodology described in Chapter 3 described the methodology to interface
a primary low-power RISC-V processor with a secondary high-power accelerator
processor using interrupt handlers. The primary processor, a simple RV32I RISC-V
CPU, handled routine tasks, while the secondary processor took on more complex
operations. The use of shared memory and interrupt-driven communication ensured
efficient data transfer and processing synchronization between the two CPUs.

6.2 Memory Utilization
A critical aspect of the interfacing methodology was memory utilization. Shared
memory was used as the primary medium for data transfer, managed through a
series of flags to indicate read/write operations. This setup minimized memory
contention and ensured efficient access by both processors. The SystemVerilog
and C code provided detailed implementations of the memory management and
synchronization mechanisms, showing how shared memory could be effectively
utilized in a multi-processor environment.

52

Conclusion

6.3 Data Transfer Mechanism
The data transfer mechanism relied on interrupt signals to initiate the read/write
operations in the shared memory space. Once an interrupt was received, the target
processor accessed the shared memory, performed the required operations, and
updated the synchronization flags. This approach was used to make sure that the
data transfer was both timely and accurate, hence reducing the overhead typically
associated with continuous polling mechanisms.

6.4 Experimentation
Chapter 4 detailed the software-based experimentation and testing of the proposed
methodology. The experiments were conducted in a simulation environment, utiliz-
ing tools like Xcelium Logic Simulator and SystemVerilog for hardware design and
verification. The tests focused on:

• Interrupt Generation and Handling: Ensuring that interrupts generated
by one processor were correctly handled by the other.

• Data Transfer Verification: Validating the accuracy of data transfer
through shared memory.

• Synchronization Mechanism: Confirming that the synchronization via
flags worked correctly within the simulation environment.

• Performance Metrics: Measuring the latency and throughput of data
transfer, ensuring the system’s efficiency.

While results for all the steps were unable to be obtained, the preliminary
findings did indicate the feasibility of the interrupt-based interfacing mechanism,
and their potential to demonstrate reliable and high-performance data exchange
between the processors.

6.5 Conclusion and Future Work
Interfacing RISC-V processors via interrupt handlers has proven to be a powerful
and efficient method for managing communication and task offloading. The research
demonstrated that with careful management of memory access and interrupt-driven
communication, it is possible to achieve a responsive and scalable multi-processor

53

Conclusion

system capable of handling complex workloads in a coordinated manner.

Future research could explore hardware-based implementations to further verify
these findings. Moreover, investigating asynchronous RISC-V processing could
offer new insights into reducing power consumption and improving performance.
Developing more sophisticated synchronization mechanisms and exploring other
communication protocols could also enhance the robustness and efficiency of multi-
processor systems.

In conclusion, this thesis provides insights into the design and implementation
of efficient and scalable computing systems based on the RISC-V architecture.
The methodologies and findings presented here provide the groundwork for future
advancements in the field, particularly in the context of IoT applications and
beyond.

54

Bibliography

[1] «riscv-simple-sv». In: URL: https://github.com/tilk/riscv-simple-sv () (cit. on
p. 1).

[2] «Pipelined RISC-V Processor». In: URL: github.com/estufa-cin-ufpe/RISC-V-
Pipeline () (cit. on p. 1).

[3] A Waterman and K Asanovic. «The RISC-V Instruction Set Manual, Volume
I: User-Level ISA, Version 2.2. May 2017». In: URL: https://content. riscv.
org/wpcontent/uploads/2017/05/riscv-spec-v2 2 () (cit. on p. 6).

[4] Pedro Mejia-Alvarez, Luis Eduardo Leyva-del-Foyo, and Arnaldo Diaz-Ramirez.
Interrupt Handling Schemes in Operating Systems. Springer, 2018 (cit. on p. 12).

[5] «Ibex Reference Guide». In: URL: ibex-core.readthedocs.io/en/latest/index.html
() (cit. on p. 15).

[6] Jens Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020 (cit. on p. 39).

[7] Jens SparsO, Christian D Nielsen, Lars S Nielsen, Jcrgen Staunstrup, S Furber,
and M Edwards. «Design of self-timed multipliers: A comparison». In: Asyn-
chronous Design Methodologies 28 (1993), pp. 165–179 (cit. on p. 47).

55

	Acronyms
	Introduction
	Motivation
	Thesis Structure

	Technical Background
	RISC-V Architecture
	ISA: Instruction Set Architecture
	RISC (Reduced Instruction Set Computing)
	CISC (Complex Instruction Set Computing)
	RISC vs CISC
	RISC-V Overview
	RISC-V RV32I

	Communication Protocols
	Interrupts
	Buses
	Networks on Chip
	Conclusion

	Methodology for Interfacing RISC-V Processors
	Introduction
	Overview of Interrupts
	Types of Interrupts
	Interrupt Triggers
	Benefits of Using Interrupts
	IBEX Processor Overview

	Using Interrupt Handlers for Interfacing
	Setting Up Interrupt Sources
	Interrupt Service Routine (ISR)

	Memory Utilization
	Memory Mapping
	Synchronization
	Read/Write Flags

	Data Transfer Mechanism
	Direct Memory Access (DMA)
	Shared Memory with Flag Synchronization
	Memory Passing
	Data Transfer Process

	Challenges and Considerations
	Conclusion

	Experimentation and Testing
	Introduction
	Experimental Setup
	Software Environment

	Testing Methodology
	Objectives
	Test Script

	Challenges and Observations
	Challenges
	Observations

	Conclusion

	Asynchronous Architecture and its Potential
	Introduction to Asynchronous Processors
	Key Concepts in Asynchronous Processing
	Handshake Circuits
	Bundled Data Protocol
	The Muller C Element
	The Muller Pipeline
	Classification of Asynchronous Circuits

	Use of Asynchronous Processors in the Studied Dual-Processor System
	Differences Between Asynchronous and Synchronous Processors
	Disadvantages of Asynchronous Processors
	Summary

	Conclusion
	Methodology
	Memory Utilization
	Data Transfer Mechanism
	Experimentation
	Conclusion and Future Work

	Bibliography

