
POLITECNICO DI TORINO

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

MASTER’S DEGREE IN ELECTRONIC ENGINEERING

EDFA noise figure and WSS DGD
modeling

SUPERVISOR:
Prof. Vittorio Curri

CO-SUPERVISORS:
Dr. Rocco D’Ingillo
Dr. Renato Ambrosone

CANDIDATE:
Alberto Castronovo

ACADEMIC YEAR 2023 - 2024





Index

Introduction 1

1 Open optical networks 3
1.1 Optical communications: an overview . . . . . . . . . . . . . . . . . 3

1.1.1 History of optical communications . . . . . . . . . . . . . . . 3
1.1.2 Modern challenges of optical networks . . . . . . . . . . . . 5

1.2 Optical network structure and technology . . . . . . . . . . . . . . . 7
1.2.1 Elements of an optical network . . . . . . . . . . . . . . . . 7
1.2.2 Transmission technology . . . . . . . . . . . . . . . . . . . . 13

1.3 Towards open networks and software solutions . . . . . . . . . . . . 15
1.3.1 The transition to open optical networks . . . . . . . . . . . . 15
1.3.2 Software Defined Networks . . . . . . . . . . . . . . . . . . . 15
1.3.3 Digital twin and machine learning . . . . . . . . . . . . . . . 16

2 EDFA Noise Figure modeling 19
2.1 An overview on EDFA devices . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Noise sources in amplifiers . . . . . . . . . . . . . . . . . . . 21
2.1.2 Noise Figure of EDFAs . . . . . . . . . . . . . . . . . . . . . 23

2.2 Comparison of different EDFA models . . . . . . . . . . . . . . . . 26
2.3 Model requisites, expectations, limitations . . . . . . . . . . . . . . 28

3 Polynomial model construction 29
3.1 Employed tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 From measurements to noise figure evaluation . . . . . . . . . . . . 29

3.2.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 The measurement datasets . . . . . . . . . . . . . . . . . . . 32
3.2.3 Spectrum normalization . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Locating the active channels . . . . . . . . . . . . . . . . . . 34

i



3.2.5 Evaluating SSE and ASE . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Creating the noise figure dataset . . . . . . . . . . . . . . . . 37

3.3 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Noise figure and input power . . . . . . . . . . . . . . . . . . 38
3.3.2 Noise figure and gain . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Noise figure and tilt . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Noise figure and frequency . . . . . . . . . . . . . . . . . . . 47
3.3.5 The GLS regression . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Notes on code and algorithms . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Python class: an easy interface . . . . . . . . . . . . . . . . 51
3.4.2 Polynomial evaluation: Horner’s rule . . . . . . . . . . . . . 54

3.5 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Uncertainty of OSA measurements . . . . . . . . . . . . . . 55
3.5.2 70-30 split models . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Complete dataset models . . . . . . . . . . . . . . . . . . . . 58
3.5.4 Correlation of errors . . . . . . . . . . . . . . . . . . . . . . 60
3.5.5 Code execution time . . . . . . . . . . . . . . . . . . . . . . 62
3.5.6 Training dataset size vs. accuracy . . . . . . . . . . . . . . . 64
3.5.7 Model computational speed and memory footprint . . . . . . 68
3.5.8 Model usage in Deep Learning EDFA model . . . . . . . . . 72

4 Differential Group Delay modeling 75
4.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 DGD and WXC attenuation . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 DGD results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 DGD and WXC cascade . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 DGD results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Conclusions on DGD measurements . . . . . . . . . . . . . . . . . . 83

Conclusions 84

References 87

Acknowledgements 91

ii



Introduction

The surge in demand for applications such as virtual and augmented reality, expan-
sive cloud services, and high-definition video streaming has significantly increased
the need for greater capacity in optical and wireless networks [1]. As these techno-
logies advance, they continually increase their requirements for high bandwidth and
low latency, necessitating ongoing improvements in network infrastructure. This
is a significant challenge for 5G networks, as the backhaul infrastructure used for
previous generations is inadequate for meeting the stringent requirements in terms
of very low latency and efficient management of dense traffic [2].

Nowadays, optical systems are approaching their theoretical capacity limits due
to significant advancements like probabilistic constellation shaping and forward
error correction. These innovations have helped maximize the efficiency of data
transmission, pushing towards the Shannon limit. To move forward, the focus
must shift to optimizing the physical layer and enhancing the control layer with
more efficient resource allocation and management [3].

Innovative approaches such as software-defined networking (SDN), elastic op-
tical networks (EON) and self-driving optical networks have emerged to push
performance further. SDN decouples network control from hardware, enabling
dynamic management and reconfiguration of resources. EON allows flexible al-
location of spectrum based on traffic demands, improving bandwidth efficiency.
Self-driving optical networks leverage AI and automation to optimize network
operations, improving overall efficiency and reliability [4].

The modeling of Erbium-Doped Fiber Amplifiers (EDFA) is crucial for optimi-
zing optical networks, as these components define the transmission bandwidth and
play a crucial role in determining the Optical Signal-to-Noise Ratio (OSNR) of the
signal [5]. EDFAs are a well-established technology, yet certain parameters, such as
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gain, amplified spontaneous emission (ASE) and noise figure, can vary significan-
tly depending on signal attributes such as input power and channel frequency, but
these variations do not conform to simple analytical formulas [6]. All of these con-
siderations suggest that the development of accurate predictive models for EDFA
parameters could be considered a potentially rewarding challenge.

Numerous models for EDFA parameters already exist in the literature [7] [8] ,
primarily focusing on the estimation of gain [9]. Explicit models have the lowest
cost because they can be built based primarily or solely on a-priori knowledge of
the devices, but often fall short of high accuracy requirements. Data-driven models,
based on neural networks, instead offer greater accuracy [10] but are more difficult
to employ in real-world applications due to the large datasets needed for training,
which are often unavailable or expensive to acquire.

In this thesis work, a polynomial model for the noise figure of EDFAs is pro-
posed. The design emphasizes high-speed implementation, to integrate seamlessly
with more comprehensive machine learning EDFA models without imposing signi-
ficant computational delays. Additionally, the model is designed for flexibility, al-
lowing users to adjust the size of the training datasets to balance between accuracy
and cost of measurements.

In addition to the noise figure model, measurements and tests are conducted
to study the behavior of the Differential Group Delay (DGD), a parameter related
to distortion. The objective is to determine whether the DGD behavior in more
complex devices, such as optical multiplexers and demultiplexers, aligns with the
linear behavior observed in optical fibers or if other effects are present.
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Chapter 1

Open optical networks

1.1 Optical communications: an overview

1.1.1 History of optical communications

Optical communication has ancient roots, with early civilizations using smoke si-
gnals, fire, and mirrors to convey simple messages like battlefield victories. These
rudimentary methods had significant limitations, such as predetermined messages
and short transmission distances [11]. The evolution of human communication can
be measured by two key metrics: transmission rate (the number of distinct symbols
sent per unit time) and transmission distance. A major breakthrough in optical
communication came in the late 18th century with Claude Chappe’s optical telegra-
ph. This system used metal bars atop towers to encode a basic alphabet, allowing
transmission over distances of 10-15 km between towers, as shown in Figure 1.1.
Chappe also introduced the concept of repeaters, with each tower replicating the
symbol from the previous one. In modern terms, this system’s transmission rate
would be less than 1 bit s−1, but for the time it was a significant achievement. Ho-
wever, it was limited to daylight operation and required simultaneous coordination
among all tower operators along the transmission line. The early 19th century,
instead, saw optical communication give way to electrical methods. The electrical
telegraph, employing new coding schemes like Morse code, offered higher transmis-
sion rates. Analog electrical techniques, including the transatlantic telegraph cable
and the telephone, dominated long-distance communication for over a century.
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Open optical networks

Figure 1.1: Optical telegraph coding scheme and signal tower.

The 20th century witnessed the establishment of a global telephone network.
The introduction of coaxial cables increased capacity, but signal losses remained
a critical issue, limiting operating frequencies to a few MHz [12]. This constraint
drove innovators and researchers towards radio and microwave communication sy-
stems. These alternatives achieved similar performance to coaxial cables with fewer
repeaters, but still faced bandwidth limitations of about 100Mbit s−1. Optical com-
munications regained prominence after 1960 with the invention of lasers. However,
optical fibers at that time suffered from very high losses, making them unsuita-
ble for long-distance communication. This sparked a concerted effort to reduce
fiber losses. A significant breakthrough came in 1970 when Corning, an American
company, achieved losses below 20 dB/km at wavelengths near 630 nm. Two years
later, the same team further reduced losses to 4 dBkm−1 by using germanium in-
stead of titanium as the core dopant. The race to minimize losses continued until
1979 when a Japanese group achieved 0.2 dBkm−1 in the wavelength region near
1550 nm, approaching the theoretical limit set by Rayleigh scattering. This value
has remained largely unchanged to the present day. The first GaAs lasers emitted
light at around 850 nm, establishing the "first window" used in optical commu-
nications, with transmission rates of about 45Mbit s−1. Losses at this wavelength
were around 3 dBkm−1, requiring signal regeneration after approximately 10 km - a
significant improvement over coaxial cables, which needed regeneration every 1 km.
This marked the dawn of a new era in long-range communications, which became
increasingly evident with the advent of the Internet at the end of the 20th century.
The ability to transmit data over greater distances with fewer interruptions and
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1.1 – Optical communications: an overview

higher bandwidths paved the way for the global connectivity we experience today.

A very important milestone that has impacted on optical communications in
recent times is the employment of coherent receivers and, consequently, the mo-
dulation formats they support. Overlooked up to early 1980s in favor of intensity
modulated direct-detection (IMDD) systems, coherent technology regained intere-
st after a demonstration of precise frequency stabilization of semiconductor lasers
[13], essential for heterodyne detection due to the sensitivity to phase and state of
polarization (SOP) variations. This same sensitivity to the phase of the incoming
signal, not just to the amplitude, is one of the key benefits of this technology, becau-
se it enables detection of phase-encoded modulation formats like phase shift keying
(PSK) and quadrature amplitude modulation (QAM) [14]. Coherent receivers inhe-
rently offer a very narrow filtering capability, needed in today’s strive towards high
density Wavelength Division Multiplexing (DWDM), and Digital Signal Processors
(DSPs) can be effectively used to equalize impairments such as chromatic disper-
sion and polarization-mode dispersion, leading to a zero net penalty, impossible
with direct detection receivers [15].

1.1.2 Modern challenges of optical networks

A 2010 study [16] introduced a method for calculating the theoretical capacity
limit of single-mode fibers. A crucial finding was the relationship between spec-
tral efficiency (measured in bit s−1Hz−1) and signal-to-noise ratio (SNR) for va-
rious transmission distances. Based on these results and assuming the use of
polarization-division multiplexing, the maximum capacity of a single-mode fiber
was estimated to be around 200Tbit s−1. However, this prediction has since been
surpassed, also due to more advanced multiplexing techniques and the advancemen-
ts in technology allowing to use a larger bandwidth. Current research has pushed
beyond 400Tbit s−1utilizing more than 1500 Dense Wavelength Division Multiple-
xing (DWDM) channels distributed across multiple bands in a single optical fiber
[17]. The demand for data traffic has grown steadily since the commercial introduc-
tion of the Internet in 1994. This growth has accelerated in recent years due to the
proliferation of high-bandwidth services such as high-definition video streaming,
virtual reality applications, and cloud computing. This increasing demand presents
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several challenges for the field of optical communications. Researchers are explo-
ring new modulation formats, such as Space-Division Multiplexing (SDM), which
shows promise for further increasing fiber capacity. Additionally, improving energy
efficiency has become a critical focus in the development of optical communication
systems [11].

A 2008 study [18] revealed that energy consumption in optical networks was pri-
marily driven by access networks - the infrastructure connecting subscribers to their
service providers. In contrast, optical transport consumed relatively little energy,
accounting for less than 5% of total consumption. At higher bit rates, network
routers became the dominant energy consumers. This energy distribution pattern
suggests several areas for improvement. Reducing the hop count (the number of
devices, typically routers, through which a data packet travels) is crucial. Addi-
tionally, enhancing router efficiency, implementing caching strategies, and utilizing
content distribution networks can contribute to overall energy reduction. Another
challenge in the optical network landscape is the prevalence of closed systems. Most
currently deployed optical networks rely on components, both hardware and soft-
ware, provided by a single vendor or a small group of tightly integrated vendors.
This closed approach presents several drawbacks, including limited flexibility, ven-
dor lock-in for future upgrades, higher upgrade costs, and more cumbersome inno-
vation cycles. Recognizing these limitations, many industry experts are advocating
for a transition towards open optical networking approaches. This shift aims to
create more flexible, cost-effective, and innovative optical network infrastructures.
As the demand for data transmission continues to grow, addressing both ener-
gy efficiency and network openness will be crucial in developing sustainable and
adaptable optical communication systems for the future.
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1.2 – Optical network structure and technology

1.2 Optical network structure and technology

1.2.1 Elements of an optical network

The key components within an optical network include:

1. Transceivers: used to transmit and receive data, converting electrical signals
into optical pulses and vice-versa.

2. Transponders: similar to transceivers, they are used to extend the tranmis-
sion distance by converting the signal to a different frequency and amplifying
it, without changing the data content.

3. ROADMs: short name for Reconfigurable Optical Add/Drop Multiplexers,
they allow for specific wavelengths to be dropped or added at a location, while
allowing other wavelengths to traverse the device untouched.

4. Optical Line Systems (OLS): these systems form the backbone of optical
networks, providing the necessary infrastructure for optical connections bet-
ween network nodes (typically ROADMs). OLSs, as shown in Figure 1.2 [19],
consist of two primary components:

• Optical fiber: this is the fundamental medium for light transmission
in optical networks. Engineered to guide light signals efficiently, optical
fibers can maintain signal integrity over exceptionally long distances;

• Optical amplifiers: placed at strategic intervals along the optical fiber
route, these devices serve to periodically regenerate the optical signal.
Their primary function is to compensate for signal attenuation that oc-
curs naturally as light travels through the fiber, ensuring that the signal
remains strong and clear over extended distances.

Figure 1.2: Example of an open OLS structure for disaggregated networks [19].
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Transceiver

A transceiver consists of two primary components: the transmitter and the receiver.
The transmitter utilizes a wavelength-specific laser to convert an input electrical
signal into an optical signal. Conversely, the receiver employs a photodiode to
perform the reverse operation, transforming optical signals back into electrical ones.

These devices can handle various signal types, including wideband signals at
850 nm, 1310 nm, or 1550 nm. They’re also capable of processing various multiple-
xing techniques like Coarse Wavelength Division-Multiplexed (CWDM) or Dense
Wavelength Division-Multiplexed (DWDM) signals. In essence, transceivers serve
as the crucial interface between optical fibers and electronic devices.

The transceiver’s design, featuring separate circuits for transmission and recep-
tion, enables independent operation of these functions and therefore full-duplex
communication. Optical transceivers are available in a variety of form factors, with
their size primarily determined by modulation speed. Despite this variety, they
all adhere to the Multisource Agreement (MSA) standard, ensuring compatibility
across different manufacturers and systems. Different form factors offer distinct
advantages. For instance, the SFP-DD (Small Form-factor Pluggable - Double
Density) is one of the most compact options, enabling high port density in network
equipment. On the other hand, form factors like QSFP-DD (Quad Small Form-
factor Pluggable - Double Density) and OSFP (Octal Small Form-factor Plugga-
ble) support the highest speeds, currently up to 800Gbit s−1. These high-speed
options are designed to meet the demands of today’s data-intensive applications
and network infrastructures. Figure 1.3b shows a QSFP-DD transceiver.

Transponder

Optical transponders, also known as optical-electrical-optical (OEO) devices, share
structural similarities with transceivers, comprising both a transmitter and a re-
sponder. However, their function is more specialized. These devices are designed to
automatically receive, amplify, and retransmit an optical signal on a different wave-
length, all while preserving the integrity of the transmitted data. The wavelength
switching operation is made in the electrical domain. It is used to shift the input
signal into a WDM channel of choice. Transponders are needed in case devices that
work with different wavelengths need to communicate with each other, or when a
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system employs both single-mode and multi-mode fibers and an interface between
the two is needed. An example device is shown in Figure 1.3a.

(a) A transponder. (b) A transceiver.
Figure 1.3: Examples of optical network elements.

ROADM

ROADMs are WDM networking devices that function analogously to a road inter-
section for optical fiber paths. Their primary role is to selectively add or drop speci-
fic wavelengths while allowing others to pass through unaffected, effectively mana-
ging the flow of optical signals within a network. They are an evolution of OADMs,
which were devices with fixed configuration, meaning that it was not possible to
configure them after deployment, and were limited to two directions. ROADMs, in-
stead, can be remotely configured and support multiple directions, allowing higher
freedom in creating the optimal network connection structure. ROADMs rely pri-
marily on Wavelength Selective Switches (WSS) for their core functionality, which
are 1-input, multiple-output devices that take as input a signal with potentially
multiple WDM channels, and re-route each channel to a specific output port. Ini-
tially, ROADMs utilized fixed-grid WSS with a predetermined channel pattern and
spacing. This rigid pattern meant that any wavelengths added to the network had
to conform precisely to these fixed channels to traverse the ROADM effectively. Ho-
wever, with the growing demand for higher baud rates and therefore wider channel
sizes, ROADMs have evolved to support flexible channel grids. Recent advance-
ments in ROADM technology have introduced even greater levels of flexibility [20].
One significant improvement is the ability to assign wavelengths with more freedom,
often referred to as "colorless" operation. This feature allows any wavelength to be
assigned to any port, enhancing network adaptability. Another key development

9



Open optical networks

is the removal of directional constraints on add/drop wavelengths, known as "di-
rectionless" operation. This capability allows wavelengths to be added or dropped
from any direction, increasing network routing options and efficiency. Furthermore,
state-of-the-art ROADMs now offer the ability to re-route any wavelength to any
direction without restrictions, a feature often termed "contentionless" operation.
This advancement eliminates potential conflicts when multiple signals vie for the
same resources, thereby optimizing network performance and flexibility.

A particular ROADM type is Wavelength Crossconnect (WXC). The goal of
this structure is to be able to route any wavelength from any input port to the
same wavelength on any output port. For a WXC of n-th degree that supports m

wavelengths, meaning it consists of n input and n output ports, we need n optical
multiplexers at the input side, n optical demultiplexers at the output, and m optical
switches with n×n ports in between. Figure 1.4 shows an example of a commercial
ROADM from Lumentum [21].

Figure 1.4: Picture of a commercial ROADM [21].

Optical fiber

Optical fibers are thin, flexible circular cables, primarily made of high-quality silica
glass, though other materials can be used. These fibers excel at transporting light
signals, typically from lasers, over vast distances with minimal signal loss. The
fiber’s structure, illustrated in Figure 1.5, is key to its function. It consists of a
core, where light travels, surrounded by a cladding. The light is confined within
the core through total internal reflection, a phenomenon caused by the difference
in refractive index between the core and cladding materials. This design allows
optical fibers to guide light efficiently over long distances, making them crucial
components in modern communication networks. The fibers that are employed
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1.2 – Optical network structure and technology

over long distances are single-mode fibers (SMF), with a core diameter of around
8 µm and a cladding diameter of 125µm. As the fiber is very thin and fragile,
plastic coatings are used to enhance their mechanical properties.

(a) (b)
Figure 1.5: Diagrams showing the internal structure of an optical fiber. (a) general shape
of the fiber, showing the core and cladding; (b) refractive index difference between core
and cladding, which enables light confinement.

Optical amplifier

Optical amplifiers are specialized devices designed to boost the power of optical
signals as they propagate through a network. Unlike transponders, which require
optical-electrical-optical (OEO) conversion, optical amplifiers operate directly in
the optical domain. Various types of optical amplifiers exist, each leveraging dif-
ferent physical effects to achieve signal amplification. One prominent category is
Doped Fiber Amplifiers (DFAs). These devices utilize a specialized optical fiber
segment with a core doped with rare-earth materials. When excited by a pump
laser, these doped materials release additional photons at the same wavelength as
the incoming optical signal, resulting in a stronger light pulse. An example of an
Erbium Doped Fiber Amplifier (EDFA) from Cisco is reported in Figure 1.6 [22].

Multiple devices exist, with different doping materials, because each one is dif-
ferent in terms of the range of wavelengths that it can effectively amplify. The most
employed in long-range and metropolitan optical networks are EDFAs, which work
in C and L optical bands, respectively between 1530 nm and 1565 nm and between
1565 nm and 1625 nm. Semiconductor Optical Amplifiers (SOAs) amplify signals
by injecting an electric current into a single-mode semiconductor fiber. The peak
gain of these devices is determined by the semiconductor material and occurs for
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Figure 1.6: Picture of a commercial EDFA [22].

photon energies just above the semiconductor band gap. Raman amplifiers, on the
other hand, rely on the Stimulated Raman Scattering (SRS) phenomenon. They
amplify the signal through interaction with the medium’s vibrational modes. This
process can be cascaded, allowing amplification across a broad wavelength range.

Measurement and laboratory devices

The following devices have been used throughout the measurements conducted for
the realization of this work:

1. OSA: Optical Spectrum Analyzers are precision instruments used to measure
and display the power spectral distribution of an optical signal across a defined
wavelength range.

2. VOA: Variable Optical Attenuators are devices used to reduce the optical
power of an input signal, with the attenuation level adjustable manually or
controlled by an electrical input signal.

3. Polarization scrambler: a device that accepts an input optical signal and
returns it with its State of Polarization (SOP) rapidly randomized, aiming to
achieve a time-averaged depolarization effect.

4. Polarization analyzer: a device used to analyze polarization properties of
an optical signals, including the representation of the State of Polarization
(SOP) on the Poincaré sphere.
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1.2 – Optical network structure and technology

1.2.2 Transmission technology

Wavelength Division Multiplexing

In communication technologies, and specifically in optical communication infra-
structures, the highest interest goes into maximizing the bandwidth of the medium,
meaning the amount of data that can be transferred in the time unit over each sin-
gle piece of fiber. This is done to reduce costs related to material, deployment and
management of networks infrastructures, especially today, with an ever-increasing
demand of bandwidth from internet applications. Multiplexing technologies allow
multiple independent signals to share the same transmission medium and be tran-
smitted in the same time or space, without interfering with each other. Multiple
multiplexing technologies exist, and have been used in the past, like Time Division
Multiplexing (TDM), or in other applications such as TV and radio transmission,
like Frequency Division Multiplexing (FDM), or are being experimented for futu-
re usage, like Space Division Multiplexing (SDM). Currently, the most employed
technique in optical communications is Wavelength Division Multiplexing (WDM),
further divided into Coarse-WDM and Dense-WDM, depending on the number of
supported simultaneous channels. This technique consists in propagating multiple
different signals on the same piece of fiber, by using a different wavelength range
for each channel. This also allows bidirectional communications over a single op-
tical fiber, provided that the two directions utilize different independent channels.
Figure 1.7 shows the basic diagram of a WDM setup, including optical multiplexer
and demultiplexer and an optical fiber that allows the simultaneous transport of
all the channels on different wavelengths.

Figure 1.7: Representation of a WDM setup.

CWDM and DWDM differ in the spacing between adjacent channels and in
the ability to amplify the signals while remaining in the optical domain, without
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OEO conversion. These differences make CWDM a less expensive solution for
shorter distances, up to around 70 km, while DWDM is suitable for much longer
distances, as it supports also signal amplification. This technique requires an optical
multiplexer at the transmitter side, which combines all the input signals into the
same fiber, and an optical demultiplexer at the receiver side, which performs the
inverse operation, and separates the content of the fiber into multiple outputs,
one channel per line. This technique, with current technology, easily allows for a
capacity of 800Gbit s−1, although this number is progressively growing up.

Modulation format

The modulation technologies and techniques used to transmit symbols in optical
fibers can also greatly influence medium capacity. The first 10Gbit s−1 transcei-
vers used Intensity-Modulation with Direct-Detection (IMDD), which is a simple
modulation format, used until 2010 and now limited to access networks and short
distance transmissions. The advent of coherent, DSP-based optical receivers in
2007 enabled the use of multilevel modulation formats, which means that multiple
bits were transmitted with each symbol, thus multiplying the capacity. The tran-
smission rate for each wavelength rapidly increased from 10 to 100Gbit s−1 and
more, and recently it reached 800Gbit s−1.
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1.3 Towards open networks and software solutions

1.3.1 The transition to open optical networks

Recently, there has been a growing push towards more open and automated optical
networks [23]. This approach offers benefits such as vendor interoperability, redu-
ced total cost of ownership (TCO), accelerated network innovation, and improved
service delivery. Many companies are backing this trend, as evidenced by nume-
rous white papers on the subject [24] [25], by contributing to the development of
open standards and interfaces like YANG data models, Open APIs, and the Open
ROADM Multi-Source Agreement (MSA).

In short, open optical networking involves applying open architectures, interfa-
ces, and systems to optical networks [24]. This typically involves deploying network
infrastructure with Open Line Systems (OLS) and open transponders. The main
idea is to disaggregate the network, allowing OLS, transponders, and terminal sy-
stems from different vendors to work together. In the simplest scenario, a single
supplier provides the entire OLS, while transponders and end-to-end systems come
from other vendors. However, some network operators propose further disaggre-
gation, with multiple vendors’ components integrated within the OLS, mixed and
matched as needed [19].

1.3.2 Software Defined Networks

Traditional networking devices like repeaters, bridges, routers, and switches have
effectively managed network traffic for decades. However, modern network envi-
ronments, particularly data centers, are growing too complex and costly to handle
with these conventional technologies. This escalating complexity and expense, along
with the demand for faster innovation, are driving a shift from traditional methods
to a more open, flexible, and innovation-driven approach called Software-Defined
Networking (SDN) [26].

SDN originally emerged from the OpenFlow project at Stanford University. It
consists in a shift in network architecture, fundamentally characterized by four
aspects:
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1. Decoupling of Control and Data Planes: control functions are separated
from network devices, which are simplified to merely forward packets.

2. Flow-Based Forwarding: Instead of relying on destination-based routing,
SDN uses flow-based forwarding. A flow is defined by a set of packet charac-
teristics and corresponding actions, ensuring uniform treatment of all packets
within a flow.

3. Centralized Control Logic: The control logic is relocated to an SDN con-
troller or Network Operating System (NOS), a software platform on commo-
dity servers that centralizes and abstracts network management, much like
an operating system.

4. Programmability: The network is controlled by software applications inte-
racting with the data plane through the NOS, making SDN highly adaptable
and allowing dynamic changes to network policies.

This architecture simplifies network management by centralizing control, which
enhances the ease of policy modification and automatic adaptation to network state
changes. It also facilitates the development of advanced networking functions.
Abstractions in SDN, particularly those related to forwarding, distribution, and
specification, simplify programming and control of the network, with OpenFlow
serving as a foundational abstraction akin to a device driver in computing. The
distribution abstraction within the NOS provides a global network view and handles
the dissemination of control commands to forwarding devices [27].

1.3.3 Digital twin and machine learning

A digital twin (DT) is the virtual replica of an object, process, or an entire system,
created for simulation, testing and optimization purposes, allowing these opera-
tions without the need to physically interact with the subject. DTs are increasingly
applied to telecommunications, particularly optical networks. The concept of a
Digital Twin Optical Network (DTON) involves creating a digital replica of the
physical network for simulation and real-time management. Unlike traditional op-
tical networks, which suffer from limited sensing and static modeling capabilities,
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DTON enhances network operations through accurate predictions, dynamic simu-
lations, and optimization strategies [28]. DTON facilitates monitoring, modeling,
and control of optical networks, significantly improving deployment planning and
operation. It supports applications such as fault detection, quality estimation, po-
wer control, and configuration prediction, primarily focusing on the physical layer.
However, integrating the network layer as well is crucial for comprehensive global
control and management. Several architectures to deploy and operate a DTON are
proposed in literature [29]. In general, DTONs are deployed using a cloud infra-
structure and are composed of different parts, which may include a data collector
acting as a broker to gather and distribute data, a data repository that maintains
and updates the topology and connectivity of the network, Service Mapping Models
(SMM) which provide data modes for various network applications, and the Digital
Twin Entity Manager (DTEM), which manages the DTON as a whole, tracking its
lifecycle and interacting with the virtualization platform.

In recent times, the integration of Machine Learning (ML) into the field of
optical networks has been a recurring interest [30]. Some providers are beginning to
incorporate ML to improve resource management, monitoring, traffic prediction and
classification and fault handling. Traditional methods such as Bayesian estimation
or heuristic solutions usually only take into account the current state of the network
and ignore historical information. ML techniques would rely on models trained on
historical data, and therefore be more immune to noise. Moreover, especially due
to 5G networks, data traffic has become increasingly dynamic and heterogeneous,
and flexible reconfiguration is getting more and more critical to meet QoS levels.
Traditional methods present a large computational effort, and ML could offer a
more efficient real-time solution.
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Chapter 2

EDFA Noise Figure modeling

2.1 An overview on EDFA devices

An Erbium-Doped Fiber Amplifier (EDFA) is a device used to amplify input signals
in optical fibers. It is extensively used in fiber-optic telecommunications due to its
high gain, low noise capabilities, and ability to support a wide range of wavelengths.
EDFAs consist of several components, the most crucial of which is a length of
fiber with a core uniformly doped with erbium ions. The amplification process
is achieved by propagating a pump laser alongside the input signal through the
same Erbium-Doped Fiber (EDF). This excites the erbium ions, allowing for the
stimulated emission of additional photons [3].

Figure 2.1: A basic EDFA block diagram.

Figure 2.1 illustrates the block diagram of an elementary internal EDFA struc-
ture. More advanced architectures, such as multi-stage structures, are used to
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improve performance but are beyond the scope of this analysis. The input signal
at optical wavelengths is coupled into the EDF along with a shorter-wavelength
pump laser (typically 980 nm or 1480 nm), commonly via a Wavelength Division
Multiplexing (WDM) coupler. Optical isolators are employed at both the signal
and pump sources, as well as at the output of the EDF, to prevent backpropagation
and unwanted reflections. The pump laser light can propagate in the same direction
as the signal (co-propagation) or in the opposite direction (counter-propagation).
For a preliminary analysis, the Er3+ ions present in the fiber core can be conside-
red as simple systems with only two discrete energy levels. However, in this case, a
three-level model is presented, which is also used in the section on noise sources. A
representation of those levels and the energy transitions of electrons are reported
in Figure 2.2. The levels, labeled s1, s2, and s3 correspond to the energy levels
I15/2, I13/2, and I11/2 of erbium [31]. A fourth energy level, higher than s3, could be
added to model signal absorption due to photons in s3. However, this contribution
is neglected in the present analysis. It is important to note that energy levels are
not single discrete values, but rather very dense ranges of multiple values. Conse-
quently, transitions involving photons of similar frequency (and, therefore, energy)
occur between the same two levels.

Figure 2.2: The three-bands model of Er3+ ions energy levels.

The propagation of the 980 nm pump laser light in the fiber excites erbium ions
from the low energy state s1 to the pump level state s3. Ions in s3 have a very short
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lifetime and thus immediately relax to a metastable state, s2, releasing photons
in a non-radiative transition. When a 1480 nm laser is used, the ions are directly
excited to s2. This process creates a population inversion between the low energy
state and the metastable state, enabling amplification of the input signal power in
the range of 1520 to 1565 nm. Signal photons can also be absorbed by the material,
and spontaneous emission can occur. Both these effects happen between s1 and s2,
if we neglect the transition of an excited electron from s3 to a fourth level s4 due
to absorption.

EDFAs can be used in three different operating modes [3]:

1. Automatic Gain Control (AGC), the most commonly used, which regu-
lates the laser source current in order to achieve a target gain;

2. Automatic Power Control (APC), which works the same way but the
target is an output power;

3. Automatic Current Control (ACC), which delivers a constant current to
the laser source.

Commercial EDFAs allow to set the target gain, usually expressed in dB, and
the target tilt, which indicates the slope of the peak power of the active channels in
the output power spectrum and is usually evaluated as the difference between the
power levels of the first and last channel inside the bandwidth of interest (usually
the optical C-band or L-band). This quantity is also expressed in dB.

2.1.1 Noise sources in amplifiers

Multiple sources contribute to the noise generated and propagated inside an optical
amplifier [32]. The main elements are:

1. Signal-spontaneous (sig-sp) beating: originates from the mixing of the
coherent signal with the incoherent Amplified Spontaneous Emission (ASE) in
the same polarization. It exhibits a flat frequency distribution, proportional
in amplitude to gain and input signal power.

2. Spontaneous-spontaneous (sp-sp) beating: similar to sig-sp beating,
but involves copolarized spectral components of ASE. It is independent of
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input signal power and gain, and is more pronounced around the central
frequency.

3. Multipath interference (MPI): phase or frequency noise already affecting
the input signal is converted to intensity noise in the output signal. It has
low bandwidth and increases with input power and gain.

4. shot noise: random fluctuation in the photo-generated current in the photo-
detector, due to random and independent carrier generation. It is frequency-
independent, resembling white noise, and is proportional to the average photo-
generated current.

For simplicity, in this analysis, we will refer to the signal-spontaneous (sig-sp)
beating contribution as ’ASE noise’.
The most significant noise contribution in EDFAs is Amplified Spontaneous Emis-
sion (ASE), as both signal-spontaneous (sig-sp) and spontaneous-spontaneous (sp-
sp) beating depend on it, with the former generally being dominant. ASE occurs
when excited erbium ions decay to the low-energy state before interacting with
photons from the input signal. This results in the spontaneous emission of photons
with random phase and direction. Some of these spontaneously emitted photons
are aligned with the propagation axis. Consequently, these random-phase photons
mix with the input signal and are amplified alongside it, producing a noise compo-
nent proportional to the amplifier’s gain. Equations describing ASE noise can be
derived using formulae for carrier populations within energy levels and for pump
and signal powers. The parameters for these equations are obtained from com-
plex experimental measurements. However, these parameters are subject to change
(e.g., due to aging), making a one-time measurement unreliable over long periods.
Consequently, periodic measurements are required to maintain accurate parameter
values, which is both expensive and impractical for devices in use. For this reason,
alternative, simpler models for ASE noise and other parameters are often preferred.
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2.1.2 Noise Figure of EDFAs

EDFAs introduce unwanted optical power fluctuations to the amplified output si-
gnal, with ASE noise being the most dominant contribution, as described in the
previous section. This undesired addition reduces the Optical Signal-to-Noise Ratio
(OSNR) of the transmitted signal, making its measurement crucial. To characterize
this effect, a parameter known as the noise figure is introduced, analogous to the
approach used with electronic amplifiers [31]. The noise figure NF is defined as the
noise factor F expressed in dB units.

NF = 10 log10 F (2.1)

The noise factor F is the ratio of the signal-to-noise ratio (SNR) values at the
input and output of the amplifier. It is a function of the optical frequency ν and
the baseband frequency f of the electrical output from the photodetector employed
in the receiver.

F (ν, f) =
SNRIN

SNROUT (ν, f)
(2.2)

Essentially, the noise figure indicates the degradation of signal quality due to
the insertion of the amplifier into the optical line. For a long time, from the 1980s
up to the beginning of the 2000s, the noise figure of a high-gain phase-insensitive
linear amplifier was thought to have a lower bound for its noise figure of 3 dB [33],
due to reasons related to the Heisenberg uncertainty principle. While it is now
thought not to be a fundamental limit for optical amplifiers [34], the value of 3 dB
still holds as a very good, near-perfect result to achieve, and researchers are trying
to overcome this limit [35]. The best result that was obtained in the measurements
used in this work is around 3.7 dB.
To evaluate the noise figure, we consider a setup as shown in Figure 2.3. The
receiver is assumed to be ideal, and the laser source is shot noise limited, meaning
it has a high SNR and that the primary contribution to source noise is shot noise.

The SNR for a shot noise-limited source is described by the following formula:

SNRIN =
ηPIN

2hνBe

(2.3)
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Figure 2.3: Input and output SNR measurement setups.

where η is the quantum efficiency of the photodetector, h is Planck’s constant
expressed in J · s and Be is the noise bandwidth, in Hz. In the case of an ideal
receiver, η equals 1.

The output SNR of the amplifier can be written as:

SNROUT =
G2P 2

IN

Be [Se (ν, f) + η−1Sshot]
(2.4)

where the noise spectral density Se, expressed in W2Hz−1, takes into account
all noise contributions except shot noise. The formula for the noise factor is then:

F (ν, f) =
Stotal (ν, f)

2hfG2PIN

(2.5)

The spectral density of signal-spontaneous beating noise and shot noise can be
expressed as:

Ssig−sp = 4ρASEGPIN , Sshot = 2hfGPIN (2.6)

where ρASE is the ASE power density. All other noise contributions can be ne-
glected if the input channel power is above the effective input noise of the amplifier
(typically around −50 dBm) [31].

The formula for the noise factor can now be rewritten as:

F =
4ρASEGPIN + 2hfGPIN

2hfG2PIN

=
2ρASE

hfG
+

1

G
(2.7)

The term 1/G, corresponding to the shot noise, can usually be neglected. The
signal-spontaneous contribution typically ranges from 3 to 10, while 1/G is in the
order of 10−2 or less, since G is typically above 15 dBm.

24



2.1 – An overview on EDFA devices

Finally, the expression can be rewritten by replacing ρASE with the corresponding
power, a metric more commonly obtained from spectrum analyzer measurements.
This is achieved by multiplying the ASE noise power density by the corresponding
noise bandwidth, B0. The final expression for the noise factor is:

F =
2ρASEB0

hfGB0

=
PASEAMP

hfGB0

(2.8)

The term PASEAMP
represents the ASE power introduced by the amplifier. It

is calculated by measuring the ASE power at the output of the amplifier and sub-
tracting the Source Spontaneous Emission (SSE) power multiplied by the gain of
the amplifier (in linear units). This procedure aims to exclude the contribution of
pre-existing signal noise, which is also amplified. Figure 2.4 illustrates this process.

The final expression for the noise figure is:

NF |dB = PASEAMP
|dBm −G |dB − 10 log10 (hfB0) (2.9)

Note that, in this expression, Planck’s constant is expressed in mJ · s instead of
J · s to match the unit of PASEAMP

, which is expressed in dBm. It should also be
noted that the formula explicitly depends on the ASE noise power and therefore
on the input signal power, the amplifier gain, and the channel frequency.

Figure 2.4: Graphical example of the meaning of PASEAMP
. The output spectrum (red) is

compared with the input spectrum (blue) increased by the amplifier gain (blue dashed).
PASEAMP

is the amount of noise added to the amplified SSE level by the EDFA.
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2.2 Comparison of different EDFA models

Estimating the parameters of network elements, such as EDFAs, using specialized
models is crucial for the optimal design, operation, and maintenance of optical com-
munication systems. This estimation allows for accurate performance predictions
of network elements under various conditions without the need to deploy the net-
work initially, thereby greatly aiding in network design. Various models for EDFAs
have been proposed in numerous articles [7] [8]. Most of the early models focus on
gain estimation, which is notoriously difficult to analyze due to two primary fac-
tors: static-state inter-channel gain variation and dynamic gain excursion [31]. The
static-state variation arises from uneven gain across channels due to the dependence
of the fiber’s absorption and gain spectra on the signal wavelength. Dynamic gain
excursion refers to rapid gain fluctuations in response to changes in input power or
channel configurations, which are common in optical networks [3].

Analytical models

It is possible to derive formulas for the theoretical estimation of EDFA parameters,
such as gain and noise figure. By starting from the fundamental physical equa-
tions, such as those governing the carrier populations in the energy levels of erbium
ions, a comprehensive analytical expression for these parameters can be obtained.
The main advantage of analytical models is that they depend solely on a-priori
knowledge of the equipment and a restricted amount of measurements, with values
possibly provided by manufacturers, and do not require any deployment or input-
output characterization. While this is the simplest method, it does come with
several challenges. Firstly, these models are typically very complex and rely on
several assumptions, such as the two-energy-level approximation for erbium ions,
which can compromise their accuracy. Additionally, they do not consider dynamic
effects, such as those previously mentioned for gain estimation, nor manufacturing
defects. Another issue is the inconsistency between different devices. EDFAs can
be constructed with various architectures and include different components in their
schematics. Consequently, an analytical model based on the underlying physical
equations must be adapted for each device architecture, making it impractical to
apply the same model to different brands and devices. This issue is directly re-
lated to another challenge with commercial devices: manufacturers often keep the
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details of their device architectures confidential, making it difficult to develop accu-
rate models for consumers. Some simpler analytical models for gain estimation are
available, such as those based on a center-of-mass function, which enable evaluation
of gain in Automatic Gain Control (AGC) mode using a straightforward expression.
These models can be easily adapted to multiple devices. However, their accuracy
is limited because they overlook various internal effects of the devices. Specifically,
they assume an ideally constant gain spectrum shape, which does not hold true
for real devices, and they focus on the impact of the loaded channel configuration,
disregarding gain variations due to channel power fluctuations. Finally, there is
the issue of aging. The physical parameters used in these models change over ti-
me, necessitating continuous updates to maintain their reliability. This process can
be very costly, as these parameters are determined through complex experimen-
tal measurements. While it is possible to incorporate time-dependent factors into
the equations, doing so would further increase the already high complexity of the
model.

Machine Learning models

With all the problems associated with analytical models of EDFA parameters, re-
search has been undertaken to explore more solutions and technologies to provide
better alternatives. The most promising alternatives are machine learning models,
especially those based on neural networks. These models offer two major advanta-
ges, namely accuracy and flexibility. There are several examples in the literature
of models that consistently estimate gain with an RMSE of around 0.15 dB [8],
and these models can be easily adapted or extended to many different devices and
brands with little modification or training. The primary drawback of these models,
and a significant barrier to their practical implementation, is their typically high
requirement for large training datasets. Acquiring such datasets is often expensive
or impractical. While smaller datasets can be utilized, they pose challenges in en-
suring performance reliability, particularly in complex systems.
One of the goals of the model proposed in this thesis is to offer a rapid and adapta-
ble solution capable of being trained with datasets of varying sizes, aiming to strike
a balance between achieving target accuracy and minimizing the costs associated
with required measurements.
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2.3 Model requisites, expectations, limitations

The proposed EDFA model aims to provide an accurate noise figure estimate, but
it is not designed to be a stand-alone model. Instead, it is intended to be used
as part of a more comprehensive digital twin of the network and to be completely
brand independent. Therefore, the model should meet the following requirements:

1. Accuracy: the model should achieve a reasonably high level of accuracy,
with errors comparable to the uncertainty of measurements in the training
datasets;

2. Computational speed: it should process data efficiently to avoid becoming
a bottleneck when handling large training and test datasets for the complete
network model;

3. Brand independence: the model should be easily adaptable to multiple
brands and devices with minimal modification;

4. Usability and portability: while not critical, the model should ideally be
user-friendly, intuitive, and portable.

Regarding the input parameters of the model, Equation 2.9 indicates that the
noise figure depends on the parameters: PASEAMP

, G, and f . The EDFAs employed
in the model enable the target gain and tilt to be adjusted in AGC mode. Thus, G,
the channel gain, will primarily be a function of these two parameters. PASEAMP

depends not only on the gain but also on the input signal power. For these reasons,
the four input parameters chosen for this model are:

1. input signal power, in dBm;

2. gain, in dB;

3. tilt, in dB;

4. channel frequency, in THz.

The primary goal of this work is to achieve an accuracy such that the maximum
errors in the test datasets are within or below the theoretical uncertainty of the
noise figure derived analytically from the measurement datasets.
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Polynomial model construction

After evaluating various potential solutions for implementing the model, the chosen
approach was a polynomial structure. This model takes the form of a multivariate
polynomial expression, which is efficiently evaluated using Horner’s rule, explained
in Section 3.4.2. The coefficients are determined through linear regression using the
Generalized Least Squares (GLS) algorithm, as explained in Section 3.3.5. Whi-
le technically categorized as a machine learning model, it differs from traditional
ML or neural network-based models in its simplicity, computational speed, and
portability.

3.1 Employed tools

The entire project was conducted using the Python programming language within
the PyCharm IDE by JetBrains. Python was selected because it is a very powerful
open-source solution that provides flexibility, rapid development capabilities, and
an extensive array of well-documented, powerful libraries for data manipulation
and visualization, including NumPy, Pandas, Matplotlib, and SciPy.

3.2 From measurements to noise figure evaluation

The initial step in creating the model involves evaluating the noise figure from the
power spectra of the signal before and after amplification by the EDFA. The proce-
dure for evaluating the noise figure is illustrated by various OSA user manuals [36],
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and Sections 3.2.4 and 3.2.5 follow those steps. Once the frequencies correspon-
ding to the active channels are isolated, a dataset must be generated. Each row in
this dataset provides the noise figure value for a unique combination of four input
parameters: input power, target gain, target tilt, and channel central frequency.

3.2.1 Test setup

Figure 3.1 shows the setup used for obtaining the measurement datasets.

Figure 3.1: Block diagram of the test setup for the measurement of input and output
power spectral densities.

This setup allows for the measurement of the input and output power spectral
densities (PSD) of the signal passing through the amplifier. The signal is delivered
to the amplifier using a variable optical attenuator (VOA) to achieve the desired
input power, while the target gain and tilt are set programmatically on the EDFA.
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Devices from different vendors, and even different device types from the same
vendor, will require their own characterization and final model, because the diffe-
rences in the internal EDFA architecture will lead to different performance among
those devices. Devices of the same type from the same vendor, however, will be
grouped together, because the only relevant distinctions among them will be rela-
ted to manufacturing processes. Most of these devices can operate in high or low
gain range, which are two separate modes. It is important to differentiate between
them when creating the models, because manufacturers often optimize the noise fi-
gure of the two modes independently and therefore their results can be completely
uncorrelated with each other.

The characterization depends on the spectral load employed. These measure-
ments were conducted under an even spectral load, ranging from 38 to 48 active
channels depending on the device model, with a flat input Wavelength Division
Multiplexing (WDM) comb power profile. The channels are spaced at 100GHz,
and each channel has a bandwidth of approximately 30GHz. The resolution band-
width (RBW) of the optical spectrum analyzer (OSA) used for all measurements
was set to 10GHz.
For the creation of the datasets, it is crucial to establish reasonable steps for the
input parameters. This approach aims to gather comprehensive insights into their
impact on the noise figure while ensuring the resulting datasets remain manageable
in size. Therefore, the parameters are chosen as follows:

1. Total input power: about −10 dBm to 6 dBm for low gain range, about
−18 dBm to 2 dBm for high gain range, with a step of 2 dB.

2. Gain: depending on EDFA model and gain range, values between 10 dB and
35 dB, with a step of 1 dB.

3. Tilt: between −5 dB to 5 dB or −3 dB to 3 dB, depending on EDFA model,
with a step of 1 dB.

In section 3.5.6, considerations are made to establish whether these initial as-
sumptions regarding the step sizes for the parameters are reasonable. This analysis
will explore whether finer steps are necessary to achieve similar accuracy levels or
if larger steps could suffice, potentially reducing the amount of data required.
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3.2.2 The measurement datasets

The datasets obtained from the OSA measurements are stored as MATLAB (.mat)
files. Each device and input power combination has its own file, structured with
the following internal data:

1. Gain_target: a 1-D array, which contains all the values of target gain, in
dB, that were set on the device;

2. Gain_real: a 1-D array, which contains all the values of gain that were
actually achieved by the device, in dB (these numbers act as feedback values
against the target gain);

3. Tilt_target: a 1-D array, which contains all the values of target tilt, in dB,
that were set on the device;

4. Tilt_real: a 2-D array (one row for each gain value), which contains all the
values of tilt that were actually achieved by the device, in dB (these numbers
act as feedback values against the target tilt);

5. spectrum_freq: a 1-D array, which contains all the frequency points at
which the OSA evaluated the signal power, in THz;

6. spectrum_TX_power: a 1-D array, which contains all the measuremen-
ts corresponding to the signal power at the amplifier input over the whole
frequency range, in dBm;

7. spectrum_RX_power: a 3-D array (one row for each pair of target gain
and tilt), which contains all the measurements corresponding to the signal
power at the amplifier output over the whole frequency range, in dBm;

8. TOT_Power_IN: a floating-point number, indicating the total input power
of the amplifier, in dBm;

9. TOT_Power_OUT: a 2-D array (one floating-point value for each pair of
target gain and tilt), indicating the total output power of the amplifier, in
dBm.
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10. OSA_PARAMS: a data structure containing various sub-parameters, in-
cluding information on the device vendor, the fiber connector type (flat or
angled), the Resolution Bandwidth (RBW) in GHz, the center frequency and
span in THz.

3.2.3 Spectrum normalization

An intermediate step involves adjusting the offset of the power spectra. Due to
the processing methods of the Optical Spectrum Analyzer (OSA), the total power
indicated by TOT_Power_IN and TOT_Power_OUT differs from that evalua-
ted from the corresponding power spectra. Therefore, a normalization factor is
required to align these values. This factor can either be additive in decibels (dB)
or multiplicative in linear units.

The total signal power, in dBm, can be evaluated from the power spectral
density using the following equation:

Pspectrum|dBm = 10 log10

(
N∑

n=1

pn|µW · ∆f

RBW

)
− 30 (3.1)

where pn is the power spectral density value at each frequency point fn, RBW

is the resolution bandwidth of the spectrum analyzer, and ∆f is the frequency step,
the spacing between each pair of frequency points, which, if uniform, is simply equal
to:

∆f |GHz =
fN − f1

N
· 1000 (3.2)

where the factor 1000 is used to convert it from THz to GHz, which is the same
unit as the RBW. The factor of −30 in equation 3.1 is used to express Psignal in
dBm.

After evaluating the total signal power from the spectrum, the offset can be
obtained with the formula:

Poffset|dB = Ptot|dBm − Pspectrum|dBm (3.3)

where Ptot represents the signal power indicated in the measurements (stored in
the parameters named TOT_Power_IN and TOT_Power_OUT ).
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Finally, the offset is applied to each element of the spectrum_TX_power and
spectrum_RX_power arrays. It is important to note that there is one offset for
the input power spectrum, whereas for the output power, there exists a distinct
offset for each unique pair of target gain and tilt.

Figure 3.2: Example of spectrum normalization with an offset.

3.2.4 Locating the active channels

The initial step in manipulating the measurement data involves determining the
central frequency of each active channel in the spectrum. This is achieved using
a filtered copy of the power spectrum to reduce data fluctuations and exclude
erroneous samples. The filtering process combines clamping the spectrum values
within a reasonable range to exclude outliers and convolving it with a constant
function. The convolution parameters required fine-tuning to ensure suitability
across all devices. The central frequency of the active channels is determined using
the find_peaks function provided in SciPy, which identifies the indices of all
the local maxima within the spectrum. To mitigate issues stemming from slight
variations in channel central frequencies, they are determined solely from the input
power spectrum, and these values are subsequently applied to the output power
spectra. While it’s feasible to utilize a-priori knowledge regarding channel central
frequencies — typically available in test setups — this program prioritizes flexibility.
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Thus, it aims to operate with minimal reliance on external information. Therefore,
the program does not require any input regarding the number of active channels or
their central frequencies.

Figure 3.3: Visualization of the process of finding the central frequency of active channels.
The power density spectrum (blue) is convoluted with a constant function to obtain a
smooth curve (green). Then, the find_peaks function is used on this curve to obtain
the points corresponding to the channel peaks (red). The difference between red and blue
curves on the y-axis is not a concern, as this method only aims at finding the correct
values on the x-axis.

3.2.5 Evaluating SSE and ASE

Source Spontaneous Emission (SSE) and Amplified Spontaneous Emission (ASE)
are critical parameters for noise figure evaluation, representing the noise floor in
the input and output power spectra, respectively. While named after spontaneous
emission, these values encompass other minor noise contributions, which are disre-
garded for simplicity. The process of determining the noise floor level is illustrated
in Figure 3.4. The approach involves identifying points between each pair of adja-
cent channels where the power value equals the noise floor. Subsequently, the noise
values at frequencies corresponding to the center frequencies of active channels are
derived through linear interpolation. For the first and last channels, the first and
last frequency points are used accordingly.
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Figure 3.4: Evaluation of SSE (yellow dots). The power density spectrum is convoluted
to obtain a smooth curve (green line). The middle points between two adjacent channels
(green dots) are used for the piecewise linear interpolation, to evaluate the noise at the
channel frequencies (yellow dots).

In many datasets, the input power values exhibit a noisy, wavy curve for the
noise floor. Consequently, an additional convolution step is performed. This second
convolution necessitates fine-tuning of the parameters, which depend on factors
such as the number of channels and the standard deviation of the noise level at the
band edges. SSE and ASE are used to compute the PASEAMP

parameter shown in
equation 2.9. This value is equal to the difference between the ASE noise and the
amplified SSE noise, and can be evaluated as:

PASEAMP
|dBm = 10 log10

(
10

PASE,dBm
10 − 10

PSSE,dBm +G

10

)
(3.4)

This process is the mathematical formulation of the quantity shown in Figure 2.4.
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3.2.6 Creating the noise figure dataset

After obtaining all the necessary parameters, a dataset is generated for each device.
Additionally, two separate datasets are created for the low and high gain ranges.
This differentiation is made because, as previously discussed, the EDFAs analyzed
in this study are designed to optimize noise figure independently in each range,
resulting in distinct behaviors. Each dataset includes the evaluated noise figure of
the device for every unique combination of total input power, target gain and tilt,
and channel frequency. These datasets will be utilized for the polynomial regression.
Each dataset comprises tens of thousands of entries, with a total storage size of a
few megabytes each. Every dataset is saved twice, in separate files. One is used
for efficient storage and I/O operations, while the second is in a human-readable
format.
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3.3 Polynomial regression

In the previous section, the noise figure as a function of the four input parameters
was evaluated. In this section it is explored how the noise figure varies with respect
to each parameter individually, aiming to justify the use of a polynomial structure.
Following this analysis, an appropriate degree for each of the four polynomials
will be estimated. The coefficients will be determined using the Generalized Least
Squares (GLS) algorithm. Each model is constructed by combining datasets from
multiple devices of the same brand, type, and gain range.

3.3.1 Noise figure and input power

From the formula shown in equation 2.9, it is evident that the noise figure is primari-
ly influenced by three variables PASEAMP

, G and f . The input power predominantly
affects the noise levels, including ASE and SSE values, while channel gain is less
affected by this parameter. SSE corresponds to the noise affecting the input signal
before passing through the amplifier. Figure 3.5a illustrates that the SSE value,
measured in dBm, is a linear function of the input power, This linearity is anticipa-
ted under the assumption that all measurements were conducted using a test signal
with a consistent SNR, which remains stable throughout all the measurements.

ASE, on the other hand, behaves differently. At higher input powers, it fol-
lows a linear trend similar to SSE. However, at lower powers, it saturates to a
minimum floor. This behavior is attributed to additional noise contributions that
are independent of the input power, as well as the RBW of the OSA used for the
measurements. This characteristic shape can be observed in Figure 3.5b.

Finally, the behavior of the parameter PASEAMP
, which combines the other two

noise contributions, is depicted in Figure 3.6. According to equation 3.4, at low
input powers, the amplified SSE noise is approximately 12 dB lower than ASE,
resulting in PASEAMP

being nearly equal to the ASE level. As the input power
increases, the difference between the two parameters diminishes, causing the SSE
contribution to become more significant in the formula.

The curve of PASEAMP
remains notably stable with respect to input power,

showing a maximum excursion of around 0.5 dB across the entire input power range.
Figure 3.7 presents the noise figure results as a function of input power for various
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(a) (b)
Figure 3.5: Noise levels vs. input poewr for a Cisco EDFA-35 device. (a) SSE; (b) ASE.

values of target gain, tilt, and frequency (or channel number). It is evident that the
noise figure generally slightly increases with input power when a low target gain
is configured, but this trend is reversed with high gain settings. This shift can be
attributed to the increased influence of SSE on PASEAMP

at higher gain, resulting
in a negative trend due to the steeper slope of SSE compared to that of ASE. For
low gain, in contrast, PASEAMP

closely follows the positive trend of ASE because
the contribution of SSE is minimal. A 4th degree polynomial is considered suitable
for modeling the fluctuations of noise figure with input power.

(a) (b)
Figure 3.6: PASEAMP

vs. input power for a Cisco EDFA-35 device. (a) PASEAMP
, ASE

and amplified SSE; (b) PASEAMP
only.
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Figure 3.7: NF vs. input power, various input parameters configurations.
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3.3.2 Noise figure and gain

The target gain is the central parameter of an EDFA. As evident from equations
2.9 and 3.4, channel gain significantly impacts the noise figure. It appears expli-
citly in the formulas and also influences the value of PASEAMP

. Specifically, SSE
remains constant with respect to channel gain since it depends solely on input si-
gnal parameters and not on the amplifier’s characteristics. In contrast, ASE noise
demonstrates a linear increase (in dBm units, which implies an exponential growth)
with respect to gain, as expected.

This behavior is illustrated in Figure 3.8, which also includes a linear fit of the
curve.

Figure 3.8: ASE vs. gain, with linear fitting.

In Figure 3.9, it is possible to observe that both ASE and amplified SSE exhibit
linear behaviors with respect to gain, albeit with similar slopes. Consequently,
PASEAMP

also demonstrates a linear behavior, with values lying between ASE and
amplified SSE. At lower input power levels, the curve closely aligns with ASE,
reflecting the significantly lower level of amplified SSE. As input power increases,
the impact of PASEAMP

becomes more pronounced.
In all test cases, PASEAMP

clearly increases with channel gain, with its linear
approximation slope always below 1, approaching this limit as gain increases. Con-
sequently, the difference PASEAMP

−G, shown in equation 2.9, decreases as channel
gain rises. Since the third term in the equation is constant with respect to gain (de-
pending only on frequency), we can infer that the noise figure will follow a similar
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(a) (b)
Figure 3.9: PASEAMP

vs. channel gain. (a) low input power; (b) high input power.

trend, exhibiting lower values at higher target gains. These results are illustrated
in Figure 3.10. The noise figure shows a steeper decline for lower gains because
PASEAMP

varies less with gain, but the slope diminishes as gain increases. A third-
degree polynomial adequately fits the tested curves, yielding a very low Root Mean
Square Error (RMSE).
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Figure 3.10: NF vs. channel gain, various input parameters configurations.
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3.3.3 Noise figure and tilt

In the context of EDFAs, ’tilt’ refers to the gradient of the gain curve, with respect
to frequency. This parameter can be adjusted to counteract wavelength-dependent
variations in gain, which lead to varying power levels among channels propaga-
ting through the fiber at different frequencies. Several factors contribute to this
phenomenon, including the amplifier’s finite gain bandwidth and potential gain sa-
turation. Tilt control provides a means to shape the amplifier’s gain profile, thereby
mitigating these undesired effects and ensuring more uniform amplification across
the range of frequencies. Gain in an EDFA can be modeled as follows [9]:

G(f) = G+
T

B
(f − f0) + g(f) (3.5)

where G is the target gain, T the target tilt, B the amplifier bandwidth, f0 the
center frequency and g(f) the gain ripple. This model is represented in Figure 3.11
[9].

Figure 3.11: Gain model of the EDFA, including tilt and ripple [9].

Tilt primarily influences channel gain and its impact varies with frequency.
Consequently, different outcomes for cases involving low and high channel indices
can be anticipated.

Similarly to what was concluded in the preceding section, the results illustra-
ted in Figure 3.12 demonstrate that overall the noise figure tends to decrease with
increasing tilt. This effect is more pronounced at lower target gains, while it di-
minishes at higher gains. In the previous section, it was observed that higher gain
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generally corresponds to a lower noise figure. For lower channel frequencies, gain
increases with increasing tilt, whereas for higher channel frequencies, the opposi-
te trend is observed. Typically, the target gain value is achieved with tilt values
close to 0, as expected, or slightly negative at most. The same trend also applies
to PASEAMP

. The variation in channel gain due to tilt remains consistent across
different input powers, target gains, and channel frequencies. However, PASEAMP

exhibits a more negative slope with respect to tilt when the target gain is low.
This results in minimal variation for low frequencies, where the positive slope gets
flattened, and a more pronounced negative variation for high frequencies, where
the slope would already be negative. Therefore, the difference with gain is more
distinct at low gains, whereas the contributions tend to balance each other more at
higher gains. A third-degree polynomial was found to be a suitable fitting function
for the target tilt dependency of the noise figure.
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Figure 3.12: NF vs. target tilt, various input parameters configurations.

46



3.3 – Polynomial regression

3.3.4 Noise figure and frequency

Finally, the impact of channel frequency on the noise figure is assessed. As shown
in Equation 2.9, frequency appears explicitly as a term affecting the noise figure.
Additionally, from Equation 3.5, it is evident that frequency influences channel
gain.

A distinction from other cases is the term 10 log10 (hfB0), which was previously
a constant but now represents an explicit dependency on frequency. However, this
term exhibits nearly negligible variations relative to frequency. If we evaluate the
maximum excursion of this term in the frequency range of interest with a differential
approximation:

∆NF = 10 log10 (hfMAX B0)− 10 log10 (hfMIN B0) (3.6)

∆NF = ∆ f · δ

δf
(10 log10 (hfMID B0)), fMID =

fMIN + fMAX

2
(3.7)

∆NF = (fMAX − fMIN)
10

fMID ln(10)
(3.8)

Substituting values corresponding to the C-band for fMIN and fMAX ,the re-
sultant change is about 0.08 dB. Given that the noise figure typically has a value
above 4 dB, this corresponds to a relative contribution of most 2%. Therefore, this
term alone does not significantly influence the trend of noise figure as a function of
frequency.

As previously discussed, channel gain decreases with increasing channel frequen-
cy when the target tilt is positive, and the opposite occurs with negative tilt. A
similar trend applies to ASE noise, which, for positive tilts, exhibits a "plateau"
in the middle and varies more at the edges of the band. SSE is noisier at lower
powers, but this is most likely due to the sensitivity of the instrument. PASEAMP

follows a trend similar to channel gain, so the resulting noise figure will depend on
the actual slopes and variations of each parameter.

Results are summarized in Figure 3.14. It is immediately noticeable that, com-
pared to other parameters, the variation of the noise figure with frequency exhibits
significantly greater variance, making it more challenging to fit into a polynomial
curve. This behavior is detailed in Figure 3.13. A helpful aspect is that, unlike
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other mathematical models, overfitting is not a concern because the C-band re-
mains constant, so it is unnecessary for the model to make accurate predictions
outside the tested frequency range. Thus, increasing the degree of the polynomial
to achieve higher accuracy is a viable strategy. The only caveat is that, by rai-
sing the polynomial’s degree, we must keep the degrees of other polynomials low to
maintain a small dataset size and therefore a short training time for our models. An
8th-degree polynomial was found to provide the optimal balance among training
speed, numerical precision, and model accuracy.

Figure 3.13: Example of the high variance of noise figure vs. frequency under a worst-case
scenario, for a Juniper device. The curve is hard to fit effectively, even with high order
polynomials, but luckily only few cases exhibit a similar behavior.

3.3.5 The GLS regression

The first part of the analysis involved obtaining various datasets for each device
within each gain range. Each dataset contains the noise figure values for every
unique combination of input power, target gain, tilt, and channel frequency. The
current objective is to build the mathematical model that describes each type of
EDFA under analysis.

The polynomial model can be mathematically expressed as follows:
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Figure 3.14: NF vs. channel frequency, various input parameters configurations.
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NF (P, G, T, f) =
4∑

a=0

3∑
b=0

3∑
c=0

8∑
d=0

mabcd P
a Gb T c fd (3.9)

where mabcd represents the coefficient of each monomial. Note that this is not
the formula used for polynomial evaluation, as discussed in section 3.4.2.

The idea is to evaluate the polynomial coefficients using the Generalized Least
Squares (GLS) method, an algorithm for estimating the parameters of a linear
regression model. To achieve polynomial regression, a new dataset is required.
This dataset will not only include the previously mentioned five columns but also a
column for the noise figure and an additional column for each monomial, resulting
in a total of 721 columns (5 terms for the polynomial related to input power, 4 for
gain, 4 for tilt and 9 for frequency).

The GLS method requires a training set to build our model and a test set
to evaluate its performance. A model for each device within each gain range is
obtained, and multiple datasets from different devices of the same brand and model
are available, which will be joined together to make each model more accurate.

Two types of analysis will be conducted. First, the models will be created with
a 70% training and 30% test split to assess performance. After this, the models will
be trained on the complete datasets, which will be the final models for use inside
other models with different datasets.

Essentially, the fitting operation is performed using the GLS function from the
statsmodels Python library. The polynomial coefficients are then saved in a new
dataset with a single column and stored as .parquet files.
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3.4 Notes on code and algorithms

3.4.1 Python class: an easy interface

Although the entire model creation process was conducted using Python programs
and libraries, the results are simply represented by coefficients for a multivariate
polynomial, stored in column-oriented .parquet files. Consequently, the evalua-
tion of the noise figure can be performed using any programming language or tool
capable of reading these files and executing basic mathematical operations. This
provides excellent portability for the model, offering maximum flexibility in crea-
ting an interface. Polynomial computations can potentially be done very quickly,
as shown in section 3.5.7. A Python interface was selected for the model due to the
popularity of the language, and its seamless integration with powerful libraries such
as Pandas and NumPy. This interface is implemented as a Python class, exposing
attributes and methods to enhance ease of use and allowing integration into more
comprehensive EDFA models. The class requires Python 3.8 or newer, for reasons
due to libraries and syntax. The core of the library consists in the following files
and folders:

1. edfa.py: a Python file which describes the EDFA_NF class and the Enum

class EDFA_limits;

2. poly_eval.py: a Python file which contains methods for polynomial evalua-
tion;

3. models: a folder containing all the models supported by the library, which
has to be placed in the same directory as the other two files.

In order to use the library, the first step is to install the required dependencies,
which are listed in requirements.txt. This can be made by issuing the following
command in the Python environment:

pip install pandas numpy fastparquet

The Pandas and NumPy libraries are used for data manipulation, while the
fastparquet library provides the engine used by Pandas to open the .parquet files
efficiently.
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To use the library, the EDFA_NF class has to be instantiated as follows:

from edfa import EDFA_NF

e = EDFA_NF ()

Once the class has been instantiated, the init_model() method has to be
called. This function opens the model file corresponding to the given parameter,
and loads the coefficients into the class attributes. This approach eliminates the
need to repeatedly access the file for each invocation of the noise figure evaluation
function.

e.init_model("EDFA17_LOW_38")

The models are named with the pattern X_Y_Z, where X is the device brand
and specific model, Y is the gain range, and Z is the number of active channels
in the training datasets of the model. This number is important for two reasons.
First, for more accurate results, it is ideal to select a model obtained with a spectral
load similar to the one being estimated, to mitigate potential effects from different
channel configurations. Second, the input parameter that the model accepts is the
total power of all active channels. Therefore, when estimating the noise figure for
a spectrum with a different number of channels, this difference needs to be taken
into consideration, as shown further in the section. Once the initialization method
has been called, there are two possible ways to estimate the noise figure. The first
one is by calling estimate_NF(), which performs a single estimation with float

arguments. If, instead, multiple estimations at once are required, which is the most
common case, it is better to call estimate_NF_array(), which requires four 1-D
numpy.ndarray input parameters, with the same length.

e = EDFA_NF ()

e.init_model("EDFA17_LOW_38")

p_in: float = -8. # dBm

gain: float = 18. # dB

tilt: float = 1. # dB

freq: float = 193. # THz

nf = e.estimate_NF(p_in , gain , tilt , freq)

# 7.264683934336477

p_in = numpy.array([-4., 0., 2.])
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gain = numpy.array([18., 16., 14.])

tilt = numpy.array([0., 3., 0.])

freq = numpy.array([192.5, 193., 193.5])

nf = e.estimate_NF_array(p_in , gain , tilt , freq)

# [7.26939002 7.32205182 7.80681984]

The two functions exhibit better computational speed with low and high amoun-
ts of samples, respectively. For more details, refer to Section 3.5.7.
It is important to remind that the input power parameter refers to the total power
of all the active channels. Therefore, a conversion is needed if the data we are using
refer to a different number of channels:

PINADJ
= PIN − 10 log10 (Ncurrent) + 10 log10 (Nmodel) (3.10)

where Ncurrent and Nmodel are the numbers of active channels in the configuration
to be estimated and in the model training datasets, respectively.

The library includes an Enum class called EDFA_limits which stores the mini-
mum and maximum values of all input parameters for each supported model. When
the estimation methods are called, the user will receive a warning if any input pa-
rameters fall outside these boundaries. Additionally, the class provides automatic
clamping of input parameters to ensure they remain within the operating range, if
enabled, in addition to issuing warnings.

e.clamp_all ()

# sets all the clamping flags to True. This will enable clipping

for:

# - input power

# - gain

# - tilt

# - frequency

# - output power , by reducing gain if input power + gain > max.

output power

e.clamp_none ()

# disables clamping for all 5 metrics

e.set_clamp("gain", True)

# sets one specific flag to the given boolean value. The allowed

keys , to be passed as strings ,

are:

# - "power_in"
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# - "gain"

# - "tilt"

# - "frequency"

# - "power_out"

# the method will silently ignore the command if the key is not

valid.

3.4.2 Polynomial evaluation: Horner’s rule

As previously discussed, speed is a major concern for this model, as it is intended to
be integrated into more complex EDFA or network models. Therefore, optimizing
the computation speed of polynomial evaluation is crucial. To achieve this, we
utilize Horner’s method, an algorithm designed to reduce the number of operations
required for polynomial evaluation by computing it in a nested form. This method
can be generalized for any polynomial [37].

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

= a0 + x(a1 + x(a2 + ...+ x(an−1 + anx)...)) (3.11)

In this form, an nth degree polynomial can be evaluated by performing only n

multiplications and n additions. Although any polynomial can be evaluated using
this algorithm, and a function that performs this computation for any polynomial
could easily be derived, Python loops are known for being relatively slow, as is ty-
pical for interpreted programming languages. For this reason, to further accelerate
computation, the complete expression of the polynomial is unrolled into Horner’s
form and explicitly implemented within the interface library.
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3.5 Analysis of results

This section summarizes the results regarding the absolute and relative errors ob-
served in the estimation of the noise figure by means of the polynomial models
compared to values derived from the datasets. Additionally, it illustrates the com-
putation times for noise figure calculations from the datasets and the creation of
the model itself. Initially, considerations are made regarding the uncertainty asso-
ciated with Optical Spectrum Analyzer (OSA) measurements to establish realistic
expectations for the accuracy of the models. Subsequently, the performance of each
model is evaluated in two scenarios: first, using a 70-30 split of the datasets, and
second, with complete datasets intended for broader application. Further analysis
investigates the correlation between dataset size or number and accuracy. This as-
sessment aims to determine whether further improvements are possible, if accuracy
has reached its limit, or if it’s feasible to reduce the number or size of datasets while
maintaining a comparable level of accuracy. Performance metrics such as model
speed and memory usage are then evaluated. Finally, a test is conducted where this
model is integrated into a deep-learning framework aimed at estimating the power
spectral density at the output of an EDFA, based on configuration parameters and
input PSD.

3.5.1 Uncertainty of OSA measurements

Of course, the measurements provided by the OSA have some degree of uncertainty,
which establishes the lower bound for model accuracy. It is futile to strive for a mo-
del that achieves a maximum error lower than that of the measurements, as it would
mean accurately estimating an inherently inaccurate value. Instead, it is prudent
to estimate this uncertainty and aim for similar accuracy levels with the models.
Performing an accurate analytical error analysis presents several challenges. Fir-
stly, multiple OSAs were used to acquire the training datasets, each potentially
introducing different (and uncorrelated) amounts of error. Secondly, accurately
estimating these errors would require detailed knowledge of the interdependencies
between variables (e.g., gain as a function of frequency), which cannot be represen-
ted by simple analytical relationships. Therefore, experimental estimation of these
errors is more suitable. A contribution to the uncertainty is the sensitivity of the
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total input and output power measurements. OSAs represented those values with
one decimal place, therefore the absolute uncertainty due to quantization of PIN

and POUT is:

δP =
0.1 dBm

2
= 0.05 dBm (3.12)

This variation of both PIN and POUT results in a noise figure error of up to
0.1 dB, representing the absolute minimum uncertainty, assuming that all the other
quantities are obtained with ideal infinite accuracy.

To establish a reference for the experimental error in measurements, four distinct
datasets from identical devices are examined: EDFA-35 from Cisco in the low gain
range. Measurements are compared for identical values of total input power, gain,
tilt, and channel index, and the maximum difference among them is assessed. Figure
3.15 displays the cumulative distribution of measurement errors. Here, the y-axis
represents the percentage of dataset measurements with errors within the value
indicated on the x-axis. A curve that is more shifted to the left indicates better
performance, as it signifies that a larger portion of the dataset has errors lower than
those shown on the x-axis.

Figure 3.15: Cumulative distribution of the measurement errors for Cisco EDFA-35 devices
in low gain range.

From this figure, it is evident that 90% of the measurements of Cisco EDFA-35
devices in low gain range have errors within 0.149 dBm, while selecting an absolute
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error of 0.247 dBm ensures that 99% of the measurement errors are safely included.
In later sections, these two error values will be referred to as the ’90% threshold’
and the ’99% threshold’.

Hence, it is reasonable to select 0.25 dBm as a plausible lower limit for model
accuracy. However, this value may vary for different devices, given its experimental
nature.

3.5.2 70-30 split models

These initial models are created by concatenating all datasets from various devices
of the same type—same brand, model, and gain range. These datasets are split
into a training set, used for model construction, and a test set, employed to assess
result accuracy. Six different models are created:

1. Cisco EDFA-17, low gain range, 1 dataset;

2. Cisco EDFA-35, high gain range, 2 datasets;

3. Cisco EDFA-35, low gain range, 4 datasets;

4. Cisco L-band EDFA, low gain range, 6 datasets;

5. Juniper, high gain range, 4 datasets;

6. Juniper, low gain range, 4 datasets.

The training and test sets are divided using a 70/30 ratio, following com-
mon practice in machine learning applications. The results for the cumulative
distributions of the absolute and relative errors are depicted in Figure 3.16.

Predictably, the EDFA-17 model exhibits better performance since it utilizes
data from a single device, thereby avoiding potential errors introduced by manu-
facturing variations and resulting in higher overall measurement correlation. If ad-
ditional datasets were available for this model, its performance might be negatively
affected, but unfortunately, none were available.

For absolute errors, the 90% threshold is between 0.05 and 0.28 dB, depending
on the model, while the 99% threshold is between 0.10 and 0.46 dB. For relative
errors, instead, the 90% threshold is between 1.19 and 4.83%, depending on the
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(a) Absolute errors. (b) Absolute errors, zoomed.

(c) Relative errors. (d) Relative errors, zoomed.
Figure 3.16: Cumulative distribution of absolute and relative errors of 70-30 split models.

model, while the 99% threshold is between 2.08 and 7.19%.The maximum values
for absolute and relative error are 0.81 dB and 10.56% and are both from the Juniper
devices in high gain range.

3.5.3 Complete dataset models

Now, the same models are created, but with the entire datasets used for training
instead of a random 70% of their entries. The test set consists of the average of
all datasets for each device. This analysis aims to capture errors specific to the
model functions, such as the polynomial fits, and to assess whether a polynomial
fit is suitable for this model or if there is room for improvement in the regression
function. The models created are identical to those in the previous case, in terms
of brand, gain range and number of datasets. The results are reported in Figure
3.17.
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(a) Absolute errors. (b) Absolute errors, zoomed.

(c) Relative errors. (d) Relative errors, zoomed.
Figure 3.17: Cumulative distribution of absolute and relative errors of complete dataset
models.

For absolute errors, the 90% threshold is between 0.05 and 0.11 dB, depending
on the model, while the 99% threshold is between 0.09 and 0.23 dB. For relative
errors, instead, the 90% threshold is between 1.01 and 1.74%, depending on the mo-
del, while the 99% threshold is between 1.79 and 3.27%.The maximum values for
absolute and relative error are 0.42 dB and 7.06% and are both from the Juniper
devices in low gain. Interestingly, despite having only one dataset, the EDFA-
17 shows higher relative errors compared to the EDFA-35 in the low gain range.
The errors attributed to the model are approximately equivalent to those observed
in the dataset measurements, as reported in Figure 3.15. This suggests that the
polynomial form of the fitting function introduces an error comparable to the in-
herent uncertainty in the measurements. Thus, using a polynomial to describe the
dependency of the noise figure on the four input parameters is appropriate.
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3.5.4 Correlation of errors

An important aspect to investigate regarding model errors is the potential correla-
tion between input configurations and higher or lower absolute or relative errors.
This is crucial because if the highest errors are concentrated in specific input pat-
terns, it could lead to an overestimation of the average accuracy of the model. With
more information on error distribution, it might be possible to apply different error
tolerances to amplifier models based on their operating ranges. This analysis exa-
mines the mean value of the noise figure absolute error as a function of each input
parameter, considering the cumulative distribution of absolute error as in previous
sections. By plotting the absolute error against each parameter, we can observe
distinct behaviors among device brands. A common trend observed across almost
all devices is the higher error near the frequency band limits. Examples of this
trend can be seen in Figure 3.18, where focusing solely on central channels resul-
ts in lower overall errors. This phenomenon may be attributed to over-fitting, as
polynomial models typically exhibit less accuracy at the boundaries of their fitting
intervals.

(a) (b)
Figure 3.18: Cumulative distribution of absolute errors, correlation with frequency range.
(a) EDFA-35, low gain range; (b) L-band EDFA, low gain range.

The total input power appears to have minimal effect on the error distribution,
with inconsistent trends observed among datasets of the same device type. However,
Cisco EDFA-17, EDFA-35, and Juniper devices consistently display lower errors at
higher target gain values, as depicted in Figure 3.19.
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(a) (b)

(c)
Figure 3.19: Cumulative distribution of absolute errors, correlation with gain range. (a)
EDFA-17, low gain range; (b) EDFA-35, high gain range; (c) Juniper, low gain range.

Juniper devices also show a decrease in errors with higher values of target tilt,
as shown in Figure 3.20.

In conclusion, it is evident that the noise figure model exhibits varying levels
of error across different intervals of the input data. These differences can be quite
significant, as illustrated in Figure 3.18b, where the 99% threshold error is redu-
ced from 0.46 to 0.28 dBm, or Figure 3.19c, where the same threshold is reduced
from 0.43 to 0.27 dBm. Unfortunately, these intervals are heavily dependent on
the device, so no general rule can be established for reducing the range of input
parameters to achieve lower errors, except for the consistent behavior related to
channel frequency observed across all devices.
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Figure 3.20: Cumulative distribution of absolute errors, correlation with tilt range in
JUNIPER devices.

3.5.5 Code execution time

In this section, the execution time of the developed Python scripts will be evalua-
ted. All tests are conducted on a machine equipped with an Intel Core i7-1250U
processor. Firstly, the time required to compute the noise figure from the Matlab
datasets and save the results into .parquet files is assessed. Subsequently, the time
taken to create the device models is measured.

From Matlab files to noise figure datasets

The first part of the code is used to perform the following steps:

1. load each .mat EDFA dataset, containing the input and output spectral power
densities of the amplifier as a function of total input power, target gain and
tilt;

2. perform all the steps listed in section 3.2;

3. save the results in .parquet files to optimize speed and storage size, and also in
.xlsx format for readability. This last step is not necessary for model creation,
and the .xlsx files can be discarded or not created at all.
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The results for the running time of the program are reported in table 3.1.

Device Gain Dataset no. Time [s] Row count Time per row [ms]
EDFA-17 LOW 1 13.22 21318 0.62
EDFA-35 HIGH 1 32.95 56848 0.58
EDFA-35 HIGH 2 31.99 56848 0.56
EDFA-35 LOW 1 25.79 45144 0.57
EDFA-35 LOW 2 27.77 46816 0.59
EDFA-35 LOW 3 25.77 45144 0.57
EDFA-35 LOW 4 34.54 58608 0.59

EDFA-ILA-L LOW 1 12.08 21360 0.57
EDFA-ILA-L LOW 2 12.52 21360 0.59
EDFA-ILA-L LOW 3 9.03 14976 0.60
EDFA-ILA-L LOW 4 9.16 14976 0.61
EDFA-ILA-L LOW 5 8.83 14976 0.59
EDFA-ILA-L LOW 6 8.66 14976 0.58
JUNIPER HIGH 1 10.79 18816 0.57
JUNIPER HIGH 2 11.44 18816 0.61
JUNIPER HIGH 3 12.15 18816 0.65
JUNIPER HIGH 4 11.06 18480 0.60
JUNIPER LOW 1 16.15 29232 0.55
JUNIPER LOW 2 16.70 29232 0.57
JUNIPER LOW 3 17.23 29232 0.59
JUNIPER LOW 4 16.90 29232 0.58

Table 3.1: Computation time of the noise figure for each EDFA dataset.

Each row, representing a unique combination of total input power, gain, tilt,
and channel index across each dataset, is processed in approximately 0.60ms. This
equates to processing about 1667 rows per second, or 100,000 rows per minute.
This metric provides a quick estimation of computation time based on dataset size.
It’s important to note that this number is specific to the machine used and should
be computed experimentally.

From noise figure datasets to models

In this section, the time taken to train the polynomial model is measured. The
program under test executes the following tasks:

1. concatenate all the datasets with the noise figure calculations corresponding
to each EDFA device in each gain range;
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2. build the training data, meaning the computation of the new dataset columns,
as explained in section 3.3.5;

3. execute the GLS algorithm to compute the polynomial coefficients;

4. store the coefficients in .parquet files.

The results of the running time of the program for the six different models are
reported in table 3.2.

Device Gain Time [s] Total row count Time per row [ms]
EDFA-17 LOW 2.70 21318 0.13
EDFA-35 HIGH 15.04 113696 0.13
EDFA-35 LOW 35.08 195712 0.18

EDFA-ILA-L LOW 16.58 102624 0.16
JUNIPER HIGH 12.05 74928 0.16
JUNIPER LOW 17.83 116928 0.15

Table 3.2: Training time of the noise figure polynomial models.

The computation time continues to depend on the size of the training datasets.
The program takes up to around 0.18ms per dataset row to compute the model
coefficients. Adding this to the previous step, it takes approximately 7.8 s to build a
model from a single .mat dataset containing 104 combinations of total input power,
target gain and tilt, and active channel central frequency. This time increases to
1min 18 s for 105 combinations, and 13min for 106 sets.

3.5.6 Training dataset size vs. accuracy

The measurement of the power spectral densities required to train this model can
be very time consuming. This is due to the number of required OSA measurements
and is dependent on the number of active channels. Taking as an example the
EDFA-17 dataset in low gain range, it was characterized with the following input
parameters:

1. Total input power: from −10 dBm to 6 dBm with a step of 2 dBm (9 values);

2. Gain: from 14 dB to 20 dB with a step of 1 dB (7 values);

3. Tilt: from −5 dB to 5 dB, with a step of 1 dB (11 values).
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In this case, 9 input power spectra and 693 output power spectra are required.
If the channel density is high and the spacing between them is low, a lower resolu-
tion bandwidth is necessary to accurately capture the noise level between adjacent
channels. Since the measurement time is inversely proportional to the square of the
resolution bandwidth, this can significantly increase the required time per dataset.

This is why considerations are made regarding the model’s accuracy concerning
the number and size of training datasets. As mentioned earlier, the model aims to
be flexible, allowing a balance between accuracy and the cost of acquiring training
data.

Two types of analyses are conducted. Firstly, the model will be trained on the
full dataset of one or more devices, and its accuracy will be tested on the remaining
datasets. This represents the ’worst case’ scenario, as there is less correlation
between different devices. Secondly, all datasets will be combined, and a random
train/test split will be performed on the data, with accuracy evaluated as a function
of the split ratio. For these tests, the Cisco L-band EDFA datasets will be used, as
six of them are available.

Accuracy vs. number of datasets

The first analysis examines the accuracy of the model as a function of the number
of measurement datasets used for training. The test results are evaluated using the
concatenation of all device datasets. The results, presented in terms of cumulative
distribution of absolute error, are shown in Figure 3.21.

Figures 3.21a and 3.21b illustrate that models created using one or two datasets
exhibit visibly poorer performance compared to the remaining cases, which show
similar curves across the entire error range. The variations are significant, with
the 90% threshold ranging between 0.22 dB and 0.36 dB and the 99% threshold
between 0.35 dB and 0.58 dB. Figure 3.21c depicts these error threshold values as a
function of the number of datasets. It shows that accuracy steadily improves until
three datasets are used, after which it plateaus with only slight improvements as
the number increases up to six. From these findings, it is concluded that inclu-
ding data from multiple devices in the training process is crucial to account for
error contributions arising from manufacturing processes. However, the number of
different devices can be kept reasonably low.
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(a) (b)

(c)
Figure 3.21: Cumulative distribution of absolute error of the L-band EDFA device, with
respect to the number of training datasets. (a) overview of absolute errors; (b) zoom in
the y-axis region between 80% and 100%; (c) 90% and 99% thresholds vs. number of
datasets.

Accuracy vs. train/test split ratio

This second analysis aims at evaluating the impact of train and test split ratio on
model accuracy. Instead of using datasets from different devices, the models are
created by merging the six measurement datasets and varying the percentage of
the random split between training and test sets. The results, presented in terms of
cumulative distribution of absolute error, are shown in Figure 3.22.

Figures 3.22a and 3.22b demonstrate that the model accuracy does not exhibit
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(a) (b)

(c)
Figure 3.22: Cumulative distribution of absolute error of the L-band EDFA device, with
respect to the train/test splitting ratio. Legend is omitted due to the superposition of
results. (a) overview of absolute errors; (b) zoom in the y-axis region between 80% and
100%; (c) 90% and 99% thresholds vs. test size.

sensible changes with train and test splitting ratio. The curves remain consistently
close together across the entire range, except for the curve representing a 1% test
size (in blue), which performs slightly better in the zoomed region. Figure 3.22c,
which shows the 90% and 99% thresholds as function of the test size, further con-
firms the stability of the absolute error with respect to this parameter. Based on
these considerations and those from the previous section, we can conclude that the
optimal strategy for achieving good model performance while minimizing the time
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spent on measuring EDFA power density spectra is to use measurements from mul-
tiple different devices, even with reduced datasets. For instance, increasing the step
of the total input power, gain, and tilt would be a beneficial approach to reduce
the number of measured power spectra. However, reducing the number of tested
devices would not be advisable.

3.5.7 Model computational speed and memory footprint

This section focuses on the technical performance analysis of the polynomial model.
Two metrics will be examined: computational speed, measured by the time required
for the noise figure evaluation functions to execute; and memory footprint, defined
as both the storage size of the model files and Python scripts in local memory, as
well as the amount of computer memory (RAM) required for the library to perform
computations. These metrics were evaluated for the Python implementation of the
model evaluation class, but may vary for different solutions.

Computational speed

One of the primary objectives of the model was to ensure high time efficiency.
As previously discussed, this model is designed not for standalone use, but for
integration into larger and more comprehensive EDFA models, and a fast model
is less likely to become a performance bottleneck within a larger system. The
time analysis is conducted using the timeit module, part of the standard Python 3
library.

First, we will test the instantiation of the class and the initialization of the
model.

e = EDFA_NF ()

e.init_model("EDFA17_LOW_38")

The first line creates a class instance and calls the corresponding constructor,
which initializes the internal attributes to their default value. The init_model

function performs the following operations:

1. check if the models folder exists in the working directory and, if it is not
present, raise an exception;
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2. try to retrieve the model file with the name passed as parameter from the
models folder, raising an exception in case the file does not exist;

3. with the aid of the Pandas library, open the model .parquet file and save the
model name and polynomial coefficients inside two internal attributes.

The second function to be tested is the single-value noise figure calculation
method.

nf = e.estimate_NF(p, g, t, f)

where p, g, t, f are four floating-point variables corresponding to the input
parameters. This function performs the following operations:

1. check if the init_model function was called, and raise an exception if not;

2. call the __warnings private method, which checks if the input parameters
are within the operating boundaries of the amplifier, and clamps their values
if the corresponding clamping flag is set, otherwise just raises a warning to
the user;

3. run the polynomial evaluation function.

Note that this calculation includes some overhead due to the input parameter
controls, which may affect execution speed.

Lastly, the performance of the function that calculates the noise figure for
multiple values simultaneously is evaluated.

nf = e.estimate_NF_array(p, g, t, f)

where p, g, t, f are of type ndarray, defined in the NumPy library. They are
all the same length, and the calculation is performed element-wise. This function
performs the same operations as the previous one, extended to the entire length of
the arrays, and also checks that the four input arrays all have the same length.

The results for the execution time in ms, µs and ns units are reported in Table
3.3. For the array evaluation case, the values are divided by the array length, for a
fair comparison with respect to the single evaluation case.

It is immediately apparent that the init_model method is orders of magnitude
slower than the evaluation methods due to its file reading operations. Therefore,
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Class method(s) Exec. time [ms] Exec. time [µs] Exec. time [ns]
Initialization 40.76 40759.31 40759306.60

NF evaluation (single) 0.05 47.60 47600.11
NF evaluation (array) 0.00 0.61 613.81

Table 3.3: Execution time of the model evaluation Python class, divided by function.

it is more efficient to work with a single EDFA model for all computations and
switch only when necessary to estimate the noise figure for different devices. If
multiple models need to be accessed simultaneously, modifications to the library
could be considered, such as storing multiple models within the class instance. This
approach would speed up operations but increase the memory footprint of the class
instance. The init_model method takes approximately the same time of 856 calls
to the estimate_NF function, or a single call to the estimate_NF_array function
with an array of about 6.6 · 104 elements. It is also possible to appreciate that
the estimate_NF_array solution is about 80 times faster than the estimate_NF

method, when evaluating per-element computation time with a large array length
(in this test, the length was about 2 · 104). The estimate_NF method, on the
other hand, is faster for single-element computation. Table 3.4 aims at finding the
breakthrough, the number of elements after which estimate_NF_array becomes
faster than repeated calls to estimate_NF.

Array length Exec. time per sample [µs]
1 1479.72
2 746.99
5 298.97
10 150.46
20 76.76
33 47.39

Table 3.4: Execution time of the array estimation function for the noise figure, as a
function of array length.

From these results, we can conclude that the estimate_NF method is faster up
to an array length of around 33.
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Memory footprint

In this section, the performance of the model in terms of disk size and RAM foot-
print will be evaluated. The combined size of the two Python scripts is about 36 kB.
Each model file occupies about 10 kB. These files contain 720 64-bit floating-point
coefficients, each labeled by a four-character string key. Assuming that the size of
each key and coefficient is 4 and 8 bytes, respectively, the size of the information
stored in each model file is (4+8)·720 = 8640 bytes, or approximately 8.43 kB. The
difference between this calculated value and the actual file size is attributed to ove-
rhead from the .parquet file structure. The model can therefore be considered very
lightweight for ordinary computers. To assess the RAM usage of the EDFA class,
the sys.getsizeof method from the standard Python 3 library is utilized, combining
the results for the function applied to the class instance and each internal attribute.
The result is 26 334B, or 25.72 kB. For a more detailed analysis, a memory profiler
could be employed, which could provide insights into memory usage during noise
figure computations. However, such analysis would also encompass other contribu-
tors to process memory, such as linked libraries, making it challenging to isolate
the exact size of the EDFA_NF class instance.
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3.5.8 Model usage in Deep Learning EDFA model

Lastly, the performance of the developed model is tested by employing it in a more
comprehensive EDFA model. This testing phase is crucial because, as discussed in
previous sections, this model was not designed to be employed by itself, but rather
as part of a more complex solution. This deep learning software takes the signal
power spectral density and the EDFA configuration settings as inputs, and returns
the output PSD of the amplified signal. The model’s success hinges on accurately
estimating the amplifier noise figure. Previously, this estimation was a heuristic,
fixed-value approach, independent of the input parameters and configuration. De-
termining this value involved manual iterations of the training and testing loop to
find an optimal setting. The tests were performed on seven datasets obtained from
devices by Juniper Networks. It is important to note that these datasets were se-
lected because they represented he worst-case performance scenarios for the model,
thus providing a stringest test of its capabilities. The performance results of the
model with the fixed noise figure value and the estimation model are illustrated in
tables 3.5, 3.6, 3.7, and 3.8.

From Tables 3.5 and 3.6 it is evident that the maximum and mean absolute
noise figure errors are generally reduced with the use of the estimation model.
This improvement is consistent across most datasets, although a couple of datasets
exhibited only slightly worse results. The R2 score, an internal model parameter
which roughly estimates the proportion of the variation in the noise figure that
is predictable from the input parameters, is reported in Table 3.7. This table
indicates very little difference between the fixed-value approach and the estimation
model, suggesting that both methods predict the noise figure variation to a similar
degree. Finally, Table 3.8 shows the results in terms of RMSE. These results allow
to conclude that errors are generally lower when the noise figure estimation model
is employed, further demonstrating the model’s effectiveness in reducing prediction
errors and improving overall performance. As this test is a worst-case performance
scenario, the model is expected to perform better for different devices.
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Max. absolute error [dB] (lower is better)
Case EDFA 1 EDFA 2 EDFA 3 EDFA 4 EDFA 5 EDFA 6 EDFA 7

Fixed NF 1.3914 1.1150 0.3941 0.4304 0.4176 0.5063 0.5245
Model NF 1.3099 1.1103 0.3730 0.4461 0.4067 0.4881 0.5351

−5.86% −0.42% −5.35% +3.65% −2.61% −3.59% +2.02%

Table 3.5: Performance of deep learning EDFA model, maximum absolute error.

Mean absolute error [dB] (lower is better)
Case EDFA 1 EDFA 2 EDFA 3 EDFA 4 EDFA 5 EDFA 6 EDFA 7

Fixed NF 0.1269 0.0849 0.0583 0.0590 0.0566 0.0587 0.0771
Model NF 0.1093 0.0816 0.0543 0.0596 0.0555 0.0625 0.0772

−13.87% −3.89% −6.86% +1.02% −1.94% +6.47% +0.13%

Table 3.6: Performance of deep learning EDFA model, mean absolute error.

Adjusted R2 score [%] (higher is better)
Case EDFA 1 EDFA 2 EDFA 3 EDFA 4 EDFA 5 EDFA 6 EDFA 7

Fixed NF 92.2129 95.3613 95.9068 97.7005 91.6659 94.8887 93.1631
Model NF 89.3877 95.2287 96.0442 97.5909 91.9185 94.2216 93.5089

−2.82% +0.09% +0.14% −0.11% +0.25% −0.67% +0.35%

Table 3.7: Performance of deep learning EDFA model, adjusted R2 score.

RMSE [dB] (lower is better)
Case EDFA 1 EDFA 2 EDFA 3 EDFA 4 EDFA 5 EDFA 6 EDFA 7

Fixed NF 0.1908 0.1413 0.0810 0.0813 0.0782 0.0828 0.1093
Model NF 0.1715 0.1390 0.0773 0.0828 0.0758 0.0885 0.1081

−10.11% −1.63% −4.57% +1.84% −3.07% +6.88% −1.10%

Table 3.8: Performance of deep learning EDFA model, RMSE.

73





Chapter 4

Differential Group Delay modeling

In recent times, advancements in optical components and techniques have signifi-
cantly improved fiber-optic transmission systems, meeting the growing bandwidth
demands from diverse applications. Next-generation goals focus on creating fully
transparent, high-capacity coherent transmission systems with polarization diver-
sity for long-haul distances. To effectively design such systems, a thorough under-
standing of fiber-channel transmission impairments is paramount, as these impair-
ments introduce complex signal distortions [38]. High-bit-rate optical transmission
systems are vulnerable to optical-fiber-based issues such as chromatic dispersion
(CD), polarization-mode dispersion (PMD), and fiber nonlinearities. Systems are
typically designed to minimize or compensate for these effects using specialized fi-
bers and devices [39]. In this analysis, we focus on Differential Group Delay (DGD),
a parameter that is directly related to PMD, as the latter is intended as the average
value of the former. The goal is to study the beheavior of this parameter in devi-
ces such as the optical multiplexers and demultiplexers inside a Wavelength Cross
Connect (WXC) card. The objective is to see if DGD can be adjusted by varying
the device attenuation, and if DGD depends linearly on the number of cascaded
multiplexers and demultiplexers, as if it would with fiber spans, or if the parameter
exhibits a different behavior.
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4.1 Theoretical background

Single-mode optical fibers (SMF) support two orthogonally polarized modes (LP01x

and LP01y) with identical transverse distribution. Ideally, both modes would pro-
pagate through the fiber with the same propagation constant, ensuring they travel
at the same speed. However, imperfections arising during manufacturing or ex-
ternal factors like vibrations, bending, and temperature fluctuations can introduce
birefringence into the fiber, altering their propagation constants. This birefringen-
ce varies along the fiber, causing random variations in the transmitted modes and
phase differences (polarization mode coupling effect), leading to polarization mo-
de dispersion (PMD). At higher optical power levels, the fiber’s nonlinear nature
becomes significant due to susceptibility, causing an intensity-dependent refractive
index and propagation constant, which affects the orthogonal components of the
transmitted optical pulse [38]. The effect of this birefringence results in a mismatch
of group velocities between the two orthogonal components. The DGD of an optical
fiber can be evaluated as:

DGD ≈ d∆β

δω
L =

L

c
B =

L

c

λ

LP

(4.1)

where ∆β is the variation between the propagation constants of the two modes,
L is the fiber length, c is the speed of light, λ is the light pulse wavelength, B is
the birefringence and LP is the beat length. These two parameters are defined as:

B = nslow − nfast, LP =
λ

B
(4.2)

where nslow, nfast are the refractive indices of the two birefringent axes of the
optical fiber. Note that DGD depends linearly on fiber length, with the other
parameters being due to fiber material and geometrical structure. Therefore, in
case of multiple spans of optical fibers connected together, DGD can be considered
an additive metric. The objective of this analysis is to see if this assumption also
holds true for more complex devices such as optical multiplexers and demultiplexers,
and if the internal attenuation setting of those devices influences DGD in any way.
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4.2 DGD and WXC attenuation

In this section, the effect of the target attenuation set on the optical multiplexers
and demultiplexers on the resulting DGD is evaluated. The devices under test are
WXC cards from Cisco, which can be used to provide colorless multiplexing and
demultiplexing to ROADM nodes. The card allows to set a device attenuation
between 0 and 20 dB. Higher attenuation values may require to employ the po-
larization analyzer in its highest sensitivity setting, in order to effectively capture
the low output power level, and this has to be taken into consideration because,
as will be evident in the later sections, instrument sensitivity impacts on the DGD
reading.

4.2.1 Test setup

In order to measure DGD, a test setup is required, such as the one illustrated in
Figure 4.1.

Figure 4.1: DGD measurement setup, showing each functional block and their intercon-
nections. Solid lines represent optical connections, while dashed lines refer to electrical
connections.

A tunable laser is fed into a polarization scrambler, which rapidly randomizes
the SOP of the input signal, and then into a polarization analyzer. The role of the
polarization scrambler is to remove any effects due to polarization, by providing
the possibility to evaluate the mean of results for multiple random polarization
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states. The polarization analyzer is connected both to the scrambler output and
to the DUT. It splits the signal into two paths, one of which is sent into the
DUT, and then compares the two paths, to measure the impact of the DUT on
the signal. The scrambler and analyzer are synchronized via an electrical BNS
connection. Moreover, as the tunable laser performs a sweep, varying the laser
central frequency over a set range, a connection is needed between the laser and
the polarization analyzer, so that the laser source can trigger the measurement
whenever the laser frequency is changed. The DUT is shown in Figure 4.2. In this
case, it consists in one multiplexer from a WXC under test, whose DGD is studied
as a function of the set attenuation.

Figure 4.2: DGD attenuation DUT. Only a multiplexer is employed.

4.2.2 DGD results

The results for the DGD measurements as a function of the laser central frequency
for different values of device attenuation are reported in Figure 4.3.

It is immediately possible to see that all results exhibit a similar mean value,
possibly suggesting that attenuation does not have a significant impact on DGD.
The frequency curve appears to be more noisy for the 20 dB attenuation case. This
can be due to the fact that the polarization analyzer had to operate in its high
sensitivity mode for this last case, as otherwise the input power would be below a
detectable value. Figure 4.4 shows the mean value of the DGD across all frequencies
of the span as a function of the set attenuation.

From the experimental results, it is possible to conclude that the attenuation
that can be set on the WXC devices does not cause sensible changes in the DGD.
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Figure 4.3: DGD spectrum vs. attenuation.
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Figure 4.4: DGD spectrum vs. attenuation. The linear interpolation is shown, which does
not account for the single high sensitivity data point (upper right corner).
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4.3 DGD and WXC cascade

4.3.1 Test setup

The setup used to measure DGD as a function of the number of multiplexers and
demultiplexers in series is the same as that arranged for the previous case. The
only change is in the DUT, which is reported in Figure 4.5.

Figure 4.5: DGD cascade DUT. A series of multiplexers and demultiplexers is employed.
The polarization analyzer is connected to various points in the chain (1 to 6) to perform
the measurements.

The first device of the chain is a demultiplexer. The optical fiber which is
connected back to the polarization analyzer is moved further along the device chain
for each measurement.

4.3.2 DGD results

The results for the DGD measurements as a function of the laser source frequency
for a cascade of a variable number of multiplexers and demultiplexers are reported
in Figure 4.6.

We can see that the mean value of the DGD steadily increases with the number
of devices in series, which is expected, as it would be assumed to be an additive
quantity. As the cascade of multiple devices also causes a non-null signal attenua-
tion due to insertion loss, even if the target attenuation is set to be 0 dB, when a
number of about 5-6 devices is reached it is necessary to switch to the high sensiti-
vity mode of the polarization analyzer. Also, the plot corresponding to the longest
chain of devices, and therefore the highest attenuation, exhibits a significantly more
noisy frequency curve, also due to the high sensitivity.

Figure 4.7 shows the mean value of the DGD across all frequencies of the span
as a function of the set attenuation.
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Figure 4.6: DGD spectrum vs. number of devices.
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4.4 – Conclusions on DGD measurements

It is possible to see that, in high sensitivity, the addition of a device to the chain
results in a higher difference in the DGD. The curve follows a linear trend, taking
into account some deviation due to noise and instrument uncertainty, especially in
high sensitivity.

Figure 4.7: DGD spectrum vs. number of devices, highlighting the change in the linear
interpolation slope for the different sensitivity settings.

4.4 Conclusions on DGD measurements

The results confirm a linear relationship between DGD and the number of connected
devices. However, for accurate comparison across different setups, it’s crucial to
explicitly report the polarization analyzer sensitivity alongside DGD measurements,
as it directly affects the final values.
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Conclusions

The development of a polynomial model for the noise figure of Erbium Doped
Fiber Amplifiers (EDFA) is presented. The model utilizes a machine learning algo-
rithm to determine the polynomial coefficients, and aims to achieve high accuracy,
as well as other qualities necessary for easy and efficient integration inside mo-
re comprehensive models, such as good computational speed, device independence,
user-friendliness, and portability. The results indicate that the model demonstrates
acceptable accuracy, comparable to the uncertainty in the dataset measurements.
Its polynomial structure enables rapid nosie figure computation and makes it very
light and portable, as the model files only contain the floating-point representation
of the model coefficients.
The study also includes an analysis of the Differential Group Delay (DGD) af-
fecting the internal devices of a Wavelength Cross Connect (WXC) card. This
analysis aims at verifying the linear behavior of this parameter with respect to the
number of traversed optical multiplexers and demultiplexers, and to determine any
effect of the tunable device attenuation. The results show that variable attenuation
does not impact DGD, and its behavior with the number of devices is , similar to
that observed with consecutive optical fiber strains. The sensitivity of the optical
instrumentation influences the slope of this linear behavior.
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