
POLITECNICO DI TORINO
Master degree course in Ingegneria Elettronica

Master Degree Thesis

FHOG
Design of an optimized FHOG architecture with Vivado HLS

Supervisors
Prof. Maurizio Martina
Dr Walid Walid

Candidate
Pietro Romeo
matricola: 269010

Anno accademico 2023-2024

This work is subject to the Creative Commons Licence

Summary

Object detection is one of the modern challenges in computer vision. There
are many ways to detect classes of objects from static images, and most of
them are based on the Histogram of Oriented Gradients (HOG) algorithm.
Pixels have sharp variations at the boundary of objects, and this is exploited
in HOG, where pixels’ gradients are computed to highlight such boundaries.
The first step in HOG based object detection is therefore to generate a "Fea-
ture Map", a version of the image comprised of gradient vectors that allow
to proceed with the actual object detection.

The ability to process videos as well as images with HOG opens many
possibilities in terms of possible applications, such as object recognition for
cars, robots etc., security footage, smart search to find sequences of interest
in movies, just to name a few. Such applications are already possible with
the HOG algorithm, which is however outdated and has several limitations,
including being limited to a single class of objects at a time.

The goal of this thesis is to provide an optimized hardware implementation
on FPGA capable of executing an advanced version of the HOG algorithm,
the one proposed by Felzenszwalb and his colleagues, which will be referred
to as FHOG, or Felzenszwalb’s HOG. FHOG is more complex than HOG, it
does not suffer from its limitations and its results are compact and easy to
process.

There are many software implementations for the FHOG algorithm that
are capable of executing it with high precision,but so far there have been
no attempts to implement the FHOG algorithm in hardware. A hardware
implementation would extend the possible applications for the algorithm.
This work will be useful to anyone who is seeking to implement a detection or
tracking system with FHOG at its core. Since there are multiple algorithms
that use FHOG, each with its own requirements, an advanced digital design
tool, namely HLS or High Level Synthesis, was selected. By using it the

3

result is not specific to a single application, since HLS’ versatility allows to
change and adapt the design with very little effort.

The thesis is organized into five chapters, out of which there’s an intro-
duction, a conclusion and three core chapters. In Chapter 1, an introduction
to the HOG algorithm is presented, summarizing the steps of the algorithm
and showing both its potential and limitations. Some of the space in the
chapter is also dedicated to introducing Vivado HLS.

In Chapter 2 the FHOG algorithm is explained in detail, highlighting key
passages and differences with respect to the original HOG algorithm [2]. By
the end of the Chapter, the algorithm is also simulated with MATLAB and
its output is compared with the one provided by an already existing function.

In Chapter 3, several optimizations and approximations for the FHOG
are discussed and verified. These optimizations mostly have the effect of
increasing performance at the cost of precision, and whether the trade off is
acceptable or not is going to be determined by applying the author’s custom
MATLAB implementation to an FHOG based object tracking system: the
fast Discriminative Scale Space Tracker (fDSST).

In Chapter 4, an optimized hardware architecture for FHOG is presented
and its performance is compared with several other architectures found in
literature. The focus of this implementation is going to be high throughput
and low memory usage. This is achieved by the use of traditional techniques
such as pipelining and unrolling, as well as the use of line buffers to store
intermediate results and use them immediately.

Chapter 5 concludes the thesis by giving suggestions on how to use and
enrich this work, and summarizing the obtained results.

4

Contents

List of Algorithms 7

List of Tables 8

List of Figures 9

1 Introduction 11
1.1 Histogram of Oriented Gradients 11
1.2 FHOG . 14
1.3 Software of choice: Vivado HLS 15

2 FHOG 17
2.1 FHOG features . 17

2.1.1 Input image . 17
2.1.2 Pixel-level features . 18
2.1.3 Cell-level features . 21
2.1.4 Normalization . 21
2.1.5 Modified PCA . 25

2.2 Algorithm Verification . 25
2.2.1 Produced images . 27

3 Algorithm Optimizations 29
3.1 Performance evaluation . 29
3.2 Black and white input images 30
3.3 Pixel level optimizations . 30

3.3.1 Column skip . 30
3.3.2 Magnitude calculation with subtraction 31
3.3.3 Phase calculation and bin assignment 31

3.4 Cell level features . 32
3.4.1 Non Overlap of Blocks 32

5

3.4.2 Derivation of Cell Features by Averaging 32
3.4.3 Derivation of contrast insensitive map 34

3.5 Normalization . 34
3.5.1 Quantized Normalization 34
3.5.2 Other Norm types . 35

3.6 Optimizations summary . 36
3.7 Optimizations Verification . 36

3.7.1 Fast Discriminative Scale Space Tracker 37
3.7.2 Verifying . 38

3.8 Algorithm Summary . 42

4 HLS implementation 43
4.1 Vivado HLS . 43

4.1.1 Pragmas . 44
4.1.2 HLS libraries . 44

4.2 Inputs and Outputs . 45
4.3 Architecture . 46

4.3.1 First Stage . 47
4.3.2 Second Stage . 47
4.3.3 Third Stage . 48
4.3.4 Buffer sizes . 48
4.3.5 Data Flow . 49
4.3.6 Timing Diagram . 49
4.3.7 Control Signals and interface 50
4.3.8 Number Format . 50

4.4 Performance results . 52
4.4.1 Comparison with previous Architectures 53

5 Conclusion and future Improvements 57
5.1 Performance and resources improvements 57
5.2 Precision and Testing . 58
5.3 Conclusion . 58

Bibliography 59

6

List of Algorithms

1 Pixel Level feature maps . 20
2 Cell Level feature Maps . 22
3 Normalization . 24
4 Modified PCA . 26

5 LUT bin assignment . 33

7

List of Tables

1.1 HOG parameters for different object classes [3]. 13

3.1 List of optimizations . 36
3.2 MATLAB profiler results . 39
3.3 Evaluation of Optimizations through the fDSST. 40

4.1 Memory size of Buffers . 49
4.2 Vivado Interface Report . 51
4.3 Data Types for the main FHOG variables 51
4.4 Clock Frequency . 53
4.5 Latency . 53
4.6 Resource Usage . 54
4.7 Performance and Resources of HOG architectures (I) 54
4.8 Performance and Resources of HOG architectures (II) 54

8

List of Figures

1.1 HOG example . 12
1.2 HOG visual steps . 14
1.3 Famous photos processed with FHOG 16

2.1 Main steps of the FHOG algorithm 17
2.2 Pixel Gradient Calculation . 19
2.3 Cell Features and Bilinear Interpolation 21
2.4 Normalization Factors . 23
2.5 Test Image [5] . 27
2.6 FHOGs of test image . 28

3.1 FHOG with Column Skip . 31
3.2 fDSST test sequence . 38
3.3 Optimized Test Image FHOG 41
3.4 Optimized FHOG detailed summary 42

4.1 FHOG implementation block diagram 46
4.2 State Diagram . 49
4.3 Timing Diagram . 50

9

10

Chapter 1

Introduction

In 2006 Navneet Dalal, a Ph.D. student of the Institut National Polytech-
nique de Grenoble (INPG), published a revolutionary thesis [3] focused on
the development of a new object recognition technique based on the His-
togram of Oriented Gradients (HOG). The paper summarizing this work [2],
with over twenty five thousand citations, set a new standard in the field.
While revolutionary, HOG based object recognition system suffer from sev-
eral limitations. In 2010, a paper presenting an improved HOG algorithm [1]
was published. This algorithm, now known as FHOG, is a direct improve-
ment over its predecessor. The objective of this work is to present an FPGA
implementation of the FHOG algorithm.

1.1 Histogram of Oriented Gradients
While this work is centered upon an FHOG implementation, the author
believes it useful to first present an introduction to the HOG algorithm,
since it is more simple and what is said about HOG can in most cases be
applied to FHOG as well.

The objective of the HOG algorithm is that of extracting features from
images, from a computer vision point of view, so that such features can be
used to identify classes of objects, for example cars. Cars can vary in shape,
size, color, orientation and they can be illuminated from various angles. HOG
aims to capture the essential information that are required to identify a car,
despite possible variations in its appearance, and it can do so for several other
classes of objects. In particular, HOG is specialized in human detection.

There are several applications for HOG, including smart search of objects

11

1 – Introduction

Figure 1.1: An example of a car image with HOG [17].

in both videos and pictures, security cameras, intelligent digital content man-
agement softwares, pedestrian detection for smart cars and so on. In order to
do that, the HOG feature map alone is not enough, but it is simply a start-
ing point for several types of algorithms that compare the feature map with
complex models. Such algorithms include fDSST (a tracking algorithm), and
machine learning algorithms based on Support Vector Machines. The focus
of this thesis, however, lies only with the feature map generation.

So how is the feature map generated? There are several steps to follow,
that can vary according to the object class:

1. For each colour channel, convolve with [-1,0,1] mask along x and y axis,
and compute gradients. The channel1 with the largest magnitude gives
the pixel’s dominant orientation and magnitude.

2. Divide the image into square regions, or cells.

3. Group cells into overlapping squares of 2x2, or blocks.

4. Create a spatial and orientation histogram, where for each block trilinear
interpolation is used by each pixel to votein the histogram using gradient

1Coloured pictures have three channels, Red, Green and Blue

12

1.1 – Histogram of Oriented Gradients

magnitude2.

5. Apply L2-Hys norm or L1-sqrt normalization independently to each
block.

For a more in-depth, but simple explanation of the algorithm, see [17], or
check Chapter 2, where FHOG is thoroughly explained and compared with
HOG. Figure 1.2 also gives a graphical representation of these steps.

There are several variables in the HOG algorithm, including image size,
cell size, block size, and number of bins. Regardless, when referring to HOG,
it is assumed that a "standard" choice of parameters for human detection is
used. Such parameters include Detection window size (64x128), number of
orientation bins (9), cell size (8x8), block size (2x2 cells), and normalization
type (L2-Hys norm). Figure 1.1 shows which parameters are suitable for
which object classes.

Table 1.1: HOG parameters for different object classes [3].

Class Window Avg. Orient. Orient. Gamma Norm.
Size Size Bins Range Compr. Method

Person 64x128 H* 96 9 (0-180°)
√

RGB L2-Hys
Car 104x56 H 48 18 (0-360°)

√
RGB L1-Sqrt

Motorbike 120x80 W* 112 18 (0-360°)
√

RGB L1-Sqrt
Bus 120x80 H 64 18 (0-360°)

√
RGB L1-Sqrt

Bicycle 104x64 W 96 18 (0-360°)
√

RGB L2-Hys
Cow 128x80 W 96 18 (0-360°)

√
RGB L2-Hys

Sheep 104x60 H 56 18 (0-360°)
√

RGB L2-Hys
Horse 128x80 W 96 9 (0-180°) RGB L1-Sqrt
Cat 96x56 H 56 9 (0-180°) RGB L1-Sqrt
Dog 96x56 H 56 9 (0-180°) RGB L1-Sqrt

H and W stand for Height and Width

2Meaning the pixel’s magnitude is placed into a bin, according to the angle of the
gradient

13

1 – Introduction

Figure 1.2: A visual representation of the HOG steps [3].

1.2 FHOG
The HOG algorithm suffers from a few limitations. One of which is shown
in 1.1: the feature map is specific to an object class, therefore a feature
map using human parameters may not work as well for cars or sheep. In

14

1.3 – Software of choice: Vivado HLS

other words, HOG feature maps do not capture enough information. FHOG-
generated feature maps overcome this problem by merging feature maps that
use 9 and 18 bins, and then reducing the size of the output by using a modified
version of the Principal Component Analysis. As a result, the output data
from the algorithm is slightly smaller than that of HOG, but is more dense
in information.

Even though the output is more compact, that does not apply to the core
of the algorithm, which is much more complex than HOG. It is perhaps for
this reason that no hardware implementation for FHOG has been attempted
yet. This work will attempt to do just that. More specifically, it is meant to
be a starting point for future FHOG hardware implementations.

1.3 Software of choice: Vivado HLS
Vivado HLS is a tool that translates a C/C++ code into an HDL3, so that it
can be easily loaded into an FPGA4. This tool has an incredible potential, as
it allows to skip some of the longer steps that characterize a VLSI design, and
provide a reasonable -albeit not excessively optimized- implementation of an
algorithm. For this reason, HLS is popular both among software engineers
who have but basic knowledge of hardware, and among digital designers seek-
ing to test or produce implementations of complex algorithms in a reasonable
amount of time, a key resource in the world of electronics. HLS stands for
High-level Synthesis and, as the name suggests, allows the designer to work
at a higher level of abstraction with respect to an RTL design [8].

While implementing an algorithm with HLS is relatively easy, doing so
in an optimized way requires an extensive knowledge of the algorithm, the
architecture of an FPGA, and of digital electronics in general.

The FHOG implementation discussed in this work is only a part of the
whole object recognition system, which also includes pre-processing and clas-
sification. While the author has a decent understanding of these, there are
still a lot of arbitrary variables involved, such as the window size and the
desired performance considering the system in its whole. By designing the
FHOG module with HLS, these variables are but a small inconvenience, since

3Hardware Description Language, such as VHDL or Verilog
4Field Programmable Gate Array

15

1 – Introduction

changing the design to accommodate them is as easy as changing a few lines
of code.

To stimulate the interest of the reader, a few famous pictures - processed
with an FHOG software - are provided (Figure 1.3). Note that in practice
the algorithm is never used this way, but instead processes slices of images
at a fixed size.

Figure 1.3: Examples of application of the FHOG algorithm. In practice, the FHOG is
never used for such large images, but it is applied to a window of fixed size.

16

Chapter 2

FHOG

2.1 FHOG features
The FHOG and HOG algorithm are based on the same passages, save for
a few key differences that allow the FHOG to be suitable for detection of
any object class and for multiple parts and mixture models. Previous image
detection systems lacked this versatility, and were forced to more specific,
single-purpose architectures due to complexity and sheer amount of opera-
tions. FHOG manages to address this problem by reducing the size of the
feature map drastically, using a simplified but equally efficient version of the
Principal Component Analysis.

Pixel gradient
calculation and
bin assignment

Normalization Modified
PCA

Cells
featuresImage Feature

descriptor

Figure 2.1: Main steps of the FHOG algorithm

The FHOG algorithm is explained thoroughly in this section, the way it
is presented in [1]. Most passages are the same as the ones for the HOG
algorithm [2], save for a few differences.

2.1.1 Input image
Before diving into the actual algorithm, it is important to know about the
image processing that precedes it. FHOG, the way it is presented in [1],
is performed by applying a detection window of a fixed size (usually 64x32
pixels) at all locations and scales of an image. The same image is processed

17

2 – FHOG

several times at different resolutions, and this is obtained by smoothing and
subsampling an initial high-resolution image1.

To improve detection at the borders, padding is performed as well. It con-
sists in adding a layer of pixels (usually 8 or 16) around the image, along both
height and width. The added pixels can either be all zeros (zero padding), or
they can be a reflection of the pixels close to the borders (reflective padding).
Padding will be further discussed in the Normalization step.

2.1.2 Pixel-level features

Given an input image made out of three pixel maps, one for each colour
channel, gradient magnitude is calculated for each triplet of pixels at the
same position in the different channels. This is done with the use of the
[-1,0,1] mask and its transpose, meaning for a given pixel, the gradient in the
x direction Gx is obtained by subtracting the pixel to its left from the pixel
to its right, and similarly the gradient in the y direction Gy is calculated
by subtracting the pixel on its top from the pixel to its bottom. Gradient
magnitude is then calculated from these values by using Pythagoras’ theorem.
This step is illustrated in Figure (2.2).

Once this is done for the three pixels representing the three colours, the
one with the highest magnitude is chosen, and its phase is calculated. It is
important to note that in many implementations these steps are performed
for black and white images only, which only have one channel. This is also
the approach followed in algorithm (1).

In some implementations, gradients in the x and y directions are divided
by two, according to the definition of derivative. Also, pixels at the border
of the image are handled differently, with the so-called uncentered derivative,
meaning if one of the pixels needed to calculate the gradient is not found,
the central pixel is used instead but the division by two is not performed.

1This approach may vary according to the detection algorithm. For example fDSST
[10] processes the image once at high resolution

18

2.1 – FHOG features

85 8978

64

56 200214

152 125

8978

64

56 200214

152 125

85

Figure 2.2: Example of pixel gradient calculation. The gradient of pixel 78 in the x
direction is represented here as an example of how uncentered derivatives work. Since
there’s no value at the pixel’s left, the gradient is computed as the difference between the
pixel at the right and the pixel 78 itself. Division by two is not performed in this case.

Now comes the interesting part: the bin assignment. This can be done
in two different ways: either contrast-insensitive or contrast sensitive. Both
ways involve the discretization of the phase into "bins" of 20°. By using the
contrast sensitive way, gradient magnitudes are assigned into one of 18 bins
ranging from 0° to 360°; while in the contrast insensitive approach, they are
assigned into one of 9 bins ranging from 0° to 180°; in both cases at 20°
steps. This assignment is done by generating an empty vector of 9 or 18
components for each gradient magnitude, and then adding the magnitude
at the corresponding bin. Using the phase and magnitude derived in the
left part of Figure(2.2), the result would be a sparse vector with the third
component (the bin corresponding to 40°) equal to 6.8 (for both contrast
approaches). Bin assignment in FHOG is done with equations (2.1) and
(2.2), where p = 9, q = 18, and θ(x, y) being the phase expressed in radians,
and θdeg(x, y) the one in degrees.

B1(x, y) = round

A
pθ(x, y)

π

B
modp = round

A
θdeg(x, y)

20

B
mod9 (2.1)

B2(x, y) = round

A
qθ(x, y)

2π

B
modq = round

A
θdeg(x, y)

20

B
mod18 (2.2)

Each class of objects is better detected by using one or the other method.
As stated in [2]: "For humans, the wide range of clothing and background
colours presumably makes the signs of contrasts uninformative. However
note that including sign information does help substantially in some other
object recognition tasks, e.g. cars, motorbikes.". The FHOG algorithm uses
both approaches on contrast, thus making it suitable for all object classes.

19

2 – FHOG

Algorithm 1: Pixel Level feature maps
inputs : p(x, y), 0 <= x <= h− 1, 0 <= y <= w − 1
outputs: F (x, y) h x w matrices for sensitive features whose entries

are sparse vectors of size 18.
1 q = 18 ;
2 F = zeros(h, w, q) ;
3 for x0 = 2 : w − 1 do
4 for y0 = 2 : h− 1 do
5 Gx = (p(x0 + 1, y0)− p(x0− 1, y0))/2 ;
6 Gy = (p(x0, y0 + 1)− p(x0, y0− 1))/2 ;
7 M =

ñ
Gx

2 + Gy
2 ;

8 O = atan(Gy

Gx
) ;

9 B = roundq∗O
2π modq ;

10 F (x0, y0, B) = r(x0, y0)

Notes

• In the algorithm, only internal pixel gradients are computed. Border
pixel gradients are computed with the aforementioned uncentered deriva-
tives, but the resulting code would be too long and tedious to show here.

• Table 1.1 clearly shows how bin assignment affects different classes of
objects. This further reinforces the use of both bin assignment types
in the FHOG algorithm. In the same table, an optimal window size
is proposed for each class. This is a problem, since in [1] there’s no
indication on the window size to be used. For the purpose of this work,
the "human window" is going to be used, however keep in mind that
other object classes may require different window sizes.

20

2.1 – FHOG features

2.1.3 Cell-level features
In this step, pixel features are used to produce cell features. The most basic
way to do so consists in grouping pixels into square cells of size k by k, and
averaging them, however both FHOG follows a more complex approach: the
bilinear interpolation 2. With this approach, pixels within a Block, a square
of 2x2 cells, contribute to each of the four cell features in the block, according
to vicinity. Blocks overlap too, meaning a single pixel contributes to the nine
cells included in the four blocks that encapsulate the pixel’s cell.

a b

cd

Figure 2.3: The block entity is made out of cells a,b,c,d. Given a pixel inside the block,
its contribution to each of the four cells is equal to the pixel feature times the respective
weight factor, which is calculated geometrically as the ratio between the highlighted areas
and the total area of the block. The sum of all four weight factors is always equal to one.

2.1.4 Normalization
In this step, cell features (both contrast sensitive and contrast insensitive)
are normalized with respect to the four blocks that surround it. To do so,
for each cell four normalization factors are going to be calculated for each
γ, δ ∈ {−1,1} (2.3). Then the cell feature vector is divided by these factors
one at a time, and the four resulting vectors are concatenated to obtain a
primitive FHOG feature map (2.4), which is a 4x9 or 4x18 matrix for each
cell. In the division, a truncation factor α = 0.2 is used to make sure the
division result for each component of the vectors is never higher than α. This
step is computed for the internal cells only, meaning the external cells added
with padding are only used to calculate normalization factors.

2The HOG algorithm uses instead the so-called trilinear interpolation. The FHOG
authors in [1] considered it to be superfluous though. This is the only instance where
HOG follows a more complex approach.

21

2 – FHOG

Algorithm 2: Cell Level feature Maps
inputs : F (x, y)
outputs: C(x, y), h

8 xw
8 sized matrix whose entries are vectors of size 18

1 C = zeros(h/8, w/8, 18) ;
2 - - Block selection
3 for i = 1:(h/8-1) do
4 for j = 1:(w/8-1) do
5 - - Pixel Selection
6 for m = 1:16 do
7 for n = 1:16 do
8 W (a) = (16− i) ∗ (16− j)/256 ;
9 W (b) = (16− i) ∗ j/256 ;

10 W (c) = (i) ∗ (j)/256 ;
11 W (d) = (i) ∗ (16− j)/256 ;
12 C(i, j, :)+ = W (a). ∗ F ((i− 1) ∗ 8 + m, (j − 1) ∗ 8 + n, :) ;
13 C(i, j + 1, :)+ = W (b). ∗F ((i− 1) ∗ 8 + m, (j− 1) ∗ 8 + n, :) ;
14 C(i+1, j +1, :)+ = W (c).∗F ((i−1)∗8+m, (j−1)∗8+n, :)

;
15 C(i + 1, j, :)+ = W (d). ∗F ((i− 1) ∗ 8 + m, (j− 1) ∗ 8 + n, :) ;

22

2.1 – FHOG features

Since both square roots and divisions are performed, this could be one
of the more computationally heavy steps. Fortunately, the normalization
factors are the same for contrast sensitive and contrast insensitive features.
They simply are calculated from contrast insensitive features and are used
in both cases. The equations below are as presented in [1].

Nγ,δ(x, y) =
ñ
||C1(x0, y0)||2 + ||C1(x0 + γ, y0)||2 + ||C1(x0, y0 + δ)||2 + ||C1(x0 + γ, y0 + δ)||2

(2.3)

H(x, y) =

Tα(C(x, y)/N−1,−1(x, y))
Tα(C(x, y)/N+1,−1(x, y))
Tα(C(x, y)/N+1,+1(x, y))
Tα(C(x, y)/N−1,+1(x, y))

 (2.4)

-1,-1 -1,0 -1,+1

0,-1 0,0 0,+1

+1,-1 +1,0 +1,+1

Figure 2.4: Visual representation of which cells are hit by each Normalization Factor

This step is slightly differently in HOG [3], where rather than using cell
descriptors, the author uses Block Descriptors, or concatenations of the four
cell descriptors included in a 2x2 square of cells. Blocks are then divided
by their normalization factors. With the block notation, equation 2.3 can
also be expressed as in 2.5. In FHOG, both blocks and cells are needed,
which makes padding compulsory to make sure border cells are correctly
normalized. Both in HOG and FHOG, a small factor ϵ is added to N to
avoid division by zero.

Nγ,δ(x0, y0) =
ñ
||B(x0 + γ, y0 + δ)||2 + ϵ (2.5)

23

2 – FHOG

Algorithm 3: Normalization
Inputs : C(x, y)
Outputs: H(x, y), H2(x, y), each entry of these matrices is a 4x9 or 4x18

sized matrix
1 - - Computation of contrast insensitive features by folding ;
2 C2 = zeros(size(C,1),size(C,2),9) ;
3 C2(:,:,1:9) = C(:,:,1:9) + C(:,:,10:18) ;
4 for i = 1 : size(C,2)/8-1 do
5 for j = 1 : size(C,2)/8-1 do
6 B(i, j, :) = [C2(i, j, :), C2(i, j + 1, :), C2(i + 1, j + 1, :), C2(i + 1, j, :)];
7 Bnorm(i, j, :) =

ð
||B(i, j, :)||2 + ϵ ;

8 - - Initialization of output matrices ;
9 H = zeros(size(C,1)-2,size(C,2)-2,4,18) ;

10 H2 = zeros(size(C,1)-2,size(C,2)-2,4,9) ;
11 for i = 2:(size(C,1)-1) do
12 for j = 2:(size(C,2)-1) do
13 H2(i− 1, j − 1, :, :) = [min(C2(i, j, :)./Bnorm(i− 1, j − 1), 0.2); min(C2(i, j, :

)./Bnorm(i− 1, j), 0.2); ...];
14 H(i− 1, j − 1, :, :) = [min(C(i, j, :)./Bnorm(i− 1, j − 1), 0.2); min(C(i, j, :

)./Bnorm(i− 1, j), 0.2); ...];

24

2.2 – Algorithm Verification

2.1.5 Modified PCA

PCA [18] is an eigenvector based technique used in statistics to reduce the
size of large datasets. Performing this technique requires costly projection
steps [1]. By applying it many times, Felzenswab and his team found that
the resulting eigenvectors (approximately) followed a specific pattern, so they
aimed to generate such patterns directly without going through the whole
PCA.

In the end, with this technique the size of each H1(x0, y0) is reduced from
36 to 13, and each H2(x0, y0) is reduced from 76 to 22. This is achieved
without loss in information. The procedure consists in summing the elements
along the column for each orientation bin, and then summing the elements
along the row for each normalization type (the latter is only done for contrast
insensitive features, leading to 31 components, 9 + 18 + 4, rather than 35).
This can be represented as a dot product between H and matrices that only
have unitary elements along a line (uk) or a column(vk). In the algorithm
that follows, we’ll simply sum the elements along row or column though.
Moreover, the result has a very intuitive meaning: we’ll have nine contrast
insensitive orientation features, eighteen contrast sensitive orientation fea-
tures and four features that reflect the overall gradient energy in different
areas around the cell [1].

2.2 Algorithm Verification

The main issue with the implementation of such a complex algorithm lies
with the lack of details provided in most papers, and with the differences
that are present in existing software implementations. Before the actual im-
plementation was designed, the algorithm was therefore recreated manually
in Matlab, and its output was compared with an already existing tool -the
one freely provided by pdollar [6]-. The tool is available to all, and can be
downloaded directly from Matlab. The tool is widely used and its author
has published several papers on the topic, including [12], [13] and [14]. The
verification of the code and the algorithm is done firstly by comparing the
output images, and secondly by applying the Matlab script into an already
existing FHOG software recognition system and verifying whether it is still
able to recognize objects.

25

2 – FHOG

Algorithm 4: Modified PCA
Inputs : H1(x, y), H2(x, y)
Outputs: G(x, y), a matrix containing 31 components for each block

1 p = 9 ;
2 q = 18 ;
3 – Cell selection for x0 = 0 to rowsof(H1)− 1 do
4 for y0 = 0 to columnsof(H1)− 1 do
5 – computation of last 4 normalization components
6 for i = 0 to 3 do
7 for j = 0 to p− 1 do
8 G(x0, y0)(p + q − 1 + i)+ = H1(x0, y0)(i, j) ;

9 – computation of 9 contrast insensitive features
10 for j = 0 to p− 1 do
11 for i = 0 to 3 do
12 G(x0, y0)(j)+ = H1(x0, y0)(i, j) ;

13 – Computation of 18 contrast sensitive features
14 for j = 0 to q − 1 do
15 for i = 0 to 3 do
16 G(x0, y0)(p + j)+ = H2(x0, y0)(i, j) ;

26

2.2 – Algorithm Verification

2.2.1 Produced images
Several images representing the FHOG of a test image are shown below. The
visual analysis of these histograms provides an immediate, despite unreliable,
feedback on how the author’s code fares compared to the code provided by
the pdollar tool. Despite all passages of the FHOG algorithm have been
followed meticulously, initial results would show too bright images. Later
on, this was fixed by dividing the final descriptor by two. The author thinks
that it was necessary because of the application of several filters in pdollar’s
implementation -whereas they are not present in mine- and possibly to other
unknown arbitrary choices that were done on both sides.

Figure 2.5: Test Image [5]

27

2 – FHOG

(a) FHOG provided by the tool

(b) FHOG produced with my implementation

Figure 2.6

28

Chapter 3

Algorithm Optimizations

Now that the algorithm has been analyzed, it is time to do a few consider-
ations on its implementation. In this Chapter, several optimizations for the
algorithm are going to be discussed in terms of trade off between speed and
precision. Then, their behavior is tested with the help of an object detection
software, the fDSST.

The FHOG algorithm is quite heavy, computationally speaking. Fortu-
nately, it is also redundant: several performance optimizations can be done
with small losses in terms of precision. Most of these optimizations are the
ones proposed by [5] in their HOG implementation. Keep in mind that the
objective of this thesis is that of producing a fast FPGA implementation.
While software based existing FHOG implementation can already achieve
the highest precision, the goal here is to possibly improve performance to a
point where images can be processed as fast as the frames of a video without
the aid of a high-end computer processor. Precision is therefore not too im-
portant. If an object is not recognized in a specific frame, chances are it will
be recognized in the next frame. The goal of these optimizations is therefore
going to be that of improving performance in terms of latency, throughput
and complexity rather than precision.

3.1 Performance evaluation
The impact on detection of the many choices present in this algorithm is
discussed in depth in [3]. The unit of measurement is the percentage at 10−4

False positives per Window (FPPW). As stated in [3]: We often quote the
performance at 10−4 False Positives per Window, the maximum false positive

29

3 – Algorithm Optimizations

we consider to be useful for a real detector given that 103 to 104 windows are
tested for each image. The error evaluations present in [3] however were
made for the HOG algorithm, and therefore do not necessarily have the
same value for the FHOG. Their value will therefore be considered more of
an indication, and whether the following approximations will still hold will
be verified through the fDSST software that will be introduced later in this
chapter.

3.2 Black and white input images

As discussed previously, the use of black and white, single channel images
rather than colored, three channels images has large benefits in terms of
performance with negligible precision loss.

Firstly, magnitude computations are reduced to one third compared to
RGB images, where magnitudes are instead computed for each pixel across
all three channels. Secondly, the comparison between magnitudes is skipped
entirely. In terms of precision loss, moving from RGB to grayscale colors
reduces the accuracy only by 1,5% at 10−4 False Positives Per Window
(FPPW), as shown by Dalal & Triggs.

3.3 Pixel level optimizations

3.3.1 Column skip

In [5], only oddly numbered pixel columns contribute to the cell descriptor.
At first glance, this may be too much of an approximation. Also, in [5] it
is stated that: it would just decrease the classification score margin between
a pedestrian and non-pedestrian sample. Their system is however an HOG,
where human detection is the sole focus, while FHOG aims to detect all object
classes. It will be later demonstrated that this approximation still holds in
FHOG, for non-human objects. Skipping cells has a large impact on FHOG,
halving the operations required until the cell descriptors are produced.

30

3.3 – Pixel level optimizations

Figure 3.1: Visual FHOG obtained by performing column skip. The human
shapes are still recognisable despite having used only half the pixels.

3.3.2 Magnitude calculation with subtraction
Magnitude calculation includes the costly square root operation, which could
slow down the algorithm considerably. A possible solution to speed it up is
that of computing magnitudes as |Gx−Gy| instead of

ñ
G2

x + G2
y, as proposed

in [5]. Despite at first glance it may look too much of an approximation, doing
some tests with the calculator upon the data generated with the MATLAB
code showed remarkable results. Alternatively, integer square root algorithms
could be used, such as the one proposed in [15].

3.3.3 Phase calculation and bin assignment
Phase calculation includes the arcotangent operation. It is a very costly
operation, and digital designer tend to avoid it, especially in FPGAs. Since
the phase is discretized into bins, there’s no need to have a precise value for

31

3 – Algorithm Optimizations

the phase. Most implementations ([16],[5],[4],[7]) therefore store the values
of the tangents for all bins, and proceed with algorithms similar to algorithm
5, which relies on Look Up Tables (LUTs).

This method is further improved in [7] by approximating the tangent val-
ues to fractions. For example, tan(20◦) ≈ 4/11. This would allow to work
with integers and avoid floating point arithmetics. In [5], they use LUTs to
store the whole multiplication between the tangent and Gx. This allows to
skip the multiplications entirely, however 256 entries are required for each
tangent value (since Gx varies from 0 to 255). In any case, not all tangents
have to be stored: in fact, only those for the first quadrant - from zero to
eighty degrees - are required, due to the basic properties of the tangent. Note
that for simplicity, the bin assignment in Algorithm 5 is contrast insensitive.
To switch to contrast sensitive - which is the case in FHOG - one simply has
to create four different cases, one for each quadrant.

3.4 Cell level features

3.4.1 Non Overlap of Blocks

Due to bilinear interpolation and overlapping blocks, the number of oper-
ations to be performed in the cell features step is huge. According to [5],
the block overlap is not strictly necessary, as it has a minimal impact on
the precision of the algorithm (4.4 % at 10−4 FPPW). In other words, when
performing bilinear interpolation, instead of having each cell contribute to
the four blocks around it, each cell would contribute to a block only.

3.4.2 Derivation of Cell Features by Averaging

As mentioned in the previous chapter, the most basic way to derive cell
features is that of averaging1 its pixel features. Should the precision loss be
acceptable, this would be a huge increase in terms of performance, reducing
the number of operations before cell features by a factor of four.

1Since the elements in a cell are a power of two (usually 64), the averaging consists in
a sum and a shift, rather than a sum and a division, which would be much costlier.

32

3.4 – Cell level features

Algorithm 5: LUT bin assignment
inputs : Gx(x, y) Gy(x, y)
outputs: Bin assignment

1 – Quadrants I and III
2 if (Gx > 0 and Gy > 0) or (Gx < 0 and Gy < 0) then
3 if (|Gy| < tan(20)|Gx|) then
4 bin = 1
5 else
6 if (|Gy| < tan(40)|Gx|) then
7 bin = 2

8 else
9 if (|Gy| < tan(60)|Gx|) then

10 bin = 3

11 else
12 if (|Gy| < tan(80)|Gx|) then
13 bin = 4

14 else
15 bin = 5

16 –Quadrants II and IV
17 else
18 if (|Gy| < tan(20)|Gx|) then
19 bin = 9
20 else
21 if (|Gy| < tan(40)|Gx|) then
22 bin = 8

23 else
24 if (|Gy| < tan(60)|Gx|) then
25 bin = 7

26 else
27 if (|Gy| < tan(80)|Gx|) then
28 bin = 6

29 else
30 bin = 5

33

3 – Algorithm Optimizations

3.4.3 Derivation of contrast insensitive map

One free optimization that can be done is that of deriving the contrast in-
sensitive feature map from the contrast sensitive one. This can be easily
done by summing the last nine components of the contrast sensitive features
to the first nine. With this optimization, the amount of operations to be
performed before normalization is reduced drastically, and without any loss
of information.

3.5 Normalization

There are a few obvious optimizations to be done here. Firstly, in the previous
algorithm, cell norms are calculated more than once for each cell. It would
make more sense to calculate the needed norms and then proceed to calculate
normalization factors. Secondly, the square of a norm is actually more simple
than the norm itself. Rather than calculating the square of the norm, it is
more optimal to compute the sum of the squared components for each cell
feature. Thirdly, and as previously stated, the computation of the square
root can be substituted with the computation of its inverse, so as to avoid
the subsequent division. In truth however, it would be better to avoid the
square root entirely.

3.5.1 Quantized Normalization

In [5], a method called the "quantized normalization" is proposed. With it,
each of the 4x9 (or 4x18) elements of the descriptor is quantized into one of
eight values, according to the block average. This method (see eq. 3.1) would
allow to skip the computation of both the squares and the square root. This
method is incredibly effective, however it must be noted that it is created for
HOG, where rather than having cell descriptors we have block descriptors,
and normalization is done contrast-insensitively only. For this method to
work in FHOG as well, a few tweaks have to be performed.

34

3.5 – Normalization

normalized element =

0.4, if element > 2 ∗ block average
0.35, if element > 7 ∗ block average/4
0.3, if element > 3 ∗ block average/2
0.25, if element > 5 ∗ block average/4

0.20, if element > block average
0.15, if element > 3 ∗ block average/4

0.1, if element > block average/2
0.05, if element > 1 ∗ block average/4

0, else

(3.1)

The first observation to be done concerning the adaptation of quantized
normalization to FHOG is when it comes to the generation of the contrast
sensitive features: its average is half of the corresponding contrast insensitive
feature’s average. This allows to compute the CS block average by simply
shifting the CI block average. One might also wonder whether the comparison
in eq.(3.1) still holds for CS features, and it does since both average and
elements are smaller. Tests performed with MATLAB yielded positive results
in terms of precision, but the added logic due to having to work with both
contrast sensitive and contrast insensitive features reduced the performance
advantages.

3.5.2 Other Norm types
A few papers [4][7], avoid squares by using the L1 - sqrt norm instead of the
L2-Hys norm (3.2).

v ←
ñ

v/(||v||1 + ϵ) (3.2)
Compared to the L2- Hys norm, the squares are not computed, and the

square root is performed at the end. Also, according to [3], the two norms
have an equivalent performance 2 . Alternatively, L1 norm (L1-sqrt norm but
without the square root) could be used too, albeit with a loss of performance
(5.5% at 10−4 FPPW). Using L1 norm has several other advantages, which
will be discussed in the next chapter. Note that both L1-sqrt and L1 norms
do not include clipping.

2More precisely, L1 sqrt norm is more suitable for certain object classes, while L2 Hys
is more suitable for others. Since the FHOG object detection works for all classes, the two
choices seem to be equivalent. See Table 1.1 for more details.

35

3 – Algorithm Optimizations

3.6 Optimizations summary

The following table summarizes the optimizations and how they behave in
terms of estimated precision loss. N/A stands for Not Available.

Table 3.1: List of optimizations

Optimization Section Precision Loss
(% at 10−4FPPW)

B/W images Pre-processing 1.5
Subtractions Pixel features N/A
LUT tangents Bin Assignment none
Column skip Pixel features 4.1
Non Overlap Cell Features 4.4
Average Cell Features N/A
L1-sqrt Norm Normalization none
Quantized norm Normalization 1
L1 Norm Normalization 5.5

3.7 Optimizations Verification

Most of the previously discussed optimizations were used only in HOG im-
plementations, and while they should work in FHOG as well, some testing is
still required. Visual and numerical comparison is not enough for this task,
however a full verification of the algorithm would require a large amount of
time and resources since it implies extensive testing on very large datasets,
which goes beyond the scope of a master thesis. Therefore it was decided
to apply the Matlab script to an already existing FHOG-based object de-
tection software and verifying if it would still work. This is going to be
especially useful to verify if the precision loss brought by the optimizations
is still acceptable.

36

3.7 – Optimizations Verification

3.7.1 Fast Discriminative Scale Space Tracker

One of the more advanced object tracking systems is the Fast Discriminative
Scale Space Tracker, theorized by M. Danelljan et al in [10] and implemented
in [9]. The goal of this method is to track the movements of an object of
which the initial position and shape is known. Difficulties in doing so in-
clude orientation changes, as well as shape change due to perspective. While
it is not the goal of this thesis to dive into the intricacies of another com-
plex algorithm, suffice it to say that the fDSST employs FHOG for image
representation.

The implementation of the fDSST is a MATLAB script, therefore compat-
ible with the script produced in Chapter 2 to verify the full algorithm. Also,
it relies the same FHOG function that was used in the visual verification
step [6] in Chapter 2. Since the fDSST tool uses an FHOG with variable
parameters, the author’s code was modified to be able to work with any cell
size while keeping the algorithm’s structure intact.

The test sequence of the fDSST script is a video of a man holding a plush
dog (Figure 3.2), and the objective of the tracker is to keep identifying the
plush’s face through the video. When substituting the FHOG originally
used in the fDSST implementation with the author’s, the task of tracking
the plush remains successful, however since the code was not optimized for
performance, each frame would take a few seconds to process, much more
than in the original fDSST code. The processing speed improves drastically
when applying some of the optimizations.

Once all of the 1350 frames of the video are processed, the code also
provides the user with several metrics in the command window to evaluate
performance and precision. These metrics are: Frames per Second, Over-
lap Precision, Distance Precision, and Center location error. As stated in
[10]: The OP score is computed as the percentage of frames in a video where
the intersection over-union overlap with the ground truth exceeds a certain
threshold. In the tables we report the OP at a threshold of 0.5, which cor-
responds to the PASCAL evaluation criterion. The DP score is defined as
the percentage of frames in a video where the euclidean distance between the
tracking output and ground truth centroids is smaller than a threshold. A
threshold of 20 pixels is used in this work.

37

3 – Algorithm Optimizations

Figure 3.2: A frame of the plush dog sequence. The green frame always
follows its face. The number on the top left refers to the frame.

3.7.2 Verifying

In order to test the optimizations, the FHOG script was readapted so that
each optimization can be switched on or off. This was done by creating a
separate function for each step of the algorithm (such as pixel features, cell
features etc...), where the function decides how to perform the step according
to a parameter. The parameters for each step are set into the main script,
which now only acts as a wrapper for all of the functions. With this change,
it is now possible to evaluate each combination of optimizations with ease, as
well as adding the possibility to evaluate their performance impact by using
MATLAB’s profiler3 (table 3.2).

3A built-in tool that measures the time required to complete each function included in
a script, as well as the number of calls for each function.

38

3.7 – Optimizations Verification

The results of the profiler are however to be taken as an inaccurate in-
dication because of how reliant these timings are on the owner’s computer,
as well as how MATLAB behaves much differently from a specialized hard-
ware FPGA implementation. Still, by running the profiler on the unaltered
FHOG, it immediately appears clear how the computation of cell features is
by far the heaviest task. Optimizing this step is therefore going to be vital
towards improving the algorithm’s performance. Note that the function that
calculates the weight factors is called approximately 1.2 million times4, and
with each call, four factors are calculated. Considering that each factor is
then multiplied and summed, it can be estimated that the Cell Features step
by bilinear interpolation and overlap takes roughly 10 million operations to
be completed.

Function Time (%)
Cell Features 96.65
Pixel Features 2.3
Normalization 0.76
Modified PCA negligible

Table 3.2: Results provided by MATLAB’s profiler on the full algorithm, for
the test image.

In Table (3.3), each optimization is evaluated through the fDSST in terms
of frame per second and precision. The script itself returns these data by
writing them in the command window at the end of a simulation. Due to the
high number of possible optimizations, not all combinations have been tried.
Instead, the performances are evaluated for the full, unaltered algorithm 5;
and then for each optimization individually applied to the full algorithm.
Once this is done, a selection of the best optimizations is evaluated, and will
be used as the algorithm to be applied in the FPGA implementation. Note
that in all cases, the use of black and white images and folding are applied
by default, and the LUT tangents are not verified due to how the method is
already proven by several papers and the theory.

4The test image is 496x656
5As a reminder for the reader, it calculates pixel features by default, cell features with

bilinear interpolation and overlapping blocks and normalization with L2-Hys norm

39

3 – Algorithm Optimizations

Table 3.3: Evaluation of Optimizations through the fDSST.

Optimization Frames Per Center Location
second Error

Original Algorithm* 208 2.9 pixels
Full Algorithm 0.688 2.93 pixels
Column skip 1.28 2.79 pixels
Subtractions 0.67 3.07 pixels
Non Overlap 1.72 2.81 pixels
Average 4.8 2.46 pixels
L1-sqrt Norm 0.681 3.08 pixels
Quantized norm 0.691 2.93 pixels
L1 Norm 0.697 3.41 pixels
Best** 9.01 2.72 pixels

*Meaning the one the fDSST script originally employs [6]. **Includes Cell skip,
Subtractions, Average and L1 norm

Table 3.3 provides with some concerning data. Why is the original script
that much faster than the one developed in this thesis? Why is it that
some optimizations (mostly those for the Normalization) do not improve
performance? Why do some of the optimizations improve the Center location
Error even when they are supposed to instead lower precision? As to the
first question, It must be reminded that pdollar’s implementation [6] was
made for the sole purpose of being very fast in MATLAB, whereas the script
developed in this work serves only to test whether the optimizations work or
not, which, according to the simulations, they do. Note that the Overlap and
Distance Precision metrics have not been included in the table, and that’s
because in all of the simulations these values were always 100%. To answer
the second question, it first must be pointed out that the Frames per Second
metric slightly changes at every simulation, since it is strongly dependant on
owner’s computer. Also, as shown in Table 3.2, the normalization step takes
less than 1% of the computation time, which is why the optimizations for the
normalization are not so impactful. Since it is not possible to measure their
performance with precision, the Normalization optimizations will be tested
again on HLS. As to the third question, the center location error value seems
to change slightly at every simulation, so, similarly to the Frames per Second,
it is not a reliable metric. If these metrics do not matter, was there a purpose

40

3.7 – Optimizations Verification

to these simulations, aside from proving that the optimizations work?

While the Frames per Second of the MATLAB script is not reliable data for
the purpose of the hardware implementation, it still gives useful indication on
how some optimizations affect the algorithm, especially those concerning the
cell features, which increase performance by a very large amount, since they
drastically reduce the number of operations. At the same time, the Center
location Error metric, while not precise, demonstrates how the optimizations
have a small impact on precision and do not behave unexpectedly.

Figure 3.3: Visual output obtained by applying the selection of the best
optimizations from Table 3.3 to the test image.

41

3 – Algorithm Optimizations

3.8 Algorithm Summary

Pixel Features

Cell Features

Normalization

Modified PCA

Input Padded
Image

Black and White: Image has
only one colour channel.

Cell Skip: Only the pixels
from the odd columns are
computed

Subtractions: Magnitudes
are computed as |Gx-Gy|

Average: Cells are computed
by averaging the sum of the
pixel features in the cell

Folding: Contrast insensitive
features are derived from
contrast sensitive features at
the end of the step.

Quantized Normalization:
Normalized elements derived
by comparing values with cell
average.

OptimizationsInputs and Outputs

LUT tangents: Phase
calculation and bin
assignment are done with the
help of Look Up Tables.

(64+16)x(128+16) pixels

2880 sparse vectors of 18
elements.

180 Contrast sensitive cell
features (18 elements each).

180 contrast insensitive cell
features (9 elements each).

128 internal cell
normalized descriptors of 108
elements each (72 (4x18)
contrast sensitive elements
and 36 (4x9) contrast
sensitive elements).

128 features of 31 elements
each, for a total of 3968
elements.

Step Summary

Gradients in x and y direction
are extracted for each pixel.
They are then used to
calculate magnitude and
phase. The pixel feature is a
sparse vector of 18 elements,
where the non zero element
is equal to the magnitude and
its position is determined by
discretizing the phase in bins
of 20°.

The pixel grid is divided into
cells of size 8x8. Pixels in a
cell contribute to their cell
descriptor, or to all four cell
descriptors in their 16x16
block. In the latter case,
bilinear interpolation is used.

Each internal cell descriptor
is divided by four different
normalization factors, each
generated from an adjacent
block of 2x2 cells. The result
of these four operations is
then arranged in a matrix of 4
rows. This is done for both
contrast types.

The normalized descriptors
are summed along rows and
columns.

Algorithm Steps

The input image comes with
8 pixels of padding on each
side.

Figure 3.4: A summary of the FHOG algorithm, highlighting the various
optimizations that will be used in the implementation, as well as the size of
inputs and outputs of the various steps.

42

Chapter 4

HLS implementation

Most of the optimizations that have been analyzed in the previous chap-
ter switch the original operations with simpler ones, in order to lighten the
computational load, while at the same time reducing precision. In other
words, they change the output of the algorithm, and that’s the reason why
they needed to be tested extensively. In this chapter more optimizations
are present, however they do not change the output of the algorithm but
improve performance by adding pipelines, performing operations in parallel
and optimizing memory usage.

The goal of this chapter - and of this thesis - is to derive an FPGA ar-
chitecture capable of executing the FHOG algorithm. This task presents a
few challenges given the complex nature of the algorithm, specifically the
presence of three and four dimensional matrices; and the large amount of
operations to be performed. As a consequence, memory and resource utiliza-
tion threaten to be high, to the point where it may be possible for them to
exceed the FPGA capacity if not handled correctly. It is important to stress
again how this implementation is oriented towards high speed and reduced
area (meaning resource and memory usage) rather than precision.

4.1 Vivado HLS

The use of High Level Synthesis instead of a more traditional RTL design
means that it won’t be possible to control every detail of the implementation.
Instead, HLS provides the designer with built-in functions, or pragmas, that
allow to control some of the more traditional digital electronics design choices

43

4 – HLS implementation

such as pipeline depth. Along with these pragmas, HLS provides some cus-
tom libraries, that can be used along with the standard C++ libraries to
provide the best possible hardware implementations. The main pragmas and
libraries are going to be discussed in this section, due to their key role in this
work. For a full description, consult [11].

4.1.1 Pragmas
Pragmas, or directives, are lines that allow the designer to directly control
some of the more important aspects of an FPGA implementation. The more
common ones are presented in the following list.

• HLS Pipeline: indicates that a pipeline of the specified depth is to be
used.

• HLS Unroll: performs unrolling within a loop. In other words, crates
several branches that work in parallel to compute the loop. The number
of branches can be specified.

• HLS Dependence: allows to specify whether there are or not data
dependencies within a loop.

• HLS Loop Flatten: specifies whether to flatten the loop or not. When
the loop is not flattened, the resulting hardware for that part of the code
will follow the code structure, thus making debugging easier.

• HLS Array Partition: partitions large arrays into multiple smaller
arrays or into individual registers, to allow parallel access to data.

4.1.2 HLS libraries
When coding with HLS, it is best to use the functions included in the HLS
libraries, since they better translate into hardware when compared to their
C++ counterparts. Some of the more important HLS libraries are summa-
rized In the following list.

• hls_math.h: this library is meant to be a replacement of the more tra-
ditional math.h library commonly used in C++ to perform arithmetical
operations. While the functions provided by both libraries are the same,
using the HLS library makes sure that the operations are implemented
in a more optimized way.

44

4.2 – Inputs and Outputs

• hls_video.h: this library provides several tools that are useful in image
processing. Among them, the line buffer allows to optimize window
based operations and filtering of images. The functions provided by this
library allow to create such buffers and load them during the process with
the appropriate data. Due to the high memory usage of the algorithm,
this library will be key in improving its performance.

• hls_stream.h: with this library it is possible to treat large data as
stream interfaces, by using FIFO memories. It is a common practice to
use stream interfaces in image and video processing, as it is the case for
FHOG.

• ap_int.h: this library allows the user to define custom precision in-
teger1 data types (ap stands for Arbitrary Precision) by specifying the
number of bits to be used. Choosing the precision correctly can have
positive effects both on memory usage and performance.

4.2 Inputs and Outputs
In order to build the FHOG module, the first step is to correctly define inputs
and outputs. For the purpose of the implementations, it was decided to use
the standard "human detection window", which is the one more commonly
used in HOG implementations. While FHOG is capable of working with any
type of window, it was decided to work with the standard window for the
purpose of comparing performances. As for the input, the module receives
a black and white image of size 64x128 pixels (excluding padding), which
translates into eight cells horizontally and sixteen cells vertically, for a total
of 128 cells and 105 overlapping blocks. The output is going to be an array
of thirty two elements per cell, for a total of 4096 elements.

The input needs further discussion due to padding. While padding can
be avoided in HOG implementations, even though it is not recommended, it
is unavoidable in FHOG due to how normalization works: it in fact requires
to have four blocks around each cell of the original image, meaning without
padding it wouldn’t be possible to process cells on the border. There’s also
the issue of gradient calculation for border pixels, which in theory are handled
with uncentered derivatives, but in practice would be better to handle with

1Similarly, the ap_fixed.h library allows to define custom floating point types.

45

4 – HLS implementation

centered derivatives in order to process all pixels the same way and avoid the
use of additional logic. As a consequence, the input image will be padded
with a reflective cell on all sides, plus a pixel on all sides. The input will
therefore be a 82x146 image. With these numbers, the number of blocks is
153 and the cells are 180, but the output remains the same. In this work,
cells from the original image will be referred to as "internal cells".

4.3 Architecture
In [5], which is an HLS implementation of the HOG algorithm, the authors
chose to control the implementation in a very direct way, thus not exploiting
the HLS libraries a lot. Still, they managed to achieve a very respectable ar-
chitecture, and it was possible because of the relative simplicity of the HOG
algorithm. As already stated numerous times, the FHOG adds complexity
in several ways: firstly, it uses both contrast sensitive and insensitive feature
maps; secondly, it is cell-based rather than block-based 2; lastly it adds the
modified PCA step. Therefore while this work uses many of the optimiza-
tions present in [5], it will have to rely on the more advanced functionalities
provided by HLS, namely the use of data streams and line buffers, to re-
duce memory use and improve concurrency, and heavy use of pipelining and
unrolling.

The use of buffers to store intermediate data naturally leads to a division
of the architecture into stages. It was decided to go with three stages working
in sequence, according to the diagram in Fig 4.1.

Input
Stream

Pixel
Line

Buffer

Gradients, Magnitude
Bin Assignment

C.S. Cell
Desc.
Line

Buffer

C.I. Cell
Desc

Norm
Factors

Norm
Factors

Line
Buffer

C.I. Cell
Desc
Line

Buffer

Output
Stream

Normalization
PCA

STAGE I STAGE II STAGE III

Figure 4.1: Block diagram of the FHOG architecture.

Why streams and line buffers? Data streams are commonly used in image

2More precisely, it needs both cell and block descriptors, while HOG can work with
blocks only

46

4.3 – Architecture

and video processing, where large amount of data is serialized. In order to
begin processing, the FHOG algorithm does not need the whole input image,
but only a part of it, which is read from the stream and stored into the Pixel
Buffer as needed. Having the input stored in a large memory, on the other
hand, would have slowed the execution considerably. The stream interface is
also very beneficial in the output, since any block reading it does not have
to wait for the whole image to be processed.

4.3.1 First Stage
Pixel gradients, bin assignment and contrast sensitive cell features have been
merged into one step, which is the first stage. In other words, each pixel
is processed and then fed to the cell descriptor without storing intermediate
variables. Both pipelining and unrolling have been applied to this step by the
use of pragmas, and of course, all of the optimizations that were discussed in
the previous chapter are used here: column skip, magnitudes as subtractions
and LUT tangents.

The input image and the output contrast sensitive cell descriptor are stored
in line buffers. The input buffer is three lines deep and as wide as the image
plus the padding. Once the first three lines are loaded into the buffer, the
gradients, bins and magnitude for the middle line are computed and the
corresponding cell descriptor is incremented by the magnitude at the bin
position. At this point, the input buffer is shifted up, discarding the top line
of pixels and adding a new line at the bottom. The process continues until
eight lines of pixels are processed, at which point the contrast sensitive cell
descriptors for the first line of cells are ready and written to the bottom of
the output buffer. The output buffer contains three lines of cell descriptors.
Once the output buffer is filled for the first time, the second stage begins to
process its content.

4.3.2 Second Stage
In the second stage, normalization factors and contrast insensitive feature
map are calculated. In order to avoid the quantized normalization’s complex
logic, it was decided to use the L1 norm (without square root) to generate the
normalization factors. Since the division is a costly operation in hardware,
rather than using the original factors, their inverse is used instead, so that
one division is performed for each block instead of four. During normalization

47

4 – HLS implementation

(performed in stage III), cell descriptors are in fact multiplied by the inverse
of the normalization factors.

The contrast insensitive cell descriptor branch operates on the second line
of the input buffer, skipping the first and last cell. The normalization factors
branch uses instead the first three lines of the buffer to generate the normal-
ization factors for the first two lines of blocks3 (the ones required to normalize
the cells from the second line). This is only true for the first iteration, since
the next iterations only compute one line of normalization factors from the
second and third line of the input buffer. The output buffers in this stage are
two. One for the contrast insensitive cell descriptor, one line deep; and one
for the Normalization factors, two lines deep. The input buffer containing
contrast sensitive cell descriptors is carried over to the third stage.

This stage is done so that the third stage receives all the data it needs to
proceed with normalization and PCA for a line of cells. Hopefully the timing
diagram in Figure4.3 can clarify any doubts the reader may have.

4.3.3 Third Stage
The third stage receives in input both cell descriptor buffers and the normal-
ization factors buffer. It performs normalization and PCA. In order to reduce
the size of intermediate variables, the outputs for this stage are produced bin
by bin rather than cell by cell. Also, as soon as an element of the output is
ready, it is sent directly into the output stream.

4.3.4 Buffer sizes
The size of all buffers should further clarify their behavior, and is reported
in table 4.1. Their size in terms of Bytes (or bits) was calculated as well.

The total memory use of buffers amounts to 10.878 bits, or 1360 Bytes.
The amount of memory that is going to be used in the full architecture is
going to be much higher than that since it will also include input and output
FIFOs to handle the streams, several internal variables and constants, and
the LUTs for tangent computation. Note that in most cases HLS completely

3Normally, normalization factors are extracted from the contrast insensitive features.
In this case, using the L1 norm allows to extract normalization factors from contrast
sensitive features as well.

48

4.3 – Architecture

Table 4.1: Memory size of Buffers

Buffer Lines Columns Bits per element Size
Pixels 3 82 8 246B
C.S. Cell Desc. 3 10x18* 14 945B
C.I. Cell Desc. 1 8x9* 14 126B
Norm Factors 2 9 15 270b

*Number of cells times the number of bins.

partitions these buffers, implementing them in such a way that all the data
can be accessed in parallel.

4.3.5 Data Flow
The three stages work sequentially, as per Figure 4.2. Due to the size of the
input image, sixteen cycles are required for the full output. At each cycle,
the FHOG descriptor for a line of eight cells is produced. Internally, the
first and second stage are programmed to fill the interface buffers at the first
cycle, as illustrated in the timing diagram in Figure 4.3.

Stage
I

Stage
II

Stage
III

x16

Output
Stream

Input
Stream

Figure 4.2: State Diagram

4.3.6 Timing Diagram
The behavior of the system is more accurately represented by the timing
diagram in Figure 4.3. This is not a traditional timing diagram: there are
no clock nor control signals and the width of the signals and data is not
proportional to their duration. In order to follow the timing diagram, a few
explanations are in order:

Stage 1: the content of the data bubbles in the first stage refer to the
data in the stage’s output buffer. The numbers represent the corresponding

49

4 – HLS implementation

line of cells from the padded image. A number on the data bubble means
that the corresponding line of cells is being written at the bottom of the
buffer.

Stage 2: Due to how the second stage has multiple outputs, there are
two or more numbers in each data bubble. The ones at the left of the slash
represent the lines of blocks, while the number on the right represents the
lines of cells. The latter are less than the ones from the first stage because
they are only the internal cells.

Stage 3: the numbers in the bubbles refer to the internal cells’ FHOG
descriptor. Since the output of the this stage has been implemented as a
stream, the output is available as soon as it’s processed.

Figure 4.3: Timing Diagram

4.3.7 Control Signals and interface
Vivado HLS provides the architectures with a standard set of control signals,
a clock, and the controls required to handle the stream interfaces. Table 4.2,
which was adapted from the synthesis report provided by Vivado, represents
these signals, their format and their direction (either inputs or outputs).
These signals are extremely common in digital architectures and require no
further explanation.

4.3.8 Number Format
Aside from the advantages in terms of performance, several of the algorithm
optimizations from the previous chapter also bring additional benefits. Cal-
culating magnitudes as subtractions makes it so that the magnitudes are
integers; and using the L1 norm makes it possible to avoid averaging when
determining cell descriptors. 4

4That is because the L1 norm is proportional to the non normalized vector, whereas
L2-Hys and L1 sqrt norms aren’t.

50

4.3 – Architecture

Table 4.2: Vivado Interface Report

RTL ports Direction Bits
Clock in 1
Reset in 1
Start in 1
Done out 1
Idle out 1
ready out 1
Pixel Stream in 8
Pixel Stream Empty in 1
Pixel Stream Read out 1
Output Stream out 20
Output Stream Full in 1
Output Stream Write out 1

Understanding the dynamic of the variables allows to represent them with
the proper number of bits and the right data type, to improve performance
and memory usage. While in C++ integer types are implemented with 32
bits, in this algorithm we can very easily work with less bits. In this section,
the data type and bits number is assigned to the main variables, exploiting
the arbitrary precision libraries provided by Vivado HLS. In Table 4.3 the
main variables’ ranges and chosen data types are listed.

Table 4.3: Data Types for the main FHOG variables

Variable Name Min Value/Max value Number Format
Pixels 0/255 8 bits unsigned integer
Gradients -255/255 9 bits signed integer
Magnitudes 0/510 9 bits unsigned integer
Cell Descriptors* 0/≈ 214 − 1 14 bits unsigned integer
Norm. Factors 0/1 21 bits fixed point **
Output FHOG 0/1 21 bits fixed point **

*Refers to the content of each bin. ** 20 bits for the fractional part, unsigned.

The ranges for each of the variable in Table 4.3 have been determined as

51

4 – HLS implementation

follows:

• Pixels: Pixels are always represented with eight bits, with values rang-
ing from 0 (black) to 255 (white).

• Gradients: Gradients are determined as subtractions between pixel
values, therefore they range from -255 (0− 255) to 255 (255− 0).

• Magnitudes: Due to the choice of calculating them with the absolute
value of the subtraction, magnitudes range from 0 (|0−0|) to 510 (|255−
(−255)|).

• Cell Descriptor: Assuming that all magnitudes in a cell not only have
the highest possible value, but also contribute to the same bin 5, and
considering that due to the column skip 32 pixels per cell are processed,
the content of each bin ranges from 0 to 510 · 32 (which is slightly lower
than 214).

• Norm. Factors and Output FHOG: The format was decided after
thorough experimentation, by comparing obtained results with expected
results. Initially, 14 bits were used, but it was not enough. With 20 bits
the results are very close to those displayed by MATLAB. The maximum
for the normalization factor has been set to one, and it is used when the
cell descriptor only has zeros. Since one over zero diverges to infinity,
it was decided to use one instead as maximum value in this unlikely
occurrence.

4.4 Performance results
Let’s now analyze the results obtained with the RTL synthesizer, and com-
pare results with previous HOG 6 implementations. These results were ob-
tained by selecting a Virtex7 FPGA.

The values in table 4.5 are expressed in minimum to maximum to take in
account that stages one and two perform more steps in the first iteration.
The total latency may be misleading though. The maximum is calculated

5This is never going to happen, but the assumption is made anyway just to be safe. A
more extensive study on the subject could maybe lead to use one or two less bits

6Due to the absence of FHOG hardware implementations.

52

4.4 – Performance results

Table 4.4: Clock Frequency

Clock Target Estimated Uncertainty
- 10 ns 8.497ns 1.25ns

Table 4.5: Latency

Module Latency (Cycles) Latency (Absolute)
STAGE I 3075-9386 30.750-93.860 µs
STAGE II 299-950 2.990-9.500 µs
STAGE III 321-321 3.210-3.210 µs
Total** 60048-171440 0.600-1.714 ms

In each field are indicated the minimum and maximum values. **The total includes the
buffer loading and the 16 iterations of the three stages.

as the sum of the maximums of all three stages times sixteen. A more
accurate estimate would evaluate the total latency by summing the maximum
latency for the three stage with the sum of the minimums times fifteen. That
would lead to a total latency of around 66000 cycles, or 0.66ms (assuming a
10ns clock). With that in mind, operating frequency (100MHz) and latency
(0.7ms), are enough to process more than a thousand 64x128 images per
second, which should be enough in most applications.

As for the resource usage (Tab 4.8), it is much lower than anticipated. In
theory, it should be possible to load as many as twenty five FHOG modules
in the the same FPGA. In any case, there is more than enough space left on
the FPGA to hold whatever other modules before and after the FHOG. The
resource usage also reveals that modifying the module to be able to process
much larger images should indeed be possible as well.

4.4.1 Comparison with previous Architectures
There are several FPGA HOG implementations in literature, which will be
briefly presented in this section and compared to the implementation devel-
oped for this work.

Comparing these architectures with the one developed in this work is not
entirely fair, for a number of reasons. First, they are implementations of

53

4 – HLS implementation

Table 4.6: Resource Usage

Module BRAM 18K DSP48E FF LUT
STAGE I 4 0 891 2105
STAGE II 0 0 3399 9656
STAGE III 0 6 516 552
Total 4 6 4806 12313
Available 2060 2800 607200 303600

Table 4.7: Performance and Resources of HOG architectures (I)

Platform Resolution fps LUTs Registers
[19] Stratix II 640 x 480 30 37940 66990
[20] Virtex-5 320 x 240 62 17383 2181
[21] Cyclone IV 800 x 600 72 34403 23247
[7] Virtex-5 1920 x 1080 64 5188 5176

Table 4.8: Performance and Resources of HOG architectures (II)

DSPs Memory (kBit) MHz Windows per sec
[19] 120 n/d 127 56466
[20] n/d 1327 44 95480
[21] 68 348 76 401760
[7] 49 1188 270 1789440

54

4.4 – Performance results

a different algorithm, secondly they process larger images, and thirdly they
include pre processing and classification. Having these data can be however
useful as a benchmark for future, more complete, object detectors or trackers
that employ one or more FHOG modules.

55

56

Chapter 5

Conclusion and future
Improvements

The objective of this work is to serve as future reference, or as a starting point,
to develop full FHOG based detection systems. For this reason, this chapter
provides a few suggestions on how to improve the existing implementation.

5.1 Performance and resources improvements
As it is evident from Table 4.5, the first stage, where pixels are processed
up to the cell descriptors, is the longest task by far. Should anyone want to
speed computation up, it would be best to start there. For example, in the
current implementation, the main loop in the first stage was pipelined but
not unrolled. That is because there is a data dependency which prevents from
using the unroll pragma: when calculating the gradient in the x direction,
adjacent pixels require the same surrounding pixels to be accessed. There
are several ways to circumvent this problem, such as splitting the pixel buffer
in two (or more) buffers. Each buffer would then be used to process half the
pixels, effectively halving the latency of the first stage. Of course, this would
come at a cost in terms of resources.

In the case of unrolling, another data dependency may rise, regarding the
LUTs used for the binning process. This can be avoided by either replicating
the LUTs, or using the approach of [7], where the tangent value is stored as
two integer values.

Stage 2, as evident from Table 4.8, uses a very large amount of flip flops
and LUTs. A thorough analysis of the stage would surely lead to a reduction.

57

5 – Conclusion and future Improvements

The saved space could then be used to load more modules into the FPGA, or
to further unroll the first stage. Stage 2 can also be rearranged: currently, the
normalization factors are calculated from contrast sensitive features1. This
choice was done to allow the contrast insensitive cell descriptors calculation to
work in parallel to the normalization factors block. The operations required
by the normalization factors could be halved by restoring the proper order
of the algorithm, with a possible cost in terms of latency.

5.2 Precision and Testing
The FHOG implementation uses several optimizations that greatly reduce
the precision of the algorithm. While it was proven that such precision loss
is not an issue for the fDSST algorithm, it may be the case for other object
detection algorithms. Should anyone use this work for other algorithms, it
would be recommended to test the optimizations more extensively. Object
detection algorithms are commonly tested on the INRIA datasets, which were
used for both HOG and FHOG. The MATLAB provided with this work can
serve once again as a tool for testing.

5.3 Conclusion
In conclusion, the developed implementation of the FHOG algorithm was
successful both in providing a functioning FPGA implementation, and in
giving the tools necessary to adapt it for future, application specific, imple-
mentations.

1Normally, they are calculated from the smaller contrast insensitive features instead,
but thanks to the use of L1 norm it was possible to use contrast sensitive features.

58

Bibliography

[1] Pedro F. Felzenszwalb, Object Detection with Discriminatively Trained
Part-Based Models, IEEE Transactions on pattern Analysis and Machine
Intelligence, Vol. 32, No. 9, Sep 2010.

[2] N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human
Detection, Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2005.

[3] Navneet Dalal, Finding People in Images and Videos, Human-Computer
Interaction [cs.HC]. Institut National Polytechnique de Grenoble - INPG,
2006. English.

[4] W. Walid, M. Awais, A.Ahmed, M. Martina, G. Masera, Real-time imple-
mentation of fast discriminative scale space tracking algorithm, Journal
of Real-Time Image Processing (2021).

[5] K. Nikolaos, P. Nikolaos Real time HOG implementation, University
of Thessaly Department of Electrical and Computer Engineering Volos,
Greece. (2018)

[6] Pdollar’s FHOG:
https://github.com/pdollar/toolbox/blob/master/channels/
fhog.m

[7] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, K. Doll FPGA-based
Real-Time Pedestrian Detection on High-Resolution Images University of
Applied Sciences Aschaffenburg, Germany, Otto-von-Guericke University
Magdeburg, Germany.

[8] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer Parallel Pro-
gramming for FPGAs (2018).

[9] fDSST github repository:
https://github.com/C2H5OHlife/fDSST/tree/master

[10] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan and Michael
Felsberg Discriminative Scale Space Tracking (2017).

[11] Vivado HLS user guide:

59

https://github.com/pdollar/toolbox/blob/master/channels/fhog.m
https://github.com/pdollar/toolbox/blob/master/channels/fhog.m
https://github.com/C2H5OHlife/fDSST/tree/master

Bibliography

https://docs.amd.com/v/u/2019.2-English/
ug902-vivado-high-level-synthesis

[12] Piotr Dollár, Ron Appel, and Wolf Kienzle Crosstalk Cascades for
Frame-Rate Pedestrian Detection Microsoft Research Redmond, Califor-
nia Institute of Technology (2012).

[13] Piotr Dollár, Zhuowen Tu, Pietro Perona, Serge Belongie Integral Chan-
nel Features (2009).

[14] Piotr Dollár, Pietro Perona, Serge Belongie The Fastest Pedestrian De-
tector in the West (2010).

[15] T. Sutikno An Optimized Square Root Algorithm for Implementation in
FPGA Hardware (2010).

[16] Sebastian Bauer, Ulrich Brunsmann, Stefan Schlotterbeck-Macht Fac-
ulty of Engineering Aschaffenburg University of Applied Sciences, As-
chaffenburg, Germany FPGA Implementation of a HOG-based Pedestrian
Recognition System (2009).

[17] Simple explanation of HOG:
https://www.analyticsvidhya.com/blog/2019/09/
feature-engineering-images-introduction-hog-feature-descriptor/

[18] Andrzej Maćkiewicz, Waldemar Ratajczak Principal components anal-
ysis (PCA) Computers & Geosciences Volume 19, Issue 3, March 1993,
Pages 303-342.

[19] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y.
Nakamura. Hardware Architecture for HOG Feature Extraction. Fifth In-
ternational Conference on Intelligent Information Hiding and Multimedia
Signal Processing, pages 1330–1333, Spetember 2009.

[20] K. Negi, K. Dohi, Y. Shibata, and K. Oguri.Deep pipelined one-chip
FPGA implementation of a real-time image-based human detection algo-
rithm. 2011 International Conference on Field-Programmable Technology,
pages 1–8, December 2011.

[21] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M.
Yoshimoto.Architectural Study of HOG Feature Extraction Processor for
Real-Time Object Detection. 2012 IEEE Workshop on Signal Processing
Systems, pages 197– 202, October 2012.

60

https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/

Acknowledgements

Gli anni passati al politecnico sono stati decisamente faticosi, ma con pazienza
e testardaggine, ho infine terminato questo percorso. In questi anni non sono
mai stato solo, e questa laurea la devo non solo ai miei sforzi, ma anche al
supporto incondizionato delle bellissime persone che mi sono state vicine in
questi anni, a cui dedico questo spazio.

Lo dedico innanzitutto agli amici di Roma, insostituibili amici da una
vita. Tra sessioni di giochi da tavolo, avventure tra le montagne o semplice-
mente una chiacchierata davanti a una birra, siete sempre stati lì per me,
condividendo preziosi momenti di leggerezza o di confidenza.

Agli amici di Torino, senza i quali il mio soggiorno e le mie trasferte
a Torino sarebbero state senz’altro più grigie e monotone. Mi avete fatto
sentire a casa mentre ero lontano da casa.

Al professor Martina, che con competenza, prontezza e cortesia ha risposto
ai miei dubbi e mi ha indicato la strada da seguire durante il lavoro di tesi;
e a Walid, che ha seguito il mio lavoro passo passo nonostante la distanza
geografica che ci separava.

Infine, alla mia famiglia: ai miei nonni, ai miei zii, ai miei cugini, a mio
fratello e a mia sorella, e a mamma e papà. Per l’affetto che ci ha sempre
legato, e per la fiducia che avete sempre avuto in me.

61

	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Histogram of Oriented Gradients
	FHOG
	Software of choice: Vivado HLS

	FHOG
	FHOG features
	Input image
	Pixel-level features
	Cell-level features
	Normalization
	Modified PCA

	Algorithm Verification
	Produced images

	Algorithm Optimizations
	Performance evaluation
	Black and white input images
	Pixel level optimizations
	Column skip
	Magnitude calculation with subtraction
	Phase calculation and bin assignment

	Cell level features
	Non Overlap of Blocks
	Derivation of Cell Features by Averaging
	Derivation of contrast insensitive map

	Normalization
	Quantized Normalization
	Other Norm types

	Optimizations summary
	Optimizations Verification
	Fast Discriminative Scale Space Tracker
	Verifying

	Algorithm Summary

	HLS implementation
	Vivado HLS
	Pragmas
	HLS libraries

	Inputs and Outputs
	Architecture
	First Stage
	Second Stage
	Third Stage
	Buffer sizes
	Data Flow
	Timing Diagram
	Control Signals and interface
	Number Format

	Performance results
	Comparison with previous Architectures

	Conclusion and future Improvements
	Performance and resources improvements
	Precision and Testing
	Conclusion

	Bibliography

