
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineer

Master’s Degree Thesis

FPGA IMPLEMENTATION OF A
VEHICLES DETECTOR

Supervisor

Prof. Maurizio MARTINA

Co-supervisor

Ing. Claudio SINISI

Candidate

Davide ALTAMORE

July 2024

Summary

The growing demand for self-driving vehicles in the market leads to investigate
new optimized and higher performance technologies. Obstacle detection on the
road is one of the key tasks for this purpose and it requires very short response
times to avoid any possible risk.

This thesis work is focused on the development of an artificial intelligence model
able to run on one of the over-mentioned feasible technologies, an FPGA-based
device. The exploited model is YOLOv5 and it has been chosen to satisfy the
object detection task. The expected final pipeline is made of an input sensor to
acquire the traffic images and an output display to visualize them with the vehicles
surrounded by rectangles generated by the inference process. This last operation
is performed by the FPGA-based system that must be properly built by software
and hardware perspectives.

The whole design is supported by the AMD software tools, such as Vitis AI,
Vivado, Vitis and PetaLinux. While the target FPGA-based board is part of the
AMD ones and it is known as Kria KV260 Vision AI Starter Kit.

The design is entirely organized into three macro-steps, as the diagram 1 shows.

Initially, two introductory chapters describe the theoretical background. The
first one gives an overview about Artificial Intelligence and Autonomous Driving
with an additional look at the hardware platforms capable to run AI models. The
second chapter focuses on the AI model preparation. After having briefly explained
the YOLOv5 neural network architecture, the training process is described together
with the used dataset (Kitti), the analysed metrics and the validation of the final
trained results.

All this concepts are a strong base for the next chapters. Indeed, the third one is
about the Model development phase, that is the macro-step leading to a working
compiled model. The Vitis AI environment with its main tools is presented. The
quantization converts the 32-bit floating point model into a 8-bit integer one and,
then, the compilation translates the model into the XIR-based format. This means
having a deployable model, since its format is readable by the board’s DPU, i.e.

ii

the base IP of the FPGA-based AMD devices.

The fourth chapter is focused on the remaining two macro-steps. After a pre-
sentation about the entire pipeline, from the frames acquisition sensor to the
visualization of the inference results, the Platform development is analysed.
The FPGA-device boards typically need of a platform that enable all the necessary
hardware elements available on the board. The advantage of the Kria KV260
board’s use is that many ready applications are available and open-source. They
gives the possibility to use their Vivado and Vitis base scripts as starting point for
this thesis design. Vivado is used to build the Xilinx platform and Vitis to build
the overlay and join together in a single xclbin file these two components. All these
firmware elements are then loaded into a Linux image, properly built by the AMD
PetaLinux tool.

Ready the hardware side of this design, the Application Development is the
next step to directly run all the operations: pre-processing, inference and output
display. It consists of easily writing an application code with the support of the
GStreamer framework, a series of plug-ins to manage the multimedia pipelines as
this one.

The last chapter analyses the final execution of the AI inference on the target.
All the elements, i.e. the Linux image with platform firmware and the model with
all the supporting configuration files, are deployed on the Kria KV260 board that,
at this point, will be able to detect the vehicles on the input frames.

The several design layers, carried out in the whole thesis work, introduce critical
issues that can compromise the final working. The choice of higher performance
training machine, better quantization approaches and less corrupting pre-processing
lead to more optimized results.

iii

Figure 1: Summary of the three macro-steps of this project.

iv

Acknowledgements

In conclusione di questo percorso sento la necessità di dedicare qualche parola alle
persone che mi hanno supportato.

Ci tengo a ringraziare, innanzitutto, il mio relatore Maurizio Martina, per
avermi dato l’opportunità di entrare in contatto con una nuova realtà con cui
interfacciarmi per questa esperienza di tesi e per la disponibilità mostrata durante
tutto il percorso.

Un grazie speciale va anche al mio tutor Claudio Sinisi per avermi guidato in
questa nuova esperienza aziendale e a tutte le altre persone incontrate nel cammino.

Fondamentali tutta la mia famiglia e i miei amici, avete supportato le mie scelte
fin dal primo giorno appoggiandomi e accompagnandomi fino alla fine. Senza di
voi non sarei riuscito a portare a termine questa importante esperienza.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Artificial Intelligence . 2

1.1.1 AI history . 2
1.1.2 Neural Networks fundamentals 3

1.2 Autonomous Driving . 6
1.3 Hardware platform choice . 8

1.3.1 Technology comparison . 8
1.3.2 FPGA overview . 10

2 The AI model 14
2.1 Neural Network architecture . 14
2.2 A dataset for obstacle detection . 16
2.3 Training and validation . 18

2.3.1 Metrics evaluation . 18
2.3.2 Model training . 19

3 Model Development 25
3.1 Vitis AI introduction . 25

3.1.1 VAI Optimizer . 25
3.2 Model quantization . 26
3.3 Model compilation . 28

3.3.1 The base hardware IP: DPUCZDX8G 29

4 Kria Acceleration flow 32
4.1 Video acquisition pipeline . 32

vii

4.2 Platform Development . 33
4.2.1 Platform creation . 34
4.2.2 Overlay creation . 41
4.2.3 PetaLinux image . 45

4.3 Application Development . 50

5 Final Considerations 55
5.1 Deploy on target . 55
5.2 Issues and possible solutions . 58
5.3 Further Improvements . 59

A Model development 60

B Platform Development 70

C Application Development 90

Bibliography 102

viii

List of Tables

2.1 Training options and hyperparameters set manually and automatically. 22
2.2 Accuracy results of the validation step on the trained model. 23

4.1 PS slave - PL master interconnections in the Vivado project. 40
4.2 PS master - PL slave interconnections in the Vivado project. 40

ix

List of Figures

1 Summary of the three macro-steps of this project. iv

1.1 AI related activities trend[3]. 3
1.2 A simple scheme of a human neuron (up) compared to a perceptron,

its mathematical model (down). 4
1.3 Deep Neural Network representation[5] 5
1.4 Supervised Machine Learning approach[6] 5
1.5 SAE’s levels of automation[9]. 6
1.6 A simple view of Flexibility-Energy efficiency trade-off of hardware

platforms[11]. 9
1.7 Temporal vs Spatial Architectures[13]. 9
1.8 FPGA general scheme[14] . 10
1.9 A simple scheme of a 3-input logic block (CLB) of an FPGA. 11
1.10 Kria KV260 Vision AI Starter Kit block scheme[16] 12
1.11 Zynq UltraScale+ EV MPSoC block diagram[18] 13

2.1 Example of a network with many convolutional layers[21] 15
2.2 YOLOv5 architecture[25] . 16
2.3 Data format comparison between KITTI and YOLOv5. 18
2.4 Precision-Recall curve for a classifier. 20
2.5 Gradient Descent algorithm[29]. 21
2.6 Precision-recall curve of the trained model (after 59 epochs). 23

3.1 Vitis AI Quantizer workflow. 27
3.2 Top-level block diagram of DPUCZDX8G[19]. 30
3.3 Hardware architecture of DPUCZDX8G[19]. 31

4.1 End-to-end pipeline of the Smartcam application[34]. 33
4.2 Platform Development flow[35]. 35
4.3 Resulting folder of the Vitis extensible platform creation process. . . 36
4.4 Capture pipeline of the Smartcamera application[34]. 38
4.5 capture_pipeline hierarchical block of Vivado project. 39

x

4.6 PS IP of the Zynq Ultrascale+ MPSoC in the Vivado project. . . . 39
4.7 Clock interconnections in the Vivado project. 41
4.8 Interrupt and reset signals in the Vivado project. 42
4.9 Pre-processing IP of the Smartcamera application[34]. 43
4.10 DPU IP of the Smartcamera application[34]. 43
4.11 Starting folder of the overlay building process. 45
4.12 Resulting FPGA firmware recipe. 48
4.13 GStreamer pipeline’s graphical view based on the debug dot file. . . 54

5.1 Directory to entirely deploy on the KV260 sd card. 56
5.2 KV260 Vision Starter Kit Interfaces and connectors [16]. 57

xi

Acronyms

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

AV Autonomous Vehicle

ADAS Advanced Driver Assistance Systems

SAE Society of Automotive Engineers

CV Computer Vision

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

FPGA Field Programmable Gate Array

ASIC Application-Specific Integrated Circuit

MAC Multiply-Accumulate

CLB Configurable Logic Block

PS Processing System

PL Programmable Logic

xiii

DPU Deep learning Processing Unit

AXI Advanced eXtensible Interface

SoC System-on-Chip

ReLU Rectified Linear Unit

YOLO You Only Look Once

SiLU Sigmoid Linear Unit

IP Intellectual Property

VAI Vitis AI

IoU Intersection over Union

P Precision

R Recall

TP True Positive

TN True Negative

FP False Positive

FN False Negative

mAP mean Average Precision

FPS Frame per second

GD Gradient Descent

OFA Once-for-All

PTQ Post-training quantization

QAT Quantization-Aware Training

xiv

XIR Xilinx Intermediate representation

TRD Targeted reference design

ISP Image Signal Processor

XPFM Xilinx Platform

XSA Xilinx Support Archive

XO Xilinx Object

XSCT Xilinx Software Command-Line Tool

BSP Board Support Package

DTC Device Tree Compiler

VVAS Vitis Video Analytics SDK

xv

Chapter 1

Introduction

This introductory chapter aims to contextualise the following thesis project by
providing a historical and technical background to the underlying concepts. After
clarifying what a neural network is and how it can be deployed in the context of
autonomous driving, a brief discussion about the best possible hardware platform is
carried out.

1

Introduction

1.1 Artificial Intelligence

1.1.1 AI history

Artificial Intelligence does not have a single universally recognized definition, as it is
a very broad concept and is still in the middle of its historical development. One of
the most accredited definition is given by the European Commission[1]: "Artificial
intelligence (AI) refers to systems that display intelligent behaviour by analysing
their environment and taking actions - with some degree of autonomy - to achieve
specific goals". This is a strongly general view that opens up the possibility of
several application fields, [1]"AI-based systems can be purely software-based, acting
in the virtual world (e.g. voice assistants, image analysis software, search engines,
speech and face recognition systems) or AI can be embedded in hardware devices
(e.g. advanced robots, autonomous cars, drones or Internet of Things applications)".
The interest of this thesis work focuses on the latter devices.

"The brain’s last stand" are the historical words used to describe the defeat of the
grandmaster Garry Kasparov in 1997 by Deep Blue, a chess-playing expert system
running on an IBM’s computer. This is a milestone of the Artificial Intelligence
history, from there on the rise of the AI was almost physiological in the scientific
world and not only. Indeed when the AI systems started to spread even out of the
research labs, particularly in the business environment, big societies like Google,
IBM, Microsoft and Facebook have started to invest in these solutions. An example
is the 2014 Google’s acquisition of the British research lab DeepMind, which has
developed a program, AlphaGo, able to defeat Lee Sedol, master of the ancient
Asian board game Go.

For those years the Deep Blue and AlphaGo cases were a breakthrough, however,
like frequently happening in AI history these events give the occasion to deeply
understand the human intelligence working, leading to consider this computer AI
skills as simple calculations.

The 1.1 figure shows as the AI gathers momentum outside the lab since 2010s.
One of the main causes of this diffusion is the so called Machine Learning (ML). It
is defined as an area of the artificial intelligence that "focuses on using data and
algorithms to mimic the way humans learn, with the goal of steadily improving
accuracy"[2]. It means that a ML model is not built directly to answer a task but
it previously requires to learn from data which is the behaviour to achieve the best
accuracy for its next predictions.

To further improve the features of these ML models, the Deep Learning (DL)
was born. It is a subset of ML where the human intervention is almost removed.
In the ML algorithms the humans act by pre-processing the data to make them

2

Introduction

Figure 1.1: AI related activities trend[3].

structured (not necessarily completely labeled), while the DL ones automate the
extraction of features’ patterns through processes of backpropagation. This allows
the parameters of the model itself to be adjusted and its accuracy to be improved[4].

1.1.2 Neural Networks fundamentals
As can be presumed by the previous section 1.1.1, the main task of a neural network
is to emulate a human brain. To implement a so complex structure the best way
is to build a simplified model able to emulate its behaviour. This AI model is
called neural network and is arranged as follows. Its constituent element, known as
perceptron, is a mathematical model of a neuron (figure 1.2):

• Neuron - Its cell body (soma) processes the signals received from other
neurons via the dendrites. If the input voltage overcomes a threshold, a pulse
is generated and ready to be transmitted to the other neurons. This happens
with the support of an axon that drives the impulse away from the cell body
to the synapses, connected to other neurons.

3

Introduction

• Perceptron - By following the neuron behaviour, the perceptron weights
each input signal (xi · wi) and add together the results. The output is then
biased adding an offset (b) and finally the single perceptron’s result comes
from the application of a so called activation function (f(·)).

Figure 1.2: A simple scheme of a human neuron (up) compared to a perceptron,
its mathematical model (down).

So the perceptron’s behaviour can be mathematically expressed as:

z =
NØ
i

(wixi) + b

y =f(z)
Once characterized its building blocks, it is possible to understand how a neural

network is composed. It is a graph, where each node is a perceptron, exactly like a
human brain is made by connected neurons. A neural network usually consists of
more layers (group of concurrent nodes) that are distinguished into: input layer
that collects the input data (known as features), output layer that generates the
outputs (known as predictions) and the hidden layers that lie between the first
two. If more than 3 hidden layers are placed, that one is a Deep Neural Network
(example at figure 1.3) and can be further classified according to its composition.

Supervised Learning A neural network is able to perform the task for which
it was designed by setting properly its parameters (weights, bias and activation

4

Introduction

Figure 1.3: Deep Neural Network representation[5]

function). This phase is called training and it is the main step of the Machine
Learning approach. In accordance with the level of human intervention a learning
can be classified as Supervised, Unsupervised or Reinforcement. The used one in
this thesis work and also the less computational-intensive is the first one.

The Supervised Learning, summarized at figure 1.4, requires the training data
to be labeled. It means to provide together with the input data, also the correct
corresponding predictions that the model must provide in that case. This approach
allows to build a cost/error function, fundamental for the tuning mechanism of the
model’s parameters (like backpropagation and gradient-descent).

Figure 1.4: Supervised Machine Learning approach[6]

5

Introduction

1.2 Autonomous Driving
A brief introduction about the Autonomous Vehicles (AVs) may be helpful consid-
ering the final objective of this project.

The AVs have emerged separately by the AI. The first developed systems were
called ADAS (Advanced Driver Assistance Systems), they involve features such
as automatic lane keeping, parking assistance and cruise control. Their main
objective is to enhance safety by reducing errors associated with human drivers[7].
Almost all recently produced vehicles provide ADAS support, however this is just
a very low level of driving autonomy. The Society of Automotive Engineers (SAE)
has identified a taxonomy with 6 levels1 that is the most cited source for driving
automation. It was published on [8] and a brief summary is 1.5, showing as ADAS
involve just the first 2 levels of autonomy.

Figure 1.5: SAE’s levels of automation[9].

The Artificial Intelligence starts to be used from level 3 and fully used at 5,
where it must replace the human driver in every its task. As illustrated in the
previous section 1.1.1, in recent years some cases (e.g. AlphaGo) have boosted
the AI advancements leading to a natural cohesiveness between AI and specific
application fields, like Autonomous Driving [7].

A foreseeable future is the use of Full Automated vehicles in well-defined en-
vironments, like industrial areas or airports[3]. Why not across the city roads?
Many causes can be identified and they will be analysed later on. One of them is
their unpredictability, it is still a problem too complex to be solved by an only-AI
approach, especially because also human lives are involved. Hence, using AI as

1Level 0 means No automation - The driver has no support, thus he performs all driving tasks.

6

Introduction

support and enhancement for the human capabilities today remains the most
feasible solution.

Computer Vision, a field of AI, serves this purpose. It is a discipline focused
on developing algorithms and models to analyze and extract insights from visual
data, like images and videos. As for all the AI fields it tries to replicate a human
capability, the visual perception[10]. Starting from these extracted information,
the human driver or directly the car will be able to make consequent decisions,
avoiding collisions and accidents.

Several functions are required by a self-driving car but just some of them are
actually safety-critical, like steering, throttle and braking control. The AVs need
mainly two information to handle these functions[11]:

• Obstacle detection: the surrounding area is analyzed to detect obstacles like
pedestrians and vehicles.

• Traffic law enforcement: lane, traffic signs and traffic lights must be recognized
to move around the roads respecting the traffic laws.

All these tasks, comprised other optional functions2, are today implemented by
Deep Learning techniques, particularly by Convolutional Neural Networks (CNNs).
This implementation is the focus of this thesis work, so it will be explained then
more in depth. However an important point can be observed now about its power
requirements, that represents a further limitation to the Full Automated cars
spreading.

MIT research on AVs power consumption The DL’s computational com-
plexity leads to a very high power consumption that could impact on driving range
of AVs, i.e. on their buttery autonomy.

In a 2023 study of MIT researchers[12] some statistical models have been created
to study the power consumption problem of self-driving cars. Supposed a scenario
where the 95% of all vehicles are AVs, it is required a computer power consumption
less than 1.2 kW to keep the global emissions under the quantity estimated for all
existing data centers in 2018. This power efficiency is certainly not achievable with
today’s technology and it is estimated that it will not even be achievable by 2050
if 95% of cars become autonomous.

All this scenario is compounded by the use of deep neural networks. An
explanatory comparison shows that Facebook’s data centers execute 1018 inferences

2There are many less critical functions, like the windscreen swiping with a speed suitable with
the detected rain, the door locking and the user information to warn about energy level, vehicle
condition or also driver’s drowsiness.

7

Introduction

per day while one billions of autonomous vehicles3 perform 21.6 × 1024 ones per
day.

1.3 Hardware platform choice
1.3.1 Technology comparison
This section offers a brief comparison among the best hardware platforms for
running neural networks:

• CPU - The CPUs are general-purpose processors typically used to handle
most of the tasks of a computer. Their high flexibility and low costs make them
widely used by ordinary users. However CPUs are not enough considering the
DNNs training and inference requirements, tens of billions of MAC operations
make these models extremely computer-intensive[13] for a general purpose
processor with a low parallelism capability.

• GPU - The last mentioned point is the main reason that makes the GPUs
preferable. They are special-purpose processors designed to render graphics
and perform parallel operations on large data arrays. It means that they
provide high parallelism and memory bandwidth, both features optimal for
DNNs. GPUs are able to accelerate a lot of MAC operations with an higher
energy efficiency than the CPUs. The MAC operations are fundamental for
DL algorithms since matrix multiplications and convolutions are the basis of
the DNNs.

• FPGA - As shown on the diagram 1.6, there are other two possible hardware
platforms: FPGAs and ASICs. Paying with less flexibility a more energy
efficiency is reached, mainly since the today’s trend are IoT applications that
involve a lot of sensor’s data to process. The FPGAs can reach an energy
efficiency of 10 times than GPUs, since they can parallelize the DL’s concur-
rent tasks by using technique such as hardware partitioning and pipelining.
Moreover the FPGA-based design have a deterministic latency, fundamental
for car’s systems[11].

• ASIC - Finally the ASICs are also more efficient than FPGAs but their less
flexibility and higher NRE costs4 cause a rarer and more thoughtful use.

3The AVs are considered driving for an hour per day and computing ten inferences at 60 Hz
on each of the inputs of ten cameras.

4ASIC means application-specific integrated circuit, they are not re-programmable like the
FPGAs and it causes Non-Recurring Engineering costs much higher than FPGA.

8

Introduction

Figure 1.6: A simple view of Flexibility-Energy efficiency trade-off of hardware
platforms[11].

Going more deeply, a discrimination (figure 1.7) can be made to emphasise a
key aspect. The CPU and GPU can be labeled as temporal architectures since its
processing elements (PEs) are not interconnected and perform just computational
tasks (ALU), leaving control and memory centralized. While FPGA and ASIC
are spatial architectures, each their PE performs both computational, memory and
control task. However their main feature is that they are interconnected, allowing a
data exchange among them. It happens differently from the temporal architectures
where the data flow is temporally depending on the central memory[13].

Since the operations of each neural network’s layer is known a priori, the spatial
architectures can be made tailored and optimized for this application.

Figure 1.7: Temporal vs Spatial Architectures[13].

All these underlined aspects lead to a focus on the spatial architectures and
mainly on FPGAs that allow a complete design workflow addressable without large
non-recurring costs.

9

Introduction

1.3.2 FPGA overview
An FPGA is an integrated circuit (figure 1.8) composed by logic blocks, known
as CLBs (Configurable logic blocks), arranged in a two-dimensional array. They
are interconnected via wires organized as horizontal and vertical routing channels.
These wires are interrupted by programmable switches that, thanks to transistors
driven by 1-bit RAMs, allow the CLBs to be interconnected in many ways[14],
depending on 0/1 stored in those RAM cells. Moreover, to interface with the
outside world I/O blocks are placed at the wires terminations.

Figure 1.8: FPGA general scheme[14]

The logic blocks (CLBs) make possible to realize both combinational and se-
quential circuits. As shown on 1.9 figure, each block consists of a single LUT (Look
Up Table) that works as a sort of memory containing a function. When the input
bits are such that the function is activated, the output bit will be at 1, otherwise 0.
It implements the digital electronics concept of the truth’s table. A CLB has also
a D-FF, it makes available the LUT’s result at the next clock period, allowing a
sequential behaviour of the FPGA.

The FPGAs, intended just as array of logic blocks, are not enough to implement
the complexity of a DNN. A neural network only needs MAC operations, so an
FPGA-based device can easily perform them. However the true bottleneck is caused
by the memory accesses, since these simple operations act on a large quantity of

10

Introduction

Figure 1.9: A simple scheme of a 3-input logic block (CLB) of an FPGA.

data that have to be fetched and stored multiple times[13]. Moreover the memory
accesses require also an higher energy cost than the MAC operations. Known this
issue, the major companies have developed more complex integrated systems to
make possible an optimal memory management.

This thesis work is carried out by using an AMD development-ready kit, called
Kria KV260 Vision AI Starter Kit. It belongs to the AMD Kria family, a series
of products based on adaptive SOMs (System-On-Modules) that are hardware
platforms designed for AI-acceleration with all performance optimizations, like low
latency and low power consumption.

The KV260 board, as shown at 1.10 scheme, consists of an end-user-designed
pcb (known as Carrier Card) that mounts the K26 SOM provided with a thermal
solution and a variety of interfaces for integrating different peripherals. The K26
SOM has been developed to answer to current and future market demands for
vision AI and video analytics[15]. It joins an adaptive SoC based on the Zynq
UltraScale+ MPSoC architecture with all of the fundamental components required
to support that SoC (such as memory and power).

Hence the hardware core of the KV260 board can be identified with the AMD
Zynq UltraScale+ MPSoC. Its schematic is depicted in figure 1.11 and highlights
two fundamental parts [15] [17]:

• Processing system - The PS part is in charge of booting the system and
it has three major processing units: CPU, RPU and GPU. The first one is
an ARM Cortex-A53 64-bit quad-core processor and is comprised in a more
complex unit, called application unit (APU). Another main component is a
DRAM memory controller that makes possible the communication between
this SoC and the DRAM (4GB 64-bit DDR4) placed outside on the K26 SOM.

• Programmable logic - The PL is a configurable hardware resource and
can provide many components, like on-chip memories, gates, clock structures,

11

Introduction

Figure 1.10: Kria KV260 Vision AI Starter Kit block scheme[16]

DSPs, LUTs and so on. All these components characterize the FPGA side of
the SoC and they allow to implement the custom accelerators for computer
vision.

To summarize, the Zynq architecture that will be used in this thesis work
combines in a single SoC, both CPU (and GPU) and a traditional FPGA. All of
this is supported by the Arm interface system based on the AMBA5 Advanced
eXtensible Interface (AXI) standard, which provides high bandwidth and low
latency connections. To complete the discussion about this SoC, it is fundamental
to mention the DPU (Deep-learning Processing Unit). Indeed, AMD provides
this configurable computation engine, optimized to run CNNs, a sub-category of
the DNNs called convolutional neural networks. Practically speaking, the DPU
is an hardware accelerator comprising elements available in the programmable
logic fabric mentioned before, such as DSP, BlockRAM, UltraRAM, LUTs, and
Flip-Flops. Whereas at an higher level it is a micro-coded computation engine
which has an optimized instruction set to support inference of most CNNs[19]. This

5The Arm Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip
interconnect specification for the connection and management of functional blocks in SoC designs.

12

Introduction

Figure 1.11: Zynq UltraScale+ EV MPSoC block diagram[18]

component will be described more in depth at the next chapters.

13

Chapter 2

The AI model

2.1 Neural Network architecture
The aim of this thesis work has been briefly introduced on section 1.2: a system of
obstacles detection for autonomous driving to develop on a FPGA-based device.

The detection of obstacles in the surrounding environment corresponds to the
Computer Vision task of Object Detection. Its complexity lies in having to handle
actually two tasks: the identification and drawing of the bounding box around the
object and the classification of its content. Several approaches have been developed
to face this AI task with an increasing focus on speed and accuracy for each single
detection.

The neural networks more suitable for this kind of behaviour are the previously
mentioned convolutional neural netowrks (an example at figure 2.1). Being a deep
neural network, a CNN has typically several hidden layers that may be chosen
among:

• Convolution layer: it performs the features extraction thanks to a filtering
system. Considering an RGB image as a 3D tensor (w × h × 3), a convolution
kernel/filter is applied on all the image’s pixels, generating a convoluted feature
map, that is a modified version of the input image where a specific type of
feature has been highlighted.

• ReLU layer: it only performs an activation operation where a non-linear
activation function is used. The so called Rectified Linear Unit corresponds to
the mathematical max(0, x) which performs easily the replacement of negative
values (usually of the previously generated feature map) with 0.

• Pooling layer: its task is the downsizing. The image is divided into groups
of pixels that are replaced by a single value (their maximum or average). This
process has the consequence of reducing the computational cost of the network.

14

The AI model

Finally, extracted the image features, the output layers work for classification.
Following the right-side of the 2.1 diagram: the multi-dimensional result will be
flatten into a single dimensional array; a fully connected layer outputs a vector of
N dimensions1 with the class probabilities; the final prediction is the result of a
final activation function (e.g. Softmax)[20].

Figure 2.1: Example of a network with many convolutional layers[21]

Having analysed what a CNN is, the first step now is to find a model that is
based on this architecture. A list of candidates is provided by the AMD software
tool used in the following for the model development, Vitis AI. Its supported models
are viewable at the Vitis AI Library’s model list[22].

The decision falls on YOLOv5, belonging to the You Only Look Once (YOLO)
family of computer vision models, proposed in 2016[23]. YOLO approach was
a breakthrough for the object detection task. They are based on Convolution
Neural Networks (CNNs) and are characterized by an innovative feature: unlike
other models, such as Faster-RCNN that uses two-step algorithms, they are able to
perform the two tasks of bounding box positioning and class determination at once
(hence the name YOLO). The advantage of this implementation is that running
a single CNN on the image makes much lighter and faster the whole approach,
keeping high accuracy level.

The YOLOv5 architecture, shown at figure 2.2, is composed by 3 main parts:
backbone, neck and head. The backbone is the CNN that aggregates and extracts
the image features, the neck is a series of layers to mix and combine the extracted
features and finally the head concludes with box and class predictions[24].

YOLOv5 is available in more versions depending on its weights dimension: from
the nano variant YOLOv5n, having a limited accuracy but providing the possibility

1N is the number of classes able to be predicted

15

The AI model

Figure 2.2: YOLOv5 architecture[25]

to use a very small-sized model (1.9 millions of parameters) with a good inference
speed, to the extra-large YOLOv5x, which instead may reach an higher accuracy
but paying with a slow and large model (86.7 millions of parameters). The model
size is mainly referred to the width and depth of the BottleneckCSP modules[25]
(figure 2.2). Among the model variants supported by Vitis AI Library the choice
falls on the nano one since this model will run on an embedded device and a small
size is a good advantage. In addition, YOLOv5n guarantees a much shorter training
time than the others, which is very helpful in cases where hardware resources are
limited (such as a CPU-only approach).

2.2 A dataset for obstacle detection
The Supervised Learning, described at 1.1.2, relies on the variety, size and compre-
hensiveness of the used dataset. Its quality is crucial to guarantee a trained model
with high accuracy.

For this project one of the most credited dataset for the obstacles detection will
be used. It is called KITTI [26] and it provides a large quantity of data collected
by video cameras, laser scanners and a GPS/IMU localization units, all mounted
on a proper vehicle. To train the YOLOv5 model mentioned before, the "2D object

16

The AI model

detection" data have been retrieved, which are coloured png images arranged in:

• 7481 training images with 80256 labeled objects, belonging to one of these 8
classes: pedestrian, truck, car, cyclist, misc, van, tram and sitting person.

• 7518 test images, so unlabeled.

Before the training, a fundamental step of format conversion is needed. All the
datasets have their own format, characterized by:

1. A certain data organisation in the directories.

2. A specific representation of the detected object information in the label files.

The mandatory requirement of a training process is that this format matches that
one accepted by the model. Therefore, a modification of these two aspects has
been performed by a customized python script A.1, that can be run as:

python3 convertToYOLO .py <in_dataset > <train_perc >

The figure 2.3 helps to understand how it works. About the data organisation,
the unlabeled testing images are copied without changes, while the training ones
are subject to data splitting. This process consists of using a certain percentage
of data for training and the remaining part for the next metrics evaluation step,
named validation. Unlike the images, the labels must undergo a format conversion
because their content strongly differ.

In the Supervised Learning approach, labelling an image means to identify all its
contained objects annotating their characteristics inside textual files, called labels.
Those ones needed by YOLO have: the object class index and the coordinates of
the rectangular border fully enclosing it (i.e. bounding box). However KITTI has
much more information for each object and also different formats: the object class
is a string name instead of an integer index, so a mapping process is needed; while
the bbox coordinates need this type of conversion:

(left, top, right, bottom) ⇒ (xc, yc, w, h)

where the YOLO format coordinates are also normalized in (0,1) range by the
image dimensions. A visual help is provided by the diagram 2.3 and all the other
details are in the script code’s comments A.1. Finally the building of a data.yaml
file is performed. It has information on the dataset that the already-available
YOLO scripts use by parsing it into a python dictionary.

After this script execution with a reasonable split ratio, like (train : val) = (80 :
20), the dataset will be perfectly ready to be used by the model for the training
phase.

17

The AI model

Figure 2.3: Data format comparison between KITTI and YOLOv5.

2.3 Training and validation

2.3.1 Metrics evaluation

An overview about the metrics used by the YOLO model’s validation process is
needed to have a comprehensive understanding of the training result. These metrics
are supported by a comparative analysis[27] done about the object detection.

The most significant metric is the accuracy that the YOLO models measure as
Mean Average Precision at threshold IoU (mAP@IoU). To properly define it, the
object detection must be observed as two separate tasks: object localisation and
classification2.

2As before explained, YOLO performs the object detection all at once. However for this
specific aim of measuring the model’s metrics, the two tasks must be considered separately.

18

The AI model

• Classification - The basic metrics are Precision P and Recall R. The figure
2.4 shows all the possible combinations of the model’s output, where if the
prediction matches the actual label the result is called true, otherwise false.
So the above-mentioned metrics are defined:

P = TP

TP + FP

R = TP

TP + FN

They are used to quantify the quality of a model classifier, graphically by the
precision-recall curve 2.4 and mathematically by the area under this curve,
named Average Precision (AP):

AP =
Ú 1

0
P (R)dR

Finally the mean of this parameter among all the recognized classes is the
mAP.

• Localisation - The predicted bounding boxes match almost never the ground-
truth ones perfectly, so how to establish if a prediction is true or false? The
Intersection over Union parameter is used:

IoU = AI/AU

meaning the ratio between the area of the bounding boxes intersection and
union.

Therefore, YOLO models measure their accuracy as mean average precision at a
certain IoU threshold, typically at 50% (mAP@50) or as an average of equidistant
values from 50% to 95% (mAP@50-95).

Finally another important metric can be identified in the FPS (Frame per
second). It quantifies how fast is the object detection model to process the input
images and generate the output. It depends also by the device where the model
run the inference.

2.3.2 Model training
YOLOv5 is made available as open-source model by Ultralytics company. Its
GitHub repository[28] can be cloned to have all the required code for the main AI
operations, like training and inference. The provided python script for training is
train.py and can be used as follows:

19

The AI model

Figure 2.4: Precision-Recall curve for a classifier.

python3 train.py [options ...]

The mentioned options are hyperparameters and configurations that have to
be set properly, since they will lead to certain characteristics of the trained model
(speed, accuracy but also the training duration). Their meaning is briefly explained
here:

• imgsz - All input images are resized to this dimension (in pixel) before being
fed into the model. Specifically if just one value is provided, it is considered
the longest image’s dimension (width in this case) and the aspect ratio is kept
unchanged. This feature is important mainly for datasets like the used one,
KITTI, that have all images with different sizes. The value has to be picked
from multiples of 32, the max model’s stride, and from values lower than all
the widths of the images, to perform a downscaling. Considered that, the best
matching size is 1216.

• batch-size - A key process of the training phase is the tuning of the neural
network’s parameters (weights and bias). To execute this task a cost/error
function, tracking the difference between predictions and labels3, is built and
its minimum has to be found. The gradient descent (graphically shown at figure
2.5) is one of the most common algorithms that addresses this problem[29].
The training images are imposed through the hidden layers of the DNN to
find the gradient of the function and then, the direction is chosen to minimize

3The actual output of the model can be called prediction, while the ideal and correct one is
named label.

20

The AI model

it. However at this point an issue arises: the use of all the dataset’s samples
together (Batch GD), to reach the minimum in one step, requires a huge
quantity of memory, considering the large dataset used in DL. Whereas the
opposite case of using just one sample per step (Stochastic GD) requires much
less memory but a long time. A good trade-off is provided by the Mini Batch
GD where a subset of the dataset (the batch) is used at each step, named
iteration. This option is the size of each batch that goes from 1 (SGD) to the
dataset size (BGD).

• epochs - During one epoch the entire dataset is processed, therefore a larger
number of epochs guarantees typically a better achieved accuracy. It should
be set to have a reasonable training time also based on the batch size. For
instance, if the training dataset has 5984 images (80% of KITTI) and the
batch size is 16, the resulting iterations for each epoch are 5984/16 = 374, a
large number that will extend the training time, mainly if also the number of
epochs is high.

• data - this is the path where find the training and validation dataset to use
(KITTI in this case).

• weights - to select the model variant to train (nano, small, etc.), as described
at section 2.1.

Figure 2.5: Gradient Descent algorithm[29].

The training must take into account its host machine configuration. In this thesis
work the resources were limited by an integrated graphics unit, thus a CPU-only

21

The AI model

setup with lack of dedicated graphics memory4. As underlined at the previous
"technologies comparison" discussion 1.3.1, this configuration is not optimal, leading
to long training times. However, a feasible training process is reached by the
options at table 2.1 where the use of a light-weighted model (nano) and a low batch
size (16) has a reduced impact on the memory requirements. 59 training epochs
have lasted a total of 71.496 hours (almost 3 days) and each of them has employed
374 iterations, that could be so justified:

Kitti dataset images = 7481
Split ratio = train:val = 80 : 20

Training images = 7481 × 0.8 ≃ 5984
Validation images = 7481 − 5984 = 1497

Iterations per epoch = 5984/16 = 374

The achieved accuracy level is shown at table 2.2. Keeping the IoU threshold at
50% a pretty good result of mAP50 = 0.784 is reached and it is also visible by
the precision-recall curve 2.6. The critical classes that cause a strong lowering of
the accuracy are: person_sitting, misc and pedestrian. Whereas trying to consider
higher IoU thresholds, as for mAP50-95 case, a worse result of just 0.433 is reached.

About the model’s speed, the validation process measures some times:

Speed: 3.0 ms pre-process, 179.1 ms inference, 0.9 ms NMS per image

that correspond to these fps values: 333 fps just for the inference and 5.5 fps for
all the steps (comprised pre and post-process).

Manually set Automatically set
imgsz 1216 Learning rate 0.01
epochs 59 Learning rate decay 0.937
batch-size 16 Weight rate decay 5e-4
weights yolov5n.pt Iterations 374
data KITTI’s data.yaml

Table 2.1: Training options and hyperparameters set manually and automatically.

Supported operators check A last check has been performed before the training
process. As already mentioned at 1.3.2, this model will be deployed on the KV260

4Specific setup made by: Processor - Intel Core i5-8250U CPU @ 1.60GHz x 8; Graphics -
Mesa Intel UHD Graphics 620 (KBL GT2); Memory - 16GB

22

The AI model

Class Images Instances P R mAP50 mAP50-95
all 1497 7991 0.81 0.709 0.784 0.433
Pedestrian 1497 873 0.759 0.512 0.621 0.267
Truck 1497 220 0.933 0.873 0.95 0.595
Car 1497 5693 0.911 0.881 0.938 0.64
Cyclist 1497 292 0.779 0.688 0.754 0.348
Misc 1497 205 0.815 0.664 0.748 0.369
Van 1497 553 0.856 0.752 0.838 0.504
Tram 1497 106 0.856 0.811 0.918 0.515
Person_sitting 1497 49 0.573 0.49 0.501 0.227

Table 2.2: Accuracy results of the validation step on the trained model.

Figure 2.6: Precision-recall curve of the trained model (after 59 epochs).

board that is able to run a CNN, thanks to the acceleration provided by a DPU IP.
However this acceleration unit has some limitations about the supported operators.
To compile successfully the model for a certain DPU, the operators used in the
model architecture has to be compared with the table of supported ones, provided
by Vitis AI guide[30]. Otherwise, there is the risk that the unsupported operators
will be assigned to the CPU, causing a degradation of the final inference on the
board.

Going back to the YOLOv5 model in use, an unsupported operator is found
on Convolution and BottleneckCSP layers. It is the SiLU (Sigmoid Linear Unit),
an activation function that performs the multiplication among a sigmoid and its
input. A valid alternative has been found following this LogicTronix tutorial [31]

23

The AI model

that replaces it with a LeakyReLU function with negative slope 25/256. After
this modification to the model’s code (models/common.py and experimental.py),
the training process can be run with the assurance that, during the inference, all
operators will be successfully accelerated by the DPU.

24

Chapter 3

Model Development

3.1 Vitis AI introduction
The previous chapter has outlined the training process reaching a model with
properly tuned FP32 weights. This is the starting point of the workflow addressed
by the AMD development environment that will be used in this thesis work, named
Vitis AI.

It comprises optimized IPs, tools, libraries, models and example designs, all with
the aim of accelerating DL inference applications on AMD hardware platforms. Its
two main features are high efficiency and easy-of-use[30].

The entire Vitis AI environment is based on the Deep Learning Unit, mentioned
at section 1.3.2 and that will be explained at next sections 3.3.1 in more depth. This
chapter will proceeds with the analysis of the VAI tools. Each of them performs a
specific task in the model development, i.e. in the process leading to a compiled
model deployable in the target board.

Before to start with the Vitis AI workflow, it is important to know that its code
is fully accessible by GitHub repository[32] and can be installed on the host machine
as Docker container. The specific image to pull inside the docker depends on the
device, CPU-only in this case, and on the used framework, PyTorch considering
the YOLO code implementation.

3.1.1 VAI Optimizer
The VAI Optimizer has the aim to reduce the computational cost of the model’s
inference once deployed and running on the hardware platform. The only optimiza-
tion performed is called pruning and is based on the concept of sparsity of a graph.
Typically after training, the neural networks are still dense graphs, that means its
nodes are almost all connected each others causing a number of edges close to the
maximum one. The exploitable feature is that many of these nodes are redundant,

25

Model Development

so the pruning process can be applied to remove them and to obtain a sparse graph
keeping the accuracy loss as low as possible.

This process can be analysed by subdividing it into some steps[33]:

• Sensitivity analysis - It is needed to understand how a convolutional channel
afflicts the predictive behaviour of the model.

• Coarse Pruning - The previous analysis has found some channel’s weights
that can be removed/pruned. Here they will be zeroed in order to have an
idea of the post-pruning accuracy of the model. If this step interests just
the weights, the sparse (or fine-grained) pruning is its name, while if entire
channels are interested the approach is named channel (or coarse-grained)
pruning.

• Finetune - The training dataset is exploited to fine-tune the remaining
network’s parameters. In the iterative pruning this step is re-iterated until a
satisfying accuracy level is reached. Otherwise a one-step pruning is addressed.

• Transformation - The zeroed nodes and the correlated edges are removed
generating the optimized model.

The VAI Optimizer is able to perform different kinds of pruning as seen in the above
description. One more type is called Once-for-All (OFA) and its main objective
is to avoid the re-training of the networks for each hardware platform where they
run. The OFA approach consists of training only one time the network and then
performing hardware optimizations (leading to lower computational costs). This
is possible since the network can be divided into subgraphs, each candidate for a
different hardware configuration.

This tool was shown for completeness, however it is not used in this thesis work.
The used Vitis AI version, 3.0, requires a license to purchase1 for the optimizer
and since this step is not mandatory for the final success of the project, its use has
been avoided.

3.2 Model quantization
The common objective of all the Vitis AI tools is to develop a model capable to be
run by an AMD hardware platform as the Zynq Ultrascale+ MPSoC. Following
this purpose, the first steps are performed to reduce the computational complexity
of the initial model before to be compiled for the specific hardware.

1The last Vitis AI release, 3.5, has made the VAI Optimizer free-of-charge.

26

Model Development

After the optional pruning, a mandatory step is the quantization. It consists of
converting weights, biases and activation values of the trained neural network from
32-bit floating point to 8-bit integer format. This process is needed by the DPU
IPs used to accelerate the CNNs on the AMD platforms. Running a model with
INT8 parameters leads to require less memory bandwidth and to have more power
efficiency and speed, all features fundamental for embedded devices.

The quantization is practically performed by mapping FP32 values into INT8
ones. The challenge of this process is to keep a low accuracy loss. Although this
may seem a considerable complexity, it is actually not true since the large range
provided by a FP32 representation in real applications is typically not used. Hence
integer parameters are enough and they can be obtained by easily applying simple
scaling factors[33].

A summary of the quantization process is at diagram 3.1. Firstly the PTQ
(Post-training quantization) is applied to generate an INT8 model. This is possible
thanks to a calibration dataset, i.e. an unlabeled sub-set of the training one,
that is forwarded through the network allowing to analyse the distribution of the
activations at each layer.

Figure 3.1: Vitis AI Quantizer workflow.

The quantization script A.2 has been written with the support of the LogicTronix
tutorial [31]. The trained FP32 model is loaded by the DetectMultiBackend class of
the YOLOv5 code and the VAI Quantizer is provided as torch_quantizer among the

27

Model Development

pytorch_nndct APIs. Finally to get the INT8 quantized model, the quant_model()
method is run, after having established the input images dimension as 1216 × 320
(compliant with the training ones). As before analysed the KITTI dataset has
all images with different size but the quantizer needs all the same dimensions,
otherwise an error arises. Hence, the calibration dataset has been prepared before
to run the script by selecting a subset of 1000 images and resizing all of them to
1216 × 320. Finally this dataset has been loaded by YOLOv5 methods in order to
have a python structure compatible with that one used by the YOLOv5 validation
process, which core is the run() method, get by val.py and modified to solve some
arisen errors.

To reach the integer model export, two steps are needed but in separated run.
On this purpose, the quant_mode parameter is used sequentially with these two
options:

1. "calib" corresponds to the calibration step where, after the unlabeled im-
ages forwarding (performed by run() method), the VAI Quantizer method
export_quant_config() is used to export the configuration files to can obtain
the final quantized model.

2. "test" performs the export_model() quantizer’s method able to generate the
XMODEL2 file containing the INT8 neural network.

At this point the accuracy has not been considered, so its degradation is possible.
Following the diagram 3.1, the accuracy is evaluated before to decide if perform
the QAT (Quantization-Aware Training) to fine-tune the parameters re-adjusting
the model accuracy.

Pre-quantization modifications The Vitis AI user guide[30] illustrates some
modifications needed to make the model quantizable. The only method accepted
by the architecture’s detection head (the Detect() class) is the forward() one. All
the others are typically pre and post-processing operations. Therefore, before to
quantize the model, yolo.py must be modified to match this requirement and the
post-processing functions are moved in the detect.py code. The practical way to do
it is get by the LogicTronix tutorial [31].

3.3 Model compilation
The last step is the compilation and its objective is to generate a deployable model.
Specifically the VAI compiler is exploited to map the previously-quantized network

2XMODEL is typically the format of the models after compilation. A feature of the PyTorch
framework’s use is that this format is also exploited to store the quantization result.

28

Model Development

into a highly optimized sequence of DPU instructions[30]. This process consists of
some steps:

1. Parsing - The quantized model is generally still framework-dependent (i.e.
PyTorch in this case), so the initial step will parse it and remove the framework
dependencies. The result is a Xilinx intermediate representation (XIR) graph,
consisting of independent control and data flow representations.

2. Optimizations - The XIR-based graph is partitioned into subgraphs and each
of them is optimized considering the DPU where they will run. Information
about the DPU is provided by a arch.json file as a fingerprint of some bits.
The advantage is that to deploy the model on a different DPU, changing
the json file and re-compiling is sufficient. A safe way to get the correct
fingerprint is: interrupting here the model development, executing all the
platform development addressed by 4.2 and, inside the Kria board’s Linux
CLI, executing the command xdputil query that generates the DPU-specific
fingerprint. Obtained the json file, the compilation can be resumed and
completed.

3. Code generation - The XIR graph object is finally serialized into a compiled
XMODEL file.

The VAI Compiler is provided by the Docker and it is so executed:

vai_c_xir --xmodel <file.xmodel> --arch <arch.json>

generating a XMODEL file ready to be deployed on the hardware platform, i.e. the
Kria KV260 in this thesis project.

3.3.1 The base hardware IP: DPUCZDX8G
The Deep Learning Unit is the core hardware accelerator used by the AMD plat-
forms for AI inference. It can be seen by two perspective, the first is a matrix
of heterogeneous processing elements (PEs) specialized on different tasks (like
convolution) and comprising elements of the FPGA’s PL fabric (like DSPs, LUTs,
FFs and kinds of RAM). While by a higher-level view, a DPU is an engine able to
run a set of microcoded instructions taken by the DPU specific instruction set.

Here the focus is on the DPUCZDX8G[19] that is the DPU designed for the
core platfrom of the Kria KV260 board, i.e. the Zynq Ultrascale+ MPSoC. It is
optimized for CNNs, like YOLOv5. The figure 3.2 shows the top-level block diagram
where the main components supporting the PEs array are listed: high performance
scheduler, instruction fetch unit and global memory pool. The DPU is inside the

29

Model Development

PL part of the Zynq Ultrascale+ MPSoC and communicates by AXI Interconnect
with the PS, particularly the APU is highlighted since it runs a program to service
interrupts and to coordinate data transfers. Finally RAM memory locations are
required to store input images, temporary and output data.

Figure 3.2: Top-level block diagram of DPUCZDX8G[19].

A deeper view with a clearer distinction between PS and PL sides is on figure
3.3. The XMODEL file, previously generated by the VAI Compiler, is placed in the
off-chip memory that, thus, will contain the instructions to be fetched, decoded
and dispatched by the scheduler. The computing engine is the execution core of
the DPU and is placed in the PL side together with an on-chip memory buffering
intermediate results to achieve high throughput and efficiency. This data reuse
helps to reduce the external memory bandwidth requirements.

The DPU is provided by AMD as a TRD (targeted reference design) and both
Vitis and Vivado can be used as software tools to integrate it in the design. The
first one enables the integration as an acceleration kernel loaded at runtime in the
form of an xclbin file, while Vivado does not provide it in the IP catalog but can
be easily added separately[33]. All the details on the DPUCZDX8G configuration
are explained in the next chapter 4 during the platform development description.

30

Model Development

Figure 3.3: Hardware architecture of DPUCZDX8G[19].

31

Chapter 4

Kria Acceleration flow

The whole flow of this thesis project can be summarized as in figure 1. It consists
of three macro-steps that, known the general specifications, can be addressed
independently. One of them has already been discussed, it is the model development
at chapter 3, where starting from a trained model, it led to a deployable one,
compiled for the target DPU. The other two macro-steps involve the Platform 4.2.1
and Application 4.3 development and will be addressed in this chapter.

4.1 Video acquisition pipeline
Before to go deeper in the platform development 4.2.1, an introduction about the
pipeline to enable and all the components involved of the board is fundamental.

One of the advantages of a Kria SOM board, like the KV260 Vision AI Starter
Kit, is that it is provided together with many pre-build accelerated applications.
They can be used as starting point to create the desired application by customizing
it at any level, from software to FPGA design. The main goal of this thesis work is
the obstacle detection in real-time, so an image sensor is fundamental to capture
the input images. Among all the Kria pre-build applications the Smartcam seems
to be the most suitable[34]. A deep analysis is provided in the following to have a
comprehensive view of the end-to-end pipeline to design. The figure 4.1 shows this
pipeline graphically and it also gives the idea of what is considered as part of the
platform and of the overlay.

The end-to-end pipeline can be divided into sub-pipelines:

• Capture pipeline - An AR1335 image sensor (connected on the J7 IAS
connector of the carrier card) is used as external video source. The captured
video frames are sent to the AP1302 ISP (image signal processor) already

32

Kria Acceleration flow

Figure 4.1: End-to-end pipeline of the Smartcam application[34].

integrated on the cc, able to process the input images1. Then a receiver is
placed on the PL to get the video frames by a MIPI CSI-2 interface. This is
the main capture pipeline for this project, however the other ones have been
implemented too, like that one supporting the external memory and the USB
camera. Each of them ends writing the captured data on a DDR memory.

• Acceleration pipeline - It is provided as an overlay that performs pre-
processing, inference by the DPU and post-processing. The latter is the
superposition of the bounding boxes on the detected objects of the initial
captured images. All these middle steps store temporarily their output data
on the DDR memory.

• Output pipeline - The input images with the final bounding boxes stored
in the DDR memory are displayed through some possible ways: DisplayPort,
HDMI or Ethernet.

4.2 Platform Development
As the diagram 1 shows one of the fundamental step to perform is the platform
development. It consists of building some components, such as:

1An Image Signal Processor as the AP1302 ISP can perform auto white balancing (AWB),
auto exposure (AE), auto focus (AF), etc.

33

Kria Acceleration flow

• The Xilinx platform with all the hardware and software features for the
design.

• The overlay with pre-processing and DPU IPs.

• The Linux image that will be the running OS image on the Zynq Ultrascale+
MPSoC.

Each of them is analysed in the following in separated sections of this chapter,
moreover to have a more comprehensive view of the entire development flow, the
Kria documentation provides an helpful diagram 4.2.

The practical starting point is the kria-vitis-platforms Xilinx GitHub reposi-
tory[36] arranged essentially into two parts:

• Platforms - are Vivado projects to use as base design. They define physical
interfaces to off-chip components, like the AR1335 sensor but also accelerator
clock and memory interfaces.

• Overlays - are Vitis projects to overlay on the platforms. They include the
DPU design as RTL kernel and the pre-processor bulit as HLS-based computer
vision kernel supported by the Vitis Vision libraries.

This repository is locally cloned and its files are used as base for the next discussions.

4.2.1 Platform creation
In the AMD environment there are several types of platform concepts, however it
is generally identified as a package of files and metadata containing both hardware
and software features of the design. Here the focus is on the Vitis extensible
platform, more easily identified as Xilinx Platform (XPFM). It is used by the Kria
environment and its generation is supported by the use of Vivado and Vitis, two of
the most common AMD software tools. Their 2022.2 version is previously installed
taking into account the compatibility with the used Vitis AI release, 3.0.

The objective of this section is to build the XPFM, considering it as a simple
package of a hardware and a software platform. To immediately understand the
following description the resulting directory can be taken into account, see hw/ and
sw/ folders on figure 4.3.

The design starts by the hardware platform. The most complete way to
proceed is to start with an empty vivado project and building manually by HDL
or block diagram all the hardware specifications. However, using the pre-built
Kria applications the design time and the possibility of serious errors are strongly
reduced. Intending to exploit this advantage, the hardware platform building

34

Kria Acceleration flow

Figure 4.2: Platform Development flow[35].

starts by the choice of the pre-built platform among the available ones at the
platforms/vivado/ directory. That one matching the Smartcamera application
and so, even all the main features useful for the final application of this project, is
named:

kv260_ispMipiRx_vcu_DP

35

Kria Acceleration flow

Vivado is a software for synthesis and analysis of hardware description language
(HDL) designs with additional features for SoC development and high-level syn-
thesis. Indeed, inside the above mentioned folder, there are: tcl scripts to build
the vivado project with its block diagram and the xdc file with the constraints
on the physical pins to enable. Hence, since most of the all hardware design is
automatically built by these scripts, just some manual adjustments are required.
Particularly the I2S audio pipeline is not needed for the thesis design project and
so can be totally removed. The Vivado GUI has been opened and the modifications
has been applied on the Block Design.

Figure 4.3: Resulting folder of the Vitis extensible platform creation process.

After the audio support removal, the hardware specifications should match those
ones described by the Kria documentation about the Smartcamera application [34].
The resulting platform is now described by separating it into some fundamental
parts:

Capture pipeline The block scheme 4.4 illustrates how should be the capture
pipeline of the project. The AR1335 sensor and the AP1302 ISP are part of
the carrier card, indeed they are not considered in the Vivado project that
will start with the input pin mipi_phy_if, i.e. MIPI physical interface.
The capture pipeline is grouped in the Vivado hierarchical block shown at 4.5.
It starts with the MIPI CSI-2 Rx Subsystem that receives the video frames

36

Kria Acceleration flow

from the ISP in YUV 4:2:0 format and outputs them as AXI4-Stream 32-bit
video data2. Then the Subset Converter takes these data and converts them
to 48-bit, by adding zeros to the MSB of each data word. At the end of this
pipeline the data are converted into AXI4-MM (memory mapped) format and
written in the DDR memory by the Video Frame Buffer Write IP.
This hierarchical block is, then, placed in the PL side of the Vivado block
design and connected to the PS as illustrated in the diagram 4.4 and explained
at the next PS description.

Processing System The PS of the Zynq Ultrtascale+ MPSoC is provided by
Vivado on its IPs catalog. It is shown on figure 4.6 where all its ports are listed.
As described at section 1.3.2, the PS contains ARM Cortex-A53 processors that
use the AMBA AXI4 standard interface for the communication, comprising
multiple high-performance (HP) switches to connect the system resources[17].
The AXI buses can be distinguished in two power domains, full-power (FPD)
and low-power (LPD), but also in Slave (input) and Master (output).
They define the communication between PL and PS as summarized at ta-
bles 4.1 and 4.2, with a particular note on S_AXI_HP1_FPD, S_AXI_HP3_FPD,
M_AXI_HPM0_FPD and M_AXI_HPM0_LPD. These PS ports are connected to the
other PL components through the AXI Interconnect, special IPs providing
advanced routing capabilities, such as arbitration and prioritization to handle
the cases where one signal should drive more than one, or vice versa.

VCU The Video Codec Unit is an IP capable to simultaneously compress and
decompress video streams. It has been placed to give the possibility to use two
further pipelines: using an external memory as input source with decoding
before the inference, but also to visualize the results by a VCU-encoded stream
through Ethernet.

Clock, Reset and Interrupt The PS has the limitation that maximum 4 clock
signals can be generated and that their phase is not aligned[37]. To overcome
it, the placed PS IP provides just a 100 MHz clock source pl_clk0 and the
other needed clock frequencies for the PL components are generated by a
Clocking Wizard IP. They are listed at 4.7 with the related PL component
that uses each of them.
Moreover the Processor System Reset IPs are also needed to create reset
signals for each clock, as the clock export setup requires. The external input

2The MIPI CSI-2 Rx Subsystem outputs 32-bit AXI4-Stream video data at two pixels per
clock (PPCS) and eight bits per pixel. AXI4-Stream is a protocol designed in the Vitis HLS
programming context, for transporting arbitrary unidirectional data.

37

Kria Acceleration flow

reset used for the clocking wizard and these processor system reset IPs is
provided by the PS, named resetn_0. In addition to the synchronous reset
signals3, there are three emio_gpio_o reset used for the Frame Buffer Write
IP, the AP1302 ISP and the VCU.
To conclude this design description, the interrupt signals should be considered.
Most of all the PL components generates an interrupt that will be handled
by the PS. However the PS input port pl_ps_irq1 is set to accept an 8-bit
signal. A concatenation IP is used to put together these signals and insert it
into the PS4. Reset and clock connections are summarized at 4.8.

Figure 4.4: Capture pipeline of the Smartcamera application[34].

Established the block design organization and all the PL and PS configurations,
it can be observed that some of the components’ ports may not be properly
connected, specifically those ones referred to DPU and pre-processing kernels that
have been not yet inserted in the design. These connections are now ignored and
then they will be added as overlay by Vitis, see section 4.2.2.

Finally, after Validation, Synthesis and Implementation with all the errors and
warnings solved, the extensible hardware platform XSA (Xilinx Support Archive)
has been generated. This archive contains the whole project, comprised:

• The bitstream, a .bit file including the description of the hardware logic,
routing, and initial values for both registers and on-chip memory. It has bits
and more human-readable fields, like assembly code.

• The hardware platform .hpfm, a metadata XML file describing the design
hardware interfaces. Specifically the contained information are about: clock
ports, AXI bus interfaces, AXI4-Stream bus interfaces and interrupts.

3Reset signals synchronous to the clock sources.
4The unused interrupt bit are imposed to 0

38

Kria Acceleration flow

Figure 4.5: capture_pipeline hierarchical block of Vivado project.

Figure 4.6: PS IP of the Zynq Ultrascale+ MPSoC in the Vivado project.

All these operations are supported by the Vivado GUI or by tcl commands and they
lead to generate in the kv260_ispMipiRx_vcu_DP/ folder the project/ directory
containing all the Vivado design files and the XSA above mentioned.

To complete the whole platform creation, the last step is the software platform
building. It has to support a Linux OS running on it, so a series of software
components need to be prepared in advance. However in this development flow
these files are handled after, at the PetaLinux image building 4.2.3. Therefore,
here, just the directories predisposition and the metadata files are generated thanks
to the tcl scripts made available by the kria-vitis-platforms GitHub repository. A

39

Kria Acceleration flow

PS slave PL master
VCU

S_AXI_HPC0_FPD M00_AXI_VCU_EN
S_AXI_HP2_FPD M00_AXI_VCU_DEC

S_AXI_LPD M_AXI_VCU_MCU
DPU

S_AXI_HPC1_FPD M_AXI_HP2
S_AXI_HP1_FPD M_AXI_GP0/HP0

Pre-processor
S_AXI_HP3_FPD m_axi_gmem0/1/2/3

Capture pipeline
S_AXI_HP0_FPD m_axi_mm_video

Table 4.1: PS slave - PL master interconnections in the Vivado project.

PS master PL slave
M_AXI_HPM0_FPD S_AXI_CONTROL (DPU)

S_AXI (AXI Verification)
S_AXI_CONTROL (Pre-proc)

M_AXI_HPM1_FPD s_axi_ctrl_frmbuf (c.p.)
M_AXI_HPM0_LPD S_AXI (I2C)

csirxss_s_axi (c.p.)
S_AXI_LITE (VCU)

Table 4.2: PS master - PL slave interconnections in the Vivado project.

makefile can be used to launch the xsct command5 with the execution of the tcl
script. The before-built hardware platform and the predisposition to the software
one are put together and the result is the folder in figure 4.3 having:

• Hardware platform - The hw/ folder has the before explained XSA archive
and HPFM file.

• Software platform - The sw/ folder has just the predisposition for the
software components, like boot files and Linux images, and the SPFM file,
that is a XML metadata file where to find the software components.

• Xilinx platform - The .xpfm file is the XML metadata file having the paths
to the two previously described platforms.

5XSCT is a Vitis tool (Xilinx Software Command-Line Tool) that allows the user access to
the full set of SDK tools from the command line.

40

Kria Acceleration flow

Figure 4.7: Clock interconnections in the Vivado project.

The Vitis extensible platform is ready, its correctness can be verified by the Vitis
tool:

platforminfo kv260_ispMipiRx_vcu_DP .xpfm

that extracts the platform main features, comprised clock information, resource
availability and the unconnected bus that will be used for the next step, the overlay.

4.2.2 Overlay creation
Following the development flow 4.2, after the platform design that led to the
acceleration platform generation, the overlay has to be developed. It comprises
a series of PL kernels that can be made by C/C++/Python code or by a RTL
description. In this thesis project the overlay, as shown at figure 4.1 is composed
of two kernels:

• DPU IP - As said before it was not comprised in the Vivado IPs catalog but is
released embedded in a TRD (targeted reference design). It practically means

41

Kria Acceleration flow

Figure 4.8: Interrupt and reset signals in the Vivado project.

that a directory with all the needed files to implement can be downloaded by
the AMD website. Then this TRD can be added to the Vivado block design
or as PL kernel by Vitis (this case). The Kria documentation shows the ideal
connection with the PS component and some of the configurations to set, see
figure 4.10.

• Pre-processing IP - The input frames need to be modified before to run
the inference process. The best way to create an IP able to act some pre-
processing tasks is to exploit the Vitis Vision library. It contains C++
algorithms performing many processing on images. The most interesting
for this application are: color space conversion from NV12 (output from
MIPI camera) to BGR (expected by neural network), resizing to change the
resolution of the input image to match that one used to train the network,
1216 × 320, and the quantization, i.e. a linear transformation (scaling and
shifting) of each pixel of the BGR frame to satisfy the DPU input requirement.
Its connection with the PS is summarized at the Kria documentation, see
figure 4.9.

The DPU is already downloaded as TRD in the overlays/ directory. It is the

42

Kria Acceleration flow

Figure 4.9: Pre-processing IP of the Smartcamera application[34].

Figure 4.10: DPU IP of the Smartcamera application[34].

DPUCZCX8G version used by the Zynq Ultrascale+ MPSoC. Its configuration
file dpu_conf.vh is contained in the examples/smartcam/ directory and it can be
properly modified to match this project’s requirements. To have a comprehensive
understanding of all the settings, the documentation can be consulted[19]. The
chosen convolution architecture of the DPU is called B3136, it is characterized by

43

Kria Acceleration flow

a pixel parallelism of 8 and input/output channel parallelism of 14. The name
comes from the resulting peak number of operations per cycle, thus 2 × 8 × 14 × 14,
since in each clock cycle the convolution array performs a multiplication and an
accumulation. The images and weights buffer use the UltraRAM and moreover the
other configurations are: low RAM usage, channel augmentation, alu parallel =
PP/2, conv: leaky ReLU + ReLU6, alu: ReLU6 features, and high DSP usage.
The DPU configuration file, .vh formatted, is shown at B.1.

The whole overlay procedure is automated by the Makefile provided by the
GitHub repository. All of the issued tasks are executed by the AMD software Vitis.
It comprises Compiler, Linker and Packager tools, accessible by the v++ command
and able to generate different kinds of files useful to build the final deployable
project. To follow this overlay building description, the examples/smartcam/ folder
is shown at figure 4.11.

1. Pre-processing .xo file generation - The Vitis Compiler is used to generate
the pre-processing kernel. It is written in C++ (cpp and h files listed starting
from B.2) and uses some functions get by the Vitis Vision Libraries. The key
point is to set the right resizing dimensions 1216 × 320 to match the training
images. The generated file is a Xilinx object kernel .xo that is actually an
archive with the created IP as TRD and other configuration files.

2. DPU .xo file generation - It is generated by Vivado with the support of
some pre-built tcl scripts, see them on figure 4.11.

3. FPGA .xclbin and .bit files generation - Built the PL kernels in .xo
formt, they are now linked together into a FPGA executable binary file, the
.xclbin. It typically comprises different parts of the compiled application, like
the bitstream itself and some structured metadata to define memory topology,
IP layout of instantiated peripherals and kernels, clocking details and kernel
connectivity. A complete access to this kind of files is given by the xclbinutil
tool, it can read, write and change xclbin files. Therefore, the v++ command is
used to make the Vitis compiler and linker generating this file. The command
options are set in a well organized way through a properly formatted file shown
at B.5. Besides the v++ arguments, also clock and connectivity information
are listed, they should match the unconnected ports leaved in the platform
by Vivado (also visible at platforminfo output). Finally, also the updated
bitstream file is generated.

4. Final Vivado project generation - Placed also the overlay, the entire
Vivado block design is ready and in this overlay building a Vivado .xpr project
is generated to visualize it. For sake of simplicity all the tables cited at the

44

Kria Acceleration flow

previous platform section 4.2.1 are already updated with the overlay updates.
See 4.2, 4.1, 4.7 and 4.8.

Figure 4.11: Starting folder of the overlay building process.

4.2.3 PetaLinux image
As the platform development flow ?? shows, the last step leads to generate a SD
card image based on a Linux operating system, with all the platform’s components
built until now. The AMD tool in charge of building this image is PetaLinux,
able to customize, build and deploy embedded Linux solutions on AMD processing
systems. The main components of this tool are [38]:

• Yocto Extensible SDK - Yocto is an open-source project helping to create
custom Linux-based systems regardless of the hardware architecture. In this
thesis work, the architecture is well defined, Zynq Ultrascale+ MPSoC, and
its Yocto components are labeled by the PetaLinux environment as "aarch64 ".

• XSCT - Xilinx Software Command-Line Tool already mentioned at 4.2.1

• PetaLinux CLI commands - used to execute the macro-steps of the PetaL-
inux development flow. They will be mentioned in the following.

45

Kria Acceleration flow

An optimal staring point for this flow is to create a PetaLinux project by a BSP
(Board Support Package) 6. It is a reference design specific for a certain hardware,
Kria KV260 in this case, containing design and configuration files, pre-built and
tested hardware and software images to be downloaded on the board.

The main objective now is to develop a so called PL application, that comes
from the packaging of the previously built PL overlay. Then, it will be added to
the target root file system thanks to the PetaLinux process, allowing the xmutil
utility to load the overlay as an accelerated application after that Linux has booted
on the Kria KV260 board.

After PetaLinux 2022.2 installation and the KV260-compatible BSP download,
the project can be created by the CLI command:

petalinux - create -t project -s kv260 -v2022 .2. bsp

A directory7 with all the starting files needed for the PetaLinux flow is generated.
Now the description continues with the addition of some components needed for
this project: the FPGA firmware containing the PL description built so far, some
software packages for the application code running and the AP1302 firmware.

When the application is loaded on the board by issuing xmutil loadapp, the
DFX Manager will be invoked. It is a Xilinx library implementing an on-target
daemon that is used to handle the application’s data model, to active the PL
configuration, and to load/unload the corresponding bitstreams. The DFX Manager
requires specific files that will be placed in the target Linux system at folder:

/lib/firmware/<company_name>/<app_name>

However to generate a fully complete Linux image, ready to run the target appli-
cation, these necessary files must be prepared before into a Yocto recipe of the
PetaLinux project:

• xclbin and bit - They are the two output files of the PL overlay building
procedure of the previous section 4.2.2.

• shell.json - The DFX Manager requires information about the design, espe-
cially if it is slotted or flat. A simple .json metadata file with this information
is contained in the kria applications firmware examples about the smartcamera
one [39]. It has just this lines:

6The BSPs can be directly downloaded by the AMD download center.
7In the following this directory will be referred with the name of <plnx_prj>.

46

Kria Acceleration flow

{
" shell_type " : " XRT_FLAT ",
" num_slots ": "1"

}

• dtsi - Vivado generates the hardware description of the custom PL IP design
as XSA file. However, the PL IP is loaded in the KV260 after the Linux
booting up, thus to be loaded dynamically, a Linux-understandable format is
needed for this hardware description [40]. This is the reason of the necessity of
a device binary tree file. A human-readable device tree file is the .dtsi format
and it is generated by the Vitis DTG (Device Tree Generator). It is run by
the XSCT tool:

createdts -hw <XSA > -zocl -out <outdir > -platform -name <
pfm_name > -git - branch xlnx_rel_v2022 .2 -overlay -compile

that writes the PL hardware description, get from the XSA archive, in .dtsi
format. This description has not some fundamental design components,
like AP1302 ISP, I2C Mux Connecting, ZOCL and mipi nodes, thus some
modifications are done following the kria documentation’s tutorial available at
[34] and resulting in the file B.6. Finally to compile this file into a machine-
readable .dtbo format the Vitis DTC (Device Tree Compiler) is used. This
step is automatically done during the recipe creation of the PetaLinux building
process.

Prepared into a generic folder, these files are processed by the fpgamanager_dtg
tool of PetaLinux in charge of creating automatically the needed Yocto recipe for
the PL overlay, i.e. for the accelerated application.

petalinux - create -t apps --template fpgamanager -n kv260 -ml -
accel --enable --srcuri "path/to/ bitfile path/to/dtsi path/to/
xclbin path/to/shell.json"

After this command, the recipe kv260-smartcam is generated inside the folder
visible at 4.12. It includes the above mentioned files and the Yocto recipe metadata
file (.bb), see it at B.7.

The next point is to create a further recipe with the aim of adding to the
embedded Linux image some software packages. These specific packages are
required to support the ML inference on the board and so the application code

47

Kria Acceleration flow

Figure 4.12: Resulting FPGA firmware recipe.

running, indeed its content will be clearer at the application development section
4.3. The directory

<plnx-prj>/project-spec/meta-user/recipes-apps/smartcam/

will be filled by a recipe metadata file, smartcam.bb at B.8, listing all these software
packages.

The last recipe to include is for the AP1302 firmware. The Yocto process is able
to get a file by a specified online source, exactly as this case where the AP1302
firmware is provided by the Xilinx GitHub repository [41]. The two needed recipe
files are ap1302-ar1335-single-firmware.bb at B.9 and ap1302-firmware.inc
at B.10, both of them to insert at the folder:

<plnx-prj>/project-spec/meta-user/recipes-firmware/ap1302-firmware/

The three main components have been prepared, now they are enabled by adding
a final recipe to:

<plnx-prj>/project-spec/meta-user/recipes-core/packagegroups/

It is packagegroup-kv260-ml-accel.bb at B.11 and it lists the three prepared
recipes. Finally the string "CONFIG_packagegroup-kv260-ml-accel" is appended
to the file:

<plnx-prj>/project-spec/meta-user/conf/user-rootfsconfig

and the option packagegroup-kv260-ml-accel is selected among the user pack-
ages, accessible by the PetaLinux configuration command:

petalinux - config -c rootfs

Now the final image building, taking into account all the configurations previously
described, can be issued easily typing:

48

Kria Acceleration flow

petalinux -build

This process is not trivial, it requires to know the PetaLinux tool to set properly all
the environment, for this reason it often requires a long troubleshooting to obtain
a working result. Additionally it also requires many time and memory resources of
the host machine, the RAM free memory should be monitored to avoid building
failures. On the process completion three directories are generated:

• build/ for the files generated during the building process, as the Yocto ones
in tmp/

• images/ for the bootable images.

• components/ with the Yocto eSDK, generated at petalinux-config and petalinux-
build execution.

The final deployable image is generated by a packaging step:

petalinux - package --wic --bootfiles " ramdisk .cpio.gz.u-boot
boot.scr Image system .dtb"

where the listed boot files, together with the default images inside images/linux/, are
used to generate a wic image. The final images/linux/petalinux-sdimage.wic
can be written into the SD card of the target platform, see 5.1 for details.

Fetching errors During the PetaLinux building process, some errors about the
online fetching step (do_fetch Yocto action) often occur. In these cases a good
solution is a manual intervention by downloading the files from the GitHub source
and put in the correct final location. Two cases:

• AP1302 firmware - At the target deploying step 5.1 this file should be inside
the /lib/firmware/. If it is not found, an easy way to solve the problem is
to manually put it there, after having downloaded it from GitHub. This can
be done because the default procedure does not return any error or warning
actually.

• Smartcam files - This step arises in an error about the do_fetch() operation
causing the inability to proceed. A manual way to solve it is to analyse the error
and identify the Yocto project directory destination for this files. Then they are
downloaded by Github and put manually. At the PetaLinux building process
termination, these files will be found at /opt/xilinx/kv260-smartcam/.

49

Kria Acceleration flow

4.3 Application Development
Platform and model have been properly developed so far. Following the entire work
flow diagram 1, the final step is the application code development. It is a program
written in a certain programming language, like C++ or Python, that executes all
the required practical operations of this design. To have an easy understanding
of its behaviour, the idea is that the application code has to enable all the steps
of the end-to-end pipeline described above at section 4.1, thus from the images
acquisition to the final display of the inference results.

Each application code’s task will be analysed, in the following, simultaneously
to the specific code function used for that purpose. Before to focus on them, the
programming language and its used libraries must be chosen. The Vitis AI envi-
ronment exploited for the model development step, provides the Vitis AI Runtime
(VART) library. It is a set of APIs based on the XRT library (Xilinx Runtime)
that allow to run the model inference on the DPU hardware architectures. The
base element is, indeed, the runner, that is an application level runtime interface
for DPU IPs based on XRT. It uses XIR graphs (i.e. the model format after
compilation) as inputs and runs them on different targets. The VART library is
provided as open-source at the Vitis-AI/src/vai_runtime/ folder of the Vitis
AI GitHub repository [32]. This library together with many other ready-made
application examples are provided in the Vitis AI library. Although these examples
are a good starting point to build an application, they represent a limitation to all
the possibility that the single VART APIs give.

Going in a deeper VART library analysis is not an aim of this thesis work, since
an alternative more efficient in multimedia pipelines is found in the GStreamer
framework. It is suggested by analysing the Kria documentation and specifically the
pre-built Smartcam application [34]. GStreamer is a library for constructing graphs
of media-handling components. Its supported applications range from simpler
audio and video streaming, to more complex audio mixing and video non-linear
processing [42]. Since this thesis application consists of capturing and display
images, the use of this framework is very suggested. It consists of many plug-ins to
sequentially interconnect each others with the goal to build a multimedia pipeline.
The Gstreamer framework is available as C++ or Python library, in both cases the
key approach is to build a string with all the required components.

In this case, where the target is an AMD platform, some additional GStreamer
plug-ins are provided from the Vitis Video Analytics SDK (VVAS). It helps with
the NN inference step allowing to access: the DPU via the VAI Library and the
accelerated functions from the Vitis Vision Library. Hence, using GStreamer in-
stead of the common python packages is better by a performance view since there
is hardware underlying all the steps (comprised the pre-processing).

50

Kria Acceleration flow

So now, the best way to understand the application code is to subdivide its
behaviour in the five main tasks and analyse each piece of the GStreamer pipeline
string that is entirely shown at C.4.

Input video acquisition The input images are frames of a video captured by the
MIPI AR1335 sensor, so a suitable plug-in for this purpose is mediasrcbin. It
is actually provided by Xilinx which is built on top of a standard GStreamer
plug-in, v4l2src. Its advantage is the automatic initialization and configuration
of the input pipeline. Indeed, it allows to set a proper device topology able to
capture the video frames starting from the MIPI AR1335 camera.
This mentioned topology is composed by some sub-devices that corresponds
with the capture pipeline seen before: AR1335 camera - AP1302 ISP - MIPI
CSI2 Rx Subsystem. All of these components have source (input) and sink
(output) pads and their main features, like media bus format, dimensions and
frame rate are properly set by the mediasrcbin plug-in.
Identified this first plug-in to add to the GStreamer pipeline string, the
application code’s task here is limited to check the presence of the correct
acquisition pipeline described so far. This check is easily performed thanks to
this v4l-utils8 application:

media -ctl -d /dev/ media0 -p

It uses the Linux Media Controller API to visualize the topology of the device
node of interest in this case, found as /dev/media0/. The topology shows
as the last entity the vcap_capture_pipeline_mipi_csi2 component, it has
the sink pad to collect all the input frames acquired from the rest of the
acquisition pipeline (AR1335 - AP1302 - Rx Subsystem).
Hence, verified the device presence, the pipeline can be filled by the line 1 of the
pipeline C.4. The line 2 is added to filter the images with those specific features.
This allows to introduce at the pre-processor just the proper-formatted data.

Pre-processing After the capture pipeline, the input frames are stored in DDR
memory and, before to be processed by the ML inference, the previously
described 4.2.2 pre-processing operations must be performed. Thanks to the
presence of an hardware support, the pre-processor IP of the overlay part, an
execution faster than a just software implementation is provided.

8v4l-utils is one of the software packages installed before by the PetaLinux building process.

51

Kria Acceleration flow

On this purpose just the support of the VVAS plug-in[43] vvas_xmultisrc is
needed. It requires the use of a configuration file, see preprocess.json at C.1,
containing information about:

• The xclbin path - The plug-in needs to know the location of the xclbin file
used to program the FPGA device. It will be downloaded and an XRT
handle for memory allocation and programming kernels will be created.

• The VVAS library path where finding all the acceleration software libraries.
• The information about the kernels to implement - In this case the ker-

nel is the pre-processor pp_pipeline_accel that is supported by the
acceleration software library libvvas_xpp.so.

About the pre-processing kernel above mentioned, some configuration pa-
rameters are required. The Kria Smartcam documentation has some specific
indications[44] about it:

• The mean R, G and B values are 0 since they must match the prototxt
file provided by Vitis AI model zoo.

• The scale R, G and B values are 0.25 because they come by the multipli-
cation between the scale value provided by the prototxt 0.00392156 and
2x. The exponent is called fixpos and for the used model its value is 6.
An easy way to consult the model’s features is the Vitis AI command:

xdputil xmodel yolov5_kv260 . xmodel -l

The GStreamer pipeline sub-string to add at this point is made by lines 3-6 of
C.4, where the tee component will split the data in order to, then, attach them
with the inference output metadata, i.e. the rectangular boxes surrounding
the detected objects.

DPU Inference Having pre-processed the input frames, they are ready to be
given at the input of the model. Very closely to the previous step, here, a
single VVAS plug-in is used to run the AI inference on the images. It is the
vvas_xfilter.
It works as interconnection between the high-level application interfacing with
the user and the underlying Vitis AI library interfacing with the DPU. This
action leads to the actual AI inference task, generating the bounding boxes
metadata. Even this plug-in needs just of a configuration file to properly
operate, see the aiinference.json at C.2.

52

Kria Acceleration flow

In addition to the xclbin and vvas library locations, some other information
are needed:

• The GStreamer element mode to operate - In this case the inplace mode
is chosen because the intention is to alter the input buffer itself instead of
producing new output ones.

• The information about the kernels to implement - In this case the kernel ob-
ject is supported by the acceleration software library libvvas_xdpuinfer.so
able to run the AI inference on the underlying DPU.

About the above mentioned kernel object, some configuration parameters are
required to set the AI model to use for the inference. It has been called, after
the compilation, yolov5_kv260 and belongs to the YOLOV3 class. Indeed.
analysing the Vitis AI Library examples, it can be noticed that all those ones
referred to YOLOv5 used YOLOv3 as model class. Moreover the pre-processing
is not needed because it has been implemented manually before.
Therefore the GStreamer pipeline string is now updated with the line 7 of C.4.

Output bounding box To display the output images with the bounding boxes
around the detected vehicles, some steps must be performed. As seen before,
the DPU inference acts on the pre-processed data that are converted and
scaled compared with the original frames. This means that the inference
output features will not match the original frames but the pre-processed ones.
To face out this issue, the vvas_xmetaaffixer plug-in can re-size the metadata
to match again the original frames. It has two kinds of input ports: the
sink_master that acquires the scaled metadata and the sink_slave that recover
the original ones coming from the tee component. The scaling ratio is set by
easily comparing the data between the slave and master sink pads.
The output drawing of the re-scalded metadata on the input images is per-
formed by the vvas_xfilter plug-in. The configuration file drawresult.json,
shown at C.3, beyond the previously cited settings, has information about the
appearance of the rectangular boxes to display, like labels font, size, name and
RGB color code.
The GStreamer pipeline string is updated by the lines 8-14 of C.4.

Output display Considering an HDMI or a DisplayPort to display the resulting
video frames, the kmssink GStreamer plug-in is employed by setting all its
configurations. The pipeline string is completed with the line 15 of C.4.

The whole pipeline, above analysed, is built by means of a Python script,
application.py at C.5. The GStreamer libraries required to build and run the

53

Kria Acceleration flow

pipeline in a Python script are comprised in the Python module gi, i.e. GObject
Introspection. After all the operations described in this section, the state of the
GStreamer pipeline built so far, is set to PLAYING and the system enters in an
infinite loop (the GLib MainLoop feature) until the process termination signal is
sent by typing CTRL+C (SIGINT Linux signal). During this infinite loop the
GStreamer pipeline runs. Its graphical view is provided at 4.13, based on the dot
representation produced by a GStreamer debug feature.

Figure 4.13: GStreamer pipeline’s graphical view based on the debug dot file.

54

Chapter 5

Final Considerations

5.1 Deploy on target
The complete design flow, figure 1, has been fully detailed in the previous chapters.
Here the final step is addressed: deploying on target the whole built design.

Starting on the host machine, it is used initially to write the wic image to the
KV260 board’s sd card. It is the final result of the platform development section
4.2 that contains the fully customized hardware and software platform to can run
the AI model on the Zynq UltraScale+ MPSoC with its DPU support. Then, all
the required files to run the application are collected: the application code and the
compiled model with their configuration files. The figure 5.1 shows in details the
directory content that will be copied into the sd card at the path /home/root/.

Before to turn on the FPGA device system, a board preparation is needed. The
KV260 board scheme is on figure 5.2:

• Connect the AR1335 camera to the J7 IAS connector, since it is that one
linked to the MPSoC through the ISP AP1302.

• Connect the J5 HDMI connector to a monitor through a HDMI cable.

• Insert the micro SD card into J11.

• Connect the J4 micro-usb connector to the USB port of the host machine to
ensure an UART communication.

Now, after having identified the COM port name corresponding to the host
machine’s UART, the connection can be made by:

sudo putty /dev/ ttyUSB1 -serial -sercfg 115200 ,8 ,n,1,N

55

Final Considerations

Figure 5.1: Directory to entirely deploy on the KV260 sd card.

Just connected the power supply to the board DC jack, the terminal shows the
booting up messages and, after the password setting, the Linux environment is
ready to be used. As said before, the application must be loaded by the DFX
Manager and, on this purpose, the xmutil commands are exploited. Initially to list
the existing application firmware available on the board, this command is issued:

sudo xmutil listapp

The active application firmware, initially the default one, will have the value
Active_slot corresponding to 0. To enable the kv260-smartcam firmware, created
at the PetaLinux section 4.2.3, the default application must be unloaded before:

sudo xmutil unloadapp

and the desired one is loaded then:

sudo xmutil loadapp kv260 - smartcam

At the end, the listapps must be addressed again in order to call a rescan by
the DFX Manager that will update definitively the firmware direcotry tree. It

56

Final Considerations

Figure 5.2: KV260 Vision Starter Kit Interfaces and connectors [16].

helps even to check that the desired application firmware has the Active_slot value
turned into 0.

After these commands the application firmware is enabled, so now the application
can be run. Being a simple python script, the only operation to do is to move on
the /home/root/ directory where all the files collected before has been copied, and
type:

python3 application .py -s mipi -o display -W 1920 -H 1080 -n
False -f False

The meaning of these options is on the application code at C.5. When the
application is lunched, the connected HDMI monitor starts to display the images
captured by the MIPI sensor and when an object is detected, the bounding boxes
should be printed surrounding it.

An additional note is done aboute the option -f that, if true, it enables the
GStreamer plug-in fpsdisplaysink. It is fundamental to have an idea of the output
performance and specifically of the output frame rate. Actually an optimal tool for
the performance evaluation is the Vitis AI Profiler, however it works only if the

57

Final Considerations

inference is issued by the VART library. In this application case the GStreamer
framework is used, so its plug-ins must be used on this purpose.

5.2 Issues and possible solutions
The followed work flow had several design layers, it went from the model develop-
ment, with training, quantization and compilation, to the target platform design,
comprising of software and hardware features. This means that critical design
points could be found at many of these layers.

All the thesis work flow has been properly carried out but the final result, i.e. the
visualization of the detection objects’ bounding boxes, has not been fully achieved.
Here, some possible reasons with viable solutions are discussed.

AI model The chosen model is YOLOv5n, that corresponds to the nano version of
YOLOv5. It has the least number of convolutional layers and filters compared
with all the other versions. It has been chosen since it is the best version for
an embedded system and also because it does not require a high-performance
training machine to reach reasonable accuracy levels. However it typically
achieves a lower accuracy since less complex features can be learnt from the
model’s layers. This model has been trained in a non-optimized way due to
the absence of a GPU, achieving a mAP@50-95 of just 0.433.
Another point that has contributed to the lowering of this accuracy is the
quantization process. This step has translated the weights into integer leading
to a leak of accuracy, on this purpose an improvement is the QAT (Quantization
Aware Training) procedure that could be exploited to fine-tune the model
reaching again an higher accuracy.

Pre-processing and images stretching The Kitti training dataset that has
been used, is made of images all different among them but with an aspect-
ratio almost equal to 19:5. This means that the input frames, captured by
a mipi camera at 16:9, have been stretched too much by the pre-processing
causing an harder inference task for the model. A solution is either using a
dataset of images equal to the captured aspect ratio or using a camera sensor
able to capture with the dataset aspect ratio. Finally a more comprehensive
knowledge of the HLS APIs used to build the pre-processing kernel could be
exploited to make changes like cropping the images to avoid a stretching and
so a deformation.

Test equipment In addition with these possible critical points, the step of testing
can not be exhaustively performed. Specifically it requires an equipment made
by power suppliers for all the design components (FPGA board, display and

58

Final Considerations

host machine) and a camera easier to point on the objects, all mounted on a
vehicle able to go across the city’s roads. In absence of this equipment the
testing has been made by showing some printed images to the camera sensor,
however the image quality of the sensor appears to be low, making hard the
inference task.

Moreover a deeper knowledge about the GStreamer and VVAS plug-ins could
help to change the ways to capture and display the data. For instance to use as
input source a video file an encoding system is required to decode the h264 frames
of the file into raw frames. The decoder at hardware level (IP) is a VCU and the
Gstreamer framework’s plug-in is a omh264enc/dec. When this attempt has been
done in the thesis projects, some unknown error about the plug-in have occurred.

5.3 Further Improvements
Beyond the improvements mentioned before, that are more like fixes, there are
some directions to take for better technologies. An example is to boost the sensor
equipment of the vehicle with LiDAR and Radar systems. The former guarantees
a 3D mapping with high level of accuracy helping in the obstacles detection also
at a very short distance. The RADAR systems work at longer wavelengths and
this allows to detect objects at long distance and through fog or clouds. Hence an
idea is to use a dataset as RADIATE[45] having a lot of traffic data in RADAR,
LiDAR and camera formats in good and bad weather conditions.

59

Appendix A

Model development

Listing A.1: Conversion script from KITTI to YOLO format
1 ’’’
2 USAGE:
3 python3 convertToYOLO .py <in_dataset > <train_perc >
4 DESCRIPTION :
5 Conversion from <in_dataset > format to
6 Ultralytics YOLO format . <train_perc > of the input
7 dataset is organised for training , the remaining
8 part for validation .
9 LOCATION :

10 Must be located at the same level of <in_dataset >/ folder .
11 AUTHOR :
12 Davide Altamore
13 ’’’
14

15 import argparse
16 import os
17 from PIL import Image # pillow package with Image.size method
18

19 # Input dataset formats accepted
20 IN_DATASETS_LIST = [’Kitti ’]
21

22 # List for class id mapping .
23 # CLASSES has the class names and the class ids are the position

in list
24 CLASSES = []
25

26 ### Labels format conversion :
27 # Kitti input label = [0] object_class ... [4] left [5] top [6] right

[7] bottom ...
28 # YOLO output label = object_class_id xc yc h w
29 def kitti2yolo_label (kitti_label , image_w , image_h):

60

Model development

30

31 # return value = YOLO - formatted list of objects
32 yolo_label = []
33

34 yolo_line = ""
35

36 for kitti_line in kitti_label :
37

38 object_class = kitti_line .split () [0]
39 # Kitti marks as ’DontCare ’ the unrecognized objects , YOLO

does not mark them at all
40 if object_class != ’DontCare ’:
41 # class id mapping
42 if object_class not in CLASSES :
43 CLASSES . append (object_class)
44 # index () method starts by 0 as YOLO requires
45 object_class_id = CLASSES .index(object_class)
46

47 # Kitti bbox parameters
48 x1 , y1 , x2 , y2 = kitti_line .split () [4:8] # get <left ><top ><

right ><bottom >
49 x1 , y1 , x2 , y2 = float(x1), float(y1), float(x2), float(y2)
50 # YOLO bbox parameters (normalized)
51 xc = ((x1 + x2) / 2) / image_w
52 yc = ((y1 + y2) / 2) / image_h
53 h = (y2 - y1) / image_h
54 w = (x2 - x1) / image_w
55

56 yolo_line = f"{ object_class_id } {xc} {yc} {h} {w}"
57

58 if yolo_line :
59 yolo_label . append (yolo_line)
60 yolo_line = ""
61

62 return yolo_label
63

64 ### Conversion from KITTI to Ultralytics YOLO format .
65 def kitti2yolo (train_perc):
66 ## Source directories
67 TRAIN_IM_PATH = ’Kitti/raw/ training / image_2 ’
68 TRAIN_LAB_PATH = ’Kitti/raw/ training / label_2 ’
69 TEST_IM_PATH = ’Kitti/raw/ testing / image_2 ’
70

71 ## TESTING directory is the same , it contains only images
72 try:
73 os. system (f"cp -r { TEST_IM_PATH }/* ../ datasets /Kitti/test/

images ")
74 except OSError as error:
75 print(error)

61

Model development

76

77 ## TRAINING directory must be divided into train and val (based
on train_perc)

78 train_images_lst = sorted (os. listdir (TRAIN_IM_PATH)) # comprised
". png"

79 # n. of images for TRAINING
80 train_images_N = int(len(train_images_lst) * train_perc)
81 # For each input training image ...
82 i = 0
83 for image in train_images_lst :
84

85 # Evaluate image dimesions for next evaluations
86 image_w , image_h = Image.open(os.path.join(TRAIN_IM_PATH ,image

)).size
87 # /!\ Kitti images are not all equally sized.
88

89 outdir = ’train ’ if i < train_images_N else ’val ’ # set the
image purpose

90

91 # 1. Copy the image
92 try:
93 os. system ("cp {} {}". format (os.path.join(TRAIN_IM_PATH ,image

),
94 os.path.join(’../ datasets /Kitti ’

,outdir ,’images ’)))
95 except OSError as error:
96 print(error)
97

98 # 2. Read the Kitti label and write the new YOLO one
99 label = image [: -4] + ’.txt ’ # remove .png and add .txt

100 with open(os.path.join(TRAIN_LAB_PATH ,label),"r") as rfp:
101 # A. read (in a list)
102 kitti_label = rfp. readlines ()
103 # B. convert (return a list)
104 yolo_label = kitti2yolo_label (kitti_label ,image_w , image_h)
105

106 # If at least one detected object : write a file , otherwise
no file (by YOLO docs)

107 if yolo_label :
108 with open(os.path.join(’../ datasets /Kitti ’,outdir ,’labels ’

,label),"w") as wfp:
109 # C. write (lines with breakline)
110 wfp.write("\n".join(yolo_label))
111

112 i = i + 1 # next image
113

114 if i == len(train_images_lst):
115 retval = True
116 else:

62

Model development

117 retval = False
118

119 return retval
120

121 def main ():
122

123 ## Arguments parsing (see USAGE)
124 parser = argparse . ArgumentParser (description =’Convert a dataset

to Ultralytics YOLO format .’)
125 parser . add_argument (’in_dataset ’, help=’Format of the input

dataset ’)
126 parser . add_argument (’train_perc ’, help=’Percentage of in data to

use for training , the remaining for validation ’)
127 args = parser . parse_args ()
128 # Check <in_dataset >
129 if args. in_dataset not in IN_DATASETS_LIST :
130 print(f" Invalid 1st argument {args. in_dataset } ! Must be one

of these :\n{ IN_DATASETS_LIST }")
131 exit (-1)
132 # Check <train_perc >
133 try:
134 train_perc = float(args. train_perc)
135 except :
136 print(f" Invalid 2nd argument {args. train_perc } ! Must be a

number !")
137 if train_perc < 0 or train_perc > 1:
138 print(f" Invalid 2nd argument {args. train_perc } ! Must be a

number in 0-1 range !")
139 exit (-1)
140

141 ## Check if a possible output is already existing
142 abs_outpath = os.path.join(os.path. abspath ("../ datasets "),args.

in_dataset)
143 if os.path.isdir(abs_outpath):
144 print(f"A possible output directory already exists , check :\n{

abs_outpath }\n ... and eventually remove it !")
145 exit (-1)
146

147 ## Output directories for YOLO format
148 OUT_DIRECTORIES = [f"{ abs_outpath }/ train/ images ",
149 f"{ abs_outpath }/ val/ images ",
150 f"{ abs_outpath }/ test/ images ",
151 f"{ abs_outpath }/ train/ labels ",
152 f"{ abs_outpath }/ val/ labels "]
153 try:
154 for directory in OUT_DIRECTORIES :
155 os. makedirs (directory)
156 print("\ nOutput train , val and test directories created !")
157 except OSError as error:

63

Model development

158 print(error)
159

160 ## Run the conversion function specific for <in_dataset >
161 if args. in_dataset == IN_DATASETS_LIST [0]: # ’Kitti ’
162 print("\ nConversion from Kitti dataset format to Ultralytics

YOLO format ...")
163 is_complete = kitti2yolo (train_perc)
164 #elif args. in_dataset = IN_DATASETS_LIST [1]: # <

other_dataset >
165 else:
166 print(f" Invalid 1st argument {args. in_dataset } ! Must be one

of these :\n{ IN_DATASETS_LIST }")
167 exit (-1)
168

169 if is_complete :
170 print(f"\nAll the images of {args. in_dataset } dataset have

been processed .")
171 else:
172 print(f"\ nThere are some unprocessed images of {args.

in_dataset } dataset . Check it!")
173 exit (-1)
174

175 ## Write the data.yaml file , needed for YOLO
176 print(f"\n{ abs_outpath }/ data.yaml writing ...")
177

178 with open(f"{ abs_outpath }/ data.yaml","w") as fp:
179 # absolute path to YOLO - format dataset
180 fp.write(f"path: { abs_outpath }\n")
181 # relative path to train , val and test images directories
182 fp.write(f"train: train/ images \nval: val/ images \ntest: test/

images \n")
183 # class id mapping
184 fp.write(f"\nnc: {len(CLASSES)}\ nnames :")
185 for obj in CLASSES :
186 fp.write(f"\n { CLASSES .index(obj)}: {obj}")
187

188 if __name__ == " __main__ ":
189 main ()

Listing A.2: Quantization script
1 ’’’
2 USAGE:
3 python3 quantize .py --build_dir <build >
4 --quant_mode <calib ,test >
5 --fp_model <fp_model .pt >
6 --dataset <KITTI_yolo >
7 --batchsize <1>
8 DESCRIPTION :

64

Model development

9 Quantization script for a pre - trained YOLOv5 model on Kitti
dataset .

10 It runs in the Vitis AI docker container , run as:
11 / thesis /Vitis -AI$./ docker_run .sh xilinx /vitis -ai -pytorch -cpu

: latest
12 [docker]$ conda activate vitis -ai - pytorch
13 LOCATION :
14 Must be located in a Vitis -AI/ YOLOv5_quant / folder with all

other YOLOv5 files.
15 AUTHOR :
16 Edited by: Davide Altamore
17 Based on: Vitis AI tutorials and YOLOv5 validation code
18 ’’’
19

20 import os
21 import time
22 import sys
23 import argparse
24 import numpy as np
25

26 # PyTorch imports
27 import torch
28 from torch. utils.data import Dataset
29 import torchvision
30

31 # YOLO imports
32 from models . common import DetectMultiBackend
33 from utils. general import (
34 non_max_suppression ,
35 xywh2xyxy ,
36 check_dataset ,
37 colorstr
38)
39 from utils. metrics import (
40 ap_per_class
41)
42 from utils. dataloaders import (
43 create_dataloader
44)
45 import val
46

47 # Vitis AI imports
48 from pytorch_nndct .apis import torch_quantizer , dump_xmodel
49 # torch_quantizer (vai_q_pytorch) is the VAI Quantizer for Pytorch

framework
50 # (NNDCT Pytorch APIS located in Vitis -AI/src/ vai_quantizer /

vai_q_pytorch / pytorch_binding / pytorch_nndct /apis.py)
51

52 ’’’ --------------------------------------

65

Model development

53 (*) Calibration / Testing images dimensions
54 ---
55 - Kitti images are not all equally sized:
56 there are 1224 x 370, 1242 x 375, 1241 x 376, 1238 x 374 (avg

AR = 3.3)
57 - To decide which dimensions using for the quantizer tensors , let ’

s observe that:
58 /!\ torch_quantizer () raises an error if these dimensions are

not multiples of 64 !
59 - Reasonably choice : 1216 x 320 (AR =3.8) that are the multipes of

64 lower than all the original images .
60 ’’’
61 W_IMG = 1216 # (NOTE: is also the size used for the training)
62 H_IMG = 320
63 IMGSZ = (W_IMG ,H_IMG)
64

65 DIVIDER = ’-’*50
66

67

68 def quantize (build_dir , quant_mode , fp_model , dataset , batchsize):
69

70 # Path of the output integer model (quantized)
71 quant_model = os.path.join(build_dir , ’quant_model ’)
72

73 # Use GPU if available , otherwise CPU
74 # easily : device = torch. device (" cuda" if torch.cuda.

is_available () else "cpu ")
75 # more exhaustively :
76 if (torch.cuda. device_count () > 0):
77 print(’You have ’,torch.cuda. device_count (),’CUDA devices

available ’)
78 for i in range(torch.cuda. device_count ()):
79 print(’ Device ’,str(i),’: ’,torch.cuda. get_device_name (i))
80 print(’Selecting device 0.. ’)
81 device = torch. device (’cuda :0’)
82 else:
83 print(’No CUDA devices available .. selecting CPU ’)
84 device = torch. device (’cpu ’)
85

86 ## [1]. Load trained model
87 print(f" Loading trained model { fp_model } ...")
88 # YOLOv5 MultiBackend class for python inference on various

backends , see models / common .py
89 model = DetectMultiBackend (weights = fp_model).to(device)
90

91 # Override batchsize if in test mode
92 if (quant_mode ==’test ’):
93 batchsize = 1
94

66

Model development

95 ## [2]. Create quantizer object instance (a torch_quantizer () is
used)

96 # A dummy input tensor with the same shape of the real input
images is needed .

97 # /!\ If the 2 last dimensions are not multiple of 64 an error
occurs ! See (*) above.

98 # /!\ THE TENSOR DEFINITION IS HxW - PAY ATTENTION TO IT !
99 rand_in = torch.randn ([batchsize , 3, H_IMG , W_IMG])

100 # Vitis AI quantizer used = the torch_quantizer () by
pythorch_nndct library

101 quantizer = torch_quantizer (quant_mode , model , (rand_in), device
=device , output_dir = quant_model)

102 # Run the quantization and obtain the quantized model
103 quantized_model = quantizer . quant_model .to(device)
104

105

106 ## [3]. Forward step
107 # The process of propagating input data through the network ’s

layers .
108 # It is needed for export_quant_config () and export_model () at

the end !
109

110 # The validation process of yolo val.py is used to get an
accuracy metrics comparable with the

111 # one obtained before on training (mAP@0 .5 -0.95). This function
does all the fundamental steps:

112 # > Forwarding
113 # > Accuracy evaluation
114

115 # Get a dictionary of infos about the dataset from yaml file
116 # this function performs a parsing of the yaml file (in yolo

format)
117 yaml_path = os.path.join(dataset ,’Kitti ’,’data.yaml ’)
118 data_dict = check_dataset (yaml_path)
119

120 # Dataloader creation
121 dataloader , dataset = create_dataloader (
122 data_dict [’val ’],
123 imgsz=W_IMG ,
124 batch_size =batchsize ,
125 stride =model.stride , # shuold be 64
126 prefix = colorstr (f"val: "),
127 rect=True
128)
129 print(f"\nThe dataset has been collected , infos from { yaml_path

}\n{ data_dict }")
130

131 results , maps , _ = val.run(
132 data_dict ,

67

Model development

133 quantize =True ,
134 batch_size =batchsize ,
135 imgsz=IMGSZ ,
136 model= quantized_model ,
137 dataloader =dataloader ,
138 verbose =True ,
139 plots=False ,
140 max_det =300 ,
141 iou_thres =0.6
142)
143

144 print(" Results ")
145 print(results)
146 print("mAPs")
147 print(maps)
148

149

150 ## [4]. Output the quantization result and deploy the model
151 if quant_mode == ’calib ’:
152 # Export the quantization configuration obtained during

calibration .
153 # Fundamental for a correct deployment .
154 quantizer . export_quant_config ()
155 if quant_mode == ’test ’:
156 # Export the quantized model in xmodel format .
157 quantizer . export_xmodel (deploy_check =False , output_dir =

quant_model)
158 return
159

160

161 def main ():
162

163 # Construct the argument parser and parse the arguments :
164 ap = argparse . ArgumentParser ()
165 # --build_dir : where saving the quantized model (xmodel)
166 ap. add_argument (’-d’, ’--build_dir ’, type=str , default =’build ’,

help=’Path to build folder . Default is build ’)
167 # --quant_mode : how to handle the quantization result ?
168 # ’calib ’ the quantizer is configured to firstly perform a model

calibration .
169 # A process of statistics collection of the model ’s

inputs (e.g. min and max activation values).
170 # ’test ’ performs quantization testing and exports the quantized

model in different formats
171 # (used also for validation before deployment).
172 ap. add_argument (’-q’, ’--quant_mode ’, type=str , default =’calib ’,

choices =[’calib ’,’test ’], help=’Quantization mode (calib or
test). Default is calib ’)

68

Model development

173 # --fp_model : .pt model with the weights to quantize (already
trained)

174 ap. add_argument (’-w’, ’--fp_model ’, type=str , help=’Path to yolo
weights file ’)

175 # --dataset : root path of the small dataset used during the
forward pass for calibration .

176 ap. add_argument (’-s’, ’--dataset ’, type=str , help=’Path to your
calibration directory with subdirectories called " images " and "
labels "’)

177 # --batchsize : batch size needed for the evaluation process .
178 ap. add_argument (’-b’, ’--batchsize ’, type=int , default =16, help=

’Testing batchsize - must be an integer . Default is 16’)
179

180 args = ap. parse_args ()
181

182 print(’\n’+ DIVIDER)
183 print(’PyTorch version : ’,torch. __version__)
184 print(sys. version)
185 print(DIVIDER)
186 print(’ Command line options :’)
187 print (’--build_dir : ’,args. build_dir)
188 print (’--quant_mode : ’,args. quant_mode)
189 print (’--fp_model : ’,args. fp_model)
190 print (’--dataset : ’,args. dataset)
191 print (’--batchsize : ’,args. batchsize)
192 print(DIVIDER)
193

194 # Run the quantization
195 quantize (args.build_dir , args.quant_mode , args.fp_model , args.

dataset ,args. batchsize)
196

197 return
198

199

200 if __name__ == ’__main__ ’:
201 main ()

69

Appendix B

Platform Development

Listing B.1: DPU configuration file
1 /*
2 * Copyright 2019 Xilinx Inc.
3 *
4 * Licensed under the Apache License , Version 2.0 (the " License ");
5 * you may not use this file except in compliance with the License .
6 * You may obtain a copy of the License at
7 *
8 * http :// www. apache .org/ licenses /LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in writing ,
software

11 * distributed under the License is distributed on an "AS IS" BASIS
,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or
implied .

13 * See the License for the specific language governing permissions
and

14 * limitations under the License .
15 */
16

17 // Setting the arch of DPU , For more details , Please read the PG338
18

19

20 /* ====== Architecture Options ====== */
21 // |--|
22 // | Support 8 DPU size
23 // | It relates to model. if change , must update model
24 // +--+
25 // | ‘define B512
26 // +--+
27 // | ‘define B800

70

Platform Development

28 // +--+
29 // | ‘define B1024
30 // +--+
31 // | ‘define B1152
32 // +--+
33 // | ‘define B1600
34 // +--+
35 // | ‘define B2304
36 // +--+
37 // | ‘define B3136
38 // +--+
39 // | ‘define B4096
40 // |--|
41

42 ‘define B3136
43

44 // |--|
45 // | If the FPGA has Uram. You can define URAM_EN parameter
46 // | if change , Don ’t need update model
47 // +--+
48 // | for zcu104 : ‘define URAM_ENABLE
49 // +--+
50 // | for zcu102 : ‘define URAM_DISABLE
51 // |--|
52

53 ‘define URAM_ENABLE
54

55 // config URAM
56 ‘ifdef URAM_ENABLE
57 ‘define def_UBANK_IMG_N 6
58 ‘define def_UBANK_WGT_N 17
59 ‘define def_UBANK_BIAS 1
60 ‘elsif URAM_DISABLE
61 ‘define def_UBANK_IMG_N 0
62 ‘define def_UBANK_WGT_N 0
63 ‘define def_UBANK_BIAS 0
64 ‘endif
65

66 // |--|
67 // | You can use DRAM if FPGA has extra LUTs
68 // | if change , Don ’t need update model
69 // +--+
70 // | Enable DRAM : ‘define DRAM_ENABLE
71 // +--+
72 // | Disable DRAM : ‘define DRAM_DISABLE
73 // |--|
74

75 ‘define DRAM_DISABLE
76

71

Platform Development

77 // config DRAM
78 ‘ifdef DRAM_ENABLE
79 ‘define def_DBANK_IMG_N 1
80 ‘define def_DBANK_WGT_N 1
81 ‘define def_DBANK_BIAS 1
82 ‘elsif DRAM_DISABLE
83 ‘define def_DBANK_IMG_N 0
84 ‘define def_DBANK_WGT_N 0
85 ‘define def_DBANK_BIAS 0
86 ‘endif
87

88 // |--|
89 // | RAM Usage Configuration
90 // | It relates to model. if change , must update model
91 // +--+
92 // | RAM Usage High : ‘define RAM_USAGE_HIGH
93 // +--+
94 // | RAM Usage Low : ‘define RAM_USAGE_LOW
95 // |--|
96

97 ‘define RAM_USAGE_LOW
98

99 // |--|
100 // | Channel Augmentation Configuration
101 // | It relates to model. if change , must update model
102 // +--+
103 // | Enable : ‘define CHANNEL_AUGMENTATION_ENABLE
104 // +--+
105 // | Disable : ‘define CHANNEL_AUGMENTATION_DISABLE
106 // |--|
107

108 ‘define CHANNEL_AUGMENTATION_ENABLE
109

110 // |--|
111 // | ALU parallel Configuration
112 // | It relates to model. if change , must update model
113 // +--+
114 // | setting 0 : ‘define ALU_PARALLEL_DEFAULT
115 // +--+
116 // | setting 1 : ‘define ALU_PARALLEL_1
117 // |--|
118 // | setting 2 : ‘define ALU_PARALLEL_2
119 // |--|
120 // | setting 3 : ‘define ALU_PARALLEL_4
121 // |--|
122 // | setting 4 : ‘define ALU_PARALLEL_8
123 // |--|
124

125 ‘define ALU_PARALLEL_DEFAULT

72

Platform Development

126

127 // +--+
128 // | CONV RELU Type Configuration
129 // | It relates to model. if change , must update model
130 // +--+
131 // | ‘define CONV_RELU_RELU6
132 // +--+
133 // | ‘define CONV_RELU_LEAKYRELU_RELU6
134 // |--|
135

136 ‘define CONV_RELU_LEAKYRELU_RELU6
137

138 // +--+
139 // | ALU RELU Type Configuration
140 // | It relates to model. if change , must update model
141 // +--+
142 // | ‘define ALU_RELU_RELU6
143 // +--+
144 // | ‘define ALU_RELU_LEAKYRELU_RELU6
145 // |--|
146

147 ‘define ALU_RELU_RELU6
148

149 // |--|
150 // | argmax or max Configuration
151 // | It relates to model. if change , must update model
152 // +--+
153 // | enable : ‘define SAVE_ARGMAX_ENABLE
154 // +--+
155 // | disable : ‘define SAVE_ARGMAX_DISABLE
156 // |--|
157

158 // ‘define SAVE_ARGMAX_ENABLE
159

160 // |--|
161 // | DSP48 Usage Configuration
162 // | Use dsp replace of lut in conv operate
163 // | if change , Don ’t need update model
164 // +--+
165 // | ‘define DSP48_USAGE_HIGH
166 // +--+
167 // | ‘define DSP48_USAGE_LOW
168 // |--|
169

170 ‘define DSP48_USAGE_HIGH
171

172 // |--|
173 // | Power Configuration
174 // | if change , Don ’t need update model

73

Platform Development

175 // +--+
176 // | ‘define LOWPOWER_ENABLE
177 // +--+
178 // | ‘define LOWPOWER_DISABLE
179 // |--|
180

181 ‘define LOWPOWER_DISABLE
182

183 // |--|
184 // | DEVICE Configuration
185 // | if change , Don ’t need update model
186 // +--+
187 // | ‘define MPSOC
188 // +--+
189 // | ‘define ZYNQ7000
190 // |--|
191

192 ‘define MPSOC

Listing B.2: Pre-processing header file with parameters
1 /*
2 * Copyright 2020 Xilinx , Inc.
3 *
4 * Licensed under the Apache License , Version 2.0 (the " License ");
5 * you may not use this file except in compliance with the License

.
6 * You may obtain a copy of the License at
7 *
8 * http :// www. apache .org/ licenses /LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in writing ,
software

11 * distributed under the License is distributed on an "AS IS"
BASIS ,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or
implied .

13 * See the License for the specific language governing permissions
and

14 * limitations under the License .
15 */
16

17 // Max image resoultion
18

19 // Enable or disable channel Swap
20 # define BGR2RGB 0
21 // Enable or disable crop
22 # define CROP 0
23

24 static constexpr int WIDTH = 3840;

74

Platform Development

25 static constexpr int HEIGHT = 2160;
26

27 static constexpr int INPUT_PTR_WIDTH = 64;
28 static constexpr int OUTPUT_PTR_WIDTH = 64;
29

30 static constexpr int IN_TYPE = XF_8UC3 ;
31 static constexpr int OUT_TYPE = XF_8UC3 ;
32 // Pixels processed per cycle
33 static constexpr int NPC = XF_NPPC1 ;
34

35 // preprocess kernel params out = (in - a) * b
36 // a, b and out are fixed point values and below params are used

to configure
37 // the width and integer bits
38 static constexpr int WIDTH_A = 8;
39 static constexpr int IBITS_A = 8;
40 static constexpr int WIDTH_B = 8;
41 static constexpr int IBITS_B = 4; // so B is 8-bit wide and 4-bits

are integer bits
42 static constexpr int WIDTH_OUT = 8;
43 static constexpr int IBITS_OUT = 8;
44

45 // Resize configuration parameters
46 static constexpr int NEWWIDTH = 1216; // Training and Quantization

width
47 static constexpr int NEWHEIGHT = 320; // Almost - Training and

Quantization height
48

49 static constexpr int MAXDOWNSCALE = 9;
50

51 static constexpr int INTERPOLATION = 1;
52

53 static constexpr int XF_CV_DEPTH = 2;

Listing B.3: Pre-processing header file with inclusions
1 /*
2 * Copyright 2020 Xilinx , Inc.
3 *
4 * Licensed under the Apache License , Version 2.0 (the " License ");
5 * you may not use this file except in compliance with the License

.
6 * You may obtain a copy of the License at
7 *
8 * http :// www. apache .org/ licenses /LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in writing ,
software

11 * distributed under the License is distributed on an "AS IS"
BASIS ,

75

Platform Development

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or
implied .

13 * See the License for the specific language governing permissions
and

14 * limitations under the License .
15 */
16

17 # ifndef _XF_BLOBFROMIMAGE_CONFIG_
18 # define _XF_BLOBFROMIMAGE_CONFIG_
19

20 # include " common / xf_common .hpp"
21 # include " common / xf_utility .hpp"
22 # include "dnn/ xf_preprocess .hpp"
23 # include " imgproc / xf_crop .hpp"
24 # include " imgproc / xf_cvt_color .hpp"
25 # include " imgproc / xf_cvt_color_1 .hpp"
26 # include " imgproc / xf_duplicateimage .hpp"
27 # include " imgproc / xf_resize .hpp"
28 # include " xf_config_params .h"
29 # include <ap_int .h>
30 # include <hls_stream .h>
31

32 # define _XF_SYNTHESIS_ 1
33

34 #endif

Listing B.4: Pre-processing definition file
1 /*
2 * Copyright 2020 Xilinx , Inc.
3 *
4 * Licensed under the Apache License , Version 2.0 (the " License ");
5 * you may not use this file except in compliance with the License

.
6 * You may obtain a copy of the License at
7 *
8 * http :// www. apache .org/ licenses /LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in writing ,
software

11 * distributed under the License is distributed on an "AS IS"
BASIS ,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or
implied .

13 * See the License for the specific language governing permissions
and

14 * limitations under the License .
15 */
16 # include " xf_pp_pipeline_config .h"

76

Platform Development

17 void pp_pipeline_accel (ap_uint < INPUT_PTR_WIDTH >* img_inp_y , // Y
Input image pointer

18 ap_uint < INPUT_PTR_WIDTH >* img_inp_uv , // UV Input
image pointer

19 ap_uint < OUTPUT_PTR_WIDTH >* img_out , //
output image pointer

20 float params [2 * XF_CHANNELS (IN_TYPE , NPC
)],

21 int in_img_width ,
22 int in_img_height ,
23 int in_img_linestride ,
24 int out_img_width , // Final Output

image width
25 int out_img_height , // Final Output

image height
26 int out_img_linestride) { // Final Output

image line stride
27 // clang - format off
28 # pragma HLS INTERFACE m_axi port= img_inp_y offset =slave

bundle =gmem1
29 # pragma HLS INTERFACE m_axi port= img_inp_uv offset =slave

bundle =gmem2
30 # pragma HLS INTERFACE m_axi port= img_out offset =slave bundle =

gmem3
31 # pragma HLS INTERFACE m_axi port= params offset =slave bundle =

gmem4
32 # pragma HLS INTERFACE s_axilite port= in_img_width
33 # pragma HLS INTERFACE s_axilite port= in_img_height
34 # pragma HLS INTERFACE s_axilite port= in_img_linestride
35 # pragma HLS INTERFACE s_axilite port= out_img_width
36 # pragma HLS INTERFACE s_axilite port= out_img_height
37 # pragma HLS INTERFACE s_axilite port= out_img_linestride
38 # pragma HLS INTERFACE s_axilite port= return
39 // clang - format on
40 xf::cv::Mat <XF_8UC1 , HEIGHT , WIDTH , NPC , XF_CV_DEPTH >

imgInput_y (in_img_height , in_img_width);
41 # pragma HLS stream variable = imgInput_y .data depth = 2
42 xf::cv::Mat <XF_8UC2 , HEIGHT /2, WIDTH /2, NPC , XF_CV_DEPTH >

imgInput_uv (in_img_height /2, in_img_width /2);
43 # pragma HLS stream variable = imgInput_uv .data depth = 2
44 xf::cv::Mat <XF_8UC3 , HEIGHT , WIDTH , NPC , XF_CV_DEPTH > rgb_mat (

in_img_height , in_img_width);
45 # pragma HLS stream variable = rgb_mat .data depth = 2
46

47 #if BGR2RGB
48 xf::cv::Mat <XF_8UC3 , HEIGHT , WIDTH , NPC , XF_CV_DEPTH >

ch_swap_mat (in_img_height , in_img_width);
49 #endif

77

Platform Development

50 xf::cv::Mat <XF_8UC3 , NEWHEIGHT , NEWWIDTH , NPC , XF_CV_DEPTH >
resize_out_mat (out_img_height , out_img_width);

51 # pragma HLS stream variable = resize_out_mat .data depth = 2
52 xf::cv::Mat <OUT_TYPE , NEWHEIGHT , NEWWIDTH , NPC , XF_CV_DEPTH >

out_mat (out_img_height , out_img_width);
53 // clang - format off
54 # pragma HLS stream variable = out_mat .data depth = 2
55 xf::cv:: accel_utils obj_iny , obj_inuv ;
56 # pragma HLS DATAFLOW
57 // clang - format on
58 obj_iny . Array2xfMat < INPUT_PTR_WIDTH , XF_8UC1 , HEIGHT , WIDTH ,

NPC , XF_CV_DEPTH >(img_inp_y , imgInput_y , in_img_linestride);
59 obj_inuv . Array2xfMat < INPUT_PTR_WIDTH , XF_8UC2 , HEIGHT /2, WIDTH

/2, NPC , XF_CV_DEPTH > (img_inp_uv , imgInput_uv ,
in_img_linestride /2);

60 xf::cv:: nv122bgr <XF_8UC1 , XF_8UC2 , XF_8UC3 , HEIGHT , WIDTH , NPC
, NPC , XF_CV_DEPTH , XF_CV_DEPTH , XF_CV_DEPTH >(imgInput_y ,
imgInput_uv , rgb_mat);

61

62 #if BGR2RGB
63 xf::cv:: bgr2rgb <IN_TYPE , OUT_TYPE , HEIGHT , WIDTH , NPC ,

XF_CV_DEPTH , XF_CV_DEPTH >(rgb_mat , ch_swap_mat);
64 xf::cv:: resize < INTERPOLATION , IN_TYPE , HEIGHT , WIDTH ,

NEWHEIGHT , NEWWIDTH , NPC , MAXDOWNSCALE , XF_CV_DEPTH , XF_CV_DEPTH
>(ch_swap_mat ,

65

resize_out_mat);
66 #else
67 xf::cv:: resize < INTERPOLATION , IN_TYPE , HEIGHT , WIDTH ,

NEWHEIGHT , NEWWIDTH , NPC , MAXDOWNSCALE , XF_CV_DEPTH , XF_CV_DEPTH >(
rgb_mat ,

68

resize_out_mat);
69 #endif
70 xf::cv:: preProcess <IN_TYPE , OUT_TYPE , NEWHEIGHT , NEWWIDTH , NPC

,WIDTH_A , IBITS_A , WIDTH_B , IBITS_B , WIDTH_OUT ,IBITS_OUT ,
XF_CV_DEPTH , XF_CV_DEPTH >(resize_out_mat , out_mat , params);

71 xf::cv:: xfMat2Array < OUTPUT_PTR_WIDTH , OUT_TYPE , NEWHEIGHT ,
NEWWIDTH , NPC , XF_CV_DEPTH >(out_mat , img_out , out_img_linestride
);

72 }

Listing B.5: Overlay configuration file
1 # /*
2 # * Copyright 2019 Xilinx Inc.
3 # *
4 # * Licensed under the Apache License , Version 2.0 (the " License ")

;

78

Platform Development

5 # * you may not use this file except in compliance with the
License .

6 # * You may obtain a copy of the License at
7 # *
8 # * http :// www. apache .org/ licenses /LICENSE -2.0
9 # *

10 # * Unless required by applicable law or agreed to in writing ,
software

11 # * distributed under the License is distributed on an "AS IS"
BASIS ,

12 # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express
or implied .

13 # * See the License for the specific language governing
permissions and

14 # * limitations under the License .
15 # */
16

17

18 [clock]
19

20 freqHz =300000000: DPUCZDX8G_1 .aclk
21 freqHz =600000000: DPUCZDX8G_1 . ap_clk_2
22 freqHz =300000000: pp_pipeline_accel_1 . ap_clk
23

24 #id =0: DPUCZDX8G_1 .aclk
25 #id =1: DPUCZDX8G_1 . ap_clk_2
26

27 [connectivity]
28

29 sp= DPUCZDX8G_1 . M_AXI_GP0 :HP1
30 sp= DPUCZDX8G_1 . M_AXI_HP0 :HP1
31 sp= DPUCZDX8G_1 . M_AXI_HP2 :HPC1
32 sp= pp_pipeline_accel_1 . m_axi_gmem1 :HP3
33 sp= pp_pipeline_accel_1 . m_axi_gmem2 :HP3
34 sp= pp_pipeline_accel_1 . m_axi_gmem3 :HP3
35 sp= pp_pipeline_accel_1 . m_axi_gmem4 :HP3
36

37 [advanced]
38 misc =: solution_name =link
39 param= compiler . userPostSysLinkOverlayTcl =/ home/ davide / thesis /

kv260_workspace /kria -vitis - platforms /kv260/ overlays / examples /
smartcam / prj_conf / strip_interconnects .tcl

40 param= compiler . addOutputTypes = hw_export
41 #param= compiler . addOutputTypes = sd_card
42 #param= compiler . skipTimingCheckAndFrequencyScaling =1
43

44 [vivado]
45 prop=run. impl_1 . strategy = Performance_Explore
46 impl.jobs =3

79

Platform Development

47 synth.jobs =3
48 #prop=run. impl_1 . strategy = Congestion_SpreadLogic_high
49 #prop=run. impl_1 . strategy = Performance_NetDelay_high
50 #prop=run. impl_1 . strategy = Performance_WLBlockPlacementFanoutOpt
51 #prop=run. impl_1 . strategy = Performance_WLBlockPlacement
52 #prop=run. impl_1 . strategy = Performance_ExploreWithRemap
53 #prop=run. impl_1 . strategy = Performance_BalanceSLRs
54 #prop=run. impl_1 . strategy = Performance_EarlyBlockPlacement
55 #prop=run. impl_1 . strategy = Performance_ExtraTimingOpt
56 #prop=run. impl_1 . strategy = Performance_NetDelay_low
57 #param=place. runPartPlacer =0

Listing B.6: Device binary tree of the PL design
1 /*
2 * CAUTION : This file is automatically generated by Xilinx .
3 * Version : XSCT 2022.2
4 * Today is: Tue Feb 20 18:46:47 2024
5 */
6

7 /*
8 * Added features by Davide Altamore are marked with " ### ".
9 * Today is: Tue Feb 20 2024 > Corrections : Fri Mar 01 2024

10 * Purpose : to match the smartcamera application requirements .
11 * Source : https :// xilinx . github .io/kria -apps -docs/

creating_applications /2022.1/ build/html/docs/
dtsi_dtbo_generation_smartcam_example .html

12 */
13

14

15 /dts -v1/;
16 / plugin /;
17 / {
18 fragment@0 {
19 target = <&fpga_full >;
20 overlay0 : __overlay__ {
21 #address -cells = <2>;
22 #size -cells = <2>;
23 firmware -name = " kv260_smartcam .bit.bin ";
24 pid = <0x0 >;
25 resets = <& zynqmp_reset 116 >;
26 uid = <0x0 >;
27 };
28 };
29 fragment@1 {
30 target = <&amba >;
31 overlay1 : __overlay__ {
32 afi0: afi0 {
33 compatible = "xlnx ,afi -fpga ";

80

Platform Development

34 config -afi = < 0 0>, <1 0>, <2 0>, <3 0>, <4 0>,
<5 0>, <6 0>, <7 0>, <8 0>, <9 0>, <10 0>, <11 0>, <12 2>, <13
2>, <14 0x0 >, <15 0x000 >;

35 };
36 clocking0 : clocking0 {
37 #clock -cells = <0>;
38 assigned -clock -rates = <99999001 >;
39 assigned - clocks = <& zynqmp_clk 71>;
40 clock -output -names = " fabric_clk ";
41 clocks = <& zynqmp_clk 71>;
42 compatible = "xlnx ,fclk ";
43 };
44 };
45 };
46 fragment@2 {
47 target = <&amba >;
48 overlay2 : __overlay__ {
49 #address -cells = <2>;
50 #size -cells = <2>;
51 axi_iic_0 : i2c@80030000 {
52 #address -cells = <1>;
53 #size -cells = <0>;
54 clock -names = " s_axi_aclk ";
55 clocks = <&misc_clk_0 >;
56 compatible = "xlnx ,axi -iic -2.1" , "xlnx ,xps -iic

-2.00. a";
57 interrupt -names = " iic2intc_irpt ";
58 interrupt - parent = <&gic >;
59 interrupts = <0 107 4>;
60 reg = <0x0 0 x80030000 0x0 0x10000 >;
61

62 /* ### i2c mux */
63 i2c_mux : i2c - mux@74 {
64 compatible = "nxp , pca9546 ";
65 #address -cells = <1>;
66 #size -cells = <0>;
67 reg = <0x74 >;
68 i2c@0 {
69 #address -cells = <1>;
70 #size -cells = <0>;
71 reg = <0>;
72 ap1302 : isp@3c {
73 compatible = "onnn , ap1302 ";
74 reg = <0x3c >;
75 #address -cells = <1>;
76 #size -cells = <0>;
77 reset -gpios = <&gpio 79 1>;
78 clocks = <&ap1302_clk >;
79 sensors {

81

Platform Development

80 #address -cells = <1>;
81 #size -cells = <0>;
82 onnn ,model = "onnn , ar1335 ";
83 sensor@0 {
84 reg = <0>;
85 vdd - supply = <&ap1302_vdd >;
86 vaa - supply = <&ap1302_vaa >;
87 vddio - supply = <& ap1302_vddio

>;
88 };
89 };
90 ports {
91 #address -cells = <1>;
92 #size -cells = <0>;
93 port@0 {
94 reg = <2>;
95 isp_out : endpoint {
96 remote - endpoint = <&

mipi_csi_incapture_pipeline_mipi_csi2_rx_subsyst_0 >;
97 data -lanes = <1 2 3 4>;
98 };
99 };

100 };
101 };
102 };
103 };
104 };
105 misc_clk_0 : misc_clk_0 {
106 #clock -cells = <0>;
107 clock - frequency = <99999000 >;
108 compatible = "fixed -clock ";
109 };
110 axi_vip_0 : axi_vip@a0000000 {
111 /* This is a place holder node for a custom IP ,

user may need to update the entries */
112 clock -names = "aclk ";
113 clocks = <&misc_clk_1 >;
114 compatible = "xlnx ,axi -vip -1.1";
115 reg = <0x0 0 xa0000000 0x0 0x10000 >;
116 xlnx ,axi -addr -width = <0x20 >;
117 xlnx ,axi -aruser -width = <0x10 >;
118 xlnx ,axi -awuser -width = <0x10 >;
119 xlnx ,axi -buser -width = <0x0 >;
120 xlnx ,axi -has - aresetn = <0x1 >;
121 xlnx ,axi -has -bresp = <0x1 >;
122 xlnx ,axi -has -burst = <0x1 >;
123 xlnx ,axi -has -cache = <0x1 >;
124 xlnx ,axi -has -lock = <0x1 >;
125 xlnx ,axi -has -prot = <0x1 >;

82

Platform Development

126 xlnx ,axi -has -qos = <0x1 >;
127 xlnx ,axi -has - region = <0x0 >;
128 xlnx ,axi -has -rresp = <0x1 >;
129 xlnx ,axi -has -wstrb = <0x1 >;
130 xlnx ,axi -interface -mode = <0x2 >;
131 xlnx ,axi - protocol = <0x0 >;
132 xlnx ,axi -rdata -width = <0x20 >;
133 xlnx ,axi -rid -width = <0x10 >;
134 xlnx ,axi -ruser -width = <0x0 >;
135 xlnx ,axi -supports - narrow = <0x1 >;
136 xlnx ,axi -wdata -width = <0x20 >;
137 xlnx ,axi -wid -width = <0x10 >;
138 xlnx ,axi -wuser -width = <0x0 >;
139 };
140 misc_clk_1 : misc_clk_1 {
141 #clock -cells = <0>;
142 clock - frequency = <299997000 >;
143 compatible = "fixed -clock ";
144 };
145 capture_pipeline_mipi_csi2_rx_subsyst_0 :

mipi_csi2_rx_subsystem@80000000 {
146 clock -names = " lite_aclk ", " dphy_clk_200M ", "

video_aclk ";
147 clocks = <&misc_clk_0 >, <&misc_clk_2 >, <&

misc_clk_1 >;
148 compatible = "xlnx ,mipi -csi2 -rx -subsystem -5.2" , "

xlnx ,mipi -csi2 -rx -subsystem -5.0";
149 interrupt -names = " csirxss_csi_irq ";
150 interrupt - parent = <&gic >;
151 interrupts = <0 104 4>;
152 xlnx ,csi -pxl - format = <0x18 >; // ### Added
153 reg = <0x0 0 x80000000 0x0 0x2000 >;
154 xlnx ,axis -tdata -width = <32>;
155 xlnx ,max -lanes = <4>;
156 xlnx ,en -active -lanes; // ### Added
157 xlnx ,ppc = <2>;
158 xlnx ,vfb ;
159

mipi_csi_portscapture_pipeline_mipi_csi2_rx_subsyst_0 : ports {
160 #address -cells = <1>;
161 #size -cells = <0>;
162

mipi_csi_port1capture_pipeline_mipi_csi2_rx_subsyst_0 : port@1 {
163 /* Fill cfa - pattern =rggb for raw data

types , other fields video - format and video -width user needs to
fill */

164 reg = <1>;
165 /* ### Removed since no longer supported
166 xlnx ,cfa - pattern = "rggb ";

83

Platform Development

167 xlnx ,video - format = <12>;
168 xlnx ,video -width = <8>;*/
169

mipi_csirx_outcapture_pipeline_mipi_csi2_rx_subsyst_0 : endpoint
{

170 remote - endpoint = <&
capture_pipeline_v_frmbuf_wr_0capture_pipeline_mipi_csi2_rx_subsyst_0
>;

171 };
172 };
173

mipi_csi_port0capture_pipeline_mipi_csi2_rx_subsyst_0 : port@0 {
174 /* Fill cfa - pattern =rggb for raw data

types , other fields video -format ,video -width user needs to fill
*/

175 /* User need to add something like remote -
endpoint =<&out > under the node csiss_in : endpoint */

176 reg = <0>;
177 /* ### Removed since no longer supported
178 xlnx ,cfa - pattern = "rggb ";
179 xlnx ,video - format = <12>;
180 xlnx ,video -width = <8>; */
181

mipi_csi_incapture_pipeline_mipi_csi2_rx_subsyst_0 : endpoint {
182 data -lanes = <1 2 3 4>;
183 // ### Connect the remote endpoint to

camera serial out
184 remote - endpoint = <&isp_out >;
185 };
186 };
187 };
188 };
189 misc_clk_2 : misc_clk_2 {
190 #clock -cells = <0>;
191 clock - frequency = <199998000 >;
192 compatible = "fixed -clock ";
193 };
194 capture_pipeline_v_frmbuf_wr_0 : v_frmbuf_wr@b0010000 {
195 #dma -cells = <1>;
196 clock -names = " ap_clk ";
197 clocks = <&misc_clk_1 >;
198 compatible = "xlnx ,v-frmbuf -wr -2.4" , "xlnx ,axi -

frmbuf -wr -v2 .2";
199 interrupt -names = " interrupt ";
200 interrupt - parent = <&gic >;
201 interrupts = <0 105 4>;
202 reg = <0x0 0 xb0010000 0x0 0x10000 >;
203 reset -gpios = <&gpio 78 1>;
204 xlnx ,dma -addr -width = <32>;

84

Platform Development

205 xlnx ,dma -align = <16>;
206 xlnx ,max - height = <2160 >;
207 xlnx ,max -width = <3840 >;
208 xlnx ,pixels -per -clock = <2>;
209 xlnx ,s-axi -ctrl -addr -width = <0x7 >;
210 xlnx ,s-axi -ctrl -data -width = <0x20 >;
211 xlnx ,vid - formats = "nv12 ";
212 xlnx ,video - width = <8>;
213 };
214 vcu_vcu_0 : vcu@80100000 {
215 #address -cells = <2>;
216 #clock -cells = <1>;
217 #size -cells = <2>;
218 clock -names = " pll_ref ", "aclk", " vcu_core_enc ", "

vcu_mcu_enc ", " vcu_core_dec ", " vcu_mcu_dec ";
219 clocks = <&misc_clk_3 >, <&misc_clk_0 >, <& vcu_vcu_0

0>, <& vcu_vcu_0 1>, <& vcu_vcu_0 2>, <& vcu_vcu_0 3>;
220 compatible = "xlnx ,vcu -1.2" , "xlnx ,vcu ";
221 interrupt -names = " vcu_host_interrupt ";
222 interrupt - parent = <&gic >;
223 interrupts = <0 106 4>;
224 ranges ;
225 reg = <0x0 0 x80140000 0x0 0x1000 >, <0x0 0 x80141000

0x0 0x1000 >;
226 reg - names = " vcu_slcr ", " logicore ";
227 reset -gpios = <&gpio 80 0>;
228 encoder : al5e@80100000 {
229 compatible = "al ,al5e -1.2" , "al ,al5e ";
230 interrupt - parent = <&gic >;
231 interrupts = <0 106 4>;
232 reg = <0x0 0 x80100000 0x0 0x10000 >;
233 };
234 decoder : al5d@80120000 {
235 compatible = "al ,al5d -1.2" , "al ,al5d ";
236 interrupt - parent = <&gic >;
237 interrupts = <0 106 4>;
238 reg = <0x0 0 x80120000 0x0 0x10000 >;
239 };
240 };
241 misc_clk_3 : misc_clk_3 {
242 #clock -cells = <0>;
243 clock - frequency = <49999500 >;
244 compatible = "fixed -clock ";
245 };
246 zyxclmm_drm {
247 compatible = "xlnx ,zocl ";
248 status = "okay "; // ### Added
249 interrupt - parent = <&gic >; // ### Added

85

Platform Development

250 interrupts = <0 89 4>, <0 90 4>, <0 91 4>, <0
92 4>,

251 <0 93 4>, <0 94 4>, <0 95 4>, <0 96
4>; // ### Added

252 };
253 vcap_capture_pipeline_mipi_csi2_rx_subsyst_0 {
254 compatible = "xlnx ,video ";
255 dma - names = "port0 ";
256 dmas = <& capture_pipeline_v_frmbuf_wr_0 0>;
257 vcap_portscapture_pipeline_mipi_csi2_rx_subsyst_0 :

ports {
258 #address -cells = <1>;
259 #size -cells = <0>;
260

vcap_portcapture_pipeline_mipi_csi2_rx_subsyst_0 : port@0 {
261 direction = "input ";
262 reg = <0>;
263

capture_pipeline_v_frmbuf_wr_0capture_pipeline_mipi_csi2_rx_subsyst_0
: endpoint {

264 remote - endpoint = <&
mipi_csirx_outcapture_pipeline_mipi_csi2_rx_subsyst_0 >;

265 };
266 };
267 };
268 };
269

270 /* ### ap1302 */
271 ap1302_clk : sensor_clk {
272 #clock -cells = <0x0 >;
273 compatible = "fixed -clock ";
274 clock - frequency = <0x48000000 >;
275 };
276

277 ap1302_vdd : fixedregulator@0 {
278 compatible = "regulator -fixed ";
279 regulator -name = " ap1302_vdd ";
280 regulator -min - microvolt = <2800000 >;
281 regulator -max - microvolt = <2800000 >;
282 enable -active -high;
283 };
284

285 ap1302_vaa : fixedregulator@1 {
286 compatible = "regulator -fixed ";
287 regulator -name = " ap1302_vaa ";
288 regulator -min - microvolt = <1800000 >;
289 regulator -max - microvolt = <1800000 >;
290 };
291

86

Platform Development

292 ap1302_vddio : fixedregulator@2 {
293 compatible = "regulator -fixed ";
294 regulator -name = " ap1302_vddio ";
295 regulator -min - microvolt = <1200000 >;
296 regulator -max - microvolt = <1200000 >;
297 };
298 };
299 };
300 };

Listing B.7: Yocto BitBake recipe metadata file (.bb) with the FPGA firmware
1 #
2 # This file is the kv260 - smartcam recipe .
3 #
4

5 SUMMARY = " Simple kv260 - smartcam to use fpgamanager class"
6 SECTION = " PETALINUX /apps"
7 LICENSE = "MIT"
8 LIC_FILES_CHKSUM = "file ://${ COMMON_LICENSE_DIR }/ MIT;md5 =0835

ade698e0bcf8506ecda2f7b4f302 "
9

10 inherit fpgamanager_custom
11

12 SRC_URI = "file :// kv260 - smartcam .bit \
13 file :// shell.json \
14 file :// kv260 - smartcam .dtsi \
15 file :// kv260 - smartcam . xclbin \
16 "

Listing B.8: Yocto BitBake recipe metadata file (.bb) with the software packages
required by the Smartcam application

1 SUMMARY = " Example Smartcam application "
2

3 LICENSE = "Apache -2.0"
4 LIC_FILES_CHKSUM = "file :// LICENSE ;md5=

a9c5ded2ac97b4ce01aa0ace8f3a1755 "
5

6 # BRANCH = " xlnx_rel_v2022 .1"
7 # SRC_URI = "git :// github .com/ Xilinx / smartcam .git; protocol =https;

branch =${ BRANCH }"
8 # SRCREV = " ad9523ee5f002141334698eb6ddc9a14679ac8d2 "
9

10 inherit cmake
11

12 DEPENDS = "vvas -accel -libs glog gstreamer1 .0-rtsp - server opencv "
13 RDEPENDS :${PN} = " \
14 gst -perf \
15 gstreamer1 .0- omx \

87

Platform Development

16 gstreamer1 .0- plugins -bad -faac \
17 gstreamer1 .0- plugins -bad - mpegtsmux \
18 gstreamer1 .0- plugins -good -rtp \
19 gstreamer1 .0- plugins -bad -kms \
20 gstreamer1 .0- plugins -bad - mediasrcbin \
21 gstreamer1 .0- plugins -bad - videoparsersbad \
22 gstreamer1 .0- plugins -good - multifile \
23 gstreamer1 .0- plugins -good - rtpmanager \
24 gstreamer1 .0- plugins -good -udp \
25 gstreamer1 .0- plugins -good - video4linux2 \
26 gstreamer1 .0- python \
27 gstreamer1 .0-rtsp - server \
28 vvas -accel -libs \
29 libdrm -tests \
30 v4l -utils \
31 alsa -utils \
32 python3 -core \
33 "
34

35 SOMAPP_INSTALL_PATH = "/"
36 EXTRA_OECMAKE += "- DCMAKE_BUILD_TYPE = Release -DCMAKE_SYSROOT =${

STAGING_DIR_HOST } -DCMAKE_INSTALL_PREFIX =${ SOMAPP_INSTALL_PATH }
"

37

38 S = "${ WORKDIR }/ git"
39

40 FILES:${PN} += " \
41 /opt/ xilinx \
42 "

Listing B.9: Yocto BitBake recipe metadata file (.bb) for the AP1302 firmware
(1)

1 SUMMARY = " ap1302 ar1335 - single firmware binary "
2

3 include ap1302 - firmware .inc
4

5 FW_NAME = " ap1302_ar1335_single_fw .bin"

Listing B.10: Yocto BitBake recipe metadata file (.bb) for the AP1302 firmware
(2)

1 LICENSE = " Proprietary "
2 LIC_FILES_CHKSUM = "file :// LICENSE .txt;md5 =9

c13aad1aab42f76326f1beceafc40c4 "
3

4 BRANCH ?= " xlnx_rel_v2022 .1"
5 SRC_URI = "git :// github .com/ Xilinx /ap1302 - firmware .git; protocol =

https; branch =${ BRANCH }"

88

Platform Development

6 SRCREV ?= "63 e20752dc8b1e91fc6d6d518ebeb76f65e9f738 "
7

8 S = "${ WORKDIR }/ git"
9

10 FW_NAME ?= ""
11

12 do_configure [noexec] = "1"
13 do_compile [noexec] = "1"
14

15 do_install () {
16 install -d ${D}/ lib/ firmware # create /lib/ firmware
17 install -m 0644 ${ FW_NAME } ${D}/ lib/ firmware /${ FW_NAME } # copy

firmware binary to /lib/ firmware
18 }
19

20 FILES:${PN} = "/ lib/ firmware /${ FW_NAME }"

Listing B.11: Yocto BitBake recipe metadata file (.bb) for the final application
kv260-ml-accel

1 DESCRIPTION = "ML Acceleration Smartcam related Packages "
2

3 inherit packagegroup
4

5 EXAMPLE_PACKAGES = " \
6 ap1302 -ar1335 -single - firmware \
7 kv260 - smartcam \
8 smartcam \
9 "

10

11 RDEPENDS :${PN} = "${ EXAMPLE_PACKAGES }"
12

13 COMPATIBLE_MACHINE = "^$"
14 COMPATIBLE_MACHINE :k26 -kv = "${ MACHINE }"
15 PACKAGE_ARCH = "${ MACHINE_ARCH }"

89

Appendix C

Application Development

Listing C.1: Pre-processing configuration file for the vvas_xmultisrc plug-in
1 {
2 "xclbin - location ":"/ lib/ firmware / xilinx /kv260 - smartcam /kv260 -

smartcam . xclbin ",
3 "vvas -library -repo ": "/ opt/ xilinx /kv260 - smartcam /lib",
4 "element -mode ": " transform ",
5 " kernels ":
6 [
7 {
8 "kernel -name ": " pp_pipeline_accel :{ pp_pipeline_accel_1

}",
9 "library -name ": " libvvas_xpp .so",

10 " config ": {
11 " debug_level " : 1,
12 " mean_r ": 0,
13 " mean_g ": 0,
14 " mean_b ": 0,
15 " scale_r ": 0.25 ,
16 " scale_g ": 0.25 ,
17 " scale_b ": 0.25
18 }
19 }
20]
21 }

Listing C.2: Inference configuration file for the vvas_xfilter plug-in
1 {
2 "xclbin - location ":"/ lib/ firmware / xilinx /kv260 - smartcam /kv260 -

smartcam . xclbin ",
3 "vvas -library -repo ": "/ usr/lib /",
4 "element -mode ":" inplace ",

90

Application Development

5 " kernels " :[
6 {
7 "library -name ":" libvvas_xdpuinfer .so",
8 " config ": {
9 "model -name" : " yolov5_kv260 ",

10 "model -class" : " YOLOV3 ",
11 "model -path" : "/ home/root/ target_kv260 / models ",
12 " run_time_model " : false ,
13 " need_preprocess " : false ,
14 " performance_test " : false ,
15 " debug_level " : 0
16 }
17 }
18]
19 }

Listing C.3: Post-processing configuration file for the vvas_xfilter plug-in
1 {
2 "xclbin - location ":"/ lib/ firmware / xilinx /kv260 -ml -accel/kv260 -

ml -accel. xclbin ",
3 "vvas -library -repo ": "/ opt/ xilinx /kv260 - smartcam /lib",
4 "element -mode ":" inplace ",
5 " kernels " :[
6 {
7 "library -name ":" libvvas_airender .so",
8 " config ": {
9 " fps_interval " : 10,

10 " font_size " : 2,
11 "font" : 3,
12 " thickness " : 2,
13 " debug_level " : 0,
14 " label_color " : { "blue" : 0, "green" : 0, "red" :

255 },
15 " label_filter " : ["class", " probability "],
16 " classes " : [
17 {
18 "name" : " Pedestrian ",
19 "blue" : 255,
20 "green" : 0,
21 "red" : 0
22 },
23 {
24 "name" : "Truck",
25 "blue" : 0,
26 "green" : 255 ,
27 "red" : 0
28 },
29 {
30 "name" : "Car",

91

Application Development

31 "blue" : 0,
32 "green" : 0,
33 "red" : 255
34 },
35 {
36 "name" : " Cyclist ",
37 "blue" : 0,
38 "green" : 255 ,
39 "red" : 255
40 },
41 {
42 "name" : "Misc",
43 "blue" : 255,
44 "green" : 0,
45 "red" : 255
46 },
47 {
48 "name" : "Van",
49 "blue" : 255,
50 "green" : 255 ,
51 "red" : 0
52 },
53 {
54 "name" : "Tram",
55 "blue" : 0,
56 "green" : 0,
57 "red" : 0
58 },
59 {
60 "name" : " Person_sitting ",
61 "blue" : 128,
62 "green" : 128 ,
63 "red" : 128
64 }
65]
66 }
67 }
68]
69 }

Listing C.4: Summary of used GStreamer pipeline
1 mediasrcbin media - device =/ dev/ media0 v4l2src0 ::io -mode= dmabuf

v4l2src0 :: stride -align =256 \
2 ! video/x-raw ,width =1920 , height =1080 , framerate =30/1 , format =NV12 \
3 ! tee name=t \
4 ! queue \
5 ! vvas_xmultisrc kconfig ="./ jsons/ preprocess .json" \
6 ! queue \
7 ! vvas_xfilter kernels - config ="./ jsons/ aiinference .json" \

92

Application Development

8 ! ima. sink_master vvas_xmetaaffixer name=ima ima. src_master \
9 ! fakesink t. \

10 ! queue max -size - buffers =1 leaky =2 \
11 ! ima. sink_slave_0 ima. src_slave_0 \
12 ! queue \
13 ! vvas_xfilter kernels - config ="./ jsons/ drawresult .json" \
14 ! queue \
15 ! kmssink driver -name=xlnx plane -id =39 sync=false fullscreen -

overlay =true bus -id= fd4a0000 . display connector -id =43 ’

Listing C.5: Python script with the application code
1 ’’’
2 ---

3 Edited by: Davide Altamore
4

5 APPLICATION CODE for pre -processing , DPU inference and post -
processing .

6 USAGE: see options in the parse argument section
7 NOTES: all the application code is based on the use of GStreamer

framework .
8 It provides plug -in to handle the video capture and

processing .
9 Also the VVAS GStreamer plug -ins are used.

10 ---

11 ’’’
12

13

14 ’’’
15 Imports and Initializations
16 ’’’
17

18 import os
19 import glob
20 import subprocess
21 import re
22 import sys
23 import argparse
24

25 # [DEBUG] Create a directory for saving the pipeline graph as dot
file.

26 dotdir = "./gst -dot/"
27 if not os.path.isdir(dotdir):
28 os. makedirs (dotdir)
29 # ... and set it as environment variable
30 os. environ [" GST_DEBUG_DUMP_DOT_DIR "] = dotdir
31 # Display dot file library
32 import pydot

93

Application Development

33 from IPython . display import Image , display , clear_output
34

35 # Add some util path
36 pathv="{}:/ usr/sbin :/ sbin". format (os. environ .get("PATH"))
37 os. environ ["PATH"] = pathv
38

39 # Import GStreamer - related libraries
40 # "gi" is the Python API for GObject Introspection .
41 # "gi. repository " is related to the repository of bindings

available via GObject Introspection .
42 # Importing bindings via this method is what replaces the old

straight Python bindings for gobject , glib , gtk and similar
libraries .

43 import gi
44 gi. require_version (’Gst ’, ’1.0 ’)
45 gi. require_version (" GstApp ", "1.0")
46 gi. require_version (’GstVideo ’, ’1.0 ’)
47 gi. require_version (’GstRtspServer ’, ’1.0 ’)
48 gi. require_version (’GIRepository ’, ’2.0 ’)
49 from gi. repository import GObject , GLib , Gst , GstVideo ,

GstRtspServer , GIRepository
50 # And initialize GStreamer
51 Gst.init(None)
52 mainloop = GLib. MainLoop ().new(None ,False)
53 # Let ’s set the debug level of each plug -in (wildcards are

allowed)
54 #Gst. debug_set_threshold_from_string (’*:1’, True)
55

56 # Training / Calibration dataset = Kitti (where all images have
arbitrary dimensions)

57 # To obtain good results from inference the captured dimensions
must match those ones

58 # used for training and calibration .
59 #img_w = 1216
60 #img_h = 320
61

62 ’’’
63 The application code ’s main core is the construction of
64 the String Representation of a GStreamer Pipeline to run
65 ’’’
66

67 # Search the device presence and return the device name string
68 # e.g. typically the media dev is /dev/ media0
69 def get_media_dev_by_name (src):
70 sources = {
71 ’usb ’ : ’uvcvideo ’,
72 ’mipi ’ : ’vcap_capture_pipeline_mipi_csi2 ’, # specific for

our case (use regex to generalize , string with ’csi ’ and ’vcap
’ words)

94

Application Development

73 }
74 devices = glob.glob(’/dev/media*’)
75 for dev in devices :
76 proc = subprocess .run ([’media -ctl ’, ’-d’, dev , ’-p’],

capture_output =True , encoding =’utf8 ’)
77 for line in proc. stdout . splitlines ():
78 if sources [src] in line:
79 return dev
80

81 # e.g. typically the media dev is /dev/ video0
82 def get_video_dev_of_mediadev (src):
83 proc = subprocess .Popen ([’media -ctl ’, ’-d’, src , ’-p’], stdout

= subprocess .PIPE)
84 output = subprocess . check_output ((’awk ’, ’/^ driver \s* uvcvideo /

{u=1} / device node name *\/ dev \/ video/ {x=$4;f=1; next} u&&f&&/
pad0: Sink/ {print x; x=""} f {f=0} ’), stdin=proc. stdout).
decode (’utf8 ’). splitlines ()

85 if len(output) > 1:
86 return output [0]
87

88 def app(vidsrc , vidout , img_w , img_h , not_inf , fps):
89

90 # Get the mediasrc index
91 if vidsrc == ’mipi ’ or vidsrc == ’usb ’:
92 media_device = get_media_dev_by_name (vidsrc)
93 if media_device is None:
94 raise Exception (’Unable to find video source ’ +

vidsrc + ’. Make sure the device is plugged in , powered , and
the correct platform is used.’)

95 else:
96 print("Found the video source at " + media_device)
97

98 # INPUT
99 # - Mipi: mediasrcbin

100 # Xilinx specific plug -in which is a bin element on
top of ‘v4l2src ‘ (video4linux2).

101 # It parses and configures the media graph of a media v4l2
device automatically (i.e. captures video from it).

102 if vidsrc == "mipi":
103 src = " mediasrcbin media - device =" + media_device
104 if vidout == " display ":
105 src += " v4l2src0 ::io -mode= dmabuf v4l2src0 :: stride -

align =256 "
106 # - Usb: v4l2src is directly used without mediasrcbin
107 elif vidsrc == "usb":
108 usbmedia = media_device
109 usbvideo = get_video_dev_of_mediadev (usbmedia)
110 src = " v4l2src name= videosrc device ={ usbvideo } io -mode=

mmap stride -align =256 ". format (usbvideo = usbvideo)

95

Application Development

111 # - File: all other strings are interpreted as video paths (
filesrc , h264parse and omxh264dec plug -ins)

112 else:
113 src = " filesrc location ={ vidsrc } ! h264parse ! queue !

omxh264dec ". format (vidsrc = vidsrc)
114

115 # For all the application code steps (pre -process , AI
inference and bbox drawing)

116 # some configuration files are required (json) and placed in
...

117 confdir = "./ jsons"
118

119 # If the video source does not support the NV12 format , the
pipeline can be adjusted

120 if vidsrc =="usb":
121 pipeline = src + ’ ! video/x-raw , width ={ img_w}, height ={

img_h} ! videoconvert ! video/x-raw , format =NV12 ’. format (img_w
=img_w ,img_h=img_h)

122 else: # mipi or file
123 pipeline = src + ’ ! video/x-raw , width ={ img_w}, height ={

img_h}, format =NV12 , framerate =30/1 ’. format (img_w=img_w ,img_h=
img_h)

124

125 if not(not_inf):
126 ’’’
127 PRE - PROCESS
128 Performing the pre - processing of the input images by

hardware is faster than doing it by software .
129 Indeed a dedicated accelerator IP has been generated , so

here the only step to do is to provide
130 a config file through the VVAS plugin , vvas_xmultisrc . ’’’
131 pipeline += ’ ! tee name=t ! queue ! vvas_xmultisrc

kconfig ="{ confdir }/ preprocess .json" ! queue ’. format (confdir =
confdir)

132

133 ’’’
134 AI INFERENCE
135 Inside the aiinference .json file the model path is set. ’’’
136 pipeline += ’ ! vvas_xfilter kernels - config ="{ confdir }/

aiinference .json" ’. format (confdir = confdir)
137

138 ’’’
139 DRAWING BBOX
140 Accept and scale the original AI inference meta info. As

the previous step , the meta info is pass down to here ,
141 the original buffer from t. is linked to the sink_slave_0 ,

and get the scaled meta at the corresponding src_slave_0 .
142 Finally draw the bbox on the buffer . ’’’

96

Application Development

143 pipeline += ’ ! ima. sink_master vvas_xmetaaffixer name=ima
ima. src_master ! fakesink t. ! queue max -size - buffers =1 leaky

=2 ! ima. sink_slave_0 ima. src_slave_0 ! queue ’
144 pipeline += ’ ! vvas_xfilter kernels - config ="{ confdir }/

drawresult .json" ! queue ’. format (confdir = confdir)
145

146 # DisplayPort /HDMI
147 if vidout == " display ":
148 if fps:
149 pipeline += ’ ! fpsdisplaysink text - overlay =true sync=

false\
150 video -sink =" kmssink driver -name=xlnx plane -id =39 sync

=false fullscreen - overlay =true bus -id= fd4a0000 . display
connector -id =43" ’

151 else:
152 pipeline += ’ ! kmssink driver -name=xlnx plane -id =39

sync=false fullscreen - overlay =true bus -id= fd4a0000 . display
connector -id =43 ’

153 # The pipeline is entirely concluded , set to a PLAYING
state by using OpenCV

154 gst_pipeline = Gst. parse_launch (pipeline)
155 print("The Gstreamer pipeline has been correctly parsed .")
156 gst_pipeline . set_state (Gst.State. PLAYING)
157 print("The Gstreamer pipeline ’s state has been set to

PLAYING .")
158

159 # [DEBUG] Generate pipeline dot file
160 # (" tmp" is the name for the dotfile that will be saved in

the location shown above , see the first lines)
161 Gst. debug_bin_to_dot_file (gst_pipeline , Gst.

DebugGraphDetails .ALL , "tmp")
162 dotfile = dotdir + "tmp.dot"
163 graph = pydot. graph_from_dot_file (dotfile , ’utf -8’)
164 print("A pipeline graph in dot format has been generated

for debug purposes . See { dotfile }". format (dotfile = dotfile))
165

166

167 def on_bus_message (bus , message):
168 if message .type == Gst. MessageType .EOS:
169 print("EOS message received .")
170 gst_pipeline . seek_simple (Gst. Format .TIME , Gst.

SeekFlags .FLUSH , 0)
171

172 # Set up a pipeline bus watch to catch errors
173 bus = gst_pipeline . get_bus ()
174 bus. add_signal_watch ()
175 bus. connect (’message ’, on_bus_message)
176

177 print(’Running mainloop ...\n’)

97

Application Development

178 print("Press CTRL+C to stop the pipeline ...")
179 # Let ’s run the pipeline in an infinite loop until the

SIGINT is sent
180 try:
181 mainloop .run ()
182 except KeyboardInterrupt :
183 print(" >>CTRL+C has been pressed . End of application

.<< ")
184 finally :
185 gst_pipeline . set_state (Gst.State.NULL)
186 mainloop .quit ()
187

188 # RSTP (Ethernet connection)
189 elif vidout == "rtsp":
190 server = GstRtspServer . RTSPServer .new ()
191 server .props. service = "5000"
192 mounts = server . get_mount_points ()
193 serverid = server . attach (None)
194 factory = GstRtspServer . RTSPMediaFactory ()
195 # Then pass the frame with bbox to do the VCU encoding (

with bbox info as encoding ROI):
196 # - ROI info for VCU encoding generation , vvas_xroigen .
197 pipeline += ’ ! queue ! vvas_xroigen roi -type =1 roi -qp -

delta = -10 roi -max -num =10 ’
198 # - VCU encoding , omxh264enc .
199 pipeline += ’! queue ! omxh264enc qp -mode =1 num - slices =8

gop - length =60 \
200 periodicity -idr =270 control -rate=low - latency

\
201 gop -mode=low -delay -p gdr -mode= horizontal cpb -

size =200 \
202 initial -delay =100 filler -data=false min -qp

=15 \
203 max -qp =40 b- frames =0 low - bandwidth =false

target - bitrate =3000 \
204 ! video/x-h264 , alignment =au ’
205 # RTP payloading
206 pipeline += ’! queue ! rtph264pay name=pay0 pt =96 ’
207 # Start the RTSP server with the pipeline string
208 factory . set_launch (’(’ + pipeline + ’)’)
209 factory . set_shared (True)
210 mounts . add_factory ("/test", factory)
211 out= subprocess . check_output (" ifconfig | grep inet", shell=

True)
212 for line in out. decode ("ascii"). splitlines ():
213 m = re. search (’inet *(.*?) ’, line)
214 if m:
215 found = m.group (1)
216 if found != " 127.0.0.1 ":

98

Application Development

217 break
218 uri="rtsp ://{}:{}/ test". format (" 127.0.0.1 " if (found =="")

else found , server .props. service)
219 print ("Video is now streaming from {src} source . \n\
220 Run the command \" ffplay {uri }\" in

another PC which have network access to the SoM board to view
the video .\n". format (src=vidsrc , uri=uri))

221 # File
222 else :
223 # Pass the frame with bbox to do the VCU encoding (with

bbox info as encoding ROI):
224 # - ROI info for VCU encoding generation , vvas_xroigen .
225 pipeline += ’ ! queue ! vvas_xroigen roi -type =1 roi -qp -

delta = -10 roi -max -num =10 ’
226 # - VCU encoding , omxh264enc .
227 pipeline += ’! queue ! omxh264enc qp -mode =1 num - slices =8

gop - length =60 \
228 periodicity -idr =270 control -rate=low - latency

\
229 gop -mode=low -delay -p gdr -mode= horizontal cpb -

size =200 \
230 initial -delay =100 filler -data=false min -qp

=15 \
231 max -qp =40 b- frames =0 low - bandwidth =false

target - bitrate =3000 \
232 ! video/x-h264 , alignment =au ’
233

234 pipeline += ’! filesink location ={} async=false ’. format (
vidout)

235 print("The output file is {}". format (vidout))
236 # The pipeline is entirely concluded , set to a PLAYING

state
237 gst_pipeline = Gst. parse_launch (pipeline)
238 gst_pipeline . set_state (Gst.State. PLAYING)
239

240 # [DEBUG] Generate pipeline dot file
241 # (" tmp" is the name for the dotfile that will be saved in

the location shown above , see the first lines)
242 Gst. debug_bin_to_dot_file (gst_pipeline , Gst.

DebugGraphDetails .ALL , "tmp")
243 dotfile = dotdir + "tmp.dot"
244 graph = pydot. graph_from_dot_file (dotfile , ’utf -8’)
245 print("The pipeline graph in dot format is ready at {

dotfile }". format (dotfile = dotfile))
246

247

248 def main ():
249

250 # Argument parsing

99

Application Development

251 ap = argparse . ArgumentParser ()
252 ap. add_argument (’-s’, ’--video_src ’, type=str , default =’mipi ’,

help=’Type of input sensor (mipi , usb or a h264 file). Default
is mipi , i.e. Mipi Camera sensor .’)

253 ap. add_argument (’-o’, ’--video_out ’, type=str , default =’
display ’, help=’Type of output device (display , rtsp or file).
Default is display , i.e. DisplayPort /HDMI.’)

254 ap. add_argument (’-W’, ’--video_width ’, type=int , default =1920 ,
help=’Width of the input video frames . Default is 1920 (

working for mipi and HDMI output).’)
255 ap. add_argument (’-H’, ’--video_height ’, type=int , default

=1080 , help=’Height of the input video frames . Default is 1080
(working for mipi and HDMI output).’)

256 ap. add_argument (’-n’, ’--not_inf ’, type=bool , default =False ,
help=’No perform the model inference . Default is false , the
inference is performed .’)

257 ap. add_argument (’-f’, ’--profiling ’, type=bool , default =False ,
help=’Framerate profiling is enabled . Default is false.’)

258 args = ap. parse_args ()
259

260 print (’Command line options :’)
261 print (’ --video_src : ’, args. video_src)
262 print (’ --video_out : ’, args. video_out)
263 print (’ --video_width : ’, args. video_width)
264 print (’ --video_height : ’, args. video_height)
265 print (’ --not_inf : ’, args. not_inf)
266 print (’ --profiling : ’, args. profiling)
267

268 # Arguments checks
269 errors = 0
270 if args. video_src != ’mipi ’ and args. video_src != ’usb ’ and

not os.path. isfile (args. video_src):
271 errors = errors + 1
272 print(" Invalid --video_src {}". format (args. video_src))
273 if args. video_out != ’display ’ and args. video_out != ’rtsp ’:
274 print("The string --video_out is considered as a file path

{}". format (args. video_out))
275 if args. video_width != 1920:
276 print("You are using a input frame width different by

1920. Pay attention if {} is compatible with you devices .".
format (args. video_width))

277 if args. video_height != 1080:
278 print("You are using a input frame height different by

1080. Pay attention if {} is compatible with you devices .".
format (args. video_height))

279 if args. not_inf :
280 print("You are not performing the AI model inference . It

is a good test to verify input and output working .")
281 if args. profiling :

100

Application Development

282 print("You are performing the framerate evaluation (fps).
The performance should be affected by it.")

283

284 # If no errors the application code can be executed
285 if errors == 0:
286 app(args.video_src , args.video_out , args. video_width , args

. video_height , args.not_inf , args. profiling)
287

288 if __name__ == ’__main__ ’:
289 main ()

101

Bibliography

[1] Content European Commission Directorate-General for Communications
Networks and Technology. COMMUNICATION FROM THE COMMISSION
- Artificial Intelligence for Europe. https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:52018DC0237. 2018 (cit. on p. 2).

[2] Dr. Meghna Utmal. «Taxonomy on Machine Learning Algorithms». In: Inter-
national Journal of Recent Development in Engineering and Technology 10
(2021). issn: 2347-6435 (cit. on p. 2).

[3] Erik Schrijvers Haroon Sheikh Corien Prins. Mission AI - The New System
Technology. https://link.springer.com/book/10.1007/978- 3- 031-
21448-6. Springer Cham, 2023. doi: 10.1007/978-3-031-21448-6 (cit. on
pp. 3, 6).

[4] IBM. What is deep learning? https://www.ibm.com/topics/deep-learni
ng (cit. on p. 3).

[5] IBM Data and AI Team. AI vs. Machine Learning vs. Deep Learning vs.
Neural Networks: What’s the difference? https://www.ibm.com/blog/ai-
vs-machine-learning-vs-deep-learning-vs-neural-networks/. 2023
(cit. on p. 5).

[6] javatpoint.com. Supervised Machine Learning. https://www.javatpoint.
com/supervised-machine-learning (cit. on p. 5).

[7] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. «Artificial intelli-
gence applications in the development of autonomous vehicles: a survey».
In: IEEE/CAA Journal of Automatica Sinica 7.2 (2020), pp. 315–329. doi:
10.1109/JAS.2020.1003021 (cit. on p. 6).

[8] SAE International. «Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles». In: (2021). https://www.
sae.org/standards/content/j3016_202104/, p. 41. doi: 10.4271/J3016_
202104 (cit. on p. 6).

102

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52018DC0237
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52018DC0237
https://link.springer.com/book/10.1007/978-3-031-21448-6
https://link.springer.com/book/10.1007/978-3-031-21448-6
https://doi.org/10.1007/978-3-031-21448-6
https://www.ibm.com/topics/deep-learning
https://www.ibm.com/topics/deep-learning
https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks/
https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks/
https://www.javatpoint.com/supervised-machine-learning
https://www.javatpoint.com/supervised-machine-learning
https://doi.org/10.1109/JAS.2020.1003021
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104

BIBLIOGRAPHY

[9] Surya Gutta. Benefits of Autonomous Vehicles. https : / / medium . com /
geekculture/benefits- of- autonomous- vehicles- e90ebfd324e. 2021
(cit. on p. 6).

[10] Debiprasad Bandopadhyay. Autonomous Cars - How Computer Vision is
Revolutionizing the Automotive Industry. https://www.linkedin.com/
pulse/autonomous-cars-how-computer-vision-revolutionizing-band
opadhyay. 2023 (cit. on p. 7).

[11] David Castells-Rufas, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles
Sanchez, Debora Gil, and Jordi Carrabina. «A Survey of FPGA-Based Vision
Systems for Autonomous Cars». In: IEEE Access 10 (2022), pp. 132525–
132563. doi: 10.1109/ACCESS.2022.3230282 (cit. on pp. 7–9).

[12] Soumya Sudhakar, Vivienne Sze, and Sertac Karaman. «Data Centers on
Wheels: Emissions From Computing Onboard Autonomous Vehicles». In:
IEEE Micro 43.1 (Jan. 2023), pp. 29–39. issn: 1937-4143. doi: 10.1109/MM.
2022.3219803 (cit. on p. 7).

[13] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Guido Masera, Maur-
izio Martina, and Muhammad Shafique. «Hardware and Software Optimiza-
tions for Accelerating Deep Neural Networks: Survey of Current Trends,
Challenges, and the Road Ahead». In: IEEE Access 8 (2020), pp. 225134–
225180. doi: 10.1109/ACCESS.2020.3039858 (cit. on pp. 8, 9, 11).

[14] Zvonko Vranesic Stephen Brown. Fundamentals of Digital Logic with VHDL
Design, 3rd edition. McGraw-Hill, 2009 (cit. on p. 10).

[15] AMD Xilinx. Kria K26 SOM: The Ideal Platform for Vision AI at the Edge.
https://docs.amd.com/v/u/en-US/wp529-som-benchmarks. 2021 (cit. on
p. 11).

[16] AMD. Kria KV260 Vision AI Starter Kit User Guide. https://docs.amd.
com/r/en-US/ug1089-kv260-starter-kit. 2023 (cit. on pp. 12, 57).

[17] AMD. Zynq UltraScale+ Device Technical Reference Manual. https://docs.
amd.com/r/en- US/ug1085- zynq- ultrascale- trm/Zynq- UltraScale-
Device-Technical-Reference-Manual. 2023 (cit. on pp. 11, 37).

[18] Xilinx. Zynq™ UltraScale+™ MPSoC. https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html (cit. on p. 13).

[19] AMD. DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide. https:
//docs.amd.com/r/en-US/pg338-dpu. 2023 (cit. on pp. 12, 29–31, 43).

[20] Antonius Freenergi. Convolutional Neural Network for Object Recognition
and Detection. https://medium.com/@ringlayer/convolutional-neural-
network-for-object-recognition-and-detection-126a22af8975. 2019
(cit. on p. 15).

103

https://medium.com/geekculture/benefits-of-autonomous-vehicles-e90ebfd324e
https://medium.com/geekculture/benefits-of-autonomous-vehicles-e90ebfd324e
https://www.linkedin.com/pulse/autonomous-cars-how-computer-vision-revolutionizing-bandopadhyay
https://www.linkedin.com/pulse/autonomous-cars-how-computer-vision-revolutionizing-bandopadhyay
https://www.linkedin.com/pulse/autonomous-cars-how-computer-vision-revolutionizing-bandopadhyay
https://doi.org/10.1109/ACCESS.2022.3230282
https://doi.org/10.1109/MM.2022.3219803
https://doi.org/10.1109/MM.2022.3219803
https://doi.org/10.1109/ACCESS.2020.3039858
https://docs.amd.com/v/u/en-US/wp529-som-benchmarks
https://docs.amd.com/r/en-US/ug1089-kv260-starter-kit
https://docs.amd.com/r/en-US/ug1089-kv260-starter-kit
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://docs.amd.com/r/en-US/pg338-dpu
https://docs.amd.com/r/en-US/pg338-dpu
https://medium.com/@ringlayer/convolutional-neural-network-for-object-recognition-and-detection-126a22af8975
https://medium.com/@ringlayer/convolutional-neural-network-for-object-recognition-and-detection-126a22af8975

BIBLIOGRAPHY

[21] Mathworks. What Is a Convolutional Neural Network? https://uk.mathwor
ks.com/discovery/convolutional-neural-network.html (cit. on p. 15).

[22] AMD. Vitis AI Library User Guide 3.0. https://docs.amd.com/r/3.0-
English/ug1354-xilinx-ai-sdk/Introduction. 2023 (cit. on p. 15).

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV] (cit. on p. 15).

[24] Jacob Solawetz. What is YOLOv5? A Guide for Beginners. https://blog.
roboflow . com / yolov5 - improvements - and - evaluation. 2020 (cit. on
p. 15).

[25] Fangbo Zhou, Huailin Zhao, and Zhen Nie. «Safety Helmet Detection Based
on YOLOv5». In: 2021 IEEE International Conference on Power Electronics,
Computer Applications (ICPECA). 2021, pp. 6–11. doi: 10.1109/ICPECA513
29.2021.9362711 (cit. on p. 16).

[26] Andreas Geiger, Philip Lenz, and Raquel Urtasun. «Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite». In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 16).

[27] Rafael Padilla, Wesley L. Passos, Thadeu L. B. Dias, Sergio L. Netto, and
Eduardo A. B. da Silva. «A Comparative Analysis of Object Detection Metrics
with a Companion Open-Source Toolkit». In: Electronics 10.3 (2021). issn:
2079-9292. doi: 10.3390/electronics10030279. url: https://www.mdpi.
com/2079-9292/10/3/279 (cit. on p. 18).

[28] Glenn Jocher. YOLOv5 by Ultralytics. Version 7.0. May 2020. doi: 10.5281/
zenodo.3908559. url: https://github.com/ultralytics/yolov5 (cit. on
p. 19).

[29] Sushant Patrikar. Batch, Mini Batch Stochastic Gradient Descent. https:
//towardsdatascience.com/batch-mini-batch-stochastic-gradient-
descent-7a62ecba642a. 2019 (cit. on pp. 20, 21).

[30] AMD. Vitis AI User Guide 3.0. https://docs.amd.com/r/3.0-English/
ug1414-vitis-ai. 2023 (cit. on pp. 23, 25, 28, 29).

[31] LogicTronix [FPGA Design + Machine Learning Company]. YOLOv5 Quan-
tization Compilation with Vitis AI 3.0 for Kria. https://www.hackster.
io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-
0-for-kria-7b005d#toc-quantizing-yolov5-pytorch-with-vitis-ai-
3-0-5. 2023 (cit. on pp. 23, 27, 28).

[32] AMD Xilinx. Vitis-AI. Version 3.0. 2023. url: https://github.com/Xilinx/
Vitis-AI/tree/3.0 (cit. on pp. 25, 50).

104

https://uk.mathworks.com/discovery/convolutional-neural-network.html
https://uk.mathworks.com/discovery/convolutional-neural-network.html
https://docs.amd.com/r/3.0-English/ug1354-xilinx-ai-sdk/Introduction
https://docs.amd.com/r/3.0-English/ug1354-xilinx-ai-sdk/Introduction
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://blog.roboflow.com/yolov5-improvements-and-evaluation
https://blog.roboflow.com/yolov5-improvements-and-evaluation
https://doi.org/10.1109/ICPECA51329.2021.9362711
https://doi.org/10.1109/ICPECA51329.2021.9362711
https://doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://docs.amd.com/r/3.0-English/ug1414-vitis-ai
https://docs.amd.com/r/3.0-English/ug1414-vitis-ai
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d##toc-quantizing-yolov5-pytorch-with-vitis-ai-3-0-5
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d##toc-quantizing-yolov5-pytorch-with-vitis-ai-3-0-5
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d##toc-quantizing-yolov5-pytorch-with-vitis-ai-3-0-5
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d##toc-quantizing-yolov5-pytorch-with-vitis-ai-3-0-5
https://github.com/Xilinx/Vitis-AI/tree/3.0
https://github.com/Xilinx/Vitis-AI/tree/3.0

BIBLIOGRAPHY

[33] AMD. Vitis AI 3.0. https://xilinx.github.io/Vitis-AI/3.0/html/
index.html. 2023 (cit. on pp. 26, 27, 30).

[34] AMD. Smartcam Application for Kria KV260 - 2022.1. https://xilinx.
github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartca
mera/smartcamera_landing.html. 2022 (cit. on pp. 32, 33, 36, 38, 43, 47,
50).

[35] AMD. Kria SOM Accelerator and Custom Carrier Card Firmware Develop-
ment - 2022.1. https://xilinx.github.io/kria-apps-docs/creating_
applications/2022.1/build/html/index.html. 2022 (cit. on p. 35).

[36] AMD. KRIA SOM VITIS PLATFORMS AND OVERLAYS - 2022.2. https:
//github.com/Xilinx/kria-vitis-platforms/tree/xlnx_rel_v2022.2.
2022 (cit. on p. 34).

[37] AMD. Vitis Custom Embedded Platform Creation Example on KV260 - 2022.2.
https://github.com/Xilinx/Vitis-Tutorials/tree/2022.2/Vitis_
Platform_Creation/Design_Tutorials/01- Edge- KV260. 2022 (cit. on
p. 37).

[38] AMD. PetaLinux Tools Documentation: Reference Guide 2022.2. https://
docs.amd.com/r/2022.2-English/ug1144-petalinux-tools-reference-
guide/Overview. 2022 (cit. on p. 45).

[39] AMD Xilinx. Kria Starter Kits Application Firmware. Version xlnxrelv2022.2.
2022. url: https://github.com/Xilinx/kria-apps-firmware/tree/
xlnx_rel_v2022.2 (cit. on p. 46).

[40] AMD. Generating DTSI and DTBO Overlay Files - 2022.1. https://xilinx.
github.io/kria-apps-docs/creating_applications/2022.1/build/
html/docs/dtsi_dtbo_generation.html#example. 2022 (cit. on p. 47).

[41] AMD. AP1302 Firmware - 2022.1. https://github.com/Xilinx/ap1302-
firmware/tree/xlnx_rel_v2022.1. 2022 (cit. on p. 48).

[42] AMD. Multimedia User Guide - 1.7. https://docs.amd.com/r/en-US/
ug1449-multimedia/Document-Scope. 2023 (cit. on p. 50).

[43] AMD. VVAS Plug-ins - 2.0. https://xilinx.github.io/VVAS/2.0/build/
html/docs/common/common_plugins.html. 2023 (cit. on p. 52).

[44] AMD. Kria KV260 Smartcam - Customizing the AI Models Used in the
Application - 2022.1. https : / / xilinx . github . io / kria - apps - docs /
kv260/2022.1/build/html/docs/smartcamera/docs/customize_ai_
models.html. 2022 (cit. on p. 52).

105

https://xilinx.github.io/Vitis-AI/3.0/html/index.html
https://xilinx.github.io/Vitis-AI/3.0/html/index.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/smartcamera_landing.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/smartcamera_landing.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/smartcamera_landing.html
https://xilinx.github.io/kria-apps-docs/creating_applications/2022.1/build/html/index.html
https://xilinx.github.io/kria-apps-docs/creating_applications/2022.1/build/html/index.html
https://github.com/Xilinx/kria-vitis-platforms/tree/xlnx_rel_v2022.2
https://github.com/Xilinx/kria-vitis-platforms/tree/xlnx_rel_v2022.2
https://github.com/Xilinx/Vitis-Tutorials/tree/2022.2/Vitis_Platform_Creation/Design_Tutorials/01-Edge-KV260
https://github.com/Xilinx/Vitis-Tutorials/tree/2022.2/Vitis_Platform_Creation/Design_Tutorials/01-Edge-KV260
https://docs.amd.com/r/2022.2-English/ug1144-petalinux-tools-reference-guide/Overview
https://docs.amd.com/r/2022.2-English/ug1144-petalinux-tools-reference-guide/Overview
https://docs.amd.com/r/2022.2-English/ug1144-petalinux-tools-reference-guide/Overview
https://github.com/Xilinx/kria-apps-firmware/tree/xlnx_rel_v2022.2
https://github.com/Xilinx/kria-apps-firmware/tree/xlnx_rel_v2022.2
https://xilinx.github.io/kria-apps-docs/creating_applications/2022.1/build/html/docs/dtsi_dtbo_generation.html##example
https://xilinx.github.io/kria-apps-docs/creating_applications/2022.1/build/html/docs/dtsi_dtbo_generation.html##example
https://xilinx.github.io/kria-apps-docs/creating_applications/2022.1/build/html/docs/dtsi_dtbo_generation.html##example
https://github.com/Xilinx/ap1302-firmware/tree/xlnx_rel_v2022.1
https://github.com/Xilinx/ap1302-firmware/tree/xlnx_rel_v2022.1
https://docs.amd.com/r/en-US/ug1449-multimedia/Document-Scope
https://docs.amd.com/r/en-US/ug1449-multimedia/Document-Scope
https://xilinx.github.io/VVAS/2.0/build/html/docs/common/common_plugins.html
https://xilinx.github.io/VVAS/2.0/build/html/docs/common/common_plugins.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/docs/customize_ai_models.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/docs/customize_ai_models.html
https://xilinx.github.io/kria-apps-docs/kv260/2022.1/build/html/docs/smartcamera/docs/customize_ai_models.html

BIBLIOGRAPHY

[45] Marcel Sheeny, Emanuele De Pellegrin, Saptarshi Mukherjee, Alireza Ahra-
bian, Sen Wang, and Andrew Wallace. «RADIATE: A Radar Dataset for
Automotive Perception». In: arXiv preprint arXiv:2010.09076 (2020) (cit. on
p. 59).

106

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Artificial Intelligence
	AI history
	Neural Networks fundamentals

	Autonomous Driving
	Hardware platform choice
	Technology comparison
	FPGA overview

	The AI model
	Neural Network architecture
	A dataset for obstacle detection
	Training and validation
	Metrics evaluation
	Model training

	Model Development
	Vitis AI introduction
	VAI Optimizer

	Model quantization
	Model compilation
	The base hardware IP: DPUCZDX8G

	Kria Acceleration flow
	Video acquisition pipeline
	Platform Development
	Platform creation
	Overlay creation
	PetaLinux image

	Application Development

	Final Considerations
	Deploy on target
	Issues and possible solutions
	Further Improvements

	Model development
	Platform Development
	Application Development
	Bibliography

