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Abstract

The focus of this thesis project is to model and test autonomous driving systems, with particu-

lar emphasis on Adaptive Cruise Control (ACC) and Lane Keeping Assistant (LKA), using the

MATLAB and Simulink environment. The vehicle of interest, referred to as the ego, and the

vehicle in front of it, referred to as the lead, are both subjected to a dynamic model based on the

single track model, which allows their dynamic behaviour during driving to be represented in an

accurate and simplified manner. The simulations involve various working situations, in which the

ego vehicle, based on suitable variables, activates the previously designed ACC or LKA control via

an integrated control logic. This approach allows the effectiveness of such systems to be assessed

in realistic scenarios and their performance improved in order to enhance the safety and efficiency

of autonomous driving. Furthermore, the flexibility of the model also allows it to be adapted

to the characteristics of the vehicle of interest, such as the Rosmaster X3, which has significant

mechanical and dynamic behaviour compared to a conventional vehicle.



Contents

1 State of Art 1

1.1 Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autonomous Driving Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Advanced Driver Assistance Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 ADAS technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Vehicle dynamics 9

2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Inertial terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Congruency Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Single-Track Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 MATLAB and Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 MATLAB and Simulink 22

3.1 Adaptive Cruise Control set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 ACC: Lead vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 ACC: Ego vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 ACC: Control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Lane Keeping Assistant set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 LKA: Control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Simulation results 35

4.1 ACC: linear trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Classical Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ii



4.1.2 MPC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Comparison of two controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 ACC linear trajectory and curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 LKA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 ROSMASTER X3 Robot 48

5.1 ROSMASTER X3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Classical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 MPC controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Comparison of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 LKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions and future developments 60

Bibliography 62

iii



Chapter 1

State of Art

Intelligent Transport Systems (ITS) represent a key research area in the automotive and transport

sector; they use advanced communication technologies and intelligent control methods to improve

traffic safety and reduce the incidence of accidents [1]. One of the most significant developments

concerns the integration of Advanced Driver Assistance Systems (ADAS), which integrate high

and new technologies and, as a result, they use semi-autonomous or fully autonomous interventions

in longitudinal and lateral directions to assist the driver.

1.1 Story

Self-driving cars have their roots in the 1920s, the first demonstration of autonomous driv-

ing took place in 1925 thanks to Houdina Radio Control. The vehicle, called the Linrrican

Wonder [Fig. 1.1a], involved an antenna that was connected to the various control elements,

it drove around the streets of New York but it was controlled by a remote user.

Afterwards, people started to think about the possibility of creating driverless cars and taxis

with the aim of freeing American cities from the ever-increasing traffic. Studies in this field

were carried out especially after the Second World War, when the General Motors presented

the Firebird III, which had a cloche instead of a steering wheel and was already equipped

with cruise control and sensors for autonomous driving on the road [Fig. 1.1b] .

In 1986, the tests of what we can consider the first real self-driving vehicle with human

passengers on board took place in Pittsburgh. It was called NavLab and it was based on

a Chevrolet van equipped with several computers that, in those days, had to be placed

on board to monitor in real time the processes and operations that the vehicle performed
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autonomously [Fig. 1.1c].

Since the 1990s, developments in the field of autonomous driving have become more con-

sistent, with successful experiments carried out in Italy. In 1998, a remarkable project was

ARGO starring a Lancia Thema that drove 94% of the way in complete autonomy along

the famous Mille Miglia route. [Fig. 1.1d].

In the 21st century, it has been possible to reach unimaginable levels of automation thanks

to the rise of technology and the development of both software and hardware such as cam-

eras, radar, navigation systems and many others. A lot of companies are trying to capture

the autonomous driving scenario, such as Tesla and Google.

One of the pioneers in the field of electric cars, Elon Musk, has developed a control system:

the Autopilot. It is made up of a neural network, which simulates the behaviour of the

human brain for basic logic, and it is able to process images and data collected via cameras

and sensors.

(a) Linrrican Wonder (b) Firebird III

(c) NavLab (d) ARGO

Figure 1.1: Models of autonomous driving in time
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1.2 Autonomous Driving Levels

It is important to define the levels of autonomous driving according to the Society of Automotive

Engineers (SAE), which is the standardisation body for the automotive industry. It ranks 6 levels

for autonomous driving as shown in the figure below [Fig. 1.2] [2].

Figure 1.2: Automation levels [2]

• Level 0 - No Automation: The operator does the driving without any support from elec-

tronic components.

• Level 1 - Driver Assistance: In this case the driver is supported by electronic systems, such

as lane centering or adaptive cruise control, the vehicle keeps a safe distance from the car

ahead, but the driver takes care of other aspects of driving such as steering and braking.

• Level 2 - Partial Driving Automation: through the use of controllers, the vehicle is able to

act autonomously on acceleration, braking and lane centring but the driver can take control

of the vehicle at any time. The systems, in this level, are those belonging to the ADAS
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category. An example are Tesla’s Autopilot and Cadillac Super cruise system. [3]

• Level 3 - Conditional Driving Automation: The vehicle has the needed information of the

surrounding environment and it is able to manage ordinary driving conditions by deciding

on acceleration, braking and direction but it is not completely unaffected by human inter-

vention, that occurs when there are critical situations.

• Level 4 - High Driving Automation: The vehicle is able to handle any eventuality but the

driver is still allowed to act, as in the case of bad weather.

• Level 5 - Full Driving Autonomous: The vehicle takes care of the path to be followed in

complete autonomy and in any environmental and traffic conditions. These autonomous

cars will be able to determine the best route, adapting speed, braking and direction to

any situation, managing the various complexities without the need for human intervention

(which will only be necessary to set the desired destination).

Currently, the level of autonomous driving allowed in Italy is level 2: Partial Driving Automa-

tion. A very important aspect to consider has to deal with the ethical sphere, and for this reason

we often hear about the trolley dilemma and we ask ourselves how autonomous cars would behave

if they were faced with a choice of equal criticality [Fig. 1.3].

Figure 1.3: Trolley problem
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1.3 Advanced Driver Assistance Systems

In order to ensure proper working and to be able to travel in complete independence, vehicles

must have a number of components that can replace a driver’s ability to drive in any aspect:

Perception, Decision, Control and Actuation [Fig. 1.4].

Figure 1.4: Autonomous vehicle architecture

1.3.1 Hardware components

The essential components available in Autonomous Vehicles (AVs) are:

Cameras: they are used in order to have a 360 view around the vehicle.

Video Cameras: these allow us to have a real-vision of what is happening in order to help the

driver during the most complex manoeuvres.

GPS: it allows us to have the position of the vehicle, more or less precise depending on the signal,

so it must be combined with other sensors.

Radar: it means Radio Detection and Ranging. By using electromagnetic waves it detects and

determines the position, size and speed of surrounding objects, both fixed and mobile. Its opera-

tion exploits the wavelength, therefore it is unaffected by atmospheric conditions. [4]
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LiDAR: it is the Light Detection and Ranging. Thanks to a laser pulse, it allows us to determine

the reference position of objects, unlike Radar, it works in the ultraviolet field; therefore, it allows

to have more information even on elements whose size is equal to that of the wavelength used,

but its range of use is only a few metres. LiDAR provides 3D shapes and their information and

can operate in any lighting condition [Fig. 1.5]. [5]

Figure 1.5: LiDAR vision

Sensors and Ultrasonics: they use high-frequency sound waves to detect objects. Their limi-

tation is their range and accuracy; therefore, they are used as an assistance in parking manoeuvres.

1.3.2 ADAS technologies

The data obtained from the hardware components (input) are collected and processed into func-

tions by the vehicle (output) via on-board processors. The combination of hardware and software

is referred to as Advanced Driver Assistance Systems (ADAS), involving a series of technologies

that are able to guarantee greater safety, both active and passive, and comfort for the driver

and passengers. Some of the most innovative technologies are reported according to their area of

application.

SPEED AND DISTANCE CONTROL:

Adaptive Cruise Control (ACC): it is a feature embedded in the vehicle that can automat-

ically maintain the speed of the vehicle constantly in order to guarantee a safe distance. With

this feature, pressing the gas pedal by the driver is no longer needed during driving when cruise

control has been activated. The acceleration of the vehicle can be automatically regulated by

6
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cruise control when there is a change in the motion of the vehicle caused by external forces [6],

[Fig. 1.6].

Forward Collision Warning (FCW): it warns a driver before the collision is going to occur

between two cars. FCW system helps in preventing the collision between two cars while moving.

FCW can also avoid a collision at the rear end of the car that is moving in front of our model

car. While the distance between two vehicles becomes less than a predefined threshold, a warning

sound is generated to notify the driver about the danger which would lead to a collision between

two vehicles. This warning includes an audible signal [7].

Automatic Emergency Braking (AEB): it detects and maintains a safe distance from the

collision zone in the absence of prompt action by the driver [8].

Figure 1.6: ACC application case

LANE KEEPING:

Lane Keeping Systems: The Lane Departure Warning system (LWD) warns the driver, but

does not physically act on the vehicle [9]. Whereas, the most advanced ADAS system in this field

is Lane Keeping Assistance (LKA); it normally estimates the position of the vehicle relative to

the road by using a camera to track the road markings; it can interact with the driver, to prevent

unintentional lane departure, using acoustic, visual or haptic feedback on the steering wheel [10].

DRIVING MONITORING SYSTEM:

The Driver Monitoring System (DMS) is addressing the driver’s fatigue problem, which

7
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is responsible for serious number of road accidents. The driver is recorded with some camera

equipment and computer vision algorithms are applied in order to detect where the driver is look-

ing and if he/she pays attention to the road [11].

OTHER TECHNOLOGIES:

Traffic Sign Recognition (TSR): it recognizes and displays road signs (such as speed limits)

on the vehicle display.

Night Vision: it uses infrared cameras to enhance night visibility, detecting pedestrians, ani-

mals, and other obstacles not visible to the naked eye.

Blind Spot Detection (BSD): it alerts the driver to vehicles in the blind spots.

Highway Assist: it combines ACC and LKA logic in order to keep the vehicle on track and at

a safe speed and distance from other vehicles in situations such as highways.

V2X Communication Systems: it allows the vehicle of interest to communicate with other

vehicles (V2V), sharing its information such as speed, position and direction, and with the infras-

tructure (V2I) in order to have continuous updates on road conditions for better traffic manage-

ment.

In the following work, adaptive cruise control and lane keeping assistance will be analysed and

integrated to simulate autonomous driving in different scenarios.

8



Chapter 2

Vehicle dynamics

In order to carry out a study of the controls that are used in AVs, it is important to study the

dynamics of the vehicle. Thus, the dynamic model employed by the controllers involved will

be presented in this chapter; it is based on the single track model, whose dynamics are already

implemented in the Vechicle Dynamics blockset of Matlab [12]. It is important to emphasise that

the relationships in this chapter have been derived based on the various sources. [13], [14], [15]

9
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2.1 Model description

Vehicle motion is usually described in terms of speed: forward, longitudinal, lateral, roll, pitch

and yaw in the vehicle fixed co-ordinate system. The vehicle can be divided into 2 main parts:

unsprung mass, the wheels and the part of suspension and braking system directly connected,

and the sprung mass, all the rest. The SAE has introduced standard co-ordinates and notations

to describe the dynamics of the vehicle.

As shown below [Fig. 2.1], there are: the fixed reference system (X,Y,Z), the vehicle reference

system (x,y,z) and the angles: roll (θ), pitch (φ) and yaw ( ψ).

Figure 2.1: Coordinates and angles in SAE system

An accurate and simple model is essential to design an effective controller and state estimator.

Many different vehicle models have been proposed but some of them are too complicate to use,

because of the computational burden or the effects of the parameters change [16].

Therefore, we proceed to modelling by means of a single track model, also known as a bicycle

model; this approach allows us to analyse both the lateral and longitudinal dynamics of the ve-

hicle in a simplified manner [Fig. 2.2]. The bicycle model kinematic simplifies the vehicle to a

two-wheel model, focusing on geometric relationships and motion without considering forces or

mass. It is mainly used for route planning and control in low-speed scenarios where dynamic

effects are minimal.

10
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Figure 2.2: Bicycle model

For the model under analysis, a symmetry w.r.t. the longitudinal axis is assumed, so that

the axles can be represented by a single virtual wheel. Furthermore, the vehicle is studied as a

rigid body of mass m concentrated in O, its Centre of Gravity (CoG). The distances between the

CoG and the front and rear wheels, referred to as a and b respectively, are known. The angle of

rotation around the z-axis of the wheel-reference with respect to the vehicle-reference is referred

to as the steering angle.In addition, a front steering angle δF and a similar one for the rear axle

δR (represented as null in the figure) is introduced.

Having defined a reference system (x, y, z; O) attached to the chassis with its origin at the CoG,

whose versors are (µ,ν,λ). As illustrated in the figure [Fig. 2.2], the x-axis is assumed coincident

with the longitudinal direction of the vehicle and directed forward, the z-axis orthogonal to the

road and directed upwards, and the y-axis perpendicular to the other two and directed to the left.

In addition, a fixed reference system (X, Y, Z; OE) is necessary to determine the position of the

vehicle in absolute terms, which is fundamental for trajectory tracking in a control logic later on.

11
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The rotation matrix [eq. 2.1] that allows any vector to be rotated from the vehicle system (x,

y, z) to the inertial system (X,Y,Z).

Rz(θ) =

⎛⎜⎜⎜⎝
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎟⎟⎟⎠ (2.1)

Where θ represents the rotation angle around the vertical axis.

Thus, based on the components of the translation velocity of the vehicle CoG in (x,y,z), it is

possible to calculate its velocities components w.r.t. the fixed reference system [eq. 2.2].

⎧⎪⎨⎪⎩ẊG = u cosψ − v sinψ

Ẏ G = v cosψ + u sinψ
(2.2)

Where: u and v are the longitudinal and lateral components of the velocity w.r.t. the mobile

reference system and ψ is the yaw angle.

By integrating, the position of the CoG in the system (X,Y,Z) are derived, allowing to com-

pute the trajectory.

In purely kinematic conditions with KA [Fig. 2.2], as the centre of rotation, and for a trajectory

of radius RK , it is possible to define the steering angle δ0. In the case of RK being much greater

than the vehicle wheelbase, we will have the relationship:

δ0 ≈ l

RK
(2.3)

In the case of dynamic steering, side slip angles are developed by moving the centre of rotation

from KA to M. Using the Sine Theorem and geometric considerations, the following relationship

is derived:

δF − δ0 = αF − αR (2.4)

Where αF and αR are the slip angles of the tyres, respectively front and rear.

12
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Therefore, for very low speeds, it can be assumed that the side slip angles of the two axles are

very small and similar, the dynamic steering angle coincides with the static steering angle:

δF ≈ l

RK
(2.5)

In order to obtain the dynamic model equations presented in the next section, the following

assumptions must be taken into account:

• Constant vehicle speed V .

• Vehicle body side slip angle β and tyre side slip angle α are small enough to handle the case

linearly.

• The steering angles δ are small.

13
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2.2 Dynamic Equations

Given the above assumptions, the following dynamic equations are derived along the longitudinal

(µ) and lateral (ν) directions and around the vertical axis of the vehicle through the CoG:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max = FF,x cos(δF ) + FR,x cos(δR) − FF,y sin(δF ) − FR,y sin(δR)

may = FF,y cos(δF ) + FR,y cos(δR) + FF,x sin(δF ) + FR,x sin(δR)

Izψ̈ = a[FF,y cos(δF ) + FF,x sin(δF )] − b[FR,y cos(δR) + FR,x sin(δR)]

(2.6)

2.2.1 Inertial terms

To get the acceleration of the vehicle, we have to consider the velocity in the reference system

associated with it:

V = uµ+ vν (2.7)

By deriving:

dV

dt
= u̇µ+ u

dµ

dt
+ v̇ν + dν

dt
= (u̇− ψ̇v)µ+ (v̇ + ψ̇u)ν (2.8)

Thus, the acceleration in the reference system of the vehicle is:

a = axµ+ ayν = (u̇− ψ̇v)µ+ (v̇ + ψ̇u)ν (2.9)

Recalling that the trajectory of the CoG is always tangent to the velocity V , the acceleration

can be split into centripetal an and tangential at components; so:

aG = att+ ann (2.10)

Where: t and n are the versors, rispectively, parallel and orthogonal to the velocity of the

centre of gravity V :

14
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t = cos(β)µ+ sin(β)ν (2.11)

n = − sin(β)µ+ cos(β)ν (2.12)

The acceleration is obtained considering small values of the side slip angles of the vehicle

β = v/u:

at = aG · t = ax cos(β) + ay sin(β) = u̇v + v̇u√
u2 + v2

(2.13)

an = aG · n = −ax sin(β) + ay cos(β) = ψ̇(u2 + v2) − u̇v + v̇u√
u2 + v2

(2.14)

Now, the general expression of the curvature radius RG can be derived:

RG = V 2

an
= V

ψ̇ − V̇ β+β̇V
u

(2.15)

The previous relation can be approximated as follow [eq. 2.16], recalling the assumptions done:

RG ≈ V

ψ̇ + β̇
(2.16)

15
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2.3 Congruency Equations

The goal is getting the side slip angles as function of the fundamental parameters of the vehicle

below :

• Steering angle: δ.

• vehicle slip angle: β.

• Yaw rate: ψ̇.

• Velocity components: u and v.

Figure 2.3: Bicycle model: CoG and Front Wheel relationship

In order to obtain what needed, it is necessary to evaluate the speed at which the centres of

the two wheels move; so, we recall the fundamental equation of the kinematics of rigid bodies [eq.

2.17]:

V i = V G + ψ̇ × ri (2.17)

where, i =F,R (front and rear).

The above equation allows to compute the absolute velocities of the two wheels, V F and V R,

considering the absolute velocity of the CoG,V G, the yaw rate, ψ̇, and the respective radii,rF
and rR [ 2.18 and 2.19], joining the centres of wheels to the CoG.

rF =

⎡⎣a
0

⎤⎦ (2.18)

16
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rR =

⎡⎣−b

0

⎤⎦ (2.19)

Thus, the following velocity components for each wheel are obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uF = u

vF = v + aψ̇

uR = u

vR = v − bψ̇

(2.20)

It is possible to compute the moduli of the velocities and angles βi:⎧⎪⎨⎪⎩|V F | =
√︁

(uF )2 + (vF )2

|V R| =
√︁

(uR)2 + (vR)2
(2.21)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βF = arctan vF

uF
= arctan v+aψ̇

u

βR = arctan vR

uR
= arctan v−bψ̇

u

(2.22)

The slip angles αi can be obtained as follow and they can be simplified since βi are considered

small:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αF = δF − βF = δF − β − a

u ψ̇

αR = δR − βR = δR − β + b
u ψ̇

(2.23)

17
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2.4 Single-Track Model

Replacing the equation 2.9 in the equation 2.6 and basing on the assumptions discussed in the

previous sections, we get:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m(u̇− ψ̇v) = FF,x + FR,x − FF,yδF − FR,yδR

m(v̇ − ψ̇u) = FF,y + FR,y − FF,xδF + FR,xδR

Izψ̈ = a[FF,y + FF,xδF ] − b[FR,y + FR,xδR]

(2.24)

To linearise the model, it is possible to use an approximation for the lateral forces:

Fi,y = Ciαi (2.25)

where C is the cornering stiffness of the i-th axle.

Recalling the lateral equilibrium and the rotational one around the vertical axis, for very small

β velues: cos(β) ≈ 1 and sin(β) ≈ β.

So:

⎧⎪⎨⎪⎩u = V cos(β) ≈ V

v = V sin(β) ≈ V β

(2.26)

For V constant, the derivative of the lateral component is v̇ = V β̇.

Rewriting the previous system and considering the relationships obtained, we get:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m(V β̇ − ψ̇V ) = −(CF + CR)β − (CF a−CRb

V )ψ̇ + CF δF + CRδR

Izψ̈ = (−CFa+ CRb)β − (CF a
2+CRb

2

V )ψ̇ + aCF δF + bCRδR

(2.27)

where V is the longitudinal component of the velocity.

The obtained equation can be rearranged as a set of differential equations of the first order

and it can be rewritten in a state-space format:

18
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⎧⎪⎨⎪⎩ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.28)

where: the state vector,x and the input vector,u(t) are defined as follow:

x(t) =

⎡⎣β
ψ̇

⎤⎦ (2.29)

u(t) =

⎡⎣δF
δR

⎤⎦ (2.30)

The output vector y is:

y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β

ψ̇

ρ

αF

αR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.31)

ρ is the curvature of the road: 1
R .

Rearranging the equations, the matrices are:

A =

⎡⎢⎢⎢⎣
−CF +CR

m −aCF −bCR

mV − V

−aCF −bCR

Iz
−a2CF +b2CR

IZV

⎤⎥⎥⎥⎦ (2.32)

B =

⎡⎢⎢⎢⎣
CF

m
CR

m

aCF

IZ

bCR

Iz

⎤⎥⎥⎥⎦ (2.33)
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

−CF +CR

mV 2
−aCF +bCR

mV 3

−1 − a
V

−1 b
V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.34)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
CF

mV 2
CR

mV 2

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.35)

From the State-Space equations, the stability of the system can be analysed by means of the

calculation of eigenvalues, which will not be carried out in this thesis project.

However, it is important to point out that in the literature this problem is present as an aug-

mented model and it is used for the linear control strategy [17].
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2.5 MATLAB and Simulink model

MATLAB and Simulink are the development environments for modelling the bicycle model pre-

viously explained; in Simulink there is a block, shown in the figure 2.4, that allows us to obtain

the information necessary for vehicle dynamics.

Figure 2.4: Simulink block of bicycle model [12]

The inputs of the Simulink block are the steering angle and the forces, which are equally

divided between the two wheels.

The outputs of the plant are:

• The position and the velocity of the CoG in the fixed-frame X, Ẋ, Y, Ẏ .

• The velocity components in the mobile-frame ẋ, ẏ.

• The yaw angle ψ.

• The yaw rate r.
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MATLAB and Simulink

This Chapter will focus on the development of the models for the two technologies analysed in

MATLAB and Simulink enviroments.

The set up of the vehicle and its controllers were done customising the libraries and blocks on

MathWorks. [12]

3.1 Adaptive Cruise Control set up

For the development of ACC, whose purpose is to maintain a safe distance from the vehicle in

front and not to exceed a cruising speed, three macro-blocks were used as represented by the

figure below [Fig. 3.1].

Figure 3.1: Schematic block for Simulink set up
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Starting from the left [Fig. 3.1], we have:

• Lead vehicle: it represents the car ahead to the ego car. It is modelled using a single track

model and it is used to give all the information to controller simulating the sensors, such as

position and velocity.

• Control block: it acts on the ego car acceleration in order to keep a safe distance between

the two vehicles and and to allow the ego car to reach a previously established longitudinal

velocity.

• Ego vehicle: it is modelled as a single track, whose acceleration is directly regulated by the

controller thanks to a feedback signals given by its longitudinal velocity.

3.1.1 ACC: Lead vehicle

The lead vehicle is modelled using bicycle model block of the Automated Driving Toolbox in

Mathworks [12].

Figure 3.2: Lead Vehicle Subsystem

As shown in Figure 3.2, the inputs, computed within the MATLAB environment, are:

1. the steering angle [rad] ;

2. the acceleration [m/s2];
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The acceleration values have a sinusoidal behaviour with an amplitude equal to 0.6 m/s2, chosen

in order to have a smoother behaviour, while the steering angle equation is written as function of

the trajectory.

The steering angle and the acceleration must have a timeseries format for the Simulink block, so

they vary in function of the time. The total time employed within the simulation is 180 s and a

step time equal to 2 s.

The outputs of lead vehicle block are:

• the position;

• the velocity components obtained mathematically;

• the longitudinal and lateral velocity considering the model and its characteristics;

• the yaw rate;

• the yaw angle.

The information is in the fixed reference frame.

The bicycle block is implemented considering the following parameters [Tab. 3.1]:

Parameter Value Description SI
m 1575 Vehicle mass kg
Iz 2875 Yaw polar inertia m2 kg
lf 1.2 Longitudinal distance from center of mass to front axle m
lr 1.6 Longitudinal distance from center of mass to rear axle m
Cf 19000 Front tire cornering stiffness N/rad
Cr 33000 Rear tire cornering stiffness N/rad
τ 0.5 Longitudinal time constant N/A

Table 3.1: Vehicle parameters

These values are used for the ego car model analysed in the subsection 3.1.2.

In addition, further information regarding the initial position and the initial velocity, for each

of the two components, the initial yaw angle and yaw rate, are set in the Simulink block [Fig. 4.1].

The Simulink block takes into account the parameters about the aerodynamic of the vehicle

and the environment as shown in the figure below 3.4.
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Figure 3.3: Set up parameters

Figure 3.4: Aerodynamics and Environment information for the bicycle model block

The inputs of the bicycle block [Fig. 2.4] are the steering angle, described in chapter 2, and

the front and rear forces. Those forces are obtained manipulating the acceleration vector. Indeed,
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the variable lead_acc_ts is used to get the two forces, through the use of a transfer function,

multiplied by the mass m and equally divided on the two axles [Fig. 3.5].

Figure 3.5: How the forces are implemented within the Simulink environment

3.1.2 ACC: Ego vehicle

The ego vehicle is the one of our interest [Fig. 3.6].

Figure 3.6: Ego Vehicle Subsystem
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The inputs of the subsystem are the steering angle, implemented as explained in 3.1.1, and

the acceleration, shown as a_ego in Fig. 3.6, is computed by the controllers, in this way the value

changes considering the safe distance and the set velocity.

The outputs are the ones of the Lead Vehicle Subsystem, with the longitudinal velocity serving as

a feedback signal for the controller block, which will be analysed in the next section.

In the Ego Vehicle Subsystem, the bicycle model is consistently used. Its parameters, listed

in Table 3.1 and illustrated in Figure 3.4, represent the most common vehicle parameters in use

today.

3.1.3 ACC: Control block

The control block aims to adjust the behaviour of ego car, considering the information obtained

from the sensors such as the relative distance and the velocity of the lead vehicle in order to act

on the acceleration of ego car.

Figure 3.7: Controller block with MPC controller

Fig. 3.7 shows the two main blocks:

• Sensors Information block;

• Adaptive Cruise Control System block.

The first block simulates the sensor data that the ego car would typically gather. In our case,

this information is generated by simulating the behavior of the lead vehicle using MATLAB code

and a Simulink block. This allows us to calculate the relative distance and velocity between the
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two vehicles. The relative distance block also accounts for a possible curved trajectory when

determining the distance.

The second main block [Fig. 3.7 ] is the core of the ACC. Its inputs are:

• Set Velocity: it represents the maximum speed of the ego vehicle and it cannot be exceed.

It is implemented as a timeseries;

• Time gap: period of time the ego vehicle waits before leaving after the start of the simulation;

• Longitudinal Velocity:The feedback signal is obtained from the ego vehicle model;

• Relative Distance: is the difference between the positions of the lead and ego vehicle;

• Relative Velocity: is the difference between the velocities of the lead and ego vehicle.

The adaptive cruise controller offers two variants: a classical design (default) and an MPC-

based design. Both variants adhere to the same fundamental principles. The ACC vehicle (ego

vehicle) estimates the relative distance and velocity to the lead car. The ACC ensures that the

ego vehicle travels at a driver-set velocity while maintaining a safe distance from the lead car.

The first method of controlling the acceleration of the ego vehicle is implemented as follows:

1. Calculation of the safety distance Dsafe = Ddefault + Time_gap × Vego;

2. Calculation of the distance error xerror = Dsafe −Drelative.

The latter serves as a discriminating factor in the evaluation of acceleration: if xerror > 0, the

acceleration increases up to a maximum of 3 m/s2 to reach Vset under safe conditions. If xerror < 0,

the vehicle decelerates to achieve the minimum Dsafe.These design principles are achieved through

the Min and Switch blocks.

The second type of controller is a Model Predictive Controller (MPC). MPC is a discrete-

time, multi-variable control architecture that operates as follows: at each control interval, the

MPC uses an internal model to predict future behavior of the system. Based on these predictions,

the controller computes the optimal control actions to be taken. The logic behind the Model

Predictive Controller (MPC) is as follows:

Model predictive control solves an optimization problem, specifically, a Quadratic Program

(QP), at each control interval. The solution determines the Manipulated Variables (MVs) to be

used in the plant until the next control interval.
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This QP problem includes the following features:

• Objective (cost) function: A scalar, nonnegative measure of controller performance to

be minimized.

• Constraints: Conditions the solution must satisfy, such as physical bounds on MVs and

plant output variables.

• Decision: The MV adjustments that minimize the cost function while satisfying the con-

straints.

In our case, the MPC is implemented using MathWorks tools [12]. The underlying optimiza-

tion problem is formulated to track the driver-set velocity while adhering to a constraint. This

constraint ensures that the relative distance is always greater than the safe distance.

The Model Predictive Controller (MPC) for Adaptive Cruise Control (ACC) is designed to

ensure safe and efficient vehicle operation by enforcing a set of constraints. These constraints can

be formulated as follows:

min
u

|Vego − Vset|2

subject to Dsafe −Drelative > 0

− 3 ≤ u ≤ 2

(3.1)

Where u is the ego acceleration. To configure the Adaptive Cruise Control System block, the

linear model for ACC design, G, is used. This model, G, is derived from the vehicle dynamics.

Summarizing the analysis conducted in Chapter 2, the matrices derived from the study of vehicle

dynamics are as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2Cf +2Cr

mv0,ego
0 −v0,ego − 2Cf lf −2Crlr

mv0,ego
0 0

0 0 1 0 0

− 2Cf lf −2Crlr
Izv0,ego

0 − 2Cf l
2
f +2Crl

2
r

Izv0,ego
0 0

0 0 0 0 1

0 0 0 0 − 1
τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0
1
τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

29



MATLAB and Simulink

C =
[︂
0 0 0 1 0

]︂
(3.4)

These matrices enable us to define the Transfer Function (TF) of the ego vehicle plant in the

MATLAB environment.

G(s) = 2
s2 + 2s (3.5)

It is computed using the MATLAB command ss2tf.

For both controllers used, the inputs are:

• velocity set

• Tgap

• Velocity

• relative distance

• relative velocity

The output of the controller block is the acceleration, which is adjusted based on the speed

information provided by the ego vehicle block.
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3.2 Lane Keeping Assistant set up

The LKA (Lane Keeping Assist) system ensures that the ego vehicle travels along the centerline

of the road lanes by adjusting its front steering angle. The goal of lane keeping control is to

minimize both the lateral deviation and the relative yaw angle, keeping them as close to zero as

possible.

Unlike Adaptive Cruise Control, the presence of a lead vehicle block is unnecessary for Lane

Keeping Assist (LKA) since its objective is to maintain the lane regardless of the vehicles ahead

of the ego vehicle; this means that only the control block and the ego vehicle block of the figure

3.1 are present.

As far as the control of lateral dynamics is concerned, the ego vehicle model was implemented as

previously described in section 3.1.2. In this case, the ego parameters involved in controlling lane

keeping are:

1. lateral velocity;

2. yaw angle;

3. steering angle;

4. longitudinal velocity.

3.2.1 LKA: Control block

There are two crucial components in LKA control, see Figure 3.8: Sensors Dynamics and MPC

controller.

Figure 3.8: LKA control block [12]
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Sensors Dynamics: The sensors dynamic block enables the simulation of a curved trajectory

and extrapolates information typically acquired from vehicle sensors. This simulation provides

essential input data required for subsequent control actions. Within this block the function

getCurvature [12] is designed to calculate the curvature of a desired trajectory for the Lane

Keeping Assist (LKA) system. Given the longitudinal velocity (v0_ego) and a time vector (time),

the function performs the following steps:

1. Computes the desired X position (Xref) as a function of the longitudinal velocity and time.

2. Determines the desired Y position (Yref) using a piecewise hyperbolic tangent function,

which simulates a realistic trajectory with lane changes or curved paths.

3. Calculates the curvature of the desired trajectory using the gradients of Xref and Yref.

This involves computing the first gradient (DX) and second gradient (D2Y) of the X and Y

positions.

4. Stores the computed curvature values in a structure md, which includes the time vector and

curvature values. This structure serves as the input for the LKA system.

The purpose of this function is to provide a smooth and realistic curvature profile, ensuring

that the vehicle follows a safe and predictable path.

Figure 3.9: It is a graphical representation of the control logic employed in the LKA (Lane Keeping
Assist) system. [12]

The second part of the sensors dynamic block aims to minimize the lateral deviation and

relative yaw angle. To achieve this, the errors, defined as e1 and e2, as illustrated in Figure 3.9,

are calculated as follow1:

1all this information is gathered on MathWorks
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ė1 = Vxe2 + Vy

ė2 = ψ̇ − Vxρ

where:

• ρ is the curvature;

• ψ̇ is the yaw rate;

• Vy is the lateral velocity;

• Vx is the longitudinal velocity;

MPC Controller: The MPC (Model Predictive Controller) utilizes the information obtained

from the sensors dynamic block to regulate the lateral dynamics of the vehicle. It processes the

simulated sensor data to make real-time decisions, ensuring the vehicle maintains its desired

trajectory within a lane.

The Adaptive Model Predictive Control (AMPC) for Lane Keeping Assist (LKA) system is

designed to enhance vehicle safety by maintaining the vehicle within its lane. The adaptive nature

of this controller allows it to dynamically adjust to varying driving conditions and uncertainties,

ensuring robust performance. Below are the main features of this advanced control system.

The Adaptive MPC continuously updates the vehicle model in real-time based on current

driving conditions. This feature ensures that the control actions are always based on the most

accurate representation of the vehicle dynamics, leading to improved performance and safety.

The controller is designed to handle various constraints effectively. These include:

• Steering angle limitations

• Road boundaries

• Vehicle dynamic constraints

By managing these constraints, the system ensures safe and feasible control actions under all

circumstances. Adaptive MPC optimizes future control actions over a prediction horizon. This

predictive capability allows the controller to anticipate and counteract potential deviations from

the lane, providing smooth and stable lane-keeping performance. The adaptive nature of the

controller enhances its robustness against model uncertainties and external disturbances. By
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continuously adjusting to the current state of the vehicle and its environment, the controller

maintains high performance even in the presence of unexpected changes. Key components include:

• A state-space vehicle model capturing essential lateral dynamics.

• An MPC controller designed using MATLAB toolbox [18].

• An adaptive mechanism to update model parameters dynamically.

• Integration into Simulink for real-time simulation and validation.

The Adaptive MPC for LKA system combines the strengths of predictive control with the

flexibility of adaptive mechanisms, resulting in a robust, efficient, and reliable solution for lane-

keeping assist.
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Simulation results

This section reports the results obtained from simulations performed in the MATLAB/Simulink

environment.

4.1 ACC: linear trajectory

Considering a linear trajectory [Figure 4.1] developing along the X-axis, with respect to the fixed

reference system, as well as the longitudinal direction of the analyzed vehicle model, simulations

were carried out for each controller: a classical controller and an MPC controller.

Figure 4.1: Vehicle trajectory
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4.1.1 Classical Controller

Figure 4.2 presents the data characterizing the adaptive cruise control system, including:

• Relative distance

• Longitudinal speed of the ego vehicle

• Longitudinal acceleration of the ego vehicle

Figure 4.2: Classical controller simulations results

In all three graphs, the x-axis represents the simulation time, while the y-axis shows the following

variables (in the order of the graphs):

• Distance in meters (m);

• Speed in meters per second (m/s);

• Acceleration in meters per second squared (m/s2).
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In order to better analyse the behaviour of the controller and the vehicle under test, it is

essential to study the first few seconds of the simulation. As shown in Figure 4.3, the behaviour

complies with the desired outcomes towards the end of the simulation, which are:

• A relative distance greater than the safety distance

• Reaching a cruising speed, which in our case was set at 30 m/s

Figure 4.3: Analysis of the first 20 seconds of the simulation

Initial conditions are as follows: the lead vehicle starts from position x = 10 m with a longitudinal

velocity of 0 m/s, while the ego vehicle starts at position x = 0 m with a time gap of 1.5 s and

a longitudinal velocity of 20 m/s. Therefore, once the simulation begins, we observe a relative

distance between the vehicles of approximately 10 m, which is less than the safety distance. The

safety distance is calculated based on the longitudinal speed of the ego vehicle, which can vary

moment by moment due to the acceleration output from the controller. Therefore, the controller

immediately acts on the acceleration, reaching a maximum deceleration value of -3 m/s2, chosen

based on the achievable acceleration values of typical passenger vehicles. Consequently, there is

a decrease in speed, reaching a minimum of 15.5 m/s, while the relative distance increases.

There is a slight delay between the deceleration and the actual increase in relative distance,

as well as the change in speed, which is used as feedback to the controller for calculating the safe

distance. Increasing the relative distance triggers an acceleration impulse, reaching a value of 2

m/s2, resulting in an increase in the ego vehicle speed until it reaches the set speed.
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Finally, once the safe distance is surpassed, the deceleration gradually decreases to a value of

0.2 m/s2, which allows maintaining the cruising speed. The ACC applies a slight acceleration to

compensate for forces that would naturally slow the vehicle, such as air resistance or wheel rolling

resistance. In this case, the acceleration does not increase the speed, but keeps the speed constant

by counteracting these forces.

4.1.2 MPC Controller

While maintaining the initial conditions, the simulation was conducted employing an MPC con-

troller.

Figure 4.4: MPC controller simulations results

In all three graphs [Fig. 4.4], the x-axis represents the simulation time, while the y-axis shows

the following variables (in the order of the graphs):

• Distance in meters (m);

• Speed in meters per second (m/s);

• Acceleration in meters per second squared (m/s2).
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To enhance the analysis of the components under investigation, it is advantageous to focus on

the events occurring within the initial 20 seconds of the simulation.

Figure 4.5: Analysis of the first 20 seconds of the simulation

Therefore, the controller immediately acts on the acceleration, reaching a maximum deceler-

ation value of -3 m/s2, chosen based on the achievable acceleration values of typical passenger

vehicles. Consequently, there is a decrease in speed, reaching a minimum of 9.8 m/s, while the

relative distance increases.

There is a slight delay between the deceleration and the actual increase in relative distance,

as well as the change in speed, which is used as feedback to the controller for calculating the safe

distance. Increasing the relative distance triggers an acceleration impulse, reaching a value of 2

m/s2, resulting in an increase in the ego vehicle speed until it reaches the set speed.

Finally, once the safe distance is surpassed, the deceleration gradually decreases to a value of

0.2 m/s2, which allows maintaining the cruising speed.
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4.1.3 Comparison of two controllers

Figure 4.6: Comparison of the controllers in the first 20 seconds of simulation

In Figure 4.6, the simulation results comparing the responses of the two controllers are pre-

sented. The results from the classical controller are shown in orange, while those from the MPC

controller are depicted in blue.

In both cases, the acceleration value is -3 m/s2 as the relative distance is less than the safe

distance. In the case of the MPC, the deceleration value is maintained longer compared to the

classical controller; indeed, the safe distance is reached 1 second earlier than with the other

controller. The model response to MPC control is more rapid.

Regarding reaching cruising speed, this occurs more slowly with MPC because deceleration is

maintained longer. This deliberate deceleration strategy by the MPC aims to ensure a smoother

transition to the target speed, avoiding overshoot and ensuring stability in the control process.

Hence, the minimum speed attained is lower compared to the classical controller case.

Additionally, there are noticeable "steps" in the acceleration impulse to reach its maximum

value, attributed to MPC capability to provide better overall system optimisation and a more

adaptive response to varying conditions. This characteristic can also lead to more pronounced

variations in control output compared to a classical controller, which may be perceived as smoother

and more immediate in acceleration regulation.
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4.2 ACC linear trajectory and curve

This paragraph simulates a scenario where the trajectory is initially linear, followed by a curved

path with a radius of 28 m [Figure 4.7].

Figure 4.7: Linear trajectory followed by a curved path

Adjustments are made regarding:

• Ego vehicle speed

• Relative distance

When analysing behaviour in curves, it is crucial to consider the entire velocity vector, includ-

ing both lateral and longitudinal components. Unlike linear trajectories, where distance can be

simply calculated as a difference of coordinates along the X-axis, curved paths require accounting

for variations along the Y-axis as well. To address this, a computational block was implemented

to consider both axes. The simulations involved the only MPC controller.
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Figure 4.8: Simulation results with a curved path - MPC

Figure 4.9: Simulation results with a curved path - Classical Controller

Additionally, the steering angle values were changed from 0 rad to 0.04 rad in the final 20

seconds of the simulation. Despite these computational modifications, the results from previous

simulations remained consistent. The ego vehicle successfully maintained a safe distance from the
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vehicle ahead and reached cruising speed. This outcome highlights the effectiveness of the indi-

vidual controllers, which primarily influence the initial seconds of the simulation before stabilizing

to achieve the expected results [Figure 4.8, 4.9].
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4.3 LKA results

A similar study was carried out to analyse the road holding in case of curvature of the ego

vehicle.[Figure 4.10 and 4.11]

Figure 4.10: LKA: zoom in of desired trajectory

Figure 4.11: LKA: trajectory with lane boundaries
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The simulations resulted in the following:

Figure 4.12: LKA simulation results

In Figure 4.12, the x-axis represents time, while the y-axis shows, respectively:

• Steering angle in radians;

• Yaw angle in radians;

• Lateral deviation in metres.
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As can be seen from the overall trend, it is indeed possible to minimize the errors discussed

in Chapter 3. To better understand the dynamics, it is beneficial to focus on the first 20 seconds

of the simulations, as these are crucial for achieving the desired outcomes.

Figure 4.13: LKA first 20 seconds of simulation

The relationship between Steering Angle and Yaw Angle is pivotal: adjusting the steering

angle alters the yaw angle, aligning the vehicle in the desired direction. This alignment directly

influences the vehicle lateral deviation from the lane center. Specifically, changes in the yaw

angle determine the vehicle trajectory, influencing its lateral position within the lane. Moreover,

adjustments in the steering angle play a crucial role in minimizing lateral deviation, aiding in

keeping the vehicle centered within its lane.

The Adaptive Model Predictive Control (MPC) applied to a Lane Keeping Assistant (LKA)

system uses predictive models and adaptive algorithms to maintain a vehicle within its lane,

enhancing safety and comfort. Key variables in this system include the steering angle, yaw angle,

and lateral deviation.

• Steering Angle (δ): The angle at which the front wheels are turned relative to the vehi-

cle’s direction. It is the primary control variable used by the MPC to correct the vehicle

trajectory.

• Yaw Angle (ψ): The angle between the vehicle direction and the lane longitudinal axis,

indicating the vehicle rotation around its vertical axis. It helps determine if the vehicle is
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turning appropriately to stay in the lane.

• Lateral Deviation (e): The distance between the vehicle center and the lane center. The

MPC minimizes this to keep the vehicle centered in the lane.

The objective of the adaptive MPC is to minimize the errors relative to the yaw angle and

lateral deviation, ensuring that both e(t) and ψ(t) approach zero. This results in the vehicle

maintaining the desired lane position and orientation, achieving optimal lane keeping. The MPC

controller predicts the future states of the vehicle based on these variables and optimally adjusts

the steering angle to minimize lateral deviation and correct the heading, ensuring the vehicle

remains centered in its lane while adapting to changes in the vehicle dynamics and the driving

environment.
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ROSMASTER X3 Robot

In this chapter, the behaviour of a ROSMASTER X3 will be analysed by adapting models previ-

ously developed for a generic vehicle.

5.1 ROSMASTER X3 characteristics

The ROSMASTER X3 is a state-of-the-art mobile robot engineered for research, development, and

educational purposes in the field of robotics. This robot boasts a comprehensive array of technical

features and functionalities, rendering it a versatile and powerful instrument for investigating

various robotics applications. The robot parameters are given in the Table 5.1.

Parameter Value Description SI
m 6 Vehicle mass kg
Iz 0.0434 Moment of inertia with respect to yaw axis kg·m2

lf 0.08 Longitudinal distance from c.g. to front wheels m
lr 0.08 Longitudinal distance from c.g. to rear wheels m
Cf 5000 Roll stiffness of front wheels N/rad
Cr 5000 Roll stiffness of rear wheels N/rad
τ 0.1 Longitudinal time constant s

Table 5.1: robot parameters

These parameters are incorporated into the Simulink ’bicycle model’ block, enabling adapta-

tion of the model to the specific characteristics of the robot under investigation.

When designing and implementing control systems such as Adaptive Cruise Control (ACC) and

Lane Keeping Assist (LKA) for the ROSMASTER X3 Robot, it is crucial to consider its physical

limitations. The robot has a maximum speed of approximately 2.5 m/s, which is significantly

48



ROSMASTER X3 Robot

lower than the speeds achieved by modern cars. Additionally, its acceleration capacity is limited,

with a maximum acceleration of 1.5 m/s2. These constraints must be taken into account to ensure

that the control systems are optimized for the robot performance capabilities, ensuring safe and

effective operation within its specific limits.

5.2 Adaptive Cruise Control

The control of longitudinal dynamics was addressed by considering a linear trajectory, as illus-

trated in Figure 5.1. Simulations employed two types of controllers: the classical controller and

the Model Predictive Control (MPC) controller.

Figure 5.1: linear trajectory

The initial conditions for the lead vehicle and the ego vehicle are different: the lead vehicle

starts with an initial velocity of 0 m/s and is positioned at X = 2 m in the fixed reference system,

while the ego vehicle starts at X = 0 m with a velocity of 1.1 m/s.

For this analysis, a cruising speed of 1.2 m/s was chosen, and the acceleration range spans

from [-0.3; 0.3] m/s2. These values were selected based on the specific characteristics of the robot.
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5.2.1 Classical controller

Considering the observations above mentioned, the simulation results with the classical controller

are as follows [Figure 5.2]:

Figure 5.2: ACC simulation results for ROSMASTER X3

In all three graphs [Figure 5.2], the x-axis represents the simulation time, while the y-axis

shows the following variables (in the order of the graphs):

• longitudinal ego velocity in meters per second (m/s);

• relative distance in meter (m);

• ego acceleration in meters per second squared (m/s2).

Overall, the ego vehicle demonstrates capability in meeting requirements by maintaining a

relative distance above the prescribed limit while achieving cruising speed. However, it is crucial

to analyze both the initial and final phases of the simulation.
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During the first 15 seconds of the simulation, the following scenario unfolds [Figure 5.3]:

Figure 5.3: First 15 seconds of simulation

The control of longitudinal dynamics is managed through a sequence of phases. Initially, the ego

vehicle starts with its relative distance drel to the lead vehicle below the safe distance dsafe, while

maintaining a constant longitudinal velocity Vego. In the deceleration phase, the Adaptive Cruise

Control (ACC) applies negative acceleration adecel to reduce Vego and increase drel. Subsequently,

Vego gradually decreases as adecel takes effect. Upon drel is close to dsafe, ACC transitions to

zero acceleration atransition, smoothly reducing adecel until Vego stabilizes in the transition phase.

In the acceleration phase, ACC applies positive acceleration aaccel to increase Vego towards the

set cruising speed, gradually accelerating until reaching the desired velocity. During steady-

state operation, ACC maintains Vego at cruising speed by making small adjustments to aaccel or

adecel as necessary. The system continuously monitors and adjusts based on real-time feedback.

When the ego vehicle reaches cruising speed, the positive acceleration compensates for ongoing

energy losses and resistances that occur during steady-state driving. This includes overcoming air

resistance, internal friction and mechanical losses. In essence, the positive acceleration ensures the

vehicle maintains a stable and controlled speed by continuously providing the necessary energy

to counteract these forces, thereby sustaining smooth operation at the desired velocity.
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Final part of simulations [Figure 5.4];

Figure 5.4: Final seconds of simulation

In the final phase of the simulation, it is evident that the relative distance decreases due

to the actions of the preceding vehicle. Consequently, the control system responds by reducing

the acceleration to the maximum allowed for deceleration, resulting in a significant reduction in

the vehicle speed. This sudden decrease in acceleration is necessary to maintain the prescribed

safety distance from the preceding vehicle, which may have suddenly reduced its speed. Despite

the acceleration decrease, if the maximum deceleration set by the system is not sufficient to

counteract the reduction in speed of the preceding vehicle, the relative distance may continue to

decrease. This phenomenon can occur if the preceding vehicle brakes more rapidly than the ACC

system can adjust, causing the vehicle under ACC to reduce its speed until it reaches a value close

to 0 m/s.
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5.2.2 MPC controller

Referring to what is defined in 5.2, in terms of trajectory and initial conditions, the Figure 5.5

reports the results obtained using an MPC controller. In all three graphs [Figure 5.5], the x-axis

Figure 5.5: MPC simulation results for ROSMASTER X3

represents the simulation time, while the y-axis shows the following variables (in the order of the

graphs):

• relative distance in meter (m)

• longitudinal ego velocity in meters per second (m/s);;

• ego acceleration in meters per second squared (m/s2).

Regarding the classical controller, it is beneficial to analyse its performance during the initial

and final phases of the simulation, which are notably influenced by the preceding vehicle behaviour.
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In the initial seconds of the simulation, the following conditions are observed, Figure 5.6:

Figure 5.6: Initial part of simulation with MPC

Therefore, the controller promptly adjusts the acceleration, achieving a maximum deceleration

of −0.3 m/s2, selected based on the robot physical capabilities. This results in a reduction of speed

to a minimum of 0.55 m/s, while concurrently increasing the relative distance.

A slight delay exists between the onset of deceleration and the actual increase in relative dis-

tance, as well as in the speed change, which provides feedback to the controller for calculating the

safe distance. As the relative distance increases, an acceleration impulse of 0.3 m/s2 is activated,

causing an increase in the ego vehicle velocity until it matches the set speed.

Subsequently, once the safe distance is exceeded, deceleration gradually diminishes to 0.1 m/s2,

thereby ensuring the maintenance of the cruising speed; the acceleration value is greater than 0

in order provide enough energy to proceed at constant speed compensating the losses.
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In the final part of the simulation, the following situation occurs [Figure 5.7]:

Figure 5.7: Final part of simulation with MPC

In the final phase of the simulation, it becomes apparent that the relative distance diminishes due

to the actions of the preceding vehicle. Consequently, the control system responds by decreasing

the acceleration to the maximum permissible for deceleration, resulting in a notable reduction

in the vehicle speed. This abrupt acceleration surge is essential to uphold the mandated safety

distance from the preceding vehicle, which might have abruptly reduced its speed. Moreover,

throughout this phase, the relative distance remains consistently close to the safe distance, indi-

cating stable control system performance under varying traffic conditions.
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5.2.3 Comparison of the results

Comparing the results obtained by the two controllers, in the initial [Figure 5.8] and final phase

[Figure 5.9] of the simulation, we observe:

Figure 5.8: Comparison of the initial phase of simulation

Figure 5.9: Comparison of the final phase of simulation
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In Figures 5.8 and 5.9, the results obtained by the classical controller are represented in

orange, while those of the MPC are shown in blue. As noted in 4.1.3, during the initial phase

[Figures 5.8], it is observed that the MPC achieves cruise speed more gradually due to prolonged

deceleration. This strategy ensures a smoother transition to the desired speed, avoiding overshoot

and ensuring stability in the control process. Consequently, the minimum speed attained is lower

compared to the classical controller.

Furthermore, noticeable steps in acceleration to reach its maximum value are evident, at-

tributed to the MPC ability to optimize the system more effectively overall and provide a more

adaptive response to changing conditions.

In the final part of the simulation [Figures 5.9], as the relative distance decreases, it is observed

that the acceleration controlled by the MPC decreases earlier compared to that of the classical

controller. This is because the MPC is based on predicting future system dynamics to anticipate

control needs, thereby adjusting its response in advance of upcoming events to optimize the system

long-term behaviour.
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5.3 LKA

A similar study was carried out to analyse the road holding in the case of the ego vehicle following

a curve [Figure 5.10, Figure 5.11].

Figure 5.10: Desired trajectory

Figure 5.11: Desired trajectory with boundaries

58



ROSMASTER X3 Robot

Figure 5.12 shows the simulation results.

Figure 5.12: LKA simulation results

In Figure 5.12, the x-axis represents time, while the y-axis shows, respectively:

• Steering angle in radians;

• Yaw angle in radians;

• Lateral deviation in metres.

The relationship between the steering angle and the yaw angle is pivotal: adjusting the steering

angle alters the yaw angle, aligning the vehicle in the desired direction. This alignment directly

influences the vehicle lateral deviation from the lane centre. Specifically, changes in the yaw

angle determine the vehicle trajectory, influencing its lateral position within the lane. Moreover,

adjustments in the steering angle play a crucial role in minimising lateral deviation, aiding in

keeping the vehicle centred within its lane.

Acting on the steering angle to control the vehicle, considering the yaw angle and lateral

deviation, ensure the vehicle stays optimally and safely within its lane. This alignment ensures

that the vehicle heading, or its orientation relative to the lane, is maintained accurately, promoting

safe and effective lane keeping. The objective of the adaptive MPC is to minimise the errors

related to the yaw angle and lateral deviation, ensuring that both e(t) and ψ(t) approach zero.

This results in the vehicle maintaining the desired lane position and orientation, achieving optimal

lane keeping.
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Chapter 6

Conclusions and future

developments

The conducted study yielded highly satisfactory results in terms of both Adaptive Cruise Control

(ACC) and Lane Keeping Assistant (LKA). From the implementation of the ACC, it emerged

that the two controllers have different timings in acting on the controlled system. The model

employing Model Predictive Control (MPC) proved to be the most efficient due to its ability to

make decisions considering a predictive horizon, optimising control variables to minimise the cost

function while adhering to system constraints.

With regard to the Lane Keeping Assistant, improvements can be achieved by integrating

logic that permits overtaking while maintaining a lateral safety distance.

Furthermore, the two models can be integrated through more complex control logic that en-

ables the simultaneous action of these technologies, resulting in a single principal model composed

of two subsystems: one for the control of longitudinal dynamics and one for the control of lateral

dynamics.

Considering the detailed results obtained from the simulations using the specific data of the

ROSMASTER X3 for the Adaptive Cruise Control, we conclude that the outcomes achieved

with the Classical Controller are deemed acceptable in comparison to those with the MPC. This

preference is underpinned by several factors, including the ease of implementation, rapid response,

optimisation of limited computational resources, and operational robustness. Such a selection

proves particularly advantageous within the context of code generation for subsequent deployment

on the dedicated hardware of the robot, given the constraints posed by limited memory capacities.
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Similarly, the Lane Keeping Assistant utilises an MPC, necessitating increased memory al-

location on the card for its optimal functionality. It is crucial to highlight that the simulations

conducted stand to benefit significantly from the integration of the advanced sensors available

on the ROSMASTER X3, alongside the incorporation of the computer vision component. This

integrated approach not only enhances the overall performance of the system but also augments

its capability to adapt effectively to the dynamic conditions of the operational environment.
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