POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

\ {
\, 859 W2

‘\Q\ ““

Master’s Degree Thesis

MULTIAGENT SYSTEM FOR SMART
META-SENSOR FRAMEWORK

Supervisors Candidate

Prof. MARINA INDRI

FABIO GIUSEPPE RIU

Dr. PANGCHENG DAVID CEN CHENG

JULY 2024

Summary

In Industry 4.0 the AMRs (Autonomous Mobile Robots) have a key role. The
AMRs need to share the same spaces with humans but only some of the AMRs
can detect and recognize them through specific sensor data. Some types of sensors
perform better than others in this context, but they might increase the cost of
those robots. Robots equipped with only LIDAR (Light Detection And Ranging)
perform well for indoor SLAM but still have limitations regarding obstacles that
are below the height of the LIDAR. However, if they are also equipped with an
RGB-D sensor, they offer a more limited but more detailed view. ROS (Robot
Operating System) represents the state-of-the-art framework for the coordination
and management of robots. ROS offers a Navigation Stack commonly used by
the majority of commercial AMRs. The ROS Navigation Stack is fully modular
and every manufacturer tunes this package depending on the characteristics of its
own robot. The key idea for this thesis is to create a ROS framework to share
information between different robot types of robots, allowing them to assist each
other in the early identification of obstacles. This will enable robots with limited
vision capabilities to perceive obstacles that they would not be able to detect on
their own. The main information that needs to be shared is the robot’s position and
the dynamic obstacles independently of the implementation and algorithms used
by the various robots. In this framework, each robot shares its real-time position
with a node called robot_info_manager node, which is responsible for forwarding
this information to all other robots. This ensures that each robot can consider the
positions of others during the path planning phases. This node not only receives
and shares the positions of all the robots but also manages theirlocal costmap.
These costmaps represent the real-time dynamic view of each robot and what its
sensors perceive. To do this, each robot is registered with this node through a
configuration file, and each robot is assigned a name. Using a service, each robot
can send an information request to the node, specifying who is making the request.
The node will respond by sending all the 1ocal_costmap and the positions of the
other robots, excluding the requesting robot itself. The service is called through
a new layer global costmap called positioning layer, which all robots that
want to receive information from other robots must add to the list of layers in the

11

global_costmap, using the configuration file of the move_base node. This layer
will be responsible for marking cells as occupied where various robots are positioned
to avoid collisions between robots, and for copying their local_costmap to the
correct position, including obstacles that, for structural reasons, cannot be observed.
The only constraints are that the robots share the same map and the resolution
of local_costmap and global_costmap are the same. This framework has been
tested using a LoCoBot WX250S from Trossen Robotics and a Turtlebot3 Burger
from Robotis, both in simulation using Gazebo and in a real-world environment in
a laboratory.

II1

Table of Contents

List of Tables VII
List of Figures VIII
Acronyms XIII
1 Introduction 1
1.1 Thesis structure 3

2 State of the art 4
3 Robot Operating System 13
3.1 Robot Operating System 13
3.2 The ROS navigation stack 15
3.2.1 Costmap2D, layers and global and local costmap 17

3.2.2 Global and local planners 18

3.2.3 Localization 20

3.2.4 Real-Time Appearance-Based Mapping 21

3.2.5 RVIZ visualization 21

3.2.6 Gazebo Simulation 21

4 Robots Description 23
4.1 Locobot WX250S Description 23
4.1.1 Hardware Description. 23

4.1.2 Software Description 24

4.2 Turtlebot3 Burger Description 25
4.2.1 Hardware Description. 25

4.2.2 Software Description 26

5 ROS framework for multi robot 27
5.1 ROS launch file for multiple robots 28
5.2 Launching Locobot and Turtlebot 31

\Y%

5.2.1 Map Creation Modality 32

5.2.2 Navigation Modality 35
5.2.3 Launch Locobot and Turtlebot in real environment 36
6 ROS node for information position management 38
6.1 Local costmap and position management 38
6.1.1 GetRobotPosition, 42
6.1.2 GetOtherRobotsInfo 43
7 Positioning Layer 44
7.1 Functions 45
7.1.1 The updateBounds function 45
7.1.2 The onlnitialize function 45
7.1.3 The updateCosts function 47
7.1.4 Layer Integration Process 48

7.2 Configuration and Correlation with Robot_ position_info manager
node 48
8 Software configuration 51
8.1 Robots configuration 51
8.1.1 Turtlebot configuration 54
9 Simulation and experimental results 56
9.1 Working in a simulated environment 56
9.1.1 Simulation Setup 56
9.1.2 Testresults 57
9.2 Working in real environmento 63
9.2.1 Laboratory Setup 63
9.2.2 Test results and performance 64
10 Conclusions and future works 75
Bibliography 77

VI

List of Tables

5.1 Parameter table for Locobot

8.1 Parameter table for move base Locobot
8.2 Parameter table for global planner Locobot

VII

List of Figures

1.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2

9.3

5.4
2.5

0.6

5.7

5.8

2.9

6.1

6.2

Example of AGVs inside a warehouse [1] 2
Overview of ROS Navigation Stack [30] 16
Recovery behaviors graph [30] L. 17
Locobot WidowX-250 6 DOF (Kobuki) [43] 24
Intel NUC NUC8i3BEH Mini PC [43] 24
Kobuki mobile base [43] oL 24
Intel® RealSense™ Depth Camera D435 [43] 25
Turtlebot3 Burger oo 26
A representation of part of TF tree 31
The red line represents the MaxObstacleHeight that, in this case, is

set to the exact height of Locobot 32
The red line represent the MaxObstacleHeight that, in this case is

set to the exact height of Turtlebot 32
The simulated environment with the MaxObstacleHeight set to 0.7 . 33

The map generated, the obstacles are placed in the map in rectan-

gular shape L 33
The simulated environment with the MaxObstacleHeight set to 0.2

and laser scan parameter set to false 34
The Locobot takes information from all the figure 34

The map generated, the obstacles are placed in the map in circle
shape and not with rectangular despite the robot see the rectangular
place in top of the cylinder 34

Representation of the ROS network and where nodes are run 37

Robot_ position info manager node receive position and local costmap
data from all the robots 39

Robot__position_info manager node description 42

VIII

7.1

7.2

7.3

7.4

7.5

9.1

9.2

9.3

9.4

9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

9.13
9.14

Representation of a robot created by another robot with the Posi-

tioning Layer active and an other robot radius setto 0.2 46
Representation of a robot created by another robot with the Posi-
tioning Layer active and an other_robot_radius set to 0.4 46

The square in the image represents the clearance area where the
costmap of other robots cannot write information about the presence
of obstacles with discard radius=06 48
In this image, the functionality of the layer is demonstrated. On
the left, the local maps where two robots have detected obstacles
that are marked in red and green. On the right, these areas are
shown as they are integrated into the layer. The blue dots represent
the areas where the robots are positioned, marking those locations
as occupied. The local costmap with green obstacles is not fully
written because part of it is too close to the robot updating the
global costmap (yellow dot). The discard area, where data is not

written, is marked in light gray 49
A representation of what the Positioning layer does and how it
communicates with the Robot_ position_ info manager 50

The two robots are positioned in such a way that they cannot directly

see each other. In fact, there is a wall between the two robots. . . 57
The Locobot RVIZ visualization.The Locobot, in the global costmap,
marks with occupied the cells where the Turtlebot is located 57

The Turtlebot RVIZ visualization. The Turtlebot, in the global
costmap, marks with occupied the cells where the Locobot is located 57
The two robots are positioned in such a way that they cannot directly
see each other. In fact, there is a wall between the two robots. A
Cube is positioned near the Locobot and the cylinder is positioned
near the Turlebot. The Turtlebot can’t see the cube and the Locobot

cannot see the cylinder 58
Local costmap of Locobot 59
Global costmap of Locobot 59
Local costmap of Turtlebot 59
Global costmap of Turtlebot 59
Comparison between the cube and the Turtlebot 60
The Locobot is in position for identify the cubes. 60
The cube is invisible for the Turtlebot 60
The representation recreated by RTAB-Map of the environment that

the Locobot can see through the RGB-D cam 61
The local costmap created by the Locobot 61
The view of the camera positioned on the robot 61

IX

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23
9.24

9.25

9.26
9.27
9.28
9.29

9.30
9.31

The Turtlebot creates the free-collision path, including the informa-
tion sent by the Locobot 62
The initial setup of the experiments in the laboratory 63
On the left, the illustration of the wall created to separate the
spaces between the two robots; on the right, the comparison of the

Locobot’s height relative to that of the wall. 64
In this image, the Turtlebot is positioned closer to the camera than
its initial position.o oo 64

On the left, the global costmap and local costmap of the Locobot; on
the right, those of the Turtlebot. As can be observed, it mirrors the
view in Image 9.18, and the Turtlebot receives information about the
Locobot’s position, marking the cells where it detects the Locobot
as occupied. Similarly, the Locobot performs the same action. . . . 65
In this image, the Locobot is positioned closer to the camera than
its initial positiono oo 65
On the left, the global costmap and local costmap of the Locobot; on
the right, those of the Turtlebot. As can be observed, it mirrors the
view in Image 9.20, and the Turtlebot receives information about the
Locobot’s position, marking the cells where it detects the Locobot

as occupied. Similarly, the Locobot performs the same action. . . . 66
Matching between the information sent by the other robot and the

information obtained by the other robot. 66
The initial setup of the second test in the laboratory. 67

The Turtlebot is near the new obstacle as shown in Image 9.23 and
is correctly displayed in its own local costmap. 68
The Locobot plans a trajectory, taking into account what the Turtle-
bot previously observed. The Locobot would have also noticed the
obstacle, but only once it was in front of it. In this case, however, it
manages to plan a preemptive trajectory even before starting the
path execution. 68
The execution of the Locobot’s path, which correctly avoids the object. 69
The Turtlebot LiDAR is positioned higher than the height of the box. 70

The initial setup of the third test in the laboratory. 71
The path created by the TurtleBot does not take the box into account

because it cannot perceive it. 71
The Locobot positioned itself to successfully localize the obstacle. . 72

On the left, the Locobot places in its local costmap what it sees of
the obstacle. On the right, the Turtlebot places in its global costmap
the information received from the Locobot, even though the obstacle
is completely invisible to the Turtlebot itself. 73

X

9.32 The Turtlebot creates a path, taking into account the information
received from the Locobot, thus avoiding an obstacle that it could
not seeonitsown.

9.33 The execution of the Turtlebot’s path in Image 9.32, which correctly
avoids the object

XI

Acronyms

AMR
Autonomous Mobile Robot

AGV
Automated Guided Vehicle

SLAM

Simultaneous Localization and Mapping

ROS
Robot Operating System

LiDAR
Light Detection and Ranging

RGB-D
Red Green Blue-Depth

MAS
Multi-Agent Systems

Al
Artificial Intelligence

KF

Kalman Filter

EKF
Extended Kalman Filter

XIII

AKF
Adaptive Kalman Filter

UKF

Unscented Kalman Filter

PF

Particle Filters
SMC

Sequential Monte Carlo
RBPF

Rao-Blackwellized Particle Filter
PCL

Point Cloud Library
CPS

Cyber Physical Systems
MES

Manufacturing Execution System
CPHS

Cyber Physical Human Systems
HRI

Human-Robot Interaction
HRP

Human-Robot Perception
LIDAR

Light Detection and Ranging
RSSI

Received Signal Strength Indicator

X1V

MCL

Monte Carlo Localization

TOA

Time of Arrival

TDOA

Time Difference of Arrival

GUI
Graphical User Interface

ANSI

American National Standards Institute

HOG
Histogram of Oriented Gradients

ITSDF

Industrial Truck Standards Development Foundation

FPS

Frames Per Second

MMORPG
Massively Multiplayer Online Role-Playing Game

OSRF

Open Source Robotics Foundation

AMCL
Adaptive Monte Carlo Localization

RTAB-Map
Real-Time Appearance-Based Mapping

URDF
Unified Robot Description Format

XV

PGM
Portable Gray Map

API

Application Programming Interface

TF

Transformation Frames

XML
eXtensible Markup Language

IDE

Integrated Development Environment

Q-Learning
Quality Learning

Nav2

Navigation stack 2

RViz
ROS Visualization

TF tree

Transformation tree

PC

Personal Computer

XVI

Chapter 1

Introduction

Industry 4.0 introduces the concept of robotic machines that are capable of au-
tonomously moving in industrial environments shared with human operators. These
robots, called Autonomous Mobile Robots (AMRs, shown in Figure 1.1) have the
ability to collaborate with and assist humans during work, ensuring their safety.
The main difference with respect to a traditional Automated Guided Vehicle (AGV)
is that the latter follows only a pre-calculated path and its capabilities to avoid
obstacles are very limited. In the best-case scenario, the robot stops and waits
until the obstacle is removed, increasing processing times. A set of sensors placed
in the robots gives AMRs the capability to address this problem more efficiently.
These robots have the capability to perform simultaneous localization and mapping
(SLAM), allowing them to build and update a map of their environment in real
time. Additionally, AMRs have advanced obstacle detection and avoidance systems
that enable them to recalculate their route when encountering an obstacle, ensuring
they can reach their destination without collisions. AMRs can vary significantly
from each other based on the quantity and types of sensors and their architecture,
leading to varying levels of intelligence and adaptability. Some AMRs have the
capability to detect and navigate around small obstacles with high precision. For
example, a 360-degree LiDAR sensor placed at a certain height may not detect
obstacles below that level, rendering them invisible to the robot. Consequently,
different AMRs may offer different levels of accuracy and performance depending
on the sensors used and their placement. To manage the complexity of integrating
various sensors and achieving robust performance, many AMRs utilize the Robot
Operating System (ROS) [2]. ROS provides a flexible framework for writing robot
software, enabling the integration of multiple sensors and algorithms. This al-
lows developers to easily implement SLAM, obstacle detection, and path planning
functionalities, ensuring that AMRs can operate efficiently and safely in dynamic
environments. ROS is a framework created for the development of robotic applica-
tions and offers a system called the ROS Navigation [3] that includes a collection

1

Introduction

Figure 1.1: Example of AGVs inside a warehouse [1]

of packages that provide essential algorithms for autonomous navigation, such as
localization, map building, path planning, and obstacle avoidance. By utilizing the
Navigation Stack, developers can leverage pre-built components and tools to create
sophisticated navigation systems, allowing AMRs to effectively navigate and adapt
to complex, ever-changing environments. Generally, the ROS Navigation Stack can
vary significantly from one robot to another, but its structure remains consistent
across different implementations. This consistency ensures that developers can
apply the same core principles and methods, even when customizing the stack to
fit the specific needs and capabilities of different robots. Usually, a node provides
a map, which is used to construct a global_costmap. This costmap is employed
by a specific algorithm called global_planner to create a preliminary path to
reach the desired goal. Another map is created during the execution of the plan
using data received at that moment, the local costmap, which represents the
updated situation of the robot in real time. This costmap is employed by the
local_planner algorithm to detect obstacles with sensors and avoid them during
movement. The global_costmap is also used for localizing the robot in the map,
using specific algorithms that attempt to determine the robot’s position based
on information provided by sensors and the data provided by this costmap. The
methodology remains often the same over time. The aspects that can vary include
the specific algorithms (local_planner and global_planner), the methods used
to construct the local_costmap and global_costmap, and the types and number
of sensors used by each individual robot. This thesis aims at proposing a method to
make heterogeneous robots share relevant information about the environment, and

2

Introduction

how this information can be used to improve the overall performance of navigation.
Specifically, the thesis investigates how a robot with more sensors and a greater
detection capability can assist other robots with limited vision of the environment,
while also being able to anticipate the detection of obstacles before they become
visible to them. The target environment of this application is indoor locations like
warehouses. In this case of study, the two specific robots are a Locobot WX250,
equipped with a 360-degree LiDAR and an RGB-D camera, and a Turtlebot3
Burger, equipped with only a 360-degree LiDAR. The two LiDARs are placed at
different heights; for example, the Turtlebot’s LiDAR is positioned at a height
of about 180mm and cannot detect obstacles lower than this height. In contrast,
the LiDAR on the Locobot is positioned at a height of 610mm, but it can detect
obstacles of lower heights due to the RGB-D camera. So, the goal is to build
a generic framework for sharing information, independently by the robot’s type,
sensors and algorithms. The constraint of this framework is that each robot uses a
costmap_2d type for both local and global cost maps, and the resolution of these
maps is uniform across all robots. Additionally, the robots share a common map.

1.1 Thesis structure

In Chapter 2, a review of the current state of the art is provided. Chapter 3 covers
the ROS navigation stack package, including state-of-the-art algorithms for local
and global planning. Chapter 4 describes the two robots used in the thesis: the
Locobot WX250 and the Turtlebot3 Burger. Chapter 5 outlines the necessary steps
to deploy and use multiple robots within the same ROS network.

In Chapter 6, the Robot_position_info_manager node is discussed, which is
responsible for gathering information from various robots and their configuration
requirements. Chapter 7 focuses on the positioning layer, which retrieves informa-
tion from the node described in the previous chapter and processes it in a way that
is useful for the robots.

Afterward, Chapter 8 details all software configurations and the choices of various
algorithms used in the project. Chapter 9 presents the experiments conducted
both in simulation and in the laboratory, along with the results obtained and the
challenges encountered.

The final chapter, Chapter 10, discusses the achieved results and suggests
potential future developments for the application.

Chapter 2

State of the art

In the field of robotics, Multi-Agents Systems (MASs) and intelligent agents play
crucial roles in solving complex problems. An intelligent agent, as cited in [4], is
a physical robot or virtual software entity capable of autonomous action in an
environment to achieve specific goals. There are various types of intelligent agents
designed to interact with their environment in distinct ways. Reactive agents are
programmed to respond immediately to changes in their surroundings, focusing
on sensing and acting in real time. Deliberative agents engage in more complex
decision-making processes and can plan actions without external triggers. Hybrid
agents represent a blend of both reactive and deliberative approaches. MASs consist
of a collection of intelligent agents that may share common or conflicting goals,
working together to achieve overall system objectives. MAS is a comprehensive
term that encompasses a wide range of cases. The agents can be different from each
other (heterogeneous) or can be all the same (homogeneous) and the communication
structure can be centralized, hierarchical, decentralized or hybrid. Furthermore,
another distinction can be made based on whether the agents are physical or not.
In this first case, the correct term of this problem is Multi-robot system. According
to [5], the problem in this thesis can be defined as a Heterogeneous Communicating
Multi-Robot System. The analysis in [4] describes and classifies most of the existing
work into four different levels of automation based on how many steps can be solved
autonomously. The steps are the following:

o decomposition of a task in sub-tasks: Breaking down complex tasks into
simpler, manageable sub-tasks based on the capabilities and requirements of
the robots involved.

o identify the agent coalition: Forming teams or coalitions of agents that
possess complementary skills and resources necessary to accomplish the sub-
tasks efficiently.

State of the art

« assign all sub-tasks to an agent for execution: Allocating each sub-task
to the appropriate agent or coalition for execution, considering factors such as
workload balance and specialization.

« execution/planning/control the task: Implementing the sub-tasks through|
a sequence of actions tailored to the specific requirements of each task type.

The greater the number of steps can resolve autonomously without human inter-
vantion, the higher is the level of automation. The authors in [6] show the main
differences between the AMRs and the AGVs and discuss the flow for constructing
an AMR. Both ARMs and AGVs have the capability to navigate autonomously
in an environment. However, the principal difference is that AMRs can move in
the environment without any intervention by humans, introducing the concept
of "autonomy" in addition to "automation'. AGVs, on the other hand, often can
only move along fixed paths and have critical issues in dynamic environments
when obstacles appear. To do that, AMRs are equipped with a larger number of
sensors and actuators that are controlled through a specific software that tries to
observe what the robot sees through the sensors and find "the best" path, which
is translated into actuator signals. ROS is indeed an example of this type of
middleware software.

SLAM is the key for AMRs when they operate in an unknown environment.
Essentially, SLAM involves a robot building a map of its surroundings while
simultaneously keeping track of its own location within that map. This dual
process is critical because it allows the robot to understand where it is and how to
move through its environment without prior knowledge. Exists many approaches
for solving SLAM [7] among which we can mention:

o Kalman-based approaches: There are many SLAM methods based on vari-
ous Kalman Filter (KF). The Extended KF (EKF) is a common variant used
in SLAM, handling nonlinearities by approximating them with linear models
around current estimates. The Adaptive KF (AKF) adjusts filter parameters
in real time, enhancing performance in varying or uncertain environments.
For more accuracy in nonlinear systems, the Unscented KF (UKF) avoids
linearization by using a set of representative points to capture nonlinearities
more precisely.

« Particle Filters: Particle filters (PF), also known as Sequential Monte
Carlo (SMC) methods, are advanced probabilistic techniques for robotics.
They perform in handling nonlinearities and non-Gaussian noise distributions,
offering flexibility in diverse environments. However, their computational
demands increase with the state dimension and landmark count, limiting
real-time use in complex scenarios.

5

State of the art

o FastSLAM: FastSLAM integrates particle filters (PF) with Rao-
Blackwellization, leveraging the Rao-Blackwellized Particles Filter (RBPF)
for enhanced precision in robot localization and mapping. This approach
utilizes PF to estimate the robot’s trajectory while employing low-dimensional
extended Kalman filters (EKF) to pinpoint landmark positions. FastSLAM
excels in navigating non-Gaussian and nonlinear environments, though it
necessitates higher computational resources in intricate scenarios. The ROS
Gmapping package incorporates this type of algorithm [8].

o Visual SLAM: Vision-based SLAM has rapidly developed as a solution to
the SLAM problem, leveraging cameras instead of laser scanners to reconstruct
3D maps of environments. Images provide rich feature information, enabling
robots to perform a broader range of tasks. The advancement in visual
sensors, including depth cameras and various types of visual sensors, has
driven recent research and SLAM techniques toward utilizing cameras and
visual sensory information extensively. The typical sensors used for this
approach are monocular, RGB-D and stereo cameras. In [9] the authors
propose an enhancement to Visual SLAM by fusing data from a LiDAR sensor
and an RGB-D camera using the UKF. This strategy improves the fidelity
and detail of maps with respect of using classic algorithms like cartographer
or GMapping.

The choice of the algorithm depends largely on the characteristics of the environment
and the sensors equipped on the robot. In indoor applications, a variety of sensors
can be utilized to gather environmental information during SLAM [10]. Acoustic
sensors are the cheapest ones available commercially. They have the advantage
of being immune to darkness and transparency, making them reliable in various
lighting conditions. However, their maximum range is limited to a few meters,
and their accuracy ranges from 1% to 3% of the maximum depth. LiDAR sensors
provide a wide field of view, up to 350 degrees, and offer a substantial depth range
from 50 to 300 meters. These sensors are highly effective in creating detailed
and accurate maps of the environment. Monocular cameras, which are standard
RGB cameras, are also used for indoor applications. These sensors require data
processing and very complex algorithms to extract useful information from the
images they capture. Depth cameras can capture both color (RGB) and depth
information of scenes. Various technological solutions can be adopted to do this
[11]):

 Structured Light: Projects a known pattern (usually infrared) onto the scene
and measures the deformation of this pattern to calculate depth. This one is
similar to the Kinect.

o Time-of-Flight (ToF): Measures the time it takes for light to travel to an
6

State of the art

object and back to the camera to calculate the distance.

o Stereo Vision: Uses two or more cameras at different locations to simulate
human binocular vision and calculate depth by comparing the images.

All of these cameras need pre-processing before having a 3D image. For example,
structured light requires time to recreate the 3D image from the projected points.
Each of these sensors offers different advantages and limitations, making them
suitable for various aspects of indoor SLAM applications. In fact, there are various
SLAM algorithms that attempt to fuse data received from different sensors to
improve accuracy and reliability

In Industry 4.0, it is important for humans to share the work environment with
robots safely. Therefore, it is important that robots can detect and track humans in
the environment; it can be useful to adopt a special policy for them. The difference
between detection and tracking [12] is that detection consists only in finding a
target, while tracking involves the robot following or tracking the target that
was previously found using an algorithm from the detection category. The target
detection problem can be divided into two main categories: static surveillance,
where the sensors are fixed in the environment, and the mobile search, where the
sensors can move in the environment. In static surveillance, the main problem is
finding the minimum number of sensors and their positions to cover every part of
the environment. Mobile search can be divided into three main categories based on
the level of certainty of finding the target. The first category is the capture problem,
where the worst-case scenario is considered. In this case, there are typically two
approaches: one based on discretized graph representation and another based on
continuous geometric representation. In the first approach, the main challenge is
to represent the entire environment as a graph. The second approach provides
less complexity, but each of these solutions results in centralized control. The
second category is based on probabilistic search. In this case, the algorithm is
based on a probability distribution over a grid map. The probability distribution
represents the likelihood of finding the target in a given position. This approach
is closer to real-world conditions. Within this category, patrolling can also be
included, which has the same objective but follows a cyclic aspect, where the area
is covered multiple times in a repetitive path. The third category is hunting, which
has no search strategy and is based purely on randomness. In this approach, the
robot moves randomly in the environment to find the target. Once the target is
found, the second phase involves tracking or following it. Tracking involves only
tracking the position of the target in the environment. Centralized approaches
typically yield better results than decentralized ones, but they are less realistic to
use in real environments. Once the target is traced, the robot stays near it and
follows its movements. The case with more than one target is called the observation
problem. The performance of multi-robot teams is better than one-on-one instances

7

State of the art

in parallel.

Based on the type of sensors, there are various approaches for the detection
problem. In [13], the authors compared a set of deep learning methods for human
detection in embedded platforms (in this case they use NVIDIA Jetson). Human
detection problems can be divided into two steps: object detection and object
recognition (classification), but in the deep learning case, the problem can be solved
using one single algorithm. For the authors, faster R-CNN and YOLO require large
memory resources and in an embedded environment they would not work well.
They use five models PedNet, Miltiped, SSD MobileNetV1, SSD MobileNetV2,
SSD Inception V2. The camera resolution was reduced to 320x240 for real-time
purposes. They tested the algorithms in various scenarios and evaluated them in
terms of Precision Rate, Recall and Flscore and in terms of FPS where:

True Positives

PrecisionRate =
True Positives + False Positives

True Positives

Recall =

True Positives 4 False Negative

Precision Rate x Recall

F1 =2 X
seore Precision Rate + Recall

Among those, SSD Inception V2 resulted to be the most accurate and one of
the fastest. In [14] the authors compared various models for real-time vehicle
type recognition. They considered R-CNN,Fast R-CNN and Faster R-CNN and
concluded that the first one is not suitable for real-time applications. The main
problem of YOLO is that it cannot catch small objects. The authors train Faster
R-CNN, YOLO and SDD with a dataset containing about 2000 images of vehicles
using a GeForce RTX 2080Ti. The results show that Faster R-CNN do not satisfy
FPS for real-time operation. SDD is fast but have less accuracy with respect to
other ones. Also, authors show that exists a limitation in the dataset, because
the images of the vehicles are similar to each other. In [15], the authors show an
excursus of principal models for human detection. The authors create a dataset of
10,972 images taken from a camera. They utilize two distinct computing platforms:
one equipped with NVIDIA GeForce GTX 1080 Ti and the other with NVIDIA
Jetson. They use 13 models including variants of YOLO, SDD, and RCNN. The
result shows that TinyYOLO and SDD are the fastest models. Faster RCNN
and RFCN are instead the most accurate models. The authors indicate YOLO
V3-416 is the desirable model for human detection in embedded platforms. In
[16], the authors aim to develop a standard for human detection on mobile service
robots by integrating various detection methods within the ROS framework. The
process starts with acquiring sensory data from 2D laser scans, RGB-D point
clouds, and camera images. Specialized detectors identify people based on the

8

State of the art

sensor type. These detections are then tracked over time to maintain consistent IDs
for individuals, even during brief occlusions. Group tracking is done by estimating
spatial and social relations. Multi-sensor fusion combines data from different sensors
to improve robustness. The results are visualized using RViz and custom plugins,
and test data are generated using a pedestrian simulator. Communication between
pipeline stages is managed via ROS messages, facilitating easy interchangeability of
components. For all these phases, the authors define a new standard ROS message
for person detection. These messages are as generic as possible so that they are
independent of the types of algorithms used at each level. The authors also show
another human detection algorithm based on the type of sensors that the robot has.
For the 2D laser scan, the authors mention the Leg detector that uses a subset of
2D features to track legs separately and performs optimally when the laser sensor is
positioned close to the ground, typically below 0.5 meters in height. In the context
of RGB-D sensors, the authors reference the Upper-Body detector and further
mention the integration of the RGB-D detector from the Point Cloud Library
(PCL). These detectors are tailored to detect human upper bodies and extract
regions of interest from depth-based data. For monocular vision applications, the
authors highlight the ground Histogram of Oriented Gradients (HOG) detector,
which is GPU-accelerated and designed for medium- to far-range human detection.
This detector requires a ground plane estimate to refine its detection capabilities
in diverse environments. These algorithms are already configured to be used with
their respective packages. The work presented in [17] discusses the evolving role of
robots in smart factories, emphasizing their increasing collaboration with humans
in shared workspaces. It introduces the concept of Cyber Physical Human Systems
(CPHSs) as an evolution from Cyber Physical Systems (CPSs), highlighting the
need for enhanced Human-Robot Interaction (HRI) and Human-Robot Perception
(HRP) technologies. The importance of sensors, including vision (such as RGB-D
and event-based cameras) and distance sensors (like LIDAR), is underscored for
tasks ranging from collision avoidance to cooperative and collaborative actions
between robots and humans. The authors explore the use of sensors in robotic
systems for perceiving human operators in industrial environments. It focuses on
vision sensors like RGB-D cameras for tasks involving human-robot collaboration,
emphasizing their role in providing accurate image and depth information. Laser
range finders are also highlighted for environment perception in mobile robots and
manipulators, often combined with vision sensors for data fusion. They identify
three levels of human-robot interaction:

o Coexistence: Basic interaction where robots and humans avoid obstacles but
do not collaborate on tasks.

o Cooperative: Robots and humans perform different tasks but share a common
objective. Robots perceive humans differently than mere obstacles.

9

State of the art

o Collaboration: Humans and robots interact during task execution.

An example of a robot that can detect a human is shown in [18], where the authors
combine different types of data from various sensors to reduce error effectively.
Different sensors exist, some of which are more accurate but often more expensive.
AMRs are considered as meta-sensors, designed to support AGVs. For this research
work, the authors equipped the robot with a monocular camera and a 2D laser.
Artificial Intelligence (AI) is used to detect humans. When a human is detected,
the AMR sends information to other agents and defines a reaction rule. It is
necessary to calibrate the camera with the laser. The first phase involves human
detection. Information about human presence is obtained from the Sensors Synergy
Center and the AGV coordination center, ensuring all AGVs and AMRs follow
the same obstacle avoidance rules. The chosen neural network for this project is
YOLO, which generates a bounding box around the detected human and saves
the coordinates in a text file. This file is then published to a ROS topic. The
laser sensor publishes information about a specific area on the image plane. A
node monitors the human presence topic. Data synchronization is managed using
the ApproximateTimeSynchronizer from the message filters ROS package. The
positions are marked on the global map. To avoid human obstacles, Elastic Bands
with three bands is employed, selecting the shortest one each time. In [19], a robot
is used for monitoring designated areas. If a human enters in a specific area, the
robot follows and tracks the human until the latter one is leaving the working area.
To distinguish a human from a generic obstacle, it is used a face detector algorithm.
The algorithm for patrolling the area is divided into two stages. The first stage is
necessary to create the working map. The second stage identifies waypoints that
represent the entire working environment using Rviz plugin. The robot moves from
one way point to the next in a loop. A set of ROS nodes is deployed. One node
processes the image from a camera to identify possible human presence based on
well-known Viola-Jones face detection. When a human is found, the patrolling is
stopped. In the considered case study a depth sensor camera is used to track and
follow the human. The Controller node is the main hub. It switches from follower
movement to goal-based navigation and vice versa. A Patrol node is responsible
for waypoints handling. It is important to focus on the delay time used to switch
robot’s navigation mode. The authors highlight the necessity to take into account
the various delays that may occur for real-time application. The first delay is
the one used for face detection, the second is the time to switch between Patrol
node and Follower node. Similarly, in [20], an algorithm is presented for a robot
to track the position of the target and follow. The robot used in this paper is
equipped with a Kinect sersor (deph-camera). The robot tries to draw the skeleton
of a human. This method works only if the human stand in front of the robot.
When the primary tracker (drawing the skeleton) looses the target, the tracking
method changes using CAMshift. To estimate the position of human, it is used

10

State of the art

an EKF. The authors impose a safe distance between the target and the robot.
In [21], the authors improve the reliability of trajectory prediction of a worker to
improve the maximum speed of mobile robots. To predict a human’s destination
intention in a manufacturing environment, authors use a naive Bayes classifier. The
process involves integrating multiple data sources: the human’s current position,
the environmental map, and the manufacturing schedule from the Manufacturing
Execution System (MES). It uses this classifier because it requires less data with
respect to other neural classifiers. In the environment it is necessary to identify
the Points-Of-Interest (POI) that are the nodes of the naive Bayes classifier. The
output of this model is the set of POIs with the probability direction of the human
direction. The number of POIs can be very large and it can change over time. For
this reason, the authors abstract the model in only four points. Work-shift-end,
break, new task and last/current task. With this model, it is possible to predict
and calculate the probability transitions to and from these few states. In this way,
it is not necessary to recalculate the transition probability for every change in the
model and it takes less time to calculate the final destination probability. After
using the model to give information about the probability destination it is possible
to use a standard forward-planning method to obtain the predicted trajectory.

Using a multi-robot system can provide several advantages. As discussed
previously, the robots can be different or of the same type. In paper [22], the
authors present a multi-robot version of the MCL algorithm using robots equipped
with LiDAR sensors and RSSI. MCL was chosen because it is the most commonly
used algorithm for single-robot localization. To determine the pose, each robot
combines information from MCL, the relative positions of other robots through
RSSI, and the positions calculated by other robots. This algorithm increases the
precision of the location and can prevent the kidnapped robot problem. This
algorithm has been compared with other algorithms like TOA or TDOA in a
MATLAB simulation in a rectangular field. Following that, the authors tested the
performance in a real-world scenario using a TurtleBot equipped with an ESP8266
chip with a rod antenna for measuring the RSSI. They implemented the algorithm
using ROS and Gazebo frameworks. In [23], the heterogeneous robots can be
hierarchically organised to reduce manufacturing costs. Robots in this paper is
divided into three different classes, each one with a specific job. The first class of
robots is “the explorers”. These robots send request for a new job to the manager.
After that, they receive a new local environment and a path to reach it from the
planner. The local environment is a section of the entire map. They reach the new
local environment and receive the old local map from the manager and update that
during a new exploration of this area. The second type of robot is the “planners”.
Planners are delegated to assign the explorers in local environments and manage
global path planning for all the explores. When a new job is sent from the manager,
it is necessary for all planners to collaborate to avoid path collisions and assignment

11

State of the art

conflicts. The third and last type of robots is “the manager”. The major purposes
of the manager are maintaining local environment updates and managing the job
queue. The robots are divided in based on processing, communication, sensing and
actuation capability. Another aspect that the author considers in this paper is the
capability of each robot to traverse different types of terrain and the different size of
the robots. In [24], the authors demonstrate the importance of robots collaborating
with each other and sharing information both amongst themselves and with other
sensors fixed in the environment. A good way to fuse the data is to use the KF to
increase the robustness. To reduce the replacement cost of old AGVs is possible to
use AMR to support them. AMRSs have to detect the presence of humans in the
environment and update the shared map. The paper now describes the architecture
of this system. AGVs are the meta sensors that allow to identify the human in the
environment, using an IP camera through YOLO algorithm, and a laser-camera
to track them. Sensors Synergy Center receives information about the position of
AGVs from AGV Coordination Center to take decision for the AMR on the basis
of the current task of AGV. AMRs localize themselves implementing the Adaptive
Montecarlo Localization algorithm. When AMRs do not have the sentry role, they
can do traditional AMR tasks. According to ANSIITSDF B56.5 "Safety Standard
for driverless, automatic guided industrial vehicles and automated functions of
manned industrial vehicles', they identify 3 types of zone based on the probability
of finding a human. The three types are:

o Critical area: Zones with no visibility for AGVs or where humans are likely
to be present.

e Human presence area: Zones where human activity is less static, making
it more likely to find people.

e Human-free area: Zones where no humans are expected to be present.

The human behaviour can be classified as static if the human moves less 1 m from
the first detection position, otherwise is defined as dynamic. When an AGV is
assigned a new task, an AMR is chosen from the list based on its distance from
the required area and the priority of its current task.

A key idea is the exchange of information between robots. Systems that use
real-time information exchange (such as position) include online multiplayer video
games. In [25], the authors compare the performance of various interest management
algorithms in MMORPG games. Instead of transmitting all state changes to every
player, only the relevant ones are sent, improving efficiency. The results show
that data obtained from computer-controlled players can simulate those from real
players. The authors conclude that techniques for message limitation depend on
the increase in the game’s world size, the number of players, and the morphology
of the map itself.

12

Chapter 3

Robot Operating System

3.1 Robot Operating System

Robot Operating System (ROS) is an open-source framework used for building and
controlling robotic systems. ROS is not a real operating system but a middleware
that facilitates communication between various components of a robotic system.
ROS [2] was originally developed at Stanford University by Eric Berger and
Keenan Wyrobek. Their efforts, supported by contributions from colleagues and
early funding, eventually led to collaboration with Willow Garage, where ROS was
formally launched in 2007. They developed the PR2 robot and ROS, establishing
ROS as a multi-robot platform. In 2012, ROS became a global standard with the
release of the first official ROS distribution and the birth of the Open Source
Robotics Foundation (OSRF). The primary objective of ROS is to provide a
standardized platform for sharing code and research outcomes. ROS [26] has three
levels of concepts: the Filesystem level, the Computation Graph level, and the
Community level. At the filesystem level, all code, data, and configuration files are
encapsulated into a wrapper called a ROS Package, which is structured as shown
in Listing 3.1.

my_robot_ package/

|-—— CMakeLists. txt

|-— package .xml

|—— src/

| |—— my_robot_node.cpp
| |-— another_ file.cpp
|-— include/

| |-— my_robot_ package

| |-— my_robot_node.h
|-—— scripts/

13

Robot Operating System

| |—— my_script.py
|-— launch/
| |—— my_robot_launch.launch
|-— config/
| |-— my_robot_ config.yaml
—— msg/
| |—— MyMessage . msg
|—— srv/
| |-—— MyService.srv
|-—— worlds/
|—— my_world . world

Listing 3.1: Example of the file system structure of a typical ROS package

The ROS community level includes all the people and groups who contribute to
and support the ROS development and distribution. The most complex level is
the computation graph level. The architecture of ROS is graph-oriented, where
processing takes place in nodes that can communicate with other ones using
messages through topics and services (a more detailed explanation will be given
later). A key component that enables this communication is the ROS Master,
which is made to facilitate various functionalities [27]:

« Name Resolution: The ROS Master maintains a registry of names for
nodes, topics, and services. Nodes use the Master to find each other by name,
facilitating seamless communication across the system.

» Topic/Service Registration: The Master tracks which nodes are publishing
and subscribing to which topics. This information allows nodes to efficiently
establish communication channels by discovering publishers and subscribers.
Additionally, it manages the offered services within the ROS system.

« Parameter Server: It hosts a parameter server where nodes can store and
retrieve configuration parameters dynamically during runtime. This central
repository enables nodes to share and update settings as needed.

ROS has two major versions, ROS1 and ROS2. The main difference between ROS1
and ROS2 [28] is that ROSI utilizes a client-server structure, where the ROS
Master interfaces with all the other nodes, while ROS2 does not have master and
slave nodes but the infrastructure is based on peer-to-peer model, making ROS2
decentralized and improving ROS1 from different points of view [29]. Nodes are
the fundamental building block for ROS and each node is a process that performs
computation; they are written in various programming languages including C++
and Python. Each node can represent an entity or functionality like robotic arms.
For instance, a node may embody a sensor that gathers environmental data, a node
could control a robot joint, or it could also represent a more abstract functionality,

14

Robot Operating System

such as a higher-level control algorithm to choose the best path in the environment.
Nodes in ROS are autonomous entities that can operate independently or interact
with other nodes to achieve complex robotic behaviors. They communicate with
each other using tools provided by the ROS framework, with topics and services
being the primary mechanisms facilitating ROS node communication. The first
tools for sharing information between nodes are the topics. A topic in ROS operates
on the basis of publish/subscribe semantics, which can be conceptualized as a pipe.
Publishers push messages into this pipe, and nodes that are subscribed to the topic
receive these messages. Adopting a publish-subscribe model, ROS topics allow
nodes to publish messages into a shared space and subscribe to receive messages of
interest. This flexible communication paradigm supports various patterns, including
one-to-many and many-to-many relationships among nodes. The nature of this
type of communication is asynchronous, in fact, the messages are published and
received independently of each other. The second ROS tool that offers synchronous
communication between two ROS based on the request /response paradigm is the
service. In ROS, a node can provide a service that other nodes in the ROS network
can call upon. The server node waits for receiving specific requests, typically
defined in a .srv file. In .srv it is necessary to define the type of messages for the
input and for the output, that can be only one. When a request is received, a
handler processes the request data and formulates a response based on the input.
It is important to know in advance the ROS message definition, whether it is a
service or a topic, because this allows for proper handling and processing of the
data. A message is a simple data structure comprising typed fields. You can create
new messages in ROS that consist of default message types or simple data by
defining a .msg file. This file specifies the data fields that compose the custom
message structure. When defining a topic or specifying the output message type
for a service, you can only use one message type or, for the topics, an array of the
same messages. If more messages must be sent back, it is necessary to define a new
wrapper message whose fields are all necessary messages.

3.2 The ROS navigation stack

ROS navigation stack is a flexible ROS framework designed for the autonomous
navigation of mobile robots. This framework provides the necessary tools and
libraries to allow robots to move intelligently in the environment, create paths,
avoid obstacles and in general for solving the SLAM problem. This ROS package
is composed of a set of modular parts that are easily interchangeable in order to
choose the correct algorithm for each case. As can be seen in Figure 3.1, for the
correct use of the Navigation Stack, it is necessary to implement a set of nodes
that are different from robot to robot:

15

Robot Operating System

S

i

odometry source "odom"

ensor transforms

"move_base_simple/goal”

geometry_msgs/PoseStamped Navigation Stack Setup

move_base l

u/ma pn ‘
V nav_msgs/GetMap ‘

map_server

global_planner =<—— global_costmap

internal / T sensor topics | Sensor sources
nav_msgs/Path recovery_behaviors J senscr_msgs/LaserScan|

sensor_msgs/PointCloud

local_planner -<—— local_costmap

amcl

tf/tfMessage

nav_msgs/Odometry

"cmd_vel" |[geometry_msgs/Twist

Y provided node
optional provided node
platform specific node

base controller

Figure 3.1: Overview of ROS Navigation Stack [30]

» sensor transforms: this node is necessary for publishing the transformation

between sensor frames and the robot’s base frame in the /tf topic; it is
necessary to know the relative positions and orientations of these sensors with
respect to the robot.

odometry source: this node is necessary for publishing the transformation
between the robot’s base frame and the odometry frame in the /tf topic; it
is necessary to know the robot’s estimated position and orientation based on
the data received from the wheel odometry data.

base controller: this node is necessary for receiving the result of the Naviga-
tion Stack, that are the instructions for moving the robots in the environment,
and translating the given velocity into signals that the robot’s wheels can
execute.

In addition to these data, each sensor publishes specific information on dedicated
topics providing data such as sensor readings, status updates or diagnostic infor-
mation. The core of the Navigation Stack is in the package that provides the
move_base [30]. The move_base package in ROS provides the autonomous naviga-
tion capability for the robot using global and local planners to create the relative
best path without collision. A diagram in Figure 3.2 shows the algorithm used by
this node for recovery behaviors when the robot finds obstacles or gets stuck.

16

Robot Operating System

move_base Default Recovery Behaviors

stuck uck
/onservatl\ C\earlng \ ue /Aggressw\ / Clearmg
\ Reset / Rotatlon/ \\Reset _/__ Rotatien

clear clear clear
clear

Na\ngatlng

stuck

\/ Aborted \.I

kq_ _,f — _—

stuck

Figure 3.2: Recovery behaviors graph [30]

3.2.1 Costmap2D, layers and global and local costmap

In ROS, costmap_2d is a tool that provides a structured representation
of the robot’s environment. To store this information, costmap_2d uti-
lizes a 2D grid map and categorizes cells representing free space, obsta-
cles or unknown terrain. ROS navigation stack uses a wrapper that con-
tains the costmap_map data called Costmap2DR0S, which provides a two-
dimensional representation. In fact, costmap_2d::Costmap_2DR0OS contains
among its attributes a costmap_2d::LayeredCostmap, that contains princi-
pally a Costmap2D object and a vector of Layer objects. costmap_2d::Layer
is an abstract class that defines the interface and basic behavior for layers
used in the creation and management of costmaps in ROS. Each layer repre-
sents a specific aspect of the environment. Examples of these layers include
Obstaclelayer, InflationLayer, and StaticLayer. To create and update a
costmap, Costmap2DROS calls Costmap2DROS: :updateMap (), which, in turn, calls
LayeredCostmap: :updateMap(), which, in turn, calls the updateCosts func-
tion for each of its layers. KEach Layer::updateCosts directly updates the
Costmap2D object of the LayeredCostmap to which it belongs. The association
of a costmap_2d: :Layer with a costmap_2d::LayeredCostmap occurs through
the addPluginfunction. The same Layer object will have a pointer to the
LayeredCostmap to which it belongs.

The move_base node will then handle the creation of two Costmap2DR0S objects:
one representing the global costmap and one representing the local costmap. The
global costmap is generally created from a map, and represents the environment
with only static obstacles and it is used to create a priori path that can be modified
during the execution based on the possible changes found. The local costmap
instead is continually created from the information given by the sensors during the
execution created previously from the global planner. It represents the environment
that the sensors of the robot can perceive during the exploration, including new or
dynamic obstacles. Using this map the robot can adjust the trajectory based on

17

Robot Operating System

the changes found. The local costmap and the global costmap are usually formed
by the same type of principal layer

o Obstaclelayer: This layer is responsible for managing and representing
obstacles detected in the robot’s environment. It typically receives sensor
data or other inputs indicating the presence of obstacles and updates the
costmap accordingly. The costmap assigns higher costs to grid cells occupied
by obstacles, influencing the robot’s path planning to avoid collisions.

o InflationLayer: This layer is tasked with expanding the influence of obstacles
in the costmap. It works by assigning increasing costs to grid cells near
obstacles, creating a buffer zone or safety margin around them.

o StaticLayer: The StaticLayer handles static elements in the environment
that are not expected to move or change often. This can include features
such as walls, buildings, or other permanent structures. The layer updates
the costmap with information about these static elements. The StaticLayer
usually creates or updates the costmap based on the occupancy grid map
received from the map server.

The global costmap usually includes all the layers mentioned above, while the
local costmap typically consists of one ObstacleLayer per sensor and an Inflation-
Layer.

Map__server

The map_ server node in ROS is essential for robot navigation and localization. It
manages occupancy grid maps, typically loaded from files like .pgm and .yaml, and
provides them to other nodes via ROS messages. Firstly, localization nodes such as
AMCL (Adaptive Monte Carlo Localization) rely on the gridmap from map_ server
to estimate the robot’s precise position and orientation within its environment. By
comparing sensor data, such as LIDAR scans, against the gridmap, localization algo-
rithms can accurately determine the robot’s location. Furthermore, the StaticLayer
in ROS’s costmap_ 2d framework directly subscribes to the gridmap provided by
map_ server. This layer specifically represents permanent static elements in the
environment, crucial for long-term navigation planning and obstacle avoidance
strategies.

3.2.2 Global and local planners

Various algorithms exist for selecting the optimal path from a global costmap, a
process called global planning. Similarly, algorithms used to correct the trajectory
are referred to as local planning. It is possible to create a customized algorithm,

18

Robot Operating System

including the nav_core: :BaseGlobalPlanner interface. One of the most common
global planners used with move_base in ROS is the global_planner. It allows for
parameter management to customize the path generation process, optimizing it
according to specific project requirements.

o use_grid_path: if this parameter is set to true, the generated path follows
the grid boundaries of the environment map.

o use_dijkstra: if this parameter is set to true, the path is generated using
the Dijkstra algorithm that guarantees the shortest path but is slow [31].

e use_a_star: if this parameter is set to true, the path is generated using the
A* heuristics that is more efficient than Dijkstra [31] and is therefore more
suitable for a dynamic environment. In [32] a new relaxed version of this
algorithm was create, further decreasing the converging time.

Another common global planner is NavFn. It employs a potential field method
to generate paths by representing the environment as a grid of potential values.
These values guide the robot from its current location to a specified goal while
avoiding obstacles using Dijkstra’s algorithm [33]. Usually this planner offers better
performance [34]. To a better understanding of how to create a customized plugin
and how to use it, the authors in [31] show step by step how to create the plugin
and how to set the correct parameters to activate it. The work in [35] shows the
Reinforcement learning algorithm, which is a machine learning algorithm with
trial-and-error nature to create a new global planner. With the advent of deep
learning, this algorithm is used to approximate training for other deep learning
algorithms. This algorithm works trying to maximize a reward cost by taking the
best possible action. There are a set of deep learning evolutions like Q-Learning
(that have problems with high dimension) and Deep Q-Network. The authors set a
hyper-parameter and train the net with 15000 episodes (every episode has a specific
cost that expresses how the episode is done) simulated in ROS Gazebo.

Local planning refers to the process of generating and executing short-term
navigation paths for a robot in real time, typically within its immediate surroundings.
It adjusts or refines the trajectory provided by global planning to ensure the safe
and efficient movement of the robot. A variety of local planners are available
in ROS, with three of the most commonly used ones illustrated in [36] for their
accuracy in robotic navigation.

« DWA Local Planner: The DWA algorithm focuses on reactive collision
avoidance by maximizing an objective function. This function considers
factors such as progress toward a target, clearance from obstacles, and the
robot’s forward velocity. Operating within a dynamic window of achievable
velocities, DWA discretely samples potential velocity pairs (linear velocity and

19

Robot Operating System

angular velocity) and simulates their application over short time intervals. It
evaluates these trajectories using a cost function to select the optimal velocity
pair that minimizes risk and maximizes progress. It is implemented in the
dwa_local_planner package in ROS.

« EBand Local Planner: The EBand algorithm addresses real-time collision-
free motion control using "contraction" and "repulsion” forces. These forces
adjust the robot’s trajectory dynamically to avoid obstacles while maintaining
a smooth path. The algorithm stretches an "elastic band" along the desired
path, deforming it as needed to circumvent encountered obstacles. It is
implemented in the eband_local_planner package in ROS. It performs high
accuracy in path following, effectively navigating complex environments with
minimal deviations.

« TEB Local Planner: Building upon EBand, the TEB algorithm extends its
capabilities by optimizing trajectories closer to the robot’s current position.
TEB aims for time-efficient path execution while considering robot dynamics,
geometric constraints, and obstacle avoidance. It generates a sequence of in-
termediate robot poses, known as “timed elastic bands" to minimize trajectory
execution time and optimize multiple trajectories simultaneously. Initially sup-
porting non-holonomic robots and later expanding to holonomic robots in the
ROS Kinetic version, TEB is implemented in the teb_local _planner package.
It performs high accuracy in path following, effectively navigating complex
environments with minimal deviations. The work in [37] shows the passage for
the process of installing and setting up the TEB for mobile robot navigation
in dynamic environments. This setup is particularly beneficial due to TEB’s
speed, which achieves superior results in highly dynamic environments.

3.2.3 Localization

Localization is a critical aspect of autonomous robotic systems, enabling robots to
determine their position and orientation within their environment. In the context
of ROS, localization refers to the process through which a robot estimates its
pose (position and orientation) relative to a known map or environment. This
capability is essential for robots to navigate effectively, interact with objects, and
perform tasks autonomously in dynamic and unknown environments. ROS provides
a comprehensive framework for implementing various localization algorithms and
techniques, catering to different types of robots and sensor configurations. The
default localization node [38] is AMCL. It enables robots to accurately determine
their position and orientation in known environments. Utilizing a probabilistic
approach known as Monte Carlo localization, AMCL maintains a distribution of
particles representing possible robot poses based on sensor data and a pre-existing

20

Robot Operating System

map of the environment. This adaptive nature allows AMCL to dynamically adjust
the number of particles, optimizing computational resources for efficient localization
while ensuring robust performance in the presence of sensor noise and environmental
changes. AMCL estimates the transformation between the base frame and the
global frame (/map), but it publishes the transformation between the odometry
frame and the global frame.

3.2.4 Real-Time Appearance-Based Mapping

Real-Time Appearance-Based Mapping (RTAB-Map) is a SLAM solution. Unlike
traditional SLAM methods [39], [40] that primarily rely on geometric data from
sensors like LIDAR, RTAB-Map integrates visual appearance information extracted
from RGB-D cameras. This approach enhances mapping accuracy by capturing
detailed textures and colors of the environment alongside geometric features. This
node can be used for creating a map using SLAM by setting the parameter
localization = false. Setting localization = true, instead, allows the node
to take the place of both the map_server node and the localization node. Therefore,
the RTAB-Map node will localize the robot implementing it and publish the topic
containing the gridmap based on the map that was created in a previous SLAM
phase.

3.2.5 RVIZ visualization

To develop ROS applications, there exist efficient tools that simplify the user
interface and the management of all the parameters of the robot. One of the
most used tools is RVIZ [41]. Like any ROS feature, this software is a node that
subscribes to the main topics of the ROS navigation stack. From this software,
once properly set, it is possible to:

 visualize the global map sent to the robots
 interprets the data received from the robot’s sensors
« visualize the global and the local map, and the current path

o set the goal of the robot directly in the map

3.2.6 Gazebo Simulation

In some cases, it is preferable not to work directly with robots but in a simulated
environment opportunely created. There exists a tool called Gazebo [42] that
permits to simulate not only the environment but the entire robot’s dynamics. It is
necessary to create a structure, called Unified Robot Description Format (URDF)

21

Robot Operating System

that is an XML-based file used to describe the kinematic and dynamic structure of
the robot denoting joints, links and frames. With this information, this software
can recreate the node and the topics like sensors, odometry and motor wheels.

22

Chapter 4
Robots Description

This Chapter provides a detailed description of the robots used in this thesis: the
Locobot WX2505-6DOF and the Turtlebot3 Burger. Each robot will be described
in terms of both hardware and software components. The hardware description
includes the main components, sensors, and computational units, while the software
description covers the operating system and the software packages provided by the
robots” manufacturers.

4.1 Locobot WX250S Description

4.1.1 Hardware Description

The Locobot WX250S-6DOF shown in Figure 4.1 is produced by Trossen Robotics.
The robot is 622.8 mm tall and is equipped with an RPLIDAR A2M8 360° Laser
Range Scanner positioned on top. This robot is equipped with a 6-degree-of-freedom
WindowX Robot Arm, which, for the purposes of the thesis, is not necessary. At
the core of this robot is an Intel NUC NUCS8i3BEH Mini PC, which includes an
Intel Dual-Core i3-8th Gen processor, 8GB of DDR4 RAM, and a 240GB Solid
State Drive (SSD). The only GPU available on this system is the Intel Iris Plus
Graphics 655, which lacks the necessary power to handle Convolutional Neural
Networks (CNNs) for detecting and recognizing people. The NUC is shown in
Figure 4.2. The Locobot WX250S-6DOF from Trossen Robotics features the
Kobuki platform as its mobile base, as shown in Figure 4.3, specifically designed for
indoor applications. This base includes two independent driving wheels, enabling
precise and flexible maneuverability. The Kobuki platform is equipped with an
active bumper sensor, which detects collisions with obstacles, allowing the robot
to detect a contact with an object, and cliff sensors that prevent the robot from
driving off edges with a depth of 50mm or more, ensuring it does not fall down

23

Robots Description

Figure 4.1: Locobot WidowX-250 6 Figure 4.2: Intel NUC NUCS8i3BEH
DOF (Kobuki) [43] Mini PC [43]

stairs or other drop-offs. These sensors enhance the robot’s safety and operational
capabilities. This mobile base is made only for indoor applications. The Locobot

Figure 4.3: Kobuki mobile base [43]

WX250S-6DOF is distinguished by its Intel® RealSense™ Depth Camera D435
(shown in Figure 4.4), a critical sensor that significantly enhances its capabilities.
This RGB-D camera is part of the Intel® RealSense™ D400 series, known for
providing high-quality depth perception and RGB imagery. This sensor enables
the robot to perceive obstacles in front of it, facilitating safer and more efficient
navigation.

4.1.2 Software Description

The robot is powered by an Intel NUC NUCS8i3BEH Mini PC running Ubuntu
20.04. The software packages provided by Trossen Robotics are available in both

24

Robots Description

Figure 4.4: Intel® RealSense™ Depth Camera D435 [43]

ROS and ROS 2. However, since the Locobot with the Kobuki mobile base does not
support ROS 2, this thesis has chosen to use the ROS version. The Locobot ROS 1
packages offer a comprehensive ROS navigation stack, which includes the NavinROS
global planner and the TrajectoryPlannerROS local planner, both of which utilize
costmap_2D. For localization and map storage, the package includes the RTAB-
Map ROS node, which creates a 3D map of the environment by fusing data from
the LIDAR and the Intel® RealSense™ Depth Camera D435. This 3D map is
used to generate a costmap_2D and to localize the robot within the environment
using a Visual Odometry-based algorithm. The global cost map incorporates
ObstacleLayer, InflationLayer, and StaticLayer, while the local cost map includes
ObstacleLayer and InflationLayer only. The Locobot WX250S-6DOF also integrates
Movelt, a powerful open-source software for mobile manipulation, which facilitates
planning, manipulation, and control of the robot arm. Movelt supports motion
planning, kinematics, and collision checking, allowing for complex manipulation
tasks to be performed efficiently. The integration with Movelt enhances the robot’s
capability to interact with objects and perform precise movements. Additionally,
the provided packages support complete management of namespace and tf_prefix
in the robot’s launch files, ensuring compatibility with multi-robot environments.
This capability is crucial for complex operations where multiple robots are operating
simultaneously within the same space.

4.2 Turtlebot3 Burger Description

4.2.1 Hardware Description

The Turtlebot3 burger [44] is the result of a collaborative project among several
companies, including ROBOTIS, Open Robotics, Intel, Onshape, and OROCA.
Structurally, it differs significantly from the Locobot WX250s, particularly in size
and features. Unlike the Locobot WX250s, the Turtlebot3 Burger does not include
a robotic arm. Its primary sensor is the LiDAR 360, specifically the LDS-02 model
mounted on top at a height of approximately 120 mm from the ground. The
Turtlebot3 Burger is powered by a Raspberry Pi 3, which lacks a GPU, resulting in

25

Robots Description

limited computational power. The Turtlebot3 Burger is shown in Figures 4.5. The
custom moving platform is powered and controlled by an OpenCR board, which
integrates various sensors and actuators for autonomous navigation. It utilizes two
DYNAMIXEL wheels for precise and efficient movement. This version highlights
that the OpenCR board not only controls the platform but also integrates sensors
and actuators for autonomous navigation.

Figure 4.5: Turtlebot3 Burger

4.2.2 Software Description

The provided package is very basic for ROS navigation. This robot is compatible
with both ROS 1 and ROS 2. The map created is saved using the map_server ROS
node, which creates and saves a 2D costmap of the environment using the LiDAR.
The launch file does not provide any management of namespaces or tf_prefix. If
one tries to launch this robot with others, the system may fail, because the node
and topic names are the same for all robots. The YAML files for configuration are
compatible with versions before Hydro.

26

Chapter 5

ROS framework for multi
robot

The development of multi-robot systems has garnered significant attention in
robotics research and industry due to their potential to increase efficiency and per-
formance in various applications, such as exploration, surveillance, and cooperative
tasks. ROS2, along with the Navigation stack (Nav2), offers features and tools
that enhance multi-robot coordination [45]. ROS2 [46] improves the performance
for real-time communications and is more efficient for large-scale systems. However,
it is still possible to create a multi-robot system using ROS1. Careful attention is
required when launching nodes for multi-robot to avoid issues and conflicts with
duplicated names. In this case, tools such as launch files can be used not only
to simplify the launching of multiple nodes belonging to a single robot, but also
to launch the same nodes more times with different namespaces to avoid name
conflicts [47]. This ensures that each instance of a node operates independently,
facilitating better coordination and management of multi-robot systems. In ROS,
a launch file is an XML file that describes the information and parameters required
to start nodes. It allows users to launch multiple nodes and set parameters quickly
using a single command line. A typical launch file can include various elements
such as node declarations, parameters, re-mappings, and groupings that help to
manage the complexity of launching a robotic system:

e Node Declarations: Specify which nodes to launch, including the package
name, executable, and any necessary arguments. It is possible to launch
another launch file.

o Parameters: Define parameters to be passed to nodes, either directly in the
launch file or from external YAML files.

o Groups: Organize nodes and settings into logical groups, which can also

27

ROS framework for multi robot

include namespaces to avoid name conflicts.

 Remappings: Redirect topics, services, and other resources to avoid conflicts
and ensure correct communication between nodes.

o Conditional Launches: Enable or disable the launching of nodes based on
specific conditions or parameters.

To use a launch file, the roslaunch command is used:

roslaunch <package name> <launch_ file_ name>

Often, robot manufacturing companies provide launch files to enable the correct
functionality of their robots. However, these companies do not always provide
parameters that prevent conflicts when launching multiple robots. Potential conflicts
include:

« Robots having the same transformation (tf) names
o Nodes having the same names for multiple robots

o The launch file starting a node several times, while it should be launched only
once, such as the map server node

e Launch the same node several times for different nodes, each with different
parameters.

Using namespaces and careful parameter management can help mitigate these
conflicts. Launch files can include parameters that allow setting unique names
or namespaces for each robot instance, ensuring smooth operation in multi-robot
systems.

5.1 ROS launch file for multiple robots

If one tries to launch the nodes belonging to a robot more times, it is likely that some
errors will occur. A guideline for solving this type of problem both in simulation
and in a real environment is provided in [47], [48]. The principle for launching
multiple robots is that each node belonging to a specific robot should share the
same namespace. This ensures that every node launched for a particular robot has
a consistent prefix (namespace), which distinguishes it from nodes belonging to
other robots. For example, let’s consider a scenario with two robots, “robot1" and
“robot2" that want to navigate using the same move_base node in the same ROS
network. It is possible to use namespaces to differentiate their nodes. By using

28

ROS framework for multi robot

them in the launch file, robot1’s move_base node becomes “robot1/move_ base'
and robot2’s becomes “robot2/move_base". The XML files can vary between
different robots, but they typically share a core structure when using the ROS
navigation stack. For instance, the launch file provided by ROBOTIS [44] for the
TurtleBot3 and the launch file provided by Trossen Robotics [49] for the Locobot
WX250S have similar foundational patterns, albeit with noticeable differences.

<launch>
<arg mname='"robot_name" default="name" />
<arg name="init_pose" default="-x 0 —y 0 —z 0" />
<arg name="model" default="model" />

<!— Set the robot description —>
<param name='"tobot__description" command="$(find xacro)/xacro.py
urdf/robot . urdf.xacro" />

<!— Spawn the robot model in Gazebo —>
<node name="spawn_robot_model" pkg="gazebo_ ros" type="spawn_model
" args="—urdf —param robot_ description —model $(arg model) $(arg

n

init_pose)" respawn='"false" output="screen"' />

<!— Publish robot state >

<node pkg="robot_ state_ publisher" type="robot_ state_ publisher"
name="robot_state_ publisher" output="screen'/>

<!— AMCL node for localization —>
<node pkg="amcl" type="amcl" name="amcl">
<param name="global frame id" value="/map" />
<!— Add other required parameters for AMCL —>
</node>

<!— Move Base node for navigation —>
<node pkg="move base" type="move base" respawn="false"' name="
move_base" output="screen ">

<rosparam file="params.yaml" command="load" />

<remap from="map" to="/map' />

</node>
<!— RViz for visualization —>
<node pkg="rviz" type="rviz' name="rviz' args="—d file.rviz"

required="true" />

</launch>

Listing 5.1: Example of a robot launchfile, called single robot.launch

The XML in 5.1 represents a generic launch file for a robot utilizing the ROS
navigation stack in a simulated environment using Gazebo. The robot is initially

29

ROS framework for multi robot

spawned in the Gazebo world, followed by the launch of nodes essential for naviga-
tion such as AMCL, Move Base, and RViz for visualization. If the robot is used in
the real world, nodes for robot control and sensors would be launched instead of
those for Gazebo. It is important to notice the line:

<remap from="map" to="/map" />

This line is necessary to share a single map among all the robots by redirecting
the map topic (/map) accordingly. If you attempt to launch this launch file twice,
you may encounter the errors mentioned above. The key to successfully launch
two or more robots is to set the correct namespace for each robot and ensure that
each robot has a different tf prefix. Listing 5.2 is an example of how it should be
managed.

<launch>
<!— Start Gazebo with a specific world —>
<node name="gazebo" pkg="gazebo"' type="gazebo'
args="map.world" respawn="false" output="screen' />

<!— Run the map server —>
<node name="map_server" pkg="map_server
$(find your_ pkg)/map/map.yaml" >

<param name='frame id" value="/map" />
</node>

n I

type="map_server" args='

<!— LAUNCH FIRST ROBOT —>
<group ns="robotl">
<param name="tf prefix"' value="tfl1" />
<include file="single robot.launch">
<arg name='"init_pose" value="-—x 0 —y 0 —z 0" />
<arg name='"robot_name" value="robotl" />
<arg name="model" value="modell" />
</include>
</group>

<!— LAUNCH SECOND ROBOT —>
<group ns="robot2">
<param name="tf prefix"' value="tf2" />
<include file="single robot.launch">
<arg name="init_ pose' value="-x 1 —y 1 —z 1" />
<arg name='robot_name" value="robot2" />
<arg name="model" value="modell" />
</include>
</group>

</launch>

30

ROS framework for multi robot

Listing 5.2: Example of launch file for multiple robots

This launch file begins by initializing the Gazebo node to simulate the envi-
ronment described in map.world. Following this, the map server node is started
to provide the map topic required for all robots. Each robot’s node is launched
using the single robot.launch (Listing 5.1) file within a group, which defines a
distinct namespace for each robot to ensure namespace isolation. This names-
pace acts as a prefix for all nodes within the group. For instance, a node named
NavigationNode inside a group with namespace Robotl would be launched as
Robot1/NavigationNode. Additionally, each robot’s parameters can be configured
independently within its namespace. Additionally, each robot’s parameters can be
configured independently within its namespace. The tf prefix parameter plays a
crucial role similar to the namespace, providing a prefix in the TF tree specific
for each robot. It is essential that all robots” TF trees are interconnected through
a common root, typically /map, to establish a shared reference point for their
coordination. In order to achieve this, it is necessary to set a proper configuration
of the node responsible for transforming /map to /odom, typically handled by the
localization node, such as AMCL in this case. An example of what we can achieve
is illustrated in Figure 5.1.

Broadcaster: /turtlebot/amcl
Average rate: 6.227 Hz
Most recent transform: 6.304 (-0.463 sec old)
Buffer length: 0.803 sec
turtlebot/odom
Broadcaster: /gazebo
Average rate: 31.250 Hz

Most recent transform: 5.834 (0.007 sec old)
Buffer length: 0.800 sec

turtlebot/base footprint

Broadcaster: /locobot/rtabmap/rtabmap
Average rate: 21.333 Hz
Most recent transform: 5.900 (-0.059 sec old)
Buffer length: 0.750 sec
locobot/odom
Broadcaster: /gazebo
Average rate: 31.250 Hz

Most recent transform: 5.834 (0.007 sec old)
Buffer length: 0.800 sec

locobot/base_footprint

Figure 5.1: A representation of part of TF tree

5.2 Launching Locobot and Turtlebot

Based on the provided information, two main packages have been created: one
for launching the Locobot and Turtlebot in map creation mode, and another for
launching the robots in localization mode.

31

ROS framework for multi robot

5.2.1 Map Creation Modality

The first mode is used only once to create a map of the environment. In this mode,
each robot creates its own map, resulting in two different maps. The chosen map
is created by the Locobot using both a depth camera and a laser scanner, utilizing
the RTAB-Map package. RTAB-Map is selected because it creates a 3D map of
the environment [39] and then generates a 2D grid map by projecting the 3D data
from all sensors onto the ground plane. This process involves using a voxel grid
filter to merge points projected into the same cell and applying 2D ray tracing to
fill the empty spaces between obstacles and the camera. This approach ensures
that the maps created are highly detailed and accurate, leveraging the strengths
of both the depth camera and the laser scanner to capture various aspects of the
environment. The integration of these data sources and the advanced processing
techniques used by RTAB-Map contribute to the robustness and precision of the
generated maps. This implies that the Locobot has sufficient dimensions to explore
and map the entire environment. While the map created by the Turtlebot using
only LiDAR might not be as detailed as the one created by the Locobot, the
maps are still sufficiently similar. Significant differences between the environment
viewable by the Turtlebot with only LiDAR and the map sent from the Locobot can
create problems during localization if the two maps are very different. RTAB-Map
offers a parameter called Grid/MaxObstacleHeight to set the maximum height
for considering an object as an obstacle. By adjusting this parameter, it is possible
to create various mapping scenarios.

Figure 5.2: The red line represents the Figure 5.3: The red line represent the
MaxObstacleHeight that, in this case, is MaxObstacleHeight that, in this case is
set to the exact height of Locobot set to the exact height of Turtlebot

In the first case, shown in Figure 5.2, the MaxObstacleHeight parameter is set
to the height of the Locobot, which is taller than the Turtlebot. Consequently,

32

ROS framework for multi robot

the grid map generated by the Locobot can be significantly different from the
Turtlebot’s view. For instance, a table with a top height between the Locobot’s
height and the Turtlebot’s height would be represented as a rectangle in the grid
map created by the Locobot (Figures 5.4, 5.5). On the contrary, the Turtlebot
would perceive this area as four circles, representing the table legs. This discrepancy
occurs because the Turtlebot’s LIDAR cannot detect the tabletop, but only the
legs.

In the second case, shown in Figure 5.3, the MaxObstacleHeight parameter is
set to the height of the Turtlebot’s LiDAR position. In this scenario, the Turtlebot’s
view matches the grid map provided by RTAB-Map (Figures 5.6, 5.7, 5.8). This
alignment means that a path marked as possible for the Turtlebot might appear
feasible, but during movement, the Locobot may discover the path is unfeasible and
change its trajectory accordingly. However, this does not pose a problem for the
Locobot’s localization, because it relies on the 3D information of the environment
for accurate positioning.

~

Figure 5.4: The simulated environment Figure 5.5: The map generated, the

with the MaxObstacleHeight set to 0.7 obstacles are placed in the map in rect-
angular shape

The second option has been chosen because the Locobot is considered as a
support for the Turtlebot. The thesis aims at demonstrating how a robot with more
sensors can send information about the environment to a robot that would otherwise
be unable to gather such information. This choice depends on the environment’s
morphology and must be evaluated on a case-by-case basis. It is possible to merge
the two maps to create a new one, but merging heterogeneous maps poses several
challenges [50]:

o The chances of incorrect merging are higher with heterogeneous maps. There-
fore, it is necessary to search mechanisms to reduce the risk of map corruption
due to errors. Possible solutions include multi-level map storage solutions or
meeting strategies to confirm merging decisions.

33

ROS framework for multi robot

OIS -

» M steps: 1 Real Time Factor

Figure 5.6: The simulated environment with the MaxObstacleHeight set to 0.2
and laser scan parameter set to false

Figure 5.7: The Locobot takes informa- Figure 5.8: The map generated, the

tion from all the figure obstacles are placed in the map in circle
shape and not with rectangular despite
the robot see the rectangular place in top
of the cylinder

o Merging of different quality maps is currently lacking even for same-type maps.
To facilitate the propagation of higher quality maps, map quality assessment
algorithms are necessary.

o There are limited solutions for asymmetric merging, where a separate global
map is produced for each involved robotic platform. This means each robot

34

ROS framework for multi robot

may end up with a different version of the map, complicating coordination
and navigation.

In practice, RTAB-Map heavily relies on the LiDAR system, even when the
MaxObstacleHeight is set lower. To make the system work effectively, it would be
necessary to disable the LiDAR for map creation, but this significantly impacts
the map’s accuracy. While the result might be sufficiently good in simulation, in a
real environment, the map quality would be too poor.

5.2.2 Navigation Modality

This modality is used to enable robots to navigate within the environment. The
map utilized has already been created in a previous mode. In this modality, both
robots are launched while adhering to the precautions mentioned earlier regarding
namespaces and tf prefix. This launch file directly invokes the launch file provided
by Trossen Robotics, ensuring the correct parameters are set as detailed in Table
5.1. It initiates the Gazebo world, generating and saving it as house.world file.

Parameter Value
rtabmap_args _init__pose:=[0,0,0,0,0,0]
robot name locobot
robot__model locobot wx250s
localization true
world_name $(find all_robot__gazebo)/worlds/house.world
paused true
use_position controllers true

Table 5.1: Parameter table for Locobot

The launch file provided by ROBOTIS to simulate the Turtlebot has been revised
to correctly configure parameters. Initially, the original launch file lacked support
for namespaces and tf _prefixes. Introducing these into the initial launch file caused
nodes to not connect correctly, as absolute tf IDs (preceded by “/") were used in the
configuration files for both topics and tf frames. To address this issue, adjustments
were made to ensure that namespaces and tf prefixes were appropriately handled,
allowing for proper node connectivity and TF frame resolution. Furthermore, the
map server node launch has been removed from the setup because the RTAB-
Map node provides the map instead of map_server. Similarly, modifications were
applied to the amcl.launch file to align the global frame id with the value specified
by RTAB-Map. Additionally, updates were made to the move_base parameter

35

ROS framework for multi robot

files, originally designed for pre-hydro versions, to accommodate new layers and
functionalities required for enhanced navigation capabilities, a shown in Listing 5.4.

local__costmap:
global frame: turtlebot/odom
robot__base_ frame: turtlebot/
base_ footprint

w N e

local_costmap: |

global frame: odom 5 update_frequency: 3.0
robot base frame: 6 publish_ frequency: 3.0
base_ footprint 7 transform tolerance: 0.5
update_frequency: 10.0 9 rolling window: true
publish_ frequency: 10.0 10 width: 3

transform tolerance: 0.5 11 height: 3

12 resolution: 0.05
static_map: false 13

rolling__window: true 14 plugins:
width: 3 15 — name: obstacle_layer
height: 3 16 type: "
resolution: 0.05 costmap_ 2d::ObstacleLayer"
17
18 — name: inflation_layer
Listing 5.3: Pre-Hydro parameter o type:
for local costmap costmap_ 2d::InflationLayer"

Listing 5.4: Same parameter is the
new format

5.2.3 Launch Locobot and Turtlebot in real environment

In ROS network setup used in this thesis, we have three devices: two robots
(Turtlebot and Locobot) and a PC serving as the ROS master. The Locobot runs
all ROS nodes locally on the robot itself, while the PC is configured to use RVIZ
solely for visualizing main topics and sending commands. Conversely, the Turtlebot
runs state nodes locally, while the nodes from the ROS navigation stack operate
on the PC. This configuration adheres to the namespace and tf prefix clauses
discussed earlier to ensure proper node communication and TF frame management.
The map used for navigation was created directly by the Locobot using its LIDAR
sensor. This approach was chosen because attempting to create the map without
LiDAR resulted in an insufficiently accurate map for localization purposes. In the
PC, the node responsible for sharing information, robot_position_info_manager
node, will also be run, as discussed in the Chapter 6. A representionton of the

36

ROS framework for multi robot

ROS network is shown in Figure 5.9

Turtlebot’s Navigation Nodes
Locobot RVIZ node
Robot_position_info_manager node

ROS MASTER

Turtlebot

State Nodes State Nodes
Navigation Nodes

Figure 5.9: Representation of the ROS network and where nodes are run

37

Chapter 6

ROS node for information
position management

The main questions to address in this thesis are: How can information be transmitted
between the two robots? In what ways can this information be shared? How can
this information be utilized to gain some advantages? What benefits could arise
from the heterogeneity of the robots? It is important to consider the meaning
given to the local costmap and how it is created, which involves using the robot’s
sensors for detecting obstacles in real time [51]. The key idea is that the robots
share their local maps with each other, essentially sharing information about what
they themselves are observing, including the obstacles encountered during path
execution. Therefore, it is necessary to find a way to manage and share these
local costmaps and how to use them to create paths that consider the information
received from other robots. Another piece of information that can be shared is the
robots’ own positions. By sharing their positions, a robot can use this information
to create a path that takes into account the positions of other robots in advance.
This chapter will focus on how to share the local costmap.

6.1 Local costmap and position management

The main idea for sharing information is to create a ROS node that manages the
local costmap data. A general schema of this node can be found in Figure 6.1. This
node will handle the collection, management, and dissemination of local costmap
data and position data between the robots. The local costmap is usually published
by move base node and in this topic is published in nav_ msgs/OccupancyGrid
type of message. The definition of this type of message contains :

o header (std_msgs/Header): it contains timestamped information, such as the

38

ROS node for information position management

Position Data
Local_Costmap Data

Robot1

Robot3

Robot2

Figure 6.1: Robot_ position info manager node receive position and lo-

cal_costmap data from all the robots

time when the local costmap was created

o info (nav_msgs/MapMetaData): it contains metadata about the map like

resolution, dimensions and the origin.

o data (int[]): this field is the most important, it contains the local costmap
information in the form of grid map where, in row-major order, starting from

[0,0] position, each value is set as follows:

— 0: free cell

— 1-100: the probability to find an obstacle in this cell

—-1: unknown cell

The local costmap topic already exists, so it is necessary for the created node to sub-
scribe to these topics to receive the information. To achieve this, a configuration file
has been created to select the correct topics and assign a unique name to each robot.
This unique name will later serve to identify the robot that is sending this informa-
tion. The configuration file is a .yaml file named robot_ position_info param.yaml,
an example of which can be found in Listing 6.1. The file contains a list, called

subscribers, that includes the following fields:

39

ROS node for information position management

« name: The name of the robot that associates the information received from
the other fields to the robot.

e topic: The topic where it can be found the position of the robot.

o type: The message type corresponding to the localization topic. This was
created to handle different types of messages that may indicate the robot’s
position.

e localtopic: The topic where it can be found the local costmap.

subscribers:
— name: "robotl'
topic: "/robotl/position"
type: "geometry msgs/PoseStamped”
localtopic: "/robotl/move_base/local_costmap’
— name: "robot2'
topic: "/robot2/position"
type: "geometry msgs/PoseStamped”’
localtopic: "/robot2/move_base/local_costmap"

Listing 6.1: Example of robot_ position_info manager parameters

When this node starts, it tries to read the robot_ position_info param.yaml
file. If the file is not found, the node stops and displays an error on the screen. If
the configuration file is loaded correctly, the node subscribes to the topics for each
robot listed in the file. For every robot specified in the file, the node will subscribe
to the topic containing the robot’s position and the local costmap topic. After
that, this node executes the command:

ros::spin();

The node remains listening and receiving information from the subscribed topics.
When new data are sent from a topic regarding an updated local costmap, the node
has a data structure for saving the latest information about the robot that triggers
a callback function. When the callback function manages this event, the node
takes the new data and pushes them into the correct position, replacing the old
data with the new data. The data structure for saving this information is a map
where the key is the robot’s name and the data corresponds to the entire message
received. This choice was made to speed up data retrieval by the robot’s name every
time new data are received and every time a robot requires specific position data.
This data structure could cause slowdowns during another phase where almost the
entire contents of the data structure are printed. In such cases, other structures
like simple vectors would have better performance. However, these latter events

40

N

ROS node for information position management

generally occur less frequently. In fact, the frequency at which data arrive on the
local costmap topic depends on a parameter called publish_frequency defined in
the local costmap parameters. The frequency of the other event described before,
which will be explained in detail later on, depends on the publish_frequency of
the global costmap, which is generally lower. This is because local planning and
obstacle avoidance prefer updated information about the immediate surroundings
of the robots, and with a higher value of publish frequency, the robot can react
quickly to changes in the environment. If the number of robots grows significantly,
it may be considered to replace the data structure with an ordered vector. This
would allow for efficient searching using binary search, while still achieving better
performance when printing the entire data structure. A similar discussion can be
made for the management of the poisoning robot: when new data are received from
the robot, a dedicated callback function is called and the data are pushed into the
data structure, which is the same previously used for the same reason, and replace
the old data with the new. The code structure allows for differentiation in callback
handling based on the type of data received from the position topic. The handler
I created responds to the PoseWithCovarianceStamped type, saving the position
while discarding any uncertainty-related data. The map contains objects of a new
class called RobotInfo which includes:

class RobotInfo {

public:
geometry msgs:: Pose pose;
std :: shared_ ptr<nav_msgs:: OccupancyGrid> local_costmap;
mutable boost::shared mutex mtx;

}s

Listing 6.2: RobotInfo Class

This structure allows storing the position and local costmap of each robot while
ensuring thread safety with a shared mutex. Multiple threads are allowed to read
information from RobotInfo, but only one thread is allowed to modify it. The
information will be read by threads from various robots while they create the
global costmap, whereas it will be written by only the thread managing the node.
To achieve this, get methods have been implemented using shared_ lock, allowing
multiple threads to concurrently read information from RobotInfo. Meanwhile,
setter methods use unique_ lock, ensuring that only one thread at a time can modify
the data within RobotInfo.

It has already seen how these data are received and stored by the node, but
how the data are sent from this node to the other ones? ROS typically facilitates
communication through two primary mechanisms: topics and services. However,
in certain projects, communication may also occur via external files [18]. In this
scenario, where information needs to be sent only when requested by the robot, ROS
services offer synchronous communication and appear to be the most appropriate

41

w0

ROS node for information position management

“Robot3"
Robot3

v

robot1 and robot2 position
robot1 and robot2 local_costmap

topic: /robot2/position
topic: /robot2/move_base/local_costmap

Robot2

topic: /robot1/position
topic: /robot1/move_base/local_costmap

Robot1

Figure 6.2: Robot_position_info manager node description

choice. These services will respond to requests sent by robots with the correct
information. I have created two main services named GetOtherRobotInfo and
GetRobotPosition. The diagram in Figure 6.2 shows the main functionalities of
the node.

6.1.1 GetRobotPosition

This service is responsible for sending information to the requesting robot about the
latest positions of other robots indicated in the request by name. If the requested
robot name does not exist or is null, the service responds with false. The template
of this service is illustrated in Listing 6.3.

string requester_name

geometry_msgs/Pose robot_position

Listing 6.3: The GetRobotPosition service template

As mentioned earlier and as indicated in the first line of Listing 6.3, the input of
this service is a string representing the name of the robot requesting the service.

42

ROS node for information position management

The output of this service is the position of the other robot indicated in the request,
in the form of a geometry_msgs/Pose message.

6.1.2 GetOtherRobotsInfo

This service is responsible for sending information to the requesting robot about
the last known positions and local costmaps of other robots. The node excludes
information about the requesting robot itself when responding. For this purpose,
the input required to obtain this information includes the name of the requesting
robot. If the specified robot name does not exist or is null, the service responds
with information about all robots. The template for this service is illustrated in
Listing 6.4.

string requester_name

3| positioning_layer/OtherRobotInfo[] other_robots_info

Listing 6.4: The GetOtherRobotsInfo service template

As mentioned above and as indicated in the first line of Listing 6.4, the input of this
service is a string representing the name of the robot requesting the service. The
output consists of two parts: positions and local costmaps. However, ROS services
can only respond with a single message or a vector of the same type of message.
To accommodate sending both types of information in a single response, a new
message type called positioning layer/OtherRobotInfo. This new message is
simply composed, as can be seen from Listing 6.5, by two parts:

o pose (geometry_msgs/Pose): is the message that contains the robot position

e local costmap (nav_msgs/OccupancyGrid): is the message that contains
the local costmap

msg/OtherRobotInfo . msg

geometry__msgs/Pose pose
nav_msgs/OccupancyGrid local__costmap

Listing 6.5: The positioning layer/OtherRobotInfo message template

So, OtherRobotInfo service responds with a vector of the new message type
positioning layer/OtherRobotInfo, which contains the positions and local
costmaps of all other robots requested by the name provided.

43

Chapter 7
Positioning Layer

In this chapter, a new costmap_ 2d layer, called Positioning Layer, is introduced.
This layer is responsible for acquiring data from the Robot_ position_info manager
node and processing it to gain benefits. To create a new layer, you need to create
a new class that implements the costmap_2d: :Layer interface and overrides three
main functions.

e virtual void updateCosts(costmap_2d::Costmap2D& master_grid,
int min_i, int min_j, int max_i, int max_j) = 0;

— master__grid: A reference to the main costmap that combines
all the layers. This object is passed by reference from the
costmap_2d: :LayeredCostmap object that subscribes to the layer.

— min__i, min__j, max_ i, max__j: These parameters define the bound-
aries within which the main costmap can be modified by the function.

This function is used to update the cost values of the main costmap within a
specific region. It is called by every layer of the costmap during their update
process when LayeredCostmap calls updateMap. The function ensures that
each layer can modify the cost values within the defined boundaries, allowing
for a composite costmap that reflects the contributions of all individual layers.
LayeredCostmap calls this function one by one for each layer, so the order in
which these layers are registered is important.

e virtual void updateBounds(double robot_x, double robot_y,
double robot_yaw, double* min_x, double* min_y, double* max_ x,
double* max_y) = 0;

44

Positioning Layer

— robot__x, double robot__y, double robot__yaw: Represent the posi-
tion and orientation of the robot to which this layer belongs within the
LayeredCostmap.

— double* min_ x, double* min_y, double* max_ x, double*
max__y. They are the references to the limits.

e virtual void onInitialize() = 0;
It configures and initializes the layer’s parameters and data structures, such
as connecting to topics, creating data structures, or defining other necessary
components. This initialization occurs once when the layer is inserted into
the LayeredCostmap.

7.1 Functions

7.1.1 The updateBounds function

The developed layer utilizes bounds similar to those used by the static_layer,
which typically writes the costmap based on the map received from the map server.
These bounds cover the entire costmap area and do not adjust based on the robot’s
position or orientation. To achieve this, the useExtraBounds function is invoked.
This function takes into account any additional restrictions imposed by other layers,
which may limit the area further. Its primary role is to translate the coordinates
of these bounds from the map’s perspective to the world frame of reference.

7.1.2 The onlnitialize function

Each robot must initialize its layer properly to ensure it correctly receives
data from the Robot_position info manager node and sets the necessary pa-
rameters accordingly. Firstly, it is necessary to establish a connection for
this layer to receive data. This is achieved by creating an object of type
ros::ServiceClient, which will be invoked each time the map needs to
be updated. This ros::ServiceClient provides a direct connection to the
getOtherRobotsInfo service of the Robot_position_info_manager node, as de-
tailed in Chapter 6. In this function, the layer retrieves information on how to
manage and process data. To properly configure this layer, it is necessary to pass
parameters through the configuration file of the global costmap .YAML file. An
example can be found in Listing 7.1. The parameters that can be used to configure
the layer are three:

e robot__name: Specifies the name of the current robot. This parameter is
typically used to identify the robot to the Robot_position_info_manager

45

N

Positioning Layer

and to make requests for information via the getOtherRobotsInfo service.
If the node fails to retrieve this information because it doesn’t exist or due
to any other issue, a default empty string is chosen as the name. Setting an
empty string as the parameter for the getOtherRobotsInfo service means
requesting all available data from the node.

other__robot_ radius: This parameter defines the radius in meters of the
circle around each other robot’s position that marks surrounding areas as
occupied on the map. Essentially, it extends the occupied region beyond each
robot’s exact position, creating a buffer zone where these areas are considered
as occupied. If this parameter is omitted or not loaded correctly, it will be set
to 0 by default, meaning no cells will be marked as occupied in the robot’s
position. A demonstration of this parameter is shown in Figures 7.1, 7.2.

Figure 7.1: Representation of a Figure 7.2: Representation of a
robot created by another robot with

the Positioning Layer active and an
other_robot_radius set to 0.2

robot created by another robot with
the Positioning Layer active and an
other_robot_radius set to 0.4

o discard_ radius: This parameter specifies the radius around the robot where

information from other robots is discarded or not considered. It’s not exactly
a radius but rather half the side length of a square constructed around the
robot. If this parameter is omitted or not loaded correctly, it will be set to
0 by default, meaning the discard area is disabled. A representation of the
discard_radius is shown in Figure 7.3.

Listing 7.1: An example of how set up paramter for the positioning layer

global_costmap:
positioning_layer:

robot name: name_ of the robot
other robot radius: 0.2
discard radius: 0.6

46

Positioning Layer

7.1.3 The updateCosts function

The core function of this layer resides in this function. It is responsible for integrating
various local costmaps into the global costmap and marking cells occupied by other
robots. The first task it performs is to check if the discard_radius is activated
(discard_radius >= 0). If active, the function attempts to retrieve information
about its own position from the Robot_position_info_manager node. If the layer
fails to obtain this information or if it does not exist, the layer disables itself even if
discard_radius >= 0. The rationale for this step will be explained shortly. After
that, this function makes a request to the Robot_position_info_manager node
to retrieve information about other robots. If the service call fails, updateCost
does not modify the global costmap in any way and triggers an error message.
Once the data are received, the layer processes each robot individually, extracting
information such as the position, resolution, and dimensions of each local costmap
one by one. The critical step involves centering the local costmap precisely at
the robot’s location. This requires accurately translating the indices of the local
costmap, represented as a matrix, into real-world coordinates, and then converting
them to indices suitable for the global costmap matrix. To begin, we calculate the
corresponding starting cell in the global costmap that corresponds to the first cell
of the local costmap. This is achieved using the worldToMap function provided by
costmap_2d: :Costmap2D, which converts points from world coordinates to matrix
indices. Given the robot’s position in real-world coordinates, adjusting for half the
real length and width of the local costmap (computed by multiplying the number of
rows and columns of the local costmap by its resolution) gives us the starting point
where modifications to the global costmap should begin. To obtain the indices in
the global costmap you simply utilize the worldToMap function. Once these indices
are found, it will be necessary to copy the content from the local costmap to the
global costmap represented by master_grid. Before using the setCost function
on master_grid, two conditions must be checked:

o Ensure that the local costmap is within the bounds of the global costmap. If
it exceeds these bounds, refrain from writing to the global costmap to prevent
segmentation faults during the write operation.

o If the discard radius is activated and the preliminary checks are successful,
avoid writing to cells near the robot that is updating the global costmap within
the square area defined by the discard radius. This precaution prevents cells
directly under the robot from being marked as occupied, potentially hindering
its movement. This situation can occur when the robot updating the global
costmap appears in the local costmap of another robot.

Only cells marked as definitely occupied in the local costmap are copied into the
global costmap.

47

Positioning Layer

Figure 7.3: The square in the image represents the clearance area where the
costmap of other robots cannot write information about the presence of obstacles
with discard radius = 0.6

7.1.4 Layer Integration Process

This layer is responsible for retrieving the position and local costmap of other
robots from the Robot_position_info_manager node. It marks as occupied the
cells where other robots are located, and copies the local costmaps of these robots
into its own global costmap (Figure 7.4). However, it avoids copying cells that are
too close to its own robot, ensuring that the robot’s movement is not hindered.
To mitigate errors rather than improve the quality of information, it is necessary
to insert this layer before the inflation layer adds padding around obstacles. This
provides a higher error margin, which can help to compensate for inaccuracies in
localization or distance measurements by the robot. The reason why the local
costmap and global costmap need to have the same resolution is to avoid issues
related to pixel scaling, as there is no rescaling of the local costmap to match the
resolution of the global costmap.

7.2 Configuration and Correlation with
Robot_ position info manager node

It is important to understand the two key parts of this framework. The list of
robots that are subscribed to Robot_ position_info manager node are the robots
that decide to send data about position and their local costmap. Every robot
that wants to receive data from another robot has to install this ROS new package
containing this layer and insert it into its own layers the positioning layer. The

48

Positioning Layer

ooo| —H
nu[s[s{s

Figure 7.4: In this image, the functionality of the layer is demonstrated. On the
left, the local maps where two robots have detected obstacles that are marked in
red and green. On the right, these areas are shown as they are integrated into the
layer. The blue dots represent the areas where the robots are positioned, marking
those locations as occupied. The local costmap with green obstacles is not fully
written because part of it is too close to the robot updating the global costmap
(yellow dot). The discard area, where data is not written, is marked in light gray

robot_ name parameter of this layer is necessary for configuring well this framework.
If the robot is subscribing in the list of Robot_ position_info manager node source,
the two name parameters are properly set to the same name to avoid conflict. In
fact, if the names are different, the robot receives the same position as itself and is
marked as occupied by the cells close to him, thus creating problems during the
path planning of the robot. A single robot can independently decide whether to
receive only data about other robots and add it to our global map without sending
information about itself, or to send only data without receiving information from
others. It is important, for example, to exclude data received from robots with
lower precision. It is necessary that a robot with less quality of data is not placed
in the Robot_ position_info_manager node source list. If a robot only wants to
receive the local costmap, simply set other robot radius to 0 or omit it from
the layer’s parameters. Similarly, if the discard area should not be activated, set
discard_radius to 0 or omit it. Diagram is shown in Figure 7.5

49

Positioning Layer

0| local costmap + position

I -)
O0O0| local costmap + position
ood

S
>

“Robot1"

Robot1
“Robot1"

Own position

v

Global Costmap V¥

Figure 7.5: A representation of what the Positioning layer does and how it
communicates with the Robot_ position info manager

50

Chapter 8
Software configuration

This Chapter illustrates all the configurations used by the robots. The map creation
is considered done with all the precautions that were discussed in Chapter 5. This
configuration is used both in simulation and in real application

8.1 Robots configuration

SLAM and localization package

The Locobot WX250s uses the RTAB-Map package for creating maps and local-
izing itself in the environment. The robot is sold with this software integrated
and provides nodes for creating and storing maps, as well as a node that localizes
the robot in the environment during the localization phase. This node is able to
fuse the data received from the RPLIDAR A2 and the Intel® RealSense™ Depth
Camera D435 to create a better representation of the environment. As discussed
in Chapter 5, this robot was chosen with RTAB-Map to create the map, with some
differences between the lab and the simulated environment. While in the simu-
lated environment using Gazebo, creating the map with use_lidar:=false and
Max0bstacleHeight still resulted in a high-quality map, in the real environment,
setting use_lidar:=false and thus creating the map using the Intel® RealSense™
Depth Camera D435 resulted in a map that was too noisy and unusable. Therefore,
it was decided to create the map using the LIDAR of the LoCoBot to make the
best use of RTAB-Map’s capabilities.

Global Planner

The files provided by the manufacturer of the Locobot use NavFn as the default
global planning algorithm. As mentioned in Chapter 3, this package uses the
Dijkstra algorithm as default to evaluate the best path. This implies that the

51

Software configuration

results obtained from navFn, although better [34], may require more time for
processing [52]. In this scenario, where the global map can change very dynamically,
it is important to generate a global path as quickly as possible. For this reason, it
has been chosen the global planner package that offers various options including
the possibility to use the A* algorithm to evaluate the path, requiring less time
for finding a path with performance similar to the performance offered by navFn
[34]. Actually, based on the tests conducted, the resulting environment is not very
dynamic. However, due to the nature of the package, which frequently updates the
global costmap, having a faster global planner is advantageous.

Local Planner

The files provided by the manufacturer of the Locobot use
base_local_planner/TrajectoryPlannerROS as the default local planning
algorithm. This package [53] is a new implementation of old dwa_local planner
[54] that improves this last one, makes it more modular and allows, for example,
adding your own cost function. As mentioned in Chapter 3, there exist other
approaches, each of which brings various benefits and strengths. It is important to
understand which environment you want to simulate. In the tests, the environment
can change over time, but once a path is traced, it is difficult to change. Generally,
in the case of a highly dynamic environment, the TEB algorithm is preferred.
For the tests, it is not necessary to have high execution speed at the expense of
precision and smoothness, and for this reason, it has been chosen to maintain the
algorithm originally provided by Trossen Robotics.

Configuration files

It is therefore necessary to make modifications to the move_base_params.yaml
configuration file so that the move_base node belonging to the Locobot WX250s
correctly incorporates all the changes discussed earlier. Table 8.1 shows these
modifications.

The global and local planners also have configuration files. In Table 8.2,
use_dijkstra is set to false to force the global planner algorithm to use A*
as the global planning algorithm. use_grid_path set to false is used to make the
path less jagged and smoother. The configuration files of the local planner have
not undergone any changes compared to the original configuration file.

The other two configuration files are properly set as follows:
global costmap_all params.yaml and local_costmap_all_params.yaml.
In these two files, it is necessary to increase the update_frequency and
publish frequency to enhance the frequency at which the robot updates its
internal data of the costmap and publishes the costmap, respectively. In the local
costmap, it is crucial to set publish_frequency equal to update_frequency to

52

Software configuration

Parameter Value
controller frequency 10
controller patience 3
planner_frequency 2
planner_patience)
oscillation timeout 10
oscillation distance 0.2
base_local planner | "base_local planner/TrajectoryPlannerROS'
base global planner "global _planner/GlobalPlanner"

Table 8.1: Parameter table for move base Locobot

allow unknown | false

use_ dijkstra false

use_ grid path | false

Table 8.2: Parameter table for global planner Locobot

make the local costmap available to other robots as soon as possible. Another
important parameter to set is the resolution of both the local and global costmaps,
ensuring this value is shared across all costmaps and robots. For the global
costmap, it is essential to add the position_layer as cited in Chapter 7 to
incorporate the local costmap of the Turtlebot into the Locobot’s global costmap.

global_costmap:
global_ frame: map
update_ frequency: 2.0
publish_ frequency: 2.0
positioning_layer:
robot name: locobot
plugins:
— {name: static_layer, type: "costmap_ 2d::StaticLayer'}
— {name: positioning_layer, type: '
positioning_layer_namespace::PoseLayer"}
— {name: laser_layer, type: "costmap_2d::ObstacleLayer"}
— {name: depth_ layer, type: "costmap 2d::ObstacleLayer"}
— {name: inflation_layer, type: "costmap 2d::InflationLayer"}

Listing 8.1: the global costmpa_all params.yaml file used by the Locobot

local_costmap:
update_ frequency: 4.0
publish_ frequency: 4.0

53

Software configuration

I rolling_ window: true

width: 4.0

height: 4.0

7 resolution: 0.05

8 plugins:

o/ — {name: laser_layer, type: "costmap_2d::ObstacleLayer"}

10| — {name: depth_layer, type: "costmap_2d::ObstacleLayer"}

11| — {name: inflation_layer, type: "costmap_2d::InflationLayer"}

Listing 8.2: the local costmpa_all params.yaml file used by the Locobot

8.1.1 Turtlebot configuration
SLAM and localization package

The Turtlebot does not use any SLAM algorithm, as the map considered when using
this robot is the one generated during the Locobot’s SLAM session. Regarding
localization, we have chosen to use the AMCL package, which is provided by
the robot’s manufacturers. To simplify matters, both in simulation and in the
laboratory, the initial localization point is always correct. This is to avoid incorrect
updates of the local costmap to the Locobot, which would affect its global costmap.

Global Planner and Local Planner

The same considerations made for the LoCoBot can be applied to the Turtlebot.
The Turtlebot uses navfn and dwa_local_planner as the global and local planner
algorithms, respectively. However, unlike the choices made for the Locobot, default
values were retained for the Turtlebot’s algorithms to emphasize the diversity and
heterogeneity between the two robots.

Configuration files

Just as with the Locobot, configuration files have been changed for the Turtle-
bot, despite the Turtlebot using default algorithms for local and global plan-
ning. The main files modified here are those that adjust parameters for the
global costmap and local costmap, namely global costmap_params.yaml and
local_costmap_params.yaml. As discussed in Chapter 5, these files were adapted
to accommodate the addition of new layers, including the positioning_ layer in
the global costmap for this robot as well. Additionally, the resolution of both the
local and global costmaps, as well as their update and publication frequencies, were
also modified, according to the value used by the Locobot.

Listing 8.3: the global costmpa_params.yaml file used by the Turtlebot

1| global_costmap:

o4

[

o

N

Software configuration

global_frame: map
robot__base_frame: base_footprint

update_ frequency: 2.0
publish_ frequency: 2.0
transform tolerance: 0.5

positioning_layer:
robot _name: turtlebot

plugins:
— name: static_layer
type: "costmap_ 2d::StaticLayer"

— name: positioning_ layer
type: "positioning layer namespace::PoselLayer'

— name: obstacle_layer
type: "costmap_ 2d::ObstacleLayer”

— name: inflation_layer
type: "costmap_2d::InflationLayer"

Listing 8.4: the local costmpa_ params.yaml file used by the Turtlebot

local_costmap:
global frame: odom
robot_base_frame: base_footprint

update_ frequency: 2.0
publish_ frequency: 2.0
transform_ tolerance: 0.5

rolling_ window: true
width: 3

height: 3
resolution: 0.05

plugins:
— name: obstacle_layer
type: "costmap_2d::ObstacleLayer”

— name: inflation_layer
type: "costmap_2d::InflationLayer"

59

Chapter 9

Simulation and experimental
results

This Chapter explores the evaluation of the robot_position_info_manager node
and the Positioning Layer in both simulated and real-world environments. The
primary focus is on assessing the functionality and performance of the application
under controlled conditions. In the simulated environment, tests were conducted
using the Turtlebot house model in Gazebo, designed to simulate a simple household
environment suitable for to testing robot navigation and perception capabilities.
These tests involve scenarios where robots operate in separate areas, unable to
directly observe each other, yet exchanging critical position and obstacle informa-
tion. The simulation setup ensures that the robots can accurately model their
surroundings and transmit relevant data to each other’s global costmaps, crucial
for collaborative path planning and obstacle avoidance.

9.1 Working in a simulated environment

9.1.1 Simulation Setup

This Section examines the tests conducted to evaluate the
robot_ position info manager node in a simulation environment. The pri-
mary objective is to analyse the effectiveness and correct operation of the
application, as well as to discuss the results obtained during the testing process.
All the tests are conducted in a simulated environment using Gazebo. The
environment used is the Turtlebot house that represents a simple house. It was
important for these tests to have an environment that allowed the two robots to
be in two areas not directly visible to each other. The map generation is already
done, using the process described in Chapter 8.

56

Simulation and experimental results

9.1.2 Test results

Test 1

The first test evaluates how the robots exchanged their positions reciprocally and
that, on its own global costmap, each robot indicated the cells where the other
robot is located as occupied. Figures 9.1, 9.2, 9.3 show such functionality.

&«
\

Figure 9.1: The two robots are positioned in such a way that they cannot directly
see each other. In fact, there is a wall between the two robots.

L

Figure 9.2: The Locobot RVIZ vi- Figure 9.3: The Turtlebot RVIZ visu-
sualization. The Locobot, in the global alization. The Turtlebot, in the global
costmap, marks with occupied the cells costmap, marks with occupied the cells
where the Turtlebot is located where the Locobot is located

57

Simulation and experimental results

Test 2

The second test verifies that the robots shared their local costmap reciprocally and
put in the correct way the local costmap in their own global costmap. To verify
that, a cylindrical object has been put near the Turtlebot and a large cube near the
Locobot (Figure 9.4). The objects are placed in such a way that the objects or part
of them are placed inside the local costmap. Only the surface of the object that the
robot can detect by its sensors is transmitted to the other robot. Figure 9.5 shows
the local costmap of the Locobot. It is possible to notice the cube, represented by a
line located to the right of the robot. The same line is visualized by the Turtlebot
in own global costmap, as shown in Figure 9.8. A path planning will then take this
information into consideration. In a similar way, it is shown in Figures 9.6 and 9.7,
how the Turtlebot detects the upper part of the cylinder and this information is
found in the global costmap of the Locobot.

Figure 9.4: The two robots are positioned in such a way that they cannot directly
see each other. In fact, there is a wall between the two robots. A Cube is positioned
near the Locobot and the cylinder is positioned near the Turlebot. The Turtlebot
can’t see the cube and the Locobot cannot see the cylinder

58

Simulation and experimental results

Figure 9.7: Local costmap of Turtlebot Figure 9.8: Global costmap of Turtle-
bot

Test 3

The last test shows a scenario where the robot cannot perceive the obstacles but
they can be detected by another robot that have the possibility to see that object.
For this reason, a new wooden cube of 10 cm has been added in Gazebo. The cube,
as can be seen in Figures 9.9, 9.11, is invisible to the Turtlebot, which mounts a

59

Simulation and experimental results

LiDAR sensor placed at a height of 18 cm. The Locobot, is equipped with RGB-D
cam with which it can, despite its height, correctly visualize the obstacle. In this
scenario, the Locobot not only anticipates information about obstacles that the
Turtlebot would typically encounter only during path execution, but also identifies
obstacles that are completely invisible to the Turtlebot. Without the Locobot
detecting these obstacles on its behalf, a collision that the Turtlebot would be
unable to foresee would have occurred. To test that, a set of cubes have been
placed in a line, and the Locobot was positioned to observe these cubes (Figures
9.10, 9.12, 9.13, 9.14). The positions of these obstacles were added to our local
costmap and transmitted to the Turtlebot, which incorporated them into its own
global costmap. This allows the Turtlebot to plan a path while considering these
otherwise invisible cubes, as shown in Figure 9.15.

Figure 9.9: Comparison between the Figure 9.10: The Locobot is in position
cube and the Turtlebot for identify the cubes.

Figure 9.11: The cube is invisible for the Turtlebot

60

Simulation and experimental results

20

Figure 9.12: The representation recre- Figure 9.13: The local costmap created
ated by RTAB-Map of the environment py the Locobot

that the Locobot can see through the
RGB-D cam

Figure 9.14: The view of the camera positioned on the robot

Simulation and experimental results

Figure 9.15: The Turtlebot creates the free-collision path, including the informa-
tion sent by the Locobot

62

Simulation and experimental results

9.2 Working in real environment

9.2.1 Laboratory Setup

This section examines the tests conducted to evaluate the
robot_position_info_manager node in a real-world laboratory environ-
ment. The primary objective, as with the ROS simulation part, is to analyze the
effectiveness and correct operation of the application, as well as to discuss the
results obtained during the testing process. The tests performed are the same as
those conducted during the simulation phase. The environment for these tests is a
laboratory, where two distinct areas were constructed to ensure that the robots
could not observe each other directly (Figure 9.16), and each robot could have
access to information that only it could observe. To create a barrier, cardboard
boxes were used, with heights exceeding that of the Locobot’s LiDAR (Figure 9.17)
. The Turtlebot will be positioned on one side, while the Locobot will be on the
one. It is important that the initial orientation of the robots is the same to ensure
that the local costmaps of both robots are correctly aligned with respect to the
global costmap. The map generation is already done, using the process described
in Chapter 8, specifically for a real-world environment.

Figure 9.16: The initial setup of the experiments in the laboratory

63

Simulation and experimental results

Figure 9.17: On the left, the illustration of the wall created to separate the
spaces between the two robots; on the right, the comparison of the Locobot’s height
relative to that of the wall.

9.2.2 Test results and performance
Test 1

The first test conducted was to evaluate how the robots exchanged their positions
reciprocally and that each robot indicated, on its own global costmap, the cells
where the other robot is located as occupied. Figures 9.18, 9.19, 9.20, 9.21 show
such functionality.

Figure 9.18: In this image, the Turtlebot is positioned closer to the camera than
its initial position.

64

Simulation and experimental results

Figure 9.19: On the left, the global costmap and local costmap of the Locobot;
on the right, those of the Turtlebot. As can be observed, it mirrors the view in
Image 9.18, and the Turtlebot receives information about the Locobot’s position,
marking the cells where it detects the Locobot as occupied. Similarly, the Locobot
performs the same action.

Figure 9.20: In this image, the Locobot is positioned closer to the camera than
its initial position

65

Simulation and experimental results

Figure 9.21: On the left, the global costmap and local costmap of the Locobot;
on the right, those of the Turtlebot. As can be observed, it mirrors the view in
Image 9.20, and the Turtlebot receives information about the Locobot’s position,
marking the cells where it detects the Locobot as occupied. Similarly, the Locobot
performs the same action.

By disabling the discard area on both robots, setting the discard_radius = O,
it is possible to verify that the information exchanged between the robots is correct,
as there will be overlap between what each robot sees and what is transmitted by
the other robot. Evidence of what has been said can be observed in Figure 9.22.

Figure 9.22: Matching between the information sent by the other robot and the
information obtained by the other robot.

66

Simulation and experimental results

Test 2

The second test is to verify that the robots shared their local costmap reciprocally
and put in correct way the local costmap in the own global costmap. To verify that,
a box has been added near the Turtlebot (Figure 9.23). During path execution,
the Turtlebot encounters the obstacle. When the box appears within its local
costmap, information about the obstacle’s presence is transmitted to the Locobot,
which can utilize this information during path planning. Here, a challenge was
identified: although the global_planner algorithm is faster, it often generates
paths that are too narrow and close to obstacles, leading to collisions. For this
reason, the global planning algorithm chosen was the one provided directly by
the robot manufacturer, as discussed in Chapter 8. Figure 9.24 shows when the
Turtlebot positions itself with respect to the obstacle, and the Locobot receives
and incorporates this information into its global costmap. A new route is then set
for the Locobot considering the new obstacle. As seen in Figures 9.25, 9.26 the
Locobot will create a path that anticipates both the obstacle and the Turtlebot’s
position at that moment.

Figure 9.23: The initial setup of the second test in the laboratory.

67

Simulation and experimental results

=
- h -ﬁ
Figure 9.24: The Turtlebot is near the new obstacle as shown in Image 9.23 and
is correctly displayed in its own local costmap.

=
- h i
Figure 9.25: The Locobot plans a trajectory, taking into account what the
Turtlebot previously observed. The Locobot would have also noticed the obstacle,

but only once it was in front of it. In this case, however, it manages to plan a
preemptive trajectory even before starting the path execution.

68

Simulation and experimental results

Figure 9.26: The execution of the Locobot’s path, which correctly avoids the

object.
69

Simulation and experimental results

Test 3

The last test conducted revealed that the obstacles that one robot cannot see can
be detected by another robot, which has the capability to see the object. For this
reason, a 16 cm high box was placed in front of the Turtlebot, as can be seen in the
Figure 9.28. The box is invisible to the Turtlebot (Figure 9.27), which mounts a
LiDAR sensor placed at a height of 18 cm. If the Turtlebot traces a path towards
a point crossing the box, it does not have the ability to avoid the obstacle and
will therefore collide with it, as can be observed in Figure 9.29. It is possible to
see that the Locobot, equipped with RGB-D cameras, can correctly visualize the
obstacle despite its height. In this case, the robot not only perceives information
that is visible only when the path is being executed, but can also avoid a collision
that could not have been avoided otherwise. The objective is therefore to bring the
Locobot closer so that it can see the obstacle and then transmit the information to
the Turtlebot, enabling it to avoid the obstacle.

Figure 9.27: The Turtlebot LiDAR is positioned higher than the height of the
box.

70

Simulation and experimental results

Figure 9.28: The initial setup of the third test in the laboratory.

Figure 9.29: The path created by the TurtleBot does not take the box into
account because it cannot perceive it.

71

Simulation and experimental results

During the trials of this test, several issues arose. When the LiDAR detects
an obstacle, it appears much more "stable" in the costmaps compared to how it
is visualized using the RGB-D camera. In fact, there is a difficulty in ensuring
that the Locobot visualizes the obstacle in a stable manner. While the Locobot
is moving towards the obstacle, the obstacle appears sufficiently clear, although
the quality with which it is represented in the costmap is quite poor, almost never
allowing the obstacle’s shape to be recognized, resulting in a very distorted figure.
This may be sufficient for the Locobot itself to navigate around the obstacle while
in motion, but it is almost useless for transmitting information about the obstacles
to another robot. Despite this, as shown in Figures 9.30, 9.31, 9.32, and 9.33, it
is possible to help the Turtlebot avoid an obstacle invisible to it thanks to the
Locobot, though not without difficulties. Compared to the simulation, where the
RGB-D camera behaves ideally, it is less effective in reality. Additionally, during
the execution, a limitation arose. In the case of large obstacles, the various sensors
are not able to accurately capture their depth. This does not create a significant
problem for obstacles that both robots can observe, as the information, even if
partial, can help the other robots to anticipate problems caused by the obstacles.
However, for obstacles that are invisible to other robots, partial information may
not be sufficient for the robot to correctly avoid the obstacle.

Figure 9.30: The Locobot positioned itself to successfully localize the obstacle.

72

Simulation and experimental results

Figure 9.31: On the left, the Locobot places in its local costmap what it sees of the
obstacle. On the right, the Turtlebot places in its global costmap the information
received from the Locobot, even though the obstacle is completely invisible to the
Turtlebot itself.

Figure 9.32: The Turtlebot creates a path, taking into account the information
received from the Locobot, thus avoiding an obstacle that it could not see on its
own.

73

Simulation and experimental results

Figure 9.33: The execution of the Turtlebot’s path in Image 9.32, which correctly

avoids the object.
74

Chapter 10

Conclusions and future
works

The thesis aims at developing a ROS framework that facilitates information sharing
among robots of different types, enhancing early obstacle identification. This
framework will allow robots that cannot directly observe obstacles to receive
information from other robots with obstacle detection capabilities. The frame-
work consists of two distinct components: robot_info_manager node and the
positioning_layer.

e robot_info_manager node is responsible for collecting and forwarding infor-
mation to all other robots. This node collects data on the positions of robots
and their local costmaps

e The positioning layer incorporates the local costmaps of other robots into
its own global costmap. It achieves this by placing them in the correct position
and marking the cells where other robots are located.

This new ROS package, which includes the layer and the
robot_position_info_manager node, facilitates to share useful informa-
tion between multiple robots. This information sharing is beneficial for anticipating
obstacles and has several other advantages. It not only aids in identifying obstacles,
but also significantly enhances path planning by providing real-time positions
of other robots, allowing for trajectory planning in advance, avoiding collision.
Regarding the exchange of heterogeneous information, the main issue during my
tests seemed to stem from the low precision of the Locobot’s RGB-D camera.
For more accurate obstacle identification, LIDAR is much more effective due to
its precision and stability, and it does not need to be directly pointed at the
obstacle. As mentioned in Chapter 9, this information will always be partial

75

Conclusions and future works

since only the side of the obstacle visible to the robot is detected. This partial
view can be mitigated by having multiple robots observe the environment from
different angles. For instance, a team of robots like the Turtlebot, equipped
with LiDAR positioned low enough, can support other robots by acting as
sentinels, patrolling the work environment. In this way the obstacle will be
tracked by multiple robots from different perspectives, obtaining a more accurate
picture of the situation in the environment. However, RGB-D cameras are
useful for directly identifying people and marking the cells where the person
is detected as occupied. Utilizing people detection as cited in [16], combined
with the social navigation_layers::ProxemicLayer, which adds Gaussian
costs around the detected person increasing in the direction of their motion,
allows for transmitting important information to other robots that cannot
identify humans themselves. The simulated and experimental tests indicate
that this shared information is useful. However, the current layer does not
account for the dynamics of obstacles or the robots themselves. Tools similar to
the social_navigation_layers::ProxemicLayer, which feature an elongated
Gaussian shape in the direction of movement, can help to provide a more dynamic
approach to obstacle information. This is also applicable to non-human obstacles,
such as the robots themselves, which could utilize the same concept for navigating
around other moving robots. It is possible to achieve this by adapting the
ProxemicLayer input topic to receive not only the position and velocity of humans
but also that of robots. This information can be obtained whenever a new robot
position is received by comparing the previous position with the current one to
estimate direction and velocity before updating the data. Additionally, it is possible
to enrich the information exchanged with the robot_position_info_manager
node, for example, by including the complete paths of all robots. This would
enable path planning that avoids collisions based on these paths. Using an
approach based on MES [21] can help to better understand who is crossing the
work environment and when, optimizing the deployment of robots for patrolling.
In any case, the exchange of the local costmap remains fundamental for sharing all
this information.

76

Bibliography

StockCake. Automated Warehouse Robots. Accessed: 2024-07-02. 2024. URL:
https://stockcake . com/ i/ automated - warehouse - robots _ 835120 _
933116 (cit. on p. 2).

Wikipedia contributors. Robot Operating System. https://en.wikipedia.
org/wiki/Robot _Operating_System. Accessed: 2024-06-03. 2024 (cit. on
pp. 1, 13).

Open Source Robotics Foundation. ROS Navigation Stack. Accessed: 2024-
07-02. 2024. URL: http://wiki.ros.org/navigation (cit. on p. 1).

Yara Rizk, Mariette Awad, and Edward W Tunstel. «Cooperative heteroge-
neous multi-robot systems: A survey». In: ACM Computing Surveys (CSUR)
52.2 (2019), pp. 1-31 (cit. on p. 4).

Peter Stone and Manuela Veloso. « Multiagent systems: A survey from a
machine learning perspectivey. In: Autonomous Robots 8 (2000), pp. 345-383
(cit. on p. 4).

Murat Késeoglu, Orkan Murat Celik, and Omer Pektas. «Design of an au-
tonomous mobile robot based on ROS». In: 2017 International Artificial
Intelligence and Data Processing Symposium (IDAP). IEEE. 2017, pp. 1-5
(cit. on p. b).

Hamid Taheri and Zhao Chun Xia. « SLAM; definition and evolutiony. In:
Engineering Applications of Artificial Intelligence 97 (2021), p. 104032 (cit. on
p. 5).

Yassin Abdelrasoul, Abu Bakar Sayuti HM Saman, and Patrick Sebastian. « A
quantitative study of tuning ROS gmapping parameters and their effect on
performing indoor 2D SLAM». In: 2016 2nd IEEFE international symposium
on robotics and manufacturing automation (ROMA). IEEE. 2016, pp. 1-6
(cit. on p. 6).

7

https://stockcake.com/i/automated-warehouse-robots_835120_933116
https://stockcake.com/i/automated-warehouse-robots_835120_933116
https://en.wikipedia.org/wiki/Robot_Operating_System
https://en.wikipedia.org/wiki/Robot_Operating_System
http://wiki.ros.org/navigation

BIBLIOGRAPHY

[9]

[10]

[13]

[14]

[15]

[16]

[17]

[18]

Lili Mu, Pantao Yao, Yuchen Zheng, Kai Chen, Fangfang Wang, and Nana Qi.
«Research on SLAM algorithm of mobile robot based on the fusion of 2D
LiDAR and depth cameray. In: IEEE Access 8 (2020), pp. 157628-157642
(cit. on p. 6).

Mubariz Zaffar, Shoaib Ehsan, Rustam Stolkin, and Klaus McDonald Maier.
«Sensors, slam and long-term autonomy: A review». In: 2018 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS). IEEE. 2018, pp. 285-
290 (cit. on p. 6).

Lulu Chen, Hong Wei, and James Ferryman. «A survey of human motion
analysis using depth imagery». In: Pattern Recognition Letters 34.15 (2013),
pp. 1995-2006 (cit. on p. 6).

Cyril Robin and Simon Lacroix. « Multi-robot target detection and tracking:
taxonomy and survey». In: Autonomous Robots 40 (2016), pp. 729-760 (cit. on

p. 7).
Wahyu Rahmaniar and Ari Hernawan. «Real-time human detection using
deep learning on embedded platforms: A review». In: Journal of Robotics and

Control (JRC) 2.6 (2021), pp. 462-468 (cit. on p. 8).

Sandro Augusto Magalhaes, Luis Castro, Germano Moreira, Filipe Neves Dos
Santos, Mario Cunha, Jorge Dias, and Anténio Paulo Moreira. «Evaluating
the single-shot multibox detector and YOLO deep learning models for the
detection of tomatoes in a greenhouse». In: Sensors 21.10 (2021), p. 3569
(cit. on p. 8).

Chloe Eunhyang Kim, Mahdi Maktab Dar Oghaz, Jiri Fajtl, Vasileios Argyriou,
and Paolo Remagnino. «A comparison of embedded deep learning methods
for person detection». In: arXiv preprint arXiv:1812.03451 (2018) (cit. on
p. 8).

Timm Linder and Kai O Arras. «People detection, tracking and visualization

using ros on a mobile service robot». In: Robot Operating System (ROS) The
Complete Reference (Volume 1) (2016), pp. 187-213 (cit. on pp. 8, 76).

Andrea Bonci, Pangcheng David Cen Cheng, Marina Indri, Giacomo Nabissi,
and Fiorella Sibona. « Human-robot perception in industrial environments: A
surveyy. In: Sensors 21.5 (2021), p. 1571 (cit. on p. 9).

Marina Indri, Fiorella Sibona, and Pangcheng David Cen Cheng. «Sensor
data fusion for smart AMRs in human-shared industrial workspaces». In:
IECON 2019-45th Annual Conference of the IEEE Industrial Electronics
Society. Vol. 1. IEEE. 2019, pp. 738-743 (cit. on pp. 10, 41).

78

BIBLIOGRAPHY

[19]

[22]

23]

[24]

[25]

[26]
[27]

28]

[29]

Emil-Ioan Voisan, Bogdan Paulis, Radu-Emil Precup, and Florin Dragan.
«ROS-based robot navigation and human interaction in indoor environmenty.
In: 2015 IEEFE 10th Jubilee International Symposium on Applied Computa-
tional Intelligence and Informatics. IEEE. 2015, pp. 31-36 (cit. on p. 10).

Qimin Ren, Qingjie Zhao, Hui Qi, and Lingrui Li. «Real-time target tracking
system for person-following robot». In: 2016 35th Chinese Control Conference
(CCC). IEEE. 2016, pp. 6160-6165 (cit. on p. 10).

Andreas Locklin, Falk Dettinger, Maurice Artelt, Nasser Jazdi, and Michael
Weyrich. «Trajectory Prediction of Workers to Improve AGV and AMR
Operation based on the Manufacturing Schedule». In: Procedia CIRP 107
(2022), pp. 283-288 (cit. on pp. 11, 76).

Ziyu Zhu, Kongtao Zhu, Zhentan Zheng, Shitao Chen, and Nanning Zheng.
«Multi-L: A Novel Multi-Robot Cooperative Localization Method in Indoor
Environmenty. In: 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2022, pp. 24362443 (cit. on p. 11).

Praneel Chand and Dale A Carnegie. «Mapping and exploration in a hierar-
chical heterogeneous multi-robot system using limited capability robots». In:
Robotics and autonomous Systems 61.6 (2013), pp. 565-579 (cit. on p. 11).

Marina Indri, Fiorella Sibona, and Pangcheng David Cen Cheng. «Sen3Bot
Net: A meta-sensors network to enable smart factories implementationy. In:
2020 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). Vol. 1. IEEE. 2020, pp. 719-726 (cit. on p. 12).

Jean-Sébastien Boulanger, Jorg Kienzle, and Clark Verbrugge. « Comparing
interest management algorithms for massively multiplayer games». In: Pro-
ceedings of 5th ACM SIGCOMM workshop on Network and system support
for games. 2006, 6-es (cit. on p. 12).

ROS Wiki contributors. ROS/Concepts. http://wiki.ros.org/R0OS/Concep
ts. Accessed: 2024-06-03. 2024 (cit. on p. 13).

ROS Wiki. ROS Master. http://wiki.ros.org/Master. Accessed: 2024-06-
25 (cit. on p. 14).

David St-Onge and Damith Herath. «The Robot Operating System (ROS1
&2): Programming Paradigms and Deployment». In: Foundations of Robotics:
A Multidisciplinary Approach with Python and ROS. Springer, 2022, pp. 105—
126 (cit. on p. 14).

Yuya Maruyama, Shinpei Kato, and Takuya Azumi. «Exploring the perfor-
mance of ROS2». In: Proceedings of the 13th international conference on
embedded software. 2016, pp. 1-10 (cit. on p. 14).

79

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Master

BIBLIOGRAPHY

[35]

[40]

[41]

ROS Wiki Contributors. move base - ROS Wiki. http://wiki.ros.org/
move_base?distro=noetic. Accessed: 2024-06-03 (cit. on pp. 16, 17).

Zhanying Zhang and Ziping Zhao. « A multiple mobile robots path planning
algorithm based on A-star and Dijkstra algorithm». In: International Journal
of Smart Home 8.3 (2014), pp. 75-86 (cit. on p. 19).

Maram Alajlan and Anis Koubda. « Writing global path planners plugins in
ROS: A tutorial». In: Robot Operating System (ROS) The Complete Reference
(Volume 1) (2016), pp. 73-97 (cit. on p. 19).

ROS Wiki Contributors. Navigation Function (NavFn). http://wiki.ros.
org/navfn. Accessed: 2024-06-10. 2024 (cit. on p. 19).

Alexandros Filotheou, Emmanouil Tsardoulias, Antonis Dimitriou, Andreas
Symeonidis, and Loukas Petrou. «Quantitative and qualitative evaluation
of ROS-enabled local and global planners in 2D static environments». In:
Journal of Intelligent € Robotic Systems 98 (2020), pp. 567-601 (cit. on
pp. 19, 52).

Adithya Balachandran, Anil Lal, and Pramod Sreedharan. « Autonomous
Navigation of an AMR using Deep Reinforcement Learning in a Warehouse
Environmenty». In: 2022 IEEE 2nd Mysore Sub Section International Confer-
ence (MysuruCon). IEEE. 2022, pp. 1-5 (cit. on p. 19).

B Cybulski, Agnieszka Wegierska, and Grzegorz Granosik. « Accuracy com-
parison of navigation local planners on ROS-based mobile robot». In: 2019
12th International Workshop on Robot Motion and Control (RoMoCo). IEEE.
2019, pp. 104-111 (cit. on p. 19).

Franz Albers, Christoph Résmann, Frank Hoffmann, and Torsten Bertram.
«Online trajectory optimization and navigation in dynamic environments in
ROS». In: Robot Operating System (ROS) The Complete Reference (Volume
3) (2019), pp. 241-274 (cit. on p. 20).

ROS Development Team. AMCL Package Documentation. http://wiki.ros.
org/amcl. Accessed: 2024-06-26 (cit. on p. 20).

Mathieu Labbé and Francois Michaud. « RTAB-Map as an open-source lidar
and visual simultaneous localization and mapping library for large-scale and
long-term online operation». In: Journal of field robotics 36.2 (2019), pp. 416—
446 (cit. on pp. 21, 32).

ROS Development Team. RTAB-Map ROS Package Documentation. http:
//wiki.ros.org/rtabmap_ros. Accessed: 2024-06-26 (cit. on p. 21).

ROS Community. rviz. http://wiki.ros.org/rviz. Accessed: 2024-07-07.
2024 (cit. on p. 21).

80

http://wiki.ros.org/move_base?distro=noetic
http://wiki.ros.org/move_base?distro=noetic
http://wiki.ros.org/navfn
http://wiki.ros.org/navfn
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/rtabmap_ros
http://wiki.ros.org/rtabmap_ros
http://wiki.ros.org/rviz

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[48]

[49]

Open Source Robotics Foundation. Gazebo. https://gazebosim.org/home.
Accessed: 2024-07-07. 2024 (cit. on p. 21).

Trossen Robotics. Interbotiz X-Series LoCoBots Specifications: Hardware.
Accessed: 2024-07-02. 2024. URL: https://docs. trossenrobotics.com/
interbotix_xslocobots_docs/specifications.html#hardware (cit. on
pp. 24, 25).

ROBOTIS. TurtleBot3: Official repository for TurtleBot3. https://github.
com/ROBOTIS-GIT/turtlebot3. Accessed 2024-06-05 (cit. on pp. 25, 29).

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. «Robot Operating System 2: Design, architecture, and uses in the
wild». In: Science robotics 7.66 (2022), eabm6074 (cit. on p. 27).

Open Robotics. Real-Time Programming. https://docs .ros.org/en/
jazzy/Tutorials/Demos/Real-Time-Programming.html. Accessed: 2024-
06-05. 2024 (cit. on p. 27).

Corey Williams and Adam Schroeder. «Utilizing ROS 1 and the turtlebot3 in
a multi-robot system». In: arXiv preprint arXiv:2011.10488 (2020) (cit. on
pp. 27, 28).

ROS Answers Community. Multiple Robots Simulation and Navigation. https:
//answers . ros.org/question/41433/multiple-robots-simulation-
and-navigation/. Accessed: 2024-06-05. 2012 (cit. on p. 28).

Interbotix Labs. Interbotiz ROS X-Series LocoBots: ROS packages for Inter-
botix X-Series LocoBots. https://github.com/Interbotix/interbotix _

ros_rovers/tree/main/interbotix_ros_xslocobots. Accessed 2024-06-
05 (cit. on p. 29).

[lze Andersone. «Heterogeneous map merging: State of the art». In: Robotics
8.3 (2019), p. 74 (cit. on p. 33).

Kaiyu Zheng. «Ros navigation tuning guide». In: Robot Operating System
(ROS) The Complete Reference (Volume 6) (2021), pp. 197-226 (cit. on p. 38).

Imen Chaari, Anis Koubaa, Hachemi Bennaceur, Adel Ammar, Maram Alajlan,
and Habib Youssef. «Design and performance analysis of global path planning
techniques for autonomous mobile robots in grid environments». In: Interna-
tional Journal of Advanced Robotic Systems 14.2 (2017), p. 1729881416663663
(cit. on p. 52).

ROS Wiki Contributors. base local planner. http://wiki.ros.org/base_
local_planner. Accessed: 2024-06-11 (cit. on p. 52).

ROS Wiki Contributors. dwa__local__planner. http://wiki.ros.org/dwa_
local_planner. Accessed: 2024-06-11 (cit. on p. 52).

81

https://gazebosim.org/home
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications.html#hardware
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications.html#hardware
https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/ROBOTIS-GIT/turtlebot3
https://docs.ros.org/en/jazzy/Tutorials/Demos/Real-Time-Programming.html
https://docs.ros.org/en/jazzy/Tutorials/Demos/Real-Time-Programming.html
https://answers.ros.org/question/41433/multiple-robots-simulation-and-navigation/
https://answers.ros.org/question/41433/multiple-robots-simulation-and-navigation/
https://answers.ros.org/question/41433/multiple-robots-simulation-and-navigation/
https://github.com/Interbotix/interbotix_ros_rovers/tree/main/interbotix_ros_xslocobots
https://github.com/Interbotix/interbotix_ros_rovers/tree/main/interbotix_ros_xslocobots
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/dwa_local_planner

Acknowledgements

In primo luogo, vorrei ringraziare i miei relatori, la Professoressa Marina Indri e il
Dottor Pangcheng David Cen Cheng, per aver creduto in me e per avermi affidato
questo progetto. Inoltre, li ringrazio sinceramente per la loro disponibilita nel
correggere la mia tesi con rapidita ed efficienza, permettendomi cosi di rispettare
le scadenze previste.

Desidero ringraziare la mia famiglia e i miei cari, per il loro affetto e incoraggia-
mento. La vostra presenza mi ha dato la forza di superare i momenti piu difficili e
di raggiungere questo importante traguardo.

Non posso dimenticare i miei compagni di studi, in particolare Luca e Andrea,
per la collaborazione, il sostegno reciproco e i momenti di confronto che hanno
arricchito questa esperienza.

Infine, ma non per importanza, desidero ringraziare la persona che ¢ mi stata
piu vicino in questo percorso e che e stata capace di sopportare le mie ansie e le
mie paranoie (cosa non facile). La persona su cui so di poter sempre contare: la
mia fidanzata Jeje.

82

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis structure

	State of the art
	Robot Operating System
	Robot Operating System
	The ROS navigation stack
	Costmap2D, layers and global and local costmap
	Global and local planners
	Localization
	Real-Time Appearance-Based Mapping
	RVIZ visualization
	Gazebo Simulation

	Robots Description
	Locobot WX250S Description
	Hardware Description
	Software Description

	Turtlebot3 Burger Description
	Hardware Description
	Software Description

	ROS framework for multi robot
	ROS launch file for multiple robots
	Launching Locobot and Turtlebot
	Map Creation Modality
	Navigation Modality
	Launch Locobot and Turtlebot in real environment

	ROS node for information position management
	Local costmap and position management
	GetRobotPosition
	GetOtherRobotsInfo

	Positioning Layer
	Functions
	The updateBounds function
	The onInitialize function
	The updateCosts function
	Layer Integration Process

	Configuration and Correlation with Robot_position_info_manager node

	Software configuration
	Robots configuration
	Turtlebot configuration

	Simulation and experimental results
	Working in a simulated environment
	Simulation Setup
	Test results

	Working in real environment
	Laboratory Setup
	Test results and performance

	Conclusions and future works
	Bibliography

