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Chapter 1

Introduction

1.1 About this work

The design and operation of data pipelines that deal with the extraction,

transformation, and storage of large data sets are crucial in the field of data

engineering. This thesis, developed in collaboration with Agile Lab S.R.L, in-

troduces a logic model aimed at establishing a clear and standardized approach

to data pipeline architecture, providing a structured framework for defining en-

tities, their interrelationships, and the operational rules essential for building

effective and reliable data pipelines. To bridge the gap between theoretical

models and practical implementation, a tool that automates the generation of

executable code for data pipelines, designed to work independently of specific

data management tools, has also been implemented. It takes advantage of

a declarative programming approach, allowing it to generate Python code for

Apache Airflow, while maintaining the flexibility to adapt to other technologies

as needed. Abstracting the complexities of configuration, it allows data engi-

neers to focus on specifying goals and pipeline logic, significantly improving

development efficiency and reducing the likelihood of errors. The usefulness

of this model and its accompanying tool is demonstrated through a real-world
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use case involving building a COVID-19 data analytics pipeline. This exam-

ple highlights the tool’s ability to adhere to the logical model and efficiently

translate high-level design specifications into operational workflows, highlight-

ing the tool’s ability to enforce model-imposed constraints such as acyclicity,

non-concurrency, and idempotency, ensuring the robustness and scalability of

the pipeline.

1.1.1 Goals

This thesis aims to design and implement a logical model for data pipelines

using a declarative approach, ensuring that these pipelines are efficiently auto-

mated and adaptable to various technologies. This model will manifest itself

through a tool that automates the transformation of high-level declarative

specifications into executable code.

Moreover, the overall goal is to standardize and simplify the pipeline creation

process, allowing data engineers to focus more on strategic data processing

goals and less on the technical specifics of pipeline implementation.

This work highlights progress in automated data pipeline generation, illustrat-

ing the benefits of a model-based approach that is not tied to a specific data

management platform, and through the flexibility and adaptability of this ap-

proach ensure that it can evolve with technological advances in the field of

data engineering, making it a versatile solution in developing complex data

pipelines.

1.1.2 Thesis structure

The thesis is structured in the following chapters:

• Chapter 1 : introduction to the work.

• Chapter 2 : presentation of the infrastructure behind big data, the defi-
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nition of data pipelines and the current tools used in building them.

• Chapter 3 : detailed description of the logical model designed for building

the data pipeline, explaining the entity structure, relationships and rules

that ensure effective operation of the pipeline.

• Chapter 4 : description of the development details of the tool that trans-

lates the declarative specifications into executable code, implementing

the key constraints of the model.

• Chapter 5 : evaluation of the performance and usefulness of the tool,

providing quantitative analyses based on its application in different sce-

narios.

• Chapter 6 : discussion of the implications of this work and potential

improvements.
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Chapter 2

Big Data Pipelines

2.1 Introduction to Big Data

The contemporary digital landscape brings the proliferation of social

networks, connected devices and online activites that determine an era of un-

preceded data generation. This chapter would be an introduction into the vast

expanse of Big Data—a term encapsulating the diverse, intricate, and trans-

formative world of information reshaping industries, economies, and societies

worldwide.

Big Data are something huge that is impossible for traditional systems

to process them and can be retrieved from different sources in structured, un-

structured and semi-structured forms.

The particular and challenging characteristics that are intrinsic to them do

not allow to work directly upon relational database management systems

(RDBMS). So that, a large variety of new solutions have adopted. For in-

stance, Hadoop[6] is a well known open source distributing data processing

systems.

Big Data can be described by the following characteristics:
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• Volume: The first immediate consequence of Big Data is the large quan-

tity of data that every day have been produced from a lot of different

sources, from social networks to IoT devices. Furthermore, organizations

hold huge amount of log data, but do not have the capacity to process

them. Building appropriate frameworks that allow to process them is

the main attraction for many future purposes.

• Velocity : The term velocity refers to the increasing speed with which

data is generated, processed, and analyzed in real-time scenarios. The

constant need to ingest, process and derive insight from data that comes

from to IoT devices streaming, must be managed in a fast and innovative

manner.

• Variety : The continuous generation of data causes variety, and it is

mean that is impossible considering all data correct. Data comes from

different sources, in structured and unstructured formats, and it is not

always possible to put them directly into the same dataset.

• Veracity : Data can be inconsistent with each other, causing unpre-

dictable changes in structure and quality. In order to deal with this

different dynamic nature, new data pipelines and flexible architectures

are needed to ensure reliability and consistent analysis.

• Value: Value is the most important aspect in Big Data. It is important

to define clear and specific objectives to extract insights from them. This

require costly IT infrastructures that can only be implemented with a

return from the investment.

Given the various facets that Big Data presents, their processing requires

important technologies. There is no solution that is provided for every use

case and that requires and has to be created and made in an effective manner
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according to company demands. A big data solution must be developed and

maintained in accordance with company demands so that it meets the needs

of the company. A stable big data solution can be constructed and maintained

in such a way that it can be used for the requested problem.

2.2 Big Data Architecture

Big data architecture would be a definite solution to deal with an enor-

mous amount of data. It defines components, layers and methods for commu-

nication, making the ingestion, processing and storing data possible, forming

a cohesive framework:

Figure 2.1: Architecture of Big Data

• Data Sources : Data sources can be open or third-party, represents the

starting point in the architecture, playing a significant role. There is data

stored in file stores that are distributed in nature and that can hold a

variety of format-based big files. It is also possible to store large numbers

of different format-based big files in the data lake.
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• Data Storage : Data is stored in various distributed or local files that

can hold a variety of format-based big files.

• Batch Processing : Data is divided in chunks which are split in different

categories and prepared for the analysis with filters and aggregations.

• Stream Processing : The former consists in processing data by applying

some preprocessing in order to prepare for analysis.

• Analytical Data Store : Data warehouse technologies are analytical data

stores, based on HBase or any other NoSQL data warehouse technology.

The data can be presented with the interactive use of a hive database,

which can provide metadata abstraction in the data store.

• Reporting and Analysis : The insights captured by data can be rep-

resented in some reporting tools, that produces graphs, analysis and

comments that can be useful for decisions at business level.

• Orchestration : The repetitive tasks are computed by some workflows,

that convert source data, trasform them and load processed data into an

analytical data store, or put data straight into a report or dashboard.

2.3 Data engineering lifecycle

As depicted in Figure 2.2, data engineering lifecycle can be seen as a

subgroup of the entire data lifecycle, which underlies other fields such as data

analytics, rather than the application of machine learning algorithms by ML

engineers.

Let us now delve deeper into some of the processes discussed above,

underlining the most important stages at the beginning of the life cycle of
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Figure 2.2: Data engineering lifecycle is a subset of the full data lifecycle

the data which will then lead to the detection of insights or the application

of complex machine learning algorithms. The Figure 2.3 divides the data

engineering lifecycle into 5 stages:

Figure 2.3: Data engineering lifecycle

• Generation : It is essential to have a good working understanding of the

way source systems, which represents the beginning of the cycle. It can

be a traditional source system with several application servers supported

by a database or an IoT system that receives signals from smart devices

and saves them in message queues. In addition to understanding the

characteristics of the data source, the architecture built to manage the

masses of big data must be able to manage the speed at which the data
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is transmitted, and therefore the rate at which the data is generated and

the memory occupied for now are essential elements to answer these types

of questions. Furthermore, the consistency or presence of duplicates or

missing data should not be underestimated, as well as the type of inferred

schema and the frequency with which data is pulled from the source.

• Storage : Storage often occurrs in various steps of the entire data lifecy-

cle, representing key and complicated stage of it. Dealing with storage

means analyzing some key aspects that determine the quality of the final

product, such as compatibility with required write and read speeds, the

way in which storage works, that is, understanding whether to prioritize

long term storage or frequent and fast reads, rather than the adopted

schema, schemaless (schema on read) or fixed schema (schema on write).

Finally, the choice of which storage system to use is not fixed, but each

storage technology has its tradeoffs, which depend on various factors

such as the data volume, format, size and frequency at which the data

is ingested.

• Ingestion : From the data source we move on to collecting the same, and

we enter the ingestion phase from the source system. These two phases

can causes a ripple effect across the data lifecycle, often creating the

bottleneck, since source systems are managed externally and ingestion

can stop working at random times. The ingestion phase must respond to

several factors that arise, such as the destination of the data at the end

of the process, the frequency of access to the data from the source and

its volume. But the greatest attention must be paid to two fundamental

concepts: batch versus streaming.

Batch has historically been the most popular method for moving data,

particularly in analytics and ML, however we expect to see streaming

trend to overtake it in the coming years. The question that must be
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asked is what specific benefits do I gain from using streaming instead of

batch, analyzing the differences in the form of cost, maintenance, time

and opportunity cost.

• Transformation : The data transformation phase consists of changing

data from its original form so that it becomes useful for reports, anal-

ysis, or ML. Making data useful for downstream use cases leads to ex-

tracting greater value from it, which would otherwise remain inert. In

this way the data engineer can add value to business decisions, analyz-

ing various phases of choice from the most basic, such as casting data to

different data types, changing the schema or aggregating tables, to the

most complex customizations to apply the business logic in a impactful

way.

The final part of the lifecycle is interaction with stakeholders:

1. Analytics : includes published reports or dashboards, ad hoc analysis on

the data. It can be further divided into BI, operational or embedded

analytics.

2. Machine Learning : Includes the provision of data used for prediction or

decision making purposes.

3. Reverse ETL: Involves feeding the result of the transformed data back

into a source or another system for further use.

2.4 Data Integration

Suppose a company is able to retrieve the data it is interested in, but

they reside in different data sources. It is necessary that information from

all data sources is made easily available through a single platform, otherwise
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without unified data single analysis it could lead to logging in with multiple

accounts, or having the need to copy, format or clean them. One of the central

points that must be taken into account is that the target system needs to have

one common data model. This practice is rather challenging as source systems

are rarely designed to be integrated, which means that additional adaptations

and transformations are needed so that all the data can be represented in one

common model. However, while this provides time and cost savings in the

short-term, implementation can be hindered by numerous obstacles, such as

the fact that the data comes from different sorts of sources such as videos, IoT

devices, sensors, and cloud, and adapting the integration taking into account

their variety, volume and speed can be a problem.

Integration can be done at different levels, based on the needs and size of the

business and the resources available:

• Manually : an individual user will manually access the different source

systems and interfaces directly, then cleans it up as needed, and combines

it into one warehouse.

• Middleware : middelware applications can be used to provide reusable

functionality and to reduce the work needed.

• Application : a single software application can locate, retrieve and in-

tegrate data, transmitting them from a source to an other and then

creating a unified representation for the user.

• Through uniform access : data are left within the original sources and

it will be created a front end that makes data appears consistent when

accessed form different sources.

• Using a common data storage : data from different sources are loaded

into a new common data storage for a unified view.
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The ETL process has three distinct steps: extracting the data from the

source system, transforming the data, and loading the data to the target data

warehouse. The order of these steps depending on various factors that will be

discussed later.

2.4.1 Extract

The first step of the ETL process involves the part of extracting data

from different heterogeneous sources and converting them to a single suitable

format for the transformation step, using a variety of frameworks that work

with data of various formats, such as CSV, XML or JSON files. The design

of the extraction phase should prioritize avoiding any detrimental impact on

the source system’s performance, response time, or any form of locking, since

the rolling back, i.e. the process of undoing or reverting changes made to a

database to return it to a previous state, might pose a challenge if corrupted

data is directly transferred from the source to the data warehouse.

There are multiple ways to perform the extraction, the most common are:

• Full extraction : this method is commonly used when setting up initial

data warehouse or there is a need to refresh the entire dataset. It involves

extracting all the data from the source without applying any filters or

conditions and keeping duplicate data.

• Incremental extraction : the load are used after a first initial load is per-

formed at fixed intervals, recognizing which records have been changed

and providing an extracting of such records instead of pulling the entire

dataset again. This technique significantly reduces the amount of data

transferred during extraction, making the process more efficient.
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2.4.2 Transform

The goal of the transformation phase is to improve the quality of the

source data, since the data were integrated from various sources, there are

many unification measures needed. First, the data are cleaned by identifying

and fixing (or removing) the existing problems in the data and prepares the

data for integration, so as to solve the problem of so-called dirty data.

Some of the main tasks that are often performed during this step are data

type conversion, splitting information, enriching the data by joining with other

sources and deduplication.

When deciding what tool to use for the transformation, the options are either

commercial ETL tools or coding manually with SQL stored procedures or other

programming languages. ETL tools also have the advantage of taking care of

the metadata creation, whereas when coding manually, this must be done by

the programmer. In the next chapter we will dive into the description and

usage of a common transformation tool called dbt.

2.4.3 Load

The load phase consists of loading the data from the staging area after

the transformation phase into the target data warehouse. During this phase

the data warehouse must be offline, and it is a key concept to find the right time

interval to schedule loads without affecting users. To do this, a good solution

might be to split the data into chunks and run smaller loads in parallel. A

handling plan for files that undergo improper loading is also important, so that

there are no inconsistencies between the contents of the fact and dimention

tables.

Loading into the target data warehouse can be performed in different ways:

• Initial Load : this is typically the most common way to populate the
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data warehouse table for the first time. Assuming there is the possibility

to load the entire data warehouse in a single run, the correct procedure

to maintain is to create the table from scratch for each load launched,

after the entire data set has been divided into subloads.

• Incremental Load : incremental loading involves loading the changes that

have occurred with respect to the previous run. To preserve periodic

changes in the data warehouse, it is necessary to check if the primary

key of the incoming record already exists in the database and update the

contents, otherwise a new one must be created.

• Full Refresh : Full refresh is similar to initial load, with the difference

that in this case data already exists in the data warehouse before incom-

ing data is applied and it will be erased before applying the incoming

data.

From a technical perspective, a full refresh is easier to implement becouse

a proper strategy to adapt the changes like in updating is not required, but it

is just needed to periodically replace the data warehouse tables.

From a technical perspective, performing a full refresh of data is simpler within

a traditional data warehouse setting becouse a proper strategy to adapt the

changes like in updating is not required, but it is just needed to periodically

replace the data warehouse tables.

However, in the context of big data, where datasets are exceptionally large, this

approach can become prohibitively challenging. The immutability of storage in

big data environments means that reloading entire datasets repeatedly is not

only impractical but also costly, so incremental updating is identified as the

only viable method to maintain and manage data efficiently in such settings.
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2.5 ETL and ELT

Traditionally, data warehouse solutions have employed ETL processes,

where distinct systems handles data transformation and storage. The process

consisted of performing the extraction and transformation processes from dif-

ferent data sources and then loading the data into the data warehouse.

Nowadays, the sequence of data extraction, transformation, and loading steps

is flexible according to architectural and design choices, and one can still make

a division into extract, transform and load (ETL), and extract, load, transform

(ELT).

Differently from the traditional approach, in ELT processes data is extracted

and loaded into the data warehouse prior to any transformation occurring

within the data warehouse system itself. Some advantages of this sequence are

that row data from the source system can be loaded to the target one faster,

without requiring immediate transformation, facilitating quicker availability

for advanced organizational analysis.

Furthermore, the order of steps is not the only difference, since in ETL the

target store can be a data warehouse but also a data lake, that is the most

used store since it allows both structured and unstructured data at massive

scale. Additionally, staging raw data in the data warehouse decouples the

transformation process, allowing alterations to the transformation logic with-

out repeating the time-consuming extraction process. This decoupling also

proves beneficial in scenarios where transformation errors halt execution. In

ETL, such errors prevent any data from being loaded into the warehouse until

fixed, while ELT allows for the loading of source data into staging tables, fa-

cilitating easier reruns of the transformation step post-error resolution. When

using ETL, this would mean that no data is loaded to the data warehouse

before the error is fixed. On the other hand, when using ELT, the source data

is loaded to the staging tables, and the transformation step can then be more
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easily rerun after the error has been fixed.

Given these reasons and the fact that the ELT approach is better able to sup-

port unstructured, real-time data, ELT has become a more popular method

for data integration.

2.6 State of art of Data Engineering tools

Choosing and implementing practical ETL tools is crucial not only be-

cause they automate and simplify the complex work of processing Big Data,

thus reducing the potential for human error, but also because they can have a

significant impact on the scalability and efficiency of data systems. Effective

ETL tools help organizations manage an increasing volume and variety of data,

ensure data quality and consistency, and improve data security, but above all

they play a critical role in integrating disparate data sources, which often rep-

resents one of the biggest challenges in data management. Therefore, selecting

the right tools for ETL processes is not just a technical but a strategic decision

that impacts the entire data lifecycle and, ultimately, business outcomes.

In the data engineering world there are various tools set more or less in de-

tail for different tasks and operations, among which the following hold central

importance both for their widespread use in real projects and for their utility.

2.6.1 Apache Airflow

Apache Airflow[13] is an open-source tool developed initially by Airbnb to

manage complex computational workflows and data processing pipelines. Born

out of the need to handle Airbnb’s increasing data demands with a robust, scal-

able, and flexible system, it has grown into a widely adopted platform across

various industries for programmatically authoring, scheduling, and monitoring

workflows.
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Figure 2.4: Apache Airflow [13]

Airflow is structured around several key components, as depicted in Fig-

ure 2.5 that enable it to manage complex workflows efficiently:

• Scheduler : it handles the triggering of scheduled tasks and ensures that

tasks are started based on their scheduling and handles the logistics of

task dependencies within the DAGs (Directed Acyclic Graphs). Essen-

tially, the scheduler monitors all tasks and DAGs, decides when a task

should run based on its dependencies and scheduling parameters, and

then triggers the task execution.

• Executor : the Executor is the component responsible for executing the

tasks that the scheduler deems ready to run. Airflow supports several

types of executors: for instance, the LocalExecutor allows for parallel

task execution on a single machine, while the CeleryExecutor can dis-

tribute tasks across a cluster of workers, ideal for production environ-

ments needing high scalability.

• Worker : they are the processes that actually execute the logic of the

tasks. When the executor decides that a task should run, the worker

performs the computation defined in the task.

• Webserver : it is a web application used to monitor and administer the

Airflow environment, which is essential for operational monitoring and

workflow maintenance. It provides a convenient and easy-to-use interface

where users can view the status of DAGs, manually activate DAGs, check
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completed tasks, view logs, and manage the configuration of their Airflow

instance.

Figure 2.5: Airflow basic architecture[2]

Its simplicity of use, in which through special configuration files one can

manage the installation of all necessary components, its high scalability and

flexibility, and especially the ease of connecting Airflow to any other type of

system to create more complex workflows makes it an optimal tool for etl

pipelines processes.

2.6.2 Apache Spark

Apache Spark is an open-source distributed computing system designed

to handle big data processing and analytics efficiently. Processing frameworks

are critical components of Big Data systems, and for this reason, there are

several on the market. Among these Hadoop’s MapReduce[6] and Spark en-

gine share several foundational principles, but Spark significantly outperforms

MapReduce in terms of performance.

23



As processing framework, Spark is classified based on the type and condition

of data they are designed to handle: it can process data in batches, streaming

or both[21].

• Spark Batch Processing Model : A batch processing system gathers all

data into a collections, which is then stored and processed at a later

time. Spark’s primary edge over MapReduce lies in its in-memory com-

putation capability. Unlike MapReduce, which often writes intermediate

data to disk, it only accesses disk to load the initial data into memory and

to store the final results, so the intermediate data is processed in mem-

ory, significantly increasing performances. Furthermore, Spark’s holis-

tic optimization approach, which uses Directed Acyclic Graphs (DAGs)

to pre-plan the entire set of tasks, contributes to its remarkable speed.

To enable in-memory processing, Spark employs Resilient Distributed

Datasets (RDDs). These read-only data structures reside in memory,

ensuring fault tolerance without the need for continuous disk writes af-

ter each operation.

• Spark Stream Processing Model : Spark offers stream processing capabil-

ities through the use of microbatches. In micro-batching, data streams

are divided into very small batches, which are then processed sequen-

tially by Spark’s batch engine. While this method is effective, it may

result in some performance differences compared to a dedicated stream

processing framework.

Being one of the most used engines for data engineering, Spark has the

following distinguishable features:

• Speed : it can be up to a hundred times faster than Hadoop for certain

workloads and ten times faster than accessing data from disk. This

is achieved through the use of Resilient Distributed Datasets (RDDs),
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Figure 2.6: Spark logo

which allow data to be stored in memory, drastically reducing the time

required for data processing tasks.

• Usability : Spark supports multiple programming languages, such as Python,

enabling developers to write applications in languages they are most com-

fortable with.

• In-Memory Computing : spark’s in-memory cluster computation capa-

bilities enable it to execute iterative machine learning algorithms and

interactive queries at lightning-fast speeds. By keeping data in the RAM

of servers, Spark can quickly access and process data, enhancing perfor-

mance for real-time data processing tasks.

• Real-Time Stream Processing : Spark Streaming facilitates real-time stream

processing, making it a robust solution for handling live data streams.
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Chapter 3

Logical Model

3.1 Technological landscape

The evolution of technologies useful in ETL processes spreads at an un-

precedented rate, so that data engineers can effectively handle the most com-

plex tasks with several helpful tools, which offer simplified solutions to handle

the complexity of huge data sets.

However, despite this technological abundance, a significant challenge persists:

the strong alignment of each tool with a specific computational model.

This specialization, while beneficial in some scenarios, has inadvertently led to

a fragmented landscape in which the understanding and broader application of

these tools is not formalized uniformly across different technology ecosystems,

making challenging to apply a unified approach across different technologies.

Consider, for example, the landscape of data engineering tools where each is

tailored to a specific computational paradigm. Dbt[4] is an excellent case in

point, as it is works in conjunction with SQL computational model, therefore

it only uses particular SQL engines, such as Snowflake or Spark, which only

allowing you to manage structured data.
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Figure 3.1: Example of pipeline using Dbt

Consider the scenario where a data engineer is tasked with developing a

pipeline using dbt to process incoming binary data, such as images or machine-

generated content, does not conform to the structured requirements necessi-

tated by SQL-based tools. To integrate such data into a dbt-driven pipeline,

one would typically need to transform this binary data into a format like

Parquet, a process that requires auxiliary tools such as Apache Spark. This

necessity to employ additional tools for data conversion illustrates a funda-

mental misalignment with dbt’s capabilities, as it steps outside the expected

relational data model framework.

This example underscores a critical limitation: dbt’s dependency on SQL re-

stricts its application to scenarios strictly involving structured data. It high-

lights the tool’s inadequacy in directly managing diverse or unstructured data

collections, which are increasingly prevalent in contemporary data-driven sce-

narios.

In response to these limitations, this thesis proposes a flexible, high-level logical

model designed to abstract the concept of data collections and their relation-

ships from any specific computational engine. This model aims to transcend

the traditional boundaries set by specific data processing tools by providing

a framework that can adapt to both structured and unstructured data seam-
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lessly. This approach not only broadens the applicability of the model across

various data types but also simplifies the integration of different data process-

ing technologies without the need for intermediary transformation steps. By

abstracting the handling of data collections at a higher level, the model en-

sures that the underlying computational specifics are decoupled from the data

engineering logic, thereby enhancing flexibility and reducing dependency on

any single technology or framework.

This versatility is particularly advantageous in modern data environ-

ments where the variety, velocity, and volume of data challenge the capabilities

of traditional tools, focusing on decoupling the logical aspects of data engineer-

ing—such as data collection, transformation, and pipeline creation—from the

technical specifics of task execution.

3.2 Objectives of the model

Against this backdrop, the proposed model tries to redefine the founda-

tions of data engineering by establishing a unifying framework that is agnostic

to the specificities of the technologies involved. The model’s core objective is

to distill and formalize the fundamental concepts inherent to data engineer-

ing—data collection, transformation, and pipeline construction—into a cohe-

sive, technology-independent paradigm. This ambitious goal is not aimed at

diminishing the value or utility of specialized tools but rather at providing

a conceptual scaffold that ensures their capabilities can be harnessed more

effectively and cohesively. By decoupling the logical planning and design of

data processes from the intricacies of their technical execution, the model ad-

vocates for a more adaptable and resilient approach to data engineering. It

promises a paradigm shift from a fragmented landscape to a more integrated,

principle-driven practice where the choice of tools and technologies is guided
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by strategic considerations rather than constrained by them. This initiative is

not just about creating a theoretical construct; rather, it is aimed at building

a practical and adaptable blueprint that can be adopted by any existing or

future technology that will follow a more cohesive and standardized approach.

A distinctive aspect of this proposed model is its focus on decoupling the log-

ical aspects of data engineering from the technical nuances of task execution,

making a clear separation between the high-level design of a data engineering

task and the intricate details of how each component task is carried out. By

establishing this distinction, the model promotes flexibility and adaptability,

allowing data processes to be more technology-independent. The high-level

logic of a job, under this paradigm, serves as a strategic blueprint, which

can be implemented using different technologies, based on the specific require-

ments and constraints of the single project. So that, the actual construction

of the pipeline remains reliant on the expertise and technical proficiency of the

programmer, who will benefit from a standard structure within which data

professionals can operate.

3.3 Implications of the model

The implications of implementing this model are profound and far-reaching

for the domain of data engineering. On a practical level, it calls for a reevalua-

tion of how tools and technologies are selected and applied, urging a move away

from a reliance on specialized solutions towards a more versatile, principle-

based approach. This shift not only enhances the adaptability of data engi-

neering practices to the ever-evolving technological landscape but also fosters

innovation by encouraging the exploration of new methodologies and the inte-

gration of emerging technologies.

Adopting a high-level logic approach inherently introduces a level of abstrac-
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tion in tool implementation, leading to several critical implications:

• Technological Neutrality : By emphasizing the logical over the techni-

cal, the model fosters a foundational approach that remains effective

regardless of the underlying technology. This neutrality ensures that the

principles can be applied across a diverse range of computational models

and data platforms.

• Flexibility in Tool Implementation: While the model provides a strate-

gic blueprint for data engineering tasks, it inherently accepts that the

specifics of tool implementation will vary. This variability is a conse-

quence of the diverse capabilities and architectural nuances of different

tools, as well as the unique requirements and constraints of individual

projects.

• Adaptability to Evolving Technologies : The high-level logic framework

is designed to be future-proof, accommodating the introduction of new

tools and technologies. This adaptability is crucial in a field characterized

by rapid technological advancements.

Furthermore, the model posits a significant transformation in the role of

data engineers, who are envisioned as strategic architects of data solutions. In

this capacity, they are empowered to design and execute data processes that

are not only robust and scalable but also aligned with the strategic objectives of

their organizations. By providing a standardized yet flexible framework, the

model facilitates a deeper collaboration among data professionals, enabling

them to leverage diverse tools and technologies more effectively. Ultimately,

it aims to cultivate a more unified, efficient, and forward-looking field of data

engineering, characterized by its ability to transcend technological barriers and

drive meaningful innovation.
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3.4 Core Entites

3.4.1 Data Collection

The aim of the model, as mentioned in the previous paragraph, is to find

a standard for pipeline management that is capable of abstracting the most

common way forward while meeting the constraints that a good data engineer-

ing project must satisfy.

Data Collection thus represents the basic element of modeling representation

and should be seen as a high-level concept designed to go beyond the limita-

tions of specific data types or storage methods. This core element recognizes

the great diversity of data in the digital world, including relational, nonre-

lational, structured and unstructured forms, defining an open approach that

aims to encompass the full range of potential data sources and formats in a

unified framework.

The definition of a given collection can be split into two sub-entities:

• Data Item: A data item is conceptualized as the atomic unit of obser-

vation within the model, representing a singular record or observation,

that could range from a binary blob or a JSON object to a row in a

relational database table or even a standalone file.

This opaque definition supports the integration of diverse data types into

the data engineering process, ensuring that the model remains adaptable

and inclusive of emerging data formats and structures.

• Data Collection (DC): Building on the concept of data item, a data

collection is defined as a collection of these items. For instance, it can

be represented by a directory containing a bunch of files, or a table in a

relational database. By treating a data collection as a directory of files,

the model introduces a level of abstraction that simplifies the interaction

31



with complex datasets. This approach facilitates the management of data

across different stages of the data engineering pipeline, from ingestion

and storage to processing and analysis.

The model adoption of this opaque definition for data structure is a strate-

gic choice designed to ensure that the data collection entity can seamlessly

incorporate any kind of data. Thus, it opens a formal way of defining data

containers that provides:

• Enhancing Flexibility : By abstracting away from the specifics of data

formats, the model can effortlessly adapt to handle new and evolving

types of data, ensuring that it remains relevant and effective in the face

of technological advancements.

• Standardizing Processing : The high degree of abstraction and flexibility

paves the way for the development of standardized processing techniques.

These techniques can be applied universally across diverse datasets, fos-

tering efficiency and coherence in data engineering practices.

3.4.2 Data Transformation

The transformation object represents a building block of the pipeline

architecture that performs a specific operation on the data as it moves from

source to destination. Each task, therefore, defines a granular piece of the data

transformation process that is designed in a modular way, facilitating debug-

ging and pipeline updating, since changes to one task do not necessarily impact

the others, as long as the interfaces between tasks remain consistent. Moreover,

single tasks can be arranged in sequences to perform complex transformations

through a series of simple, ordered steps: this sequential arrangement ensures

that data is transformed in a controlled and predictable manner, with each

task building upon the outputs of its predecessors.
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Formally, a Transformation Object (TO) can be defined as the embodiment

of a single distinct activity within a data pipeline designed to perform a spe-

cific transformation on input data collections to produce a modified output

data collection. It encapsulates not only the transformation logic, but also

the metadata and rules required for its execution, ensuring that each TO is a

modular and reusable component within the pipeline, capable of being inde-

pendently configured and tested.

It can be represented as follows: given a set of n input data collections, a TO

is a function that returns a single output data collection:

fTO : (DC1, . . . ,DCn)→ DCoutput

The single output data collection that must be returned by the transformation

object helps in enforcing data quality and integrity checks more effectively.

With this approach, it becomes more straightforward to implement consistent

validation, cleansing, and quality assurance practices across the pipeline.

3.4.3 Data Pipeline

A Transformation Pipeline (TP) is conceptualized as a sequential assem-

bly of Transformation Objects (TOs), each designed to perform discrete data

manipulation tasks. This sequentiality is inherently mathematical, and can be

designed as a composition of functions in which the output of one function (or

TO) becomes the input of the next.

Let Ti be a specific TO within the set of all transformation tasks

T = {T1, T2, . . . , Tn}

The definition of TP includes both a denotational (declarative) and a opera-

tional semantics.
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The former focuses on the mathematical description and definition of data

pipeline. Each transformation object Ti is a function that produces a specific

output given a set of inputs data collections, then TP is an ordered TO se-

quence, where the output of the preceeding TO becomes the input of the next

one.

Let the Transformation Pipeline be composed of n TO, it is represented as:

TP = Tn ◦ Tn−1 ◦ . . . ◦ T2 ◦ T1

where ◦ denotes the composition of functions, where T1 is the first tranforma-

tion applied and Tn the last. In general, each Ti apply a transformation and

”pass” the output to Ti+1.

However, since each transformation Ti can have more than one input data

collection, the composition of function is not always direct as in the case of

univariate functions. Indeed, the partial composition comes into play when we

consider multiple inputs: for each input data collection ofTO apply the partial

composition of function keeping n− 1 data collections fixed

TP = Tn(. . . (T2(T1(DC1, . . . ,DC1),DC2, . . .), . . . ,DCn, . . .)).

Beyond denotational semantics, operational semantics delves into the execu-

tion order of TOs, paying particular attention to dependencies among the

transformations. From this perspective, it is crucial that TOs providing in-

puts to a specific TO are completed before the latter begins its processing.

This structure is crucial for understanding the pipeline’s operational dy-

namics, emphasizing the acyclic requirement to avoid circular dependencies

that can lead to processing loops or deadlocks, and for this reason, a graph

formalization becomes necessary for a correct pipeline architecture.
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According to Graph Theory[14], a directed acyclic graph G is defined as an

unordered pair G = (V,E), where:

• V: is the set of vertices.

• E: is the set of ordered pairs of vertices, known as edges. Each edge

(u, v) is a directed edge from vertex u to vertex v.

Figure 3.2: Example of directed acyclic graph

This approach assumes two fundamental properties:

• Acyclicity : The graph represents a valid pipeline if and only if it is

acyclic. In particular, TP is acyclic if there are no paths starting from a

node t1 and returning to the same node t1 following the direction of the

arcs.

Formally, there are no sequences of nodes v1, v2, . . . , vk ∈ V , with k > 1,

such that (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) ∈ E.

In an ETL pipeline, the acyclicity constraint ensures that operations are

executed in an order that does not create circular dependencies, prevent-

ing deadlocks and ensuring that each operation is executed only after the

completion of all the operations on which it depends.

• Idempotence : a pipeline is idempotent if, when executed multiple times

with the same set of inputs, it always produces the same final state,
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regardless of any interruptions or errors that occur during execution.

Formally, for a pipeline P on an input set I, if P (I) is the execution

of P on I, then P (I) is idempotent if, ∀n ≥ 1, P n = P (I), where P n

denotes n consecutive executions of P . To ensure idempotency, each task

in the pipeline must be designed so that it can be executed multiple

times without undesirable side effects. This may include techniques such

as version control for data, the use of transactions, or marking already

completed tasks to avoid duplicate processing.

• Non-Concurrency: in a directed graph representing a data transforma-

tion pipeline, it is imperative that there are no multiple paths with data

collections in common that allow concurrent writes to the same data col-

lection. This principle ensures that no task within the pipeline attempts

to write to a data collection in parallel with another task.

Thus, for any data collection DC involved in the pipeline, there must

not exist tasks ti and tj such that both tasks write to DC simultane-

ously. This non-concurrency constraint is crucial for maintaining data

integrity and consistency within the pipeline. In practical terms, this

means that each data collection can only be ”active” or being written to

by one task at a time, preventing race conditions and ensuring that data

transformations are carried out in a controlled and orderly fashion.

In the presence of a failure during task execution, the pipeline must be able to

stop and resume execution so that the end result is indistinguishable from an

execution that has completed without interruption. This approach eliminates

the need for a complex rollback mechanism and ensures that the pipeline is

considered atomic, i.e. composed of a series of operations that are executed

as an indivisible unit, meaning that either all operations are successfully com-

pleted, or none are applied. In case of pipeline failure, managing data recovery

can prove to be a very complex process. To avoid having to run into this prob-
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lem and make the model both simple and robust, we can implement a callback

system for handling the data in case of failure. This approach aims to opti-

mize the resilience and efficiency of the pipeline while reducing the complexity

associated with data recovery.

The callback function is triggered to handle and clean up the partially trans-

formed data, satisfying the idempotence constraint: the callback checks the

output if there is data from previous processing and eliminates it if necessary.

This ensures that no corrupt or incomplete data remains that could affect

future pipeline executions. In the case of incremental execution, if a failure

occurs, the callback function takes care of overwriting only the data that has

been added or changed since the last transformation. This avoids the need to

process the entire data set again.

By incorporating these concepts into the model, an increase in efficiency, flex-

ibility, and resilience of the transformation pipeline can occur, while ensuring

that data is handled safely and consistently even in the presence of errors or

interruptions.

3.5 Model Limitations

This abstraction of the data collection entity within the logical model

offers significant advantages in terms of flexibility and inclusivity, this ap-

proach is not without drawbacks: the model’s high-level nature, designed to

be technology-agnostic and broadly applicable, can inadvertently restrict its

utility in scenarios that require deep integration with specific technologies or

optimization for particular data formats.

Moreover, the trade-off between the high degree of openness and flexibility

offered by a high-level model and the need for specialized, lower-level func-

tionality is a critical consideration in the development of data engineering
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tools. While the model’s abstract nature fosters adaptability and inclusivity,

enabling it to accommodate a wide range of data types and engineering sce-

narios, there is a clear need for a balanced approach. This approach would

involve the integration of mechanisms or interfaces that allow for the incorpo-

ration of lower-level, data-specific optimizations and automations within the

overarching high-level framework. Incorporating such mechanisms could miti-

gate the limitations of a purely high-level model, ensuring that data engineers

have access to the best of both worlds: the flexibility to handle any data type

in a standardized manner, and the ability to employ specialized functionali-

ties and optimizations where necessary to enhance efficiency, performance, and

automation in data engineering tasks.
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Chapter 4

Tool Implementation

The upcoming chapter focuses on applying the logic model using a tool

that generates the code structure of an ETL pipeline following the formaliza-

tion and constraints described by the model in Chapter 3.

This tool is not merely an application of the model’s principles but a bridge

connecting the abstract realm of theory with the concrete demands of real-

world data transformation tasks, so the development phase is driven by the

recognition that while the logical model provides a robust foundation for under-

standing and structuring data transformation pipelines, its practical applica-

tion requires a means through which users can easily translate these high-level

concepts into operational realities.

The transition from model to implementation increases the probability

for oversight and error, particularly when dealing with complex data sources,

transformations, and storage mechanisms. Conceptual mistakes, such as in-

advertently introducing cyclic dependencies, overlooking the idempotence of

operations, or failing to prevent concurrent data mutations, can compromise

the reliability and performance of the ETL process. Therefore, the tool ad-

dresses these challenges by offering guidance and validation at every step of the
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development process, alerting programmers to potential issues and suggesting

a code structure that align with the logical model’s principles.

4.1 Declarative Programming

“In a nutshell, declarative programming consists of instructing a program

on what needs to be done, instead of telling it how to do it.”[18]

Instead of instructing the computer on how to achieve a certain task step

by step (as in imperative programming[20]), declarative programming focuses

on defining the desired outcome, allowing developers to express their intentions

in a high-level, more abstract manner, leaving the specific details of execution

to the underlying system or framework and presenting the following properties:

• Expressiveness : declarative programming allows developers to express

their intentions in a clear and concise manner.

By focusing on the outcome, the code often becomes more straightfor-

ward and easier to understand compared to imperative code that achieves

the same result.

• Abstraction of Control Flow : in declarative programming, the control

flow of the program is abstracted away. This means that developers

do not need to write boilerplate code to control the execution order of

operations, making the code more concise and focused on the domain

problem.

• Reduction of Side Effects : declarative code typically minimizes side ef-

fects, which are changes in state that do not relate to the function’s re-

turn value. Minimizing side effects leads to more predictable and testable

code, as the outcome of a function or operation is dependent solely on

its inputs.
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The decision to employ a declarative approach in the thesis project stems

from a strategic alignment with the high-level abstraction characteristic of data

engineering pipelines, as detailed in the logical model. This choice was guided

by the objective to provide programmers with a framework that simplifies ad-

herence to the model’s architectural principles, minimizing the need for direct

engagement with the granular details of code syntax that typically accompany

imperative programming methods.

As thoroughly explained in Section 4.3,the software utilizes a system

where the actual executable code is generated automatically from an input

YAML1 file. This file serves as a declarative blueprint, outlining all necessary

components and operations of the data engineering pipeline in a clear, con-

cise manner. The YAML format was chosen for its ability to represent the

desired outcomes and pipeline structure in a way that is both human-readable

and machine-processable, offering an intuitive method for defining complex

data transformations, data sources, and destinations without delving into the

specifics of any programming language’s syntax.

4.1.1 Advantages of the Declarative Programming

This type of programming offers some advantages for developers, like

increased code readability and simplicity [5], since declarative code focuses on

what the desired outcome should be instead of listing all the secondary details,

and this results in a more easier way to express the concepts. Moreover, an im-

proved modularity and scalability [5] that this type of approach brings makes it

1YAML, an acronym for ”YAML Ain’t Markup Language,” is a data serialization format

designed for human readability and interaction with programming languages, predominantly

utilized in configuration files and data exchangeXML. https://en.wikipedia.org/wiki/

YAML
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easier to develop large software by separating the descriptive logic of software

functionality from the control of it, that is, the set of technical mechanisms

that are able to make the code working. This separation fosters the develop-

ment of clean, modular code that is readily scalable, refactorable, and reusable.

In summary, the declarative approach for writing code is useful for the

following reasons[5]:

• Enhances Code Readability : the code seems to be clear to understand,

facilitating a comprehension of its functionalities.

• Decrease the risk of errors : since the complexity of implementation spe-

cific minimizes, also the number of bugs and accidental complication are

reduced.

• Improved Code Modularity : the declarative approach helps to divide the

processes into distincts and autonomous functionality units that allow

developers to more efficiently organize the code.

• Increased Code Reusability : declarative programming’s emphasis on higher-

level abstractions leads to the creation of components that are easily

repurposable across various scenarios.

• Improved Scalability of Systems : the declarative code typically lends it-

self to an easier parallelization and distribution over multiple processing

units or nodes.

4.1.2 Disadvantages of the Declarative Programming

While declarative programming offers numerous benefits, such as en-

hanced readability and modularity, this kind of approach is not without its

disadvantages:
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• Performance Reduction: in some cases, declarative programming can

lead to less efficient performance compared to imperative programming,

since the control over the specific details is missing, and the underlying

system or framework must interpret the declarative instructions and de-

cide on the best course of action. This level of abstraction can sometimes

result in less optimized performances.

• Absence of Debugging : the lack of explicit control flow and side effects,

while beneficial for reducing bugs, can also make it harder to understand

the path the program took to arrive at an incorrect state, so when a

piece of code does not produce the desired outcome it can be difficult

and disadvantageous to identify the source of the issue.

• Size Restrictions : for projects that require precise management of ex-

ecution order, timing, or resource allocation, the declarative approach

might feel restrictive since the level of abstraction can limit developers’

ability to implement highly customized or optimized solutions.

4.2 Why Airflow?

The selection of Apache Airflow [13] as the orchestration tool for this

project, detailed previously in Section 2.6, is rooted in its flexible and open

architecture, which aligns perfectly with the principles and objectives set out

in the project’s logical model described in Chapter 3.

Airflow stands out as an orchestrator because of its ability to accommodate

a wide variety of tools and technologies within its directed acyclic graphs

(DAGs). This openness was a critical factor in the choice of the tool, as it

ensures that the project is not tied to specific tools or data processing environ-

ments, and that is an essential feature for a project that aims to demonstrate

a model that can be applied to different scenarios and data engineering tools.
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Airflow’s design philosophy is in line with the approach of flexibility and

openness that this work seeks to pursue, in that it allows tasks and data flows to

be defined in a way that abstracts the underlying complexities. The ability to

maintain opacity in data collections and tasks within Airflow workflows means

that the principles of the model can be seamlessly translated into practical and

executable pipelines, ensuring that the freedom to use a specific technology,

a central element of this work, is enhanced. The use of this software allows

the project to benefit from an established, community-supported platform that

improves the manageability and scalability of workflows. The choice of Airflow

facilitates the practical demonstration of the workflow, showing its applicabil-

ity in orchestrating complex data transformations and workflows by adhering

to the high-level model with an abstract view of tasks and data collections.

4.3 Implementation Details

In this section, I will outline the technical methodology behind imple-

menting our tool. It includes a concise explanation of the main technology

choices, programming paradigms, and integration strategies that underlie the

development of the tool.

4.3.1 Input Yaml File Structure

As previously introduced in section 4.1, this file is instrumental in trans-

lating the high-level, abstract concepts of our theoretical model into a struc-

tured, executable Airflow project. Below, a detailed structure and components

of the input YAML file, chosen for its readability and ease of use, which allows

programmers to define their data engineering workflows with precision and

clarity and encapsulates the essence of the theoretical model while providing

a practical means for its implementation.
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Figure 4.1: Yaml File Strucure

Figure 4.1 summarizes the structure of the file, which is divided into

several key sections:

• Engine Args : it acts as a dictionary that allows the tool used, in this

case Airflow, to set the basic parameters for a DAG [16]. It includes

commonly shared settings, including designated owner and retry count,

among others, eliminating the need to repeatedly define these common

parameters for each new DAG, simplifying the process of creating mul-

tiple DAGs by automatically applying these universal settings.

default_args:

owner: ’airflow ’

depends_on_past: False

email_on_failure: False

45



email_on_retry: False

retries: 5

retry_delay_min: 5

Listing 4.1: Default args example

• Data Collections Initialization: the input data collections of the first task

must be instantiated separately. To be consistent with the theoretical

model 3, the best way to represent a data collection 3.4.1 as an opaque

object is to consider each of them to be a folder that contains files, a

table in a database or whatever object storage, and which will then be

represented by an array composed by the id of the data collection, which

will correspond to the name of the instance that will be created by the

tool, and a key-value object to indicate the metadata that characterizes

it, such as the path where the files are located or other optional infor-

mation.

The simplest example it can be considered is represented in the following

listing: assuming that the first task takes as input two data collections, A

and B, it includes only the path where the files are located as a metadata

description.

data_collections: [

[’data_collectionA ’: {path : ’./path/’}]

[’data_collectionB ’: {path : ’./path/’}]

]

Listing 4.2: Data collections initialization example

• Data Pipeline: this entity is crucial in the model 3.4.3, and here it is rep-

resented as an object that contains dag parameters and task definitions.
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• Tasks : The key tasks contains the declaration of each transformation

object 3.4.2 and has as its value the specification of each task, which in

turn is a key-value object with these features:

– id: a unique identifier for the task, facilitating reference and man-

agement within the workflow.

– description: a brief description of what the task is intended to

accomplish, providing context for its purpose.

– input data collections: specifies the names of input data col-

lections for the task.

– output data collection: defines the data collection object for

the task’s output. To adhere to the non-concurrency constraint of

the model, the name of output data collection must be unique for

each task.

– task function: the Python function that will be generated by the

code and that encapsulates the operational logic of the task.

– check output state: a placeholder for a Python function that will

be auto-generated that must be detailed by the programmer. This

function will verify the output’s state to ensure idempotence, as per

the model’s requirements.

id: task_1

description: ’First example task ’

input_data_collections :

[’data_collectionA ’,’data_collectionB ’]

output_data_collection :

[’data_collectionC ’, {path : ’./path/’}]
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task_function: ’first_task_function ’

check_output_state : ’output_state_function ’

Listing 4.3: Single task example

4.3.2 Generator File

Once the input Yaml file is completed, the Python[19] code for the Air-

flow project structure is automatically generated, allowing a seamless transi-

tion from declarative specification to runnable code. The generator system is

designed to serve as the foundational mechanism for constructing executable

code tailored for Apache Airflow. At its core, this system leverages a generator

script, tasked with transforming high-level declarative specifications into con-

crete Python code, facilitating a streamlined development process for complex

data workflows.

As described in Figure 4.2, the code generation system is mainly com-

posed of the generator.py file that transforms the input specified in the declar-

ative file into executable code, which writes the generated code into two files:

• dag.py : it represents the direct output of the generator script, encapsu-

lating the DAG definitions that Airflow will execute.

• utils.py : it contains the signatures of the functions critical for the tailored

implementation of individual tasks within the workflow in the dag.py and

for functions dedicated to ensuring the idempotence of the DAG.

Given the generic and adaptable nature of this system, these function

signatures are intentionally left blank, awaiting the programmer’s specific

implementations.
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Figure 4.2: Code Generator Structure

The generator system is developed through several structured sections,

each of which contributes to the generation of the above files:

• Creation of a Data Collection Class : the system creates a class that rep-

resents data collections, engineered to encapsulate essential attributes

such as the name and metadata of the data collection, without any pre-

defined methods, granting the programmer the freedom to implement

methods that align with the specific demands of the project. This initial

step involves parsing each data collection defined in the YAML file into

instances of this class.
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• Creation of Default Args and Dag Decorator : upon specifying parameters

in the YAML file for default args and the dag, these configurations are

directly translated into the generated code. As a programming choice,

python decorators that are part of the Airflow Task Flow API are used as

they improve the readability, maintainability, and efficiency of workflow

development.

• Creation of Tasks : the generator system creates a task decorator func-

tion based on the input defined in the declarative file, which will call the

callback explicitly coded within utils.py, to make the code more modular

and manageable when tasks become complex, and allowing a clear sepa-

ration of task logic from Airflow-specific declarations. Again, the use of

decorators is motivated by the fact that this way tasks can be defined

directly as Python functions, without the need to explicitly create Op-

erator objects. This makes the code cleaner and easier to understand,

especially for those familiar with Python.

• Computing Dependencies between Tasks : in keeping with the project’s

vision of placing data collections at the core of data pipelines, the gen-

erator system adopts a unique method for computing task dependencies

baseing on the input and output data collections of the tasks. Rather

than manually specifying dependencies, they are automatically inferred

based on the input and output data collections of each task, ensuring a

coherent and logical flow of data through the pipeline, with dependen-

cies dynamically reflecting the actual data interactions. This automated

dependency resolution significantly reduces the manual effort involved

in pipeline configuration and helps prevent errors that could arise from

manually managing task sequences. A more detailed algorithm for this

step is specified in Algorithm 1.
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• Verifying Acyclicity of the Generated Graph: by definition of DAG, the

generated graph must be acyclic. In this regard, a check on acyclicity is

done by the system, which will return an exception if positive. 2

Algorithm 1 Compute Tasks Dependencies

1: procedure FindDependencies(tasks)

2: Initialize outputToTasks as an empty map

3: Populate outputToTasks with task outputs as keys

4: Initialize taskToUpstream to map each task to its dependencies

5: for each task in tasks do

6: for each input in task[input data collections] do

7: if input in outputToTasks then

8: Map task[id] to tasks producing input in taskToUpstream

9: dependencies← list()

10: for each task id, upstreamTasks in taskToUpstream do

11: if upstreamTasks is not empty then

12: Sort and remove duplicates from upstreamTasks

13: dependency ← format as a proper Airflow upstream

14: Add dependency to dependencies

15: return dependencies

By executing the command 4.3 in the terminal, users can initiate the

code generation process:

Figure 4.3: Command for the generation of Airflow Project

The generated project will have the structure depicted in Figure 4.4:

2To verify the acyclicity of the generated graph, NetworkX library has been used. [7]
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Figure 4.4: Tree structure of the generated project

In conclusion, the generator system presented in this chapter is a good

starting point for merging high-level declarative logic with the practical re-

quirements of workflow orchestration in Airflow. By automating the transition

from YAML specifications to executable Python code, the system not only ad-

heres to the principles of the logic model, but also significantly improves the

development experience while respecting the modularity of the software. Ul-

timately, the generated code serves as a tangible manifestation of the logic

model, embodying its ideals while providing a robust and flexible framework

for executing complex data pipelines.
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Chapter 5

Use Case

5.1 Project Overview

Once the general rules to follow for a correct setup of a given pipeline

and the project structure that implements the theoretical model have been de-

fined, in this chapter a complete application of the theoretical model and the

generator tool, specifically focusing on simulating a data engineer’s end-to-end

pipeline using real datasets is provided.

The objective is to validate the practicality and effectiveness of both the

model’s guidelines and the automated capabilities of the generator tool in

a real-world scenario, aiming to confirm that the theoretical principles laid out

previously can be seamlessly translated into actionable, operational workflows

within the framework of an Airflow-managed data pipeline.

By analyzing real datasets separately and then connecting them together in

the form of tasks, we arrive at the simulation of a complete data engineering

pipeline, from data entry to processing and output. This approach not only

tests the adaptability and robustness of the model and tool, but also high-

lights their potential to facilitate correct and efficient pipeline development

under real operating conditions.
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In order to maintain a clear focus on evaluating the model and generator tool,

the algorithms and data analysis components of the project are intention-

ally simplified, ensuring that the core objectives—assessing the utility of the

model’s rules and the structural efficacy of the generated Airflow project—are

not overshadowed by complex data processing tasks, since the primary goal

is to illustrate how the model’s guidelines and the automated project structure

can support the development and management of effective data pipelines.

Critical to the project’s success is the use of Docker container[11] to configure

and deploy Airflow1, which ensures that the Airflow environment is consis-

tent, reproducible, and isolated from external dependencies, aligning with the

project’s needs for reliability and control.

5.2 Project Structure

The structure of the project, depicated in Figure 5.1, is a direct result of

inputs provided through the declarative YAML file, which specifies the data

collections and tasks, and then the Python code is automatically generated by

calling the generator.py file, which creates the structured project folder setup

that Airflow can execute.

Figure 5.1: Use Case Project Structure

For this particular project, Apache Spark[10] was used to retrieve, trans-

1Setting up Airflow on a Docker container is particularly simple and fast with a Docker

Container by following the specifications in the official documentation [9]
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form and collect data, followed by storing the final data collection into a

PostgreSQL[8] database, highlighting of the model’s ability to integrate tradi-

tional database systems as endpoints for data storage, further emphasizing the

model’s adaptability. The choice to utilize both Apache Spark and PostgreSQL

exemplifies the model’s capacity to support diverse technological approaches

in a single coherent workflow: Spark, renowned for its powerful data process-

ing and transformation capabilities, is used to handle complex data operations

efficiently, and PostgreSQL is utilized for its robust data storage capabilities,

acting as the endpoint for storing transformed data.

This demonstrates the significant advantage of the model: its openness and

lack of constraints regarding tool selection. This openness is essential for

adapting the data pipeline to specific project requirements and for experi-

menting with different combinations of technologies to achieve optimal results

and the abstraction allows for these tools to be interchanged or combined in

myriad ways, fostering innovation and flexibility in data pipeline design.

5.2.1 Inital Data Collections

The use case topic is dedicated to the analysis and storage of COVID-19

related data. Utilizing two distinct yet complementary data collections, our

pipeline is equipped to handle a rich array of pandemic-related information,

providing a robust basis for our analytical tasks. These initial data collections

are pivotal, as they set the stage for all subsequent data processing, analysis,

and storage operations, enabling a detailed exploration of the pandemic from

multiple perspectives.

In particular, the two initial data collections are the following:

1. OWID COVID19 : The first dataset[1] offers a detailed and daily updated

compilation of COVID-19 statistics, encompassing metrics like new daily

figures for cases, deaths, and tests and it is particularly valuable for
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its comprehensive nature and its breakdown of data by country, which

provides a macroscopic view of the pandemic’s evolution globally as well

as nuanced, localized insights. A summary of a subset of features and

data is reported in Table 5.1.

2. COVID-19 Dataset : The second dataset[15] aggregates extensive data on

the coronavirus pandemic but focuses on the country-level breakdown of

confirmed cases, deaths, active cases, and recoveries. Like the previous

one, a subset of features and data is reported in Table 5.2.

Iso Code Continent Location Date Total Cases Total Deaths

AFG Asia Afghanistan 2020-03-08 4.0

AGO Africa Angola 2020-04-17 19.0 2.0

ALB Europe Albania 2020-04-12 433.0 178.0

Table 5.1: OWID COVID19 sample data

Country Confirmed Deaths Recovered New Cases New Deaths

Afghanistan 36263 1269 25198 106 10

Albania 4880 144 2745 117 6

Algeria 27973 1163 18837 616 8

Table 5.2: COVID-19 sample data
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5.2.2 Input file

Figure 5.2: Input Yaml file

As previously detailed in Chapter 4, the YAML file serves the declarative

backbone of the entire project, meticulously organizing and defining every as-

pect of the data pipeline, in such a way as to allow the developer to concentrate

primarily on implementing the business logic rather than the orchestration of
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the data flow.

Figure 5.2 reports the complete declarative file for the project, composed of

four tasks that will be detailed in the next subsection. It contains the compo-

nents necessary for a seamless and effective pipeline, including:

• Initial Data Colletions : the covid-related data collections described above.

• Tasks : it includes the input and output data collections for each task,

and the function names that are placeholders that will be automatically

generated by the tool, which programmer will subsequently flesh out with

the necessary code to perform specific data transformations or analyses.

From the structuring definition of this file defined previously, Figure 5.2

does not have explicit dependencies between the tasks, simplifying the config-

uration process and reducing the potential for human error, as they will be

deduced by the tool based on the input and output data collection present in

each task.

This practical project case also wants to highlight the advantages deriving

from the declarative approach, which stand out from the definition of the file

in question, such as:

• Reducing Complexity : developers are spared the intricate details of pipeline

orchestration, allowing them to focus on optimizing data processing logic

and output.

• Enhancing Productivity : with the structural and flow dependencies han-

dled automatically, developers can more quickly move from design to

deployment, accelerating the overall project timeline.

• Ensuring Consistency : the declarative nature of the YAML file helps

maintain consistency across the development cycle, ensuring that all
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team members work with a clear, unified vision of the pipeline’s ar-

chitecture and objectives.

In summary, this structured approach significantly enhances the pipeline’s

manageability and adaptability, providing a clear pathway from conceptual

design to practical implementation by detailing every element of the pipeline

within this file.

5.2.3 Tasks

Figure 5.3: Tree Structure of Use Case Project

Once the declarative file has been defined, the generator file will generate

the project structure, depicted in Figure 5.3, composed of the folders described
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in Chapter 4 and the Python files that contain the dags and related functions

for implementing the tasks and check the output state.

The project’s structure, carefully outlined in the generated folders, is integral

to managing the flow and storage of data across tasks. Moreover, each sub

folder of data corresponds to a specific data collection involved in the pipeline,

ensuring that outputs from one task are immediately accessible as inputs for

the next, thereby maintaining data integrity and continuity. Notably, Figure

5.3 illustrates this data-centric organization clearly, showing how the tool’s

output is intrinsically oriented around data collections; for each output data

collection, a distinct folder has been created, underscoring the tool’s focus on

data management and organization.

Figure 5.4: Use Case Tasks

Each task within the pipeline has a distinct role, with operations ranging

from data cleaning to complex analyses and storage, utilizing Apache Spark[10]

for processing and Python for interactions with a PostgreSQL[8] database.

The structure of the tasks is illustrated in 5.4. Each tasks plays a specific

role in the data pipeline, in particular:

• Task 1 : it concerns the analysis and cleaning of one of the two initial

data collections: owid covid data. The analysis consists in streamlining

the dataset by eliminating entries with missing values and performs the

necessary aggregations to simplify the data structure, making it more
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Figure 5.5: Airflow Dag Successfully Completed

manageable for downstream analysis.

• Task 2 : it takes as input both the output data collection of Task1 and

the other initialized data collection: country wise covid. It applies data

transformations similar to those of the previous task, and then merges

the two input data collections into a single one using a join, in such a

way as to providing a unified dataset that encompasses comprehensive

COVID-19 data across multiple dimensions.

• Task 3 : from the unified data collection returned by Task2, Task3 is

tasked with analyzing recovery rates, which involves calculating the ra-

tio of recovered cases to confirmed cases for each country. This task

emphasizes data reduction, focusing exclusively on recovery rates and

related geographical information, thus preparing the data for targeted

insights and decision-making, producing a dataset specifically tailored to

recovery rate analysis, which is then directed to Task 4 for final storage.

• Task 4 : the final task uses Python libraries to interface with PostgreSQL

to store the output data collection as a table, ensuring the processed

data is stored securely and systematically within a relational database,

in order to preserve the integrity and availability of the data for future

access and analysis.
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5.2.4 Constraints Check

The generator tool embodies the principles of the theoretical model by

rigorously adhering to the model’s defined constraints. Prior to finalizing the

code that will orchestrate the data pipeline in Apache Airflow, the tool metic-

ulously checks to ensure that all constraints of the logical model —acyclicity,

non-concurrency, and idempotency— are met. This proactive verification pro-

cess not only reinforces the robustness of the pipeline but also ensures that

the operational behavior of the system remains predictable and reliable under

various execution scenarios.

The input file for this use case has no violations of these constraints, but if the

tasks do not meet the theoretical guidelines, the tool will alert the programmer

by throwing exceptions:

• Acyclicity : in Apache Airflow the data flow is represented as a Directed

Acyclic Graph (DAG), so acyclicity takes on a twofold importance. Dur-

ing the DAG construction process, the generator tool systematically an-

alyzes the relationships between tasks to ensure that the resulting graph

remains acyclic and if the generator identifies that the task dependencies

form a cycle, it raises a CyclicGraphException, an explicit error that

informs the developer of the acyclic violation. This exception provides

details about the tasks involved in the cycle, offering specific insights

into the nature of the cyclic dependency.

• Idempotence: Idempotence ensures that repeated executions of a task

under the same conditions produce identical results without causing un-

intended side effects. The generator tool facilitates adherence to this

principle through its approach to code generation and task design by

creating the signature of a specified function, as detailed in Chapter 4.

Given the model’s high level of abstraction, it is intentionally leaving the
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implementation of the function’s body to the programmer, allowing to

tailor the function to meet the idempotence requirements of their specific

use case.

In this project, the function check output state is designed to perform

specific actions that confirm the idempotency of each task by iterating

over the files and subfolders associated with a specific collection of out-

put data, so as to identify any residual files or partially written data

resulting from previously failed task executions.

When such files are detected, the function performs cleanup operations

to remove or correct them. This ensures that the task environment is

restored to a clean state before each execution, preventing residuals from

previous executions from affecting the current task operation.

• Non-Concurrency : this requirement is encapsulated in the non-concurrency

constraint of the logical model, which mandates that each output data

collection should be associated with a single, unique task, ensuring that

tasks do not simultaneously write to the same data collection. Consider a

scenario where the non-concurrency constraint is inadvertently violated;

for instance, if the output of a certain task presents more than one data

collection in the declarative file, this setup could lead to simultaneous

writes to the same data collections by multiple tasks, posing significant

risks of data corruption or loss, and undermining the pipeline’s reliability.

For that reason, the tool will raise a MultipleOutputDataCollectionsException.
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Chapter 6

Conclusions

6.1 Implications

The development of a logical model and tool for declarative data pipeline

automation addresses critical industry challenges, notably the rapid obsoles-

cence of data technology platforms. Current data engineering practices often

involve significant investments in technologies that may quickly become out-

dated, leading to substantial economic and computational burdens during mi-

gration to new platforms, and the purpose of this work significantly alleviates

these challenges by rendering data platforms more technologically agnostic.

The implications of this work are profound, as it enables organizations to

deploy data platforms that are insulated from the rapid advancements and

changes in underlying technologies by abstracting the complexity of data pipeline

creation through a high-level, declarative approach, minimizing dependency on

any specific technology.

This approach aligns with the vision implemented by Agile Lab, which

advocates for ”shift-left” in data engineering. This concept involves tackling

complex data processing issues with high levels of abstraction that remain re-

silient against shifts in technology, yielding substantial benefits such as reduced
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lock-in and lower overall costs in technology evolution.

6.2 Future Works

The declarative approach detailed in this thesis suggests several avenues

for further improvements of the tool and model:

• Expansion for Multiple Workflows and Orchestrators : future enhance-

ments could enable the tool to support additional workflows and integrate

with various orchestrators like Dagster[3], catering to diverse program-

ming needs and environments, increasing the tool’s versatility and its

adoption across different data engineering contexts.

• Automated Callbacks for Idempotence: there is the possibility to au-

tomate the generation of code for managing idempotence, particularly

through callbacks defined in the YAML file. Automating this aspect

would reduce the manual coding required for ensuring idempotence,

thereby enhancing the reliability and reproducibility of data pipelines.

• Refinement of Data Collection Specifications : expanding the declarative

model to include detailed specifications of data collection types, such

as distinguishing between file-based and database-oriented collections,

could significantly enhance the tool’s utility. By providing the tool with

more detailed context about the nature of data collections, it could au-

tomatically generate more effective management and cleanup processes,

further reducing the need for manual intervention.

• Semantic Enrichment of the Declarative Model : introducing more seman-

tic depth to the declarative model could address even more complex data

engineering scenarios, enhancing the tool’s capability to handle diverse

and intricate data operations with minimal configuration.
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These potential enhancements not only extend the capabilities of the devel-

oped tool but also open new horizons for addressing the evolving needs of

data engineering, further minimizing the gap between theoretical models and

practical, scalable implementations in the field.
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