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Abstract
Over the last decade, standard computing architectures based on von Neu-

mann paradigm struggled to manage Internet of Things and Artificial Intelligence
(AI) workloads. The inherently inefficient data transfer between processing and
storage units is not suited to deal with modern data-centric applications, which
are growing in complexity and scale. To tackle the exponentially increasing power
demand of Neural Networks computing tasks, new low-power hardware imple-
mentations are necessary. In-Memory computing has the potential to fulfill the
energy requirements in the modern Information Technology field, enabling paral-
lel data processing and reducing latency. Memristive devices within cross-point
architectures turned out to be a promising solution to perform analog In-Memory
Computing, allowing to map multi-level weights between Neural Networks lay-
ers. Especially for training in neuromorphic hardware, Resistive Random Access
Memory (ReRAM) devices attracted significant attention, offering fast and low-
power switching capabilities, high scalability and non-volatile data storage.
The integration of ReRAMs in neuromorphic systems requires extensive opti-
mization of several aspects of the technology, ranging from device materials and
fabrication processes to physical/electrical features improvements. For these pur-
poses, physical modeling becomes crucial to provide a detailed understanding and
accurate predictivity of device performances.
At IBM Research Europe, the Neuromorphic Devices and Systems group is con-
ducting R&D projects concerning the development and the optimization of an
innovative ReRAM technology, integrated in system-level crossbar arrays for AI
accelerators.
A robust compact model able to accurately capture the operation of ReRAM
devices is essential to accelerate circuit-level simulations of memory arrays and
neuromorphic hardware. Hereby this dissertation presents the development and
the validation of a compact model for analog filamentary Conductive-Metal-
Oxide/HfOx ReRAM IBM technology. The model integrates a physics-based
approach to describe analytically the ion migration mechanisms causing restistive
switching phenomena. Further analysis concerns the switching dynamics of the
device, evaluating the time scales in which resistive switching occurs. The model
validation is conducted against experimental data of electrical characterizations,
demonstrating the model’s accuracy, robustness and the capability to capture the
analog behavior of the device. The model is designed to be computationally ef-
ficient, highlighting its potential contribution in simulations of next-generation
computing architectures.

Keywords: Physical modeling, Compact model, Conductive-Metal-Oxide,
TaOx, HfOx, Analog ReRAM, Resistive switching, Substoichiometric, Defects
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1 Introduction

1.1 Beyond von Neumann computing paradigm

In the recent years, computing systems encountered several challenges about data processing
and storing. This is mainly attributed to the foundational principle of classical von Neumann
architectures, i.e. the common ground on which most of modern Information Technology (IT)
infrastructures are built on (Fig.1.1a). The von Neumann paradigm [1], following the name
of its inventor (John von Neumann), was proposed in 1945 and it is based on the scheme
below:

• Central Processing Unit (CPU), divided in control unit and Arithmetic Logic Unit
(ALU), is separated by the memory unit.

• A single memory unit is shared to store instruction and data.

• CPU and memory unit communicate through a unique channel (bus), first by sending
the instructions and then processing the information.

Cache

CPU
core

Memory

von-Neumann architecture

CPU
core

Channel

Memory

(a)

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

 
 

 

 

 

 

 

   
     

 
   

 

Future computing

→Cognitive→Big data→Internet    of Things

(1) Better memory storage

Heat wall
Memory wall
Moore’s law

(2) Bioinspired computing

(3) In-memory computing

(1)
GPU

CPU
CMOS

(2)

(3)

 
(b)

Figure 1.1: (a) Classical von Neumann architecture. Adapted from [2]. (b) Need of new
computing solutions to overcome von Neumann architecture issues [3].

Although numerous improvements made this architecture extremely mature over the past
years, it is inherently limited in terms of power consumption and computational speed. Since
data and processing instructions share the same communication path (bus), most of the time
is spent for the memory access, i.e. to recall or move data [4]. The overall consequence
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is an intrinsic speed limit, which in literature is usually named "von Neumann bottleneck".
Furthermore, with the scaling of electronic components in microprocessors, the performances
of CPUs and memory units followed asynchronous improvement trends: CPUs and memory
units performances improved by 50% and 7% per year respectively [4]. As a result, today’s
CPUs operate in GHz range, while conventional memories bandwidht is of the order of MHz
(Memory wall in Fig.1.1b).
As predicted by Moore in 1975, the number of components into silicon Integrated Circtuits
(ICs) almost followed the same trend, doubling approximately every 2 years [5]: this was the
consequence of a progressive dimensions reduction of logic building blocks, based on Com-
plementary Metal-Oxide-Semiconductor (CMOS) technology. Apart from the scaling issues
faced in the last decades (Moore’s wall in Fig.1.1b), the operating frequency of Field-Effect
Transistor (FET) -based ICs doubled every 2 years [6], leading to a monotonic increase of
the power dissipated by microprocessors. Power dissipation problem was already envisioned
by Moore: shrinking the processor dimensions led to operate at higher frequencies but the
compromise concerned heat dissipation, with limited (and further reduced over the time)
surface available for cooling [5] (Heat wall in Fig.1.1b).
Despite the speed improvements allowed to bypass the von Neumann bottleneck and the heat
problem was not approaching critical limits, modern infrastructures need new solutions to
fulfill the power demand of future computing. Undoubtedly, over the last years, the devel-
opment of data-centric applications is suffering the lack of appropriate computing systems.
For instance, with the growth of Internet of Things (IoT) applications, billions of devices are
simultaneously communicating, implying enormous energy consumptions that can exponen-
tially increase in the future [7].
Before 2010, computing operations in Artificial Neural Networks (ANNs) or Deep Neural
Networks (DNNs) were designated to architectures based on von Neumann model (CPU
computations), while today Graphics Processing Units (GPUs) are employed. The reason
rests on the stucture of these architectures, composed by smaller and multiple computing
cores (Fig.1.2): GPUs can perform multiple computations in parallel, hence accelerating the
computing time. With the relocation of Artificial Intelligence (AI) tasks to GPU systems, the
computing performances increased much more rapidly in time (doubling every 3.5 months)
[8]. Unfortunately, this approach consumes much more energy, confining data processing
only to massive machines. The workloads of latest AIs implemented in the current hard-
ware require computing performances exceeding 1018 FLoating point Operations Per Second
(FLOPS). The power demand that follows is doubling every 2 months [8].

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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change of a second state variable that represents the synaptic weight 
(for example, filament size). This level of biorealistic implementa-
tion at the device level can be extremely attractive in realizing bioin-
spired networks without increasing system cost.

Another interesting example is to examine the role of chemis-
try in biological systems, where synaptic weights are measured by 
the activities of receptors that can bind to neurotransmitters, where 
the binding process and the receptor activity are in turn driven by 
chemical reactions, for example, enzyme-enabled biocatalytic reac-
tions69. From a device perspective, similar chemical reactions can 
help lower the energy required to operate the device and improve 
device reliability. For example, during resistive switching in a mem-
ristor, the device is converted from one stable state to another by 
overcoming an energy barrier between the two states70. The higher 
the energy barrier, the more stable the states are. However, a higher 
energy barrier means a larger bias voltage and, consequently, larger 
power is needed to program the device. By mimicking biology and 
using chemistry to assist the switching process, the effective energy 
barrier can be significantly lowered during switching, while a high-
energy barrier can be maintained after releasing the ‘gating’ chemi-
cal to ensure device stability. This kind of chemical ‘gating’ effect 
can be obtained by using ions with low energy barrier (for example, 
Li ions) to drive the charge–discharge redox reactions in the con-
duction channel in a battery-like fashion. In this case, switching can 
occur at a very low voltage (for example, 5 mV), resulting in excel-
lent power efficiency71.

Beyond synaptic behaviours, memristive systems can be used to 
implement neuronal elements that ultimately receive, process and 
transmit information in bioinspired computing systems. Neurons 
are primarily characterized as accumulating charge (as inputs from 
other neurons), and, after crossing a threshold, generating an action 
potential. Models of the neuron dynamics can vary widely in the 
level of biological fidelity. However, a critical ingredient to replicate 
neuron behaviour is active gain, whereby small input signals can 
— under the right circumstances — generate heavily amplified and 
dynamical outputs. Thus, a solid-state implementation of a neuron 
must meet some basic dynamical properties72.

To accurately describe the dynamical physics in memristors that 
can realize ‘neuronal’ properties, one important parameter is the 
local temperature in the device. Temperature strongly influences 
the electronic (transport) and ionic (mobility) properties and may, 
in turn, be strongly influenced by them as well. As a simple exam-
ple, when applying an increasing voltage sweep to a memristor, the 
rising Joule heating and local temperature activates the electronic 
transport, which further increases the Joule heating in a strong 
positive feedback mode. For some material systems, such as VO2 or 
NbO2, this process leads to an observed negative differential resis-
tance (NDR), generating a strong but volatile change in the con-
ductance. In fact, many forms of NDR can be ultimately described 
as a positive feedback-driven effect based on internal temperature 
coupled to the electronic transport73,74. Consequently, owing to the 
inherent positive feedback, only a small amount of input signal is 
needed to generate a large effect, thus supplying the needed neuro-
nal amplification alluded to earlier.

The neuristor75 is such an NDR-based circuit element that real-
izes many of the spiking behaviours of biological neurons, includ-
ing signal gain, and a refractory period between spikes. It can be 
composed of two NDR devices (for example, NbO2) with parallel 
capacitors to form complementary Pearson–Anson oscillators. A 
small input signal triggers the thermal runaway process described 
above, which leads to a temporary increase and then decrease in 
conductance of the system, similar to the opening and closing of an 
ion channel in a biological system. This process propagates a spike 
signal that can be coupled to other neuristors through (non-vola-
tile) synaptic memristors described earlier. Alternative approaches 
have also utilized the frequency of oscillations directly to measure 

the weighted sum of input synaptic connections and replace the role 
of integrate-and-fire neurons76. Thus, these approaches allow the 
full realization of a purely memristive neuromorphic architecture.

In addition, recent work has shown that a single NbO2 NDR ele-
ment coupled to a parallel capacitor can undergo chaotic dynamics 
rather than purely periodic oscillations77. This deterministic chaos 
can be controlled through the input bias voltage, and was shown to 
derive from coupling to thermal fluctuations, again with positive 
feedback that leads to amplified effects. Moreover, it was shown that 
such a chaotic NDR element can be used to perform the thresh-
olding function in a memristor-based Hopfield network. Such a 
network, where the weight matrix is implemented in a non-volatile 
memristor array, can solve combinatorial optimization problems 
such as the travelling salesman problem77. Such Hopfield networks 
are known to suffer from trapping in local minima, but the compact 
injection of chaotic dynamics can improve solution convergence, 
pointing the way towards a hardware accelerator for optimization 
problems. This can be related to similar concepts whereby stochas-
ticity, rather than chaos, can be viewed as a computing resource 
exploited in biological systems78. Scaling up (including in 3D) of 
such a system is a currently unrealized opportunity to both explore 
the highly coupled dynamics that can emerge in such a dynamic 
network, and to better understand real biological networks.

Conclusions
Memristor-based architectures have shown great potential for devel-
oping future computing systems past the von Neumann and Moore’s 
law era. Three possible implementations can be envisioned. In the 
short term, high-density, on-chip, non-volatile memories offered by 
memristors can significantly improve the performance of conven-
tional von Neumann-based computing systems, and may find appli-
cations ranging from high-performance machine-learning systems 
to low-power embedded chips for the Internet of Things. Further 
advances in device technology and architecture developments may 
lead to large-scale implementation of memristor-based neuromor-
phic computing systems. Specifically, memristive crossbars provide 
a native solution to implement massively parallel and power-effi-
cient vector-matrix operations that form the basis of neuromor-
phic operations. Moreover, carefully designed memristor devices 
can natively mimic the dynamics of their biological counterparts 
— synapses and neurons — and allow the network to develop com-
plex emergent behaviours and possibly be used as model systems 
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Fig. 4 | Possible evolution of the computing system. Starting from the 
conventional architecture with a separated processor and memory (central 
processing unit, CPU), graphics processing units (GPUs), with thousands 
of smaller cores and faster memory access, have become the workhorse of 
data-intensive computing tasks today. The proposed memory processing 
unit (MPU) architecture will continue this trend and will ultimately lead to 
full co-location of memory and logic at the smallest grain — the individual 
device level for efficient processing of a broad range of computing tasks.
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Figure 1.2: Evolution of computing architectures to tackle von Neumann bottleneck [3].

Several low-power strategies have been developed to mitigate the von Neumann bottle-
neck, such as Near-Memory and In-Memory Computing (NMC, IMC). Nevertheless, NMC
is far to be the ultime solution to tackle the hungry of power and speed [9, 10]: moving
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computation closer to the data significantly reduces the data transfer time but there is still
a separation between processing and memory units [11].
IMC represents the most promising approach, based on having memory elements that can
directly perform computational tasks [11]: these Memory Processing Units (MPUs) execute
logic operations within memory arrays substituting the role of ALU in von Neumann archi-
tectures, as schematically shown in Fig.1.3. MPUs can involve either standard charge-based
memory technologies or emerging memory technologies, like resistance-based memory devices.
However, charge-based elements such as Static Random Access Memory (SRAM), Dynamic
RAM (DRAM) and flash memory, have some drawbacks that impact on the performances of
IMC systems: SRAMs and DRAMs are volatile devices, so they need power for data reten-
tion, whereas flash memories consume significant power during write and erase operations.
Hereby, the most energy efficient solution to develop IMC frameworks consists in includ-
ing resistance-based non-volatile memories (also known as "memristors") as basic hardware
elements.
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Figure 1.3: Schematic representation of processing unit and conventional (above) or compu-
tational (below) memory. Adapted from [11].

1.2 Memristive-based crossbars as deep learning accelerators

Memristive elements were theorized by Chua in ’70s [12], motivated by the lack of the fourth
basic component to respect the symmetry between electrical independent variables (Fig.1.4a).
In circuit elements theory, memristors (as contracted form of "memory-resistor") are passive
components whose fundamental property is to have a pinched hystertic current-voltage (I-V )
characteristic: this means that the resistance depends on the voltage and current history of the
device. Moreover, when the device has no power supply, it retains (apart from non-idealities of
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the device) the last configuration because of the pinched characteristic (non-volatile memory).

Resistor
dv = Rdi

Capacitor
dq = Cdv

Inductor
dj = Ldi

Memristor
dj = Mdq

Memristive systems

q

v

i

j

dj
 =

 v
dt

dq = idt

   

(a) . (b)

Figure 1.4: (a) Fundamental two-terminal circuit elements: resistor, capacitor, inductor
and memristor [13]. (b) Typical pinched hysteretic I-V characteristic of bipolar memristive
devices.

The operating principle of non-volatile memristors relies on the concept of resistive switch-
ing: by applying external electrical stimuli, the resistance of the memristor can be switched
between High- and Low Resitance State (HRS and LRS), analogous to the storage of "0" and
"1" as digital information. The switching operation from HRS to LRS is called "SET ". On
the contrary, from LRS to HRS it takes the name of "RESET ". The memristor is unipolar
if the voltage polarity required to SET and RESET the device is the same, otherwise it is
bipolar. An example of I-V characteristic for bipolar memristor is shown in Fig.1.4b.
Memristors have generated significant interest for the development of next-generation mem-
ories and new-computing paradigms due to additional reasons:

• Reading and writing procedures are very fast if compared to standard memory tech-
nologies.

• The simple 2-terminal structure entails the chance of large scalability for densely packed
memory arrays.

Conventional CMOS technology is based on 3-terminal devices and their size scales as
6F2, where F is the feature size of the manufactured device structure. Conversely, memris-
tive devices can be integrated in CrossBar Arrays (CBAs) with 1 memory element in each
cross-point and their theoretical scaling follows a 4F2 proportionality [14], potentially over-
coming the scaling limits of CMOS technology. Additionally, future memory applications
are predicted to be based on emerging memristive technologies integrated into CBAs, as the
numerous options about material choices enable them to be CMOS and Back-End Of the
Line (BEOL) compatible [14].
In order to integrate memristors as cross-point memory elements in CBAs, they are fabri-
cated on top the grounded Bit Line (BL) and below the biased Source Line (SL). The whole
memory cell is actually composed of the memory element and a selector biased by a Word
Line (WL), which is used to open or close the circuit between SL and BL. The selector can be
a FET, a diode or another resistive memory in complementary configuration. Fig.1.5 shows
a schematic illustration of a memristor-based CBA and its components.
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Figure 1.5: Schematic illustration of crossbar array in 1Transistor1Resistor (1T1R) configu-
ration [15].

Cross-point architectures with non-volatile resistive memories represent a relevant break-
through in the field of brain-like computing system. It has been demonstrated that Resistive
Processing Units (RPUs) in cross-point configuration offer a power-efficient hardware solu-
tion to perform transmission of data among neural networks layers [16]. In ANNs (or DNNs),
many operations involve Matrix-Vector Multiplication (MVM) with parallelized computa-
tions that are processed simultaneously. Since CBA RPUs are inherently parallel, they allow
massive low-power operations simultaneously (mitigating the energy problem of GPU-based
digital accelerators).

Input
layer

Hidden layers

Output
layer

3x5 MVM 5x5 MVM 5x2 MVM

Figure 1.6: Example of a fully connected neural network with interlayer computations im-
plemented as Matrix-Vector Multiplications in crossbar arrays.

In the context of neural networks, the weights of a fully connected layer can be mapped as
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a matrix of conductances (associated to the resistive states of memristors) in the CBA, where
each row stores the weight of output neurons with respect to the inputs layer. Therefore by
applying input voltages to SLs (rows), the current flowing into columns (measured in the BL)
represents the output of the fully connected layer, computed as weighted sum of inputs [17].
Mathematically, a fully connected layer in a neural network (Fig.1.6) is represented by the
following problem:

V̄ × G = Ī

where V̄ is the input voltages vector applied to the SLs (rows), G is the matrix of conduc-
tances in the CBA and Ī is the output currents vector whose components refer to each BL.
The synaptic weights are stored in the CBA by programming each memristor. Accordingly,
the output current in each column is the results of the weighted sum of as many Ohm’s laws
as the rows are.

Ij =
Ø

i

Vi · Gi,j

MVMs performed in this parallel way, are more computationally efficient with respect
to the equivalent operations digitally implemented: in the former case, a one shot compu-
tation is required to map the output of the neural network layer (key advantage for large
networks, scaling as O(1) complexity), while the latter implementation has complexity that
exponentially increases for large matrices dimension (O(n) complexity, where n is the matri-
ces dimension) [18].
In summary, hardware implementations based on CBA RPUs represents a revolutionary so-
lutions to address scalability, power demand and parallel computations in novel AI tasks. In
addition, CBAs can be composed of analog memory elements, such as multi-state memristor
with multiple conductance levels. This can be a crucial requirements both for neural network
applications (mapping analog weights during training) and for data integration (storage pur-
poses) [19].

1.3 Analog ReRAM for AI accelerator

There are several emerging memristive technologies that can be employed as novel memory.
Fig.1.7 shows the most promising non-volatile memory solutions to replace classical RAMs,
all of them based on the same principle of associating the "0"/"1" information to HRS/LRS.
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BACKGROUND:Memristive devices exhibit an
electrical resistance that can be adjusted to
two or more nonvolatile levels by applying
electrical stresses. The core of the most ad-
vancedmemristive devices is ametal/insulator/
metal nanocell made of phase-change, metal-
oxide, magnetic, or ferroelectric materials,
which is often placed in series with other cir-
cuit elements (resistor, selector, transistor) to
enhance their performance in array configu-
rations (i.e., avoid damage during state tran-
sition, minimize intercell disturbance). The
memristive effect was discovered in 1969
and the first commercial product appeared in
2006, consisting of a 4-megabit nonvolatile
memory based on magnetic materials. In the
past few years, the switching endurance, data
retention time, energy consumption, switch-
ing time, integration density, and price of

memristive nonvolatile memories has been
remarkably improved (depending on themate-
rials used, values up to ~1015 cycles, >10 years,
~0.1 pJ, ~10ns, 256 gigabits per die, and≤$0.30
per gigabit have been achieved).

ADVANCES: As of 2021, memristive memories
are being used as standalone memory and
are also embedded in application-specific
integrated circuits for the Internet of Things
(smart watches and glasses, medical equip-
ment, computers), and their market value ex-
ceeds $621 million. Recent studies have shown
thatmemristive devicesmay also be exploited
for advanced computation, data security, and
mobile communication. Advanced computa-
tion refers to the hardware implementation
of artificial neural networks by exploiting
memristive attributes such as progressive

conductance increase and decrease, vector
matrix multiplication (in crossbar arrays), and
spike timing–dependent plasticity; state-of-the-
art developments have achieved >10 trillion
operations per second per watt. Data encryp-
tion can be realized by exploiting the stochas-
ticity inherent in the memristive effect, which
manifests as random fluctuations (within a
given range) of the switching voltages/times
and state currents. For example, true random
number generator and physical unclonable
functions produce random codes when expos-
ing a population of memristive devices to an
electrical stress at 50% of switching proba-
bility (it is impossible to predict which devices
will switch because that depends on their
atomic structure). Mobile communication can
also benefit from memristive devices because
they could be employed as 5G and terahertz
switches with low energy consumption owing
to the nonvolatile nature of the resistive states;
the current commercial technology is based
on silicon transistors, but they are volatile and
consume data both during switching and
when idle. State-of-the-art developments have
achieved cutoff frequencies of >100 THz with
excellent insertion loss and isolation.

OUTLOOK: Consolidating memristive mem-
ories in themarket and creating new commer-
cial memristive technologies requires further
enhancement of their performance, integra-
tion density, and cost, whichmay be achieved
via materials and structure engineering. Mar-
ket forecasts expect the memristive memories
market to grow up to ~$5.6 billion by 2026,
which will represent ~2% of the nearly $280
billion memory market. Phase-change and
metal-oxide memristive memories should im-
prove switching endurance and reduce energy
consumption and variability, and themagnetic
ones should offer improved integration den-
sity. Ferroelectric memristive memories still
suffer low switching endurance, which is hind-
ering commercialization. The figures of merit
of memristive devices for advanced compu-
tation highly depend on the application, but
maximizing endurance, retention, and con-
ductance range while minimizing temporal
conductance fluctuations are general goals.
Memristive devices for data encryption and
mobile communication require higher switch-
ing endurance, and two-dimensional mate-
rials prototypes are being investigated.▪
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Figure 1.7: Emerging memristive techonologies [20].
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Phase-Change RAM (PCRAM) Memristors based on phase-change concept are com-
posed of a chalcogenide (Ge–Sb–Te compound) insulator enclosed between a metallic heater
and a metallic electrode. PCRAM switching characteristic is unipolar and the transition
among resistive states (SET or RESET) is the consequence of crystallization or amorphiza-
tion of the chalocogenide material. By forcing a large current for short time, the local
temperature in the crystalline (LRS) phase-change material exceeds the melting temperature
and the passive thermal dissipation leads to a reconfiguration of the insulator in a disordered
phase (HRS). Inversely, a lower current in a longer period allows to reach the crystallization
temperature, recovering the chalcogenide ordered phase (LRS). [21].

Ferroelectric RAM (FeRAM) The FeRAM basic idea is to exploit the polarization of
a ferroelectric layer, sandwiched between 2 metal layers. The bit is encoded as different
alignments of the domain polarization, which can be switched with bipolar electrical stimuli.
[21].

Magnetic RAM (MRAM) Magnetoresitive tunnel effect is the fundational principles of
magnetic memristors, made of a tunneling oxide (barrier) between 2 magnetic layers. The
alignment of magnetic domains (out-of-plane in modern MRAMs) in the 2 magnetic layers
can be anti-parallel (HRS) or parallel (LRS). One of the 2 ferromagnetic layers has fixed
magnetization (pinned layer), while the free layer magnetization is switched from anti-parallel
to parallel (SET) and the other way round (RESET) through opposite current flows. [21].

Resistive RAM (ReRAM) In ReRAMs, data are encoded as different resistive states of
a dielectric layer enclosed between 2 metal electrodes. An external voltage applied to the
electrodes allows the movement of ionic species (including defects) within the dielectric. Thus
the general resistive switching mechanism is attributed to field-, temperature-driven ion mi-
gration and chemical potential-driven redox reactions. There are different types of ReRAMs
depending on the nature of the migrating ionic species (anion or cation, i.e. oxygen or metal
ion) through the lattice of the metal-oxide active layer (Fig.1.8). Since the migrating species
are electrically charged, they moves in opposite directions depending on the external stimulus
polarity, so ReRAMs are typically non-volatile bipolar devices. The switching process relies
on the formation of local conductive paths that allow the current flow between the electrodes
(LRS). Their rupture limits the conduction due to physical insulation (HRS). Furthermore,
some ReRAM devices exhibit multilevel capabilities, i.e. the possibility to access Intermedi-
ate Resistive States (IRSs). [22]

ReRAMs involving oxygen ions migration showed great potential in terms of scalability
and CMOS compatibility of their fabrication processes: regarding these two aspects, filamen-
tary ReRAM are the most advanced with respect to area-type ones [23]. For these reasons,
the focus of this work is on filamentary ReRAMs, so a more detailed description of the tech-
nology is provided in the following.

As mentioned above, in ReRAMs the alteration of the conductive properties of a metal-
oxide causes resistive switching phenomena. The choise of the active material are various,
including binary/ternary metal-oxide: the most common materials are CuOx, WOx, HfOx,
TiOx, TaOx, SrTiOx [21]. Conventional materials as metal electrodes are Ti, Cu, TiN, Pt,
W [24].
In the pristine state after fabrication, the Metal-Insulator-Metal (MIM) structure is insu-
lating, so a configuration step called "electroforming" (or simply "forming") is necessary to
generate a soft and partial breakdown in the dielectric [22]. This holds in general, as the
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Figure 1.8: Anion- or cation-based Resistive Random Access Memory OFF/ON states
schematic illustrations [21].

forming step is not always required (forming-free ReRAMs). After the forming phase, the
resistance of the shunted dielectric layer can be controlled by applying external biases, either
in the form of triangular voltage sweeps or square voltage pulses.
ReRAM devices can be classified as area-type and filamentary. In area-type ReRAMs, the
migration of ions occurs uniformly across the entire active layer cross-section. On the other
hand, in filamentary ReRAMs, the conductive path is unique, also referred to as "conductive
filament". Typically, binary oxide-based ReRAMs are filamentary. Electrical characteriza-
tions of HRS/LRS values as a function of the cell area allows to demonstrate if the switching
is either filamentary or area-dependent [25]: when HRS/LRS are cell size-independent the
device is demonstrated to be filamentary-type.
In filamentary ReRAM devices, during the SET transition (HRS → LRS) ions migrate until
the conductive filament bridges the metal electrodes. Whereas, during the RESET phase
(LRS → HRS) ions migrate in the opposite direction up to the formation of an insulating
gap between the remnant conductive filament and the electrode (Fig.1.9) [22]. The reversible
formation and rupture of localized conductive filaments within the dielectric layer results in
abrupt changes of resistance. Filamentary ReRAM devices typically suffer from variability of
resistive states, stochasticity and noise [22]: the stability of data is affected as a consequence.
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Figure 1.9: Baseline Metal-Insulator-Metal filamentary ReRAM device operation.
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The drawbacks of filamentary ReRAM devices based on baseline MIM stack can be mit-
igated through material level improvements: it has been demonstrated that integrating an-
other substoichiometric metal-oxide layer between the dielectric and the electrode can signif-
icantly improve the device performances. Following these considerations, the Neuromorphic
Devices and System group at IBM Research Europe optimizeded the switching characteristics
of monolayer baseline TiN-HfO2-Ti ReRAMs by transitioning to bilayer TiN-HfOx-TaOx-TiN
ReRAMs [26]. In particular, the bilayer approach allowed for:

• Improved symmetry between SET/RESET characteristics.

• Relaxed abruptness of switching processes.

• Reduce stochasticity of SET/RESET cycling.

Voltage ["]
0 0.8−1.1

C
ur

re
nt

 [)
]

10*+

10*,

10*-

10*.

10*/

Baseline ReRAM

www.advancedsciencenews.com

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH2200448 (6 of 14)

www.advelectronicmat.de

current curves almost overlap during cycling, resulting in an 
improved stability of the HRS.

Despite having improved the resistive switching graduality 
and stochasticity, the bilayer structure shows higher pristine 
resistances compared to the baseline stack, leading to a large 
increase of the Vforming values. This effect hinders the device 
compatibility with the most advanced CMOS technologies. To 
address this point, future works will focus on the engineering 
of a sub-stoichiometric HfOx layer to reduce the Vforming,[49] 
without compromising the analog and low-stochastic 
switching properties.

3.2. Interpretation of the Resistive Switching Mechanisms  
in the Oxide Bilayer ReRAM

In the filamentary ReRAM devices, the polarity of the resistive 
switching mechanisms depends, among other factors, on the 
WFs of the electrodes.[28,50] Their role was investigated in the 
MIM structures made of an n-type TMO, encapsulated between 
a high and a low WF electrode.[51,52] The high WF electrode/
TMO interface can be modeled as a Schottky barrier, while the 
low WF electrode/TMO interface is a low-impedance Ohmic 
contact. In such a structure, after forming a conductive filament 
of Vo

..  in the TMO, these defects can be either repelled from the 
TMO region next to the Schottky barrier, or accumulated there, 
depending on the applied voltage polarity.[28] The local depletion 
of Vo

..  increases the device resistance, while their accumulation 
decreases it.[28]

The WF asymmetry can also affect the on/off switching 
ratio[50] and the reliability of the bipolar switching,[53,54] with 
both properties degrading for low WF asymmetries.

To verify whether the WF asymmetry plays a role in the 
reverse switching polarity of our baseline and bilayer struc-
tures, we investigate this aspect in more detail. In the baseline 
device, there is a clear asymmetry between the Ti electrode  
(WFTi ≈ 4.33 eV[55]) and the TiN electrode (WFTiN ≈ 4.7 ÷ 4.9 eV[56]).  
For the bilayer device, we did not find in literature a referen-
tial WF value for our conductive TaOx layer. We found refer-
ences for the Ta, whose WF can range from 4 to 4.8 eV,[55] and 
for the Ta2O5 (WFTa O2 5  ≈ 4.05 eV[57]). However, with such refer-
ences we cannot claim with certainty the direction of the WF 
asymmetry in the bilayer stack, which would rather require 
dedicated measurements.

We decided to test our hypothesis with an alternative 
approach. We fabricated a bilayer device with a Pt BE, because 
Pt has the largest WF among metals (WFPt ≈ 5.65 eV[58]) and 
therefore mandatorily forces a WF asymmetry in the same 
direction as the one of the baseline. However, as displayed 
in Figure  5, the bilayer stack with the Pt BE shows the same 
switching polarity as the one of the TiN-BE bilayer device. We 
conclude that the reverse switching polarity between the bilayer 
and the baseline ReRAMs cannot be attributed to an inversion 
of the WF asymmetry.

As a next step, we will interpret the switching mechanisms 
based on the exhibited DC I–V characteristics. In Figure 5, the 
forming, set, and reset operations are shown. For each process, 
we provide a tentative description of the microscopic mecha-
nisms involved. As an example, Figure 5a shows the I–V char-
acteristics of the forming process and Figure  5b below depicts 
it at the nanoscale. The applied forming voltage generates a 
conductive filament of Vo

..  across the HfO2 layer, by driving a 
migration of O2− anions toward the interface with the TaOx.[25] 
The abrupt increase of the current upon forming the filament 

Figure 4. Comparison between the DC I–V characteristics of the bilayer ReRAM (first row), and the baseline ReRAM (second row). a,b) The forming 
curves. c,d) The first set and reset. e,f) The five programming cycles following the first set and reset.
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current curves almost overlap during cycling, resulting in an 
improved stability of the HRS.

Despite having improved the resistive switching graduality 
and stochasticity, the bilayer structure shows higher pristine 
resistances compared to the baseline stack, leading to a large 
increase of the Vforming values. This effect hinders the device 
compatibility with the most advanced CMOS technologies. To 
address this point, future works will focus on the engineering 
of a sub-stoichiometric HfOx layer to reduce the Vforming,[49] 
without compromising the analog and low-stochastic 
switching properties.

3.2. Interpretation of the Resistive Switching Mechanisms  
in the Oxide Bilayer ReRAM

In the filamentary ReRAM devices, the polarity of the resistive 
switching mechanisms depends, among other factors, on the 
WFs of the electrodes.[28,50] Their role was investigated in the 
MIM structures made of an n-type TMO, encapsulated between 
a high and a low WF electrode.[51,52] The high WF electrode/
TMO interface can be modeled as a Schottky barrier, while the 
low WF electrode/TMO interface is a low-impedance Ohmic 
contact. In such a structure, after forming a conductive filament 
of Vo

..  in the TMO, these defects can be either repelled from the 
TMO region next to the Schottky barrier, or accumulated there, 
depending on the applied voltage polarity.[28] The local depletion 
of Vo

..  increases the device resistance, while their accumulation 
decreases it.[28]

The WF asymmetry can also affect the on/off switching 
ratio[50] and the reliability of the bipolar switching,[53,54] with 
both properties degrading for low WF asymmetries.

To verify whether the WF asymmetry plays a role in the 
reverse switching polarity of our baseline and bilayer struc-
tures, we investigate this aspect in more detail. In the baseline 
device, there is a clear asymmetry between the Ti electrode  
(WFTi ≈ 4.33 eV[55]) and the TiN electrode (WFTiN ≈ 4.7 ÷ 4.9 eV[56]).  
For the bilayer device, we did not find in literature a referen-
tial WF value for our conductive TaOx layer. We found refer-
ences for the Ta, whose WF can range from 4 to 4.8 eV,[55] and 
for the Ta2O5 (WFTa O2 5  ≈ 4.05 eV[57]). However, with such refer-
ences we cannot claim with certainty the direction of the WF 
asymmetry in the bilayer stack, which would rather require 
dedicated measurements.

We decided to test our hypothesis with an alternative 
approach. We fabricated a bilayer device with a Pt BE, because 
Pt has the largest WF among metals (WFPt ≈ 5.65 eV[58]) and 
therefore mandatorily forces a WF asymmetry in the same 
direction as the one of the baseline. However, as displayed 
in Figure  5, the bilayer stack with the Pt BE shows the same 
switching polarity as the one of the TiN-BE bilayer device. We 
conclude that the reverse switching polarity between the bilayer 
and the baseline ReRAMs cannot be attributed to an inversion 
of the WF asymmetry.

As a next step, we will interpret the switching mechanisms 
based on the exhibited DC I–V characteristics. In Figure 5, the 
forming, set, and reset operations are shown. For each process, 
we provide a tentative description of the microscopic mecha-
nisms involved. As an example, Figure 5a shows the I–V char-
acteristics of the forming process and Figure  5b below depicts 
it at the nanoscale. The applied forming voltage generates a 
conductive filament of Vo

..  across the HfO2 layer, by driving a 
migration of O2− anions toward the interface with the TaOx.[25] 
The abrupt increase of the current upon forming the filament 

Figure 4. Comparison between the DC I–V characteristics of the bilayer ReRAM (first row), and the baseline ReRAM (second row). a,b) The forming 
curves. c,d) The first set and reset. e,f) The five programming cycles following the first set and reset.
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current curves almost overlap during cycling, resulting in an 
improved stability of the HRS.

Despite having improved the resistive switching graduality 
and stochasticity, the bilayer structure shows higher pristine 
resistances compared to the baseline stack, leading to a large 
increase of the Vforming values. This effect hinders the device 
compatibility with the most advanced CMOS technologies. To 
address this point, future works will focus on the engineering 
of a sub-stoichiometric HfOx layer to reduce the Vforming,[49] 
without compromising the analog and low-stochastic 
switching properties.

3.2. Interpretation of the Resistive Switching Mechanisms  
in the Oxide Bilayer ReRAM

In the filamentary ReRAM devices, the polarity of the resistive 
switching mechanisms depends, among other factors, on the 
WFs of the electrodes.[28,50] Their role was investigated in the 
MIM structures made of an n-type TMO, encapsulated between 
a high and a low WF electrode.[51,52] The high WF electrode/
TMO interface can be modeled as a Schottky barrier, while the 
low WF electrode/TMO interface is a low-impedance Ohmic 
contact. In such a structure, after forming a conductive filament 
of Vo

..  in the TMO, these defects can be either repelled from the 
TMO region next to the Schottky barrier, or accumulated there, 
depending on the applied voltage polarity.[28] The local depletion 
of Vo

..  increases the device resistance, while their accumulation 
decreases it.[28]

The WF asymmetry can also affect the on/off switching 
ratio[50] and the reliability of the bipolar switching,[53,54] with 
both properties degrading for low WF asymmetries.

To verify whether the WF asymmetry plays a role in the 
reverse switching polarity of our baseline and bilayer struc-
tures, we investigate this aspect in more detail. In the baseline 
device, there is a clear asymmetry between the Ti electrode  
(WFTi ≈ 4.33 eV[55]) and the TiN electrode (WFTiN ≈ 4.7 ÷ 4.9 eV[56]).  
For the bilayer device, we did not find in literature a referen-
tial WF value for our conductive TaOx layer. We found refer-
ences for the Ta, whose WF can range from 4 to 4.8 eV,[55] and 
for the Ta2O5 (WFTa O2 5  ≈ 4.05 eV[57]). However, with such refer-
ences we cannot claim with certainty the direction of the WF 
asymmetry in the bilayer stack, which would rather require 
dedicated measurements.

We decided to test our hypothesis with an alternative 
approach. We fabricated a bilayer device with a Pt BE, because 
Pt has the largest WF among metals (WFPt ≈ 5.65 eV[58]) and 
therefore mandatorily forces a WF asymmetry in the same 
direction as the one of the baseline. However, as displayed 
in Figure  5, the bilayer stack with the Pt BE shows the same 
switching polarity as the one of the TiN-BE bilayer device. We 
conclude that the reverse switching polarity between the bilayer 
and the baseline ReRAMs cannot be attributed to an inversion 
of the WF asymmetry.

As a next step, we will interpret the switching mechanisms 
based on the exhibited DC I–V characteristics. In Figure 5, the 
forming, set, and reset operations are shown. For each process, 
we provide a tentative description of the microscopic mecha-
nisms involved. As an example, Figure 5a shows the I–V char-
acteristics of the forming process and Figure  5b below depicts 
it at the nanoscale. The applied forming voltage generates a 
conductive filament of Vo

..  across the HfO2 layer, by driving a 
migration of O2− anions toward the interface with the TaOx.[25] 
The abrupt increase of the current upon forming the filament 

Figure 4. Comparison between the DC I–V characteristics of the bilayer ReRAM (first row), and the baseline ReRAM (second row). a,b) The forming 
curves. c,d) The first set and reset. e,f) The five programming cycles following the first set and reset.

Adv. Electron. Mater. 2022, 8, 2200448

 2199160x, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aelm

.202200448 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline Library on [09/12/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

C
yc

le

1

5

www.advancedsciencenews.com

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH2200448 (6 of 14)

www.advelectronicmat.de

current curves almost overlap during cycling, resulting in an 
improved stability of the HRS.

Despite having improved the resistive switching graduality 
and stochasticity, the bilayer structure shows higher pristine 
resistances compared to the baseline stack, leading to a large 
increase of the Vforming values. This effect hinders the device 
compatibility with the most advanced CMOS technologies. To 
address this point, future works will focus on the engineering 
of a sub-stoichiometric HfOx layer to reduce the Vforming,[49] 
without compromising the analog and low-stochastic 
switching properties.

3.2. Interpretation of the Resistive Switching Mechanisms  
in the Oxide Bilayer ReRAM

In the filamentary ReRAM devices, the polarity of the resistive 
switching mechanisms depends, among other factors, on the 
WFs of the electrodes.[28,50] Their role was investigated in the 
MIM structures made of an n-type TMO, encapsulated between 
a high and a low WF electrode.[51,52] The high WF electrode/
TMO interface can be modeled as a Schottky barrier, while the 
low WF electrode/TMO interface is a low-impedance Ohmic 
contact. In such a structure, after forming a conductive filament 
of Vo

..  in the TMO, these defects can be either repelled from the 
TMO region next to the Schottky barrier, or accumulated there, 
depending on the applied voltage polarity.[28] The local depletion 
of Vo

..  increases the device resistance, while their accumulation 
decreases it.[28]

The WF asymmetry can also affect the on/off switching 
ratio[50] and the reliability of the bipolar switching,[53,54] with 
both properties degrading for low WF asymmetries.

To verify whether the WF asymmetry plays a role in the 
reverse switching polarity of our baseline and bilayer struc-
tures, we investigate this aspect in more detail. In the baseline 
device, there is a clear asymmetry between the Ti electrode  
(WFTi ≈ 4.33 eV[55]) and the TiN electrode (WFTiN ≈ 4.7 ÷ 4.9 eV[56]).  
For the bilayer device, we did not find in literature a referen-
tial WF value for our conductive TaOx layer. We found refer-
ences for the Ta, whose WF can range from 4 to 4.8 eV,[55] and 
for the Ta2O5 (WFTa O2 5  ≈ 4.05 eV[57]). However, with such refer-
ences we cannot claim with certainty the direction of the WF 
asymmetry in the bilayer stack, which would rather require 
dedicated measurements.

We decided to test our hypothesis with an alternative 
approach. We fabricated a bilayer device with a Pt BE, because 
Pt has the largest WF among metals (WFPt ≈ 5.65 eV[58]) and 
therefore mandatorily forces a WF asymmetry in the same 
direction as the one of the baseline. However, as displayed 
in Figure  5, the bilayer stack with the Pt BE shows the same 
switching polarity as the one of the TiN-BE bilayer device. We 
conclude that the reverse switching polarity between the bilayer 
and the baseline ReRAMs cannot be attributed to an inversion 
of the WF asymmetry.

As a next step, we will interpret the switching mechanisms 
based on the exhibited DC I–V characteristics. In Figure 5, the 
forming, set, and reset operations are shown. For each process, 
we provide a tentative description of the microscopic mecha-
nisms involved. As an example, Figure 5a shows the I–V char-
acteristics of the forming process and Figure  5b below depicts 
it at the nanoscale. The applied forming voltage generates a 
conductive filament of Vo

..  across the HfO2 layer, by driving a 
migration of O2− anions toward the interface with the TaOx.[25] 
The abrupt increase of the current upon forming the filament 

Figure 4. Comparison between the DC I–V characteristics of the bilayer ReRAM (first row), and the baseline ReRAM (second row). a,b) The forming 
curves. c,d) The first set and reset. e,f) The five programming cycles following the first set and reset.
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Figure 1.10: (a) Comparison of I − V sweep characteristics for monolayer baseline TiN-
HfO2-Ti ReRAM (left) and bilayer TiN-HfOx-TaOx-TiN ReRAM (right), adapted from [26].
(b) Comparison of bidirectional accumulative response characteristics for monolayer baseline
TiN-HfO2-Ti ReRAM (left) and bilayer TiN-HfOx-TaOx-TiN ReRAM (right), adapted from
[27].

Achieving symmetric SET/RESET switching operation is a crucial requirement for im-
plementing ReRAM devices in RPUs for DNN training applications [16]. Therefore, bilayer
ReRAMs, which exhibit reduced asymmetry compared to baseline ones, are better suited for
this hardware application. Furthermore, as reported by Wu et al. [28], introducing a properly
designed metal-oxide in bilayer ReRAMs results in more gradual SET/RESET transitions:
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this is attributed to an improved heat confinement control. In monolayer baseline ReRAMs,
the lack of temperature control leads to self-accelerated SET processes [29], causing abrupt
transitions. Gradual resistive switching characteristics are essential for enabling analog weight
updates in RPUs, as an improved graduality relfects a larger number of conductance states
(IRSs) accessed during NN hardware demonstrations [30]. As shown in Fig.1.10, both the I-V
sweep (Fig.1.10a) and the conductance accumulative response (Fig.1.10b) of bilayer devices
are characterize by symmetric and gradual switching operations and improved cycle-to-cycle
stochasticity.
The bilayer ReRAM approach, rather than a monolayer baseline device, offers improved per-
formances and reliability of the device (if well engineered) but the structure is more complex
from a fabrication standpoint.

ReRAMs have gained significant attention as storage devices due to their superior prop-
erties with respect to standard memory technologies, such as the low-power consumption,
non-volatility, multi-state capacity, fast write/read operations, higher density and potential
large scalability due to the involved nanoscale phenomena [31]. Especially in the neuro-
morphic computing field, ReRAM devices represent a promising hardware implementation
solution to perform both binary IMC [32] and Analog In-Memory Computing (AIMC) [33, 34]
within CBA architectures. The energy efficiency of parallel weight updates in CBA with ana-
log ReRAMs makes these devices attractive to develop deep learning accelerators for training
applications, offering outstanding speed and power consumption improvements compared to
CPU/GPU counterparts. BEOL-integrated ReRAM CBA deep learning training has been
already demonstrated by IBM with their analog bilayer technology [30].

1.4 ReRAM compact modeling status

In order to accelerate the circuit-level integration of ReRAM devices for IMC and neuromor-
phic applications, simulation models are urgently required.
The hierarchy of simulation models is wide and each of them is suited for particular pur-
poses. For instance, ab initio approaches allows to simulate material fundamental properties
and Finite Element Modeling (FEM) can be used to address electro-thermal simulations.
Only semi-empirical or compact models are suited to describe the device behavior at the
circuit-level [35]: these models run in short timescales, so the result is a trade-off between
accuracy and efficiency of the simulation. However, an accurate description of the device can
be achieved by developing physics-aware compact models, without fitting parameters and
purely mathematical equations that lead to a loss of model predictivity [36].
The design of large circuits involving ReRAMs is crucial for pre-fabrication verifications, new
applications proof of concepts and identifications of potential circuit optimization. Typical
IC design tools that enable the simulation of ReRAM-based circuits need robust models for
the single device characteristics. The model must be able to capture the main electrical
features, such as I-V characteristic, resistive switching dynamics, failure mechanisms (en-
durance, retention) and variability. Hereby the core of this work concerns the development of
a fully-dynamic1 physics-aware compact model to describe analog resistive switching opera-
tions in filamentary ReRAMs based on conductive-metal-oxide/HfOx bilayer IBM technology.
Other physics-based compact models of baseline HfOx ReRAM devices has been already pro-
posed, while a tailored one for the ReRAM technology studied in this work is still missing.
Therefore, chapter 3 will be focused on the development of a customized model by leveraging
existing works found in literature [37, 38].

1"fully-dynamic" means that the model accounts relevant dynamic aspects of the device, capturing its real
time-dependent behavior.
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Parameter extraction is a crucial procedure in ReRAM compact models, especially when the
model backbone involves physics equation: all the parameters should be physically reasonable
as well, such as to be consistent with the "physics-based" label. It is common to use kinetic
Monte-Carlo FEM models for parameters calibrations [35]. Accordingly, existing FEM mod-
els for the same device of this work [39, 40] has been used as groundworks to establish the
physically plausible ranges of some parameters used in the simulations.
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2 Methods

The following chapter aims to analyze the experimental and theoretical methodologies sup-
porting the results of this dissertation.
In particular, the experimental part is focused on the electrical characterizations of the
ReRAM devices, both in quasi-static and AC domain. The obtained characterization data
will be compared with simulation ones in the modeling & results chapter (3).
The theoretical sections address the physical mechanisms on which this work relies on and
the numerical approaches implemented in the simulations.
The fabrication process flow of bilayer ReRAM device was already established in previous
works [26, 41, 42], so it is summarized in appendix A to have a complete overview of the
device structure that is electrically characterized and modeled in this project.

2.1 Electrical characterizations
This section is aimed to explain the experimental setups employed for the electrical charac-
terizations of the TiN-TaOx-HfOx-TiN ReRAM device.

2.1.1 Quasi-static voltage sweep measurement

Conventionally, the first electrical characteristic extracted for ReRAM devices is the SET/RE-
SET I-V sweep. In TaOx/HfOx-based ReRAM case, SET/RESET I-V sweeps are obtained
by forcing negative/positive triangular voltage ramps to the device Top Electrode (TE), ac-
cording to the polarity reported in [26]. To perform these electrical tests, the chip with
the fabricated devices is fixed on a SÜSS MicroTec probe station, whose ceramic chuck is
equipped by a vacuum pump system to ensure a good contact and to secure the chip position.
The chuck is coated with gold and it is set to ground (GND), such as to have the bottom
contact of the devices to GND as well. Additionally, the chuck is provided by a computer
interface-controlled stage motor to move the chuck (and the chip too) during the experiment.
The allowed directions are both the vertical and the horizontal ones.

Figure 2.1: Picture of the chip held on the probe station chuck during the measurement. The
tip is in contact with the metallic pad of the DUT and the SMU signal of the voltage ramp
is applied from the top contact.
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An electrically conductive probe microtip (Fig.2.1) is used to contact the TE pad of the
RaRAM Device Under Test (DUT) and a Cascade Microtech DPP210 3 axis micromanipu-
lator allows to align the tip and the device pad with high precision.
The electrical signal for the voltage ramp is applied by an Agilent B1500A parameter ana-
lyzer with multiple Source Measurement Units (SMUs): each SMU simultaneously forces the
voltage and measure the current in the terminal. Furthermore, triaxial cables are used for
the electrical connection between the SMUs and:

• the tip, for the applied signal to the TE of the DUT

• the chuck, for the common voltage, i.e. the earth GND.

The setup described so far is schematically represented in Fig.2.2.

ReRAM
under test

Chuck

Tip

Triaxial 
cable

Parameter 
analyzer:

Agilent B1500A

Triaxial 
cable

Vacuum 
pump

Tip 
micromanipulator

Stage 
motor

Figure 2.2: Illustration of the experimental setup employed for the quasi-static I-V sweep
characterizations.

In order to run a voltage ramp, the parameter analyzer adopts the scheme shown in
Fig.2.3. A staircase voltage ramp is the discrete version of the ideal triangular ramp, where
the applied voltage is increased for each step by ∆VS . Each ∆VS is kept over the time interval
corresponding to the hold time ∆tHT , during which the current measurement is carried out.
The SMU measurement starts only after the delay with respect to the end of the previous
voltage step hold time: this time interval is the wait time ∆tW T . The Sweep Rate (SR) of
the staircase voltage ramp is computed as:

SR = ∆VS

∆tHT

Each voltage sweep includes a forward ramp up to the stop voltage VStop and a backward
one. VStop is a parameter that can be set for the characterization and different values can be
used for SET and RESET sweeps. Moreover the parameter analyzer allows to use a current
compliance Icc to limit large currents flowing into the DUT. Despite the availability of this
control limit, Icc is never used in the experiments reported in this work.

Before executing quasi-static I-V sweep characterizations, the DUT must go through the
forming procedure, which is carried out with the same experimental setup as the one used for
SET/RESET cycling: the forming procedure for TaOx/HfOx-based ReRAM device is divided
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Figure 2.3: Voltage ramp scheme adopted by the parameter analyzer for the quasi-static I-V
sweep characterizations.

into 3 steps, which consist in positive and negative sweeps with larger VStop than the ones
involved in the SET/RESET cycling. Positive (or negative) sweep means that VA > 0 (or
VA < 0) is applied to the TE.
The forming procedure consists in the following routine:

1. Negative sweep up to VStop = −5 V . The hysteretic sweep shown in Fig.2.4a is at-
tributed to a further reduction of TaOx, as the large applied voltage can generate new
oxygen vacancies [43] increasing its conductivity.

2. Positive sweep up to VStop = +4 V (Fig.2.4b). During this step the device exhibits the
typical I-V characteristic associated to a dielectric breakdown [44]. For this reason,
this second step is associated to the formation of a conductive filament made of oxygen
vacancies in the HfOx, with forming voltage VF = 3.6 V .

3. Negative sweep up to VStop = −3 V (Fig.2.4c). The device is already formed after the
second step, so the aim of this first strong SET (third step) is to bring the device in
the 10 kΩ domain, where it is expected to operate.

In the first step of the forming routine, a 100 kΩ resistor is used in series with the tip
that is in contact with the top metallic pad of the DUT: the series resistor allows to prevent
unwanted large currents flowing into the device. In the second and third steps, a 10 kΩ
resistor in series with the tip is used for the same purposes. Series resistors are preferred to
limit the current rather than Icc, as they allow to prevent current overshoot [35].
The SR of each forming sweep and SET/RESET cycling is set to SR = 0.1 V s−1, with
∆tW T = 0 s and ∆tHT = 100 ms: this means that the measurement time coincides with
∆tHT . To get SR = 0.1 V s−1, the ramp has ∆VS = 10 mV .

As shown in Fig.2.4d, after the forming procedure the device is ready for SET/RESET
cycling. For the SET sweep, the stop voltage is set to VStop = −0.9 V , while for the RESET,
VStop = −1.1V .
A zoom on the 10 cycles of quasi-static I-V sweeps is reported in Fig.2.5, showing an ON/OFF
ratio of ∼ 3 and negligible cycle-to-cycle variability. In addition, in the clockwise I-V sweeps
the current transitions associated to SET and RESET switching processes are more gradual
with respect to baseline technologies [26]: typically baseline ReRAM devices made of Metal-
Insulator-Metal (MIM) stack exhibit steep SET transitions as a consequence a self-accelerated
SET process [29]. Conversely, in TaOx/HfOx-based ReRAM device the SET abruptness is
reduced, complying with the analog behavior of the device.
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Figure 2.4: (a) Forming procedure 1st step: negative sweep. (b) Forming procedure 2nd step:
positive forming. (c) Forming procedure 3rd step: first SET. (d) 10 cycles of SET/RESET
quasi-static I-V sweep [39].

The experimental data about quasi-static I-V sweeps (Fig.2.5) will be used as a reference for
a first validation of the compact model derived in the next chapter.
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Figure 2.5: 10 cycles of quasi-static clockwise I-V sweep [39].

Nevertheless, the quasi-static I-V sweep is only a proof of concept of resistive switching
phenomena [35] because ReRAM devices in real ICs do not operate under these conditions.
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2.1.2 Pulse response characterization

A crucial figure of merit for resistive switching devices is the switching time, while another
important feature is the conductance accumulative response: to characterize both of them,
the application of short (∼ µs ÷ ns) voltage pulses [44] is required. The experimental setup
(Fig.2.6) employed to apply square voltage pulses to the DUT is described in the following.

Waveform 
generator

50 Ω

Coaxial 
cable

Amp. Gain x5

50 Ω

50 Ω

Coaxial 
cable

ReRAM
under test
Chuck

Tip

Coaxial 
cable

50 ΩOscilloscope

Vacuum 
pump

Stepper 
motor

Figure 2.6: Illustration of the experimental setup employed for pulse response characteriza-
tions.

The chip with the ReRAM DUT is held on a conductive chuck and its position is secured
by a vacuum pump system. Vertical and horizontal displacements of the chuck are controlled
by a stepper motor through a LabVIEW software interface: the finest movement allowed is
5 µm in every direction, which is enough to adjust the DUT position with high precision.
Contrary to the setup in Fig.2.2, where the tip can be controlled by a micropositioning
system, here (Fig.2.6) the tip in contact with the top metallic pad of the DUT is fixed in
space. Therefore only the chuck moves to contact the tip with the chip.
A waveform generator (16-Bit 400 MS/s NI PXIe-5451 by National Instruments) assisted by
the LabVIEW interface is used to build the arbitrary signal that is first amplified and then
applied to the DUT. The input and output impedences of each component of the setup are
matched with 50 Ω loads. The generated signal is applied to the TE of the ReRAM DUT
through the conductive tip, while the output signal is measured by an oscilloscope (400 MHz
NI PXIe-5164 by National Instruments) on a load resistor of 50 Ω in series with the DUT.
The load resistor is set to the common voltage of the setup, which in turns is set to the earth
GND.
Coaxial cables are used for the electrical connections of the setup. Triaxial cables were not
available, although they would fit better the requirements of the experiments carried out with
this setup. Triaxial configuration improves the capacitive decoupling of the signal together
with low leakage currents: as a result, the RC transients of the setup reduce, so the measured
ones can be associated to the device only. In the switching time characterization explained
in the following, the measure of the time intervals is affected by the RC transients, hence by
employing coaxial cables it is not possible to isolate the device contribution by the setup one.

Switching time characterization

An important requirement in ReRAM device concerns the write operation: Waser et al. [45]
discussed about the voltage-time dilemma, i.e. the conditions of the write process to achieve
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large retention (up to 1016 s). Dealing with square voltage pulses to program devices char-
acterized by non-linear switching mechanisms, the write voltage should be at most ten times
larger than the read one. Moreover programming write pulses operating in the ns regime
(shorter time intervals are even better) are preferred.
To address the voltage-time dilemma, it is crucial to characterize the non-linearity of the
switching time as a function of the writing voltage. In the following, the SET switching time
is measured by tuning the amplitude of the programming pulse up to V SET

pulse ≲ 10 ·V READ
pulse , to

be consistent with the voltage-time dilemma requirements. V READ
pulse = ±0.2 V is the ampli-

tude of the pulse used to read the resistance state of the device, sufficiently small to ensure
no switching during the procedures. While V SET

pulse is the amplitude of the single square volt-
age pulse needed to switch from HRS to LRS considering the full resistance window of the
device: consistently with the quasi-static operation, HRS = 8 kΩ and LRS = 2 kΩ when
VA = ±0.2 V .
Fig.2.7 depicts the pulse scheme employed in the switching time experiment, which consists
in reading the state of the device before and after the programming pulse, to check that the
transition occurs effectively from HRS to LRS. The READ procedure is splitted in a +0.2 V
and −0.2 V pulses and the resistance is computed as the average between them: this allows
to remove potential offsets of measurement setup. The switching time tSET coincides with
the width of the programming pulse ∆tpulse only if the pre- and post-pulse READ return
8 kΩ and 2 kΩ respectively. The experiment is carried out by checking this condition for
each V SET

pulse . 10 V SET
pulse are chosen going from −1.35 V to −1.8 V with −0.05 V steps.

The typical I(t) response of the device associated to a single pulse SET [46] is shown in
Fig.2.8a, where the inset shows the absolute increase of the current (SET) during the switch-
ing. The I(t) curves for all the programming pulses are reported in the appendix B.
In Fig.2.8b all the I(t) curves associated to the same HRS → LRS are superimposed to show
that V SET

pulse and ∆tpulse = tSET are inversely proportional (READ sequences are removed
from the total curve). However, it is not totally true that ∆tpulse = tSET experimentally:
in Fig.2.8a it is evident that the I(t) response is affected by RC transients, i.e. the current
peaks arising when the applied voltage changes. This RC phenomena can be associated to
the charging time of the device, which has an intrinsic capacitance [42] or to the limited
capabilities of the setup (e.g. biaxial instead of triaxial cables). Since it is hard to decouple
the two RC contribution, the time associated to these transients are subtracted from ∆tpulse

in order to determine tSET used to build the Voltage-Time Trade-Off (VTTO) plot in the
results chapter (3). The average RC time considering all the measurements (see appendix B)
is estimated to be 280 ns. Additionally, τRC,min = 280 ns determines the measurement limit
of this experiment because transients in smaller time scale would not be appreciated.
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Figure 2.7: Pulse sequence READ-READ-Programming SET pulse-READ-READ employed
in the switching time experiment.
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Figure 2.8: (a) I(t) evolution as a response to the experimental SET pulse sequence with
zoom on the switching transition in the left inset. (b) Superimposed I(t) curves for increasing
|V SET

pulse |.

It is worth to specify that the switching time is not limited at τRC,min by the physical
internal processes related to the switching dynamics, while it is limited by the combination
of setup limits and the capacitive charging of the cell [46].

Conductance accumulative response characterization

The experimental setup for pulse response characterization (Fig.2.6) is employed to char-
acterize the analog bidirectional switching properties through the accumulative response of
the conductance up to a pulse stream. The goal is to characterize the device response when
stimulated by short (µs÷ns) identical voltage pulses. Generally, ReRAM devices undergoing
pulsed voltage stress return a resistance (or conductance) update that depends on multiple
factors, such as the amplitude/width of the pulse and the resistive state before the update.
The pulse scheme adopted in this electrical characterization is schematically represented in
Fig.2.9. The experimental pulse scheme consists of a sequence of identical writing pulses
with positive polarity VA > 0 (RESET) alternated with READ pulses to measure the con-
ductance state after each programming operation. Then the same sequence is repeated for
the negative polarity VA < 0 (SET). The conductance of the device decreases/increases when
positive/negative pulses are applied to the TE of the DUT, complying with the polarity
reported in previous experiments.
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Figure 2.9: Experimental pulse scheme to characterize the bipolar accumulative responce of
the ReRAM device.
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The DUT undergoes 10 batches of pulse stream, where each batch is composed of 200
positive (up) and 200 negative (down) pulses having the following features:

• ∆tup
pulse = ∆tdown

pulse = 200 ns

• VREAD = +0.2 V

• V up
pulse = +1.75 V

• V down
pulse = −1.25 V
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Figure 2.10: (a) Experimental accumulative conductance response of the device stimulated
by 10 batches of pulse streams with 200 up and 200 down pulses. (b) Zoom on 1 central
batch to highlight the analog potentiation/depression of the device conductance.

Fig.2.10a and Fig.2.10b demonstrate that, even when stressed by trains of short and
identical voltage pulses, the ReRAM device exhibits switching properties in analog fashion:
the DUT can be programmed in an IRS, as the update of the conductance is incremental
with the pulse number in the potentiation (conductance increase) or depression (conductance
decrease) curves.
This characterization is aimed to compare the experimental properties of the device with the
simulation results of the compact model developed in the next chapter, to understand if the
model is able to catch the analog features of the switching mechanisms.

2.2 Physical modeling

Once the experimental data about electrical characterizations has been collected to compare
the real behavior of the device with the simulations, it is necessary to establish the basis for
the physical modeling of the ReRAM device.
This section focuses on the theoretical fundamentals behind the interpretation of resistive
switching processes. Ion migration in solids, electron transport in defective oxide and Joule-
heating-based temperature dynamics are the physical mechanisms on which the compact
model in this study relies on. The concept is to take advantage of well known equations
describing the mechanisms listed above and apply them to model resistive switching processes
in filamentary TaOx/HfOx ReRAM device.
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2.2.1 Theoretical fundamentals

Ion migration

The phenomenon of ion migration in solids can be attributed to multiple physical driving
forces such as electric potential gradient (drift), concentration gradient (Fick diffusion) or
temperature gradient [47]. Typically the movement of ions is a combination of drift (induced
by the electric field) and temperature-enhanced migration.

• The application of an external electric field (E) entails an alteration of the ionic potential
landscape and charged ions experience a driving force that might imply their motion in
the crystal lattice. Positively charged ions are attracted towards the negative electrode,
while negatively charged ions migrate towards the positive electrode.

• Local temperature (T ) increase can provide the necessary energy for ions to overcome
migration energy barriers enabling their motion within the crystal lattice. At elevated
temperatures, the mobility of ions increases, facilitating their migration inside the solid.

Mott & Gurney [48] derived a simple 1D model to describe the combination of these two
mechanisms: the atomistic model corresponds to ion hopping between lattice site within the
crystal.
In absence of applied electric field, ions can hop to unoccupied lattice sites by overcoming
the energy barrier (∆WA) in the potential landscape, without any preferential direction,
i.e. forward or backward jump (Fig.2.11a). The model takes into account jumps between
neighboring lattice sites, so the hopping distance (a) coincides with the lattice constant of
the crystal.
In presence of an applied electric field, the hopping energy barrier height lowers (or raises) for
forward (or backward) jumps, so the drift of ions exhibits a preferential direction (Fig.2.11b).
|z|q denotes the ion charge (where z is the valence of the ion and q the elementary charge)
and ∆W f,b

A is the ion migration barrier for forward (’f ’) or backward (’b’) jump.

y

Ɛ = 0

ΔWA

E

-|z|qaƐ/2
Ɛ ≠ 0

aa y

E

(a)

y

Ɛ = 0

ΔWA

E

-|z|qaƐ/2
Ɛ ≠ 0

aa y

E

(b)

Figure 2.11: Schematic illustration of ion hopping process within the lattice potential land-
scape in absence (a) and in presence (b) of an applied electric field. Redrawn from [49].

Accordingly, the ion migration barriers modify as:

∆W f,b
A = ∆WA ∓ |z|qaE · 1

2 (2.1)

A non-null drift current is associated to the ion hopping process, considering that forward
and backward jump rates follow Boltzmann distributions:

Jion,drift = zqC · vion,drift = zqCaν0 ·
5
exp

3
−∆W f

A

kBT

4
− exp

3
−∆W b

A

kBT

46
(2.2)
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where C is the concentration of ions and ν0 is the jump attempt frequency. By inserting
equation 2.1 in 2.2, the Mott-Gurney law for ion hopping [48] reads:

Jion,drift = zqCaν0 · exp
3

−∆WA

kBT

4
· 2 sinh

3
zqEa

2kBT

4
(2.3)

Equation 2.3 describes the ion drift, with a non-linear dependence between the ion drift
velocity (vion,drift) and the applied electric field that comes from the alteration of the energy
barriers in the potential landscape. Nevertheless, diffusive driving forces arising from the mi-
gration itself are not taken into account by the Mott-Gurney hopping law. Noman et al. [50]
modified the original derivation by Mott & Gurney by distinguishing the ion concentration
C for left and right sides over the migration energy barrier. Consequently, the ion migration
current density results in the sum of drift and diffusion components:

Jion = Jion,drift + Jion,diff (2.4)

where Jion,drift is simply the Mott-Gurney law (equation 2.3) and Jion,diff is:

Jion,diff = zq
dC

dy
a2ν0 · exp

3
−∆WA

kBT

4
· 2 cosh

3
zqEa

2kBT

4
(2.5)

Electron transport

Electronic conduction mechanisms in dielectric films [47, 51] can be classified as:

• Electrode-limited conduction mechanisms

1. Schottky emission
2. Fowler-Nordheim (FN) tunneling
3. Direct tunneling
4. Thermoionic-field emission

• Bulk-limited conduction mechanisms

1. Ohmic conduction
2. Space-Charge-Limited (SCL) conduction
3. Trap-assisted conduction

(a) Trap-to-trap tunneling, also called Trap-Assisted Tunneling (TAT)
(b) Poole-Frenkel (PF) emission

Prior studies on the electron transport in filamentary TaOx/HfOx ReRAM device demon-
strated that it is merely attributed to trap-assisted conduction mechanisms [39]. Conse-
quently, for the purposes of this dissertation, the following discussion focuses only on TAT
and PF emission, illustrated in Fig.2.12 as (a) and (b) respectively.

Trap-assisted transport processes are characteristic of substoichiometric, impurities-rich
or amorphous dielectrics: in general, crystalline defects induce the presence of trap states
within the band gap. Localized trap states can take part to the conduction by trapping and
releasing electrons. The difference between TAT and PF emission rests on where electrons
are released.
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Figure 2.12: Schematic illustration of trap-assisted conduction mechanisms. (a) Trap-to-trap
tunneling and (b) Poole-Frenkel emission. Redrawn from [39].

• Trap-to-trap (or trap-assisted) tunneling: electrons hop only among trap states, so they
never jump into the conduction band. Moreover, TAT processes can occur in different
regimes, depending on how far trap states are from each other. Low concentration of
defects are associated to weak percolative conduction paths, while by increasing the
defect concentration, the conduction trap centers density increases as well, falling in
the weakly localized Variable Range Hopping (VRH) regime or more strongly localized
Nearest-Neighbour Hopping (NNH) [47].

• Poole-Frenkel emission, also called internal Schottky emission, involves trapped elec-
trons that are thermally excited and released in the conduction band. This effect typ-
ically occurs at high temperatures and high fields [51]. However, the temperature and
the field required to activate the PF process depend also on the characteristic energy
of localized defect states, translated into the energy difference between the Conduction
Band Edge (ECBE) and the energy of trap levels (ϕT ).

Current densities (Je) for TAT and PF processes can be described by the following equa-
tions:

Je = qneaeνe · exp
3

−∆EA

kBT

4
· 2 sinh

3
qEa

2kBT

4
(2.6)

Je = qµeneE · exp
C

ϕT +
ð

q3E/πϵ0ϵr

kBT

D
(2.7)

In equation 2.6 (TAT), ne is the density of electronic states, E the electric field across the
dielectric, ae the average hopping distance, νe the frequency of thermal vibration of electrons
in trap sites and EA the average energy barrier between hopping sites.
In equation 2.7 (PF), µe is the electron mobility in conduction band, ϵ0 the permittivity in
vacuum and ϵr is the dielectric constant.

Temperature dynamics

Thermal transients throughout resistive switching processes are accurately modeled by the
general Newton’s cooling law [52, 53, 54], which describes the rate of heat loss from the
warm object to the cooler surrounding. This general physics law states that the rate of heat
loss is proportional to the temperature difference between the object and its surrounding and
additional external contributions, such as the Joule heating, oppose to the cooling phenomena.
Mathematically, the Newton’s law of cooling reads:
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Cth · dT

dt
= Ie · VA −

3
T − T0

Rth

4
(2.8)

where Cth is the thermal capacitace of the object, Rth the thermal resistance, Ie the
electronic current flow causing Joule heating phenomena, VA the applied voltage across the
object, T the time-varying temperature and T0 the reference temperature of the surrounding.

The thermal capacitance Cth, also known as heat capacity, quantifies the amount of heat
required to increase the temperature by a certain amount, i.e. it represents the ability of
the object to store thermal energy. Cth is associated merely to material properties and it is
computed as:

Cth = cp · m

where cp is the specific heat capacity and m the mass of the object.
The thermal resistance Rth measures the object ability to impede the temperature increase
and it can be computed as:

Rth = l

A
· 1

κ

where l is the length of the object, A the cross-sectional area of the object through which
the heat flows and κ the thermal conductivity of the object material.
Thermal models described by the Newton’s cooling law are equivalent to a simple RC circuit
[52] in the thermal domain (Fig.2.13), whose time constant is:

τth = Cth · Rth

τth quantifies how fast is the heating up/cooling down transient.

T0

RthIe!VA

T

Cth

Figure 2.13: RC circuit in the thermal domain associated to the Newton’s cooling law with
Joule heating as external heat contribution.

2.3 Numerical approaches for physical modeling
Broadly speaking, physical modeling of ReRAM devices involves intricate systems of equa-
tions including differential and non-linear problems. It is also common to have dependent
variables appearing in multiple equations. These complexities make impractical the analyt-
ical derivation of problem solutions. As a result, numerical approximations of such systems
are essential to solve them with reasonable accuracy.
The core of numerical methods applied to physical problems is the discretization of governing
equations, such as to translate them in manageable computational domains. Furthermore,
iterative algorithms and numerical solvers offer a versatile way to compute the solution of
discrete problems.
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The intent of this section is to present 2 numerical methods to discretize and solve Ordinary
Differential Equations (ODEs) and an iterative approach for non-linear systems of equations.
The derivation of the discretization methods for ODEs can be found in [55].

2.3.1 Discretization of ordinary differential equations

The physics-based compact model derived in chapter 3 is a time-dependent problem related
to multiple ODEs, i.e. differential equations containing a single independent variable. Initial
values problem are treated in the mathematical model of this work, so the solution at time
t = 0 must be known.
The general form of a 1D ODE is:

ẏ = df

dt
= f(x, t)

with initial condition f(x, t = 0) = y0.
There are several approaches to discretized ODEs [55]. In the following, the two approaches
used in this model are reported: the implicit Euler and the Crank-Nicolson (or trapezoidal
rule) methods. They are chosen as discretization rules because of their unconditionally stable
solution. In both cases it is necessary to discretize the time domain with finite steps ∆t, where
the general time ti is:

t =
nØ

i=0
∆ti

Euler method (implicit)

The implicit Euler method consist in approximating the time-derivative of the unknown as
its finite difference within the discrete time interval.

ẏ = df

dt
= f(x, t) ≈ fi − fi−1

∆ti

therefore if the solution at the time ti is known:

fi+1 = fi + ∆ti · f(xi+1, ti+1)

and this formula can be applied progressively because the problem starts from known
initial condition f(x, t = 0) or fi=0 in the discrete time domain.

Crank-Nicolson method

The Crank-Nicolson method, also known as trapezoidal rule is based on the approximation
of the function f between 2 finite points of the discrete time domain as its trapezoidal
evolution. This approach derives from the trapezoidal rule to compute integrals: its inverse
rule is the Crank-Nicolson method. Of particular significance is the stability of the solutions
found with this approach. Dealing with linear ODE problems, the trapezoidal rule leads to
unconditionally stable solutions, which is essential for simulations. Only linear ODEs are
involved in this physical modeling, i.e. the independent variables appear with the power of 1
in the differential problems.
Considering the following 1D problem,

ẏ = df

dt
= f(x, t)

the trapezoidal rule reads:
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fi+1 = fi + ∆ti

2 · (ẏi + ẏi+1)

Also the Crank-Nicolson method can be applied progressively as the problem starts from
known initial condition f(x, t = 0) or fi=0 in the discrete time domain, equally to the Euler
approach.

2.3.2 Newton-Raphson numerical solver for non-linear systems

Non-linear systems arise when the governing equations exhibit non-linear relationship involv-
ing the independent variable. Numerical solvers for non-linear systems are often needed be-
cause many physical phenomena exhibit non-linear behavior: the complex interplay between
different physical quantities and irregularities in the underlying physics make the problem
impossible to be solved analytically.
Newton-Raphson method is particularly useful to solve such equation systems because it al-
lows to find the solution with an iterative approach [56]. It consists in making an initial guess
solution that is refined iteratively, until convergence within a specified tolerance is reached.
The Newton-Raphson method for a system of n equations (f1,2,...,n) with n unknowns (x1,2,...,n)
is generalized in the following. The system must be written in the form F̄(x) = 0, where
F̄ : Rn → Rn:

F̄(x) = 0 →



f1(x1, x,2 , ..., xn) = 0
f2(x1, x,2 , ..., xn) = 0

...
fn(x1, x,2 , ..., xn) = 0

Suppose to have an educated initial guess X̄0, then F̄ is approximated by linearization
around X̄0:

F̄(x) ≈ F̄(X̄0) + J (X̄0) × [(X̄ ) − X̄0]

where X̄ is the vector containing the n solutions x1,2,...,n and J is the n × n Jacobian
matrix whose entries are the combination of partial derivatives evaluated in X̄0

J =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
... . . . ...

∂fn

∂x1
∂fn

∂x2
. . . ∂fn

∂xn


therefore the first iteration to find the vector of the unknowns is:

X̄ = X̄0 − J (X̄0)−1 × F̄(X̄0)

with ∆X = X̄ − X̄0. By using X̄ as X̄0 for the second iteration, the numerical solver
can be repeated to find another X̄ which is closer to the real solution. The process can be
iterated until ∆X does not satify the numerical tolerance condition:

||∆X || < ϵtol
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where ϵtol is a small value chosen as numerical tolerance for the specific mathematical case.

Since it affects the method’s effectiveness, it is crucial to carefully choose the initial guess.
Moreover, the Jacobian matrix computation critically impact on the convergence towards the
true solution, as it determines the updates of the unknowns vector. If poorly approximated,
the entries of the Jacobian matrix might lead to slow convergences of the method, hence
increasing the computational cost of the solver.

For time-dependent problems, the Newton-Raphson method can be employed to find nu-
merically the solution at each time step. In this work, the ODEs discretization approaches are
combined with a Newton-Raphson iterative solver to derive the time evolution of a physical
problem.
All the simulations addressed in this work are implemented in MATLAB R2023b ©.
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3 Modeling and results

This chapter is devoted to discuss the development of a physics-based compact model aimed
to describe the resistive switching processes in ReRAM devices. The ReRAM technology
studied in this dissertation is based on a stack of Conductive-Metal-Oxide (CMO) and HfOx
as active materials between electrodes, where the CMO is a Transition Metal Oxide (TMO)
that meets specific constraints regarding its electro-thermal properties [39]. Specifically,
in the first section of this chapter (3.1) it is explained how the theoretical fundamentals
reported in 2.2 are applied to build a compact model based on well known electronic/thermal
conduction mechanisms and ion kinetics in oxides. In section 3.2, the simulation results and
the experimental data of electrical characterization are compared to evaluate the accuracy of
the model.

3.1 Compact model

3.1.1 Physics of resistive switching dynamics

The approved interpretation about the resistive switching in Valence Change Memories
(VCMs) consists in the migration of oxygen ions, also described as vacancies transport,
causing a local valence alteration [57]. Similarly, the following model for analog filamen-
tary CMO/HfOx ReRAM devices assumes that a redistribution of defects in the CMO causes
a modulation of the resistivity in that layer [39, 26]. In particular, the defects taken into
account are oxygen vacancies, belonging to the class of lattice point defects.

Oxygen vacancies

A vacancy is a missing atom in a lattice site, as shown in Fig.3.1, hence, oxygen vacancies
are missing oxygen ions in lattice sites that should be occupied by oxygens.
In Kröger-Vink notation [58], an oxygen vacancy is represented as V··

O, where the point defects
species is V (vacancy in this case), the subscript is the original lattice site considering the
perfect crystal (O stands for oxygen) and the superscript is the negative (·), positive (′) or
null (x) net charge. Since oxygen ions are negatively charged with 2 unpaired electrons, V··

O
have double positive net charge with respect to the lattice.
Vacancies are not existing species, so a rigorous description should not consider them as
migrating entities because there is no physical matter to move: nevertheless, the description
of vacancy migration (complementary movement of self-interstitial atoms in the opposite
lattice site direction) is accepted as long as there is no atom exchange at the interface between
different materials.
Other types of point defects are extrinsic interstitial atoms, substitutional atoms and Frenkel
pairs (see Fig.3.1). All of them are not considered: in this model, the active materials
responsible of resistive switching are not supposed to have atoms that do not belong to their
crystalline structure (extrinsic defects), while Frenkel pairs are excluded due to recombination
effects.
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Vacancy Frenkel or anti-Frenkel 
pair

Figure 3.1: Classification of point defects in crystalline structures.

The distinction between Frenkel pairs and anti-Frenkel paiars relies on the charge of the
vacancy left by the migration of an ion to the adjacent interstitial lattice site, so oxygen
vacancies-oxygen interstitial (V··

O-O′′
i ) pairs are anti-Frenkel defects. The latter can exist in

oxides, but they are not taken into account in this work because studies on anti-Frenkel V··
O-

O′′
i pairs in TMOs [59] reveled that they are characterized by very fast recombination times

(< 1 ps), i.e. they are not stable. To summarize, the migration of ionic oxygen species is
depicted in terms of V··

O migration and this allows to discriminate them from anti-Frenkel
pairs.

Interpretation of resistive states

As explained in sections 1.1-1.3, ReRAMs operating principle is based on the resistance
change caused by the alteration of the conductive properties of an active material between
two electrodes. The active materials in the ReRAM device of this study are TaOx and HfOx,
stacked as illustrated in appendix A. The substoichiometric TaOx is chosen as representative
CMO layer. However, the model proposed in the next section holds for all the CMOs that
fulfill the electro-thermal requirements listed in section 3.1.2. Therefore, the general inter-
pretation of resistive states is explained in terms of CMO.
HfOx conductive properties change only during the electro-forming step, where the substoi-
chiometric HfOx is further reduced (locally) and a conductive filament made of V··

O is formed,
bridging the CMO layer with the bottom electrode. A realistic interpretation of electro-
formed oxygen deficient filaments consists in considering them as formed in multiple sites
(Fig.3.2a), as reported in [60]. Nonetheless, for the purpose of this simulation model, it is
sufficient to approximate the conductive filament as unique (Fig.3.2b), according to recom-
mended simulation methods for resistive switching devices [35].
The filament is ohmic-like due to the high oxygen deficiency: the transport in the filament is
dominated by the metallic phase with highly conductive percolation paths [61].

Despite the compact model proposed in this study does not take into account any spatial
variable, it is crucial to establish the hypothesis regarding the arrangement of V··

O in the
device, because simulations results shall be construed accordingly.
The model takes for granted that the redistribution of V··

O responsible for resistance change
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Figure 3.2: (a) Realistic interpretation of multiple oxygen vacancies filaments formation as a
consequence of the electroforming step. (b) Unique filament approximation.

during SET and RESET processes, occurs in a sub-portion of the CMO layer: in [39, 40], it is
shown that the electrostatic potential drops mainly in a dome-shaped region of the CMO on
top of the conductive filament, therefore also the CMO sub-volume undergoing the change of
oxygen vacancies concentration NV··

O
is assumed to be a dome above the conductive filament.

When the device is in LRS, V··
O are homogeneously distributed in the CMO layer (see

Fig.3.3a). They come from the partial reduction induced by the first step of the electro-
forming procedure. By applying a positive bias (VA) to the top electrode, sufficiently high to
generate a V··

O migration, they drift towards the interface of the HfOx and the dome is par-
tially depleted of defects (RESET). Once the NV··

O
in the CMO dome decreases (the dome is

oxidized), the device is in HRS (see Fig.3.3b). From HRS to LRS (SET), a sufficiently strong
negative bias applied to the top electrode allows to relocate V··

O in the LRS configuration,
thereby repopulating the dome of defects.
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Figure 3.3: Oxygen vacancies spatial arrangement interpretation in CMO/HfOx ReRAM in
LRS (a) and HRS (b).

It is widely approved that the presence of V··
O gives rise to defect trap states in the band

gap of the oxide, changing its conductivity: they are treated as donor-like trap states [62].
In subsection 2.2.1, two types of electron conduction mechanisms are supposed, both assisted
by the presence of defect trap states in the band gap of the oxides:

• Poole-Frenkel (PF) conduction, consisting in thermally excited electrons that are re-
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leased from trap states to the conduction band, with the following drift towards the
electrode

• Trap-Assisted Tunneling (TAT), where electrons are released from the Fermi level to a
trap state , then tunneling through localized defect states towards the direction of the
bias

The type of conduction mechanisms strongly depends on the energy distance between the
defect traps state and the conduction band edge. For instance, TAT electron transport is
characteristic of oxides with deep trap states. In this model, the PF process is discarded, as
the redistribution of V··

O occurs in the CMO, which is supposed to have middle gap defect
states. This evaluation applies for many TMOs characterized by oxygen vacancies-related
deep trap states [63]. Specifically, considering the case study of this work, it has been demon-
strated that oxygen vacancies trap states are ∼ 2 eV far from the valence band edge in TaOx
[64], i.e. they are spectrally located in middle of the band gap.
Following these considerations, Fig.3.4 depicts how the conduction through localized defect
trap states (consequently, the resistance of the CMO) is affected by the position of such
defects.
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Figure 3.4: (a) Direction of the electronic conduction/ion migration. (b),(c) Sketches of
spectral and spatial location of defects trap states in the band diagram for LRS and HRS
respectively, redrawn from [39].

Since the LRS is associated to homogeneously distributed V··
O in the whole CMO, regular

TAT electron paths between the HfOx conductive filament and top electrode exist, passing
through V··

O trap states (see Fig.3.4b). In the HRS the conduction bottleneck is the dome
region, which is partially depleted of V··

O defect states, hence TAT in such portion of CMO
is limited by traps deficit (see Fig.3.4c).
As shown both in Fig.3.3b and Fig.3.4c, in the HRS the V··

O are deemed to be accumulated
at the interface without crossing the interface with the HfOx: this hypothesis might not be
valid anymore when strong RESET biases are applied to the device, which allow to overcome
the potential barrier of oxygen interlayer exchange. The experimental data of SET/RESET
quasi-static operation reported in 2.1 involve maximum biases of ∼ 1 V . Even if there are no
data about the energy barriers for oxygen exchange at HfOx/TaOx interface, it is reasonable
to assume that those biases are not sufficiently high to induce the interlayer migration.

In summary, this compact model relies on the following assumptions:

• the conductive filament is unique, ohmic-like and it does not alter during switching
processes

• the point defects generated in the oxides by the electro-forming are only oxygen vacan-
cies
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• the electro-forming step is not taken into account

• oxygen vacancies introduce donor-like defects in the middle of the gap, far enough from
conduction band edge to avoid thermally excited electrons for band transport

• the transport is based purely on Trap-Assisted-Tunneling

• the resistive switching is the consequence of oxygen vacancies redistribution in a dome-
shaped sub-region of the CMO above the conductive filament

3.1.2 Equivalent circuit

The compact model presented in this section is based on the physical mechanisms illustrated
in 2.2. The equations are coupled with an equivalent electrical circuit whose components are
associated to different materials of the device stack. The model addressed in this dissertation
holds for analog filamentary ReRAM devices based on Metal-CMO-HfOx-Metal stack for
a generic CMO that satisfies the assumption listed in subsection 3.1.1. Furthermore, the
CMO must fulfill constrains regarding its electro-thermal properties in order to have CMO-
HfOx-based ReRAM devices with the same electrical properties. In particular, the electrical
conductivity of the CMO (σCMO) and the thermal conductivity (κCMO) must be roughly one
order of magnitude smaller than σcf and κcf [39].
A substoichiometric TaOx is chosen as representative CMO layer.
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Figure 3.5: Equivalent circuit for the electrical model of CMO/HfOx ReRAM with TaOx as
CMO.

The equivalent circuit model (Fig.3.5) refers to the fabricated TiN-TaOx-HfOx-TiN ReRAM
device (see appendix A) after the electro-forming step, when an ohmic-like conductive fila-
ment is already present in the HfOx layer. Moreover, the filament does not contribute to
resistive switching processes, i.e. its resistance is invariant: FEM simulations of the same
device [39, 40] showed that heat and electric field confinements occur in the TaOx dome on
top of the filament, so in the HfOx there is no electro-thermal driving force to displace V··

O
belonging to the oxygen deficient conductive filament. Accordingly, the filament is modeled
as a series resistor Rcf , as well as the electrodes 2Rel. The electrodes and the conductive
filament resistances are computed through:

R = l

A
· σ−1 (3.1)

Regarding the electrodes, the geometrical parameters lel and Ael are respectively the
thickness of the TiN and the area of the cell, while the TiN electrical conductivity σTiN is
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the same used in [39].
The conductive filament is approximated as cylindrical, so lcf coincides with the HfOx thick-
ness and the area is computed as Acf = π · r2

cf , where rcf is the radius of the cylindrical
conductive filament. rcf and σcf are taken from [39].
Rdome is the resistance representing the TaOx layer. The subscript "dome" specifies that the
resistance variation is computed taking into account the hypothesis of the model explained in
section 3.1.1: only the dome region undergoes the V··

O redistribution, varying its resistance.
The concentration of oxygen vacancies in the dome (NV··

O
), i.e. the number of V··

O per unit
volume, is used as state variable: its variation causes a change of conduction properties.
The following Ordinary Differential Equation (ODE) is used to compute the concentration
variation during time:

dNV··
O

dt
= −

3 1
qzVdome

4
· Iion (3.2)

q is the elementary charge, z is the defect charge number and Vdome is the volume of
the dome [39], used to normalize the rate of defects displacement. Since the V··

O are defects
associated to the displacement of a doubly-charged oxygen ion, the charge number is z = +2.
The ionic current Iion determines the change of NV··

O
and it is described as:

Iion = (Jion,drift − Jion,diff ) · Adome (3.3)

where the drift and diffusion components are computed according to the hopping model
derived in [50] for the homogeneous oxygen vacancies migration as a function of temperature
and electric field:

Jion,drift = zqNV··
O

aν0 · exp
3

−∆WA

kBT

4
· 2 sinh

3
zqEa

2kBT

4
(3.4)

Jion,diff = zq
dNV··

O

dy
a2ν0 · exp

3
−∆WA

kBT

4
· 2 cosh

3
zqEa

2kBT

4
(3.5)

The gradient induced by V··
O migration, responsible of a non-null diffusion component, is

approximated as the maximum value it could assume:

dNV··
O

dy
≈

NLRS
V··

O
− NHRS

V··
O

lCMO/2 (3.6)

The parameter Adome in equation 3.3 is the cross-sectional area of Vdome, perpendicular
to the conduction/migration direction (y in Fig.3.4a): this volume is assumed to be a semi-
sphere with base area slightly larger (20 %) than Acf (Adome = 1.44 ·Acf ), so its cross-section
is not unique. However, to keep the model as simple as possible and physically plausible at
the same time, the realistic geometry of the dome is not considered. Vdome in rectangular
shape approximation with Adome = 1.44 · Acf would have a thickness of 10.6 nm, roughly
half of the TaOx layer thickness.
In the equations 3.4 and 3.5, a is the hopping distance between adjacent oxygen sites, ν0 the
jump attempt frequency, ∆WA the zero-field activation energy barrier for V··

O migration, kB

the Boltzmann constant, E the electric field and T the average temperature in the TaOx.
The electric field generated by the positive (RESET) or negative (SET) applied bias to the
top electrode is expressed as:

E = VA

lCMO
(3.7)
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Equation 3.5 is based on considerations about the electrical conductivities of the involved
materials [39]:

σTiN = 5 · 105 Sm−1 > σcf = 4.2 · 104 Sm−1 > σTaOx ∼ 2 · 103 Sm−1

Accordingly, most of the applied electric potential is confined in the least conductive
material. i.e. the TaOx (lCMO = lTaOx here). This holds in general for all the CMOs that
satisfy the electro-thermal constraints in CMO/HfOx ReRAM [39, 40].

In order to describe the current flow in the device (Ie), the TAT process through midgap
defects states is modeled as a Mott-Gurney law [48] for electron hopping.

Ie = AdomeqNeaeνe · exp
3

−∆EA

kBT

4
· 2 sinh

3
qEae

2kBT

4
(3.8)

Here, ae is the average trap-to-trap distance in the defects-rich TaOx, νe the electron
attempt frequency referring to the hopping between trap states, ∆EA the zero-field hopping
energy barrier and Ne the density of electronic states. Considering that V··

O are treated as
donor-like defects with z = +2, each of them induces the presence of 2 trap states spectrally
located in the midgap. Some trap states can be occupied, so not all of them take part to the
conduction and Ne can be approximated as:

Ne ≈ β · z · NV··
O

(3.9)

where β is an arbitrary scaling factor (0 < β < 1) to take into account the unavailable
trap states for the conduction.
It is clear that the conduction mechanism represented by equation 3.8 is non-linear: the
relation between the electronic current Ie and the electric field E exhibits a sinh proportion-
ality, as the E lowers/increases the hopping energy barrier by ∓qEae/2 for forward/backward
trap-to-trap tunneling. Therefore the non-linear variation of Rdome caused by the change of
NV··

O
(so Ne too) is computed as:

Rdome = VA

Ie
− Rcf − 2Rel = VA

Ie
− Rseries (3.10)

Finally, the Newton’s cooling law is used to compute the time evolution of the average
temperature (T ) in the TaOx dome:

Cth · dT

dt
= Ie · VA −

3
T − T0

Rth

4
(3.11)

Cth and Rth are the thermal capacitance and thermal resistance of dome respectively,
whereas T0 is the room temperature taken as a reference when the device is not heated
up as a consequenc of Joule heating. Both Cth and Rth are computed taking into account
thermal and electrical properties of the dome. First of all, it is essential to estimate the
O/Ta fraction depending on σTaOx . In [65], it has been reported the electrical conductivity
measurement of TaOx with 0 < x < 2.36, while according to this study O/Ta ≈ 1.8 when
σTaOx ∼ 2 · 103 Sm−1. In addition, the computed stoichiometry is feasible considering the
Grazing Incidence X-Ray Diffraction (GIXRD) data [26] about the same fabricated device
modeled in this work. The extracted oxygen percentage is used to compute the amount of
TaOx in the dome expressed in moles through the Molar Mass (MM) of its chemicals:

MM = MMTaOx + x · MMO = (180.94788 + 1.8 · 15.999) g/mol = 209.75 g/mol

therefore the moles of TaOx in Vdome are:
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MTaOx = ρTaOx · Vdome

MM
= 9.3 g/cm3 · 3 · 10−23 m3

209.75 g/mol
= 1.33 · 10−18 mol

where ρTaOx is taken from the reference database [66]. The specific heat (cp) of TaOx
as a function of temperature was measured in [67, 68]. To reduce the computational cost
of the simulation, a unique value of cp is chosen and it is computed as the average in the
temperature range in which this device can work. Consequently, cp ∼ 160 J/(mol K) in
300 K < T < 2000 K, so the thermal capacitance is computed as:

Cth = cp · MTaOx = 2.13 · 10−16 J/K

The thermal resistance could be computed from the thermal conductivity (κ) of the
material subjected to heating:

Rth = l

A
· 1

κTaOx

However, the previous relation for Rth holds only when Adome is constant along the
accounted thickness and this is not valid for a semi-spherical dome. Rth is a delicate parameter
in the thermal model represented by equation 3.11 and any approximation might lead to
wrong results, so it is treated as a fitting parameter to match the quasi-static I-V sweep
experimental data reported in section 2.1. The extracted parameter of Rth is physically
plausible for the following reasons.

• R
′
th computed considering a (poor) approximation for the dome geometry as heated

volume:
R

′
th = ldome

Adome
· 1

κTaOx
= 3.75 · 106 K/W

• R
′′
th computed for a regular cross-section considering the whole layer of TaOx as heated

volume:
R

′′
th = lTaOx

Ael
· 1

κTaOx
= 4.25 · 105 K/W

where κTaOx ∼ 1 W/(m k) [69]. R
′
th and R

′′
th are two extreme cases and the value found

to match the experimental data falls within this range:

R
′
th < Rth = 6.3795 · 105 K/W < R

′′
th

Symbol Value Symbol Value Symbol Value
lel 20 nm Ael (200 nm)2 σTiN 5 · 105 Sm−1

lcf 3.5 nm rcf 25 nm σcf 4.2 · 104 Sm−1

lTaOx 17 nm κTaOx 1 W/(mk) σTaOx 2 · 103 Sm−1

κcf 23 W/(mK) Vdome 3 · 10−23 Adome 1.44 · πr2
cf

Rseries Rcf + 2Rel z +2 β 0.5
a 0.4 nm aLRS

e 0.75 nm aHRS
e 0.88 nm

ν0 4 · 1012 Hz νe 2 · 1013 Hz ∆ELRS
A 65 meV

∆EHRS
A 82 meV ∆W RESET

A 1.45 eV ∆W SET
A,0 * 0.84 eV

T0 293 K Cth 2.13 · 10−16 J/K Rth 6.38 K/W

Table 3.1: Simulation parameters.
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∆W SET
A,0 * (see table 3.1) has the pedix "0 " because is assumed to increase linearly with the

state variable NV··
O

within the range [∆W SET
A,0 ; ∆W RESET

A ]. The reason of the assumption
will be explained in the next section.
All the simulation parameters listed in Table 3.1 are physically reasonable. Geometrical pa-
rameters refer to the structure of the fabricated TiN-TaOx-HfOx-TiN ReRAM device (see
appendix A).

3.1.3 Algorithm implementation

Equations from 3.1 to 3.10 are all interlinked between each other, with vacancy concentration,
temperature, electric field and currents that appear in multiple expressions. Moreover the
system of equations is non-linear, including ODEs and variables as argument of functions.
For this reason the system is solved numerically by applying the iterative Newton-Raphson
method explained in section 2.3. Nevertheless, not all the equations must be included inside
the numerical solver, i.e. their solution can be found before or after it. The minimum size
of the numerically solved system is 4, including the equations 3.2, 3.3, 3.8 and 3.11. It
returns the solution [NV··

O
, Iion, Ie, T ] for each applied bias VA. Equation 3.1 is used only

to compute simulation parameters, such as Rcf , Rel, while equations 3.4, 3.5, 3.6, 3.9 are
implicitly included in the system as part of other equations. The electric field (equation 3.7)
and the resistance Rdome (equation 3.10) can be computed before and after the numerical
solver respectively.
The ODEs 3.2 and 3.11 are discretized in time such as to have them in a ”numerical-friendly”
form, according to the Crank-Nicolson rule for equation 3.2 and the Euler rule for equation
3.11:

dNV··
O

dt
= −

3 1
qzVdome

4
· Iion → N i

V··
O

= N i−1
V··

O
− ∆t ·

3 1
qzVdome

4
·

1
Ii

ion + Ii−1
ion

2
2

Cth · dT

dt
= Ie · VA −

3
T − T0

Rth

4
→ T i = T i−1 + ∆t

Cth
·
5
Ie · VA −

3
T i − T0

Rth
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where i is the index used to discriminate different biases.

To initiate the solver, the solution [NV··
O

, Iion, Ie, T ] needs an educated guess regarding
the starting resistance state, when no bias is applied: without bias there is no electric field,
so Iion and Ie are null and T = T0, while NV··

O
has a non-null value corresponding to the

static HRS or LRS (depending if the simulation starts with a SET or a RESET). Considering
the NV··

O
in static regime computed by Falcone et al. [39], a well-conditioned guess is NV··

O
∼

1026 m−3.
Then the solver can start the iterative computation updating the solution. The Jacobian
with all the combinations of derivatives is computed analytically, so the solver can run to
find the solution of the non-linear system for each applied bias V i

A. The detailed matrix form
of the non-linear system and its Jacobian is given in appendix C.
For each i-th bias the iterative Newton-Raphson method is applied until the convergence
condition based on an pre-established numerical tollerance is satisfied. If convergence is not
reached the solver decreases the discrete time step (∆t) and the non-converging solution
is discarded. The iterative procedure is stopped when a maximum number of iterations
without convergence is reached. After convergence, the solution is stored and a new bias
(V i+1

A ) simulation is run.
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Depending on the type of V (t) characteristic to be simulated, the condition to conclude the
algorithm changes.

• For quasi-static I-V sweep simulation, the algorithm is ”voltage-controlled”, since it
runs for SET and RESET and it is stopped when V i

A = VStop (see Fig.3.6). The
algorithm corresponds to the simulation of a triangular voltage sweep with a constant
Sweep Rate (SR).

Initial guess solution

Numerical solver 
based on Newton-
Raphson method

Yes No Discard solution.
Decrease the time 

step (∆")

#$%&' = #$% ± *+ , Δ"

|#$%&'| >	|#1234| ?
Yes

No

End

Numerical 
convergence

Store solution.
Increase the time 

step (∆t)

Figure 3.6: Flowchart for quasi-static I-V sweep simulation.

• For pulse response simulation, the algorithm is ”time-controlled”, as it is stopped when
the defined duration of the pulse sequence is reached (see Fig.3.7).
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Figure 3.7: Flowchart for pulse response simulation.

The algorithm explained in this section is taken from [70].

3.2 Compact model validation
In this section, the simulation results are discussed and linked to the physics of resistive
switching mechanisms. To check that the model is realistic and accurate, its simulation
output is also compared with the experimental data about electrical characterizations both
in the quasi-static and AC domain.

3.2.1 Quasi-static voltage sweep model

According to recent studies on physical compact modeling of VCM devices [70], the diffusion
component Jion,diff appearing in equation 3.5 allows to model the finite retention of the
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device under null bias condition. Moreover, Noman et al. [50] showed that a drift-only model
can not explain the retention in memristive devices involving ionic motion. However, in this
work the retention/endurance simulations are not addressed, so to reduce the computational
cost of the simulation, the drift-diffusion equation 3.3 is simplified as a drift-only one: the
Noman et al. model [50] reduces to the Mott-Gurney law for ion hopping [48]:

Iion ≈ Jion,drift · Adome

Binary state modeling

The algorithm depicted in Fig.3.6 is applied to emulate the triangular SET/RESET sequence
used to obtain the quasi-static I-V sweep experimental data. The sweep parameters used in
the model are the same as in the experiment, i.e. V SET

Stop = −0.9 V , V RESET
Stop = +1.1 V and

SR = 0.1 V s−1, resulting in a sweep lasting 40 s as shown in Fig.3.8.
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Figure 3.8: Voltage-time characteristic employed to simulate the I-V sweep.

The sign of the electrostatic voltage of the triangular sweep refers to the top electrode of
the device.
For a first validation of the model, the simulated I-V characteristic is superimposed to 10
cycles of experimental sweep data: as shown in Fig.3.9a and 3.9b (reporting the same plot in
different scales), the data overlap with high accuracy.
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Figure 3.9: Measured and simulated clockwise I-V characteristics of TaOx/HfOx-based
ReRAM device in linear (a) and logarithmic (b) scales.

The resulting I-V plots confirm that the hopping transport is appropriate to describe the
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conduction in TaOx/HfOx-based ReRAM device both during the static phase and during the
resistive switching processes. This is in agreement with the study on the TaOx stoichiometry
linked to the dominating conduction mechanism in the defective material: Heisig et al. [71]
demonstrated that the resistive switching in TaOx can be attributed to a modulation of the
stoichiometry (x) and hopping transport dominates when the O/Ta ratio (x) is the range
{0.75; 1.9}. This aligns with the computed stoichiometry in subsection 3.1.2. In this regime
the resistivity is reported to be exponentially increasing with x. As illustrated in Fig3.10a,
the resistance is not varying exponentially during the SET/RESET, suggesting that the
modulation of stoichiometry in this device is only partial.
Fig.3.10b (blue curve) depicts the time evolution of NV··

O
, whose variation is assumed to

occur in Vdome. Also the NV··
O

(t) plot confirms that the modulation is partial because the
ratio NLRS

V··
O

/NHRS
V··

O
is less than 2, as demonstrated by Falcone et al. [39]. The gradual

concentration change during the SET starts at ∼ 7 s, which coincides with VA ∼ −0.7 V
according to the sweep rate used. During the RESET phase, when the dome is depleted
of defects, the concentration change starts at ∼ 26 s, i.e. at VA ∼ +0.8V . Thus, the V··

O
redistribution occurs only during the resistive switching, even if the resistance is not constant
outside the transition phases. The reason is that the hopping conduction modeled with
equation 3.8 is non-linear by definition.
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Figure 3.10: (a) R-V characteristic. (b) Time evolution of oxygen vacancy concentration and
ionic migration energy barrier. (c) Time evolution of the average temperature in the dome.
(d) Ionic current curing the SET/RESET sweep.
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In [39] the vacancies migration energy barriers to initiate the switching differ between
SET and RESET, complying with the following relation:

∆W SET
A < ∆W RESET

A

Hence in this model, ∆WA varies over the time span of the simulation, as shown in
Fig.3.10b (orange curve). Based on the interpretation of V··

O distribution (see Fig.3.3) in
LRS/HRS, at the SET onset (t ∼ 7 s) the defects concentration gradient between the
TaOx/HfOx interface and the partially depleted dome lowers the migration activation en-
ergy. While defects are relocated in the dome (restoring the LRS) ∆WA increases up to
∆W RESET

A because the migration is not thermodynamically favorable anymore when the
gradient decreases. For this reason ∆WA is assumed to increase linearly with NV··

O
during

SET and stays constant during the RESET. This assumption aligns with the study of Woo
et al. [72], where the ion migration responsible of resistive switching is affected by the envi-
ronment, i.e. by the oxygen/metal concentration ratio.
In Fig.3.10c, showing the average temperature in the dome over the sweep time, the opposite
T (t) trend is highlighted for SET/RESET switching phases. This is explained in terms of
Joule heating feedback.

• Throughout the SET phase, the resistance decreases from HRS to LRS, leading to
an increase of the electronic current flowing in the device. Due to Joule heating, the
temperature increases exponentially because of the positive feedback between T and Ie:
the SET is characterized by thermal runaway phenomena [29].

• During the RESET phase, T and Ie are in negative feedback because the increase of
the resistance (from LRS to HRS) counteracts the current flow and the Joule heating.
For this reason the temperature stays constant in the switching phase.

The simulated temperatures at the SET/RESET onset are respectively T = 370 K and
T = 560 K. These values are consistent with the temperature extracted in the prior study on
electro-thermal FEM simulations for the same device [39], corroborating the considerations
on the thermal model used in this work.
The drift ionic current sweep is plotted in Fig.3.10d, whereas Fig.3.11a/b show the drift-
diffusion components during the SET/RESET switching time intervals. The diffusion ionic
current is computed at the end of the simulation to check that it is negligible with respect to
the drift one.

7 8 9 10 11

Time [s]

10!20

10!18

10!16

Io
n
ic

cu
rr

en
t
[A

]

SET

Iion;drift

Iion;diff

(a)

26 27 28 29 30 31 32

Time [s]

10!20

10!18

10!16

Io
n
ic

cu
rr

en
t
[A

]

RESET

Iion;drift

Iion;diff

(b)

Figure 3.11: Ionic current drift-diffusion components during SET (a) and RESET (b) switch-
ing phases.
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Despite Iion,diff is overestimated with equation 3.6 (the gradient is set at its maximum
value), the drift component is 2 orders of magnitude larger. Moreover the modulation of
NV··

O
is limited in this device. Therefore Iion,diff can be neglected in single cycle I-V sweep

simulations.

Although it is hard to decouple uniquely the contribution of each interlinked variables of
the compact model, it is feasible to study the impact of some independent parameters by
running different simulations changing their value. The impact of the thermal capacitance
Cth and thermal resistance Rth is investigated in the following.
Since the I-V sweep is a quasi-static simulation and the discrete time intervals between 2
consecutive bias (V i

A and V i+1
A in Fig.3.6) are of the order of ∆t ∼ 0.1 ms, the thermal time

constant must be evaluated in order to understand why Cth has no impact on this simulation.

τth = Cth · Rth = 2.13 · 10−16 JK−1 · 6.3795 · 105 KW −1 ≈ 136 ps

A small τth value means that the switching volume can be heated up/cooled down very
quickly, in this case approximately in less than 1 ns: this means that when the simulated
time interval ∆t is much larger than τth, a change of Cth does not influence the simulation
and equation 3.11 could be simplified in its steady-state form:

Cth · dT

dt
= Ie · VA −

3
T − T0

Rth

4
≈ 0 → T = T0 + Rth · VA · Ie
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Figure 3.12: Impact of thermal model parameters on the I-V characteristic: (a) Cth and (b)
Rth.

As shown in Fig.3.12a, thermal capacitances 2 orders of magnitude larger or smaller re-
turn overlapped I-V curves (Cth = 2 · {10−14; 10−16; 10−18} JK−1). Only a very large Cth

can impact on the simulation: with Cth = 5 · 10−7 the thermal time constant would be com-
parable to the simulated time intervals. However this big value is physically unreasonable,
as the mass of the heated volume would be bigger than the device.
Furthermore, the insignificant impact of Cth confirms the hypothesis made in subsection 3.1.2:
”to reduce the computational cost of the simulation, a unique value of cp is chosen and it
is computed as the average in the temperature range in which this device can work”. Even
if the temperature dependence of the specific heat had been included, the results would be
concealed.
Conversely, Rth has a strong influence on the simulation, even if slightly changed: Rth indi-
cates how much temperature difference is generated per unit electric power. The more is the
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temperature increase (larger Rth), the wider is the resistance window (see Fig.3.12b) due to
the fact that ion migration is enhanced at higher temperatures [35].

Multi-state modeling

As already mentioned in chapter 1, CMO/HfOx analog ReRAM can be programmed in IRSs
and there are two approaches to access them.

• Train of identical square voltage pulses can be sent to device to reproduce the potenti-
ation and depression characteristic (see Fig.2.10) [41].

• Multiple quasi-static I-V sweeps with incremental current compliance or incremental
stop voltage |VStop| allow to access IRSs within the HRS/LRS window [39].

The algorithm illustrated in Fig.3.6 is repeated for multiple SET and multiple RESET to
access IRSs by tuning the V SET

Stop after each sweep. The simulated programming scheme em-
ployed to reproduce the I-V characteristic of 8 IRSs is shown in Fig.3.13. V SET

Stop is decreased
by 225 mV and V RESET

Stop is increased by 288 mV between consecutive SET/RESET sweeps.
The same sweep rate used in binary state simulation is choosen to reproduce Fig.3.13, i.e.
SR = 0.1 V s−1.
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Figure 3.13: Simulated programming scheme to access IRSs with quasi-static multiple sweeps.

-0.9 -0.5 0 0.5 1.1

Voltage [V]

10!6

10!5

10!4

10!3

E
le
ct
ro
n
ic

cu
rr
en
t
[A
]

jV SET
Stop j

jV RESET
Stop j

1

2

3

4

5

6

7

8

M
id
d
le

st
at
e
in
d
ex

(a)

0 50 100 150 200 250

Time [s]

2

2.5

3

3.5

4

O
x
.
va

ca
n
ci
es

co
n
ce

n
tr

a
ti
o
n

[m
!

3
] #1026

0

2

4

6

8

10

R
es

is
ta

n
ce

[k
+
]

jV RESET
Stop jjV SET

Stop j

NV ""
O

R
R(jVAj = 0:2V )

(b)

Figure 3.14: (a) Simulated clockwise I-V characteristic of TaOx/HfOx-based ReRAM device
for 8 IRSs. (b) Evolution of oxygen vacancies concentration and total resistance of the device
over the time interval of multiple sweeps.
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The quasi-static I-V sweep extracted from the multi-state simulation (see Fig.3.14a)
clearly shows the progressive change of the device conductance whenever a new sweep with
larger |VStop| is run.
Additionally, the superimposition of oxygen vacancies modulation (blue curve) and the total
resistance of the device (green curve) in Fig.3.14b reflect the theoretical framework behind
the model: different oxygen-deficient phases in the TaOx alter the conduction properties
of the device. A low bias (when no switching processes occur) is used to evaluate what
happened after each single sweep. White stars in Fig.3.14b represent the total resistance
when |VA| = 0.2 V during each backward phase of the sweeps (after switching process). The
monotonic decrease (SET) or increase (RESET) of the resistance at low bias demonstrate
the analog properties of the device and the validity of the physical interpretation of IRSs, in
fact R(|VA| = 0.2 V ) are aligned with distinct levels of NV··

O
.
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TaOx
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TiN
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Figure 3.15: Oxygen vacancies spatial arrangement interpretation in TaOx/HfOx ReRAM in
LRS/IRS/HRS.

3.2.2 Pulse response model

To achieve real in-memory and analog neuromorphic computational tasks, ReRAM devices
are programmed in the desired conductance state with multiple square pulses [44, 73, 74, 75].
It has been demonstrated that ultra-fast square pulses up to ∼ 102 ps are suitable to induce
resistive switching in TaOx-based ReRAM [46, 76, 77], rather than using long triangular
sweeps. For these reasons, the development of a compact model turned out to be crucial to
accomplish IC simulations with CMO/HfOx ReRAM techonology.
Here the compact model for TaOx/HfOx ReRAM device is extended to pulse response and
partially validated with experimental data of single pulse experiment.
The algorithm used to simulate a square voltage pulse as input of the simulation is illustrated
in Fig.3.7.

Single pulse

In order to reproduce a simulation of the single pulse experiment reported in subsection
2.1.2, a realistic pulse shape is designed with discrete rise time of ∆trise = 20 ns to reach
the voltage amplitude of square pulses. The pulse sequence (Fig.3.16a) is the same as in the
experiment: pre- and post-pulse READ allow to check that the resistance switches between
the desired HRS/LRS, while a long (∼ µs) single square pulse is employed to program the
device conductance state. The chosen amplitude of READ pulses is V READ

pulse = +0.2 V , such
small as to ensure no switching during the READ procedures. Electrical RC transients are
not modeled in this simulation.
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Figure 3.16: (a) Simulated pulse sequence READ-Programming SET pulse-READ. (b) I(t)
evolution as a response to the SET pulse sequence. (c) Resistance plotted during the time
intervals of pre- and post-pulse READ. (d) Temperature evolution during the time interval
of the SET pulse sequence.

Fig.3.16b shows the typical SET I(t) characteristic extracted as response to single pulse
switching: an increase of the current in absolute terms shows that negative programming
pulses Vpulse < 0 allow to SET the device, as also demonstrated by the resistance drop from
pre- to post-pulse READ times (Fig.3.16c). Thermal runaway phenomena, typical of SET
transitions, lead to persistent T increase reaching a maximum temperature T SET

max > 1000 K,
as shown in Fig.3.16d. T SET

max in single pulse simulation are much larger if compared with
the quasi-static simulation temperatures: the reason rests on the applied voltages involved in
pulse mode, which are typically larger than quasi-static ones, enhancing electronic transport
and Joule heating.

From Fig.3.17a to Fig.3.17d, the same simulation is repeated for the the RESET, i.e. a
programming pulse with Vpulse > 0. The temperature plot in Fig.3.17d, shows that T RESET

max is
reached as soon as the V RESET

pulse is applied: as already discussed for the quasi-static simulation
results, the temperature transitions are instantaneous because the thermal time constant
τth = Cth · Rth is negligible with respect to the time intervals used for the sampling of the
pulse sequence.
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Figure 3.17: (a) Simulated pulse sequence READ-Programming RESET pulse-READ. (b)
I(t) evolution as a response to the RESET pulse sequence. (c) Resistance plotted during
the time intervals of pre- and post-pulse READ. (d) Temperature evolution during the time
interval of the RESET pulse sequence.
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Figure 3.18: (a) Temperature evolution during the time interval of an ultra-short RESET
pulse. (b) Simulated ultra-short pulse sequence READ-Programming RESET pulse-READ.
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According to these insights, in an ultra-short pulse simulation the temperature transients
to reach T RESET

max should be visible: in agreement with these expectations, Fig.3.18a shows
that in a simulation with raise time and pulse duration comparable with the thermal time
constant, the temperature increase is not instantaneous. The pulse sequence in Fig.3.18b has
the following features ∆tREAD

pulse = ∆tRESET
pulse = 100 ps (shorter than τth = 136 ps).

In Fig3.16c the device is SET with a narrower resistance window with respect to the initial
and final states (8 kΩ → 2 kΩ) chosen to characterize the tSET in section 2.1. Since the goal
is to develop an experimentally validated compact model for the device pulse response, the
same pulse sequences used in the electrical characterizations are employed in the simulation.
The conditions to be verified concern the resistance during the pre- and post-pulse READ:

• 8 kΩ ± 100 Ω → 2 kΩ ± 100 Ω for the SET (see Fig.3.19a)

• 2 kΩ ± 100 Ω → 8 kΩ ± 100 Ω for the RESET (see Fig.3.19b)
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Figure 3.19: SET (a) and RESET (b) conditions to consider the pulse features as data for
the Voltage-Time Trade-Off plot.

Plotting the experimental tSET against the pulse amplitude V SET
pulse reproduces the SET

VTTO plot (Fig.3.20). The VTTO plot demonstrates the non-linear and exponential re-
lation between the switching time and the amplitude of the programming/writing pulse in
TaOx/HfOx ReRAM devices. This is consistent with findings reported in literature for other
VCM devices [46, 70]. Regarding the VTTO plot in Fig.3.20, the measurement limit is de-
termined by the RC charging time affecting the measurements, as detailed in section 2.1.2.

The experimental VTTO plot is used to validate the compact model for the device pulse
response. A key finding of this study is that SET VTTO plots regarding simulated and ex-
perimental data overlap with high accuracy, as demonstrated with Fig.3.21a and Fig.3.21b.
The simulation confirms the exponential trend (linear in logarithmic scale) of the time re-
quired to SET the device (tSET ) from 8 kΩ to 2 kΩ as a function of the pulse amplitude
(VSET ). The simulated tSET values are extracted using a trial and error approach, repeating
the simulation until the resistance window condition is met while keeping VSET fixed.
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Figure 3.20: Experimental Voltage-Time Trade-Off plot showing the exponential tSET (V SET
pulse )

relation in logarithmic scale.
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Figure 3.21: SET Voltage-Time Trade-Off plots with simulated and experimental data in
logarithmic (a) and linear (b) scale.

Despite the experimental data are available only for the SET VTTO plot, the RESET one
can be built with simulation data only, as the analysis conducted so far revealed promising
and predictive results. Furthermore, simulation data of SET/RESET VTTO plots (Fig.3.22a
and Fig.3.22b respectively) are fitted with an exponential law to extract the analytic relations
tSET = f(VSET ) and tRESET = f(VRESET ) to perform 8 kΩ → 2 kΩ and viceversa.

The fitting curve used in Fig.3.22 is in the form

tpulse = t0 · exp (γ · Vpulse)

leading to the following relations:

t
(8→2)kΩ
SET = 104 · exp (12.4 · VSET ) (3.12)

t
(2→8)kΩ
RESET = 2.48 · 104 · exp (−12.5 · VRESET ) (3.13)

However, it is not possible to state that the analytic relations 3.12 and 3.13 apply in
general for SET/RESET operations with a single square pulse. They might be valid only
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within the range of the considered pulse amplitudes and for the specific transitions involving
8 kΩ and 2 kΩ as HRS and LRS, respectively.
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Figure 3.22: Simulated SET (a) and RESET (b) Voltage-Time Trade-Off plot data fitted
with exponential laws to extract the analytic tpulse(Vpulse) relation.

As expected, the RESET time is less dependent on the amplitude of the pulse comparing
it with the SET one: SET times characterized with single pulse switching are known to be
highly non-linear in VCM [70]. Thermal runaway phenomena caused by the positive feedback
between temperature and current makes the SET usually non-linear, whereas the RESET is
not affected by this problem.
Even if the device studied in this work exhibits remarkable improvements concerning the SET
non-linearity, the VTTO plots (Fig.3.22a and Fig.3.22b) still show that SET time (tSET )
follows an exponential dependence on VSET , which is more pronounced than in the RESET
case.

Pulse stream

The memristive compact model describing the response of TaOx/HfOx ReRAM operating in
pulse mode can be used to show the noteworthy analog features of the device demonstrated
in [41].
Bidirectional accumulating response characterizations depicted in Fig.2.10b reveal the pres-
ence of many IRSs, that, following the hypothesis of this model, are attributed to a partial
modulation of defects concentration in the TaOx dome (see Fig.3.15).
In subsection 3.2.1 it has been demonstrated that the model enables the description of IRSs
as gradual modulation of the state variable NV··

O
. Furthermore, experimental validation of

the single-pulse response suggests that it can be extended to a pulse stream employing the
same algorithm repeated for n-pulses. Therefore a train of 20 square programming (10 up and
10 down) and 20 READ pulses is designed (Fig.3.23) to check the accumulative conductance
response.
The pulse stream is applied to the device starting from a 125µS (8 kΩ) state. As shown in
Fig.3.23b, the current flowing in the device gradually increases over the time interval cor-
responding to negative (VA < 0) pulses (potentiation), while positive (VA) pulses causes a
current decrease (depression). Fig.3.23c and Fig.3.23d confirm that the model is able to re-
produce the analog bidirectional behavior of the device undergoing a train of up and down
pulses.
Since the simulation of a potentiation/depression characteristic can be computationally ex-
pensive, the goal of the 10 up - 10 down test was to check that the device model works
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properly.
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Figure 3.23: (a) Simulated programming scheme with 10 up-10 down pulses and 20 READ
pulses. (b) I(t) characteristic during the pulse stream time span. (c) Accumulative oxygen
vacancy modulation. (d) Bidirectional potentiation/depression characteristic.

The second test consists in using the same number/width/duration of the pulses of the
experimental potentiation/depression plot as input for the simulation to build the same pulse
stream (see Fig.2.10a). Consequently, the simulated accumulative response of 200 up - 200
down pulses with the following features is compared with the experimental data:

• ∆traise = 50 ns

• ∆tREAD
pulse = 100 ns

• ∆tup
pulse = ∆tup

pulse = 200 ns

• VREAD = +0.2 V

• V up
pulse = +1.75 V

• V down
pulse = −1.25 V

• nup
pulse = ndown

pulse = 200
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Figure 3.24: (a) 10 cycles of experimental potentiation/depression characteristic. (b) Com-
parison between simulated and experimental accumulative response using the same program-
ming pulse scheme.

Contrary to previous findings, the pulse stream model is not matching perfectly the exper-
imental results: in Fig.3.24b it is evident that the simulated conductance window is narrower
than the experimental one. As shown in Fig.3.25, the accumulative response simulation
almost overlaps the experimental one if multiplied by a factor 1.7x.

0 100 200 300 400

Pulse number

100

200

300

400

500

600

700

C
on
d
u
ct
a
n
ce
[7

S
]

Simulation - 1.7x factor
Experimental data

Figure 3.25: Simulated accumulative response corrected empirically to match the experimen-
tal conductance window.

It is hard to allocate this problem to physical explanations, since by definition, compact
models might miss complex dynamic mechanisms that are not included to keep the compu-
tational cost of the simulation as low as possible and accurate at the same time. However,
the problem of narrow conductance window could be merely solved with a re-calibration of
model parameters, monitoring their compliance within physical limits.
Once refined, these outcomes might have significant implications for future research in the de-
velopment of circuits based on analog CMOx/HfOx ReRAM device, enabling the simulation
of computational tasks based on the ReRAM technology addressed in this work.
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4 Conclusions

In this dissertation, a physics-based compact model of analog filamentary Conductive-Metal-
Oxide/HfOx ReRAM device is proposed. A substoichiometric TaOx is chosen as case study of
Conductive-Metal-Oxide. The goal of this compact model was to bridge the gap between the
analog ReRAM IBM technology and its simulation for practical applications. Various aspects
of the device have been investigated, ranging from the the underlying physical mechanisms
to the electrical characterizations in both the quasi-static and AC domain. In particular,
the understanding of the device physics turned out to be essential for the development of
a realistic compact model able to catch the experimental data, laying the groundwork to
predictive simulations involving this technology.

4.1 Key findings

Physical Mechanisms Oxygen vacancies migration is the key mechanisms used to describe
the alteration of the conduction properties in the active layer of the device. The migration is
modeled through hopping laws taking into account field- and temperature-driven processes.
The resistance varies because of the different concentrations of electron trap states associated
to defects, which limits the current flow. Conduction mechanisms are also coupled with a
dynamic thermal model able to cover the temperature transients in the time domain. Com-
bining these processes, the model is well suited to describe the SET and RESET dynamics.
The intrinsically gradual RESET and the self-accelerated SET transitions are captured by
the simulations and explained in terms of thermal runaway phenomena.

Device properties The physics-based framework allows the model to cover several aspects
of the device behavior. In particular, the analog features of the device and the non-linearity
of the switching mechanisms, are well reproduced by the simulations. Voltage pulse response
simulations are employed to demonstrate the non-linear nature of the SET kinetics and
the differences with the RESET one. The single pulse model is extended to simulate the
switching behavior of the device when stimulated by voltage pulse stream. Although the
high computational cost of the simulation, the analog bidirectional accumulative response of
the conductance can be reproduced.

Model validation and accuracy Electrical characterization experimental data are used
as a reference to validate the model in quasi-static and AC domain. The model covers with
high accuracy the quasi-static single cycle I-V sweep data. In addition, the experimentally
observed non-linear SET kinetics, derived from single pulse response characterizations, is
precisely captured by the model. Additional corrections are needed to achieve the same
accuracy also in accumulative response simulations.
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Model classification This compact model falls in the branch of fully physics based sim-
ulations: all the parameters used in the simulation are checked to be physically reasonable
and aligned with materials first principle-physics studies. Of particular significance is the
coherence of the parameters used for simulations in different time domains: material/geom-
etry/conduction parameters were never altered between quasi-static and transient models,
while this could be required for other math-based/empirical compact models.

4.2 Future perspectives

Taken together, the findings suggest that the model can be employed to address circuit simula-
tions for real applications. Despite the promising results represent a significant advancement
to simulate TaOx/HfOx-based ReRAM, the model can be further improved.

Failure mechanisms modeling ReRAM devices suffer switching failure events that have
a significant impact on the long-term performances of the device, such as data retention and
endurance. Future research might be focused on understanding the physical mechanisms that
lead the device to fail during the resistive switching operations.
Active materials where switching processes occur, might struggle to withstand mechani-
cal/thermal stress caused by ion migration over either repeated cycling or pulsed switching.
Additionally, high electric fields within the device could be critical, causing ion interdiffusion
or dielectric breakdown in the worst case. Also excessive temperatures (as a result of too
high current densities) damage the active materials, altering its switching properties. All
these effects contribute to gradual or instantaneous degradation of the device performances,
potentially leading to permanent failure.
Modeling failure mechanisms not only strengthens the understanding of the physical pro-
cesses involved in the device but also provides insights and strategies to mitigate limitations
for long-term reliability.

Noise model and stochasticity Delving the discussion into the potential improvements
of this work, a noise model is still missing. Noise and stochasiticity are inherent characteristics
of ReRAMs in general. Especially for the ReRAM technology investigated in this work, where
conduction is trap-assisted, random fluctuation due to trapping/detrapping of carriers be-
comes particularly pertinent: as a result, stochastic variations of resistance level and current
flow impact on reading/writing operations. This is usually referred to as Random Telegraph
Noise (RTN). A variability-aware compact model including RTN effects can be developed
taking as a reference statistically exhaustive reading/writing noise characterizations for the
investigated device. It would enable realistic simulation of the ReRAM operation, predicting
its behavior in integrated systems simulations despite non-ideal and random effects.

Modeling the 1T1R cell Analog CMO/HfOx ReRAM devices are integrated in the BEOL
of CMOS-based IC systems, thus a comprehensive compact model would include the impact
of electrical elements in series with the resistive switching device. As the CMOS controlling
element introduces parasitic resistances, voltage dividers between external resistors and the
switching device have an impact on the electric field that contributes to switching phenomena
in the ReRAM cell: this could potentially alter the switching window and the resistance lev-
els. Moreover CMOS-integrated ReRAMs have to deal with parasitic capacitances, entailing
additional charging transients that could influence the switching dynamics.
Incorporating the transistor parasitics in the model allows to describe the full cell (1T1R) con-
figuration, splitting the external contributions within the simulations of the resistive switching
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cell.

In conclusion, further research could be focused on the optimizations of the model, advanc-
ing towards realistic simulations of analog CMO/HfOx ReRAM IBM technology in cutting-
edge memory architectures.
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A Appendix - Fabrication process
of HfOx/TaOx ReRAM device

As introduced in section 1.3, the term "bilayer" means that the oxides dividing the TE and BE
are 2 stacked on top of the other. In this case, the oxides bilayer is composed of a substoichio-
metric Hafnium Oxide (HfOx < 2) below (acting as dielectric layer) and a substoichiometric
Tantalum Oxide (TaOx) on top, whereas the metal electrodes are made of Titanium Nitride
(TiN). TaOx is a TMO deposited in such a way as to be more conductive than an usual
insulator and the requirements about its electrical conductivity are discussed in chapter 3.

The ReRAM device is called "vertical" for two reasons:

• layers are stacked on top of each other

• the top metal surface and the bottom substrate refer respectively to the electrical
GND/Top Terminal (TT).

Furthermore, it is worth to mention that all the materials and technological processes in-
volved in the fabrication of this device are CMOS and BEOL compatible.

The fabrication process flow starts with a Silicon (Si) substrate heavily doped with Ar-
senic (n++), such as to have a conductive bottom contact. In order to ensure a good quality
of the bottom electrical terminal, the native oxide on top of n++-Si substrate must be re-
moved, since the TiN BE is deposited directly on top of the Si. Therefore a water solution of
ammonium fluoride (NH4F) and hydrofluoric acid (HF), also known as Buffered Oxide Etch
(BOE), is used to remove the native silicon dioxide (SiOx) by substrate immersion. Then a
20 nm thick TiN layer and a 3.5 nm thick HfOx layer are deposited by Plasma-Enhanced
Atomic Layer Deposition (PEALD).
To deposit the TiN, the Tetrakis(DiMethylAmido)Titanium (TDMAT) is chosen as metal
precursor, while the second reactant is a nitrogen plasma.
Concerning the HfOx, Tetrakis(EthylMethylAmino)Hafnium and oxygen plasma are the metal
precursor and the reactant respectively. The deposition step for HfOx follows the TiN one
without braking the vacuum of the PEALD chamber, in order to prevent the oxidation of
the TiN.
The nominal 20 nm of substoichiometric TaOx are deposited by DC reactive magnetron sput-
tering, where Argon (Ar) ions coming from the Ar flow in the chamber are accelerated to hit
the Ta target, removing Ta (sputtered) atoms from the surface. Ta ions interact with the
oxygen flow and by controlling the pressure of the chamber, TaOx is deposited with different
stoichiometries. However, after the TaOx deposition step, multiple Ta-O substoichiometries
co-exist, rather than a unique substoichiometric phase [26].
20 nm of TiN and 50 nm of tungsten (W) are deposited sequentially by RF magnetron sput-
tering (TiN target) and DC magnetron sputtering (W target) respectively. Fig.A.1a shows
the stack deposited up to this step.
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Figure A.1: Fabrication process flow of TiN-TaOx-HfOx-TiN ReRAM device in cross-section
view: (a) Deposition of ReRAM material stack on a Si substrate. (b) Photoresist lithography
patterning to define the cell area. (c) Plasma etching. (d) Si3N4 passivation. (e) Photoresist
lithography patterning to define the via area. (f) Deposition of W top electrode. Materials
geometry is not in scale.

Spinning and laser developing steps of positive Photoresist (PR) follow, such as to define
the (200 nm × 200 nm) cell area, called "mesa" (Fig.A.1b). The area outside the defined
mesa is etched through Inductively Coupled Plasma Reactive-Ion Etching (ICP RIE) with
a mixture of trifluoromethane (CHF3), nitrogen (N2) and sulfur hexafluoride (SF6). The
etching process is HfOx-selective, hence only W, TiN and TaOx are etched (Fig.A.1c).
After PR stripping, a Si3N4 passivation layer (cladding) is deposited by Plasma-Enhanced
Chemical Vapor Deposition (PECVD), introducing in the PECVD chamber N2 and silane
(SiH4) plasma (Fig.A.1d). The absence of oxygen species in the cladding material prevents
further oxidation of the TaOx layer.
Then a positive PR layer is spun and developed by direct laser writing in order to define the
via for the TE access (Fig.A.1e): RIE with a O2/CHF3 gas is employed to etch the Si3N4
cladding in the via area. Finally, the PR is dissolved and the W TE is deposited by DC mag-
netron sputtering, resulting in the device whose schematic cross-section is depicted in FigA.1f.

Fig.A.2a and Fig.A.2b show the Scanning Electron Microscope (SEM) and Bright field
Scanning Transmission Electron Microscope (STEM) images for the fabricated ReRAM de-
vice cross-section. The SEM image demonstrates that the expected mesa dimension is effec-
tively 200 nm, while the STEM image reveals the presence of different materials (different
contrast gradations).
Moreover, the STEM image shows that the TaOx layer is more oxidized at the interface with
the HfOx, so in practice, it has 2 phases: ∼ 3 nm of amorphous (1-TaOx in the image) layer,
which is more oxidized than the other ∼ 17 nm (2-TaOx in the image).
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The Tiki-Taka algorithm relies on two essential requirements.
First, the device must show analogue resistive switching in both
directions, so that a symmetry point exists within its G window.
Second, the G updates must be driven by a stream of pulses of
identical amplitude and duration. Whenever two pulses of
opposite polarity coincide at the terminals of one device, they
yield a sufficiently high voltage, generating a G update.9 With
such an implementation of the learning rule, all of the array
elements are updated in parallel, accelerating the execution of
the training task.
In previous works, the weight update was performed row by

row14 or device by device.15 In our recent work,16 NN training
with parallel crossbar updates was demonstrated. We
implemented artificial synapses using resistive random access
memory (RRAM) devices. Compared with other memristor
technologies, such as Ferroic tunnel junctions (FTJs), RRAM
devices offer two main advantages. First, they exhibit analogue
long-term potentiation and depression characteristics using
identical input voltage pulses, while FTJ structures require
incremental pulse amplitudes.17 Second, the RRAM memory
cell is highly scalable because of the filamentary nature of its
resistive switching mechanism. Compared to the electro-
chemical-RAM (ECRAM) structures,18,19 the filamentary
RRAM devices show faster programming and require voltage
pulses of lower amplitude. Compared to volatile charge-based
synaptic structures,20 the filamentary RRAM devices enable
denser array implementations. Moreover, the programmed
analogue conductance states show longer retention times.
Hence, RRAM devices are worthwhile investigating for the
training of complex data sets, requiring long learning times.
In our recent work,16 we also showed that the Tiki-Taka

algorithm improves the training accuracy compared to the SGD

method. We could perform the training of a fully connected
network (FCN) on a reduced Modified National Institute of
Standards and Technology (MNIST) data set, but devices with
enhanced properties are required for scaling to larger networks.
In a recent collaboration,21 we showed that the property number
of states is improved upon applying short programming pulses
(down to 300 ps).
Compared to such previous literature, in this work we present

devices combining improvements in every important property
for the Tiki-Taka algorithm, such as a higher number of states16

and a more centered symmetry point.21 Moreover, we show a
stable symmetry point over cycling, and we demonstrate the
robustness of the algorithm against device-to-device variability.
The favorable device properties are conserved even after
millions of programming pulses.
To achieve these excellent results, we further optimized the

material stack presented in our previous study,22 based on the
TiN/conductive-TaOx/HfO2/TiN structure. We engineered
the HfOx deposition conditions to reduce the operational
voltages and currents, facilitating a future integration of
advanced CMOS technology. Moreover, the process flow was
modified to scale down the unit cell area, toward a high density
of memory integration in the Back-End-Of-Line (BEOL). We
modeled the device response and performed NN training
simulations using an optimized version of the Tiki-Taka
algorithm (TTv223,24).
A structural representation of the RRAM devices discussed in

this work is depicted in Figure 1(a). The device active layers are
the conductive-TaOx and the HfOx, providing the analogue
bidirectional switching properties discussed in our previous
work.22 Other details on the material properties are reported in
the Supporting Information Methods section.

Figure 1. (a) Sketch of the RRAM cross-section profile. (b) SEM cross-sectional image of a (200 nm)2 Gen2-RRAM. (c) Comparison between the
thickness and density of the HfO2 and the HfOx<2 thin films used in Gen1- and Gen2-RRAMs, respectively. (d) Cumulative distributions of the forming
voltages from Gen1 and Gen2 devices, in orange and green, respectively. Various device areas are compared.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.3c03697
Nano Lett. 2024, 24, 866−872
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(a) (b)

Figure A.2: (a) Scanning Electron Miscroscope image of the ReRAM device stack cross-
section [41], highlighting the 200 nm width of the cell. (b) Bright field Scanning Transmission
Electron Microscope image of the ReRAM device stack cross-section [42].
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B Appendix - Switching time
characterizations

In the following appendix, there are the plots about the I(t) evolution as a response to the
experimental SET pulse sequence depicted in Fig.2.8a. 10 square voltage pulses are employed
in the experiment, with incremental amplitude: V SET

pulse = {−1.35 ÷ −1.8} V .
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Figure B.1: I(t) evolution in the switching time characterization.
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Figure B.2: I(t) evolution in the switching time characterization.
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Figure B.3: I(t) evolution in the switching time characterization.
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Figure B.4: I(t) evolution in the switching time characterization.
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Figure B.5: I(t) evolution in the switching time characterization.
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C Appendix - Matrix formalism to
solve the non-linear system

According to the mathematical conventions used in section 2.3, the equation system including
3.2, 3.3, 3.8 and 3.11 is written in the matrix formalism as follow:
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where the entries J2,1, J2,4, J3,1, J3,4 are:
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