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Abstract 
 

This work arises from the need to solve the problem of tracking the signal 

from a capacitive sensor and was promoted by Prima Industrie, a leader in 

the production of laser cutting machines for sheet metal. 

The quality of laser cutting significantly depends on the distance between 

the cutting head and the sheet. An algorithm controls this distance in real 

time by tracking the capacitive sensor signal to ensure the correct standoff. 

To compensate for system delays and optimize cutting performance, the 

system, particularly the Z-axis, was modelled using a data-driven approach 

based on experimental tests, exciting the system with white noise added to 

the different control loops. Data processing and analysis led to the 

development of a model using MATLAB® System Identification Toolbox. 

Finding and using new components to integrate into the machine to improve 

its performance required the creation of a physics-based model, taking a first-

principles approach through the Bond Graph Approach. Both. Subsequently, 

the models were implemented in MATLAB and Simulink. The activity 

concluded with validation and comparison of the two modelling approaches 

against a reference signal. Suggestions for future developments were 

provided to improve the models and consequently the analysis of signal 

tracking and cutting quality. 
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1 INTRODUCTION 

1.1 STUDY OF ARTS 

The present work was performed in collaboration with the company Prima 

Power, a member of the Prima Industrie group, manufacturer of machinery 

for cutting sheet metal by laser.  

The activity stems from the company's need to investigate the 

characterisation of the performance of what takes place in the cutting 

process, particularly regarding the distance between the cutting head and the 

sheet metal.  

The machinery to be used for 2D laser cutting of sheet metal recorded some 

undesirable malfunctions related to the cutting process. In particular, the 

malfunctions reported are related to phenomena called tip-touch, i.e. when 

the tool mounted at the end of the cutting head touches the sheet metal. The 

distance between the tip (cutting head) and the sheet metal is managed by a 

tracking algorithm, integrated in the PLC, which guarantees that the distance 

known as StandOff is constant even after variations. Increased cutting power 

and increased performance in terms of jerk, Jerk is the time derivative of 

acceleration, and thus is associated with rapidly changing actuator forces. 

Excessive jerk leads to premature wear on the actuators, induces resonant 

vibrations in the robot's structure, and is difficult for a controller to track 

accurately.[1]  

The work started with an analysis of the evaluation of delays in the system, 

which adversely affect the tracking performance of the signal. Two signals 

were used for this evaluation, the signal read by the capacitance sensor 

placed on the cutting head, and the moment when the motor receives the 

command. 
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Figure 1.1: block scheme about element in the system 

 

This estimate showed the delay to be around 10 ms. Improvement works to 

improve the capability of the signal tracking algorithm were proposed such 

as the identification and modelling of the part related to mechanical 

components, motor, adaptor, ball screw lead including also that cutting head 

so the Z - axis element. 

In order to achieve the desired goal, modelling of the Z-axis was initiated by 

acquiring data necessary for the purpose by organising tests on the machine. 

In order to achieve the desired goal, tests were carried out involving the 

addition of white noise in order to excite the system over a wide frequency 

spectrum. These noises were added directly via the drive by bypassing the 

PLC and CN part. 
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The list of tests performed is given below 

: 

001 – Movement [0 – 100mm] 

002 – White Noise – Speed Control Loop 

003 – White Noise on Torque 

004 - White Noise – Current Control Loop  

 

The data acquired via the oscilloscope mounted on the machine are the 

calculated position input into the drive, an acquisition made only for the first 

test, Torque, position measured, or the position detected by the encoder 

mounted on the ball screw. Data acquisition involved the use of an 

interferometric laser to obtain accurate data with respect to the distance 

between the tip and the plate. 

After the necessary and usual data processing, the following elements of the 

system were identified and modelled using the different data position. 

Calculated position – Torque:  Drive  

Torque – Measured position: motor – adaptor 

Measured position – laser position:  ball screw – cutting head 

 

The modelling followed two approaches, data - driven and first principles. 

The first modelling carried out experimentally using the System 

Identification toolboox@Matlab as an identification tool.[2] 

The need to have a model that offered scalability led to the modelling of the 

system using the bond graph approach, thus starting from physics. In 

addition, it made it possible to analyse how changing certain components of 

the system affect the response. 
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1.2 STUDY OF THE SYSTEM  

1.2.1 The machine 

The machine made by Prima Power is used for cutting sheet metal using a 

fibre optic laser. The machine under study, on which the tests were carried 

out, is identified as LaserGenius+. 

The laser consists of a coherent beam of light whose characteristic feature is 

that each beam has the same wavelength. Another key element is the slider 

whose task is to focus the light beam at a specific point. The actual cutting 

takes place because of the heat that the focusing of the laser beam causes on 

the workpiece. 

Reflection is the principle behind a fibre laser. Reflection occurs between the 

core (high reflective index) and the cladding (low reflective index). Incident 

light is reflected within the core and propagates within the fibre. The critical 

angle is a parameter that affects the incidence and reflection of the light 

beam; if the light beam hits the interface and is greater than the critical angle, 

the light beam will not be able to pass through the medium. 

The machine consists of three axes, but from a cutting point of view, it 

identifies itself as a 2D machine. The reason for this is that it is only capable 

of cutting sheet metal in two dimensions. 
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Figure 1.2: LG+ machine 

The laser has different power settings, starting from 2000W up to 10000W. 

The machine consists of 3 axes whose model strokes are as follows: 

X: 3.150 mm 

Y: 1.600 mm 

Z: 150 mm 

Speed and acceleration data are summarised below: 

Speed: 

X, Y: 130 m/min 

Trajectory 180 m/min  

Acceleration: 

Trajectory: 2.8g 

Another parameter summarising the machine's characteristics is the 

resolution, which for the three axes is 0.001mm.[3] 
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1.3 PROCESSED SYSTEM 

The machine consists of three axes, but from a cutting point of view, it 

identifies itself as a 2D machine. The reason for this is that it is only capable 

of cutting sheet metal in two dimensions. 

The system under study can be traced schematically as shown in the figure. 

The Z-axis drive consists of 

 
Figure 1.3: items examined 

1.3.1 Drive 

The drive part includes the entire control part, which in the case of the 

machine under consideration consists of a PI control. Included in the drive 

are the position, velocity and current control loops. 

Due to the cascade architecture of the control loops, parameterisation is 

required from the innermost loop, current control loop, to the outermost loop, 

position control loop. For the control of the current control loop, parameter 

optimisation is not required in the case of a rotary motor such as the one 

implemented in the machine under consideration; the parameters are read 

directly from the encoder. 
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The parameters of the speed control loop depend both on motor parameters 

such as inertia, torques and forces, and on mechanical properties such as 

inertia and mass of the charge, friction and stiffness. 

For the speed control loop, the parameters must be adapted with respect to 

jerk, acceleration and interpolation by an external speed controller. 

The input signal into the drive is the commanded position (posCMD), i.e. the 

position that must be reached by the head in order for the sheet metal to be 

cut at the set distance, known as the StandOff position, in order to achieve 

good cutting quality even with respect to laser power.[4] 

 

 
Figure 1.4: Drive with control loop 
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1.3.2 Motor and adaptor 

The motor receives the command from the drive as an electrical signal. The 

motor mounted on the Z-axis machine is a synchronous motor. The choice 

of this type of motor is based on the desire to have high precision and speed 

control without oscillations. 

The torque generated by the motor is reduced by a reduction ratio via an 

adaptor mounted downstream of the synchronous motor. In figure is present 

also the torsional stiffness. 

 
Figure 1.5: Motor, adaptor, torsional stiffness 

1.3.3 Ball screw lead 

A ball screw system has the task of converting rotary motion, in our case 

coming from a synchronous motor, into linear motion, which is the 

kinematics required to move the cutting head. Ball screw feeds are integrated 

with mechanical components to ensure high performance in terms of 

precision and low friction. In the machine under consideration, this system 

is integrated with a plate, which slides on linear roller guides. The stiffness 

of ball screw feed drives is the weakest in the axial direction because of the 
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axial and torsional stiffness of the screw shaft, as well as the flexible 

kinematic joint, including the support bearing and ball screw pair. The linear 

guideway only plays a guiding role in the 

transmission direction. The uniaxial static and dynamic models 

commonly assume that only the axial deformation of rolling interfaces 

and screw shafts occurs. The assumption ignores the moment effect 

caused by the misalignment between the screw shaft axis and the 

loading position. Compared to the figure below, the system is mounted 

vertically, coinciding with the direction of the Z axis. 

 

 
Figure 1.6: Ball screw lead 
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1.3.4 Cutting head 

The collimator fixed by a ball screw via four guides that allow it to move 

vertically. The optical path of the machine is constituted by an optical fibre 

cable which guides the laser beam from the generator, through the X chain 

system, the Y chain system and the Z chain system to the collimator. From 

the collimator, the laser beam, through the mirrors of the head, is sent to the 

focusing lens. 

 

 
Figure 1.7: Cutting head system (left). Rear view (left) 
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2 MODELLING APPROACHES 

2.1 Introduction 

When approaching system modelling, we encounter two primary 

approaches: First principles (White box Approach) and Data-Driven 

Modelling (Black-Box Approach). 

System identification is a fundamental discipline that empowers us to 

construct mathematical models of real-world systems or signals by analysing 

observed data. These mathematical models have evolved into indispensable 

tools in modern science and engineering, serving a diverse range of purposes, 

including simulations, predictions, control system design, and signal 

processing. Mastering various modelling techniques is therefore essential for 

navigating these complexities.[5] 

 

First Principles (White Box Approach) 

If the underlying physical laws governing the real-world system are known, 

we can exploit this a priori knowledge to construct the model. This approach 

is referred to as physics-based modelling or simply modelling. Here, we 

utilize the fundamental principles of physics, such as Newton's laws, 

thermodynamics, or fluid dynamics, to develop equations that describe the 

system's behaviour. This method relies on our understanding of the 

mechanisms and interactions within the system, enabling us to create 

detailed and accurate models. However, developing these models can be 

complex and time-consuming, particularly for systems with intricate 

interactions or those influenced by a wide range of variables. The primary 

advantage of the white-box approach is its transparency and interpretability, 

as the models derived from first principles often provide deep insights into 

the system's functioning.[6]  
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Data-Driven Modelling (Black-Box Approach)  

In contrast, if the system's physical details are obscure but we have access to 

measured data, we can utilize this data to build the model. This approach is 

known as data-driven modelling or simply identification. In black-box 

modelling, we do not assume any prior knowledge about the system's 

internal mechanisms. Instead, we use statistical and machine learning 

techniques to infer the system's behaviour directly from the data. Methods 

such as regression analysis, neural networks, and support vector machines 

are commonly employed to identify patterns and relationships within the 

data. The strength of the black-box approach lies in its flexibility and 

applicability to a wide range of systems, even those with complex and 

unknown dynamics. However, these models often lack interpretability and 

may not provide insights into the underlying processes driving the 

system.[7], [8] 

 

Hybrid Approaches (Grey – box approach) 

In practical scenarios, we often possess only partial information about the 

system's physics. This calls for a hybrid approach that combines a priori 

knowledge with experimental data to construct the model. This hybrid 

modelling approach leverages the strengths of both white-box and black-box 

techniques, enabling us to effectively capture the system's dynamics even 

with limited information. Hybrid models can take various forms, such as 

grey-box models, where certain parameters are estimated from data while 

others are based on physical laws, or ensemble methods that integrate 

multiple models to improve accuracy and robustness. By blending physical 

insight with data-driven methods, hybrid approaches can provide a more 

comprehensive understanding of the system and enhance predictive 

performance.[9], [10] 
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System identification provides a powerful framework for constructing 

mathematical models of real-world systems, enabling us to understand, 

predict, and control their behaviour. Whether we rely on physics-based 

knowledge, data-driven approaches, or a hybrid combination, system 

identification remains an essential tool for engineers and scientists across 

various disciplines. 

The significance of system identification extends beyond mere model 

construction. In control system design, accurate models are crucial for 

developing controllers that ensure desired performance and stability. In 

signal processing, system identification techniques help in filtering, 

denoising, and feature extraction from observed data. Moreover, in fields 

such as economics, biology, and environmental science, system 

identification enables the analysis of complex, dynamic systems where direct 

experimentation may be impractical or impossible. 

Advancements in computational power and algorithms have further 

propelled the capabilities of system identification. Machine learning has 

revolutionized data-driven modelling by providing sophisticated tools for 

handling large datasets and uncovering intricate patterns. Techniques such as 

deep learning and reinforcement learning have opened new avenues for 

modelling highly complex and nonlinear systems, from financial markets to 

autonomous vehicles. 

Nevertheless, the choice between first principles and data-driven approaches 

is not always straightforward. Each approach has its strengths and 

limitations, and the optimal choice often depends on the specific 

characteristics of the system and the available information. For instance, in 

well-understood physical systems with clear governing laws, first principles 

modelling might be preferable. Conversely, in systems where the underlying 
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physics are too complex or unknown, data-driven methods may offer a more 

viable solution. 

System identification is a cornerstone of modern engineering and science, 

providing the means to construct models that elucidate the behaviour of real-

world systems. By leveraging the power of mathematical modelling, whether 

through first principles, data-driven methods, or hybrid approaches, we can 

gain deeper insights, make accurate predictions, and devise effective control 

strategies. As technology advances and our understanding of complex 

systems grows, the role of system identification will continue to expand, 

driving innovation and progress across diverse fields.[11]  

 

 
Figure 2.1: Modelling approaches 

 

2.2 Data – driven approach 

System Identification allows the construction of a mathematical model from 

the data. The model describes the relationship between the measured signals; 

for this reason, it is essential to divide the signals into input and output. 

Black-box modelling is useful when your primary interest is in fitting the 

data regardless of a particular mathematical structure of the model. The 

toolbox provides several linear and nonlinear black-box model structures, 

which have traditionally been useful for representing dynamic systems. 

These model structures vary in complexity depending on the flexibility you 
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need to account for the dynamics and noise in your system. You can choose 

one of these structures and compute its parameters to fit the measured 

response data. Black-box modelling is usually a trial-and-error process, 

where you estimate the parameters of various structures and compare the 

results[12], [13], [14]. Typically, you start with the simple linear model 

structure and progress to more complex structures. You might also choose a 

model structure because you are more familiar with this structure or because 

you have specific application needs. In case of estimate linear parameters, it 

used a transfer function that represent a ratio of polynomials: 

 

G(s)=
(𝑏0 + 𝑏1𝑠. . )

(1 + 𝑓1𝑠. . )
 

 

A commonly used method for these identifications, ARX (AutoRegressive 

eXogenous input model) processes by least squares (LS) using discrete data 

and a direct approach, was used to estimate the transfer function. 

An autoregressive model is a type of statistical model that represents a time 

series as a linear combination of its past values. It is represented by the 

equation below: 

(pn + a1p
n−1 + 𝑎𝑛) 𝑦(𝑡) = (𝑏

1𝑝𝑛−1 + 𝑏𝑛)𝑢(𝑡) + 𝑒(𝑡) 

Where p is the operator for differentiation, y(t) is the output and u(t) the 

input. It is including also the source of white noise. 

The estimate parameter vector is: 

𝜃 = (𝑎1, 𝑎𝑛𝑏𝑛, 𝑏𝑛)
𝑇 

The LS approach often can lead to very low mean square errors of parameter 

estimates particularly for a small sampling period. [15], [16]. 

When a linear model provides poor fitting with respect to the measured 

output signals and the same result is obtained even when changing the model 
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order, non-linear models may be required. Non-linear models have greater 

flexibility in capturing complex phenomena than linear models of similar 

order. This approach was used to identify the components between the input 

torque in the motor and the measurement taken by the encoder, which is 

positioned on the screw. The components between these two measurements 

are the motor, gearbox, coupling and elastic coupling. 

Data-driven modelling was performed using a MATLAB toolbox called 

System Identification Toolbox. This tool provides MATLAB functions that 

allow dynamic systems to be modelled, analysed and worked on data sets, 

and predictions to be made. For our purpose, it was used to estimate transfer 

functions from the measurements taken and to estimate the dynamics of non-

linear systems such as motor - adaptor modelling. 

 

2.2.1 Hammerstein-Wiener Models 

The Hammerstein and Wiener models are special kinds of nonlinear systems 

where the nonlinear block is static and follows or is followed by a linear 

system. These models have applications in many engineering problems and 

therefore, identification of Hammerstein and Wiener models has been an 

active research area for many years. [17] 

For systems where the output exhibits a non-linear relationship with the 

input, it's sometimes possible to break down this complexity. We can 

accomplish this by decomposing the input-output relationship into 

interconnected elements. This allows us to represent the system's dynamics 

using a linear transfer function, while capturing the non-linearities with 

separate functions applied to the input and output of the linear system. The 

Hammerstein-Wiener model achieves this by connecting static non-linear 

blocks in series with a dynamic linear block.[17], [18]  
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The Hammerstein-Wiener model itself consists of a series structure. It 

includes input and output non-linear blocks flanking a central linear block. 

This linear block, typically represented by a discrete transfer function, 

captures the system's dynamic behaviour.  

 
 

Figure 2.2: Hammerstein - wiener models 

The function f linked the nonlinear input, transforms given input u(t) to 

 𝑤(𝑡) = 𝑓(𝑢(𝑡)). The size of the output of this equation is equal to the input 

and represents the input for the linear block. The linear block is composed of 

the equation below   𝑥(𝑡) =
𝐵

𝐹
𝑥(𝑡).  Also, in this case the dimension of the 

output is the same as the dimension of the input. B and F are polynomials in 

linear Output - Error (OE). OE models are polynomial models that can 

correlate inputs and outputs from measurements. It has been a model used 

for our purposes since it also includes white noise as a noise.[19], [20].  

𝑦(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) 

Polynomial estimation can be performed in time domain, as in this case, or 

in frequency domain. After the order of the polynomial is defined, n input 

variables and n output variables are considered. With the number of samples 

nk, corresponding to the delay-dead time of the input, given by the number 

of samples before the output responds to the input The non-linear block is 

composed of the equation 𝑦(𝑡)  =  ℎ(𝑥(𝑡)) where the block transforms the 

output by the configuration, in this case piecewise.    
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2.3 First principles approach 

2.3.1 Introduction 

In modelling electromechanical systems, the first principles approach is 

widely used. In this part of the paper, we have focused on modelling the Z-

axis from the physics of the system. The decision to also model the system 

using this type of approach stems from the need to develop a model that 

allows us to change the components in the system and assess how their 

variation affects the output responses. 

The first principles approach differs from the previous one in its ability to 

represent physical phenomena by exploiting physical laws to describe the 

system's dynamics. In electromechanical systems, this approach is 

advantageous as there are several iterations between electrical and 

mechanical components in different domains.[21] 

 

2.3.2 Bond graph  

The presence of different domains within the system has driven modelling 

towards a tool based on the exchange of energy flows within a system, the 

Bond Graph. This methodology makes it possible to describe the different 

energy domains and their iterations. To obtain a comparison with data-driven 

modelling, the components were modelled considering the data obtained 

from the machine test. [15][16]  

The choice of considering energy exchange as a model variable leads to 

considering for each domain two variables indicated as effort and flow from 

which the following energy relationship is obtained: 

 

𝐸 = 𝑒 ∙ 𝑓 𝑑𝑡 
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Effort means those variables such as force, voltage, pressure, and flow the 

variables velocity, current and flow rate. Energy is transformed through ports 

that represent energy communication interfaces. There are four energy 

interfaces: 

Energy source: The inputs to the system, which represent a convenient way 

of defining a constraint on the modelled system, to determine its reaction to 

stress or flow stimuli. 

Energy store: These elements store the effort and flow variable. They are 

described as effort or flow stores. 

Energy dissipation: these are elements that allow energy to be dissipated into 

the environment. An example of these elements can be in the electrical 

domain the resistance. 

Energy transfer elements: These elements store energy, merely routing the 

energy through the model, between any other elements in the model. In some 

energy domains these elements are well defined (e.g. parallel connections in 

electrical systems), while in others are more abstract (common strengths in 

mechanical systems). mechanical). Included in this group of elements are 

couplers that neither store nor dissipate energy but transform stress and flow 

variables without and flow variables without energy loss. 
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Table 2-1: Domain and element about BG 

 

The link between the various elements is represented by the junctions, which 

allow the components to be connected and define which of them behave as 

integrative elements and which as derivative elements. There are mainly four 

types of junctions. Element "0" has at least two ports and represents the 

relationship between elements that share the same effort and is called 

common effort. 

Another element which can be called the dual to the previous one is the 

common flow indicated by the symbol "1" which shares the same flow with 

the other elements. In this case, too, it consists of at least two ports.  

Transformers are designated by "TF" nodes in bond graphs and are again 

power conserving although the effort on the output port is scaled by the 

transformer ratio to the effort on the input port.  

Finally, the last junction is the Gyrator designated by "GY" which is another 

power-conserving element that directly bonds the flow input and effort 

output, and vice versa. This element is used in the presence of transducers 

between different energy domains. 
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Figure 2.3: BG junction elements 

 

As already said, the elements constituting the bond graph fall into three main 

categories: energy source, energy stores and energy dissipator. The symbols 

and the relative constitutive equations of the bond graph elements that were 

also used for modelling during this discussion are shown below. Each 

element is then linked, according to the desired domain, to the component to 

which it refers. 

 
Table 2-2: BG symbols and constitutive equations  

In order to conclude the discussion of the constituent elements of the bond 

graph, it is necessary to define how the casualty between the elements is 

defined in order to represent the dynamics of the system. By causality is 

meant the transformation of the graphical representation into an equation of 
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state linked in this case to an integral type of casualty. In assigning casualty, 

an attempt is made to maximise the states of the system, i.e. to obtain as 

many integrative states as possible. Once the casualty has been defined, and 

consequently what the integrative and derived states are, the equations 

defining the system are obtained from the constitutive relations.[22], [23] 

The assignment is made based on the knowledge and behaviour of the 

system. The energy source elements impose their state on the system so that 

their casualty is known a priori 

 
Figure 2.4: 0 - junction 

 
Figure 2.5: 1 junction 

 

On the left-hand side is the casualty referred to the 0 junction, where effort 

is the output for one component and becomes input for all others. In contrast, 

1 junction shown on the right, the flow is output from one component while 

the others are seen as input. 

Once the equations of state of the system have been obtained, the state space 

is created according to the relation: 

 



29 
 

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) 

𝑦(𝑡) = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡) 

 

The state representation after obtaining the matrices was used to represent 

the system and compare it with what was obtained through data-driven 

modelling.  
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3 IDENTIFICATION PROCEDURE 

 

3.1 Introduction 

The identification process involved carrying out several tests on the LG+ 

machine, with the aim of obtaining meaningful data to better identify the Z-

axis components. The data available following the movement of the axis was 

taken from the oscilloscope present directly on the machine, which is able to 

record the parameters coming from the sensors mounted on the axis, 

parameters coming from the drive and from the numerical control. An initial 

modelling activity relating to the mechanical components involved using the 

data acquired from the oscilloscope relating to the position of the encoder 

and the commanded position, i.e. the target command that the drive sees as 

input before performing the tuning operations within the three control loops. 

This first data-driven identification only identified the motor - gearbox and 

nut part. The cutting head, which is attached to the nut via a plate with skids, 

was not optimally identified, as the only data relating to the head's 

displacement relative to the sheet metal was recorded by the capacitive 

sensor, whose position value is shown as the commanded position indicated 

earlier. 

 

3.2 Interferometric laser 

In order to improve identification, the part of the system whose data recorded 

by the oscilloscope did not fully represent the head-to-plate distance.  

To solve this data gap, a measuring instrument used for calibration and to 

correct any measurement errors on CNC machines was used, the 

interferometric laser. This measuring instrument uses a coherent beam of 
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light, which is split into two identical beams by an interferometer and 

consequently follows two different paths. The two beams come together 

before reaching the detector. The difference in the distance of the path 

followed by the beams creates a phase shift, which can be constructive or 

destructive. Signal processing is carried out by the detector, which can 

observe the interference of the beam. The interference loop proves a 

continuous, cyclic variation in the intensity of the assembled beam. The 

intensity variation occurs when the reflected measurement shifts by 316.5 

nm, which is precisely half the wavelength of the laser. The displacement is 

measured by the relationship between the wavelength λ, and the number of 

cycles passed. d= (λ N)/2 [nm]. The accuracy achieved by this measuring 

instrument is 1nm 

 

.  
Figure 3.1: Interferometric laser 

The purpose of the tests performed on the machine was to simulate the 

behaviour of the system, specifically the movement of the cutting head. 
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In order to collect more data during the identification phase, tests were 

carried out to excite the system over a wide frequency range. 

 

 
Figure 3.2: interferometric laser and collimator during acquisitions 

 

To achieve this, the use of white noise is a very common practice in 

engineering specifically for system identification. 

The use of white noise finds its benefit in generating signals with a constant 

power spectral density over all frequencies, thus obtaining frequencies that 

have equal power. Frequency response analysis makes it easy to identify 

natural frequencies, damping factors. For the project, this type of test was 

used to obtain information with respect to system properties such as masses, 

stiffnesses and damping. Another benefit of using white noise to excite a 

system, rather than a simple sine wave, is because the latter can have a 

frequency equal to the natural frequency of the system, a situation that causes 

oscillations and vibrations of the entire machine, affecting, in our case, the 

quality of the cut. White noise prevents this phenomenon by considering all 

excitation frequencies within it.  

The identification carried out is called open loop identification. The system 

is directly perturbed by a signal chosen by the user without any feedback 

effect. 
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Figure 3.3: Identification flow 

 

 

3.3 Test bench 

The machine on which the tests were carried out is part of the Laser Genius 

+ 2040 series, whose abbreviation indicates the size, in width and length 

respectively, of the machinable sheet metal. The Z axis moves on two guides 

in X and Y in a bridge configuration. 

The motor manufactured by Bosch Rexroth and the gearbox manufactured 

by Wittenstein have the following specifications: 

 

Motor Inertia 4,40E-05 kgm2 

Adaptor Inertia 4,000E-06 kgm2 

Acceleration Torque 3,005 N 

Static Torque 0,531 N 

Motor revs 6000 rpm 

Motor weight 2,4 Kg 

Gear ratio 3 \ 
Table 3-1: motor – adaptor datasheet [24] 
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Downstream of the adaptor, in order to compensate for axial misalignments, 

vibrations of which play an important role during the cutting process, there 

is torsional joint with a torsional rigid flexible coupling with the following 

characteristics: 

 

Nominal Torque 16 Nm 

Angular misalignment 1° deg 

Torsional stiffness 11 Nm/rad 

Moment of inertia 0,05 kgm2 
Table 3-2: Torsional joint datasheet 

The conversion of the motion from rotary to longitudinal, which allows the 

head to move along the Z axis, is entrusted to the ball screw lead. The ball 

screw lead is the element that is mounted on the screw which allows the 

transfer of motion to the flange. The characteristics of the screw and nut are 

summarised in the table: 

 

Screw pitch 40 mm 

Screw inertia 3,06E-05 kgm2 

Screw revs 20000 rpm 

Screw displacement 13,33 \ 

Static load factor  26200 N 

Dynamic load factor 14000 N 
Table 3-3: Ball screw datasheet[25] 

For physical modelling, no stiffness values for the system described are 

available from datasheets. The literature and manufacturers' catalogues 

provide an approach for estimating the stiffness.  

The total axial stiffness depends on the component parts, which in this case 

are the screw and nut and the bearings: 
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1

𝑘𝑏𝑠
=
1

𝑅𝑓𝑏
+
1

𝑅𝑠
+
1

𝑅𝑛𝑢
 

- kbs – total stiffness 

- Rs – screw stiffness 

- Rnu – nut stiffness 

However, for the estimation of the total stiffness, some considerations 

suggested by the manufacturer's catalogue were made. In practice, the screw 

stiffness is substantially lower than the nut stiffness. The total stiffness value 

considered is equal to: 

 𝑅𝑏𝑠 = 380 ∙ 10
6  
𝑁

𝑚
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3.4 Test performed 

 

The following is the procedure and type of tests performed. The 

identification of the system by means of machine tests was performed by 

dividing the tests into two parts. 

The first test carried out was aimed at performing a rigid identification of the 

system; to this end, a low-frequency test was performed. Elastic phenomena, 

on the other hand, are related to high frequencies, in fact, the second type of 

tests performed present higher system excitation frequencies. 

The white noise added via the drive with the "Signal shape selection" 

function, which allows 

In order to improve the data processing and analysis phase, Trigger Waves 

were provided, so as to have references between the data coming from the 

oscilloscope and the data coming from the interferometric laser from the 

point of view of data alignment. Trigger waves, as well as having a different 

waveform to those provided for the individual tests, were not considered in 

the identification procedure. 

 

 1st test 

The first test consists of having the head perform a movement from [0 - 100 

mm]. During this test, the feed rate was set to 100% and the number of 

movements performed by the head was three. 

The trigger wave: square wave [0 - 1mm] with a feed rate of 5%. 
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 2nd test 

Subsequent tests on this basis are aimed at identifying rigid dynamics. The 

excitation of the system was done by adding a white noise directly to the 

speed control loop. The addition of the noise on the control loop was done 

by acting directly on the drive, modifying the parameters by bypassing the 

PLC part of the system, and CN also performed for the subsequent tests. 

Adding the white noise at this point of the control had the purpose of 

exploiting the dependence of the control on the mechanical parameters Also 

in this case a trigger wave was provided: Sine Wave [period T= 2s; amplitude 

A=10 rpm]. 

Figure 3.4: first test with trigger wave 
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Figure 3.5: second test with trigger wave 

 3rd Test 

The logic used for the third test is similar to the previous one. In this case, 

the excitation of the system by means of white noise was carried out with the 

addition of the disturbance on the torque; thus, the part of the system relating 

to the axis electric motor is disturbed.  

Trigger wave:  Sine Wave [period T= 2s; amplitude A=10 rpm]. 
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Figure 3.6: third test with trigger wave 

 

 4th Test 

In the last test performed, white noise was inserted into the current loop. In 

this case, the waveform generated to which the noise was added were two 

square waves with the following characteristics: 

 

 T= 50%, 0.2 mm RISE EDGE, 0.2mm FALL EDGE 

 T=100%, 0.2mm RISE EDGE, 0.2mm FALL EDGE 

Trigger wave: Sine Wave [period T= 2s; amplitude A=10 rpm]. 
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Figure 3.7: fourth test with trigger wave 
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4 DATA PROCESSING 

 

The data collected during the tests were chosen in such a way that component 

identification could be carried out. The acquisition frequency of the 

oscilloscope is 1kHz and a sampling time of 1 ms. This data was used as a 

reference for processing the data from the oscilloscope, which had a different 

acquisition frequency. For this purpose, three parameters were recorded from 

the oscilloscope on the machine: 

 

- Calculated physical position 

- Measured physical position 

- Z Torque 

The acquired data were saved imported as a .csv file and pre-processed with 

MATLAB. The data was initially saved as a matrix using the 

readmatrix(xx.csv) function. The data was then associated with the variables 

useful for our purpose. The variables saved are: 

 

- Time 

- Measured_pos 

- Calculated 

- Torque 

 

This was done for each of the four tests. 

The time vector was normalised in such a way as to obtain a time vector 

starting from 0 with a sampling time of 1ms; this operation was necessary 

because the acquisition by the oscilloscope and by the laser had different 

durations and sampling times using the linspace function. 
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For the two position measurements, however, these were not absolute. The 

oscilloscope records position relative to the machine zero, so it was 

necessary to subtract the first value of the vector from each element in order 

to bring the position measurement in line with the desired output.  

The new time vector, comparable in length with the laser time vector, was 

used to interpolate via the interp1 function, the measured position and the 

calculated position. 

 

The measurement from the laser was acquired using the CARTO software, 

an application supplied by the measuring instrument manufacturer as a .mat 

file. As mentioned earlier, the instrument's acquisition frequency is 50kHz. 

The oscilloscope has an acquisition frequency of 1kHz, so pre-processing 

was also necessary for this data. This process was carried out in MATLAB. 

Resampling of the data was done using the resample function, the data 

required for which were, the measurement, the current frequency (50kHz) 

and the desired frequency (1kHz). The new variable was saved and exported 

to the calculation file for comparison with the oscilloscope measurement. 

The operation was performed in the same way for all tests performed. The 

alignment of the various curves was done using the trigger wave inserted into 

the test for this very purpose. The find function made it possible to find in 

the measured position vector and the laser vector, the values at which the 

curve changed course and was taken as a reference for aligning the signals. 

A comparison of laser and oscilloscope measurements divided by test is 

shown below. 
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001 – Movement [0 – 100mm] 

 

 
Figure 4.1: data acquired 1st test 

In the figure, torque values are shown in black. At the peak value (400 Nm) 

there is the rise edge positive, an instant in which the cutting head reaches, 

and maintains, the 100mm position. The head returns to the initial position 

(0mm) at the change in torque value (-400 Nm). The values for the 

measurement from the laser, the encoder (measured position) and the input 

measurement in the drive (calculated position) are shown in the figure below. 

 
Figure 4.2: analysis position signal 
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The laser, also due to its acquisition frequency, detects the change in head 

position immediately. The delay present with the other curves can be 

estimated at 1 ms equal to the measurement of one sample. This value was 

considered during data-driven identification. 

 

 002 – Movement with White Noise – Speed Control Loop 

 
Figure 4.3: data acquired 2nd test   
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In the second test performed, a fast movement of the cutting head was 

performed in order to simulate a cutting process. Using the drive, white noise 

was added to the speed loop to have a wide range of excitation frequencies 

for the system. As can be seen from the picture, four Z-axis movements were 

performed. You can see that in the wing part of the graph, the calculated 

position has a constant value and does not vary with the laser and encoder 

measurement. This is because the movement was induced and disturbed 

directly by the drive, thus bypassing the CN and PLC part.  A wave zoom is 

performed in the figure below. 

 
Figure 4.4: zooming second movement in test 

The figure refers to the second movement of the axis in second test. The 

interferometric laser measurement is able to capture more information about 

the axis movement than the encoder. In fact, when the axis movement is 

larger, the encoder performs more accurate tracking as can be seen in the 

figure below. 
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Figure 4.5: Comparison encorder_laser position 

The presence of white noise, which causes rapid oscillations of the head at 

certain times, is not detected by the encoder. However, the presence of 

damping elements and high stiffnesses lead to the filtering of movements 

that could cause oscillations during normal operation, having an impact on 

cutting quality. 

 
Figure 4.6: Comparison with low amplitude 

The figure refers to the third set of axis movements. In this case, the 

amplitude is reduced. As mentioned earlier, in this case there is not only a 

sampling delay but also a measured position shift. 
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The differences noted confirm how excitation by means of a white enables 

the mechanical components to be estimated by means of an identification 

process. 

The torque trend is shown in the figure. 

 

 
Figure 4.7: Torque about second test 

 

 003 – Movement with White Noise on Torque 

 

 
Figure 4.8: Torque 3rd test 
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In the 3rd test, white noise was added to the torque. The aim of adding noise 

to torque is to correctly identify the part of the system between the torque 

and the encoder measurement, i.e. motor - gearbox. The range of torque 

values is comparable to the previous tests. There are two movements 

performed by the axis with different amplitudes. 

 
Figure 4.9: position data 3rd test 

As in the previous test, the calculated position does not feel any displacement 

due to the reasons explained in the previous test. Also in this case, the axis 

performs two different movements between the two acquisitions. In the 

second, the measured position better follows the course that the laser 

measurement performs. In any case, this test was used for non-linear toolbox 

system identification. 
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 004 – Movement with White Noise – Current Control Loop -  

 

 
Figure 4.10: encoder laser position 4th test 

In the 4th test, white noise was added to the current control loop. In this case, 

the addition of the noise influences the measurement revealed by the encoder. 

In fact, despite the alignment of the signals by means of the trigger wave (see 

figure below), when white noise is added, there is a shift in the curves. The 

shift is more evident for the acquisition with a smaller amplitude in 

agreement with what was also the case for the other tests. 

 
Figure 4.11: Alignment with trigger wave 
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In the figure, one can see the sine wave where the curves are aligned and the 

beginning of the phase shift at the same time as the white noise enters around 

23s. 

 

 
Figure 4.12: Torque 4th test 

The effect of white noise on the current control loop is also noticeable for 

torque. In the figure, torque is also present relative to the trigger wave. 

Around 23s, white noise enters, and the torque measurement becomes 

disturbed. The link between the current loop and torque is due to the fact that 

the electric motor receives voltage as input, which is transformed into torque 

with the motor's characteristic Kt, so the relationship between them is direct. 

Recalling the torque trend in the first test, square wave-like movements were 

also performed in this case. The torque trend is similar but with more 

noticeable peaks due to the disturbance. The test was deepened for motor 

identification purposes.  
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4.1 Data analysis 

4.1.1 Introduction 

The identification of a system is an iterative process in which different 

models are identified from different data ranges until the model that best 

describes the system's dynamics is found. 

The identification process begins with the import of data from the worksheet. 

The representation of the data in the toolbox can be done as an object or as a 

frequency representation. For representation as an object, the function iddata 

was used. Use the iddata object to encapsulate input and output measurement 

data for the system you want to identify. System identification functions use 

these measurements to estimate a model. Model validation functions use the 

input measurements to provide the input for simulations, and the output 

measurements to compare how well the estimated model response fits the 

original data. 

 

iddata objects can contain a single set of measurements or multiple sets. 

Each set of data corresponds to an experiment. The data were represented in 

the time domain with the following code: 

data = iddata (y, u, Ts)  

creates an iddata object containing a time-domain output signal y and input 

signal u. Ts specifies the sample time of the experimental data. 
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Figure 4.13: Data on System Identification toolbox 

 

For each test performed, as seen, several acquisitions were made with 

different axis movements. The imported data was separated in order to 

reduce the number of samples and separate the estimation part and the 

validation part. The data, once isolated, were analysed for offset, linear trend, 

delay and their behaviour in time and frequency. The available measurements 

allow an identification of the individual components. Specifically, in 

addition to the separation of the individual movement data, the data object 

with input e output referred to the modelling component: 

- Calculated position – Torque: drive 

- Torque – Measured position: motor – adaptor 

- Measured position – laser position:  ball screw – cutting head 
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4.1.2 Calculated position – Torque:  Drive 

 

 
Figure 4.14: drive identification data 

For the first component to be identified, the drive, the signals available are 

the position coming from the CN while the torque (at the top in the figure) is 

considered at the output of the drive. The first test is the only one among the 

tests performed where information on the calculated position was acquired. 

In this test, there are no disturbances added. 
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4.1.3 - Torque – Measured position: motor – adaptor 

 
Figure 4.15: motor adaptor identification data 

In the trend in the figure, torque is taken as input. The test referred to in the 

graph is the 4th test. In this test, the disturbance added to the current loop is 

intended to identify the part between the measured position, i.e. the 

measurement from the encoder seen as output in this case, and the torque. 

The elements present refer to the mechanical components of the motor 

including the gearbox and the elastic coupling. 
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4.1.4 - Measured position – laser position:  ball screw – cutting head 

 
Figure 4.16_ BS - cutting head identification data 

The last element of the axis to be identified is positioned between the 

measured position, in this case intended as input, and the measurement from 

the interferometric laser, i.e. the laser position entered as output for 

identification purposes. The test in the figure refers to the 3rd test where the 

disturbance for the excitation of the system was added to the speed control 

loop to better highlight the mechanical elements closer to the load. 

After importing the data, we proceeded to pre-process the data using the tools 

within the toolbox. The movements in each test were isolated and categorised 

using the range function by entering the object in the working data tab. The 

purpose of the division was to have data sets to be used as model estimation 

and others as validation.  
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Figure 4.17: Pre -elaboration data on toolbox 

 

The isolation of the data made another data processing operation necessary. 

In fact, the data in their entirety considered relative movements Detrending 

operation is removing means, offsets, or linear trends from regularly sampled 

time domain input-output data signals. This data processing operation helps 

you estimate more accurate linear models because linear models cannot 

capture arbitrary differences between the input and output signal levels. The 

linear models you estimate from detrended data describe the relationship 

between the change in input signals and the change in output signals. For 

steady-state data, you should remove mean values and linear trends from 

both input and output signals. 
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5 Data – driven identification 

 

5.1 Introduction 

After the pre-processing of the data, we moved on to the estimation of the 

models. The estimation of models is the main part of the SystemIdentifcation 

Toolbox. From the Estimate window, it is possible to proceed with the 

modelling from the working data. Estimation is basically divided into two 

categories: 

Direct estimation of the Impulse or the Frequency Response of the system. 

these methods are often also called nonparametric estimation methods, and 

do not impose any structure assumptions about the system, other than that it 

is linear.  

Parametric methods. a specific model structure is assumed, and the 

parameters in this structure are estimated using data. This opens a large 

variety of possibilities, corresponding to different ways of describing the 

system. Dominating ways are state-space and several variants of difference 

equation descriptions. 

To obtain linear models, considering the nature of input and output data for 

component identification, the transfer function was used. To generate the tf 

it is necessary to provide the number of poles and zeros, presence of input or 

output delays in the form of samples, and the selection between discrete time 

and continuous time.  
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The iterative process led to the evaluation of different combinations of poles 

and zeros. Specifying a higher model order for the same linear model 

structure. Higher model order increases the model flexibility for capturing 

complex phenomena. However, unnecessarily high orders can make the 

model less reliable. The evaluation was initially done by checking the fitting 

between the generated model and the dataset used as validation. 

The operation the app performs refers to the following command: 

 tfest(data,2,1). 

 

 
Figure 5.1: Transfer function estimation 

 

5.2 Drive identification 

The identification of the drive starts from the position signal and as output is 

the torque signal processed by the controller. A range of the validation 

performed is shown in the figure. The plots show the simulated (predicted) 

outputs of selected models. The models are fed with inputs from the 
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Validation Data set, whose output is plotted in black. In time domain, as in 

this case, the simulated or predicted model output is shown together with the 

measured validation data. In all the cases, the percentage of the output 

variations that is reproduced by the model is displayed at the side of the plot 

and a higher number means a better model. The precise definition of the fit 

is: 

𝑓𝑖𝑡 =
(1 − 𝑛𝑜𝑟𝑚(𝑦 − 𝑦 )̂

𝑛𝑜𝑟𝑚(𝑦 − 𝑚𝑒𝑎𝑛(𝑦))
∙ 100 

 

Where y is the output while 𝑦 ̂ is the predicted output. In this case the fitting 

is 87.22%. 

 
Figure 5.2: drive identification output 

Any estimated model has a degree of uncertainty, which affects the reliability 

of the various model properties. Therefore, all model views have estimated 

accuracy measures. The uncertainty region is marked by two dash-dotted 

lines, one on either side of the nominal model curve with the same colour as 

the curve. The statistical interpretation is that (with the indicated probability) 

the true system response is found within the marked confidence region. This 

interpretation assumes that the system can be described within the chosen 
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model class and that the model has passed validation tests. In this case the 

test in passed in fact the pink line in inline of the confidence region. 

 

 
Figure 5.3: frequency response tf 

 

The transfer function consists of 3 poles and 2 zeros. The identified system 

has a linearly increasing response with increasing frequency. This behaviour 

is typical of a system that amplifies signals with increasing frequency. 

𝑝1 = −0,9970 + 0,0076𝑗 
𝑟𝑎𝑑

𝑠
 

𝑝2 = −0,997 − 0,0076𝑗 
𝑟𝑎𝑑

𝑠
 

𝑝3 = 0  
𝑟𝑎𝑑

𝑠
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𝑧1 = 0 
𝑟𝑎𝑑

𝑠
 

𝑧2 = 0.993 
𝑟𝑎𝑑

𝑠
 

 

The phase, on the other hand, shows an increasing phase delay with 

increasing frequency, which can be linked to integrative behaviour. 

Considering that the identification carried out relates to a drive in which, as 

seen, the 3 control loops are present, the analysis of the tf and bode diagram 

matches the system identified.  

Current control loop must have a very fast response in order to provide 

immediate control via the current to be supplied to the motor. In terms of 

bandwidth, however, we can say that this is generally high. 

Velocity control loop is responsible for controlling and stabilising the speed 

of the motor. Its bandwidth is lower.  

The bandwidth for the position control loop is the lowest of the three. 

Analysing the denominator of the tf, there are complex poles near the unit 

typical of position and velocity control systems with damped oscillatory 

behaviour. 

 

 
Figure 5.4: zeros and poles position 
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In terms of stability, the position of the poles and zeros were analysed. 

The poles are close to the unit circle suggesting that the system is stable. The 

position of the zeros has an influence on the frequency response but does not 

directly affect the stability of the system. 

 

5.3 Motor – adaptor identification 

For the second element in the system consisting of the motor and the 

gearbox. The signals available are the torque of which we therefore consider 

the mechanical part, the torque reducer and the elastic coupling, the purpose 

of which was clarified in the last chapter. The non-linearity of the signals 

between input and output made it impossible to identify the system by means 

of a transfer function. The approach used led to the use of a non-linear 

identification method also found in the toolbox called Hammerstein-Wiener. 

In this identification method, there is an alternation of non-linear blocks 

referring to the input and output signals and a linear block between the two. 

For the modelling of this component using this non-linear method, it was 

first necessary to indicate a non-linear data set referring to Torque. 
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Figure 5.5: nonlinearity input HW model 

 

A non-linear dead zone was considered for a non-linear characteristic. The 

reference function in is idDeadZone is an object that stores the nonlinearity 

estimator of the dead zone for Hammerstein-Wiener model estimation. 

It is used to define a nonlinear function y=F(x,θ), where y and x are scalars 

and θ represents the parameters a and b, which define the zero interval. 

The dead-zone nonlinearity function has the following characteristics: 
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In this case the parameters are: 

a = - 0.28052 as lower limit 

b = 8.7524 as upper limit 

 

 
Figure 5.6: nonlinear input dead zone 

 

The bode diagram analysis shows that in the first part, at low frequencies, 

the behaviour remains constant. At intermediate and high frequencies there 

is attenuation attributable to, in the case under consideration, mechanical 

elements such as gearboxes and dampers such as the elastic coupling. 
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Figure 5.7: frequency response linear model HW 

 

In this linearisation method, there is an alternation of non-linear and linear 

blocks. The last block present, the output is the measured position whose 

non-linearity was evaluated using the piecewise linear function indicating 10 

breakpoints whose location is indicated in the following vector:  

Breakpoint: 

[-92.3854616535816 1.20601779461058 131.524758378186 

277.324459261305 421.935107091707 566.545442669064 

711.155778812021 855.766114522873 1000.37645023732 

1144.98678595497]. 

The nonlinear point referred to the breakpoints are: 

Nonlinearity value: [-0.1677709410 -0.165078178614813 -

0.155607707750008 -0.164796537730145 -0.176534186550449 -

0.185671143317075 -0.187636356671893 -0.189836846097723 -

0.186725616831728  -0.174846085728571].  
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Figure 5.8: poles and zero position linear model 

 

An analysis of the positioning of the poles and zeros referred to the linear 

block shows how the position of poles close to the real axis suggests 

overdamping behaviour, while those closer to the circumference have an 

effect on the system's response. The zero near the origin indicates that there 

is a component present that affects the system response with a slow response. 

At high frequencies as in the present case, there is an attenuation of the 

oscillation. This is reflected by the components present in the system and 

their purpose. 
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Figure 5.9: nonlinear output HW 

 

The piecewise-linear function refers to the MATLAB command 

idPiecewiseLinear is an object that stores the piecewise-linear nonlinearity 

estimator. This command is used to define a nonlinear function of the 

following type y=F (x, θ) where y and x are scalar elements and θ represents 

the number of breakpoints and the nonlinearity value referred to at the 

breakpoint. The function F is a non-linear function at breakpoints. There are 

n breakpoints (𝑥𝑘 , 𝑦𝑘) with k=1...n such that 𝑦𝑘 = 𝐹(𝑥𝑘).  

The F function is linearly interpolated between the breakpoints. The F-

function is also linear to the left and right of the extreme breakpoints. The 

slope of these extensions is a function of the breakpoints xi and yi. The 

breakpoints are ordered by ascending values of x, which is important when 

setting a specific breakpoint to a different value. There is a small difference 

between the values of the set breakpoints and those stored in the object, 

because the toolbox has a different internal representation of the breakpoints. 
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Figure 5.10: nonlinear output piecewise 

 

The generated model has a fitting of 91.28%. The performance with respect 

to the output is roughly comparable unless there is some loss of performance 

during the peaks of the waveforms. The comparison was made against a data 

set referring to the signal with white noise added to the current loop. 

 
Figure 5.11: validation model motor adaptor identification 

 

  



69 
 

5.4 Ball screw – cutting head identification 

The part of the system consisting of the ball screw lead and the cutting head 

is included between the signals from the encoder, measured position, and the 

interferometric laser, laser_position. 

 

 
Figure 5.12: validation BS identification model -1st dataset 

 

The identification was done starting with the 2nd test in which white noise 

was added to the velocity loop. The fitting achieved with respect to a new set 

of data, in the case in figure with respect to the third movement performed 

in the 2nd test, reach values above 90%. When compared to other tests also 

performed, the values achieved are acceptable in terms of fitting and also 

with respect to the MSE (mean square error), the value of which in the case 

in the figure is 7.095e-5. 

For comparison, the prediction output compared to the first test in which the 

system was not excited by the addition of white noise is also included. 
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Figure 5.13: validation BS identification models- 2nd dataset 

 

The fitting achieved is 96.59%. It is interesting to note that the choice of the 

data range referred to a specific test provides a good identification even with 

respect to tests with different frequencies. As a verification, an identification 

was performed starting with data from test 1 and the same model was 

validated on a dataset from the same test and compared against the model 

mentioned above. 

 
Figure 5.14: Comparison with different tf during validation ID model 
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The result obtained shows that the brown curve (tf002) referring to the data 

from the system excitation has a higher fitting value than the blue model 

(tf10) obtained from the first test. 

The iterative process of finding the best transfer function shows that 

increasing the number of poles and zeros does not lead to an increase in 

fitting. The transfer function is as follows: 

 

 

 
Figure 5.15: Frequency response from BS's tf 

 

The system consists of zero and two poles. At high frequencies, there is a 

slope of -20db/dec due to the presence of the pole. By analysing the transfer 

function, the response is not position-dependent but speed-dependent. The 

two poles at the denominator highlight the mechanical elements present in 

this system, namely stiffness and damping.  
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𝑝1 = −2998
𝑟𝑎𝑑

𝑠
 

 

𝑝2 = −25,1
𝑟𝑎𝑑

𝑠
 

 

𝑧1 = −22,58
𝑟𝑎𝑑

𝑠
 

 

 

 

The two poles have negative real parts bringing the answers to zero so we 

can speak of stability. Poles are denoted by X and zero by O. 

  

Figure 5.16: poles and zeros position 
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6 First principles modelling: bond graph 

 

The need to be able to change components and verify how the system 

changes and reacts to new stimuli led to the modelling of a model from 

physics. The first principles approach used was via the Bond Graph, which 

relates multi-domain elements by considering the energy exchange that takes 

place between the components.  

The elements related to the bond graph were taken from Chapter 2. In this 

chapter of the paper, we report the models obtained through this approach 

Modelling followed the same approach used for data - driven, i.e. using the 

intermediate signals acquired during machine tests in order to compare and 

validate the models used. Finally, an aggregate model was generated for 

inclusion in the Simulink representation. 

 

6.1 Motor – adaptor modelling 

The bond graph modelling of the motor and adaptor was performed in 

MATLAB for the state-space calculations. The component data are listed in 

the table below. As can be seen, the motor's electrical domain data are also 

present in accordance with multi-domain modelling using the bond graph. 

  



74 
 

Motor 

Component Value udm description 

kmot 3900 Nm/rad motor stifness 

Jmot 4,40E-05 kg m2 motor inertia 

Ra 6,29 ohm resistance 

La 5,00E-03 H inductance 

Kt 0,62 N/A constat torque 

Adaptor 
tau 3   gear ratio 

krot 1,10E+04 Nm/rad stiffness spring 
Table 6-1: datasheet about motor adaptor for BG modelling 

Once the data was defined, the model was generated according to the 

guidelines mentioned in the last chapter. Through the inclusion of casualties, 

the constraints and states of the system were defined, from which the 

calculation was developed to obtain the equations of state and state space. 

 
Figure 6.1: Motor adaptor BG 
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The system has two sources. The voltage is from the drive, which processes 

the position signal from the CN as seen. The other source present takes into 

account external electrical torques such as the motor's resistor torque and any 

friction. This was the starting point for defining the system's constraints and 

casualties. There are three system states, related to the inductor, the motor 

inertia and the torsional joint stiffness. 

 

 
 

The table summarizes the relationships and the link between flow and effort 

of the respective components. Starting from these relationships and the 

casualty relative to junctions 1 and 0, the following relationships are 

obtained: 

𝑝2̇ = 𝑉 −
𝑅

𝐿
𝑝2  −

𝐾𝑡
𝐽𝑚𝑜𝑡

𝑝7
̇

 

𝑝7̇ =
𝐾𝑡
𝐿
𝑝2 − 𝐶𝑟 −  𝜏 𝐾𝑟𝑜𝑡𝑞9

̇
 

𝑞9̇ = 
𝜏

𝐽𝑚𝑜𝑡
 𝑝7

̇
 

  

Se : V e1 = T

I : L e2 = p2 p2 = L f2

R:R e3=R f3 

e5=Kt f4

e4=Kt f5

Se : Cr e6=Cr

I : Jmot e7=p7 p7 = Jmot e9

f9=τ f8

e8=τ e9

C : Krot f9=q9 e9=Krot q9

GY :  Kt

TF :τ
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From these equations, one can derive the state space by defining the output, 

which in the present case corresponds to the motor speed and torque input to 

the ball screw represented by the following equations: 

 

𝑚𝑜𝑡𝑜𝑟𝑠𝑝𝑒𝑒𝑑 =
𝑝7
𝐽𝑚𝑜𝑡

 

𝐵𝑆𝑠𝑝𝑒𝑒𝑑 =
𝜏

𝐽𝑚𝑜𝑡
 𝑞9 

The motor equation was subsequently integrated to evaluate the motor 

position and compare it with what was obtained from the comparison model. 

From the equations, the matrices A, B, C, D for the state space is defined. 

 

�̇� =  (

𝑝2
𝑝7̇
𝑞9̇

̇

)

̇

=

(

 
 
 
−
𝑅

𝐿
−
𝐾𝑡
𝐽𝑚𝑜𝑡

0

𝐾𝑡
𝐿

0 −𝜏 𝐾𝑟𝑜𝑡

0
𝜏

𝐽𝑚𝑜𝑡
0

)

 
 
 

(

𝑝2
𝑝7
𝑞9
) + (

1 0
0 1
0 0

) (𝑉 𝐶𝑟) 

 

𝑦 =  (
0

1

𝐽𝑚𝑜𝑡
0

0
𝜏

𝐽𝑚𝑜𝑡
0
) (

𝑓8
𝑞9
) + 0 

 

The state space is created in MATLAB to obtain a Simulink block via the ss 

function. 

 

6.2 Ball screw – cutting head modelling 

The second modelling concerns the ball screw lead system and the cutting 

head. As with the identification from data, the same data was used here. The 
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generated model has fewer elements than the previous one and the input 

signal used is a source flow, i.e. the encoder position, and the position at the 

output of the head was evaluated as output after appropriate integration. 

 

 
Table 6-2: datasheet about BS - cutting head 

 

The bond graph about the system below: 

 
Figure 6.2: BG modelling about BS and cutting head 

 

From the graph, in this case there is only one input, and the casualty analysis 

yields three states related to screw mass, screw stiffness and mass of the 

cutting head, respectively. 

 

p 13,33 mm screw ball ratio

kv 3,80E+08 N/m BS stiffness

mv 6,13E-01 kg screw mass

mhead 25 kg cutting head mass
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From the relations above and the analysis of causality, we obtain the 

equations of the system 

 

𝑝2̇ = 𝑘𝑣 𝑞3̇  

𝑞3̇ = 𝑝𝑜𝑠𝑒𝑛𝑐 − 
𝑝2
𝑚𝑣
−
1

𝑝

𝑝5
𝑚𝑡

̇
 

𝑝5̇ =
𝑘𝑣
𝑝
 𝑞3 

The output is: 

𝑏𝑒𝑎𝑚𝑠𝑝𝑒𝑒𝑑 =
𝑝5
𝑚𝑡

 

 

Here too, the velocity will be integrated to obtain the position of the beam 

and compare it with the data-driven model.  

The state space is as follows: 

 

�̇� = (

𝑝2
𝑝7̇
𝑞9̇

̇

) =

(

  
 

0 𝑘𝑣 0
1

𝑚𝑡
0 −

1

𝑝 𝑚𝑡

0
𝑘𝑣
𝑝

0
)

  
 
(

𝑝2
𝑝7
𝑞9
) + (

0
1
0
) (𝑝𝑜𝑠𝑒𝑛𝑐) 

𝑦 =  (0 0
1

𝑚𝑡
) (𝑓5) + 0 

Sf : posencoder f1= posencoder

I : mv e2  = p2 p2 = mv f2

C : kv f3  = q3 e3 = kv q3

e5 =  e4 /p

f4 =  f5 /p

I : mt e5 = p5 p5  =  mt  f5

TF : p
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The splitting of the System into two parts was done in order to improve the 

comparison to the identification made earlier. The model can be made whole 

by linking both parts as shown below. 

 
Figure 6.3: overall BG system 

 

The main difference between the models is in the presence of a derivative 

state placed between the adaptor and the ball screw lead. The decision not to 

consider the entire model is aimed at assessing the effect of each component 

by estimating and validating the individual items. 
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7 ANALYSIS AND COMPARISON OF MODELS 

 

In this chapter of the dissertation, the models generated with the two 

approaches are compared. To carry out this comparison, it was necessary to 

use Matlab@Simulink in which the modelled elements were implemented 

and developed using the toolbox for data-driven identification and using the 

MATLAB environment for first principles modelling. 

The Simulink diagram consists of the block in which the control signals, i.e. 

position, velocity and acceleration, are generated. Subsequent blocks relate 

to the part of the drive where the three control loops: position, speed and 

current. The output signal corresponds to the input voltage signal in the 

modelled part. 

The last blocks represent the model validation blocks where the tests and 

comparisons relating to the Z - axis were carried out. 

 
Figure 7.1: block scheme for comparison models 
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The first comparison made was between motor - adaptor models. The input 

signal used is torque. As seen in the previous chapter, the output of these 

models considers the position of the ball screw. It is logical to expect a non-

optimal trend in the output signal as the parameters constituting the second 

evaluated system present in the exchange interface are not considered in this 

model. The aim is to assess how the systems respond to the stimuli and 

whether the first principles model provides information on the components 

present. 

 

 
Figure 7.2: comparison output signal models respect reference signals- 1st modelling 

 

The three signals being compared are shown in the figure. In blue is the 

reference signal, in this case the encoder position. In yellow is the signal 

generated by the Hammerstein model, and in red the model obtained via the 

BG approach. 
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Figure 7.3: separate output signal – 1st modelling 

 

By zooming in on a few wave fronts, it can be observed that the trend and 

order of magnitude of the three curves is similar. However, the output 

obtained from the model generated through data-driven identification 

manages to follow the output signal better. The first principles model results 

as a trend in line with the two above, but in the rapid change of trajectory it 

lags, amplifying the signal. It is interesting to note how in the rise or fall the 

curves overlap, emphasizing how the problem of the model created is 

contained in the response to steady states with a damping element bound. 

 

In the second model comparison, an output signal from the cutting head is 

compared. The system as seen consists of a ball screw lead that transforms 

the motion in which damping elements and stiffnesses were also considered 

during BG modelling. In the graph, the curves are overlapped to the nearest 

μm. 
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Figure 7.4: comparison output signal models respect reference signals – 2nd modelling 

 

After zooming in, it can be noticed that the two model-related trends are 

similar. Compared to the previous case, the trend of the model identified via 

the data is confirmed, which follows the trend of the reference signal. The 

model generated by means of the BG also follows the trend of the signal 

whose only loss of alignment occurs in the low amplitude rising edge where 

the signal is slightly smooth but still negligible. 

 
Figure 7.5: separate output signal – 2nd modelling 
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After validation and comparison of the model, a test was performed by 

changing the data of a component in the system. Specifically, the mass of the 

cutting head was changed to test how the system reacted to an increase in 

mass with the same input signal. The result of the test is shown in the figure 

below. 

 

 
Figure 7.6: test with head mass changes respect previus singnal 

 

In the figure, it can be seen that with an increase in mass and the same input, 

there is a less rapid upward and downward trend as is the case with data from 

the datasheet. This trend is in agreement with what can be expected from 

physics. In order for this signal not to lose performance, it is necessary to 

check the input, which in the case under consideration is related to the current 

and torque supplied to the motor.   
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8 Conclusion 

 

In the conducted study, the identification and modelling of a system 

composed of an electromechanical axis were addressed. The activity was 

carried out, after a preliminary phase of system contextualization, with tests 

performed on the machine, acquiring movements of the cutting head through 

an interferometric laser. 

The data-driven identification was performed using the 

SystemIdentification@Matlab toolbox. The creation of a model using a first 

principles approach was carried out through the Bond Graph approach. The 

second modelling approach was conducted to have a custom model to verify 

how the system reacts to the change or replacement of elements. 

Four different tests were performed on the machine to first identify the 

dynamics of the Z-axis. The four tests had different characteristics, 

particularly three of which involved adding white noise at various points of 

the drive, specifically (velocity, torque, and current). 

The test with white noise added to the velocity control loop aimed to best 

identify the mechanical parameters. The data obtained from this test led to 

the identification of the mechanical part related to the ball screw lead. 

The third test involved adding white noise to the torque, thus bypassing the 

control action. The signal was very noisy, resulting in no interesting data for 

identification purposes. 

The fourth test was used to identify and validate the part related to the motor 

adaptor. The test involved adding white noise to the current control loop. 

Subsequently, a data set was used for validation and for comparing the 

created models. 
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The first test did not involve any white noise but was conducted by 

performing movements of the axis generating a square wave. Through this 

test, a frequency response analysis of the drive was carried out. In fact, the 

test allowed the acquisition of the input position of the drive and was used 

as an input signal for identifying the drive, using the torque input to the motor 

as the output.  

The availability of signals at different points in the system allowed for 

identification and subsequent modelling to be done in parts. 

The motor, adapter, and torsional stiffness composed one part of the system, 

while the cutting head and the ball screw lead formed the second part. 

The first part of the system was identified using a nonlinear method, the 

Hammerstein-Wiener Models, considering torque as the nonlinear input and 

encoder position as the nonlinear output. 

The second part was included between two position signals and was 

identified and represented using a transfer function. 

A part-wise procedure was also carried out for modelling using the bond 

graph approach. The models generated with this type of approach follow the 

reference signals. The model of the motor adapter has a behaviour that 

represents the desired output but with a delayed response to small variations, 

likely due to insufficiently identified damping effects. 

On the other hand, in the head–ball screw system, the model’s response 

allowed an evaluation even when changing the value of the cutting head 

mass. 

For the short-term purposes of the company, the data-driven model is 

sufficient for evaluations regarding the tracking algorithm in which the 

signals used are like the signals used for validation. 

For future purposes, the physical model can be improved by ad-hoc tests to 

identify damping and friction elements.  
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