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Abstract

In this master thesis, an approach is presented to fine-tune a foundation model
for image segmentation called the Segment Everything Everywhere Model (SEEM)
(90) using adapters, which are lightweight modules incorporated into both the seg-
mentation head and vision backbone to adapt to new tasks. Recognizing the need for
a large amount of annotated data for fine-tuning SEEM and the time-consuming
nature of data annotation, generative Al specifically Stable Diffusion (SD) (65)
model is employed to create a dataset comprising images and corresponding masks
for fine-tuning SEEM. The fine-tuning results indicate that integrating adapters
into the vision backbone significantly improves performance, yielding up to a 15%
enhancement compared to using adapters solely in the segmentation head. Further-
more, synthetic datasets generated by generative Al demonstrated their benefits,
resulting in a notable 13% improvement in segmentation task performance.

The project codes for fine-tuning SEEM https://github.com/msdkarimi/Segment-
Everything-Everywhere-All-At-Once

The project codes for generating annotated dataset using Stable diffusionhttps:
//github.com/msdkarimi/synthetic-dataset

1 Introduction

The rapid advancement of foundational models in artificial intelligence (AI) has revolu-
tionized natural language processing (NLP), computer vision, and other domains. These
models, pre-trained on massive datasets, provide a powerful starting point due to their ex-
tensive pre-training. In computer vision, foundational models have significantly enhanced

image segmentation tasks. Notable models like the Segment Anything Model (SAM) (42)


https://github.com/msdkarimi/Segment-Everything-Everywhere-All-At-Once
https://github.com/msdkarimi/Segment-Everything-Everywhere-All-At-Once
https://github.com/msdkarimi/synthetic-dataset
https://github.com/msdkarimi/synthetic-dataset

and Segment Everything Everywhere Model (SEEM) (90) exemplify this progress, offering

robust generalization across various tasks.

However, fine-tuning these models often necessitates a substantial amount of anno-
tated data, which is both time-consuming and resource-intensive to produce. Despite the
benefits of extensive pre-training and transfer learning, achieving optimal performance

still requires a considerable amount of annotated examples.

This master thesis focuses on fine-tuning SEEM, a foundational model, to perform
image segmentation using prompts or in an automatic manner. Given the constraints of
limited annotated data and the labor-intensive nature of manual annotation, we explore
the use of generative Al to overcome these limitations. Specifically, we utilize the Stable
Diffusion model (65) to generate images and their corresponding segmentation masks.
Although the Stable Diffusion model produces high-quality images, it does not directly
generate segmentation masks. To address this, we extract masks of the classes of interest
from the model’s internal representations. The generated dataset of images and masks is

then used to fine-tune the SEEM model for specific tasks.

This thesis evaluates the performance of a fine-tuned SEEM model on real-world
images, with the goal of assessing how well the generated dataset aligns with the target
task’s data distribution. The primary objectives are twofold: first, to fine-tune the SEEM
model by incorporating adapters at various points, and second, to leverage generative Al

for creating a synthetic dataset.

Ultimately, the thesis aims to determine the effectiveness of the fine-tuned model in
addressing real-world problems. It seeks to provide insights into the alignment and per-
formance of the generated dataset compared to the original task’s data distribution. By
using foundational models and generative Al, this approach aims to reduce the reliance
on labor-intensive data annotation while maintaining high performance in image segmen-

tation tasks.



2 State of the Art

2.1 Image Segmentation

Image segmentation is a key topic in image processing and computer vision with appli-
cations such as scene understanding, medical image analysis, robotic perception, video
surveillance, augmented reality, and image compression, among many others. Various
algorithms for image segmentation have been developed in the literature. Recently, due
to the success of deep learning models in a wide range of vision applications, there has
been a substantial amount of works aimed at developing image segmentation approaches

using deep learning models.

2.1.1 Background

Image segmentation is an essential component in many visual understanding systems. It
involves partitioning images (or video frames) into multiple segments or objects. Segmen-
tation plays a central role in a broad range of applications, including medical image analy-
sis (e.g., tumor boundary extraction and measurement of tissue volumes), autonomous
vehicles (e.g., navigable surface and pedestrian detection), video surveillance, and aug-

mented reality to count a few.

Numerous image segmentation algorithms have been developed in the literature, from
the earliest methods, such as thresholding (58), histogram-based bundling, region- growing
(56), k-means clustering (53), watersheds (52), to more advanced algorithms such as active

contours (40), graph cuts (5) and sparsity- based (71)-(51) methods.

Over the past few years, however, deep learning (DL) models have yielded a new
generation of image segmentation models with remarkable performance improvements

often achieving the highest accuracy rates on popular benchmarks resulting in a paradigm

shift in the field.

Image segmentation can be formulated as a classification problem of pixels with se-

mantic labels (semantic segmentation) or partitioning of individual objects (instance seg-



mentation). Semantic segmentation performs pixel-level labeling with a set of object
categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally a harder
undertaking than image classification, which predicts a single label for the entire image.
Instance segmentation extends semantic segmentation scope further by detecting and de-

lineating each object of interest in the image (e.g., partitioning of individual persons).

Image segmentation is arguably the most important yet challenging problem in com-
puter vision. In the past, we have witnessed significant progress in a wide range of

segmentation tasks including instance, semantic and panoptic segmentation ((46), (14),

(81), (28))

Most recently, we are observing a clear trend toward more flexible segmentation models

in different aspects:

e From closed-set to open-vocabulary segmentation. Many recent works pro-
posed to either leverage contrastive learning methods or pretrained multi-modal
foundation models (e.g., CLIP (60)) to make the segmentation models more trans-

ferable to unseen concepts ((22), (89), (83));

e From generic to referring segmentation. In addition to generic segmentation
that segments an image thoroughly given a predetermined set of concepts, language-
based referring segmentation provides a user-friendly way of segmenting a specific

region referred by an arbitrary text phrase ((86), (37), (49));

e From one-shot to interactive segmentation. In practice, segmentation models
do not necessarily produce satisfactory masks in one round. As such, people are
also studying how to progressively refine the segmentation results through intimate

interactions between humans and models ( (15), (50), (12))

Overview of Deep Neueal Networks This section provides an overview of some of
the most prominent deep learning architectures used by the computer vision community;,
including convolutional neural networks (CNNs) (44), recurrent neural networks (RNNs)

and long short term memory (LSTM) (34) and encoder-decoders (2).

It is worth mentioning that in some cases the DL-models can be trained from scratch
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on new applications/datasets (assuming a sufficient quantity of labeled training data),
but in many cases there are not enough labeled data available to train a model from
scratch and one can use transfer learning to tackle this problem. In transfer learning,
a model trained on one task is re-purposed on another (related) task, usually by some
adaptation process toward the new task. For example, one can imagine adapting an image
classification model trained on ImageNet to a different task, such as texture classification,
or face recognition. In image segmentation case, many people use a model trained on
ImageNet (a larger dataset than most of image segmentation datasets), as the encoder
part of the network, and re-train their model from those initial weights. The assumption
here is that those pre-trained models should be able to capture the semantic information
of the image required for segmentation, and therefore enabling them to train the model

with less labeled samples.

Convolutional Neural Networks (CNNs) CNNs are among the most successful and
widely used architectures in the deep learning community, especially for computer vision
tasks. CNNs were initially proposed (24), based on the hierarchical receptive field model

of the visual cortex.

Subsequently, Waibel et al. (80) introduced CNNs with weights shared among tem-
poral receptive fields and backpropagation training for phoneme recognition, and LeCun

et al. (44) developed a CNN architecture for document recognition Fig. 1.
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Figure 1: Architecture of convolutional neural networks. From (44).

CNNs mainly consist of three type of layers:

e convolutional layers, where a kernel (or filter) of weights is convolved in order to

extract features



e nonlinear layers, which apply an activation function on feature maps (usually element-

wise) in order to enable the modeling of non-linear functions by the network

e pooling layers, which replace a small neighborhood of a feature map with some
statistical information (mean, max, etc.) about the neighborhood and reduce spatial

resolution

The units in layers are locally connected; that is, each unit receives weighted inputs
from a small neighborhood, known as the receptive field, of units in the previous layer. By
stacking layers to form multi-resolution pyramids, the higher-level layers learn features
from increasingly wider receptive fields. The main computational advantage of CNNs is
that all the receptive fields in a layer share weights, resulting in a significantly smaller
number of parameters than fully-connected neural networks. Some of the most well-known

CNN architectures include: AlexNet (43), VGGNet (69) and ResNet (31).

Recurrent Neural Networks (RNNs) and the LSTM RNNs (67) are widely used
to process sequential data, such as speech, text, videos, and time-series, where data at
any given time/position depends on previously encountered data. At each time-stamp the
model collects the input from the current time X; and the hidden state from the previous

step h;_1 , and outputs a target value and a new hidden state Fig. 2.

Unfold

(5

@@@

Figure 2: Architecture of a simple recurrent neural network.

RNNs are typically problematic with long sequences as they cannot capture long-
term dependencies in many real-world applications (although they exhibit no theoretical
limitations in this regard) and often suffer from gradient vanishing or exploding problems.
However, a type of RNNs called Long Short Term Memory (LSTM) (34) is designed to

avoid these issues.



The LSTM architecture Fig. 3 includes three gates (input gate, output gate, forget
gate), which regulate the flow of information into and out from a memory cell, which

stores values over arbitrary time intervals.
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Figure 3: Architecture of a standard LSTM module
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Encoder-Decoder and Auto-Encoder Models Encoder-Decoder models are a fam-
ily of models which learn to map data-points from an input domain to an output domain
via a two-stage network: The encoder, represented by an encoding function z = f(z),
compresses the input into a latent-space representation; the decoder, y = g(z), aims to

predict the output from the latent space representation (2), (27).

The latent representation here essentially refers to a feature (vector) representation,
which is able to capture the underlying semantic information of the input that is useful for
predicting the output. These models are extremely popular in image-to-image translation
problems; as well as for sequence-to-sequence models in NLP. Fig. 4 illustrates the block-

diagram of a simple encoder-decoder model.

Input Image Latent Output Map
Representation
‘ Encoder Decoder
. 3 g) > > <
X

Figure 4: The architecture of a simple encoder-decoder model




A powerful and flexible architecture for image segmentation tasks is U-Net (66). The
U-Net model is a convolutional neural network architecture that was originally designed
for biomedical image segmentation. Fig. 5 The U-Net characterized by its encoder-
decoder structure, use of skip connections, and efficiency with limited data. Its ability to
combine high-level and low-level features makes it a popular choice for various applications

beyond its original domain of biomedical imaging.
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Figure 5: The U-net model. The blue boxes denote feature map blocks with their indicated
shapes

Transformer-based Models : Vanilla Transformer (79) is a seminal model in the
transformer-based research field. It is an encoder-decoder structure that takes tokenized
inputs and consists of stacked transformer blocks. Each block has two sub-layers: a
multi- head self-attention (MHSA) layer and a position-wise fully- connected feed-forward
network (FFN). The MHSA layer allows the model to attend to different parts of the input
sequence while the FFN processes the output of the MHSA layer. Both sub-layers use

residual connections and layer normalization for better optimization.

In the vanilla transformer, the encoder and decoder both use the same architecture.
However, the decoder is modified to include a mask that prevents it from attending to
future tokens during training. Additionally, the decoder uses sine and cosine functions
to produce positional embeddings, which allow the model to understand the order of
the input sequence. Subsequent models such as BERT and GPT- 2 have built upon its

architecture and achieved state-of-the- art results on a wide range of natural language



processing tasks.

e Self-Attention: he core operator of the vanilla trans- former is the self-attention
(SA) operation. Suppose the input data is a set of tokens X = [z1,x9,...,25] €
R¥*¢ N is the token number and c is token dimension. The positional encoding P

may be added into I = X + P.

The input embedding I goes through three linear projection layers (W7 € R4 Wk ¢
R4 Vv € Re*9) to generate Query (Q), Key (K), and Value (V):

Q=IWIK=IWFV=IW", (1)

where d is the hidden dimension. The Query and Key are usually used to generate

the attention map in SA. Then the SA is performed as follows:

O =SAQ,K,V) = Softmaz(QK)V. (2)

According to Equ. 2, given an input X, self-attention allows each token zx; to attend
to all the other tokens. Thus, it has the ability of global perception compared with
local CNN operator.

e Multi-Head Self-Attention: In practice, multi-head self-attention (MHSA) is
more commonly used. The idea of MHSA is to stack multiple SA sub-layer in
parallel, and the concatenated outputs are fused by a projection matrix W/%e ¢
Rdxc:

O = MHSA(Q, K,V) = concat([SA;,..SAx] )W, (3)

where SA; = SA(Q;, K;,V;) and H is the number of the head. Different heads have

individual parameters. Thus, MHSA can be viewed as an ensemble of SA.

e Feed-Forward Network: The goal of feed-forward net- work (FFN) is to enhance
the non-linearity of attention layer outputs. It is also called multi-layer perceptron
(MLP) since it consists of two successive linear layers with non-linear activation

layers.



Meta-Architecture

e Backbone: Before ViTs, CNNs were the standard approach for feature extraction
in computer vision tasks. To ensure a fair comparison, many research works (7) and
(29) used the same CNN models, such as ResNet50 (30). ViT, utilizes a standard
transformer encoder for feature extraction. It has a specific input pipeline for images,
where the input image is split into fixed-size patches, such as 16 x 16 patches. These
patches are then processed through a linear embedding layer. Then, the positional
embeddings are added to each patch. Afterward, a standard transformer encoder
encodes all patches. It contains multiple multi-head self-attention and feed-forward

layers.

For instance, given an image I € R7*W>3 ViT first reshapes it into a sequence of
flattened 2D patches: I, € RV*P *x3 where N is the number of patches and P is
the patch size. With patch embedding operations, the final input is I;,, € RV*P*x¢
, where C' is the embedding channel. To perform classification, an extra learnable
embed- ding “classification token” (CLS) is added to the sequence of embedded
patches. After the standard transformer for all patches, I,,; € RV*P**C ig obtained.
For segmentation tasks, ViT is used as a feature extractor, meaning that I, is

resized back to a dense map F € RFIXWxC,

e Neck: Feature pyramid network (FPN) has been shown effective in object detection

and instance segmentation (47), (48) and (74) for scale variation modeling.

FPN maps the features from different stages into the same channel dimension C for
the decoder. Several works (59), (26) design stronger FPNs via cross-scale modeling

using dilation or deformable convolution.

For example, Deformable DETR, (88) proposes a deformable FPN to model cross-
scale fusion using deformable attention. Lite-DETR (45) further refines the de-
formable cross-scale attention design by efficiently sampling high-level features and
low-level features in an interleaved manner. The output features are used for decod-
ing the boxes and masks. The role of FPN is the same as previous detection-based

or FCN-based segmentation methods.
e Object Query: Object query is first introduced in DETR (7). It plays as the
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dynamic anchors that are used in detectors (29), (63). In practice, it is a learnable
embedding Q.; € RNinsxd N represents the maximum instance number. The
query dimension d is usually the same as feature channel c. Object query is refined
by the cross-attention layers. Each object query represents one instance of the
image. During the training, each ground truth is assigned with one corresponding
query for learning. During the inference, the queries with high scores are selected
as output. Thus, object query simplifies the design of detection and segmentation
models by eliminating the need for hand-crafted components such as non-maximum

suppression (NMS).

Transformer Decoder: Transformer decoder is a crucial architecture component
in transformer-based segmentation and detection models. Its main operation is
cross-attention, which takes in the object query (Q); and the image/video feature

F.

It outputs a refined object query, denoted as @),,;. The cross-attention operation is
derived from the vanilla transformer architecture, where Q)n,; serves as the query,

and F'is used as the key and value in the self-attention mechanism.

After obtaining the refined object query .., it is passed through a prediction FFN,
which typically consists of a 3-layer perceptron with a ReLLU activation layer and
a linear projection layer. The FFN outputs the final prediction, which depends
on the specific task. For example, for classification, the refined query is mapped
directly to class prediction via a linear layer. For detection, the FFN predicts the
normalized center coordinates, height, and width of the object bounding box. For
segmentation, the output embedding is used to perform dot product with feature F' |
which results in the binary mask logits. The transformer decoder iteratively repeats
cross-attention and FFN operations to refine the object query and obtain the final
prediction. The intermediate predictions are used for auxiliary losses during training
and discarded during inference. The outputs from the last stage of the decoder are

taken as the final detection or segmentation results. The detailed process is shown

in Fig. 6 (b).

11
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Figure 6: Illustration of (a) meta-architecture and (b) common operations in the decoder.

e Mask Prediction Representation: Transformer-based segmentation approaches
adopt two formats to represent the mask prediction: pixel-wise prediction as FCNs
and per- mask-wise prediction as DETR. The former is used in semantic-aware
segmentation tasks, including SS, VSS, VOS, and etc. The latter is used in instance-
aware segmentation tasks, including IS, VIS, and VPS, where each query represents

each instance.

Dataset

Defining Things and Stuff : Semantic classes can be either things or stuff. The

literature provides definitions for several aspects of stuff and things, including:

e Shape: Things have characteristic shapes such as car, cat, phone, whereas stuff is
amorphous such as sky, grass, water (6). Stuff mostly exhibits as colors or textures

and has less well-defined shapes (19).

e Size: Things occur at characteristic sizes with little variance, whereas stuff regions
are highly variable in size (6). An stuff is defined by a homogeneous or repetitive
pattern of fine-scale properties, but has no specific or distinctive spatial extent or

shape. A thing has a specific size and shape (32).

e Parts: Thing classes have identifiable parts, whereas stuff classes do not (e.g. a

piece of grass is still grass, but a wheel is not a car) (6).

12



e Instances: Stuff classes are typically not countable, and have no clearly defined
instances. Whilst on the other hand, things are countable, such that we can find

multiple person or can in a scene (19)

e Texture: Stuff classes are typically highly textured, so they have no consistent

shape but fairly consistent texture (75)

Several works have shown that different techniques are required for the detection of
stuff and things. Moreover, several works have shown that stuff is a useful contextual

cue to detect things and vice versa (6).

Stuff classes should (1) be mutually exclusive; (2) in their ensemble, cover the vast
majority of the stuff surface appearing in the dataset; (3) be frequent enough; (4)
have a good level of granularity, around the base level for a human. However, these
criteria conflict with each other: if we label all vegetations as vegetation, the labels
are too general. On the other extreme, if we create a separate class for every single

type of vegetation, the la- bels are too specific and infrequent (6).

Although stuff classes cover the majority of the image surface, one might argue they
are just irrelevant background pixels. The COCO dataset is annotated with five
captions per image, which have been written explicitly to describe its content, and
therefore capture the most relevant aspects of the image for a human. To emphasize
the importance of stuff for scene understanding (6). analyze these captions, counting
how many nouns point to things and stuff respectively. They use a Part-Of- Speech

(POS) tagger (77) to automatically detect nouns.

Results indicate that stuff covers more than a third of the nouns (38.2%). This

clearly shows the importance of stuff according to the COCO image captions.

e Spatial Context between Stuff and Things: (6) analyze spatial context by
considering the relative image position of one class with respect to another. For
simplicity, here they explain how to compute the spatial context for one particular
reference class, i.e. car. For every image containing a car, they extract a set of car

regions, i.e. connected components of car pixels in the annotation map.

Next they compute a histogram of image pixels surrounding the car regions, with

two spatial dimensions (distance, angle) and one dimension for the class label. To

13



determine in which spatial bin a certain pixel lands, they (1) compute the distance
between the pixel and the nearest point in the car region (normalized by image size);

(2) compute the relative angle with respect to the cen- ter of mass of the car region.

Results reveals several interesting contextual relations. For instance, Trains are
typically found above railroads (thing-stuff). TVs are typically found in front of
persons (thing-thing). Tiled walls occur above tiled floors (stuff-stuff), and roads are
flanked by persons on both sides (stuff-thing). Note that these contextual relations
are not necessarily symmetric: most cars appear above a road, but many roads have

other things above them.

e Importance of stuff and things: In terms of surface cover, (6) measure the
frequencies of stuff and thing pixels in the COCO-Stuff annotations. Results show
that the majority of pixels are stuff (69.1%). They also compute statistics for the
labeled regions in COCO-Stuff, i.e., connected components in the pixel annotation
map. They use such regions as a proxy for class instances, as stuff classes do not

have instances. They found that 69.4% of the regions are stuff and 30.6% things.

2.1.2 State Of The Art models

Segment Anything Model : The Segment Anything Model (SAM) (42) is an in-
novative image segmentation model developed by Meta Al Research, renowned for its
versatility and powerful zero-shot learning capabilities. The model is designed to segment
any object in an image based on various types of user prompts, including masks, boxes,
and points. SAM’s architecture leverages a large dataset, consisting of over 1 billion
masks from 11 million images, which allows it to generalize well across diverse segmenta-
tion tasks without the need for additional training. This foundational aspect makes SAM
particularly useful for applications where rapid and accurate segmentation is required

without the availability of task-specific training data.

Architecture and Technology : SAM employs a transformer-based architecture,
which is particularly adept at capturing long-range dependencies and contextual infor-

mation in images. This architecture leverages self-attention mechanisms to process and

14



integrate information from various parts of the image, ensuring comprehensive feature
extraction. Additionally, SAM incorporates a multi-task learning framework, allowing it
to jointly learn from various segmentation tasks. This framework enhances its ability to

generalize across different types of segmentation challenges.

Key Features and Performance : One of SAM’s standout features is its ability to
accept diverse input prompts, such as points, boxes, and masks, to guide the segmentation
process. This flexibility makes SAM exceptionally user-friendly and adaptable to different
user needs and application contexts. In terms of performance, SAM has demonstrated high
accuracy across a wide range of benchmarks and datasets. It is optimized for both speed
and computational efficiency, making it suitable for real-time applications and scalable

deployment in various environments.

Applications and Impact : SAM’s versatility makes it applicable across numer-
ous domains. In general computer vision, it can be used for object detection, recognition,
and scene understanding. In the medical field, SAM can assist in accurately segmenting
anatomical structures and detecting lesions in medical images. For autonomous driving,
SAM helps in identifying and segmenting objects in complex driving environments, con-
tributing to safer and more reliable self-driving systems. Overall, SAM represents a
significant advancement in making segmentation more accessible and practical for diverse

real-world applications.

Segment Everything Everywhere Model : The Segment Everything Everywhere
Model (SEEM) (90) is a cutting-edge image segmentation model designed to handle vari-
ous segmentation tasks simultaneously. Developed to operate as a universal segmentation
interface, SEEM incorporates diverse prompting mechanisms to achieve a high degree of
versatility. The model’s architecture supports different types of spatial queries, including
points, boxes, scribbles, and masks, allowing it to generalize across multiple segmentation
tasks without the need for extensive retraining. This makes SEEM an effective tool for

applications requiring adaptive and prompt-based segmentation capabilities.
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Architecture and Technology : SEEM is designed to serve as a universal image
segmentation model by integrating a versatile and interactive architecture. The model’s
architecture is built upon a joint visual-semantic space, which allows for the dynamic
composition of visual and text prompts, enhancing its adaptability and compositional-
ity. Additionally, SEEM incorporates learnable memory prompts to retain segmentation
history, improving consistency and accuracy over time. By leveraging a text encoder to
encode text queries and mask labels into the same semantic space, SEEM achieves open-
vocabulary segmentation, making it highly effective for various segmentation challenges
with minimal supervision. This comprehensive design ensures SEEM’s capability to per-
form interactive segmentation, generic segmentation, referring segmentation, and video
object segmentation across multiple datasets, establishing it as a robust and versatile tool

for image segmentation tasks.

Key Features and Performance

e Versatility. SEEM introduces a new visual prompt to unify different spatial queries
including points, boxes, scribbles and masks, which can further generalize to a

different referring image.

e Compositionality: SEEM learns a joint visual-semantic space between text and
visual prompts, which facilitates the dynamic composition of two prompt types

required for various segmentation tasks.

e Interactivity: SEEM incorporates learnable memory prompts into the decoder to
retain segmentation history through mask-guided cross-attention from decoder to

image features

e Semantic-awareness: SEEM uses a text encoder to encode text queries and mask

labels into the same semantic space for open-vocabulary segmentation.

Applications and Impact : SEEM’s broad applicability makes it suitable for var-
ious domains, including medical imaging, remote sensing, and robotics. In medical imag-

ing, SEEM can provide detailed and accurate segmentations of anatomical structures and
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pathological findings, aiding in diagnosis and treatment planning. In remote sensing, it
can analyze satellite images for environmental monitoring, urban planning, and disaster
management. In robotics, SEEM’s real-time segmentation capabilities are crucial for nav-
igation and object manipulation tasks. By providing a robust and versatile segmentation
solution, SEEM is poised to significantly impact numerous fields, enhancing the precision

and efficiency of segmentation-related tasks.

Comparison Between SAM and SEEM : SEEM offers significant advantages over
the SAM by integrating richer contextual understanding and more versatile segmentation
capabilities. While SAM excels at identifying and segmenting any object within an image
based on prompts, SEEM enhances this by combining promptable segmentation with ad-
ditional contextual and semantic information, allowing it to not only segment objects but
also understand their relationships and broader scene context. This integration enables
SEEM to deliver more accurate and comprehensive segmentation results, making it more
effective for complex visual tasks and applications that require nuanced understanding of

scenes, such as autonomous driving, medical imaging, and advanced visual search systems.

2.2 Generative Modeling

With the development of neural networks and the increase in computational power, deep
generative modeling has become one of the leading directions in Al. Its applications vary
from typical modalities considered in machine learning, i.e., text analysis, image analysis,
audio analysis, to problems in active learning, reinforcement learning, graph analysis and

medical imaging (76).

In some applications, it is indeed important to generate (synthesize) objects or mod-
ify features of objects to create new ones. However, in others like active learning it is
important to ask for uncertain objects, i.e., objects with low p(x) that should be labeled
by an oracle. In reinforcement learning, on the other hand, generating the next most
likely situation (state) is crucial for taking actions by an agent. For medical applications,
explaining a decision, e.g., in terms of the probability of the label and the object, is more

informative to a human doctor than simply assisting with a diagnosis label. If an Al
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system would be able to indicate how certain it is and quantify whether the object is
suspicious (i.e., low p(x)) or not, then it might be used as an independent specialist that

outlines its own opinion (76).

These examples clearly indicate that many fields, if not all, could highly benefit from
(deep) generative modeling. Obviously, there are many mechanisms that Al systems
should be equipped with. However, we claim that the generative modeling capability is

definitely one of the most important ones, as outlined in the above-mentioned cases.

As Fig. 7 depicts, we can divide deep generative modeling into three main groups:

Deep Generative Models

Flow-based
models (e.g.,
RealNVP)

Autoregressive Latent
models (e.g., variable
Pixel CNN) models

I
[ [ |

Implicit Prescribed Diffusion-Based
models

models (e.g., models
GANs) (e.g.,VAEs)

Figure 7: Generative Modeling types

2.2.1 Background

Autoregressive generative models : Modeling the distribution of natural images is
a landmark problem in unsupervised learning. This task requires an image model that is
at once expressive, tractable and scalable. Since images are high dimensional and highly

structured, estimating the distribution of natural images is extremely challenging (78).

One effective approach to tractably model a joint distribution of the pixels in the
image is to cast it as a product of conditional distributions; The factorization turns the
joint modeling problem into a sequence problem, where one learns to predict the next
pixel given all the previously generated pixels. The generation proceeds row by row and

pixel by pixel (78).
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Figure 8: To generate pixel z; one conditions on all the previously generated pixels left
and above of x;.

Architectures : The majority of research is focused on improving network archi-
tectures to increase their receptive fields and memory, ensuring the network has access to
all parts of the input to encourage consistency, as well as increasing the network capacity,

allowing more complex distributions to be modelled (3).

¢ Recurrent Neural Networks: A natural architecture to apply is that of standard
recurrent neural networks (RNNs) such as LSTMs and GRUs which model sequential
data by tracking information in a hidden state. However, RNNs are known to
forget information, limiting their receptive field thus preventing modelling of long-
range relationships. This can be improved by stacking RNNs that run at different
frequencies allowing long data such as multiple seconds of audio to be modelled.
Nevertheless, their sequential nature means that training can be too slow for many

tasks.

e Causal Convolutions: An alternative approach is that of causal convolutions,
which apply masked or shifted convolutions over a sequence. When stacked, this only
provides a receptive field linear with depth, however, by dilating the convolutions

to skip values with some step the receptive field can be orders of magnitude higher.

e Self-Attention: More recently self-attention (known as Transformers when used in
an encoder-decoder setup) has made significant strides improving not only autore-
gressive models, but also other generative models due to its parallel nature, stable
training, and ability to effectively learn long-distance dependencies. This is achieved
using an attention scheme that can reference any previous input where an entirely

independent process is used per time step so that there are no dependencies.
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Standard autoregressive networks are popular for text/audio generation (3). While
autoregressive models are extremely powerful density estimators, sampling is inherently
a sequential process and can be exceedingly slow on high dimensional data. Additionally,
data must be decomposed into a fixed ordering; while the choice of ordering can be clear
for some modalities (e.g. text and audio), it is not obvious for others such as images and

can affect performance depending on the network architecture used.

Additionally, there is no natural latent representation associated with autoregressive
models. It means that the model doesn’t inherently learn a structured, interpretable

representation of the data (23).

Flow-based models: While training autoregressive models through maximum likeli-
hood offers plenty of benefits including stable training, density estimation, and a useful
validation metric, the slow sampling speed and poor scaling properties handicaps them
significantly (Bond-Taylor, et al., 2022). Moreover, they lack a latent representation,
therefore, it is not obvious how to manipulate their internal data representation that

makes it less appealing for tasks like compression or metric learning (76)

Normalizing flows are a technique that also allows exact likelihood calculation while

being efficiently parallelisable as well as offering a useful latent space for downstream

tasks (3).

Data space X Latent space Z
¥,
Inference _ f i :
T~ px & "z; . = G -
z = f (iL‘ ) .“‘5%’;\?
Generation
zZn~ Pz P
-1
z=f""(2)

Figure 9: Example of Flow-based model

Flow-based models learn an invertible, stable, mapping between a data distribution
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px and a latent distribution py (typically a Gaussian). Here we show a mapping that has
been learned on a toy 2-d dataset. As shown in Fig. 9, The function f(x) maps samples
x from the data distribution in the upper left into approximate samples 2z from the latent
distribution, in the upper right. This corresponds to exact inference of the latent state
given the data. The inverse function, f~!(z), maps samples z from the latent distribution
in the lower right into approximate samples x from the data distribution in the lower left.

This corresponds to exact generation of samples from the model (23).

So, Normalizing flow is a way of mapping a data’s complex probability distribution
q(z) to a simple latent distribution p(z) using a set of invertible, bijective and continuous

functions z = f(z) such that both f and f~! are differentiable (62).

Although flow models are based on modeling the exact data distribution, they are
often computationally expensive since they depend on the calculation of jacobians, have
scalability and expressiveness issues on large and complex data distributions, and because
of the invertibility constraint in calculations, require the input and output dimensions to
be the same (62). Besides, normalizing flow models are typically less parameter efficient

than other generative models (3).

Latent variable models

Both flow-based models and autoregressive models, model the likelihood function di-
rectly, that is, either by factorizing the distribution and parameterizing conditional dis-
tributions or by utilizing invertible transformations (neural networks) for the change of

variables formula as in flows (76).

Unlike flow-based models, they do not require the invertibility of neural networks and,
thus, we can use any arbitrary architecture for encoders and decoders. In contrast to auto
regressive models, they learn a low-dimensional data representation and we can control

the bottleneck (i.e., the dimensionality of the latent space) (76).

Generative Adversarial Networks : Generative Adversarial Networks (GANS)
are a class of deep learning models designed for generative tasks, such as image generation,

style transfer, and data synthesis. GANs consist of two neural networks, the generator
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and the discriminator, that are trained competitively.

GANs are a class of generative models that implicitly learns the probability distri-
bution ¢(z) of the dataset using an adversarial approach where two networks, the dis-
criminator D and the Generator G play a two-player min-max game. The discriminator’s
objective is to maximize the binary classification of distinguishing real and generated im-
ages, whereas the generator’s objective is to fool the discriminator into misclassifying the

generated images (62).

The adversarial nature of GANs makes them notoriously difficult to train. Nash equi-
librium is hard to achieve since non-cooperation cannot guarantee convergence (3). This
results in a highly unstable training process as optimizing D can lead to the deterioration

of G and vice-versa (62).

Mode collapse is another problem where the generator’s objective function converges to
a specific data distribution instead of the whole training set, thus only generating images
belonging to this small subset (62). This issue on the other hand for discriminator leads
to jump between modes resulting in catastrophic forgetting, where previously learned

knowledge is forgotten when learning something new (3).

In addition, when the discriminator is trained to optimality, the gradients of D ap-
proach zero. This causes the problem of vanishing gradients for the generator, where it

has no guidance into which direction to follow for achieving optimality (62).

To prune these problems, various modifications on the vanilla GAN were introduced,
which either suggested architectural optimizations or loss function optimizations (38). As
studied by (17) the loss function optimizations were divided into optimizing the discrim-
inator’s or generator’s loss objective (62). These include minimizing the f-divergences
along with the Jensen-Shannon divergence (57), weight normalization for stabilizing D’s
training (54), WGAN and WGAN-GP (1) which changed the objective of D from binary
classification to a probability output by applying the Earth Mover (EM) or Wasserstein
distance, EBGAN (62).

In Conditional GAN (¢cGAN), the generator and discriminator are conditioned on ad-

ditional information, such as class labels or attributes. This enables controlled generation,
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like generating images with specific attributes.

Variational Autoencoders : Before going to Variational Autoencoder, we will first
discuss Auto Encoder. Auto Encoder is a self- supervised neural network that learns how
to encode the input into lower dimensions, then decode and reconstruct the data again

to be as close as the input as efficiently as possible Fig. 10.

"
Encoder ;'

Original Compressed Reconstruction

Figure 10: Example of Autoencoder model

An autoencoder consists of three parts:

e Encoder, the layers that encode the input data into a lower dimension representa-

tion.

e Compressed, the layer that contains the encoded/compressed representation and

the lowest dimension. Also known as the Bottleneck.

e Decoder, the layers that learn to decode or reconstruct back the encoded represen-

tation into the data as close as the input data.

For Autoencoder to learn the best encoding and decoding, Autoencoder will aim to
minimize the reconstruction error, which is basically the difference between the recon-

structed data and the input.

Variational autoencoders transfer your input onto a distribution Fig. 11 (amortized
variational Inference), and instead of translating it to a fixed vector, you feed a sample
from that distribution to your decoder network. A variational auto-encoder’s loss function

consists of two terms: one for the reconstruction loss and the other for the KL divergence.
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Encoder o

Figure 11: Example of Variational Autoencoder model

Variational Inference enables an efficient computation of a lower bound of likelihood for
the observed data distribution. This lower bound is popularly referred to as the Evidence

Lower BOund (ELBO).

I p(x) = Epngy (o [ p(x|2)] — K Lgs(2]x) || p(2)] + K Llgs(2x) || p(z|x)].  (4)

(. /

-
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If model takes too simplistic posterior, we can end up with a bad VAE anyway. By
considering Fig. 12, If the ELBO is a loose lower bound of the log-likelihood, then the
optimal solution of the ELBO could be completely different than the solution of the
log-likelihood (76).

In pp(x)

ELBO(x:8. ¢

6 0 0
Figure 12: The ELBO is a lower bound on the log likelihood. As a result, 6 maximizing

the ELBO does not necessarily coincide with 6* that maximizes Inp(z). The looser the
ELBO is, the more this can bias maximum likelihood estimates of the model parameters

VAESs constitute a very powerful class of models, mainly due to their flexibility. Unlike
flow-based models, they do not require the invertibility of neural networks and, thus, we
can use any arbitrary architecture for encoders and decoders. In contrast to ARMs, they
learn a low-dimensional data representation and we can control the bottleneck (i.e., the
dimensionality of the latent space). However, they also suffer from several issues. Except
the ones mentioned before (i.e., a gap between the ELBO and the log-likelihood function

for too simplistic variational posteriors), the potential problems are the following:
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e posterior collapse: This causes the model to initially learn to ignore z and go after
low hanging fruit, explaining the data with the more easily optimized decoder. Once
this has happened, the decoder ignores the encoder and little to no gradient signal
passes between the two, yielding an undesirable stable equilibrium with the KL cost

term at zero (4).

e hole problem: imagine that we have the standard Gaussian prior and the aggregated
posterior (i.e., an average of variational posteriors over all training data). As a result,
there are regions where there prior assigns high probability but the aggregated
posterior assigns low probability, or other way around. Then, sampling from these
holes provides unrealistic latent values and the decoder produces images of very low

quality (64).

Diffusion Models : The goal is to define a forward (or inference) diffusion process
which converts any complex data distribution into a simple, tractable, distribution, and
then learn a finite-time reversal of this diffusion process which defines the generative

model distribution (70).

Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model
is a deep generative model that is based on two stages, a forward diffusion stage and a re-
verse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed
over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at
recovering the original input data by learning to gradually reverse the diffusion process,
step by step (18). Generally, Diffusion models are a class of probabilistic generative mod-
els that learn to reverse a process that gradually degrades the training data structure

(18). The longer the trajectory the smaller the diffusion rate can be made.

There are three formulations of diffusion models, namely denoising diffusion proba-
bilistic models, noise conditioned score networks, and the approach based on stochas-
tic differential equations that generalizes over the first two methods. Each formulation
obtains remarkable results in image generation, surpassing GANs while increasing the

diversity of the generated samples (18).
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The most significant disadvantage of diffusion models remains the need to perform
multiple steps at inference time to generate only one sample. Despite the important
amount of research conducted in this direction, GANs are still faster at producing images

(18).

In image generation diffusion models can be categorized in two classes, Unconditional

Image Generation and Conditional Image Generation.

¢ Unconditional Image Generation: Such models do not require supervision sig-
nals, being completely unsupervised. We consider this as the most basic and generic

setting for image generation.

¢ Conditional Image Generation: Diffusion models could be applied to conditional
image synthesis. The condition is commonly based on various source signals, in most
cases some class labels being used. Some methods perform both unconditional and

conditional generation.

2.2.2 State Of The Art

DALL-E : DALL-E (61), developed by OpenAl, is a groundbreaking neural network-
based model designed for generating images from textual descriptions. It utilizes the
Transformer architecture, which is well-known for its success in natural language pro-
cessing tasks. Specifically, DALL-E combines a variational autoencoder (VAE) with au-
toregressive modeling. The model is trained on a diverse dataset of text-image pairs,
enabling it to understand and generate a wide range of images based on textual prompts.
DALL-E’s architecture allows it to handle complex scenes and objects described in natural

language, producing high-quality images that align closely with the given descriptions.

Architecture : The DALL-E architecture can be considered as a two-stage process
involving a discrete variational autoencoder (dVAE) and a Transformer model. In the first
stage, the dVAE is used to compress high-resolution images into a sequence of discrete
latent codes. This involves encoding images into a lower-dimensional latent space while

preserving crucial details that can be used for high-fidelity image reconstruction. The
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dVAE helps in reducing the complexity of the image generation task by transforming the

images into a manageable format for the subsequent text-to-image translation.

In the second stage, the Transformer model takes over, where it is trained to map
textual descriptions to the sequences of latent codes produced by the dVAE. This involves
processing the input text using the attention mechanism to understand and generate
the sequence of latent codes that best represent the described image. The Transformer
effectively learns the relationships and dependencies between the textual input and the
visual features encoded by the dVAE. Once the latent codes are generated, they are
decoded back into images using the decoder part of the dVAE, resulting in the final

output image.

This two-stage process ensures that the model can handle the high dimensionality of
image data while leveraging the powerful sequence modeling capabilities of Transformers

to generate coherent and contextually accurate images from textual descriptions.

Imagen : Imagen (68), developed by Google Research, is a state-of-the-art text-to-
image generation model that combines the strengths of large transformer-based language
models and high-resolution image generation techniques. At its core, Imagen leverages a
diffusion model for generating high-quality images from textual descriptions. The diffusion
model gradually refines a noisy image into a clear, detailed picture, guided by the input
text. This process allows Imagen to produce images with remarkable detail and coherence,

capturing complex scenes and nuanced visual elements described in the text.

Architecture : Imagen consists of a text encoder that maps text to a sequence of
embeddings and a cascade of conditional diffusion models that map these embeddings to
images of increasing resolutions Fig. 14. Imagen revolves around the innovative use of
diffusion models and transformer-based language models. At its core, Imagen employs a

diffusion model to generate high-quality images from textual descriptions.

The text-to-image generation pipeline leverages a large pre-trained language model,
such as T5 (Text-to-Text Transfer Transformer), to process and understand the input text

comprehensively. The language model’s representation of the text is then used to condition
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the diffusion process, guiding each step of image refinement based on the semantic content

of the description.

The diffusion model starts with a noisy image and iteratively refines it into a clear,
detailed picture, guided by the input text. Classifier guidance (21) is a technique to
improve sample quality while reducing diversity in conditional diffusion models using gra-
dients from a pretrained model p(c|z;) during sampling. This process, which gradually
denoises the image, allows for fine control over image generation, ensuring that the fi-
nal output is both coherent and visually appealing. Classifier-free guidance (33) is an
alternative technique that is used in Imagen. A method to increase sample quality while

decreasing sample diversity in diffusion models.

Instead, Imagen involves training a single diffusion model on both conditional and un-
conditional objectives by randomly omitting the conditioning information during training

(for example, with a 10% probability)

Text “A Golden Retriever dog wearing a blue
* checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding

A\

Text-to-Image
Diffusion Model

64 x 64 Image
\4

Super-Resolution

Diffusion Model
256 x 256 Image
L, Super-Resolution

Diffusion Model

|

1024 x 1024 Image

Figure 13: Visualization of Imagen. Imagen uses a frozen text encoder to encode the
input text into text embeddings. A conditional diffusion model maps the text embedding
into a 64 x 64 image. Imagen further utilizes text-conditional super-resolution diffusion
models to upsample the image, first 64 x 64 — 256 x 256, and then 256 x 256 — 1024
x 1024.
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Latent Diffusion Model : The Latent Diffusion Model (65) (LDM) is a notable ad-
vancement in the field of generative modeling, specifically for producing high-quality im-
ages from text descriptions. It leverages the principles of diffusion models, which itera-
tively refine a noisy image until a clear and detailed picture emerges, guided by the input
text. The model starts with a noisy version of the desired image and progressively de-
noises it through a series of steps, each step informed by the textual input. This iterative
process allows Stable Diffusion to generate images with remarkable fidelity and coherence,

capturing intricate details and complex scenes described in natural language.

Architecture : The stable diffusion model integrates a two-stage process consisting
of a Variational Autoencoder (VAE) component and a diffusion process, combining their
strengths to achieve superior image generation. It worth noting that the VAE and diffusion

process are trained separately.

In the first stage, the model maps the input image to a latent representation. In
the second stage, a diffusion process is applied to this latent representation, classifier-
free guidance (33) technique is used to increase sample quality while decreasing sample
diversity in diffusion models. During training, noise is added to the latent representation
to form a pure Gaussian distribution. A U-Net model is then responsible for identifying
and removing this added noise from the latent representation. Finally, it reconstructs the

image using the decoder part of the first stage.

During inference, the model begins by iteratively removing noise from an initially pure
noise image. This process is conditioned on the input text, guiding the denoising steps to
form a clean latent representation. Finally, the model reconstructs the image using the
decoder component from the first stage, resulting in a high-quality image that aligns with

the given textual input.
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Figure 14: LDMs either via concatenation or by a more general cross-attention mecha-
nism.

2.2.3 Why Generative Modeling

One significant reason for utilizing generative Al to create images and corresponding
masks is the scarcity of available data needed to fine-tune models effectively. When the
dataset is limited, training models can be challenging due to insufficient representation of
various features and scenarios. Generative Al helps overcome this limitation by synthe-
sizing new, high-quality data that can augment the existing dataset, ensuring the model

has ample examples to learn from and generalize better.

Another critical reason is that annotating datasets manually is a time-consuming and
labor-intensive process. Labeling images and creating precise masks require considerable
effort and expertise, often leading to delays and increased costs. By employing generative
Al it is possible to automate the generation of annotated data, streamlining the process
and significantly reducing the workload on human annotators. This efficiency enables
faster model development and deployment, as well as more scalable and cost-effective

data annotation workflows.

3 Method

This section will provide a more detailed explanation of the segmentation model, the syn-
thetic dataset generation process and dataset preparation steps. The whole approach is
as following, first we try to generate sunthetic images and coresponding masks. Subse-

quently we use the synthetic dataset to fine-tune the SEEM model as shown in the Fig.
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Figure 15: Schematic of pipeline of project trained on real dataset.
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Figure 16: Schematic of pipeline of project trained on symthetic dataset.

Transfer learning leverages the knowledge learned from large-scale natural image datasets

to solve specific problems in the desired domain. Recent advances in large foundational

language models such as Chat-GPT and GPT-4 have shown impressive performances in

various language tasks (60). With their superior transferability to different tasks, many

have explored transferring foundational language models to medical tasks ((36), (32)).

Segment Everything Everywhere All At Once Model (90) is proposed as a founda-

tion model for image segmentation that generates high-quality object masks from input

prompts (e.g., points, boxes, masks and text) [SEEM]. Due to its promising performance

in several computer vision benchmarks, SEEM has attracted much attention. In the fol-

lowing sections, by means of transfer learning, the SEEM is fine-tuned on custom dataset.

SEEM is fine-tuned on a collection of wet damage images.
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3.1.1 Model Design

Overview : In Segment Everything Everywhere All At Once Model (SEEM), they
strive for a universal interface for segmenting everything everywhere all at once in an
image. On this interface, they are targeted at unifying all segmentation tasks with a
single model in a promptable manner. To achieve this goal, we propose a new prompting
scheme in mask decoder that has four important properties: versatility, compositionality,
interactivity, and semantic-awareness. Specifically, they propose to encode points, masks,
text, boxes, and even a referred region from another image into prompts in the same joint

visual-semantic space (90).

By training on diverse segmentation tasks, SEEM learns to deal with various prompts,
align the visual and text prompts, and promote their synergy via cross-attention between
them. As a result, SEEM after pretraining attains competitive performance across all

segmentation tasks.

Since the prompts of all 5 different types are mapped to the joint visual-semantic space,
we can feasibly combine prompts to resolve the ambiguity to obtain better segmentation

results and enable zero-shot adaptation to unseen user prompts.

SEEM employs a generic encoder-decoder architecture but also employs a sophisticated
interaction scheme between queries and prompts. Then, SEEM-Decoder predicts the
masks M and semantic concepts C based on the query outputs O,,(mask embeddings)

and O, (class embeddings), which interact with text, visual, and memory prompts (90).

In the upcoming section, we will delve into each component of the SEEM model in
greater detail, aiming to enhance comprehension of its individual parts and, ultimately,

the entire model pipeline.

Language Encoder For the language encoder, SEEM adopts a Unified Contrastive
Learning. (85) propose a new learning paradigm, called Unified Contrastive Learning
(UniCL) with a single learning objective to seamlessly prompt the synergy of two data
types. Extensive experiments show that UniCL is an effective way of learning semantically

rich yet discriminative representations, universally for image recognition in zero-shot,
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linear-probing, fully finetuning and transfer learning scenarios.
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Figure 17: Unified contrastive learning paradigm in the image-text-label space

As illustrated in Fig. 2. Instead of isolating image-label and image-text data, we
define an image-text-label space and show how we can eliminate the boundary between
two data types. As shown in Fig. 2 left part, supervised learning (41) on image-label data
typically aims at mapping images to discrete labels, and completely ignores the textual

concept associated with each label during the training.

In contrast, language-image contrastive learning (60) aims at learning a pair of visual
and textual encoders to align images and texts as shown in Fig. 2 right part. This learning

method implicitly assumes that each image-text pair has a unique label.

Comparing these two learning paradigms side by side, we can see that both of them ac-
tually reside in the common image-text-label space, which is constructed by mapping each
label to a textual concept for supervised learning, and assigning each textual description

a unique label for language-image pretraining, as shown in Fig. 2 bottom.

UniCL method combines image-label and image-text data together to learn discrimi-
native and semantic-rich representations, which are beneficial to a variety of downstream

tasks.

UniCL used CLIP (60) as its tokenizer to tokenize the input text to the model, but it
worth noting that, the language encoder is kept frozen during both training the original

SEEM and fine-tuned version.
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During the training or validation phase, we pass the text related to the input image to
the language encoder, afterwards the input text is tokenized by means of CLIP tokenizer.
Next, the tokenized text is feed to the language encoder to obtain the embeddings of the

text of related input image.

It worth nothing that during the training the model, every time that we want to
calculate the representative embedding of the input label, a neutral template randomly

is selected and filled with the class label, for example, we could have:

e An image of “class label”

There is also possibility to just use class label instead of the template text.

If we assume the output of the vision feature(embeddings) as © and the output of the
language encoder as @ we can calculate the similarity of the vision features and language

embeddings as follow:

ui:landvi: Vi
]

, then s;; = 7 xu] .v; (5)

A

11

7 here is called temperature, In this way we can calculate the predictions for each class

(labels).

Vision Backbone SEEM uses few vision backbones as for its vision part of pipeline.
In the paper they used the results of Da-ViT-d3, but the weights of this model have not
been published yet, thus, instead we used Focal-L as backbone which has better results

in comparison with other models.

Focal Modulation Networks are an alternative to Vision Transformers, where self-
attention is completely replaced by a focal modulation mechanism for modeling token

interactions in vision to build an attention-free architecture.
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Figure 18: FocalNets Architecture

Focal modulation (84) comprises three components:
e focal contextualization implemented using a stack of depth-wise convolutional layers,
to encode visual contexts from short to long ranges.

e gated aggregation to selectively gather contexts into a modulator for each query

token

e clement-wise affine transformation to inject the modulator into the query.
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Figure 19: Left: Comparing SA (a) and Focal Modulation (b) side by side. Right: Detailed
illustration of context aggregation in Focal Modulation (c).

Fig. 4 depicts the difference between the self-attention and the focal modulation

blocks.

Feature Pyramid Networks Feature pyramids are a basic component in recogni-

tion systems for detecting objects at different scales. Pyramid networks are scale-invariant
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in the sense that an object’s scale change is offset by shifting its level in the pyramid.
Intuitively, this property enables a model to detect objects across a large range of scales

by scanning the model over both positions and pyramid levels.

Aside from capability of ConvNets of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate recognition from features
computed on a single input scale. But even with this robustness, pyramids are still

needed to get the most accurate results (84).

The use of multiple feature levels creates a pyramid-like structure, where higher-level
features correspond to lower spatial resolutions and lower-level features correspond to

higher spatial resolutions. This is advantageous for detecting objects of different scales.

7

> predict

Figure 20: Feature Pyramid Network

In the SEEM vision backbone consists of four different levels, in each level spatial
dimensions are halved, and the number of channels doubled except for very last layer. The
output of vision backbone then is passed to a network called Pixel Decoder to aggregate
features of different levels in order to obtain a feature mask which has a good semantic
knowledge and high spatial dimension and align the number of channels for segmentation

head.
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Figure 21: Pixel Decoder

As depicted in Fig. 6, first the features of are passed to a convolution layer with kernel
(1,1) to change the channels number to allow us to add different resolutions. Afterwards,
we need to also interpolate the spatial dimension to be able to add different resolutions.
Finally, each feature map is passed to convolution layer with kernel (1,1) and all feature

maps are passed to segmentation head.

Segmentation Head To handle small objects, (14) propose an efficient multi-scale
strategy to utilize high-resolution features. It feeds successive feature maps from the
pixel decoder’s feature pyramid into successive Transformer decoder layers in a round
robin fashion. Finally, we incorporate optimization improvements that boost model per-

formance without introducing additional computation.

Masked Attention Context features have been shown to be important for image
segmentation ((9), (10), (87)). However, recent studies (25), (72) suggest that the slow
convergence of Transformer-based models is due to global context in the cross-attention
layer, as it takes many training epochs for cross-attention to learn to attend to localized
object regions (72). mask2former paper hypothesize that local features are enough to
update query features and context information can be gathered through self-attention.
For this they propose masked attention, a variant of cross-attention that only attends

within the foreground region of the predicted mask for each query.
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High-resolution features High-resolution features improve model performance, es-
pecially for small objects (8). However, this is computationally demanding. Thus, (14)
propose an efficient multi-scale strategy to introduce high-resolution features while con-
trolling the increase in computation. Instead of always using the high-resolution feature
map, they utilize a feature pyramid which consists of both low- and high-resolution fea-
tures and feed one resolution of the multi-scale feature to one Transformer decoder layer

at a time.

Specifically, the feature pyramid produced by the pixel decoder with resolution 1/32,
1/16 and 1/8 of the original image is used. For each resolution, , following (8) a sinusoidal

positional embedding e,,, € RZiWi*¢

is added, and a learnable scale-level embedding
e € RYC, following (88). We use those, from lowest-resolution to highest-resolution
for the corresponding Transformer decoder layer as shown in Figure 7. They repeat this
3-layer Transformer decoder L times. The final Transformer decoder hence has 3L layers.
More specifically, the first three layers receive a feature map of resolution H1 = H/32,
H2 =H/16,H3 =H/8 and W1 =W/32 W2 =W/16, W3 = W/8, where H and W are
the original image resolution. This pattern is repeated in a round robin fashion for all

following layers.

Transformer
Decoder

Figure 22: mask, class prediction pipeline

Segmentation Head Segmentation head is Transformer decoder (figure 8) with
masked attention adopted from (14) The key components of Transformer decoder include
a masked attention operator, which extracts localized features by constraining cross-
attention to within the foreground region of the predicted mask for each query, instead of

attending to the full feature map.
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Figure 23: Segmentation Head

3.1.2 Pipeline

After loading the model with pretrained weights, first of all, we need to register our
dataset, by means of register module. After creating the instance of default trainer, and
initializing it, the train function is called to begin the train process. Afterwards, the
input batch which contains the input image(s) and corresponding meta data related to
grounding task and other task are loaded. The Vision Backbone is responsible to provide

the vision embedding which are a feature pyramid network for in four different resolutions.

Afterwards, as depicted in Feature Pyramid Networks, features of different resolutions
are added together by upsampling to obtain a feature that are semantically reach and also
spatially detailed, this feature map is called mask, which will be used in the segmentation

head alongside with features of different resolutions.

Next, the embedding for each category is generated by inputting a sentence containing
the class name into the Language Encoder. These embeddings are then used to determine

the similarity between vision and language tokens.

Finally, the Segmentation Head performs segmentation task based on input image and

corresponding text.
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3.1.3 Fine-tuning, Methods and Strategies

Linear probing is a straightforward approach to maintaining the pre-trained model fixed
by only tuning a specific lightweight classification head for every task. However, lin-
ear probing tends to have an unsatisfactory performance and misses the opportunity of

pursuing strong but non-linear features, which indeed benefit deep learning (11).

Recently, transformers have witnessed remarkable success in a broad range of com-
puter vision fields. Benefiting from the dynamic modeling capability and the long-range
dependence of the attention mechanism, various vision transformers soon rose in many
computer vision tasks such as object detection and semantic segmentation, surpassing

CNN models and reaching state-of-the-art performance (13).

We needed to incorporate knowledge about task domain images into SEEM. Therefor
we aimed to fine-tune either vision backbone or segmentation head of SEEM model or both
simultaneously. In this context, our approach involved preserving the parameters of the
entire model while incorporating task-specific domain knowledge by means of adapters,

ensuring that the original knowledge remained intact and unaltered.

Adapters have been proven to be an effective strategy for fine-tuning large-scale models
(82), (13). This enables an existing model to excel in both new and the original tasks. Due
to the parameter-sharing property of adapters, they facilitate transfer learning between

different tasks (16).

Methods Fine-tuning large pre-trained models is an effective transfer mechanism in
computer vision and NLP. However, in the presence of many downstream tasks, fine-
tuning whole model is parameter inefficient, an entire new model is required for every
task. As an alternative, transfer learning could be done with adapter modules. Adapter
modules yield a compact and extensible model; they add only a few trainable parameters

per task, and new tasks can be added without revisiting previous ones (35).

During the fine-tuning phase, we only choose the newly added parameters to optimize
and keep rest ones fixed. Specifically, the original model parts, load weights from the

pre-trained checkpoint and keeps parameters frozen. The newly added parameters are
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updated on the specific data domain with the task-specific losses.

To demonstrate adapter’s efectiveness, (35) transfer the recently proposed BERT
Transformer model to 26 diverse text classification tasks, including the GLUE benchmark.
Adapters attain near state-of-the-art performance, whilst adding only a few parameters
per task. On GLUE;, they attain within 0.4% of the performance of full fine-tuning, adding
only 3.6% parameters per task. By contrast, fine-tuning trains 100% of the parameters

per task.

Strategies

Freeze vision backbone, adapter fine-tuning for segmentation head Adap-
tors are used mainly in two parts of SEEM’s segmentation head. First, we inspired our
work based on (73) to fine-tune decoder. Secondly, to fine-tune prediction head of decoder,

method used by (11) is incorporated.

e VL-ADAPTER: Fig. 9(b) left. Adapters (35) are sub-networks with small parame-
ters that are inserted after every attention and feed-forward layer in a model. With
adapters, the models learn downstream tasks by updating only a small number of
parameters. The adapters consist of a pair of downsampling and upsampling layers,
and a residual connection. To be more specific, (73) denote the input of the adapter
as € R% and the weight matrices for downsampling and upsampling layers to be
6P € R%*4 and Y € R¥*% where d; and d are the input and hidden dimensions,

respectively. The mechanism of adapters is defined as:

h = fou(o(for(x)) + (6)

Where o(+) is an activation function, and GELU is used in the paper. With adapters,
the parameter complexity (i.e., the number of added parameters) is O(d;,d), and
it usually is 2 ~ 3% of the whole model’s parameters. Based on paper all layer
normalization layers of the decoder are also updated to be adapted to the data

distribution of downstream data.

41



As Fig. 9 depicts, VL-Adapters are used in each layer of SEEM decoder as shown
in the figure.

(a) Vision-and-Language Framework . (b) Adapter Modules
Output .
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Figure 24: VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-
Language Tasks

e AdaptFormer: (11) propose a lightweight module, namely AdaptFormer, to adapt
vision transformers by updating the weights of Adapt-Former. (11) introduce learn-
able parameters from the model perspective, which is different from(39) proposed Vi-
sual Prompt Tuning VPT, which inserts learnable parameters into the token space.
AdaptFormer is conceptually simple yet effective. It consists of two fully connected

layers, a non-linear activation function, and a scaling factor.

Specifically, the right branch of figure 3 is designed to be a bottleneck structure for
limiting the number of parameters purpose, which includes a down-projection layer
with parameters Wy, € R%d an up-projection layer with parameters W, € R&*d,
where d is the bottleneck middle dimension and satisfies d < d, there is a ReLU layer
between these projection layers for non-linear property. This bottleneck module is
connected to the original MLP network (left branch) through the residual connection

via a scale factor s.

For a specific input feature x;, the right branch in AdaptMLP produces the adapted

features, ;, formally via:

&1 = ReLU (LN (;) - Waown) - Wap (7)

Then both the features Z; and xg are fused with z; by residual connection,
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2= MLP(LN(z))) + s - & + (8)

As Fig. 10 demonstrates, this module is set in parallel to the feed-forward network
(FFN) in the prediction head of SEEM decoder. Please consider that I the imple-
mentation of SEEM, prediction head is a different module respect to SEEM decoder
transformer layer. Fig. 10 is used solely to illustrate how the AdaptFormer module

is utilized.
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(a) Full fine-tuning. (b) AdaptFormer fine-tuning

Figure 25: Comparison of previous full and AdaptFormer fine-tuning.

This design is turned out to be effective for model transfer when processing scalable
visual tokens for both image and video data (i.e., image data consists of a small

scale of visual tokens while video data consists of a large scale) (11)

Adapter fine-tuning for backbone, adapter fine-tuning for segmentation
head As the most parameter-heavy part of SEEM, globally updating the image en-
coder during fine-tuning incurs significant computational costs and might leads to loss of
knowledge. To this end, we also decided to fine-tune the vision backbone with adapters
as well, alongside with fine-tuning the segmentation head with adapters. Since the vision
backbone is a feature pyramid network, we incorporated adapters in each level of vision

backbone within each block for focal modulation block.

The adapter which is used in the vision backbone is different from those used in the
segmentation head, the following sections is dedicated to this fine-tuning technique and

the way that is implemented.
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To incorporate new task knowledge into the image encoder at a lower cost, (16) in-
troduce new Adapter technology. Specifically, in this method we freeze all parameters
of the original image encoder during fine-tuning and deploy an adapter for each focal

modulation block, as shown in Fig. 11.

e (16) adapt the image encoder along both channel and spatial dimensions. For the
channel dimension, they first compress the resolution of the input feature map to
Cx1x1 using global average pooling. Then, a linear layer is used to compress the
channel embeddings and another linear layer to restore them, with a compression
ratio of 0.25. Finally, we obtain the weights of the channel dimension through a
sigmoid function and multiply them with the input feature map as the input for
the next level. For the spatial dimension, the spatial resolution of the feature map
downsampled by a factor of two using a convolutional layer and restore the spatial
resolution using a transposed convolution, maintaining the same number of channels

as the input.

Layer Norm

-

Layer Norm

Adapter Layer

IQIHQI |

Adapter

Focal modulation block

Layer Norm

Figure 26: A layer of FocalNets, the position of adapter used for fine tuning.

Freeze vision backbone, fine-tune whole segmentation head In this approach,
we maintain the original SEEM model unchanged. However, unlike previous strategies, we
do not employ adapters. Instead, we allow all weights of the original SEEM’s segmentation

head to be updated during training, while keeping the vision backbone weights frozen.
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Adapter fine-tuning for vision backbone, fine-tune whole segmentation
head In this strategy we try to fine-tune both vision backbone and the segmentation
head, but in different way with respect to Adapter fine-tuning for backbone, adapter fine-
tuning for segmentation head. In way that we let the segmentations head to be intact,
but on the other hand, we try to adapt the vision backbone in way that to let it lean new

task data distribution and also preserve the original knowledge from pretraining.

Through this comparative study, we can gain a better understanding of which strategy

performs more effectively than others for any new task.

3.2 Generating Synthetic Dataset

Preparing training data for deep vision models is a labor-intensive task. To address this,
generative models have emerged as an effective solution for generating synthetic data.
While current generative models produce image-level category labels, (55) proposes a novel
method for generating pixel-level semantic segmentation labels using the text-to-image
generative model Stable Diffusion (SD). By utilizing the text prompts, cross-attention,

and self-attention of SD.

Text-to-image diffusion models have the remarkable ability to generate high-quality
images with diverse open-vocabulary language descriptions. This demonstrates that their
internal representation space is highly correlated with open concepts in the real world.
Text-image discriminative models like CLIP, on the other hand, are good at classifying
images into open-vocabulary labels. We leverage the frozen internal representations of
both these models to perform unsupervised object discovery: saliency segmentation and

object localization.

3.2.1 Method

Our objective is to generate a synthetic dataset D = (I;, S;)Y ,, consisting of high-fidelity
images [ and pixel-level semantic masks S. These images and masks capture both the
semantic and location information of the target classes C' = {¢1,¢a,...,cx}, where K

represents the number of classes. The purpose of constructing this dataset is to train a

45



semantic segmenter ¢ without relying on human annotation.

Following (55), we perform a three-step process:

e Firstly, we prepare relevant text prompts P containing the target classes

e Secondly, using Stable Diffusion (SD) as our model, we generate images I; € R *Wx3

and their corresponding semantic segmentations

e Lastly, we train a semantic segmenter ¢ on D and evaluate its performance on the

test set of standard semantic segmentation datasets 4.4.

Generating Segmentation from Self and Cross-attention Maps We build our
segmentation generator on Stable Diffusion (SD) by leveraging its self and cross-attention
layers. Given a text prompt P first encoded by a text encoder into text embedding
e € RM4e with the text length A and the number of dimensions d., SD seeks to output
the final latent state zy € R*>*W>d where H, W, d, are height, width, and number of
channels of zg, reflecting the content encoded in e from the initial latent state 2 ~ N (0, I)

after T denoising steps.

At each denoising step t, a UNet architecture with L layers of self and cross-attention
is used to transform z; to z;_1. In particular, at layer [ and time step t, the self-attention

layer captures the pairwise similarity between positions within a latent state 2! in order

to enhance the local feature with the global context in z/™'. In the meantime, the cross-

attention layer models the relationship ¢ between each position of the latent state 2! and

each token of the text embedding e so that z/™! can express more of the content encoded

in e.

c [O, 1]HW><HW

Formally,the self-attention map Afg’t and cross-attention map Alc’t €

[0, 1]HW>A at layer [ and time step ¢ are computed as follows:

QZKT Lt QZKT
=), Ay = Softmax -
va oo “Va

Al = Softmax(

); (9)

where @),,K.,K. are the query of z, key of z, and key of e, respectively, obtained by
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linear projections and taken as inputs to the attention mechanisms, and d; is number of

features at layer [.

Since we only want to obtain the cross-attention map of the class labels C; of image
1 for semantic segmentation, we are intrested in taking the softmax over the class name
part C; rather than entire of the text prompt P. After this, we obtain A% € [0, 1]7W*M

where M is the number of classes in the image.

(55) observed that using different ranges of time-steps only affects the final result
marginally. Finally, by taking average over these cross and self attention maps over layers

and time-steps:

Ag = iiw Ag = iiﬂ (10)
’ LXTI:ltzo a ¢ LXTI:lt:o ¢

Although the cross-attention maps Aq already exhibit the location of the target classes
in the image, they are still coarse-grained and noisy as depicted in Fig. B2. Thus, (55)

proposes to use the self-attention map Ag to enhance Aq for a more precise object location.

This is because the self-attention maps capturing the pairwise correlations among
positions within the latent z; can help propagate the initial cross-attention maps to the
highly similar positions, e.g., non-salient parts of the object, thereby enhancing their
quality. Therefore, (55) proposes self-attention exponentiation where the self-attention

map Ag is powered to 7 before multiplying to the cross-attention map Ac as:

Ao = (As)" - Ac, Az € [0,2] M (11)

Finally, by selecting a threshold we select the parts of A} which are greater that

threshold to be selected as mask of given classes.

Generating Task-Aligned Images In the text-to-image task, the model begins with
pure noise and incrementally refines the latent variable using a guided prompt. We

observed that, for some classes, the generated images do not align with the task domain
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Fig. 27. To tackle this issue, we experimented with the image-to-image version of the
model. This approach allows us to use images aligned with the task domain. By leveraging
the encoder from the first stage, we map the image i to its latent space sz Subsequently,
using the given prompt for the image ¢ and sampling from the latent space zé), we can

generate images that align with the task domain.

Figure 27: example of generated image for class 'light mold’ that is not aligned with task
domain.

Figure 28: examples of generated image for class ’light mold’ that is aligned with task
domain.
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3.3 Dataset Preparation

To effectively train the SEEM model, it is necessary to create a dataset containing anno-
tated ground truth images for panoptic learning. Additionally, to train the model for the
grounding task, it is imperative to generate grounding annotations file. The subsequent

sections will outline the process of creating each mentioned file and defining its structure.

3.3.1 Dataset Format

Panoptic Ground Truth Image Generation For panoptic learning preparation, two
types of files are required: panoptic images and panoptic_annotations.json file. Panoptic
images are images that are annotated at pixel level, in this way whole image scene is

annotated and feed to model.

After obtaining annotations of original image which are segmentation mask in form of
polygons and bounding box related to each category shown in the original image. In order
to create panoptic ground truth, it’s essential to assign a distinct color to each category.
Subsequently, utilizing the panoptic-api, we can convert each color into a unique identifier

and color, particularly if there are multiple instances of a category within an image.

For example, in a scene comprising a segmentation mask for the sky and two persons,
where the sky category is classified as a ’stuff’; all pixels within the segmentation mask
will share the same color previously designated. Conversely, since the person class is
defined as a ‘thing’, each person’s segmentation mask will exhibit a different color, one
assigned according to a predefined color and the other derived from the predefined color

for the person category.

Panoptic Ground Truth Annotation File In order to generate a panoptic ground
truth annotations file, it is necessary to possess a dictionary containing three primary
keys: ‘images’, ‘annotations’ and ‘categories’. Within this structure, the ‘images’ field

should comprise the following essential attributes at a minimum:

e {"filename”: string, "height”: int, ”width”: int, ”7id”: int}.
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The 'annotations’ field consists of a list of objects corresponding to each image. The

following attributes are essential for the annotations’ field:

e {"segments_info”: [|, "filename”: string, "image_id”: int}

Each ‘segments_info’ has following information about each segment in the image:

e {”id”: int(generated by panopticapi), ”category_id”: int, "iscrowd”: 0, "bbox”:
[float, float, float, float], ”area”: float}

The categories must have at least followed characteristics:

e {"isthing”: 0/1, ”id”: int, "name”: string}

Semantic Segmentation Ground Truth Image Generation To acquire semantic
segmentation ground truth images, we can utilize the panoptic-api. Through this API,
semantic segmentation ground truth files can be generated from existing panoptic ground

truth images.

It’s important to note that our category IDs might not be contiguous or may not
start from zero. Consequently, IDs of categories must start from zero and be contiguous,
covering the range [0, classes). This adjustment is necessary because when the model
applies Soft-Max to the calculated scores, the outputs should fall within the range of zero
to the number of classes. If we don’t consider this fact, during the evaluation we will

obtain miss-calculated metrics.

Grounding Annotations In order to generate a grounding annotation file, it is nec-
essary to include segmentation details and one or more sentences associated with the
segmentation. As we have broadened the content of each image scene to encompass vari-

ous classes beyond the primary ones of interest(stuff categories).

Using sentences, we can establish connections between each segmentation and its po-
sition or content. For example, for the provided image, descriptive grounding texts could

be formulated as follows:
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“the bird on the right hand side”, “the seagull on the right”, “standing on lower

portion of rock” and “bird with shorter neck”.

Figure 29: Grounding task example

In order to generate a grounding annotations file, it is necessary to possess a dictionary
containing two primary keys: ‘images’, ‘annotations’ . Within this structure, the ‘images’

field should comprise the following essential attributes at a minimum:

e {"filename”: string, "height”: int, "width”: int, ”7id”: int}

The ’annotations’ field consists of a list of objects corresponding to each segmentation.

The following attributes are essential for the "annotations’ field:

e {”segmentation”: olygon|, 7area”: float, 7iscrowd”: 0, "image_id”: int, ”cate-
b ) b bl

gory_id”: int, "bbox”: [float, float, float, float], ”sentences”: [|}

For each segmentation there is a field called ‘sentences’ which is list of sentences for

that segmentation, ‘sentences’ has following format:

o {"tokens”: [], "raw”: "the sentence”, "sent_id”: 0, "sent”: ” the sentence” }

During the training process, a sentence will be selected at random. Next, utilizing a
language backbone, the sentence will be embedded. This embedding will then be merged

with image features supplied by a vision backbone to enhance the learning procedure.
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3.3.2 Prepare Dataset for Train

SEEM dataloader follows Detectron2 framework that contains a dataset register and a
dataset mapper. Accessing data from a dataset can be done through the DatasetCatalog,

while metadata such as class names can be retrieved from the MetadataCatalog.

Dataset Catalog A global dictionary that stores information about the datasets and
how to obtain them. It contains a mapping from strings (which are names that identify
a dataset, e.g. “coco_2014_train”) to a function which parses the dataset and returns the
samples in the format of list[dict]. The returned dicts should be in Detectron2 Dataset

format.

The purpose of having this catalog is to make it easy to choose different datasets, by

just using the strings in the config.

Metadata Catalog MetadataCatalog is a global dictionary that provides access to
MetaData of a given dataset. The metadata associated with a certain name is a single-
ton: once created, the metadata will stay alive and will be returned by future calls to

‘get(name)’.

It’s like global variables, so don’t abuse it. It’s meant for storing knowledge that’s

constant and shared across the execution of the program, e.g.: the class names in COCO.

Registration Detectron2 dataset registration involves the process of integrating custom
datasets into the Detectron2 framework for use in training and evaluation of object detec-
tion models. Before registering a dataset, it needs to be properly organized. This includes
structuring the dataset into a format compatible with Detectron2, typically consisting of
images and corresponding annotations (e.g., bounding boxes, masks). Annotations must

be in a supported format, such as COCO JSON.

In order to register a dataset, DatasetCatalog.register(name, func) must be called.

e name (str) — the name that identifies a dataset, e.g. “coco_2014_train”.
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e func (callable) — a callable which takes no arguments and returns a list of dicts. It

must return the same results if called multiple times (20)

Mapping A callable which takes a sample (dict) from dataset and returns the format
to be consumed by the model. DatasetMapper class is used to map each element of
dataset. It loads images, transforms images and annotations, and converts annotations

to an ‘Instances’ object.

4 Results

4.1 Dataset

To determine the most effective fine-tuning strategy for the SEEM model, four differ-
ent datasets were chosen. ’'Clityscape + PlantVillage’ dataset contains images with a
distribution similar to those on which the original SEEM was trained. The other three
datasets, selected from the medical domain, differ significantly from the original train-
ing domain of SEEM. In addition, 'Polyp’™ and 'Liver’? are binary dataset whereas the
"Clityscape + PlantVillage®” and '"MRI' are multi-class dataset.

The 'Cityscape + PlantVillage’ dataset includes 3,000 images for training and 500
images for validation, covering 5 categories. Meanwhile, the MRI dataset comprises 500
training images and 100 validation images, covering 4 categories. For the binary datasets,
the Polyp dataset contains 800 training images and 150 validation images, while the Liver

dataset has 500 training images and 100 validation images.

Experiments demonstrate that with a batch size of 4, the model achieved its optimal

performance after 3,150 steps of optimizer.

Examples of generated images and their corresponding masks are displayed in Fig-

ure B6. This generated dataset is employed for fine-tuning the SEEM model using the

'Kvasir-SEG: A Segmented Polyp Dataset
2Abdominal CT and MRI

3PlantVillage dataset

4Abdominal CT and MRI
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https://chaos.grand-challenge.org/Data/
https://www.tensorflow.org/datasets/catalog/plant_village
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candidate fine-tuning strategy, as detailed in Section 4.4.1.

4.2 Evaluation Metrics

4.2.1 Mean Intersection over Union

Mean Intersection over Union (mloU) is an evaluation metric commonly used in computer
vision tasks, particularly in image segmentation. It is used to measure the accuracy of a
segmentation model by comparing the overlap between the predicted segmentation masks

and the ground truth masks.

To evaluate the performance of a segmentation model using mloU, several steps are
followed. Firstly, for each class, the intersection over union (IoU) is computed. This
involves calculating the intersection between the predicted mask and the corresponding

ground truth mask.

The intersection represents the area where the predicted and ground truth masks
overlap. Additionally, the union of the predicted and ground truth masks is calculated,
representing the total area covered by both masks. The IoU for a class is obtained by

dividing the intersection by the union. This process is repeated for each class.

To calculate the IOU, after calculating the confusion matrix, we can easily calculate

IOU as follow:

TruePositive

10U =
GroundTruthPositive + Predicted Positives — TruePositive

(12)

e Ground Truth Positive: represents the total number of actual instances for each

class. This is obtained by summing the elements of each column of confusion matrix

e Predicted Positives: represents the total number of predicted instances for each

class. This is obtained by summing the elements of each row of confusion matrix

e Reason for subtracting the True Positive is that is has been counted twice (both in

Ground Truth Positives and Predicted Positives).
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Next, the IoU values obtained for each class are averaged to compute the mean IoU
(mloU). This is done by summing up the IoU values for all classes and dividing the sum
by the total number of classes. The mloU provides an overall measure of the accuracy
of the segmentation model, taking into account the overlap between the predicted masks

and the ground truth masks for each class.

The resulting mIoU value ranges from 0 to 1, where a value of 1 indicates a perfect
alignment between the predicted masks and the ground truth masks for all classes, while

a value of 0 signifies no overlap between them.

Using mloU as an evaluation metric allows for a comprehensive assessment of the
segmentation model’s performance, considering both true positives and false positives
across all classes. It enables fair comparisons between different segmentation models or
different variations of a single model, helping researchers and practitioners gauge the

effectiveness of their segmentation algorithms.

4.2.2 Precision

Precision (also known as positive predictive value) measures the proportion of predicted
positive instances that are actually correct. A high precision indicates that the model’s
positive predictions are generally correct, but it does not account for how many relevant

segments are missed.

Procisi TruePositive (13)
recision =
TruePositive + FalsePositive

4.2.3 Recall

Recall (also known as sensitivity or true positive rate) measures the proportion of actual
positive instances (e.g., pixels belonging to the target object) that are correctly identified

by the model.

A high recall indicates that the model successfully captures most of the relevant seg-

ments, but it does not account for the accuracy of those segments.
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TruePositive
Recall = 14
ced TruePositive + FalseNegative (14)

4.3 Experimental Details

In the following section we will talk about the different hyper-parameters in used during

the experiments

4.3.1 Segmentation Task

For the segmentation task, weight decay is a crucial hyperparameter. The original SEEM
model was pretrained with a weight decay of 0.05. Experiments indicate that reducing this
parameter slightly improves results, but there is a risk of overfitting. Another important
hyperparameter is the learning rate. Experiments reveal that using an initial learning

rate of 1 x 107 leads to better convergence and improved results.

4.3.2 Dataset Generation

For dataset generation, a key hyperparameter is the threshold applied to the results of

Ag, for mask extraction, with experiments showing optimal values between 0.6 and 0.7.

Another important hyperparameter is called strength. Higher values lead to more
modifications in the latent representation of the input image. Experiments indicate that
a value of 0.4 ensures the generated images remain within the distribution of the input

image.

4.4 Results

In this section we discuss the performance of different strategies for fine-tuning the SEEM
in order to identify the the promising one, next, it will be used to assess the performance
of model on synthetic dataset and understand if using synthetic dataset will be promising

or not.
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4.4.1 Fine-tuning Strategy Results

As demonstrated in Table 1, we can conclude that methodologies Freeze vision backbone,
adapter fine-tuning for segmentation head and Adapter fine-tuning for vision backbone,
adapter fine-tuning for segmentation head are not beneficial, Therefore, we will use the

other two methods for the remaining evaluations.

Based on the evaluation of the results in Table 1, we can conclude that Across all
datasets the ” Adapter in Vision, Fully Fine-Tune Seg. Head” method consistently achieves
the highest mIOU scores, indicating its superior performance. The ”Freeze Vision, Fully
Fine-Tune Seg. Head” method also performs well but is consistently outperformed by the
adapter method. In contrast, the ”Freeze Vision, adapter in Seg. Head” and ” Adapter
in Vision and Seg. Head” methods show relatively lower mIOU scores across all datasets,
demonstrating that fully fine-tuning the segmentation head yields better results in vision

tasks.

Table 1: Comparison of Different Fine-tuning Methods

Datasets Methods mlOU
FVBAFSH?® 55.57
AFTBAFSH® 54.47

Polyp
FVBFWSH’ 68.46
AFTVBFWSH?® 69.18
FVBAFSH 62.34
AFTBAFSH 64.81

Cityscape + Plant Village

FVBFWSH 75.73
AFTVBFWSH 78.72
FVBFWSH 76.04

Liver
AFTVBFWSH 80.24
FVBFWSH 59.46

MRI
AFTVBFWSH 64.72
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4.4.2 Fine-Tuning Performance on Synthetic Dataset

In this section, we assess the performance of the candidate fine-tuning strategy to deter-
mine the effectiveness of the generated dataset for transfer learning. The chosen dataset
for this section consists of 9 categories relevant to the project’s actual task, with class
labels as follows: 1) Light Mold, 2) Dark Mold, 3) Light Stain, 4) Dark Stain, 5) Liquid
Spillage, 6) Peeling, 7) Broken Pipe, 8) Raised, and 9) Pipe.

Table A2 shows, In the initial results without synthetic data, the model shows very
low performance across most categories, with an overall mIOU of just 13.38. Categories
like 1, 4, and 5 have zero or near-zero scores, indicating the model struggles significantly
with the limited real data. The highest category performance is in category 9 with a score

of 45.03, but overall, the model’s efficacy is notably poor.

Upon introducing synthetic data, there is a marked improvement in performance.
With a dataset size of 0.5K, the mIOU increases to 21.46. Specific categories like 2, 3,
and 5 exhibit substantial gains—category 2 jumps from 2.56 to 34.86, and category 5
leaps from 0.00 to 49.93. This improvement demonstrates that even a modest amount of
synthetic data can significantly enhance the model’s ability to generalize and recognize

different categories better.

Increasing the synthetic dataset to 6K further enhances performance, raising the mIOU
to0 26.73. Categories 2, 3, and 5 continue to see improvement, with scores climbing to 47.37,
34.07, and 63.58, respectively. However, some categories, such as category 6, exhibit a
slight decline in performance when transitioning from 0.5K to 6K. This suggests that
although more data generally improves results, the quality and balance of the data are

also crucial considerations.

The introduction of synthetic data generated by generative Al significantly enhances
the performance of the model, as evidenced by the increases in mIOU and individual

category scores. While a larger synthetic dataset (6K) generally leads to better results

8Freeze Vision Backbone, Adapter Fine-Tuning for Segmentation Head

8 Adapter Fine-Tuning for Backbone, Adapter Fine-Tuning for Segmentation Head
8Freeze Vision Backbone, Fine-Tune Whole Segmentation Head

8 Adapter Fine-Tuning for Vision Backbone, Fine-Tune Whole Segmentation Head
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compared to a smaller one (0.5K), it is also apparent that more data alone is not the sole
determinant of success. Ensuring high-quality and well-balanced synthetic data is crucial
to achieving optimal performance. Thus, leveraging generative Al to create synthetic
datasets is a viable strategy to overcome limitations due to the scarcity of real data,

provided that attention is paid to both the quantity and quality of the generated data.

I0U%
Categories 1 2 3 4 5 6 7 8 9
No Synthetic Aug.(baseline) 0.00  2.56 9.26 020 0.00 27.48 10.80 25.07 45.03 13.38
Synthetic Aug. 0.5K 0.00 34.86 23.81 0.00 4993 3.82 41.06 227 37.36 21.46
Synthetic Aug. 6K 0.00 47.37 34.07 6.78 63.58 3.75 3889 0.70 45.40 26.73

mlIOU

Table 2: Comparing how well the SEEM model performs on datasets of varying sizes and
characteristics

5 Conclusion

In conclusion, the integration of synthetic data generated by generative Al has demon-
strated significant improvements in the performance of our image segmentation model.
The introduction of synthetic datasets has led to marked enhancements in the model’s
mean Intersection over Union (mIOU) scores and the recognition of specific categories.
For instance, with a modest synthetic dataset of 0.5K images, the mIOU improved by
8%. Increasing the synthetic dataset to 6K images resulted in an even higher mIOU of
26.73. For some categories, there were significant improvements, However, it was noted
that certain areas, such as one particular area, showed a slight decline in performance as
the dataset size increased. This suggests that while more data generally enhances model
performance, the quality of images that we use to sample from is important factors to
consider. These results underscore the potential of synthetic data, particularly with larger
datasets, to significantly boost the model’s ability to generalize and recognize different

categories effectively.

The evaluation of fine-tuning methods revealed that the ” Adapter in Vision and Fully
Fine-Tune Seg. Head” approach consistently achieved the highest mIOU scores across
all datasets, indicating its superior effectiveness. The ”Freeze Vision, Fully Fine-Tune

Seg. Head” method also performed well, though it was consistently outperformed by the
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adapter method.

To further improve the results, it is essential to enhance the quality and balance of
the synthetic data. Refining the generative Al models to produce more realistic and
diverse images will ensure better representation of real-world variations. Additionally,
combining synthetic data with real annotated data can leverage the strengths of both,
providing authenticity and increasing volume and diversity. Regularly evaluating and
fine-tuning the model, along with exploring advanced data augmentation techniques and
optimizing model architecture, will also contribute to better performance. Implementing
active learning strategies can further enhance training efficiency and effectiveness, ensuring

continuous improvement in the model’s accuracy and reliability.

Future work should focus on hybrid dataset development and advanced data augmen-
tation techniques to enhance image segmentation models. This includes creating balanced
integration methods for synthetic and real data, developing quality assessment tools for
synthetic datasets, and employing domain adaptation and transfer learning to bridge the
gap between synthetic and real-world data. By combining these strategies, models can
be trained on richer and more varied datasets, leading to improved accuracy, robustness,

and generalization in real-world applications.

Overall, the integration of synthetic data generated by generative Al, combined with
effective fine-tuning strategies, has proven to be a viable solution to the challenges posed
by limited annotated data. While increasing the quantity of synthetic data can lead
to better model performance, ensuring the quality and balance of this data is essen-
tial. Therefore, leveraging generative Al for synthetic dataset creation, coupled with
appropriate fine-tuning techniques, presents a promising approach to enhancing image

segmentation models, ultimately leading to more accurate and reliable results.
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Appendix A: Tables

Recall%
Categories 1 2 3 4 5 6 7 8 9
Initial results 0.00 710.34 32.45 2.34 0.00 32.56 13.48 29.54 52.15
Synthetic 0.5K  0.00 48.86 34.45 0.00 58.76 875 60.65 15.45 41.63
Synthetic 6K 0.00 47.90 70.42 24.65 6891 3.88 51.79 1.61 54.64

Table A1l: Comparison of the SEEM model’s Recall metric performance across datasets
of different sizes and characteristics.

Precision%
Categories 1 2 3 4 ) 6 7 8 9
Initial results  0.00 55.86 72.45 0.00 0.00 67.45 60.87 35.87 37.36
Synthetic 0.5K  0.00 62.98 7748 0.00 61.34 68.34 55.93 32.84 69.52
Synthetic 6K 0.00 97.72 39.76 8.54 89.15 51.81 60.96 1.22 7287

Table A2: Comparison of the SEEM model’s Precision metric performance across datasets
of different sizes and characteristics.



Appendix B: Appendix-Figures

Figure B1: generated image based on prompt: "a pipe next to wall with some grass on
it?’

Figure B2: cross-attention maps for tokens "pipe’, 'wall’ and ’grass’ respectively

Figure B3: The feature maps generated by multiplying cross-attention and self-attention
maps for tokens 'pipe’, 'wall’, and ’grass’, respectively.

Figure B4: generated masks for tokens pipe’, 'wall’ and ’'grass’ respectively

Examples of generated images and corresponding masks are show in Fig. B6

i



egory

(c¢) Generated Image for 'Dark Mold’ cate-
gory

(e) Generated Image for 'Water spillage’
category

il

(b) Generated mask for 'Broken Pipe’ cat-
egory

(d) Generated mask for 'Dark Mold’ cate-
gory

(f) Generated mask for "Water spillage’ cat-
egory



(a) Generated Image for 'Dark Stain’ cate-
gory

(c) Generated Image for 'Pipe’ category

(e) Generated Image for 'Peeling’ category

(b) Generated mask for 'Dark Stain’ cate-
gory

(d) Generated mask for "Pipe’ category

(f) Generated mask for 'Peeling’ category

Figure B6: Generated Imaggs and Corresponding masks
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