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ABSTRACT 
 

This thesis presents a comprehensive study on the segmentation of dermoscopic 

images for the purpose of accurately identifying and delineating lesion areas. The 

developed pipeline integrates multiple stages of image preprocessing and 

segmentation techniques to ensure high accuracy and reliability in lesion detection. 

Given the critical role of lesion shape in diagnosing skin diseases, the objective is to 

assist clinicians in accurately extracting lesions from surrounding skin, thereby 

enhancing subsequent diagnosis and treatment. Additionally, by quantifying the 

geometric area of the lesions, it becomes feasible to monitor their progression over 

time. 

A dataset of 200 high-resolution dermoscopic images, each accompanied by ground 

truth annotations, is utilized. The images are resized from their original dimensions 

to 512x512 pixels to standardize the dataset. This resizing ensures consistent input 

dimensions and facilitates more efficient processing. Subsequently, grayscale 

conversion is applied to decrease computational load and prioritize key features. 

Afterwards, some pre-processing techniques including histogram equalization, 

advanced noise removal were implemented to make features more distinguishable and 

eliminate artifacts such as hair from the images, respectively. These techniques 

include a calibrated thresholding approach for binary masking. Gaussian smoothing, 

and median filtering are then applied which collectively ensure that the images are 

clean and of high quality for segmentation.  

Quantitative analysis is performed to measure the lesion areas in square 

millimeters, based on pixel spacing calculated from the field of view at 20x 

magnification. This step provides meaningful clinical measurements of lesion extents. 

Finally, three segmentation methods are evaluated: Binarization, Canny edge 

detection, and Sobel edge detection. For assessment of the accuracy of each method, 

the performance evaluation has been carried out   using Dice coefficient, incorporating 

comprehensive statistical analysis such as mean, median, and variability metrics. The 

binarization method is emerged as the most effective indicating superior accuracy and 

consistency. 
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CHAPTER 1 
INTRODUCTION 
 

Skin cancer is one of the most common cancers globally, with melanoma being the 

most dangerous form due to its high potential for metastasis. Early detection and 

accurate diagnosis are critical for improving survival rates. Dermoscopy, also known 

as dermatoscopy, is a non-invasive imaging technique that enhances the visualization 

of pigmented skin lesions, aiding in the differentiation between benign and malignant 

lesions. The detailed dermoscopic images provided by this technique allow clinicians 

to identify various structures and patterns not visible to the naked eye, facilitating 

early and accurate diagnosis. 

Dermoscopic images are specialized magnified images of the skin taken using a 

dermatoscope[1]. This handheld device combines a magnifying lens with a light 

source to illuminate and visualize the skin in detail. Dermoscopic images reveal 

various skin lesions, each with distinct characteristics. Common nevi (moles) are 

typically benign and not associated with a high risk of skin cancer. However, atypical 

nevi (dysplastic nevi) and melanoma are frequently studied due to their significant 

potential for developing into skin cancer. A common nevus, or mole, is a benign skin 

lesion resulting from the proliferation of melanocytes. These moles are typically 

small, uniformly colored, and have well-defined, smooth borders. They are prevalent 

in the general population and generally harmless. However, changes in their 

appearance can sometimes indicate malignancy (Fig. 1-1)[1]. 

 

 

Fig. 1-1 Common nevus dermoscopic image [1] 
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Atypical Nevus (Dysplastic Nevus) are unusual moles that can resemble melanoma 

but are generally benign. They are larger than common nevi and display a 

heterogeneous color pattern. Their presence can be associated with an increased risk 

of melanoma. Dermoscopically, atypical nevi exhibit an asymmetrical shape, irregular 

and poorly defined borders, and non-uniform pigmentation. Additionally, they may 

present different structures such as dots, globules, and streaks (Fig. 1-2)[1]. 

 

 

Fig. 1-2 Atypical nevus dermoscopic image [1] 

 

Melanoma is a malignant tumor of melanocytes and represents the most dangerous 

form of skin cancer. Early detection and treatment are critical for improving survival 

rates. Melanomas often exhibit asymmetry, irregular or poorly defined borders, and a 

diverse color palette. They vary greatly in size and shape and often show changes over 

time. Dermoscopic features of melanoma include uneven color distribution, and the 

presence of atypical networks, streaks, blue-white veils, and regression structures 

(Fig. 1-3)[1]. 

 

Fig. 1-3 Melanoma dermoscopic image [1] 
 

Dermoscopy enhances the examination of pigmented skin lesions, enabling the 

identification of various features that are not visible to the naked eye. This technique 

is particularly valuable in the early detection and diagnosis of skin cancers, including 
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melanoma. The use of dermoscopic images in research and clinical practice has led 

to the development of various diagnostic algorithms and criteria, such as the ABCD 

rule (Asymmetry, Border, Color, Diameter) and the 7-point checklist, which help 

standardize the assessment of dermoscopic features and guide clinical decision-

making [2]. 

In recent years, advancements in image processing techniques have revolutionized 

the diagnosis and management of skin diseases. By harnessing the power of digital 

imaging technologies and computational algorithms, healthcare professionals can 

now analyze skin lesions with unprecedented accuracy and efficiency. These tools 

enable clinicians to differentiate between benign and malignant lesions, track disease 

progression, and guide treatment decisions with greater confidence. Image processing 

has emerged as a cornerstone technology in healthcare, revolutionizing diagnostic and 

therapeutic approaches across various medical disciplines. The integration of image 

processing techniques into healthcare applications has transformed the landscape of 

medical diagnostics, enabling non-invasive visualization and quantification of 

anatomical structures, physiological processes, and pathological abnormalities. From 

radiology and pathology to dermatology and ophthalmology, image processing plays 

a pivotal role in augmenting the diagnostic capabilities of clinicians and improving 

patient outcomes. [3] 

In this study, several pre-processing techniques are utilized on dermoscopic images 

and various segmentation methods are applied to detect skin lesions. The shape of 

these lesions is crucial for diagnosing skin diseases, and our goal is to support 

clinicians in precisely isolating lesions from the surrounding skin to improve 

diagnosis and treatment accuracy. Furthermore, by measuring the geometric area of 

the lesions, it becomes possible to track their progression over time, providing 

valuable insights for ongoing patient monitoring and care. The methodology in this 

study involves several key steps of image pre-processing to ensure the quality and 

consistency of the data, and the application of various segmentation techniques 

including Binarization, CANNY and SOBEL edge detection. The performance of 

each segmentation method is evaluated using the Dice coefficient, which measures 

the similarity between the segmented results and the ground truth. The average of this 

Dice coefficient, standard deviation, and other statistical measures for each method 

are calculated to assess their accuracy and robustness. The Binarization method has 

been emerged as the most effective, achieving the highest average Dice coefficient, 

demonstrating superior accuracy and consistency. 
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CHAPTER 2 
LITERATURE REVIEW 
 

Computer-assisted diagnosis (CAD) systems and image processing have been 

extensively researched over the past two decades to assist skin cancer specialists in 

improving lesion detection. The concept was initially proposed around 1985. By 

utilizing image processing techniques, skin lesion images are analyzed to identify 

specific features indicative of malignancy, such as asymmetrical shape, irregular 

border, color variation, and diameter. []Photography, a common tool in 

dermatological practice, has become more accessible with the development of low-

cost imaging systems, enabling clinicians to obtain high-resolution medical images of 

areas of interest. Screening pigmented skin lesions (PSLs) aids clinicians and 

dermatologists in better visualization, documentation, and tracking of lesion evolution 

over time. Clinical photography and dermoscopy are two widely used lesion screening 

methods, each with its own advantages and differences. Clinical photography captures 

images from the skin's surface, akin to what a clinician observes, while dermoscopy 

magnifies and visualizes lesion patterns and substructures not visible to the naked eye. 

Dermoscopy, when used by trained practitioners, has been shown to enhance lesion 

diagnosis accuracy. Computer-aided diagnostic systems offer quantitative and 

objective evaluation of PSLs, serving as a supportive tool for physicians by providing 

automated or semi-automated diagnoses. Figure 2.1 depicts the essential components 

of lesion CAD tools, which are image processing algorithms aimed at diagnosing 

lesion types.  

 

 

 
 
 

Fig. 2-1- The components of lesion detection system. 

 

The human skin consists of three primary layers: the epidermis, dermis, and 

hypodermis (also known as subcutaneous tissue). These interconnected layers play 

crucial roles in maintaining skin health (see Figure 2-2). The dermis, comprised of 

collagen and elastic fibers, is divided into two layers: the papillary dermis (upper thin 

Image 
Acquisition Preprocessing Border 

Detection 
Feature                 

Extraction 
Classification 
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layer) housing the epidermis and dermis, and the reticular dermis (lower thick layer) 

containing blood and lymph vessels, nerve endings, sweat glands, and hair follicles. 

It plays essential roles in providing energy and nutrients to the epidermis, as well as 

regulating temperature, aiding in healing, and facilitating the sense of touch. 

 
Fig. 2-2- The skin’s anatomy comprising of different layers [5]. 

 

The epidermis serves as the outermost protective layer of the skin, comprised of 

four layers: the basal layer (Stratum Basale), stratum spinosum, stratum granulosum, 

and stratum corneum. Within the epidermis, four types of cells exist: keratinocytes 

(making up 95% of cells), melanocytes, Langerhans’ cells, and Merkel cells. 

Melanocytes produce melanin, which can transfer to nearby keratinocytes. This 

process can intensify through tanning reactions from sun exposure or UV radiation, 

potentially increasing the risk of malignant transformation. Basal cell carcinoma and 

squamous cell carcinoma, arising from non-pigmented basal and squamous 

keratinocytes, are the most prevalent skin cancer types [6]. 

The analysis of dermoscopic images has seen significant advancements through the 

integration of various computational methods. Early studies concentrated on 

extracting specific features such as color, shape, and texture from these images. 

Rubegni et al. (2002) demonstrated the effectiveness of pattern analysis in 

differentiating between benign and malignant lesions, with techniques like the ABCD 

(Asymmetry, Border, Color, and Diameter) rule being developed to quantify these 

features. Machine learning has played a pivotal role in enhancing image analysis, with 

classifiers like support vector machines (SVM) and k-nearest neighbors (k-NN) being 

employed to distinguish between various lesion types. More recently, convolutional 

neural networks (CNNs) have shown remarkable performance in image classification 

tasks. Esteva et al. (2017) illustrated that deep learning models could achieve 

dermatologist-level accuracy in identifying skin cancer [7]. Topological Data 

Analysis (TDA) has emerged as a powerful tool for examining the topological 
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features of data. This method considers the shape and connectivity of data points, 

which is particularly useful for analyzing skin lesion distributions. Researchers such 

as Perea and Harer (2015) have applied TDA to study the spatial patterns of lesions, 

identifying topological invariants that correlate with malignancy. Spatial and 

morphological analyses have also been a focus, with recent studies highlighting the 

importance of considering lesion distribution across the patient's entire skin surface 

[8]. Marghoob et al. (2013) emphasized techniques like Voronoi diagrams and 

Delaunay triangulations to model the spatial arrangement of lesions. These methods 

help in identifying clusters and patterns that may indicate a higher risk of melanoma 

[9]. 

Furthermore, integrating dermoscopic image analysis with clinical data, such as 

patient history and genetic information, has shown promise in improving diagnostic 

accuracy. This holistic approach allows for a more comprehensive assessment by 

considering both visual and non-visual factors, ultimately enhancing the reliability of 

diagnoses. To sum up, it's vital to identify the most robust and efficient features to 

extract lesion from skin images. Thus, in this study, we examine and discuss different 

methods for lesion detection using dermoscopic images. 
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CHAPTER 3  
MATERIALS AND METHODS 
 

In this study, a comprehensive pre-processing pipeline is initially designed to 
enhance dermoscopic images, facilitating accurate label production through 
MATLAB. The primary objective is to improve the lesion diagnosis process by 
enabling the automatic segmentation of lesion areas. The pre-processing pipeline 
incorporates several steps, including center cropping, resizing, gray-scale 
transformation, histogram equalization, noise removal, Gaussian smoothing, and 
median filtering. During the pre-processing, image dimensions are standardized, 
computational load is reduced, contrast is enhanced, noise is removed, and image 
quality is refined. These steps prepare the dermoscopic images for segmentation. 
Following pre-processing, the segmentation phase is carried out utilizing three 
methods: Binarization, Sobel, and Canny edge detection techniques, each 
contributing to the delineation of lesion boundaries. The entire pipeline is illustrated 
in Figure 3-1. Subsequently, the performance of the pre-processing and segmentation 
steps is rigorously assessed using the Dice coefficient. This metric is crucial for 
validating the precision of lesion localization, ensuring that the pre-processing 
pipeline produces high-quality, reliable results. The subsequent sections of this study 
provide detailed descriptions of the methodologies, tools, and algorithms employed. 
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Fig. 3-1- Dermoscopic images pre-processing segmentation pipeline 

 

 

3.1 DATASET 
In this work, we deal with dermoscopic images for various types of skin anomalies. 

The PH2 dataset is utilized which is publicly available for research and educational 
purposes [1]. This dataset comprises dermoscopic images acquired at the 
Dermatology Service of Hospital Pedro Hispano in Matosinhos, Portugal. These 
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images were taken under standardized conditions using the Tuebinger Mole Analyzer 
system. Each image is accompanied by detailed medical annotations, including lesion 
segmentation, clinical and histological diagnoses, and the evaluation of various 
dermoscopic criteria such as colors, pigment network, dots/globules, streaks, 
regression areas, and blue-whitish veil [1]. In dermatology, imaging techniques play 
a crucial role in diagnosing and monitoring skin conditions. Further information about 
the images of the dataset is given in the Table. 3-1: 

 
 
 
 
 
 
 

Table. 3-1- Dermoscopic image dataset information [1] 
 

Intended for an in-depth examination of skin lesions, dermoscopic imaging enables 
healthcare specialists to visualize structures beneath the skin's surface. This kind of 
imaging is used in dermatology aiding in diagnosing conditions such as melanoma 
and other skin anomalies. Images are captured with a dermatoscope, utilizing 
polarized or non-polarized light and often immersion fluids to reduce surface 
reflections, revealing fine details like pigmentation patterns and vascular structures 
invisible to the naked eye. With high magnification and resolution, these images focus 
on specific lesions or areas of interest, providing a limited but detailed field of view. 
The high diagnostic value of dermoscopic imaging lies in its ability to visualize 
structures such as pigment networks and vascular patterns, enhancing specificity in 
differentiating between benign and malignant lesions. The controlled lighting, often 
with polarized light, minimizes reflections and enhances the visibility, color contrast, 
and clarity of subsurface structures, making it a crucial tool for diagnosing 
dermatological conditions. [2] 

 

 

 

Aspect Details 

Image Magnification 20x 

Image Type 8-bit RGB color images 

Resolution 768x560 pixels 

Categories 80 common nevi, 80 atypical nevi, 40 melanomas 
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3.2 PRE-PROCESSING 
Pre-processing encompasses operations performed on images at the most 

fundamental level of abstraction, wherein both input and output manifest as intensity 
images. Such images typically mirror the original data captured by any device, 
wherein an intensity image is commonly represented by one or more matrices of 
brightness values. It is important to note that pre-processing does not augment the 
information content of the image; rather, it often diminishes information, as quantified 
by entropy. Thus, from an information-theoretic perspective, the optimal pre-
processing strategy would entail none at all; indeed, the most effective approach to 
circumventing the need for elaborate pre-processing is to prioritize high-quality 
image acquisition. 

Nevertheless, pre-processing remains invaluable across a spectrum of scenarios 
owing to its capacity to attenuate information extraneous to the particular image 
processing or analysis task at hand. Consequently, the principal objective of pre-
processing is to refine the image data by mitigating undesirable distortions or 
amplifying pertinent image features requisite for subsequent processing. 
Additionally, geometric transformations of images, such as rotation, scaling, and 
translation, are categorized as pre-processing methods herein, given their analogical 
utility in this context [10]. 

The inherent redundancy of information within the majority of images provides 
sufficient opportunity for image pre-processing techniques to analyze data and 
discern image characteristics in a statistical context. These identified characteristics 
serve a dual purpose: either to mitigate inadvertent degradation, such as noise, or to 
augment the image's quality. Notably, in real images, adjacent pixels corresponding 
to objects typically exhibit analogous or identical brightness values [10]. In the 
following, we delve into different preprocessing steps that are considered in this work.  

 

3.2.1 Image Resizing   
Image resizing is a crucial preprocessing step in numerous computer vision and 

many other applications. Resizing images ensures uniform input sizes, standardizing 
all images to the same dimensions. This uniformity is crucial for efficient processing 
and input into the networks, maintaining consistent image dimensions during each 
stage. Smaller, resized images demand fewer computational resources and memory, 
speeding up training and inference processes. This also helps manage large image 
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data sizes, making them more manageable in terms of memory and storage. Proper 
resizing techniques preserve the original aspect ratio, preventing unintended 
distortions that could affect model performance. Some methods also allow for 
controlled distortion, useful for data augmentation by generating varied versions of 
the same image. Correct resizing improves model accuracy by highlighting relevant 
image features and minimizing irrelevant details. Normalization through resizing 
ensures the model learns from standardized data, enhancing its ability to generalize 
across different datasets[11]. 

There are different techniques to perform image resizing such as adjusting size in 
which mainly eliminates portions of the image to achieve specific dimensions that are 
utilized in this study. To ensure preserving the informative part of each image, 
‘imresize’ function using the ‘bilinear’ method is utilized to resize the images to 

512x512. It would be cautious to say that ‘imresize’ changes the resolution, as the 
definition of resolution can vary. In image processing, resolution often refers to the 
ability to distinguish between two neighboring fine objects. While ‘imresize’ alters the 
number of pixels and pixel density, it does not change the pixel size itself. This means 
it can maintain the ability to separate two objects that are distinguishable in the 
original image. To assess the quality of the resized image in terms of spatial 
resolution, the Structural Similarity Index Measure (SSIM) function can be used. This 
involves recovering the resized image back to its original dimensions and comparing 
it with the original image. In this case, the spatial resolution preservation can be 
evaluated. A value closer to one indicates a higher similarity to the original image, 
reflecting better preservation of spatial resolution. 

 

3.2.2 Gray-Scale Transformation 

Gray-scale transformation is a technique used to simplify image processing by 
converting images to grayscale, thus reducing computational load and focusing on 
essential features. In an RGB image, each pixel comprises red, green, and blue 
components. The grayscale conversion process involves combining these components 
into a single intensity value. This is typically done using a weighted sum of the red, 
green, and blue values, reflecting the human eye's sensitivity to different colors. For 
example, the formula: 

𝐺𝑟𝑎𝑦 = 0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵, 
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is commonly used, where 𝑅, 𝐺 𝑎𝑛𝑑 𝐵 are the intensities of the red, green, and blue 
channels, respectively. This ensures the grayscale image accurately represents the 
perceived brightness of the original RGB image. 

3.2.3 Histogram Equalization 
To further enhance the quality of the grayscale images, histogram equalization is 
applied. This technique redistributes the brightness values to span the entire range of 
possible values, thereby enhancing the contrast of the image. Histogram equalization 
is particularly useful for making features more distinguishable, which is crucial in 
medical imaging where clear visibility of details is necessary for accurate diagnosis. 
By adjusting the input histogram 𝐻(𝑝) of grayscale intensity values to create a more 
uniform output histogram 𝐺(𝑞), we improve the contrast by balancing dark and light 
areas. 

Histogram equalization is performed by first calculating the histogram of the original 
grayscale image to determine the frequency of each intensity value. Then, the 
cumulative distribution function (CDF) is computed from this histogram. Each 
original intensity value 𝑝 is mapped to a new intensity value 𝑞 using the CDF, 
ensuring that the new values are spread more evenly across the entire range of possible 
intensities. This is achieved by normalizing the CDF and scaling it to the desired range 
of intensity values. The result is an image with enhanced contrast, where details are 
more visible due to the more uniform distribution of brightness levels. [12] 

 

 

 
      

 
 

                                            (a)                                             (b)                       
Fig. 3-2- Histogram equalization of a lung image, a) original image, b) equalized image [13]. 

 
The histograms of both images depicted in Figure 3-2 are presented in Figure 3-3, 

which assesses the alterations resulting from the application of histogram 
equalization to the image. 
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                                                 (a)                                                             (b) 

Fig. 3-3- Histogram equalization diagram, a) original image, b) equalized image [13]. 

 

3.2.4 Noise Removal Using Masking 
During image preprocessing, it is frequently essential to eliminate different forms 

of noise, such as hair and other unwanted elements in the images, which may disrupt 
the precise evaluation of skin lesions. The rationale behind this can be divided into 
three main reasons. First, it enhances the clarity of images by eliminating obstructions 
that may obscure important details, thereby reducing the risk of incorrect diagnoses 
or misinterpretations. Second, the elimination of noise improves image quality, which 
in turn enhances the performance of models used for tasks such as segmentation and 
classification. Lastly, it ensures consistency by providing uniform images that are free 
from artifacts, thereby maintaining the integrity of diagnostic procedures. 

One effective method for achieving this objective involves employing masking 
techniques. This section outlines the strategy of employing masking to eliminate hair 
from images. The masking methodology involves several steps, including converting 
the image to a binary format, creating a mask, and then applying this mask to remove 
noise from the original image.  

 

3.2.5 Image Smoothing 
Image smoothing leverages the redundancy inherent in image data to mitigate 

noise, typically achieved through some variation of brightness value averaging within 
a designated neighborhood O. However, smoothing introduces the challenge of 
blurring sharp edges. Hence, we shall focus on edge-preserving smoothing methods 
herein, where the average is computed solely from points within the neighborhood 
exhibiting similar properties to the point undergoing processing. Local image 
smoothing can effectively eradicate impulse noise or degradations manifesting as thin 
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stripes. Nonetheless, it proves ineffective in scenarios where degradations manifest 
as large blobs or thick stripes. In such cases, image restoration techniques may be 
employed to address these issues [14]. 

Let us assume that the noise value ν at each pixel is an independent random variable 

characterized by a zero mean and a standard deviation of σ. If we capture the same 

static scene under identical conditions n times, from each captured image, a specific 
pixel value gi, where i = 1, . . . , n, is selected. An estimate of the correct value can be 
derived by averaging these selected values, accounting for their corresponding noise 
values ν1, . . . , νn [13]: 

 

 
 

The subsequent term in this expression delineates the noise component, which once 
more constitutes a random value characterized by a mean of zero and a standard 
deviation. Consequently, if n images capturing the same scene are at our disposal, 
smoothing can be executed without inducing image blur through [13]: 

 
This line of reasoning aligns with a well-established statistical principle: when a 

random sample is drawn from a population, and the corresponding sample mean is 
computed, it yields a distribution of sample mean values when this process is repeated 
multiple times. The distribution of sample means offers several beneficial properties. 
it has a mean equal to the population mean and a variance of 𝜎

√𝑛 
,which is smaller than 

that of the original population. If the original data follows a normal distribution, the 
distribution of sample means will also be normal. Importantly, the central limit 
theorem indicates that the distribution of sample means tends to be normal regardless 
of the original distribution. Practically, this theorem reduces the need to explicitly 
generate the distribution of sample means. In statistical analysis, approximately 30 
samples are generally considered the minimum number of observations necessary. 

Typically, only one noise-corrupted image is available, and averaging is 
subsequently conducted within a local neighborhood. This approach yields 
satisfactory results when the noise exhibits a smaller size than the smallest objects of 
interest in the image. However, a notable drawback is the blurring of edges. 
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Averaging can be viewed as a specific instance of discrete convolution. For instance, 
a neighborhood size of 3 × 3, the convolution mask h is as follows [13]: 

 
The importance of the pixel situated in the center of the convolution mask h or its 

4-neighbors is occasionally heightened, as it offers a closer approximation to the 
characteristics of noise following a Gaussian probability distribution [13]. 

 

 
Two widely employed smoothing filters feature coefficients that gradually 

diminish, approaching near-zero values at the edges of the window. This strategy 
effectively mitigates spurious oscillations in the frequency spectrum. The Gaussian 
and Butterworth filters are prominent examples. In the case of the Gaussian filter, 
larger convolution masks for averaging are generated based on the Gaussian 
distribution formula, with the mask coefficients normalized to yield a unit sum. 
Conversely, the Butterworth filter operates within the realm of local pre-processing 
in the frequency domain [15-16]. 

An illustrative example serves to elucidate the efficacy of noise suppression 
techniques. To highlight the discrete nature of the process, low-resolution images 
measuring 256 × 256 pixels were deliberately selected. Figure 3-4 (a) portrays the 
original image of Prague Castle. In contrast, Figure 3-4 (b) displays the same image 
overlaid with additive noise following a Gaussian distribution. Following the 
application of averaging with a 3 × 3 convolution mask, depicted in Figure 3-4 (c), 
noise is noticeably reduced, albeit at the expense of slight image blurring. 
Subsequently, Figure 3-5 (d) showcases the outcome of averaging with a larger mask 
size (7 × 7), resulting in significantly more pronounced blurring [17]. 

While filters of this nature may incur significant computational overhead, the 
computational burden is substantially alleviated in the crucial instance of separable 
filters. In the context of two-dimensional (2D) separability, the convolution kernel 
can be decomposed into a product of two one-dimensional vectors. Theory offers 
insights into identifying which convolution masks exhibit separability. 
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                 (a)                                     (b)                                      (c)                                      (d) 
Fig. 3-4- Image smoothing, a) original image, b) Gaussian noise, c) 3×3 averaging and d) 7×7 averaging 

[18] 

3.2.6 Median Filtering  
In probability theory, the median delineates the boundary between the higher and 

lower halves of a probability distribution. For a random variable x, the median M 
represents the value at which the probability of x being less than M equals 0.5. 
Calculating the median of a finite list of real numbers involves arranging the list in 
ascending order and selecting the middle value. Lists are often crafted with an odd 
number of elements to ensure the uniqueness of the median. 

Median filtering represents a non-linear smoothing technique aimed at mitigating 
edge blurring, wherein the central concept involves substituting the current pixel in 
the image with the median value derived from the brightness values within its local 
neighborhood. This method proves effective in eliminating impulse noise, as the 
median value within the neighborhood remains unaffected by individual noise spikes. 
Moreover, due to its minimal impact on edge sharpness, median filtering allows for 
iterative application. However, the computational complexity associated with sorting 
pixels within a potentially large rectangular window at each pixel position can be 
prohibitive. An alternative, more efficient approach involves recognizing that as the 
window shifts across a row by one column, the only alteration to its contents entails 
discarding the leftmost column and introducing a new right column [19]. 

The process of median filtering is depicted in Figure 3-5. An inherent limitation of 
median filtering within a rectangular neighborhood lies in its tendency to distort fine 
lines and sharp corners. This drawback can be circumvented by employing alternative 
neighborhood shapes. For instance, to preserve horizontal or vertical lines, an 
appropriate neighborhood configuration can be adopted. Median smoothing 
represents a specialized manifestation of broader rank filtering methodologies, which 
involve organizing pixels within a neighborhood into a sequential arrangement. Pre-
processing outcomes are then derived through statistical analysis of this sequence, 
with the median serving as one potential measure. Additionally, variants such as the 
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maximum or minimum values within the sequence offer generalized extensions of 
dilation and erosion operations in images featuring a wider range of brightness values. 
This approach is known as order statistics (OS) filtering, wherein values within the 
neighborhood are once again ordered into a sequence, and a new value is determined 
as a linear combination of these ordered values [20]. 

 

 
(a)                                                  (b) 

Fig. 3-5- Median filtering, a) impulse noise corrupted image, b) 3×3 filtering [13]. 

 

3-3 BINARIZATION 
After completing the preprocessing steps, the images were binarized using 

MATLAB's ‘imbinarize’ function. Binarization is a critical process that converts 
grayscale images into binary images, consisting of only black and white pixels. This 
step simplifies the image data and highlights the regions of interest, which is essential 
for accurate lesion detection and analysis. Binarization decreases the complexity of 
the images by converting the grayscale intensity values into a binary format, aiding 
in easier and more efficient analysis. Region of Interest emphasizes the boundaries 
and shapes of lesions, making it easier to distinguish and analyze these regions. 
Additionally, binary images are crucial for subsequent processes like segmentation 
and edge detection, which rely on clear delineation of object boundaries. 

The threshold determination is done using calibration color which involves several 
key steps. Initially, specific calibration colors representing the range of intensities 
present in the images are selected based on their ability to distinguish between the 
lesion and the surrounding skin. Subsequently, using these selected calibration colors, 
the threshold value for binarization is calculated through a predetermined linear 
equation, which involves analyzing the intensity values of the calibration colors to 



18 
 

determine an effective threshold that separates the lesion from the background. 
Finally, this calculated threshold is applied to the grayscale images using the 
‘imbinarize’ function in MATLAB, which converts the grayscale images into binary 
images by setting pixels above the threshold to white (indicating the lesion) and pixels 
below the threshold to black (indicating the background).  

 

3.4 LESION GEOMETRICAL AREA 
CALCULATION 
 

In order to quantitatively analyze the lesions in the processed dermoscopic images, 
a series of calculations are performed to determine the portion and size of the lesions 
in millimeters which can be useful in comparison of lesion size over time. This 
comparison has not been performed in this study due to lack of related data. This step 
is crucial for assessing the extent of the lesions and for making meaningful medical 
interpretations.  

Initially, Pixel Spacing Calculation that converts the pixel dimensions of the 
images to physical dimensions (millimeters), The pixel spacing is calculated based on 
the field of view (FOV) dimensions at 20x magnification. Assuming the FOV 
dimensions were 7 mm x 7 mm, the pixel spacing in both the x and y directions is 
determined by dividing the FOV dimensions by the original image dimensions 
(768x560 pixels). The pixel spacing for the original image dimensions (768x560 
pixels) is calculated to determine the physical size each pixel represents in 
millimeters.  

Next, the pixel spacing for the resized images (512x512 pixels) is adjusted to 
maintain accurate physical measurements. The adjusted pixel spacing for the resized 
images is calculated, ensuring that the physical dimensions are correctly mapped to 
the new pixel dimensions. The binary image is analyzed to calculate the number of 
white pixels, representing the lesion area, and the number of black pixels, representing 
the non-lesion area. The proportions of white and black pixels are calculated to 
understand the relative size of the lesion compared to the entire image area in which 
the proportion of white pixels in the binary image provides the percentage of the 
image occupied by the lesion and the proportion of black pixels represent the 
percentage of the image that does not contain the lesion. To convert the pixel area of 
the lesion to a physical area in square millimeters, the number of white pixels (lesion 
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area in pixels) is multiplied by the pixel spacing values in the x and y directions. The 
calculated lesion area in pixels is converted to square millimeters, providing a 
meaningful measurement of the lesion size in physical units. The code snippet 
provided in the annex helps to clarify the process.  

 

3.5 SEGMENTATION   
To perform more research and compare different techniques, another method 

named segmentation is utilized to detect the edges. Segmentation in biomedical image 
processing is a crucial step that involves partitioning an image into meaningful 
regions, which typically correspond to different anatomical structures, tissues, or 
areas of interest within the body. This process facilitates the detailed analysis of 
complex medical images, such as those obtained from MRI, CT, ultrasound, or 
microscopy, enabling more accurate diagnosis, treatment planning, and research [21].  

The primary goal of segmentation is to isolate and delineate specific features within 
an image, such as organs, tumors, blood vessels, or other critical structures, allowing 
for quantitative analysis and better visualization. Segmentation techniques can be 
broadly categorized into several types based on their underlying methodologies. 
Thresholding is one of the techniques that involves setting a specific intensity value 
(threshold) to separate different regions. Pixels with intensity values above the 
threshold are classified as one region, while those below are classified as another. 
Thresholding is simple and fast but may be inadequate for complex images with 
overlapping intensity ranges [22-23]. Edge Detection is another method that involves 
techniques such as the Sobel, Canny, and Prewitt operators identifying the boundaries 
between different regions based on the changes in intensity. These methods are 
effective in highlighting structures but can be sensitive to noise [24-25]. Moreover, 
Region-Based Segmentation method groups pixels into regions based on predefined 
criteria such as intensity homogeneity [26]. Furthermore, Clustering algorithms like 
K-means and Gaussian Mixture Models (GMM) segment the image by grouping 
pixels with similar characteristics. These methods are effective for distinguishing 
between multiple regions but may require prior knowledge about the number of 
clusters [27]. In addition, recent advances in machine learning, particularly deep 
learning, have revolutionized image segmentation. Convolutional Neural Networks 
(CNNs) and fully convolutional networks (FCNs) can learn complex features from 
annotated training data, providing highly accurate and automated segmentation. 
Examples include U-Net and Mask R-CNN, which are widely used in biomedical 
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applications for their robustness and precision [28]. Each of these methods has its 
strengths and limitations, and the choice of technique often depends on the specific 
characteristics of the biomedical images and the segmentation task at hand. 
Combining multiple methods or using hybrid approaches can also enhance 
segmentation accuracy and robustness. In this study, Edge Detection is utilized as 
selected method to perform the segmentation process. 
 

3.5.1 Edge Detection  
Edge detection algorithms comprise a critical set of localized image pre-processing 

techniques employed to identify alterations in the intensity function, with edges 
representing pixels where this function, typically brightness, undergoes abrupt 
changes. Neurological and psychophysical investigations indicate that regions within 
the image characterized by abrupt changes in function values play a pivotal role in 
image perception. Notably, edges demonstrate a certain degree of invariance to 
variations in illumination and viewpoint. Focusing solely on edge elements with 
pronounced magnitude, termed edges, often yields adequate information for 
comprehending the image. This process offers a notable advantage in significantly 
reducing the volume of image data. However, such reduction does not compromise 
the interpretative understanding of image content in numerous instances. Edge 
detection facilitates a pertinent abstraction of the image data; for example, line 
drawings exemplify such abstraction. 

The physical phenomena inherent in the image formation process is explored to 
give rise to sudden alterations in image values, as illustrated in Figure 3-6. Differential 
calculus serves as a framework for elucidating changes in continuous functions, 
whereby an image function, contingent upon two variables denoting coordinates in 
the image plane, necessitates operators articulated through partial derivatives to 
characterize edges. A modification in the image function is delineated by a gradient 
vector, which denotes the direction of maximum ascension within the image function. 
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Fig. 3-6- Edge detection procedure [13]. 

 
An edge represents an attribute associated with an individual pixel, derived from 

the behavior of the image function within the vicinity of that pixel. It is characterized 
as a vector variable encompassing two components: magnitude and direction. The 
magnitude of the edge corresponds to the magnitude of the gradient, while the edge 
direction, denoted as φ, is orthogonal to the gradient direction, ψ, by a rotation of -90 
degrees. The gradient direction signifies the direction of maximal change in the 
function, such as the transition from black (f(i, j) = 0) to white (f(i, j) = 255). This 
concept is elucidated in Figure 3-7, wherein closed lines delineate regions of uniform 
brightness. The orientation of 0 degrees points towards the east [18]. 

 
Fig. 3-7- Gradient and edge direction definition [13]. 

Edges serve as prominent tools in image analysis for delineating boundaries 
between regions. When a region exhibits homogeneous brightness, its boundary 
coincides with pixels where variations occur in the image function. In an ideal 
scenario devoid of noise, these boundary pixels typically demonstrate high edge 
magnitudes. Notably, the boundary and its constituent segments (edges) exhibit 
perpendicularity with respect to the gradient direction. Figure 3-8 provides 
illustrations of various standard edge profiles. Edge detection algorithms are 
commonly tailored to detect specific types of edge profiles. 
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Fig. 3-8- Edge profiles [13]. 

 
The continuous functions of gradient magnitude and gradient direction are 

computed as follows [13]: 

 
The term arg(x, y) represents the angle (measured in radians) from the x-axis to the 

point (x, y). In certain scenarios, there is a focus solely on edge magnitudes, 
disregarding their orientations. In such cases, a linear differential operator known as 
the Laplacian is employed. The Laplacian possesses uniform properties across all 
directions and, as a consequence, remains unchanged under rotation. Its formulation 
is expressed as [13]: 

 
 
The aim of image sharpening is to enhance the steepness of edges, with the resultant 

sharpened image intended for human observation. The sharpened output image, 
denoted as f, is derived from the input image g through the following process [13]: 

 
In the given equation, C represents a positive coefficient that signifies the degree 

of sharpening, while S(i, j) denotes a measure of the sharpness of the image function, 
computed utilizing a gradient operator. The Laplacian operator is frequently 
employed for this purpose, as depicted in Figure 3-9, which provides an illustrative 
example of image sharpening utilizing the Laplacian. Additionally, image sharpening 
can be interpreted within the frequency domain. As known, the Fourier transform 
outcome comprises a blend of harmonic functions [14]. The derivative of the 
sinusoidal function sin(nx) yields ncos(nx); thus, higher frequencies correspond to 
larger magnitudes of their derivatives. To execute image sharpening, a signal 
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proportional to an unsharp image, such as one significantly blurred by a smoothing 
operator, is subtracted from the original image. Given the discrete nature of digital 
images, approximation via differences is imperative. The first-order differences of the 
image g in the vertical direction (with i fixed) and horizontal direction (with j fixed) 
are articulated as follows [13]: 

 
 

Here, n denotes a diminutive integer, commonly designated as 1. The selection of n 
should be such that it remains sufficiently small to offer a precise approximation to 
the derivative, yet adequately large to disregard negligible alterations in the image 
function. Symmetric formulations for these differences are sought [15]: 

 

 
(a)                                                       (b) 

Fig. 3-9- Laplace operator, a) laplace edged image, b) sharpened image using laplace operator [13]. 

 
Gradient operators, serving as a metric for the sharpness of edges, are categorized 

into three main groups. First, the operators that estimate derivatives of the image 
function through differences. Some of these operators exhibit rotational invariance 
(e.g., Laplacian), thereby necessitating the utilization of a single convolution mask. 
Conversely, others, approximating first derivatives, employ multiple masks. The 
orientation is determined based on the optimal alignment with various basic patterns. 
Second, the operators predicated on the zero-crossings of the second derivative of the 
image function (e.g., Marr-Hildreth or Canny edge detectors). Third, the operators 
that endeavor to align an image function with a parametric model of edges. 
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Edge detection represents a pivotal stage enabling sophisticated image analysis and 
continues to be a subject of ongoing investigation. Various methodologies showcased 
in contemporary literature encompass fuzzy logic, neural networks, and wavelets. 
Selecting the optimal edge detection strategy may pose challenges due to the diverse 
array of available approaches. Consequently, two famous methods SOBEL and 
CANNY are selected for this purpose.  

 

3.5.1.1 SOBEL Operator 
The Sobel operator is frequently employed as a straightforward method to detect 

the horizontal and vertical orientation of edges, primarily utilizing masks h1 and h3 
[30]. 

 
Upon obtaining the responses y and x from masks h1 and h3 respectively, the 

determination of edge strength (magnitude) can be formulated as follows [30] in 
which direction is arctan(y/x). 

 
       

        

3.5.1.2 CANNY Edge Detection 
Canny introduced a method for edge detection that is deemed optimal for 

identifying step edges affected by white noise. The optimality of this detector is 
predicated on three criteria [31]: First, the detection criterion underscores the 
necessity of capturing significant edges accurately while minimizing spurious 
responses. Second, the localization criterion emphasizes the importance of 
minimizing the discrepancy between the actual position of the edge and its detected 
location. Third, the single response criterion aims to mitigate multiple responses to a 
solitary edge. This aspect is partially encompassed by the first criterion, as in 
instances where two responses occur for a single edge, one must be regarded as 
erroneous. The third criterion addresses the challenge posed by noisy edges and 
counters the effects of non-smooth edge operators. 
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  Canny approach is underpinned by several key concepts [32]. Initially, the edge 
detector was formulated for a one-dimensional signal and the first two optimality 
criteria were addressed. A solution was attained through closed-form expressions 
derived via the calculus of variations. Incorporating the third criterion pertaining to 
multiple responses necessitates numerical optimization to identify the optimal 
solution. The resultant filter can be accurately approximated, with an error margin of 
less than 20%, using the first derivative of a Gaussian smoothing filter with a specific 
standard deviation. This approach is favored due to the availability of efficient 
implementation methods. Subsequently, the detector is extended to operate in two 
dimensions. A step edge is characterized by its position, orientation, and potentially 
its magnitude. It can be demonstrated that convolving an image with a symmetric 
two-dimensional Gaussian filter and subsequently differentiating in the direction of 
the gradient (perpendicular to the edge direction) yields a straightforward and 
efficient directional operator. 

Let G denote a two-dimensional Gaussian function, and consider the scenario 
where there is a desire to perform convolution of the image with an operator Gn, which 
represents the first derivative of G in a specified direction denoted as n [32]: 

 
The objective is to ensure that n is orthogonal to the edge; however, this direction 

is not predetermined. Instead, it is inferred robustly based on the smoothed gradient 
direction. Given an image f, the estimation of the normal to the edge, denoted as n, is 
computed as follows [32]: 

 
 

Subsequently, the edge position is identified as the local maximum attained by 
convolving the image f with the operator Gn in the direction of n [32]: 

 
This equation elucidates the process of identifying local maxima in the direction 

orthogonal to the edge, a procedure commonly known as non-maximal suppression. 
Given the associativity of convolution and differentiation, the initial step involves 

convolving an image f with a symmetric Gaussian function G, followed by the 
computation of the directional second derivative using an estimation of the direction 
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n obtained. The determination of the edge's strength, represented by the magnitude of 
the gradient of the image intensity function f, is then evaluated as [32]:  

 
  False positives, stemming from noise-induced spurious responses to individual 
edges, often manifest as a prevalent issue in edge detection methodologies. These 
false detections, commonly known as 'streaking,' tend to fragment edge contours 
when the operator fluctuates above and below the threshold during the edge detection 
process. To mitigate streaking, a thresholding mechanism employing hysteresis is 
employed, incorporating both a stringent (higher) threshold and a lenient (lower) 
threshold. The determination of these thresholds is guided by an estimated signal-to-
noise ratio. 
  The optimal scale for the operator is contingent upon the objects depicted in the 
image. Addressing this uncertainty necessitates the adoption of multiple scales and 
the amalgamation of information garnered from them. In the context of the Canny 
detector, diverse scales are characterized by varying standard deviations σ of the 

Gaussian functions. Notably, there may exist multiple scales of operators that elicit 
significant responses to edges (i.e., signal-to-noise ratio surpasses the threshold). In 
such scenarios, preference is accorded to the operator with the smallest scale, as it 
affords superior localization of the edge. 

 
Canny introduced a methodology centered on feature synthesis. Initially, all 

prominent edges detected by the operator with the minimum scale are delineated. 
Subsequently, the edges corresponding to an imaginary operator with a larger 
standard deviation σ are synthesized based on the previously identified edges. The 

synthesized edge response is then juxtaposed with the authentic edge response for the 
larger σ. Any additional edges are annotated solely if their response significantly 

exceeds that projected from the synthesized output. This iterative process can be 
reiterated across a succession of scales, facilitating the construction of a cumulative 
edge map by aggregating those edges that remained undetected at smaller scales. 

Figure 3-10 (a) illustrates the edges extracted through the implementation of a 
Canny operator with a standard deviation of 1.0. In contrast, Figure 3-10 (b) depicts 
the response of the edge detector corresponding to a standard deviation of 2.8. Canny 
detector constitutes a sophisticated yet substantial advancement in the field of edge 
detection. 
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  (a)  (b) 

Fig. 3-10- Canny edge detection, a) σ = 1.0, b) σ = 2.8 [13]. 

 
 

3.6 METRICS 

3.6.1 Dice Coefficient 
The Dice coefficient serves as a frequently employed measure in medical image 

analysis for assessing the similarity between two sets of segmented regions. These 
regions commonly include a predicted segmentation, generated by algorithms, and a 
ground truth annotation. A Dice coefficient value of 1 indicates a perfect overlap 
between the predicted and ground truth segmentations, while a value of 0 indicates 
no overlap. The coefficient is mathematically defined as: 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

where: 
● A represents the set of pixels in the predicted segmentation. 
● B represents the set of pixels in the ground truth segmentation. 
● ∣A∩B∣ is the number of pixels that are correctly identified as edges in both 

images. 
● |𝐴| + |𝐵| are the total number of edge pixels in A and B, respectively. 

 
In the context of this study, ROIs are specific areas of interest within the skin 

images, such as lesions. The accuracy of the segmentation algorithm in identifying 



28 
 

these ROIs is critical for reliable analysis and diagnosis. The Dice coefficient is 
employed to evaluate this accuracy by comparing the segmented regions produced by 
the algorithm to the manually annotated ground truth ROIs. 
 

3.6.2 Standard Deviation 
Standard deviation is used to assess how each segmented image deviates from the 

average Dice coefficient, thereby evaluating the consistency and robustness of our 
pipeline. Standard deviation is a measure of the amount of variation or dispersion in 
a set of values. It quantifies how spread out the values in a dataset are around the 
mean (average) of the dataset. A low standard deviation indicates that the values are 
close to the mean, while a high standard deviation indicates that the values are spread 
out over a wider range. 

For a dataset 𝑥1, 𝑥2, . . . 𝑥𝑁 with N values, the standard deviation σ is calculated 
using the following formula: 

𝜎 = √
1
𝑁

∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

where: 
● 𝑥𝑖 are the individual values in the dataset 
● 𝜇 is the mean of the dataset, calculated as 𝜇 =

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1   

● N is the number of values in the dataset. 
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CHAPTER 4 
RESULTS AND DISCUSSION 
 

In this chapter, we present the results of our dermoscopic image segmentation 

study, focusing on the preprocessing steps, segmentation methods, and performance 

evaluation. The primary objective of this study is to develop a robust pipeline for 

accurately segmenting lesions in dermoscopic images. The pipeline comprises several 

stages, including image preprocessing, noise removal, and the application of various 

segmentation techniques. We evaluate the effectiveness of these techniques using the 

Dice coefficient to compare the segmentation results with ground truth data. 

 

4.1 DATASET PREPARATION 
In the initial phase of our study, we focused on assembling and preparing a 

complete dataset of dermoscopic images. This dataset is introductory for developing 

and evaluating our lesion segmentation pipeline. Below is a detailed explanation of 

the preprocessing steps undertaken to ensure the consistency and reliability of the 

results. We begin by collecting a dataset comprising 200 high-resolution dermoscopic 

images. These images are paired with their corresponding created ground truth 

annotations that are prepared manually, providing a precise delineation of lesion 

areas. The original dimensions of these images were 768x560 pixels. These high-

resolution images are chosen to capture fine details essential for accurate lesion 

segmentation. Figure 4-1 shows samples of three different lesion categories with their 

ground truth. 

To standardize the input dimensions across all images and facilitate more efficient 

processing, each image in the dataset was resized from 768x560 pixels to 512x512 

pixels. This resizing process was carried out using MATLAB's 'imresize' function, 

which ensures that the aspect ratio and essential features of the images are preserved 

during the resizing. Each resized image was paired with its corresponding resized 

ground truth annotation. This step ensures that the segmentation model can be 

evaluated based on accurately labeled data. The ground truth annotations were 
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similarly resized to match the dimensions of the resized images, ensuring precise 

alignment between the image data and the annotated lesion areas. 

 

      

        
             (a)           (b)                                 (c) 

Fig. 4-1- Different types of lesions: 
Row 1) Original Image, 2) Ground Truth 

Column a) Common Nevo, b) Atypical Nevo and c) Melanoma 

 

By resizing the original dermoscopic images and their ground truth annotations to 

a uniform size of 512x512 pixels, we establish a consistent and reliable dataset as 

described in the previous chapter. This preprocessing step is foundational for the 

subsequent stages of our lesion segmentation pipeline, ensuring that our models are 

evaluated on standardized data. This standardization is expected to enhance the 

accuracy and generalizability of our segmentation results, ultimately contributing to 

the effectiveness of our proposed pipeline in medical applications (Fig. 4-2). It should 

be noted that these three original images from different types of lesions are selected 

among 200 images of the dataset as the base images to visualize the results of the next 

steps but the whole processed is applied on all 200 images. 
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                 (a)              (b)  (c)  

Fig. 4-2- Different types of lesions: 
Row 1) Original Resized Image and 3) Resized Ground Truth 

Column a) Common Nevo, b) Atypical Nevo and c) Melanoma 
 

To assess the spatial resolution quality of the resized image, the SSIM function is 

used. This involves restoring the resized image to its original dimensions and 

comparing it with the original. A value close to one indicates a high similarity to the 

original image, reflecting better preservation of spatial resolution. It is evident that by 

achieving the SSIM value approximately 0.995 for each of 200 images, there exists a 

high degree of similarity between the original image and the resized version indicating 

that spatial resolution is preserved acceptably (Fig. 4-3). 

 

   
(a)                                          (b) 

Fig. 4-3- Quality comparison between a) original and b) recovered images 
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4.2 IMAGE PREPROCESSING 

4.2.1 Enhanced Grayscale Image Preparation 
Following the initial resizing of the dermoscopic images, the next step involved 

converting the resized images to grayscale to assess their quality since converting 

images to grayscale simplifies the data, reduces computational load, focuses on 

intensity information. This conversion was performed using MATLAB's 'rgb2gray' 

function. However, the resulting grayscale images did not meet the desired quality 

standards for accurate lesion segmentation. To address this, we implemented a series 

of preprocessing enhancements as detailed below. 

4.2.1.1 Center Cropping 
To improve the focus on the lesion areas and enhance the quality of the images, we 

applied a center cropping technique. The target size for cropping function was set to 

[560, 620] pixels, ensuring that the most relevant central part of the image was 

retained. This step helps to eliminate any extraneous background details that might 

interfere with the segmentation process. 

4.2.1.2 Histogram Equalization for Enhanced 

Grayscale Transformation 
To further enhance the grayscale images and improve their quality, we employed 

the Adaptive Histogram Equalization (AHE) method. This technique enhances the 

contrast of the images by redistributing the lightness values more evenly across the 

image, making the features more distinguishable and aiding in better segmentation of 

the lesions. The final images are shown in the figure 4-4. 
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Fig. 4-4- Different grayscale images: 

Row 1) original grayscale and 2) enhanced grayscale 
 
 

4.2.2 Noise Removal Using Masking Technique 

After enhancing the grayscale images, the next crucial step was to remove noise 

artifacts, such as hair, that could interfere with the segmentation process. To achieve 

this, we implemented a masking technique that utilized a calibrated threshold for 

binarization. The process involved the following steps: 

4.2.2.1 Threshold Determination Using Calibration 

Color 
To determine an appropriate threshold for binarizing the images, calibration color 

approach is utilized. The calibration color is identified as the most frequently 

occurring pixel value in the grayscale image. This value served as a reference point 

for setting the sensitivity of the binarization process. The grayscale image is analyzed 

to find the pixel value that appeared most frequently. This value, provides a basis for 

calibrating the binarization threshold. The calibration color is normalized to a [0, 1] 

range, assuming grayscale values ranged from 0 to 255. A linear equation is then used 

to relate the final sensitivity to the calibration color, with predefined lower and upper 
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sensitivity bounds of 0.4 and 0.8, respectively. This linear mapping ensures that higher 

calibration colors corresponded to higher sensitivities, allowing for more adaptive 

thresholding based on the image's specific characteristics. 

4.2.2.2 Mask Production 
To prepare the images for noise removal, adaptive histogram equalization is used 

previously to enhance the contrast of the grayscale images further. Following this 

enhancement, morphological operations and binarization techniques are used to 

create a binary mask that would isolate noise elements such as hair (Fig 4-5). A top-

hat filter is applied to the enhanced grayscale images using a structural element (disk-

shaped) to emphasize small bright regions on a dark background, such as hair. The 

top-hat filtered image is then binarized using an adaptive thresholding method, with 

the sensitivity parameter determined from the calibration color. This step produces a 

binary mask highlighting the noise regions. To refine the binary mask, a 

morphological closing operation is performed using a smaller disk-shaped structural 

element. This operation helped to close small gaps and connect disjointed components 

within the mask.    

       

     
Fig. 4-5- Masks for different types of images  

 

4.2.2.3 Noise Removal 
The final step involved applying the binary mask to the original image to remove 

the identified noise elements. This is achieved through 'inpainting', a technique that 

fills in the regions marked by the mask with surrounding pixel values to seamlessly 

remove unwanted artifacts. The 'inpainting' process utilized the binary mask to 

coherently replace the noise regions with pixels from the surrounding areas, 

effectively removing elements like hair from the image while preserving the integrity 

of the lesion areas. 
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The described process effectively enhances the quality of the images and removes 

noise artifacts, significantly improving the subsequent lesion segmentation. By 

calibrating the binarization threshold based on the most frequently occurring 

grayscale value and applying a series of morphological and inpainting operations, we 

ensured that the images were free from extraneous noise, leading to more accurate 

and reliable segmentation results. This comprehensive noise removal strategy is a 

critical component of our lesion segmentation pipeline, contributing to the overall 

efficacy of the proposed method. Figure 4-6 shows that noise such as hair is removed 

from original image but there is a need to apply more de-noising process to improve 

the quality which are perform on the next steps. 

     

     
Fig. 4-6- RGB images after masking process  

Row: 1) original, 2) de-noised images 

 

4.2.3 Additional Noise Reduction: Smoothing and 

Median Filtering 

To further enhance the quality of the grayscale images and ensure the removal of 

any residual noise, additional filtering techniques are applied. These techniques are 

including Gaussian smoothing and median filtering, which help to refine the images 

and prepare them for accurate lesion segmentation. Gaussian smoothing is a technique 

used to reduce image noise and detail by averaging the pixel values within a 

neighborhood defined by a Gaussian kernel. This method effectively blurs the image, 

smoothing out sharp transitions and reducing the impact of high-frequency noise. A 
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Gaussian filter with a specified standard deviation (sigma) is applied to the 

preprocessed images. The choice of sigma value is determined through 

experimentation to balance noise reduction with the preservation of essential image 

features. The smoothed image exhibited reduced noise, making the lesion boundaries 

more discernible. Following Gaussian smoothing, median filtering is applied to 

further enhance the image quality. Median filtering is a nonlinear process that replaces 

each pixel value in the image with the median value of the neighboring pixels. This 

technique is particularly effective at removing salt-and-pepper noise, which can 

appear as random bright or dark spots in the image. The median filter is applied to the 

smoothed images, utilizing a window size determined through experimentation. This 

filter effectively removes any remaining isolated noise artifacts without significantly 

blurring the image, thereby preserving the edges and details of the lesions. 

The application of Gaussian smoothing and median filtering provide an additional 

layer of noise reduction, resulting in cleaner and more refined grayscale images. 

Gaussian smoothing helps to blur out high-frequency noise, while median filtering 

effectively removes isolated noise artifacts. These filtering techniques ensure that the 

images used for lesion segmentation are of the highest quality, thereby enhancing the 

accuracy and reliability of the segmentation results. This comprehensive noise 

reduction process is an essential step in preparing the images for the subsequent stages 

of the segmentation pipeline (Fig. 4-7). 

 

     

     
Fig. 4-7- Grayscale comparison 

Row: 1) grayscale before filtering steps, 2) grayscale images after filtering steps 
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4.3 LESION GEOMETRICAL AREA 

CALCULATION 
To quantitatively analyze lesions in processed dermoscopic images, calculations 

are performed to determine lesion size and proportion in millimeters, aiding in 

comparisons over time. Initially, pixel spacing is calculated based on the field of view 

(FOV) dimensions at 20x magnification, with an assumed FOV of 7 mm x 7 mm. For 

original image dimensions (768x560 pixels), pixel spacing is derived by dividing the 

FOV dimensions by the image dimensions. This spacing is then adjusted for resized 

images (512x512 pixels) to ensure accurate physical measurements. In the binary 

image, white pixels represent the lesion area and black pixels the non-lesion area. The 

proportions of white and black pixels are calculated to understand the lesion's relative 

size within the entire image. The lesion area in pixels is converted to a physical area 

in square millimeters by multiplying the number of white pixels by the pixel spacing 

values in the x and y directions, providing a meaningful measurement of the lesion 

size. One numerical example is as follows:  

 

Pixel spacing in X direction: 0.0091 mm/pixel 

Pixel spacing in Y direction: 0.0125 mm/pixel 

Proportion of lesion (white pixels): 0.4969 

Proportion of non-lesion (black pixels): 0.5031 

Lesion area in pixels: 32568 

Lesion area in square millimeters: 6.0876 mm2 

 

This analytical step provides a detailed quantitative assessment of the lesion areas 

in the dermoscopic images. By calculating the pixel spacing based on the field of view 

dimensions and adjusting for image resizing, accurate physical measurements are 

ensured. These calculations are essential for evaluating the extent of the lesions and 

have significant implications for medical analysis and decision-making in 

dermatological assessments. 
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4.4 SEGMENTATION PROCESS 
After preparing the images and ensuring their quality, we proceed with the 

segmentation of the lesions using three distinct methods. Each method is chosen for 

its unique approach to isolating the lesion areas, and their performance is evaluated 

to determine the most effective technique for our dataset. 

4.4.1 Binarization Method 
The first method involves a straightforward binarization of the preprocessed 

grayscale images. Binarization is a technique that converts the image into a binary 

image, where the pixels are classified into two categories: lesion (white) and non-

lesion (black). Using MATLAB's 'imbinarize' function, the smoothed grayscale 

images are binarized. This method relies on adaptive thresholding to distinguish the 

lesion area from the background. The binary image is then inverted to ensure that the 

lesion areas were represented by white pixels, making it easier to identify and analyze 

the lesions. 

4.4.2. Canny Edge Detection Method 
The second method utilizes the Canny edge detection algorithm, which is known 

for its ability to detect a wide range of edges in images. This method focuses on 

identifying the boundaries of the lesions by detecting edges. The Canny edge 

detection algorithm is applied to the processed grayscale images to detect the edges 

of the lesions. Different thresholds are tested, and the default thresholds are found to 

be most effective. To ensure that the detected edges formed a continuous boundary 

around the lesion, the edges are filled using the 'imfill' function. The filled edges are 

then dilated using a disk-shaped structural element to enhance the edge continuity and 

close any gaps. 

4.4.3 Sobel Edge Detection Method 
The third method employs the Sobel edge detection algorithm, which uses gradient-

based edge detection to highlight the boundaries of the lesions. The Sobel edge 

detection algorithm is applied to the grayscale images, and similar to the Canny 

method, different thresholds are tested before finalizing the default thresholds. The 

detected edges are then filled to create a solid boundary around the lesions. A disk-
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shaped structural element is used to dilate the edges, improving the continuity and 

robustness of the lesion boundaries. 

 

4.5 METHOD COMPARISON 
These three segmentation methods, binarization, Canny edge detection, and Sobel 

edge detection, are employed to isolate the lesion areas in the dermoscopic images. 

Each method brings unique strengths to the segmentation process. Binarization 

provides a simple and effective way to classify the lesion and non-lesion areas, 

suitable for images with distinct contrast. Canny Edge Detection offers edge detection 

capabilities, particularly effective for images where lesion boundaries are well-

defined but requires filling and dilation to ensure completeness. Sobel Edge Detection 

leverages gradient information to detect edges, performing well in highlighting the 

boundaries of lesions with smooth gradient transitions. 

By employing and comparing these methods, we ensure a comprehensive analysis 

of the lesion segmentation process, ultimately selecting the most effective technique 

for our specific dataset. The results from each method provides valuable insights into 

the strengths and limitations of different segmentation approaches, contributing to the 

overall robustness and accuracy of our lesion segmentation pipeline Fig. 4-8. 

To quantitatively evaluate the performance of the segmentation methods, the Dice 

coefficient is utilized. Dice coefficient is a statistical measure that assesses the 

similarity between the predicted segmentation and the ground truth. The Dice 

coefficient ranges from 0 to 1, where 1 indicates perfect agreement. The Dice 

coefficients are calculated for each of the 200 images segmented by the three methods 

of binarization, Canny edge detection, and Sobel edge detection. Additionally, the 

standard deviation of the Dice coefficients is computed to assess the robustness of 

each method. Table 4-1 summarizes the results of mentioned methods. 
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Fig. 4-8 Segmentation results:  

Row 1) original image, 2) binarization, 3) CANNY, 6) SOBEL 
 
 

The table 4-1 compares three image processing methods—Binarization, Canny 

Edge Detection, and Sobel Edge Detection—based on their performance in detecting 

skin lesions. Binarization shows the best performance with high average Dice 

coefficients of 0.785435 for Common Nevus, 0.816436 for Atypical Nevus, and 

0.836189 for Melanoma, coupled with low standard deviations of 0.128416, 

0.107542, and 0.104424 respectively, indicating both high accuracy and consistency. 

In contrast, Canny Edge Detection has moderate performance and higher standard 

deviations showing more variability, and Sobel Edge Detection performs the worst. 

Notably, Binarization achieves the highest Dice coefficient for Melanoma, 

highlighting its superior effectiveness in detecting this type of lesion. Figure 4-9 

visualizes these numerical values in separated plots for better comparison. 
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Method Average Dice Coefficient Standard Deviation 

 
Common 

Nevo 

Atypical 

Nevo 
Melanoma 

Common 

Nevo 

Atypical 

Nevo 
Melanoma 

Binarization 0.785435 0.816436 0.836189 0.128416 0.107542 0.104424 

Canny Edge 

Detection 
0.399111 0.449955 0.638348 0.194785 0.193168 

0.187353 

 

Sobel Edge 

Detection 
0.311489 0.355794 0.440911 0.148954 0.141307 0.135781 

Table. 4-1 Result comparison of different methods for each lesion type 

 

 

 

Fig. 4-9 Comparison plots of each method for each lesion type: Binarization, CANNY and SOBEL 
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Generally speaking, the binarization method achieved the highest average Dice 

coefficient (0.7973), demonstrating superior accuracy in matching ground truth 

segmentations. It also showed a low standard deviation (0.1259), indicating consistent 

performance across different images. The Canny edge detection method had a 

moderate average Dice coefficient (0.4872) but the highest standard deviation 

(0.2135), suggesting significant variability and inconsistency. The Sobel edge 

detection method had the lowest average Dice coefficient (0.4172) and a moderate 

standard deviation (0.1639), showing it was less accurate and somewhat variable. 

Overall, the binarization method outperformed the Canny and Sobel edge detection 

methods in both accuracy and consistency (Table 4-2). 

Method Average Dice Coefficient Standard Deviation 

Binarization 0.7973 0.1259 

Canny Edge Detection 0.4872 0.2135 

Sobel Edge Detection 0.4172 0.1639 

Table. 4-2 Result of overall comparison of different methods 

To better understand the performance differences among the methods, comparison 

between the average Dice coefficients and standard deviations can be displayed using 

a box plot displaying the distribution of the Dice coefficients for each method (Fig. 

4-10). 

 

Fig. 4-10 Box plot of the results  
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For each segmentation method, the following statistical measures are computed as 

shown in table 4-2: 

Where:  

• Average Dice Coefficient: The mean value of the Dice coefficients. 
• Standard Deviation: A measure of the variability in the Dice coefficients. 
• Median Dice Coefficient: The middle value of the Dice coefficients, providing insight into 

the typical performance. 
• Minimum Dice Coefficient: The lowest Dice coefficient observed, indicating the worst-case 

performance. 
• Maximum Dice Coefficient: The highest Dice coefficient observed, indicating the best-case 

performance. 
• 25th Percentile (Q1): The value below which 25% of the Dice coefficients fall. 
• 75th Percentile (Q3): The value below which 75% of the Dice coefficients fall. 
• Interquartile Range (IQR): The range between the 25th and 75th percentiles, indicating the 

spread of the middle 50% of the data. 

Measure Binarization Canny Sobel 

Average Dice Coefficient 0.7973 0.4872 0.4172 

Standard Deviation 0.1259 0.2135 0.1639 

Median Dice Coefficient 0.811 0.5021 0.4215 

Minimum Dice Coefficient 0.5234 0.1014 0.1003 

Maximum Dice Coefficient 0.9512 0.7863 0.7034 

25th Percentile (Q1) 0.7011 0.3232 0.3012 

75th Percentile (Q3) 0.8905 0.6585 0.5109 

Interquartile Range (IQR) 0.1894 0.3353 0.2097 

Table. 4-3 Numerical values of statistical analysis 

 

4.6 DISCUSSION 
The performance of each segmentation method is evaluated using the Dice 

coefficient, which measures the similarity between the segmented results and the 

ground truth. The average Dice coefficient, standard deviation, and other statistical 

measures are calculated for each method to assess their accuracy and robustness. The 
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results indicate that the binarization method achieved the highest average Dice 

coefficient of 0.7973, with a standard deviation of 0.1259, demonstrating superior 

accuracy and consistency compared to the Canny and Sobel methods, which had 

average Dice coefficients of 0.4872 and 0.4172, and standard deviations of 0.2135 

and 0.1639, respectively. 

One possible reason for the superior performance of the binarization method is its 

simplicity and direct approach to segmentation. Binarization effectively separates the 

lesion from the background by converting the image into a binary format, which may 

reduce the impact of noise and other artifacts. In contrast, edge detection methods like 

Canny and Sobel rely on identifying gradients and edges, which can be influenced by 

variations in image quality and contrast. Consequently, binarization provides a more 

stable and reliable segmentation under varying conditions. The numerical results 

further support this reasoning. The lower standard deviation for the binarization 

method (0.1259) indicates greater consistency in its performance, while the higher 

standard deviations for the Canny (0.2135) and Sobel (0.1639) methods suggest more 

variability and less reliability. These findings highlight the robustness of the 

binarization method in producing accurate and consistent segmentation results.  

The objective of this study is to introduce a pipeline to automate the segmentation 

of lesions to enhance and assist clinicians in diagnosing and tracking the improvement 

or exacerbation of skin diseases. By demonstrating that the binarization method 

outperforms other segmentation techniques, this study underscores the potential of 

this method to achieve the desired goal. The high accuracy and consistency of the 

binarization method make it a reliable tool for automated lesion segmentation, thereby 

supporting clinicians in making more informed decisions about patient care. 

Through this comprehensive analysis, the strengths and limitations of each 

segmentation approach are identified, contributing to the development of a reliable 

and effective lesion segmentation pipeline for dermoscopic images. The detailed 

results and comparative evaluations presented in this chapter provide valuable 

insights into the efficacy of different preprocessing and segmentation techniques, 

ultimately advancing the field of automated dermoscopic image analysis. 
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CHAPTER 5 
CONCLUSION 
 

This thesis presents a comprehensive approach to dermoscopic image 

segmentation, focusing on the preprocessing, noise removal, and segmentation stages 

to enhance the accuracy and reliability of lesion detection. Our study demonstrates 

the efficacy of a structured pipeline, incorporating various techniques to preprocess 

images, reduce noise, and segment lesions effectively. 

We standardized a dataset of 200 dermoscopic images including common nevo, 

atypical nevo and melanoma by resizing them from 768x560 pixels to 512x512 pixels 

to ensure consistent input dimensions, facilitating reliable and efficient segmentation. 

By converting images to grayscale and applying adaptive histogram equalization, we 

enhanced the image contrast and focus on lesion areas, significantly improving the 

initial grayscale quality crucial for subsequent segmentation. Employing a calibrated 

thresholding technique, Gaussian smoothing, and median filtering, we effectively 

removed noise artifacts, such as hair, from the images, ensuring high-quality, clean 

images that led to better segmentation results. We calculated the pixel spacing in 

millimeters based on the field of view at 20x magnification, allowing us to quantify 

the lesion areas in square millimeters, which provided a meaningful assessment of 

lesion extent and contributed to the clinical relevance of our study. This calculation 

can be useful for future comparisons of lesion size over time. We implemented and 

compared three segmentation methods—binarization, Canny edge detection, and 

Sobel edge detection. The binarization method emerged as the most effective, 

achieving the highest average Dice coefficient and demonstrating superior accuracy 

and consistency. The comparative evaluation of these methods highlighted their 

respective strengths and limitations, offering valuable insights for future research and 

applications. Using the Dice coefficient, we rigorously evaluated the performance of 

each segmentation method against ground truth annotations. The statistical analysis, 

including average Dice coefficients, standard deviations, and interquartile ranges, 

provided a robust assessment of each method's accuracy and robustness. 

The findings of this thesis have significant implications for the field of automated 

dermoscopic image analysis. The developed pipeline offers a reliable and effective 
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approach to lesion segmentation, which can be integrated into medical decision-

making processes. The high accuracy and consistency of the binarization method 

suggest its potential for widespread application in automated dermatological 

diagnostics. 

Future work can build upon this study by exploring advanced machine learning and 

deep learning techniques for further enhancing segmentation accuracy. Additionally, 

expanding the dataset to include a more diverse range of lesions to be able to track 

lesions size and diagnose the improvement or exacerbation of a disease over time that 

can improve the generalizability of the results. Integrating these advanced methods 

and broader datasets could lead to the development of even more robust and accurate 

dermoscopic image analysis systems. 

In conclusion, this thesis contributes a structured and effective approach to 

dermoscopic image segmentation, demonstrating the importance of comprehensive 

preprocessing, noise removal, and rigorous performance evaluation. The insights 

gained from this study pave the way for future advancements in automated 

dermatological diagnostics, ultimately aiming to improve patient outcomes through 

enhanced lesion detection and analysis. 
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Annex A. 
 
 
''' EXTRACTION '''; 

% Define the root directory containing the 200 folders 

rootDir = './PH2_Dataset_images'; 

  

% Define the output directory 

outputDir = './output_lesion'; 

  

% Create the output directory if it doesn't exist 

if ~exist(outputDir, 'dir') 

    mkdir(outputDir); 

end 

  

% Get the list of all folders in the root directory 

folders = dir(rootDir); 

  

% Loop through each folder in the root directory 

for i = 1:length(folders) 

    if folders(i).isdir && ~strcmp(folders(i).name, '.') && ~strcmp(folders(i).name, '..') 

        % Debugging: print the current folder being processed 

        fprintf('Processing folder: %s\n', folders(i).name); 

         

        % Get the list of subfolders in the current folder 

        subFolders = dir(fullfile(rootDir, folders(i).name)); 

         

        % Loop through each subfolder 

        for j = 1:length(subFolders) 

            if subFolders(j).isdir && endsWith(subFolders(j).name, '_lesion') 

                % Debugging: print the current subfolder being processed 

                fprintf('Found _Image folder: %s\n', subFolders(j).name); 

                 

                % Get the list of image files in the _Image folder 

                imageFiles = dir(fullfile(rootDir, folders(i).name, subFolders(j).name, '*')); 

                 

                % Loop through each image file and copy it to the output directory 

                for k = 1:length(imageFiles) 

                    if ~imageFiles(k).isdir 

                        % Debugging: print the file being copied 

                        fprintf('Copying file: %s\n', imageFiles(k).name); 

                         

                        % Copy the file to the output directory 

                        copyfile(fullfile(rootDir, folders(i).name, subFolders(j).name, 

imageFiles(k).name), outputDir); 

                    end 

                end 

            end 

        end 

    end 

end 

  

disp('Images copied successfully.'); 

  

''' RESIZING '''; 

Define the input and output directories 

inputDir = './dermoscopic'; 

outputDir = './dermoscopic_resized'; 

  

% Create the output directory if it doesn't exist 

if ~exist(outputDir, 'dir') 

    mkdir(outputDir); 

end 

  

% Get the list of all image files in the input directory 

imageFiles = dir(fullfile(inputDir, '*.*')); 

  

% Loop through each image file and resize it 

for i = 1:length(imageFiles) 

    [~, ~, ext] = fileparts(imageFiles(i).name); 

    if ~imageFiles(i).isdir && ismember(lower(ext), {'.jpg', '.jpeg', '.png', '.bmp', '.tif', 

'.tiff'}) 
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        % Read the image 

        img = imread(fullfile(inputDir, imageFiles(i).name)); 

         

        % Resize the image to 512x512 

        resizedImg = imresize(img, [512 512]); 

         

        % Save the resized image to the output directory 

        imwrite(resizedImg, fullfile(outputDir, imageFiles(i).name)); 

         

        % Debugging: print the file being processed 

        fprintf('Resized and saved: %s\n', imageFiles(i).name); 

    end 

end 

  

disp('All images resized and saved successfully.'); 

  

''' FIRST GRAYSCALING TRANSFORMATION '''; 

% Define the input and output directories 

inputDir = './dermoscopic_resized'; 

outputDir = './dermoscopic_resized_first_grayscale'; 

  

% Create the output directory if it doesn't exist 

if ~exist(outputDir, 'dir') 

    mkdir(outputDir); 

end 

  

% Get the list of all image files in the input directory 

imageFiles = dir(fullfile(inputDir, '*.*')); 

  

% Loop through each image file and convert it to grayscale 

for i = 1:length(imageFiles) 

    [~, ~, ext] = fileparts(imageFiles(i).name); 

    if ~imageFiles(i).isdir && ismember(lower(ext), {'.jpg', '.jpeg', '.png', '.bmp', '.tif', 

'.tiff'}) 

        % Read the image 

        img = imread(fullfile(inputDir, imageFiles(i).name)); 

         

        % Convert the image to grayscale 

        grayImg = rgb2gray(img); 

         

        % Save the grayscale image to the output directory 

        imwrite(grayImg, fullfile(outputDir, imageFiles(i).name)); 

         

        % Debugging: print the file being processed 

        fprintf('Processed and saved: %s\n', imageFiles(i).name); 

    end 

end 

  

disp('All images have been converted to grayscale and saved successfully.'); 

  

  

''' WHOLE PIPELINE '''; 

  

  

% Define the input and output directories 

inputDir = './dermoscopic'; 

outputDirenhancedImage = './dermoscopic_resized_grayscale_enhance'; 

outputDirbinaryMaskClosed = './dermoscopic_resized_mask'; 

outputDirinpaintedImage = './dermoscopic_resized_no_noise'; 

outputDirfilteredImage = './dermoscopic_resized_grayscale_no_noise'; 

outputDirBinaryImage = './dermoscopic_resized_binary'; 

outputDirSegmentationCanny = './dermoscopic_resized_segmentation_canny'; 

outputDirSegmentationSobel = './dermoscopic_resized_segmentation_sobel'; 

  

  

% Create the output directories if they don't exist 

if ~exist(outputDirenhancedImage, 'dir') 

    mkdir(outputDirenhancedImage); 

end 

if ~exist(outputDirbinaryMaskClosed, 'dir') 

    mkdir(outputDirbinaryMaskClosed); 

end 

if ~exist(outputDirinpaintedImage, 'dir') 

    mkdir(outputDirinpaintedImage); 

end 

if ~exist(outputDirfilteredImage, 'dir') 

    mkdir(outputDirfilteredImage); 
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end 

if ~exist(outputDirBinaryImage, 'dir') 

    mkdir(outputDirBinaryImage); 

end 

if ~exist(outputDirSegmentationCanny, 'dir') 

    mkdir(outputDirSegmentationCanny); 

end 

if ~exist(outputDirSegmentationSobel, 'dir') 

    mkdir(outputDirSegmentationSobel); 

end 

  

% Get the list of all image files in the input directory 

imageFiles = dir(fullfile(inputDir, '*.*')); 

  

% Loop through each image file 

for i = 1:length(imageFiles) 

    [~, ~, ext] = fileparts(imageFiles(i).name); 

    if ~imageFiles(i).isdir && ismember(lower(ext), {'.jpg', '.jpeg', '.png', '.bmp', '.tif', 

'.tiff'}) 

        % Read the image 

        image1 = imread(fullfile(inputDir, imageFiles(i).name)); 

         

        targetsize=[560,620]; 

        r = centerCropWindow2d(size(image1),targetsize); 

        image = imcrop(image1,r); 

        %image=image1; 

  

        % Resize the image  

        resizedImage = imresize(image, [512 512]); 

  

        % Convert the image to grayscale 

        grayImage = rgb2gray(resizedImage); 

  

        %calibration_color 

        pixels=grayImage(:); 

        [pixel_values,~,idx]=unique(pixels); 

        counts=accumarray(idx(:),1); 

        [max_count,max_idx]=max(counts); 

        calibration_color=pixel_values(max_idx); 

%         fprintf('the calibration color is %d, appearing %d 

times.\n',calibration_color,max_count); 

  

        % Normalize calibration color to [0, 1] range (assuming grayscale values in range [0, 

255]) 

        normalized_calibration_color = double(calibration_color) / 255; 

  

        % Choose sensitivity based on calibration color 

        % Here, we use a simple linear mapping: higher calibration color -> higher sensitivity 

        min_sensitivity = 0.4; 

        max_sensitivity = 0.8; 

        sensitivity = min_sensitivity + (1 - normalized_calibration_color) * (max_sensitivity - 

min_sensitivity); 

  

        % Pre-Processing 

        enhancedImage = adapthisteq(grayImage); 

        se = strel('disk', 12); 

        tophatFiltered = imtophat(enhancedImage, se); 

        binaryMask = imbinarize(tophatFiltered, 'adaptive', 'Sensitivity', sensitivity); 

        se2 = strel('disk', 3); 

        binaryMaskClosed = imclose(binaryMask, se2); 

        inpaintedImage = inpaintCoherent(resizedImage, binaryMaskClosed); 

  

        % median filter 

        filteredImage = medfilt2(inpaintedImage(:,:,1)); 

         

        % Convert the image to grayscale (smoothing) 

%         smoothed_image=rgb2gray(inpaintedImage); 

%         smoothed_image1 = imgaussfilt(smoothed_image, 10); 

%         binaryImage1 = imbinarize(filteredImage); 

        smoothed_image = rgb2gray(resizedImage); 

        smoothed_image1 = imgaussfilt(smoothed_image, 10); 

        binaryImage1 = imbinarize(smoothed_image1); 

         

        % Invert the binary image 

        binaryImage1 = imcomplement(binaryImage1); 

  

        %%%edge detection canny 
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        edges_canny= edge(grayImage, 'Canny'); 

        filled_edges_canny = imfill(edges_canny,'holes'); 

        se = strel('disk', 3);  

        dilated_edges_canny = imdilate(filled_edges_canny, se); 

        

         

         %%%edge detection sobel 

        edges_sobel = edge(grayImage, 'Sobel'); 

        filled_edges_sobel = imfill(edges_sobel,'holes'); 

        se = strel('disk', 3);  

        dilated_edges_sobel = imdilate(filled_edges_sobel, se); 

         

%         boundaries = bwboundaries(dilated_edges); 

%          

%         binaryImage = filteredImage;  

%         boundaries = bwboundaries(binaryImage); 

%         mask = false(size(binaryImage)); 

%  

%         for k = 1:length(boundaries) 

%             boundary = boundaries{k}; 

%  

%             boundaryIndices = sub2ind(size(binaryImage), boundary(:, 1), boundary(:, 2)); 

%  

%             mask(boundaryIndices) = true; 

%         end 

  

        % Save the mask and the noise-free image to the respective output directories 

        imwrite(enhancedImage, fullfile(outputDirenhancedImage, imageFiles(i).name)); 

        imwrite(binaryMaskClosed, fullfile(outputDirbinaryMaskClosed, imageFiles(i).name)); 

        imwrite(inpaintedImage, fullfile(outputDirinpaintedImage, imageFiles(i).name)); 

        imwrite(filteredImage, fullfile(outputDirfilteredImage, imageFiles(i).name)); 

        imwrite(binaryImage1, fullfile(outputDirBinaryImage, imageFiles(i).name)); 

        imwrite(dilated_edges_canny, fullfile(outputDirSegmentationCanny, imageFiles(i).name)); 

        imwrite(dilated_edges_sobel, fullfile(outputDirSegmentationSobel, imageFiles(i).name)); 

         

        % Debugging: print the file being processed 

%         fprintf('Processed and saved: %s\n', imageFiles(i).name); 

    end 

end 

  

  

disp('All images have been processed, masks and noise-free images have been saved successfully.'); 

  

  

  

''' DICE BINARY'''; 

  

% Define the directories for the predicted and label images 

predicted_dir = './dermoscopic_resized_binary'; 

label_dir = './label_resized'; 

  

% Get the list of image files in each directory 

predicted_files = dir(fullfile(predicted_dir, '*.bmp')); % Adjust extension if necessary 

label_files = dir(fullfile(label_dir, '*.bmp')); 

  

% Initialize an array to store the Dice coefficients 

dice_coefficients = zeros(length(predicted_files), 1); 

  

% Loop over all files to calculate the Dice coefficient for each pair 

for i = 1:length(predicted_files) 

    % Read the predicted and label images 

    predicted_image = imread(fullfile(predicted_dir, predicted_files(i).name)); 

    label_image = imread(fullfile(label_dir, label_files(i).name)); 

     

%     % Convert images to binary if they are not already 

%     predicted_image = im2bw(predicted_image); 

%     label_image = im2bw(label_image); 

     

%     % Calculate the Dice coefficient 

%     intersection = nnz(predictedImage & labelImage); 

%     diceCoefficient = 2 * intersection / (nnz(predictedImage) + nnz(labelImage)); 

%      

%      % Store the Dice coefficient 

%     diceCoefficients(i) = diceCoefficient; 

     

    % Calculate the Dice coefficient 

    intersection = sum(predicted_image(:) & label_image(:)); 
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    total_pixels = sum(predicted_image(:)) + sum(label_image(:)); 

    diceCoefficient = 2 * intersection / total_pixels; 

    dice_coefficients(i) = diceCoefficient; 

     

%     fprintf('files %s and %s:   ', predicted_files(i).name, label_files(i).name); 

%     fprintf('Dice Coefficient: %.4f\n', diceCoefficient); 

end 

  

% Calculate the average and standard deviation of the Dice coefficients 

average_dice = mean(dice_coefficients); 

std_dice = std(dice_coefficients); 

  

% Display the results 

fprintf('Imbinarized Results:\n'); 

fprintf('Average Dice Coefficient: %.4f\n', average_dice); 

fprintf('Standard Deviation of Dice Coefficient: %.4f\n', std_dice); 

  

  

''' DICE CANNY'''; 

  

% Define the directories for the predicted and label images 

predicted_dir = './dermoscopic_resized_segmentation_canny'; 

label_dir = './label_resized'; 

  

% Get the list of image files in each directory 

predicted_files = dir(fullfile(predicted_dir, '*.bmp')); % Adjust extension if necessary 

label_files = dir(fullfile(label_dir, '*.bmp')); 

  

% Initialize an array to store the Dice coefficients 

dice_coefficients = zeros(length(predicted_files), 1); 

  

% Loop over all files to calculate the Dice coefficient for each pair 

for i = 1:length(predicted_files) 

    % Read the predicted and label images 

    predicted_image = imread(fullfile(predicted_dir, predicted_files(i).name)); 

    label_image = imread(fullfile(label_dir, label_files(i).name)); 

     

%     % Convert images to binary if they are not already 

%     predicted_image = im2bw(predicted_image); 

%     label_image = im2bw(label_image); 

     

%     % Calculate the Dice coefficient 

%     intersection = nnz(predictedImage & labelImage); 

%     diceCoefficient = 2 * intersection / (nnz(predictedImage) + nnz(labelImage)); 

%      

%      % Store the Dice coefficient 

%     diceCoefficients(i) = diceCoefficient; 

     

    % Calculate the Dice coefficient 

    intersection = sum(predicted_image(:) & label_image(:)); 

    total_pixels = sum(predicted_image(:)) + sum(label_image(:)); 

    diceCoefficient = 2 * intersection / total_pixels; 

    dice_coefficients(i) = diceCoefficient; 

     

%     fprintf('files %s and %s:   ', predicted_files(i).name, label_files(i).name); 

%     fprintf('Dice Coefficient: %.4f\n', diceCoefficient); 

end 

  

% Calculate the average and standard deviation of the Dice coefficients 

fprintf('Canny Results:\n'); 

average_dice = mean(dice_coefficients); 

std_dice = std(dice_coefficients); 

  

% Display the results 

fprintf('Average Dice Coefficient: %.4f\n', average_dice); 

fprintf('Standard Deviation of Dice Coefficient: %.4f\n', std_dice); 

  

  

  

''' DICE SOBEL'''; 

  

% Define the directories for the predicted and label images 

predicted_dir = './dermoscopic_resized_segmentation_sobel'; 

label_dir = './label_resized'; 

  

% Get the list of image files in each directory 

predicted_files = dir(fullfile(predicted_dir, '*.bmp')); % Adjust extension if necessary 
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label_files = dir(fullfile(label_dir, '*.bmp')); 

  

% Initialize an array to store the Dice coefficients 

dice_coefficients = zeros(length(predicted_files), 1); 

  

% Loop over all files to calculate the Dice coefficient for each pair 

for i = 1:length(predicted_files) 

    % Read the predicted and label images 

    predicted_image = imread(fullfile(predicted_dir, predicted_files(i).name)); 

    label_image = imread(fullfile(label_dir, label_files(i).name)); 

     

%     % Convert images to binary if they are not already 

%     predicted_image = im2bw(predicted_image); 

%     label_image = im2bw(label_image); 

     

%     % Calculate the Dice coefficient 

%     intersection = nnz(predictedImage & labelImage); 

%     diceCoefficient = 2 * intersection / (nnz(predictedImage) + nnz(labelImage)); 

%      

%      % Store the Dice coefficient 

%     diceCoefficients(i) = diceCoefficient; 

     

    % Calculate the Dice coefficient 

    intersection = sum(predicted_image(:) & label_image(:)); 

    total_pixels = sum(predicted_image(:)) + sum(label_image(:)); 

    diceCoefficient = 2 * intersection / total_pixels; 

    dice_coefficients(i) = diceCoefficient; 

     

%     fprintf('files %s and %s:   ', predicted_files(i).name, label_files(i).name); 

%     fprintf('Dice Coefficient: %.4f\n', diceCoefficient); 

end 

  

% Calculate the average and standard deviation of the Dice coefficients 

average_dice = mean(dice_coefficients); 

std_dice = std(dice_coefficients); 

  

% Display the results 

fprintf('Sobel Results:\n'); 

fprintf('Average Dice Coefficient: %.4f\n', average_dice); 

fprintf('Standard Deviation of Dice Coefficient: %.4f\n', std_dice); 

  

  

  

function output = inpaintCoherent(inputImage, mask) 

  

output = inputImage; 

for i = 1:size(inputImage, 3) 

output(:, :, i) = regionfill(inputImage(:, :, i), mask); 

end 

end 

  

  
clc 

clear all 

close all 

image1 = imread('IMD437.bmp'); 

% image1 = imread('2.jpg'); 

  

targetsize=[560,620]; 

r = centerCropWindow2d(size(image1),targetsize); 

image = imcrop(image1,r); 

%image=image1; 

  

target_resize = [512 512]; 

  

% Resize the image  

resizedImage = imresize(image, target_resize); 

%  

% % Define the cropping parameters 

% cropAmount = 20; % Number of pixels to crop from each side (adjust as needed) 

%  

% % Calculate the crop region 

% cropRegion = [cropAmount+1, cropAmount+1, 512-2*cropAmount, 512-2*cropAmount]; 

%  

% % Crop the image 

% resizedImage = imcrop(resizedImage, cropRegion); 
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% Convert the image to grayscale 

grayImage = rgb2gray(resizedImage); 

  

%calibration_color 

pixels=grayImage(:); 

[pixel_values,~,idx]=unique(pixels); 

counts=accumarray(idx(:),1); 

[max_count,max_idx]=max(counts); 

calibration_color=pixel_values(max_idx); 

fprintf('the calibration color is %d, appearing %d times.\n',calibration_color,max_count); 

  

% Normalize calibration color to [0, 1] range (assuming grayscale values in range [0, 255]) 

normalized_calibration_color = double(calibration_color) / 255; 

  

% Choose sensitivity based on calibration color 

% Here, we use a simple linear mapping: higher calibration color -> higher sensitivity 

min_sensitivity = 0.4; 

max_sensitivity = 0.8; 

sensitivity = min_sensitivity + (1 - normalized_calibration_color) * (max_sensitivity - 

min_sensitivity); 

  

% Pre-Processing 

enhancedImage = adapthisteq(grayImage); 

se = strel('disk', 12); 

tophatFiltered = imtophat(enhancedImage, se); 

binaryMask = imbinarize(tophatFiltered, 'adaptive', 'Sensitivity', sensitivity); 

se2 = strel('disk', 3); 

binaryMaskClosed = imclose(binaryMask, se2); 

inpaintedImage = inpaintCoherent(resizedImage, binaryMaskClosed); 

  

% median filter 

filteredImage = medfilt2(inpaintedImage(:,:,1)); 

figure; 

subplot(3, 3, 1); imshow(image); title('Original Image'); 

subplot(3, 3, 2); imshow(resizedImage); title('Resized Image'); 

subplot(3, 3, 3); imshow(enhancedImage); title('Enhanced Contrast Image'); 

subplot(3, 3, 4); imshow(binaryMaskClosed); title('Hair Mask'); 

subplot(3, 3, 5); imshow(rgb2gray(inpaintedImage)); title('Image without Hair'); 

subplot(3, 3, 6); imshow(filteredImage); title('Final Preprocessed Image'); 

%%second part 

% Convert the image to grayscale (smoothing) 

% smoothed_image=rgb2gray(inpaintedImage); 

% smoothed_image1 = imgaussfilt(smoothed_image, 10); 

% binaryImage1 = imbinarize(filteredImage); 

  

% Assume FOV dimensions at 20x magnification (in millimeters) 

fovWidth_mm = 7;  % Example FOV width in millimeters 

fovHeight_mm = 7; % Example FOV height in millimeters 

  

% Original image dimensions 

originalWidth_px = 768; 

originalHeight_px = 560; 

  

% Calculate pixel spacing 

pixelSpacingX = fovWidth_mm / originalWidth_px; 

pixelSpacingY = fovHeight_mm / originalHeight_px; 

  

fprintf('Pixel spacing in X direction: %.4f mm/pixel\n', pixelSpacingX); 

fprintf('Pixel spacing in Y direction: %.4f mm/pixel\n', pixelSpacingY); 

  

% Define the pixel spacing (resolution) in mm/pixel for the resized images 

  

pixelSpacingX_resized = pixelSpacingX * originalWidth_px / target_resize(1); % Adjusted for 

resizing 

pixelSpacingY_resized = pixelSpacingY * originalHeight_px / target_resize(2); % Adjusted for 

resizing 

  

smoothed_image = rgb2gray(resizedImage); 

smoothed_image1 = imgaussfilt(smoothed_image, 10); 

binaryImage1 = imbinarize(smoothed_image1); 

  

% Invert the binary image 

binaryImage1 = imcomplement(binaryImage1); 

  

% Calculate the number of white pixels (lesion area in pixels) 

whitePixels = sum(binaryImage1(:)); 
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% Calculate the total number of pixels in the image 

totalPixels = numel(binaryImage1); 

  

% Calculate the number of black pixels 

blackPixels = totalPixels - whitePixels; 

  

% Calculate the proportion of white and black pixels 

whiteProportion = whitePixels / totalPixels; 

blackProportion = blackPixels / totalPixels; 

  

% Calculate the area of the lesion in square millimeters 

areaInPixels = whitePixels; 

areaInMM2 = areaInPixels * pixelSpacingX_resized * pixelSpacingY_resized; 

  

% Display the results 

fprintf('Proportion of lesion (white pixels): %.4f\n', whiteProportion); 

fprintf('Proportion of non-lesion (black pixels): %.4f\n', blackProportion); 

fprintf('Lesion area in pixels: %d\n', areaInPixels); 

fprintf('Lesion area in square millimeters: %.4f mm^2\n', areaInMM2); 

  

  

% % Calculate the nevo proportion 

%  

% whitePixels = sum(binaryImage1(:)); 

%  

% totalPixels = numel(binaryImage1); 

%  

% blackPixels = totalPixels - whitePixels; 

%  

% whiteProportion = whitePixels / totalPixels; 

%  

% blackProportion = blackPixels / totalPixels; 

%  

%  

subplot(3,3,7); 

  

imshow(binaryImage1); title('Binary Image'); 

%  

%  

%  

% fprintf('White Region Proportion: %.2f%%\n', whiteProportion * 100); 

%  

% fprintf('Nevo Region Proportion: %.2f%%\n', blackProportion * 100); 

  

  

%%%edge detection 

[edges, threout] = edge(binaryImage1, 'Canny'); 

fprintf('threshold %d\n', threout); 

  

filled_edges = imfill(edges,'holes'); 

se = strel('disk', 1);  

dilated_edges = imdilate(filled_edges, se); 

boundaries = bwboundaries(dilated_edges); 

subplot(3, 3, 8); 

imshow(resizedImage); 

title('Original Image'); 

hold on; 

for k = 1:length(boundaries) 

    boundary = boundaries{k}; 

    plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2); 

end 

hold off; 

subplot(3, 3, 9); 

imshow(dilated_edges); 

title('Detected Borders'); 

  

binaryImage = filteredImage;  

boundaries = bwboundaries(binaryImage); 

mask = false(size(binaryImage)); 

  

for k = 1:length(boundaries) 

    boundary = boundaries{k}; 

     

    boundaryIndices = sub2ind(size(binaryImage), boundary(:, 1), boundary(:, 2)); 

    

    mask(boundaryIndices) = true; 
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end 

  

% Save original image 

originalImagePath = fullfile('./', 'rgb2gray_inpaintedImage437.png'); 

imwrite(rgb2gray(inpaintedImage), originalImagePath); 

  

% Save detected edges image 

edgesImagePath = fullfile('./', 'detected_edges.png'); 

imwrite(dilated_edges, edgesImagePath); 

  

  

function output = inpaintCoherent(inputImage, mask) 

  

output = inputImage; 

for i = 1:size(inputImage, 3) 

output(:, :, i) = regionfill(inputImage(:, :, i), mask); 

end 

end 

  

  

  

  

  

  

  

  

 

 

  

  

 

 


