
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Evaluating the performance of
eBPF-based security software in a

virtualized 5G cluster

Supervisors

Prof. Fulvio RISSO

Dr. David SOLDANI

Candidate

Daniel Calin PANAITE

July 2024

Summary

Since the arrival of 5G technology, there has been a shift towards virtualization and
the use of containers instead of bare-metal machines. A significant factor enabling
this shift is the use of Kubernetes to deploy and manage a large cluster of machines
that together enable a 5G network to function.

While the cluster can run smoothly and without interruption, there is a severe
need for strong security measures to prevent frequent attacks that could hinder the
availability of our network. Tetragon is one of these security measures, providing
robust observability and enforcement capabilities to enhance the security of our
cluster. Through the use of eBPF, it is not only fast but also uses minimal resources
to accomplish its goal.

By studying this tool, we can determine if it can be deployed within our 5G
network and if it is capable of covering as many security use cases as possible.
Initially, we focused on learning how to best use Tetragon and understanding how it
works at a low level, leveraging eBPF and accessing Linux syscalls and the network
layer for extensive monitoring. Later, we utilized Tetragon to create demonstrations
that simulated its usage within our network, deciding whether it would be feasible
to use it in a production environment.

After extensive research and testing, we found that while Tetragon has plenty of
good use cases, there are just as many that require further support from machine
learning to properly detect certain classes of events.

ii

Acknowledgements

Voglio dedicare questo spazio a tutte quelle persone che, con il loro supporto,
mi hanno aiutato in questo meraviglioso percorso accademico. Ringrazio il mio
relatore, professor Fulvio Risso, per avermi aiutato e guidato nella tesi oltre ad
avermi fornito questa stupenda opportunità.

Ringrazio anche Rakuten che mi ha accolto per questo progetto, sopprattuto il
mio supervisore aziendale David Soldani e i membri del team che mi hanno aiutato
a svolgere questo lavoro, Hami Bour e Saber Jafarizadeh.

Non mancano di certo i ringraziamenti a quelle persone che mi sono state sempre
vicine, sia nei momenti belli che in quelli più difficili. Grazie Mamma e Papà per
essermi sempre stati vicino in questo lungo percorso universitario. Ringrazio anche
al resto della mia famiglia che mi ha sempre supportato in tutte le mie scelte.

Desidero infine ringraziare i miei coinquilini nonché compagni di liceo, Alessandro
e Andrea, con cui ho condiviso questi meravigliosi anni di universitá. Non possono
mancare i ringraziamenti a tutti quei amici e compagni che mi hanno accompagnato
lungo questo percorso.

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xii

1 Introduction 1
1.1 Current solution . 1
1.2 The challenge . 2
1.3 Testing . 3
1.4 Thesis overview . 3

2 Kubernetes 5
2.1 History . 5
2.2 From monolithic applications to containers 6
2.3 Kubernetes architecture . 7

2.3.1 Control Plane . 7
2.3.2 Nodes . 8

2.4 Kubernetes components . 9
2.4.1 Resources . 9
2.4.2 Objects . 9

2.5 Kubernetes networking . 11
2.6 Custom Resources . 13
2.7 Security . 15
2.8 Workload Scaling . 16

2.8.1 Vertical and Horizontal Scaling 16

3 eBPF 18
3.1 History . 18
3.2 Architecture . 19

3.2.1 eBPF Program Exection . 19

vi

3.2.2 eBPF Virtual Machine . 21
3.2.3 Verifier . 22
3.2.4 JIT Compiler . 23
3.2.5 eBPF Maps . 24
3.2.6 Helper Functions . 26
3.2.7 User Space Tools . 27

4 Monitoring Tools 29
4.1 Grafana . 29
4.2 Grafana Loki . 31
4.3 Promtail . 32
4.4 Prometheus . 35

5 Tetragon 39
5.1 Tracing Policies . 42

5.1.1 Defining Tracing Policies . 42
5.1.2 Implementation Steps . 42
5.1.3 Tracing Policies Advantages 43

5.2 Events . 43
5.2.1 Visualization . 44
5.2.2 Event Filtering and Redacting 44
5.2.3 Metrics . 45

5.3 Monitoring . 45
5.3.1 Execution Monitoring . 45
5.3.2 File Access Monitoring . 48
5.3.3 File Integrity Monitoring . 48
5.3.4 Network Monitoring . 49

5.4 Policy Enforcement . 49
5.4.1 Overriding Return Values 50
5.4.2 Signals . 50

6 Implementation 51
6.1 Proposed solution . 51

6.1.1 Studying the use cases . 52
6.1.2 Studying System Calls . 54
6.1.3 Testing Use Cases . 55
6.1.4 Log Gathering . 59
6.1.5 Log Usage . 62

6.2 Evaluating Feasability . 65

vii

7 Measurements 67
7.1 Benchmark . 67

7.1.1 Tables . 67

8 Conclusions 72
8.1 Future plans . 72

Bibliography 74

viii

List of Tables

7.1 Idle benchmark results . 68
7.2 Benchmark running with eBPF tool not installed results (Delta

compared to table 7.1) . 69
7.3 Benchmark running with eBPF tools installed and running (Delta

compared to table 7.2) . 70

ix

List of Figures

2.1 Kubernetes architecture . 8
2.2 Kubernetes networking . 12
2.3 Horizontal Pod Autoscaling . 17

3.1 eBPF Architecture [10] . 19
3.2 eBPF Execution for predefined hooks [10] 20
3.3 eBPF Execution for probes [10] . 21
3.4 Verifier and JIT Compiler chain [10] 23
3.5 eBPF Maps [10] . 24

4.1 Example of a Grafana dashboard 30
4.2 Prometheus architecture [16] . 36

5.1 Schema of Tetragon’s architecture 40

6.1 Tetragon use cases . 53
6.2 Dashboard configured with events gathered in our system 61
6.3 Example of a logql filter query to extract the logs containing the

’sys_read’ syscall . 62

x

Acronyms

API
Application Programming Interface

BPF
Berkeley Packet Filter

CNI
Container Network Interface

CPU
Central Processing Unit

CR
Custom Resource

CRD
Custom Resource Definition

eBPF
Extended Berkeley Packet Filter

FAM
File Access Monitoring

FD
File Descriptor

FIFO
First-In-First-Out

xii

FIM
File Integrity Monitoring

HPA
Horizontal Pod Autoscaler

HTTP
Hypertext Transfer Protocol

IP
Internet Protocol

JIT
Just-In-Time

JSON
JavaScript Object Notation

LIFO
Last-In-First-Out

NFV
Network Function Virtualization

RBAC
Role-Based Access Contro

REST
Representational State Transfer

SDN
Software-Defined Networking

SSL
Secure Sockets Layer

VM
Virtual Machine

xiii

VPA
Vertical Pod Autoscaler

YAML
Yet Another Markup Language

xiv

Chapter 1

Introduction

Since the first iteration of the Berkeley Packet Filter in 1992 many advancements
have been made in improving the performance and usefulness of this tool. Ten
years ago its modern counterpart eBPF was introduced, extending even further its
capabilities of enhancing the Linux kernel to this day. Thanks to this technology,
today we are able to more closely observe what is happening inside our systems
from what files are being read without our knowledge to who is trying to access
our computer from the outside, be it a regular user or a malicious one.

With the increase in cyber attacks in recent years there is an even more pressing
need for tools like this to increase the security of servers where sensitive and
important data is being stored. Other tools have existed for years that tried to
guarantee the safety of a system but, because it was software running in user space,
they were limited in terms of what they could accomplish. With eBPF having
access to information directly within the kernel allows us to have even more control
over our system.

Tetragon is a tool that leverages eBPF in order to observe and also enforce user-
defined rules called policies within a Kubernetes cluster. They require significant
knowledge of the Linux kernel and in the hands of an experienced security team
most if not all malicious actors can be denied access to our system and sensitive
data.

1.1 Current solution
In the evolving landscape of 5G networks, Sauron stands out as a sophisticated
eBPF-based platform tailored for comprehensive observability, networking, and
security monitoring. As our existing solution, Sauron integrates seamlessly within
our Kubernetes cluster to monitor and secure the k8s nodes through the use of
modules that when combined give the user a broad view of the entire system. For

1

Introduction

network observability it uses one Controller for the entire cluster and Node Agents
for each node that belongs to it. The task of the Controller is to gather information
from the Kubernetes API server and attach said data to each collected event inside
the system. The collection of these events is handled inside the kernel by eBPF so
the information from the API server is crucial to have a broader view of the event
since more information on it can only be retrieved in user space.

The Node Agent gathers more information from the API server, this time of
the Pods running on the node. It also loads the eBPF probes int other kernel and
attaches it to XDP hooks, system calls and interfaces of each pod. The way in
which these modules communicate with the kernel is through eBPF maps that
allow data to be shared between the eBPF probes and the Node Agent running in
user space.

Having described the architecture of the Sauron platform it is also important
to properly illustrate how it works inside a Linux system. The Sauron Agent is
installed as a native app and it employs the use of an eBPF program to collect
the necessary data after the agent has loaded the program and attached it to the
XDP hook. In the case of a router an eBPF program could be written to collect
latency measurements and it also provides an interface to configure the desired
measurements. All this requires the user to write their own eBPF program using a
programming language such as C with the use of a library such as libbpf, increasing
the complexity of the platform.

1.2 The challenge
While Sauron offers a robust solution for eBPF monitoring, developing and main-
taining our own platform can be costly and resource-intensive. Fortunately, there
are several alternatives available that provide comprehensive observability, security,
and monitoring capabilities. Tetragon, for instance, leverages eBPF to deliver
deep visibility into system calls and network activities, enabling real-time threat
detection and policy enforcement. KubeArmor focuses on runtime security for
Kubernetes, providing system hardening and behavior-based security controls.
Tracee, an open-source runtime security and forensics tool, uses eBPF to detect
and alert on suspicious activities at the kernel level. Lastly, Falco, a popular
open-source runtime security project, uses eBPF to monitor system behavior and
detect anomalies, offering extensive configurability and community support. These
tools present viable alternatives to developing an in-house solution, offering rich fea-
tures and reducing the overhead associated with building and maintaining custom
infrastructure.

Recognizing the availability of numerous eBPF monitoring tools, we have decided
to focus our evaluation on Tetragon. We will assess its performance, technical

2

Introduction

feasibility and business viability. Tetragon stands out due to its ease of use,
flexibility, and the range of supported use cases:

• Usability: Tetragon is known for its straightforward installation and config-
uration process, which does not rely on additional components like Cilium.
This simplicity makes it easier to deploy and manage in diverse environments,
including Kubernetes, Docker, and plain Linux.

• Flexibility: One of the standout features of Tetragon is its remarkable flexibility.
Users can create and customize policies to define specific monitoring and
security parameters tailored to their unique requirements. This level of
customization allows organizations to adapt Tetragon to a wide variety of use
cases, ensuring that it meets their specific needs.

• Supported Use Cases: Tetragon excels in several critical use cases, making it
a versatile tool for modern infrastructure monitoring and security. For real-
time threat detection, Tetragon monitors system calls and network activities,
identifying and responding to security threats as they occur. This proac-
tive approach helps protect systems from potential breaches and malicious
activities.

All these strengths make Tetragon the ideal choice for monitoring our 5G network
cluster. It combines ease of use, which ensures a faster learning curve, with a
comprehensive set of features that support all our use cases effectively.

1.3 Testing
To effectively evaluate the performance of our various eBPF monitoring tools,
we have established a comprehensive benchmark designed to test how each tool
performs against a standardized workload. This approach allows us to make direct
comparisons and determine which tool best meets our needs. Our benchmark will
include Tetragon, KubeArmor, and Tracee, as these tools are the most comparable
in terms of usability and ease of use. By assessing these tools under the same
conditions, we aim to identify their strengths and weaknesses, ensuring that our final
choice is well-informed and tailored to our specific requirements. This evaluation
will help us determine the most suitable solution for monitoring our 5G network
cluster effectively.

1.4 Thesis overview
The thesis will expand on the current subject dividing it in the following chapters:

3

Introduction

• 2 - Kubernetes: describes what Kubernetes is and how this container
orchestration tool helped in developing and researching this topic.

• 3 - Grafana: an overview of a powerful software stack that helps in the creation
of our observability platform by enabling data collection and visualization.

• 4 - Tetragon: illustrates how Tetragon works, enabling powerful eBPF
observability and enforcement.

• 5 - Implementations: showcases our proposed solution for this thesis.

• 6 - Measurements: contains a series of results gathered from benchmarks of
our system running Tetragon and several other similar tools for comparison.

• 7 - Conclusion: shows the results achieved so far and what could be possibly
done in the future.

4

Chapter 2

Kubernetes

Kubernetes is a powerful open-source platform designed to automate deploying,
scaling, and operating application containers across clusters of hosts [1]. Its name
originates from Greek, meaning helmsman or pilot and is often abbreviated as
K8s. It provides the infrastructure to build a truly container-centric development
environment. Kubernetes orchestrates computing, networking, and storage infras-
tructure on behalf of user workloads. This means it handles scheduling containers
on a cluster, managing the workloads to ensure they run as the user intended,
and scaling applications up or down based on demand, thus optimizing resource
utilization.

2.1 History
The story of Kubernetes is fundamentally rooted in addressing the practical chal-
lenges of managing containerized applications at scale. Originating from Google,
which has extensive experience in running production-grade containerized work-
loads, Kubernetes was officially introduced as an open-source project in mid-2014.
The initial development was spearheaded by a team of Google engineers who had
previously worked on Borg, Google’s internal container orchestration system. Borg
itself was pivotal in forming the design and functionality of Kubernetes, embedding
years of Google’s operational experience directly into the new platform.

The transition from Borg to Kubernetes was marked by significant enhancements
aimed at addressing various user pain points identified in Borg over the years. While
Borg was highly effective within Google, it was also recognized as complex and
tightly integrated into Google’s specific infrastructure, making it less ideal for
open-source release. Kubernetes, in contrast, was designed to be more portable
and flexible, capable of running across different environments, from private clouds
to public clouds and hybrid systems [2].

5

Kubernetes

Joining the initial team of Google developers were experts from Red Hat and
CoreOS, who contributed additional insights and capabilities, broadening the
scope and adaptability of Kubernetes. This collaboration underlined Kubernetes’
commitment to community-led development, a principle that has remained at the
core of its evolution. The input from a diverse set of contributors helped ensure that
Kubernetes was not just a tool for large enterprises like Google but was accessible
and useful for organizations of all sizes.

Since its inception, Kubernetes has rapidly evolved, supported by an ever-
growing community of developers and users. It was donated to the Cloud Native
Computing Foundation (CNCF) in 2015, a move that further cemented its position
as a cornerstone of the cloud-native ecosystem. Under the CNCF, Kubernetes has
flourished, becoming the leading orchestration tool that defines the cloud-native
landscape, continually expanding its feature set and improving its robustness and
efficiency.

This chapter on the history of Kubernetes not only highlights its origins and
technical lineage but also sets the stage for understanding its impact on modern
software development and deployment practices. The ongoing evolution of Kuber-
netes reflects its foundational goal of improving the scalability and manageability
of containerized applications in a diverse array of environments.

2.2 From monolithic applications to containers
The evolution of application architecture from monolithic models to containerized
environments represents a significant shift in how software is deployed and managed,
greatly impacting development efficiency and operational flexibility [3].

Historically, monolithic applications were the standard approach in software
development. In this model, all components of an application, ranging from input
handling to data processing and UI rendering, were tightly integrated into a
single, indistinguishable unit, usually deployed on a single physical server. This
architecture simplified the development process in some ways but posed significant
challenges. Resource allocation was a major issue, as all components shared the
same underlying resources, leading to potential bottlenecks where one component
could consume disproportionate resources, starving others.

The introduction of virtualization technology marked a pivotal shift, allowing
multiple Virtual Machines (VMs) to run on a single physical server. Each VM
operated as a distinct entity with its own full copy of an operating system, libraries,
and application files, providing better isolation compared to traditional monolithic
deployments. This meant that applications could be isolated from one another,
enhancing security by preventing applications from accessing each other’s data.
Virtualization also improved resource utilization by allowing unused resources in

6

Kubernetes

one VM to be allocated to others that might need them more urgently. However,
this approach also introduced overhead, as each VM required its own operating
system and full set of resources, leading to underutilization of hardware capabilities.

Containers emerged as a more resource-efficient solution compared to VMs,
enabling even greater scalability and flexibility. Unlike VMs, containers share the
host operating system’s kernel but can run isolated processes in user space. They
provide lightweight execution environments that package applications and their
dependencies together. This not only reduces overhead but also enhances porta-
bility across different computing environments. Containers support microservices
architecture, allowing developers to decompose applications into smaller, loosely
coupled services that can be developed, deployed, and scaled independently. This
modularity enables teams to adopt different technologies for different services and
to scale or update individual components without impacting others.

2.3 Kubernetes architecture
In the following chapter we will illustrate the architecture of Kubernetes and how
each of its components interact with each other. The core of the architecture are
its machines, divided between control plane and the nodes. Each node can either
be a physical or virtual machine that runs the pods, composed of containers [4].

2.3.1 Control Plane
The Kubernetes control plane is the cornerstone of Kubernetes architecture, re-
sponsible for managing the cluster state and configuration. At its core, the control
plane ensures that the containerized applications running on Kubernetes are in the
desired state specified by the user.

Its components are:

• API Server: The Kubernetes API Server acts as the front end to the control
plane, exposing the Kubernetes API and serving as the gateway through which
all internal and external communications pass. It processes Representational
State Transfer (REST) requests, validates them, executes the backend logic,
and updates the corresponding objects in the etcd, ensuring that Kubernetes
users can configure workloads and organizational units declaratively.

• etcd: A consistent and highly-available key value store used as the backing
store for all cluster data. etcd stores and replicates the Kubernetes cluster
state.

• Scheduler: The Scheduler watches for newly created Pods that have no
assigned node, and selects a node for them to run on based on resource

7

Kubernetes

availability, constraints, affinity specifications and other factors. It is crucial
for optimizing workload distribution and resource utilization across the cluster.

• Controller Manager: This component runs controller processes, which are
background threads that handle routine tasks in the cluster. It watches the
objects it manages and checks if the various elements are in their desired states
via the API Server. If the states do not match it takes action and corrects
any issues.

• Cloud Controller Manager: It is a control plane component that embeds
cloud-specific logic. The cloud controller manager lets your cluster interact
with specific API of your cloud provider. If you are running your own cluster
it will not have this component.

Figure 2.1: Kubernetes architecture

2.3.2 Nodes
Nodes are key elements of a cluster, consisting of any machine that is not a control
plane. They are vital for a cluster to function since containers are put into pods in
order to run on nodes.

There are several components that guarantee this functionality:

• kubelet: It is an agent that runs on each node and it makes sure that
containers are running in a pod according to a PodSpec. A PodSpec is a
YAML or JSON object that identifies specific settings for the container that
is running within a pod.

8

Kubernetes

• kube-proxy: This component is a network proxy that runs on each node and
guarantees connectivity to the pods running within. While it is only part of
the Kubernetes Service concept that we will discuss later it maintains network
rules on nodes to allow network communication inside or outside the cluster.

• Container runtime: A fundamental component that allows Kubernetes to
run containers and supports implementations such as containerd, CRI-O and
others.

2.4 Kubernetes components
Having seen an overview of the Kubernetes architecture we will now delve deeper
into understanding which core components are vital for a cluster to operate.
Understanding what these components are is crucial for efficiently managing and
scaling Kubernetes environments.

2.4.1 Resources
Resources in Kubernetes are mainly defined by CPU, memory, storage and band-
width but there are others. These can be specified for each pod, service, deployment
or other components and are separated into two: requests and limits.

The first, requests, are the amount of resources that are needed for the pod to
operate while the limit is the maximum amount. The kubelet will distribute the
system resources between pods keeping in mind these limits to ensure a smooth
operation of the cluster.

2.4.2 Objects

Pods
There are several types of objects in a Kubernetes cluster, with the simplest being
a Pod. It is composed of one or more containers that share storage and network
resources and is the smallest unit inside a cluster. These highly coupled containers
will be always scheduled on the same node since they belong to the same pod.

With the use of Linux namespaces the containers have both private and shared
areas to facilitate sharing information.

Listing 2.1: Example of a Pod resource YAML
1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : nginx

9

Kubernetes

5 spec :
6 con ta i n e r s :
7 − name : nginx
8 image : nginx : 1 . 1 4 . 2
9 por t s :

10 − conta ine rPor t : 80

Namespace
This object is only an abstraction and it serves to create multiple "logical clusters"
where pods can ping each other and can be constrained by shared rules using
Role-based access control(RBAC).

Deployment
Users do not manage pods directly but they create a deployment where a set of rules
are specified. It can manage the version of a software and how many replicas of the
pod will be created using ReplicaSets. Similar to a deployment are StatefulSets
which are valuable for applications that need to have persistent storage.

Service
In order to access an application from outside the cluster it needs to be exposed
using a service. This abstraction separates the execution of a pod from its exposed
endpoint. Restarting and updating a pod will not have any impact on its service
which provides connectivity to outside the cluster. An application can be exposed in
different ways using services of various types: ClusterIP, NodePort, LoadBalancer,
ExternalName.

Listing 2.2: Example of a Service resource YAML
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app . kubernetes . i o /name : MyApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376

10

Kubernetes

Ingress

If a service needs to be reachable from the internet it requires an additional resource,
called Ingress. While the cluster only has one external IP it is able to multiplex
various services to it.

Listing 2.3: Example of a Ingress resource YAML
1 ap iVers ion : networking . k8s . i o /v1
2 kind : I n g r e s s
3 metadata :
4 name : minimal−i n g r e s s
5 annotat ions :
6 nginx . i n g r e s s . kubernetes . i o / rewr i t e −t a r g e t : /
7 spec :
8 ingressClassName : nginx−example
9 r u l e s :

10 − http :
11 paths :
12 − path : / t e s tpa th
13 pathType : P r e f i x
14 backend :
15 s e r v i c e :
16 name : t e s t
17 port :
18 number : 80

2.5 Kubernetes networking

Kubernetes networking can be complex but is crucial for ensuring that applications
running in a Kubernetes cluster can communicate efficiently and securely. This
chapter aims to simplify the fundamental concepts of Kubernetes networking for
better comprehension and application.

11

Kubernetes

Figure 2.2: Kubernetes networking

Network Model

Kubernetes requires all pods to communicate with each other without the need
for NAT (Network Address Translation). Every pod gets its own cluster-wide
unique IP address, meaning you do not need to explicitly link pods or manage port
conflicts.

Networking Components

Pod Networking: Each pod in a Kubernetes cluster is assigned a unique IP address.
This isolation ensures that pods can communicate with each other transparently
even between nodes and securely across a flat network space. Agents inside a
node can also communicate freely with all pods on that node. Service Networking:
Kubernetes Services are an abstraction which defines a logical set of Pods and
a policy by which to access them. This abstraction allows for decoupling work
definition from the pods and lets you expose an application running inside the pods
to be reachable from outside the cluster or only for consumption inside it. Ingress:
Managing external access to the services within a cluster, typically HTTP, Ingress
allows for load balancing, SSL termination, and name-based virtual hosting.

12

Kubernetes

Common Networking Solutions
Several networking solutions can implement the required Kubernetes model:

CNI (Container Network Interface) plugins: These are used in Kubernetes to
connect pod networks to the underlying host network. Popular plugins include
Cilium [5], Flannel [6], and Weave [7]. Kube-proxy: A network proxy which reflects
services as defined in the Kubernetes API on each node. It can operate in various
modes such as iptables or IPVS, managing routing and load-balancing for traffic
heading to the services.

Network Policies
Network policies in Kubernetes allow you to control the traffic between pods. You
can define rules that specify which pods can communicate with each other and
which ports are open on those pods. This control is crucial for enforcing a secure
multi-tenant environment and reducing the risk of internal threats.

Challenges and Best Practices
While Kubernetes networking provides numerous benefits, it also presents challenges
such as network security, complexity in configuration, and managing high availability.
Best practices include:

• Regularly updating network policies.

• Using namespace segregations to enhance security.

• Monitoring and logging network traffic for anomalies.

2.6 Custom Resources
Kubernetes offers powerful extensibility through custom resources (CRs), custom
resource definitions (CRDs), and custom controllers. This chapter delves into how
these components work together to expand Kubernetes’ functionality, enabling
the creation of domain-specific extensions that integrate seamlessly with the core
Kubernetes API.

Custom Resource Definitions (CRDs)
CRDs are a pivotal feature in Kubernetes that allow users to define new types of
resources. By creating a CRD, you define a new kind of resource with a name and
schema that the Kubernetes API server can handle. This new resource behaves

13

Kubernetes

like standard Kubernetes objects, allowing you to create, view, and manage it via
the Kubernetes API.

• Definition Process: The process involves specifying the resource’s name, scope
(namespaced or cluster-wide), and schema, which details the structure and
validation rules of the API.

• Uses: CRDs are commonly used to create operational abstractions for complex
systems, such as managing a database cluster or a network configuration.

Custom Resources
Custom resources are instances of CRDs. They allow developers to store and
retrieve structured data. Unlike traditional Kubernetes objects such as Pods or
Services, custom resources store configurations and states specific to user-defined
applications.

• Manipulation: Users can manipulate these resources using standard Kuber-
netes tools like kubectl.

• Examples: Examples include configuring application-specific settings, main-
taining records of deployed artifacts, or storing metadata that interacts with
custom controllers.

Custom Controllers
Custom controllers are programs that watch the state of your Kubernetes resources
and perform actions to drive the current state towards the desired state. They are
key to implementing advanced functionality and handling the lifecycle of custom
resources.

• Controller Pattern: Custom controllers use the observer pattern to watch
for changes in CRs and execute defined business logic to adjust resources as
needed.

• Functionality: They can manage anything from complex application workflows
to simple tasks, like updating a status field in a CR.

Operators
Operators are custom controllers designed to manage specific applications or services.
They encapsulate operational knowledge and can automate complex tasks.

14

Kubernetes

• Operator SDK: The Operator SDK is a popular tool that simplifies the
creation of custom controllers and CRDs, providing templates and management
capabilities.

• Life-Cycle Management: Operators handle the full lifecycle of an application,
from deployment to scaling and updates.

2.7 Security
Security in Kubernetes is paramount, especially as applications and their configura-
tions become increasingly complex. This chapter focuses on three core components
that play critical roles in Kubernetes security: Secrets, Service Accounts, and Role-
Based Access Control (RBAC). Understanding and implementing these features
correctly is essential for maintaining a secure Kubernetes environment.

Secrets
Secrets in Kubernetes are used to store and manage sensitive information such
as passwords, OAuth tokens, and SSH keys. Keeping such information secure
and out of application code is crucial for maintaining the integrity and security of
applications. Secrets can be mounted as data volumes or exposed as environment
variables to be used by pods in a cluster, thereby minimizing the risks associated
with exposing sensitive data. It is recommended to encrypt secrets at rest and to
limit access to them using appropriate RBAC policies.

Service Accounts
Service accounts are special user accounts that can be assigned to applications and
services running on Kubernetes. They help in managing access to the Kubernetes
API, allowing applications to interact with the Kubernetes master securely. They
facilitate the automated, secure interaction between Kubernetes pods and the
Kubernetes API. The best practice for security accounts is to grant only the
minimal permissions necessary to perform the intended tasks.

Role-Based Access Control (RBAC)
RBAC is a method of regulating access to computer or network resources based
on the roles of individual users within an enterprise. In Kubernetes, RBAC allows
administrators to regulate access to Kubernetes resources and namespaces based
on the roles assigned to users and processes [8].

15

Kubernetes

• Roles and RoleBindings: Roles define permissions on resources, and RoleBind-
ings assign these roles to specific users, groups, or service accounts within a
particular namespace.

• ClusterRoles and ClusterRoleBindings: For permissions that span across a
whole cluster, ClusterRoles and ClusterRoleBindings are used. They are
critical for managing cluster-wide permissions.

2.8 Workload Scaling

Kubernetes workload scaling is a fundamental aspect of managing containerized
applications in modern cloud environments. As applications experience fluctuating
demand, the ability to dynamically adjust resource allocation ensures optimal
performance, cost efficiency, and reliability. Scaling in Kubernetes involves auto-
matically increasing or decreasing the number of pod replicas based on current
workload demands, a process managed by the Kubernetes control plane using
various built-in mechanisms such as vertical and horizontal scaling.

2.8.1 Vertical and Horizontal Scaling

There are two primary types of scaling in Kubernetes: horizontal and vertical [9].
Horizontal scaling, also known as scaling out, involves adding more pod replicas
to distribute the load evenly. This method is particularly effective for stateless
applications where multiple instances can run independently. Vertical scaling, or
scaling up, entails increasing the resource limits of existing pods, making each
instance more powerful. This approach is often used for stateful applications that
require higher computational power or memory.

Kubernetes offers several tools to facilitate workload scaling. The Horizontal Pod
Autoscaler (HPA) automatically adjusts the number of pod replicas based on CPU
utilization or other select metrics. The Vertical Pod Autoscaler (VPA) recommends
or automatically adjusts the resource requests and limits of containers within pods.
Additionally, if available, the Cluster Autoscaler can adjust the number of nodes
in a cluster, ensuring that there are enough resources to meet the demands of the
scaled workloads.

16

Kubernetes

Figure 2.3: Horizontal Pod Autoscaling

Deployments and ReplicaSets are essential Kubernetes objects that play a
pivotal role in the autoscaling of applications. A Deployment manages the desired
state of an application by defining the number of replicas and their configuration,
while the underlying ReplicaSet ensures that the specified number of pod replicas
are maintained. This setup provides fault tolerance and load distribution. In
the context of autoscaling, the HPA dynamically interacts with Deployments and
ReplicaSets to adjust the number of replicas based on real-time performance metrics.
By continuously monitoring these metrics, HPA can scale the number of pod replicas
up or down to meet the current demand, ensuring optimal resource utilization.

17

Chapter 3

eBPF

The Extended Berkeley Packet Filter (eBPF) is a revolutionary technology born
within the Linux kernel that enable the safe execution of sandboxed programs
in a priviledged context [10]. It allows to safely extend the capabilities of the
kernel without changing the source code or loading additional kernel modules.
Traditionally, the operating system has always been slower to evolve due to its
need to be reliable and secure. Due to its priviledged access to more sensitive
information it is the best place to implement observability, security and network
functionality. Thanks to eBPF however we can expand the capabilities of the
operating system even in spite of its slow evolution, molding it to our needs.

3.1 History

At its inception in 1992, the Berkeley Packet Filter (BPF) was designed as a
network tap and packet filter which permitted the capture of network packets at
the operating system level with the goal of increasing the speed of such operations.
It allowed for direct access to raw link-layer packets and a user level program
could apply filters on which packets it wanted to recieve. The program needs to be
written for an in-kernel virtual machine and its code is interpreted and compiled
to machine code by a just-in-time (JIT) mechanism.

Over the years, BPF evolved and its applications expanded beyond packet filter-
ing. With the introduction of extended BPF (eBPF) around 2014, it transitioned
into a more general execution engine within the Linux kernel. eBPF enhanced the
capabilities of BPF by supporting a broader set of functionalities like performance
monitoring, network traffic management, and security enforcement, making it an
integral part of modern Linux systems.

18

eBPF

3.2 Architecture
In this chapter we are going to go over the core components and mechanics that
make it possible for an eBPF program to function. We will explore elements such
as the eBPF virtual machine (VM), the rigorous safety checks enforced by the
verifier, the efficiency gains offered by just-in-time compilation, and the dynamic
interaction between user space and kernel space facilitated by eBPF maps and
helper functions.

Figure 3.1: eBPF Architecture [10]

3.2.1 eBPF Program Exection
eBPF is a powerful technology that allows code execution within the Linux kernel
with minimal performance overhead, enabling deep observability and security
functionalities [11]. One of the key features of eBPF is its ability to attach to
various hooks and probes within the kernel, such as system call hooks and kprobes,
to monitor and respond to a wide range of events.

System call hooks are crucial for monitoring and modifying the behavior of system
calls, which are the primary interface between user applications and the kernel. By
attaching eBPF programs to system call hooks, administrators can intercept, log,
and even alter the behavior of these calls. This capability is particularly useful for
security monitoring, auditing, and performance analysis. For example, an eBPF
program can be attached to the open system call to log every file access attempt,
capturing details like the file name, user ID, and process ID. This real-time visibility

19

eBPF

into file operations can help detect unauthorized access and potential breaches.

Kernel probes (kprobes) provide a mechanism to dynamically insert probes into
running kernel code, allowing eBPF programs to execute when specified kernel
functions are called. Kretprobes, a variant of kprobes, are used to attach to the
return point of a kernel function, enabling the capture of function return values.
These probes are invaluable for tracing and debugging, as they allow developers to
monitor the execution flow and internal state of the kernel.

Combining system call hooks and kprobes with eBPF programs offers a flexible
and powerful approach to system monitoring and security. eBPF programs can be
written in C, compiled into bytecode, and then loaded into the kernel using tools
like bcc (BPF Compiler Collection) or libbpf. Once loaded, these programs run
in a sandboxed environment, ensuring they do not compromise kernel stability or
security.

Figure 3.2: eBPF Execution for predefined hooks [10]

20

eBPF

3.2.2 eBPF Virtual Machine
The eBPF virtual machine is not a virtual machine in the traditional sense, like
those used for emulating entire operating systems. Instead, it is a lightweight,
sandboxed execution environment within the Linux kernel that runs eBPF programs.
These programs are loaded into the kernel at runtime and execute in response to
events such as network packets arriving or syscalls being made. Since it is running
inside the kernel it has no performance overhead for syscalls and context switching
between kernel and user space.

While all operations done by eBPF programs can be achieved by normal kernel
modules it is extremely dangerous to directly execute in-kernel programs. This
could potentially cause lock-ups, memory corruption, crash processes, cause security
vulnerabilities and other unwanted effects. Thus, running fast JIT compiled kernel
code using a safe environment such as a VM is a much better option in terms of
security and kernel safety.

Figure 3.3: eBPF Execution for probes [10]

The eBPF VM however has some limitations:
• It is not Turing complete. No loops are allowed so all eBPF programs are

guaranteed to always complete and never hang, however there is an exception.
Starting with Linux kernel version 5.3 bounded loops are now possible within
eBPF programs. With this change the previous limit of eBPF programs having
only 4096 instructions has been increased to one million.

21

eBPF

• All memory access is bounded and type-checked and only a MOV assembly
instruction can change the type of a register.

• There are no null dereferences and the main function takes only a single
argument.

Thanks to these kind of restrictions the eBPF program can be quickly verified and
loaded into the kernel after its instructions are parsed into a directed acyclic graph
(DAG).

3.2.3 Verifier
The eBPF verifier plays a crucial role in the security and stability of the Linux
kernel by ensuring that all eBPF programs loaded into the kernel are safe and
reliable. This chapter delves into the intricate workings of the eBPF verifier, its
importance in the eBPF ecosystem, and the mechanisms it employs to maintain
system integrity. The primary function of the eBPF verifier is to analyze and certify
the safety of eBPF programs before they are allowed to run within the kernel. This
process is essential because it prevents potentially harmful code, whether malicious
or inadvertently dangerous, from executing operations that could destabilize or
compromise the kernel.

How it works
The verification process begins with static code analysis, a thorough examination
that inspects the eBPF bytecode. This scrutiny involves a series of checks designed
to affirm that the program adheres to strict operational guidelines. These checks
include validating memory accesses to ensure they are within safe bounds, confirming
that the control flow of the program does not contain any loops that might lead to
indefinite execution, and verifying that all operations are performed on initialized
and legitimate data. Additionally, the verifier ensures that each program has a clear
and safe path to termination, preventing it from hanging the kernel. Despite its
critical role, the verifier faces significant challenges, primarily due to the complexity
and power of eBPF programs. Analyzing these dynamic programs requires a balance
between thoroughness and efficiency to maintain performance standards. Developers
must also navigate the intricacies of the verifier when writing or debugging eBPF
code, as the detailed analysis can sometimes reject valid code due to overly stringent
checks or edge cases that are difficult to anticipate.

Ongoing developments in the verifier aim to expand its capabilities and improve
its efficiency, accommodating the increasing sophistication of eBPF programs.
Ultimately the eBPF verifier is more than just a gatekeeper; it is a sophisticated
tool that plays a foundational role in the security and stability of the Linux kernel.

22

eBPF

As eBPF continues to evolve, so too will the verifier, adapting to new challenges and
ensuring that eBPF remains a safe and powerful tool for kernel-level programming.

3.2.4 JIT Compiler
One of the key components that enhance the performance of the eBPF framework
within the Linux kernel is the Just-In-Time (JIT) compiler. This chapter delves
into the JIT compiler’s role in the eBPF architecture, explaining how it works, its
benefits, and the technical challenges it addresses.

The eBPF JIT compiler is crucial for translating eBPF bytecode into native
machine code executable directly by the host CPU. This translation occurs at
runtime and is designed to optimize the performance of eBPF programs, making
them as efficient as possible. By converting bytecode to optimized machine code,
the JIT compiler reduces the execution overhead that would typically be associated
with interpreted or non-native code. The process begins when an eBPF program,
verified for safety and correctness by the eBPF verifier, is passed to the JIT
compiler. Here, the compiler takes the generic eBPF bytecode and translates it
into architecture-specific instructions. This task requires a deep integration with
both the eBPF system and the underlying hardware architecture, as the generated
code must be highly optimized and tailored to the specific capabilities and features
of the processor.

Figure 3.4: Verifier and JIT Compiler chain [10]

Performance
The primary advantage of JIT compilation in eBPF is the significant boost in
performance. Native machine code executes much faster than interpreted bytecode

23

eBPF

because it is directly processed by the CPU without the need for additional
translation. Moreover, JIT-compiled eBPF programs can leverage CPU-specific
optimizations, further enhancing their efficiency and speed. This capability is
particularly important for time-sensitive tasks such as network packet filtering and
system monitoring.

Challenges

Implementing a JIT compiler for eBPF is not without challenges. The compiler
must ensure that the translated code is not only fast but also safe and secure. It
must prevent any potential security vulnerabilities that could arise from lower-level
machine code operations. Furthermore, maintaining portability across different
hardware architectures complicates the JIT compiler’s development, requiring
careful design to accommodate diverse CPU features and instruction sets.

Additionally, the JIT compilation process itself must be fast enough not to
negate the benefits of increased execution speed. This requires a balance between
the time spent compiling the code and the runtime performance gains.

3.2.5 eBPF Maps

eBPF maps are a critical component of the eBPF architecture, providing the
essential functionality of maintaining state across function calls and between
different eBPF programs. This chapter explores the role of eBPF maps, the various
types available, their functionalities, and the mechanics of their integration within
the Linux kernel.

Figure 3.5: eBPF Maps [10]

24

eBPF

What are eBPF Maps
eBPF maps are data structures that store data in key-value pairs and are acces-
sible both from user space and from within eBPF programs running in kernel
space. They act as the primary mechanism for eBPF programs to retain state
information between function executions, share data between different programs,
or communicate with user-space applications. This capability significantly extends
the usefulness of eBPF programs beyond stateless processing.

Types of eBPF Maps
The flexibility of eBPF maps derives primarily from the variety of map types
designed to support different use cases such as:

• Hash Maps: Store entries in a key-hash structure, allowing for efficient
lookups, inserts, and deletions.

• Array Maps: Use a simple array structure where each element is accessed
by a direct index, providing very fast access times.

• Per-CPU Maps: Designed for scalability, these maps reduce contention by
maintaining separate data instances for each CPU.

• LRU Maps: Automatically evict least recently used items when the map
reaches its capacity, useful for cache management.

• Queue and Stack Maps: Implement First-in-First-out (FIFO) and Last-
in-First-out (LIFO) data structures, respectively, which are useful for various
network and processing tasks.

How eBPF Maps Work
eBPF maps are created via API calls from user space and can be manipulated by
eBPF programs at runtime. When an eBPF program is loaded into the kernel,
it can access predefined map handles that refer to these data structures. This
design allows eBPF programs to interact seamlessly with preallocated storage space
without needing to perform any memory management tasks, which are handled by
the kernel.

While eBPF maps provide powerful functionalities, they also introduce challenges
such as managing synchronization between multiple programs and handling map
lifecycle correctly without leaking resources. Developers must be aware of these
issues and utilize available tools and practices to address them.

25

eBPF

3.2.6 Helper Functions
eBPF helper functions are a critical aspect of the eBPF ecosystem, enabling eBPF
programs to interact with the Linux kernel in powerful ways. These functions
provide eBPF programs access to kernel services and data structures, enhancing
their capabilities beyond mere packet filtering or data observation. This chapter
explores the different types of helper functions as well as guidelines for their effective
utilization.

Types
eBPF helper functions can be categorized based on the functionalities they provide.
Some common categories include:

• Map Management Functions: Functions that facilitate operations on eBPF
maps such as retrieving data from a map or adding or modifying map entries.

• Packet Operations: Functions that manipulate packet data, crucial for
network monitoring and modification tasks.

• System Information Retrieval: Functions that fetch system data like the
current time or system configuration details, enabling eBPF programs to make
context-aware decisions.

• Security and Auditing Functions: Functions that help implement security
policies or log events, essential for building security-focused eBPF applications.

How they work
eBPF helper functions are invoked within eBPF programs using a specific helper
call instruction. The eBPF program passes parameters to the helper function,
which then executes a predefined operation and returns a result. This mechanism
is designed to be safe and efficient, with strict type and access checks performed
by the eBPF verifier to ensure that all helper function calls do not compromise
system stability or security.

Best Practices
When utilizing eBPF helper functions, it’s essential to employ them judiciously,
particularly in performance-sensitive areas, as excessive use can lead to overhead.
Developers should be mindful of the security implications of each function, especially
when handling user-supplied data, to prevent potential vulnerabilities. Additionally,
compatibility is a key consideration; not all helper functions are supported across

26

eBPF

different kernel versions, so it’s important to verify their availability and consider
alternative strategies if necessary. By adhering to these best practices, developers
can ensure that their use of eBPF helper functions is both effective and secure.

Despite their utility, eBPF helper functions come with limitations. The kernel
strictly controls the availability of these functions to prevent abuse or unintended
operations that could destabilize the system. Additionally, the evolving nature of the
eBPF landscape means that available helper functions can change between kernel
versions, posing challenges for developers in maintaining forward compatibility.

3.2.7 User Space Tools
The development and management of eBPF programs rely heavily on robust user
space tools that provide capabilities ranging from program loading and manipulation
to performance analysis and debugging. This chapter explores the landscape of
user space tools designed for eBPF, detailing how they enhance the functionality
and usability of eBPF within Linux systems.

User space tools for eBPF are critical for bridging the gap between complex
kernel-level operations and user-friendly interfaces. These tools enable developers
to write, deploy, debug, and manage eBPF programs efficiently. The toolset ranges
from compilers that transform high-level code into eBPF bytecode to loaders that
insert the bytecode into the kernel, and libraries that facilitate interaction between
user applications and eBPF programs running in the kernel.

Notable Tools
The eBPF ecosystem is supported by a variety of tools developed by the community
and supported by various organizations. Key among these is the BPF Compiler
Collection (BCC), which provides a set of tools and libraries for creating eBPF
programs in C and includes utilities to attach these programs to hooks in the kernel.
BCC simplifies the process of developing eBPF programs by abstracting much of
the complexity involved in direct eBPF API calls.

Another significant tool is bpftrace, designed for tracing and dynamically
analyzing Linux kernel behavior. It allows for quick and easy scripting of eBPF
code using a high-level language, which is particularly useful for diagnostics and
troubleshooting. This tool supports a variety of powerful capabilities, including
custom probe insertion and data aggregation.

These user space tools not only make eBPF more accessible but also enhance
its power. They provide essential capabilities such as performance monitoring,
debugging, and automated management of eBPF programs. For example, tools
like BCC and bpftrace come equipped with numerous pre-built scripts that can

27

eBPF

be used to analyze system performance, track down performance bottlenecks, and
monitor system events without needing to write complex eBPF code from scratch.

Libraries
Within the ecosystem of user space tools for eBPF, libraries play a pivotal role
in simplifying the development and operational processes associated with eBPF
programs. Libraries such as libbpf, part of the Linux kernel project, provide
essential abstractions and functionalities that streamline the interaction between
eBPF programs and user applications. Libbpf, in particular, facilitates the loading
and management of eBPF programs and maps, offering a straightforward API
that helps developers avoid the intricacies of lower-level eBPF system calls. This
enables more robust and less error-prone applications, as developers can focus on
program logic rather than kernel-specific details. As eBPF continues to mature,
these libraries are regularly updated to support the latest features, ensuring that
developers have the tools needed to leverage eBPF’s full capabilities effectively.

28

Chapter 4

Monitoring Tools

In the dynamic landscape of modern software operations, monitoring tools play
an indispensable role in ensuring applications run smoothly and efficiently. This
chapter focuses on a suite of essential monitoring tools such as Grafana, Loki,
Prometheus, and Promtail, each designed to address specific facets of monitoring
and data visualization. These tools work in concert to provide developers and
system administrators with deep insights into their systems’ health, performance,
and logs. We will explore how Grafana allows for powerful data visualization
across various data sources, how Prometheus efficiently collects and stores metrics,
how Loki enhances log aggregation and analysis, and how Promtail facilitates
the gathering of logs for processing by Loki. Together, these tools form a robust
monitoring stack that empowers teams to detect anomalies, understand trends,
and make data-driven decisions to optimize application performance and reliability.

4.1 Grafana

Grafana was initially developed in 2014 by Torkel Ödegaard as an open-source
project aimed at providing a powerful, flexible platform for visualizing time-series
data [12]. Originally conceived as a front-end for Graphite, it quickly expanded
to support a wide range of data sources, including Prometheus, InfluxDB, and
Elasticsearch, among others. Grafana’s intuitive interface and robust visualization
capabilities attracted a growing community of users and contributors, leading to
rapid enhancements and feature additions. Over the years, Grafana Labs was
established to drive the development and commercialization of Grafana, while
still maintaining its open-source roots. Today, Grafana stands as one of the most
popular and versatile data visualization tools, widely used across various industries
for monitoring and analytics.

29

Monitoring Tools

Figure 4.1: Example of a Grafana dashboard

It is an open-source analytics and interactive visualization web application that
provides rich ways to chart and monitor data in real time. Widely recognized for
its versatility and user-friendly interface, Grafana is the tool of choice for data
scientists, IT administrators, and DevOps engineers seeking to understand complex
datasets. This chapter will introduce Grafana, outline how it operates, and delve
into its broad capabilities, which allow users to turn their time-series data into
beautiful graphs and visualizations that highlight trends, spikes, and drops.

Grafana stands out in the realm of data visualization and monitoring for its
extensive capabilities, catering to a diverse range of needs and preferences across
industries. Its versatility is highlighted by its support for a wide array of data
sources such as Prometheus, Elasticsearch, MySQL, and more, allowing users to
pull in data from various environments and view it through a singular, cohesive
interface. Grafana’s strength lies in its robust visualization options which include
line charts, bar graphs, histograms, and geospatial maps, among others, each
customizable with a range of display options to suit specific user requirements.
Users can enhance dashboards with interactive features like variable selectors for
real-time analysis and comparative studies across different metrics or time periods.

The platform’s alerting functionality is highly advanced, capable of sending
notifications through multiple channels based on triggers set within the data,
which is crucial for maintaining operational continuity and quick responsiveness to

30

Monitoring Tools

potential issues. Annotations in Grafana allow users to mark specific events directly
on graphs, providing context for spikes or drops in data, which is especially useful
during post-mortem analysis or incident reviews. Additionally, the integration
of plugins extends Grafana’s functionality, enabling the inclusion of new data
sources, new monitoring options, or even custom applications tailored to the
user’s operational landscape. This holistic approach to data interaction not only
simplifies the monitoring tasks but also empowers teams to derive actionable
insights effectively, making Grafana an invaluable tool in data-driven decision-
making processes.

• Data Sources: Grafana’s strength lies in its extensive support for various
data sources. Users can connect to multiple sources simultaneously, allowing
complex data overlays and correlation.

• Dashboards and Panels: Users design dashboards that contain panels; each
panel can show data from different sources through graphs, charts, and tables.
These dashboards are highly interactive and can be customized to suit the
specific monitoring needs of any team.

• Alerting System: Grafana includes a powerful alerting system that notifies
teams of potential issues before they become critical. This system allows
users to define alert rules for the metrics they are visualizing, ensuring rapid
response times to performance anomalies or system failures.

4.2 Grafana Loki
Similarly to how Grafana is an open-source dashboard platform, there are other
OSS tools made by their team that are tightly integrated in the Grafana ecosystem.
One of these tools is Loki, a project developed by Grafana Labs, distinctly different
from Grafana itself, designed specifically for aggregating and querying logs from
various sources [13]. While Grafana focuses on metrics visualization and analysis,
Loki provides a solution to manage and analyze log data, complementing Grafana’s
capabilities by integrating seamlessly with it for comprehensive observability.

Grafana is a broad platform used for data visualization across various metrics,
allowing users to create dynamic dashboards to track performance, resources, and
more. In contrast, Loki is specialized; its primary function is to handle logs, which
are textual records of events occurring within systems, making it a vital tool in
debugging and tracing system behavior.

Loki is designed to be cost-effective and highly efficient, offering a simpler
approach to log processing that differs significantly from other log-aggregation
products like Elasticsearch. Instead of indexing the content of the logs, as is
common with many other logging systems, Loki indexes only the metadata of the

31

Monitoring Tools

logs. This approach results in a more lightweight system that requires less storage
and computational power, reducing cost and increasing the speed of queries.

Architecture
Loki’s architecture draws significant inspiration from Prometheus, particularly
appealing to those already familiar with the Prometheus query language, which
streamlines the learning curve. Logs are collected through various agents such
as Promtail, Grafana Agent, or Fluentd, which are responsible for gathering logs
from different parts of a system and forwarding them to Loki. This approach not
only simplifies the ingestion process but also optimizes the management of logs by
categorizing them efficiently.

In Loki, logs are meticulously structured into streams that are tagged with a set
of key-value pairs, a method influenced by the labeling system used in Prometheus.
This label-based approach facilitates structured querying of logs without the need
for a full-text search index, significantly reducing the overhead associated with log
data management. Each stream represents a specific source or type of log, allowing
users to retrieve and analyze log data based on these labels, which is particularly
useful in environments with large volumes of log data.

The storage model of Loki is designed for efficiency and scalability. Logs are
segmented into chunks, which are then compressed to minimize storage space and
enhance the speed of data retrieval. When a query is executed, Loki identifies
and fetches the relevant compressed chunks, decompresses them, and performs a
linear scan to locate the requested log entries. This process is remarkably efficient
because the initial filtering by labels drastically reduces the number of logs to be
scanned, ensuring quick retrieval times even over large datasets.

One of Loki’s standout features is its seamless integration with Grafana, which
provides a unified platform for monitoring and visual analysis. Once logs are
ingested, they can be queried using LogQL, a powerful and flexible query language
developed by Grafana Labs. LogQL allows for intricate querying and manipulation
of log data, enabling users to perform detailed analysis and aggregation directly
within their Grafana dashboards. This integration allows for the correlation of log
data with metrics, offering a comprehensive view of system health and behavior.
The ability to visualize logs alongside metrics in Grafana not only enhances the
overall observability but also significantly improves the capabilities for debugging
and diagnosing issues across systems.

4.3 Promtail
Promtail was developed by Grafana Labs as a complementary component to
Loki, its log aggregation system, to address the need for efficient log collection

32

Monitoring Tools

and forwarding [14]. The project began shortly after the introduction of Loki in
late 2018, aiming to provide a seamless way to ship logs from various sources to
Loki. Promtail was designed to work similarly to Prometheus’s service discovery
mechanisms, allowing it to dynamically locate and collect logs from a variety of
sources, including Kubernetes pods, systemd journals, and standalone log files.
As an open-source project, Promtail has rapidly evolved, integrating feedback
from the community and incorporating features to better handle diverse logging
environments. Its development has been guided by the same principles that drive
Grafana and Loki: simplicity, efficiency, and ease of use. Today, Promtail is a
critical tool in the Grafana Labs ecosystem, providing a robust solution for log
collection and forwarding in modern cloud-native environments.

Listing 4.1: Example of a Promtail configuration file
1 s e r v e r :
2 http_l i s ten_port : 9080
3 grpc_l i s ten_port : 0
4 p o s i t i o n s :
5 f i l ename : / var / l i b / promta i l / p o s i t i o n s . yaml
6 c l i e n t s :
7 − u r l : http :// l o c a l h o s t :3100/ l o k i / api /v1/push
8 s c rape_con f i g s :
9 − job_name : system

10 s t a t i c _ c o n f i g s :
11 − t a r g e t s :
12 − l o c a l h o s t
13 l a b e l s :
14 job : va r l og s
15 __path__: / var / log /∗ l og
16

17 − job_name : nginx
18 s t a t i c _ c o n f i g s :
19 − t a r g e t s :
20 − l o c a l h o s t
21 l a b e l s :
22 job : nginx
23 __path__: / var / log / nginx /∗ . l og

How it works
Promtail is an agent that is deployed directly on the servers where logs are generated.
Its primary function is to collect logs, enrich them with metadata, and forward

33

Monitoring Tools

them to Loki for storage and analysis. It is crucial for ensuring that logs are not
only collected in real-time but are also structured in a way that makes them easily
queryable within Loki. By tailing log files, monitoring them for new entries and
capturing these entries as they occur, Promtail acts as the critical first step in the
log processing pipeline.

Promtail’s operation can be divided into several key activities, each integral to
its role as a log collector:

• Service Discovery: Leveraging techniques similar to those used in Prometheus,
Promtail employs service discovery to automatically detect and monitor log file
paths across hosts in the environment. This feature ensures that all relevant
logs are captured without manual intervention.

• Log Tailing: Once log paths are identified, Promtail begins tailing these files,
which involves reading new log entries as they are appended to the logs.

• Metadata Enrichment: As logs are collected, Promtail attaches labels to
each log entry. These labels, which can include data such as the source file,
host name, and other contextual information, are crucial for organizing logs
in Loki and facilitate efficient querying and analysis.

Configuration
Configuring Promtail is a crucial step that determines how effectively it can collect
and process logs. This configuration is managed through a detailed configuration file,
where administrators specify various parameters that guide Promtail’s behavior.
Within this file, users define jobs, which are essentially instructions on where
Promtail should look for logs and how it should handle them. Each job contains
specifications about the log paths, the frequency of log scraping, and the methods
for log extraction. These jobs allow Promtail to systematically manage different
sources of logs, ensuring that all necessary data is captured.

Moreover, the configuration file outlines how logs should be processed through a
series of pipeline stages. As logs are collected, they undergo various transformations:
initially, they are parsed, which involves breaking down the raw log data into a
structured format that Loki can more easily query. Following parsing, logs are
labeled with metadata such as the source file’s path or the host’s name, which aids
in their categorization and retrieval in Loki. Lastly, a filtering process is applied to
ensure that only relevant logs are forwarded to Loki, optimizing resource use and
processing time.

These configuration steps are vital not just for operational efficiency but also
for tailoring Promtail’s functionality to the specific needs of an environment. By
adjusting the configuration file, administrators can fine-tune Promtail’s performance,

34

Monitoring Tools

from modifying scrape intervals to enhance real-time data collection, to tweaking
parsing rules to better structure the data, or refining labels for more effective data
segmentation. This flexibility allows Promtail to be a powerful and adaptable tool
in any logging architecture.

Advanced Features
Promtail’s advanced features extend its capabilities beyond basic log collection
and processing, making it a versatile tool suited for complex and scalable logging
architectures. One of the standout features of Promtail is its support for multi-
tenancy. This capability is crucial for organizations that manage log data across
multiple divisions or for service providers who handle logs from various customers.
Through multi-tenancy, Promtail can segregate logs based on predefined rules,
ensuring that data from different sources remains separate and secure, while still
being processed through a single Promtail instance. This segregation is typically
managed through labeling, where logs are tagged with tenant-specific identifiers
that facilitate appropriate routing and storage in Loki.

Another advanced feature is Promtail’s dynamic file watching. This allows
Promtail to adapt to changes in log directories by automatically detecting new
files or changes within existing files without needing manual reconfiguration. This
feature is particularly useful in environments where log outputs are volatile and
can change frequently, such as in temporary job logs or rapidly evolving application
logs.

Promtail also supports various backoff strategies and load balancing, which
enhance its robustness in high-throughput environments. These features help
manage the load on both the Promtail agent and the Loki server, ensuring stable
performance even under intense data ingestion scenarios. The backoff strategies
prevent Promtail from overwhelming the network and the Loki server with too
many requests simultaneously, especially during periods of high log generation.

These advanced features make Promtail not just a log collection tool but a
comprehensive log management solution that can scale to meet the needs of large-
scale, diverse, and dynamic logging environments. This adaptability ensures that
as an organization’s logging requirements grow and change, Promtail remains an
effective and integral part of their observability infrastructure.

4.4 Prometheus
Prometheus was created in 2012 by former Google engineers at SoundCloud [15],
inspired by their experiences with Google’s internal monitoring tools [16]. The
goal was to develop a robust, scalable solution tailored to the needs of modern
cloud-native environments. Released as an open-source project under the Apache

35

Monitoring Tools

2.0 license, Prometheus quickly gained traction due to its powerful query language,
PromQL, and its emphasis on multidimensional data collection and monitoring.
Its architecture, featuring a pull-based model and time-series database, set it apart
from existing solutions. In 2016, Prometheus joined the Cloud Native Computing
Foundation (CNCF) as the second hosted project after Kubernetes, which further
accelerated its adoption and development. Today, Prometheus is a cornerstone of
cloud-native monitoring, widely used by organizations to gain insights into their
applications and infrastructure.

Figure 4.2: Prometheus architecture [16]

Architecture
At its core, Prometheus consists of several components that work together to gather,
store, and use time-series data effectively:

• Prometheus Server: The heart of the system, the Prometheus server handles
the retrieval and storage of data. It scrapes metrics from configured targets
at specified intervals, evaluates rule expressions, displays results, and triggers
alerts if certain conditions are met.

• Storage: Prometheus stores time-series data in a local disk in an efficient
custom format, making the retrieval and real-time monitoring feasible even
under high load.

36

Monitoring Tools

• Alertmanager: This component manages alerts sent by the Prometheus
server and takes care of deduplicating, grouping, and routing them to the
correct receiver such as email, PagerDuty, or OpsGenie. It also ensures alert
silencing and inhibition logic, which are crucial for managing a large number
of alerts.

• Push Gateway: For supporting short-lived jobs, Prometheus includes a Push
Gateway, which allows ephemeral and batch jobs to expose their metrics to
Prometheus.

Prometheus excels in its core functionalities, centered around the efficient
collection, storage, and processing of time-series data. At its heart lies a powerful
data model that uses metric names coupled with sets of key-value pairs, known
as labels, to uniquely identify each time series. This design allows for flexible and
rich data queries through Prometheus’s own query language, PromQL. PromQL
can perform complex data retrieval and computation, making it possible to extract
meaningful insights and trends from real-time data. Additionally, while Prometheus
itself doesn’t provide extensive visualization capabilities, it seamlessly integrates
with tools like Grafana to enable sophisticated data visualization. This combination
supports a wide array of monitoring scenarios, from tracking system performance
metrics such as CPU and memory usage to understanding more granular application-
specific metrics.

Usage
Prometheus is extensively used across various domains to address multiple moni-
toring needs:

• Infrastructure Monitoring: Prometheus can monitor a wide range of
system metrics including memory, CPU, disk usage, and network statistics,
providing a detailed view of the system health.

• Application Monitoring: By exposing custom metrics from applications,
Prometheus can track application performance and usage, crucial for detecting
anomalies and ensuring optimal performance.

• Dynamic Service Discovery: As services are dynamically added or removed
in a modern cloud setup, Prometheus automatically discovers new services
and starts collecting metrics without manual intervention.

Challenges
While Prometheus offers powerful monitoring capabilities, it faces several challenges,
particularly in managing data storage and ensuring high availability. As Prometheus

37

Monitoring Tools

typically stores substantial volumes of time-series data locally, efficiently managing
disk space and implementing effective data retention policies are crucial to prevent
storage overload and maintain performance. Furthermore, Prometheus does not
natively support clustering, which complicates efforts to achieve high availability.
Users often have to rely on additional tools like Thanos or Cortex to create a more
resilient monitoring infrastructure. These challenges require careful planning and
configuration to ensure that Prometheus remains scalable and reliable in larger,
more dynamic environments.

38

Chapter 5

Tetragon

Tetragon is an advanced observability and security platform designed for monitoring
and managing modern cloud-native environments, particularly those orchestrated by
Kubernetes [17]. It leverages eBPF technology to provide deep visibility into network
traffic, application behavior, and system performance. Tetragon’s capabilities are
particularly valuable in complex and dynamic environments like 5G networks, where
rapid changes and high data throughput necessitate robust monitoring solutions.

The main focus of Tetragon is detecting and reacting to security-significant
events. Being able to monitor its host system is extremely valuable when the main
objective is having a broad overview of the machine and what is happening inside
it. The main type of events Tetragon can detect are:

• Process execution events

• System call activity

• I/O activity like network and file access

Another important feature of this eBPF framework is the ability to be Kubernetes-
aware. Since it can be installed inside a K8s cluster it communicates with its API
and can obtain useful information such as namespaces, pods, services and so on.
By doing this the metrics that are generates in relation to security events are rich
with metadata to help better understand what is happening inside the system we
are trying to monitor.

39

Tetragon

Figure 5.1: Schema of Tetragon’s architecture

History
Tetragon began as an ambitious project aimed at addressing the growing need for
comprehensive observability and security in cloud-native environments. Initially
conceived by a group of open-source enthusiasts and security experts, the project
sought to leverage the emerging eBPF technology to provide deep visibility into
system operations with minimal performance overhead. In its early stages, Tetragon
focused on developing a robust framework for monitoring and analyzing kernel-level
events, which required extensive collaboration with the Linux kernel community.
The project’s early development involved creating efficient eBPF programs, inte-
grating them with user-space components, and ensuring seamless compatibility
with Kubernetes. As Tetragon matured, it attracted contributions from a broader
community, incorporating advanced features such as real-time policy enforcement,
detailed logging, and integration with popular monitoring tools like Prometheus.
This collaborative and iterative development process has positioned Tetragon as a
powerful and flexible tool for enhancing security and observability in modern IT
infrastructures.

Real Time Monitoring
Tetragon’s real-time eBPF monitoring leverages the power of eBPF technology to
provide deep, immediate visibility into system operations and network activities.
By attaching eBPF programs to various kernel-level events, Tetragon can capture

40

Tetragon

granular telemetry data on system calls, network packets, and resource usage
with minimal performance overhead. This real-time monitoring capability enables
administrators to detect and respond to anomalies and performance issues as they
occur, ensuring that applications and infrastructure maintain optimal performance
and security. The continuous stream of detailed insights provided by eBPF allows for
proactive management, quick troubleshooting, and enhanced operational efficiency
in dynamic, cloud-native environments like Kubernetes-orchestrated 5G networks.
Moreover, Tetragon has the ability to filter security events either by file, socket,
binary, ecc. but also by K8s objects such as namespaces.

Flexibility
Tetragon exemplifies flexibility through its support for user-defined tracing policies,
empowering administrators to tailor monitoring and observability to their specific
needs. These policies enable users to define what events and metrics to trace,
allowing for a customized and granular approach to data collection. By writing
tracing policies, users can specify conditions and contexts under which eBPF
programs should be attached to kernel events, ensuring that only relevant data is
captured and analyzed. This level of customization is particularly advantageous in
diverse environments where different applications and services may have unique
monitoring requirements. For instance, in a large 5G virtualized network managed
by Kubernetes, various network slices, virtual network functions (VNFs), and
containerized network functions (CNFs) can be monitored according to their specific
performance and security needs. User-defined tracing policies allow for the dynamic
adjustment of monitoring parameters as the network evolves, providing the flexibility
to scale and adapt without compromising on observability. Moreover, these policies
can be updated in real-time, enabling rapid response to emerging issues or changes
in the network environment. This flexibility ensures that Tetragon remains a
versatile tool, capable of providing deep insights and comprehensive monitoring
tailored to the unique characteristics of any cloud-native infrastructure.

eBPF Kernel Aware
Tetragon, utilizing eBPF technology, gains comprehensive access to the Linux
kernel state, enabling it to integrate this kernel-level data with Kubernetes context
and user-defined policies. This integration allows for the creation of real-time rules
enforced by the kernel, facilitating the annotation and enforcement of various system
components such as process namespaces, capabilities, and socket associations. For
instance, Tetragon can map process file descriptors to filenames, providing detailed
visibility and control over system interactions. A practical application of this
capability is the enforcement of security policies: when an application attempts

41

Tetragon

to change its privileges, a predefined policy can trigger an alert or terminate the
process before the syscall completes, preventing potential execution of unauthorized
actions. This proactive approach to monitoring and enforcement significantly
enhances the security and reliability of cloud-native environments.

5.1 Tracing Policies
Tracing policies are a core feature of Tetragon, enabling administrators to define
and customize the specific events and conditions they wish to monitor within
their infrastructure. These policies allow for fine-grained control over the data
collected by Tetragon’s eBPF programs, ensuring that monitoring is both relevant
and efficient. By defining tracing policies, users can focus on the most critical
aspects of their environment, tailoring Tetragon’s capabilities to meet the unique
needs of their applications and systems.

5.1.1 Defining Tracing Policies
Tetragon tracing policies are defined using a flexible and expressive policy language.
These policies specify the conditions under which eBPF programs should be attached
to kernel events, as well as the type of data to be collected. Tracing policies can be
crafted to monitor a wide range of activities, including system calls, network traffic,
file accesses, and process executions. The policy language supports a variety of
matching criteria, such as process names, user IDs, and network addresses, allowing
for precise targeting of monitoring activities.

For example, a tracing policy might specify that all read and write operations
on a sensitive file should be monitored, or that all network connections to a
particular port should be logged. By allowing such specific definitions, tracing
policies ensure that Tetragon collects only the most relevant data, minimizing
performance overhead and enhancing the efficiency of monitoring efforts.

5.1.2 Implementation Steps
Implementing tracing policies in Tetragon involves several steps:

• Policy Creation: Administrators create tracing policies using the policy
language, defining the specific events and conditions they wish to monitor.
This includes specifying the kernel events to attach eBPF programs to and
the data to be collected.

• Policy Deployment: Once created, tracing policies are deployed to the
Tetragon platform. This process involves using the kubectl cli tool to load

42

Tetragon

the policies into the Tetragon system, where they are translated into eBPF
programs that are dynamically inserted into the kernel.

• Policy Management: Administrators can manage tracing policies with the
same tool that was used to depoy policies, kubectl. This includes enabling,
disabling, and updating policies as needed. Policies can be modified in real-
time, allowing for dynamic adjustment to changing conditions within the
monitored environment.

5.1.3 Tracing Policies Advantages
The benefits of tracing policies in Tetragon are plenty, significantly enhancing
the platform’s monitoring and observability capabilities. Firstly, tracing policies
provide customizable monitoring, enabling administrators to tailor data collection
to their specific needs by focusing on the most relevant events and conditions. This
ensures that monitoring efforts are not only effective but also efficient, as the precise
criteria for data collection minimize performance overhead. Additionally, the ability
to update tracing policies in real-time allows for dynamic adjustments in response
to changing conditions within the monitored environment, ensuring continuous
and adaptive monitoring. This flexibility is crucial for maintaining high levels of
security and performance in rapidly evolving infrastructures. Tracing policies also
play a pivotal role in enhancing security by enabling the enforcement of security
measures directly within the kernel. For instance, administrators can define policies
to terminate unauthorized processes or log suspicious activities, thereby proactively
mitigating risks and maintaining system integrity. Furthermore, the detailed logs
and audit trails generated by tracing policies support compliance with regulatory
requirements, facilitating auditing processes and ensuring that organizations meet
stringent data protection and security standards. Overall, the use of tracing policies
in Tetragon provides a powerful, adaptable, and efficient means of maintaining
observability, security, and compliance in modern IT environments.

5.2 Events
Tetragon’s security events are pivotal for maintaining and enhancing the security
posture of cloud-native environments. These events are generated by monitoring
and analyzing a wide array of system activities, including system calls, network
traffic, file access, and process executions. When Tetragon detects behaviors that
deviate from normal patterns or match predefined threat signatures, it generates
security events that provide detailed insights into these anomalies. These events
are accompanied by comprehensive contextual information, such as timestamps,
involved processes, and associated system resources, enabling administrators to

43

Tetragon

quickly understand and respond to potential threats. Through detailed logging and
alerting mechanisms, these security events also facilitate compliance with regulatory
requirements and support forensic investigations, ensuring that security incidents
are thoroughly documented and analyzed.

5.2.1 Visualization
Tetragon exposes its security events through two primary channels: gRPC endpoints
[18] and JSON logs, providing flexible and accessible methods for administrators
to integrate and utilize this critical information.

• gRPC endpoint: The gRPC endpoint is a robust interface that allows for
real-time, programmatic access to Tetragon’s security events. This endpoint
facilitates seamless integration with various monitoring and incident response
systems, enabling automated workflows and immediate reactions to detected
anomalies. By leveraging gRPC, administrators can subscribe to a stream of
security events, ensuring they receive prompt notifications of any suspicious
activities. This real-time data flow supports quick decision-making and en-
hances the overall responsiveness of the security infrastructure. Additionally,
the gRPC interface can be customized to filter specific types of events, ensur-
ing that only the most relevant information is transmitted to the connected
systems.

• JSON logs: In parallel, Tetragon generates detailed JSON logs for its security
events. These logs provide a structured and easily readable format that can
be ingested by various log management and analysis tools. JSON logs are
ideal for environments that rely on centralized logging systems, as they can be
easily indexed and queried for specific security events. The rich data contained
within these logs includes comprehensive contextual information such as event
timestamps, process IDs, user IDs, and the nature of the detected anomaly.
This detailed logging not only supports real-time monitoring but also enables
historical analysis, compliance reporting, and forensic investigations. By
storing security events in JSON format, Tetragon ensures that all necessary
information is preserved for thorough examination and future reference.

5.2.2 Event Filtering and Redacting
Tetragon offers advanced event filtering and redacting capabilities to ensure that
administrators receive relevant security events while protecting sensitive information.
Event filtering allows users to specify criteria that determine which events are
captured and transmitted, reducing noise and focusing on critical incidents. This
customization ensures that monitoring efforts are efficient and that administrators

44

Tetragon

can quickly identify and respond to significant threats. In addition to filtering,
Tetragon provides robust mechanisms for redacting sensitive information from
events before they are logged or transmitted. This feature is crucial for maintaining
data privacy and compliance with regulations, as it prevents the exposure of
confidential data such as personally identifiable information (PII) or proprietary
business details. By combining event filtering with sensitive information redaction,
Tetragon delivers precise, secure, and compliant monitoring solutions that cater to
the specific needs and policies of any organization.

5.2.3 Metrics
Tetragon enhances its observability capabilities by exporting metrics to Prometheus.
This integration allows Tetragon to provide detailed, real-time metrics on system
performance, security events, and resource utilization directly to Prometheus,
enabling comprehensive monitoring and analysis. Administrators can leverage
Prometheus’ powerful querying language to analyze these metrics, create custom
dashboards, and set up alerts based on specific conditions. By exporting metrics
to Prometheus, Tetragon ensures that organizations can seamlessly incorporate
its rich telemetry data into their existing monitoring infrastructure, facilitating
proactive system management, rapid incident response, and continuous performance
optimization. This integration not only enriches the overall observability ecosys-
tem but also enhances the ability to maintain robust and resilient cloud-native
environments.

5.3 Monitoring
Tetragon, as an eBPF platform, operates on various elements of the Linux kernel,
enabling comprehensive monitoring of binaries, files, network sockets, and more.
This capability allows Tetragon to provide detailed visibility and control over a
wide range of system components, ensuring robust observability and security in
complex environments.

5.3.1 Execution Monitoring
Execution monitoring is a critical aspect of system observability, enabling the
tracking and analysis of program executions across diverse environments. Tetragon
leverages eBPF technology to provide robust execution monitoring capabilities,
making it an invaluable tool for administrators managing Kubernetes clusters, vir-
tual machines, and bare-metal systems. By capturing and analyzing execution data
in real-time, Tetragon enhances visibility, security, and performance management
across complex, distributed infrastructures.

45

Tetragon

Kubernetes Monitoring
Kubernetes clusters present unique challenges for execution monitoring due to
their dynamic nature and orchestration of numerous containerized applications.
Tetragon addresses these challenges through several key features:

• Pod-Level Monitoring: Tetragon tracks the execution of processes within
individual pods, providing detailed visibility into the behavior of containerized
applications. This includes monitoring system calls, resource usage, and
interactions between containers.

• Namespace and Capability Annotations: Tetragon annotates processes
with their corresponding namespaces and capabilities, enabling precise moni-
toring and control. This helps in identifying and managing privilege escalations
and other security-related events.

• Integration with Kubernetes APIs: Tetragon integrates with Kubernetes
APIs to enhance its monitoring capabilities. This integration allows Tetragon
to correlate execution data with Kubernetes objects such as pods, services,
and deployments, providing a comprehensive view of the cluster’s state.

Virtual Machine Monitoring
Virtual machines add another layer of complexity to execution monitoring due to
their abstraction from the underlying hardware. Tetragon effectively addresses
these challenges by leveraging eBPF to monitor executions at the kernel level. This
allows for detailed insights into the behavior of applications running within VMs,
including tracking system calls, process executions, and resource usage.

Tetragon’s ability to provide cross-VM visibility is particularly beneficial, as
it enables administrators to track and correlate execution events across multiple
virtual machines, offering a cohesive view of application behavior and interactions.
Additionally, Tetragon monitors resource allocation and usage within VMs, helping
administrators to optimize performance and ensure efficient resource utilization.
By integrating these capabilities, Tetragon ensures that the complexities associated
with virtualized environments are effectively managed, maintaining high levels of
observability and control.

Bare-metal System Monitoring
Bare-metal systems, while simpler in some respects than virtualized environments,
still require robust execution monitoring to ensure security and performance.
Tetragon provides comprehensive monitoring capabilities for bare-metal systems:

46

Tetragon

• Direct Hardware Interaction: Tetragon monitors executions that interact
directly with hardware, capturing detailed telemetry on system calls and
process behavior. This is crucial for understanding the performance and
security implications of applications running on bare-metal systems.

• Enhanced Security Monitoring: Tetragon enhances security monitoring on
bare-metal systems by detecting and responding to anomalous behavior. This
includes identifying unauthorized access attempts and privilege escalations in
real-time.

• Performance Optimization: By tracking resource usage and process interac-
tions, Tetragon helps administrators optimize the performance of applications
running on bare-metal systems, ensuring efficient utilization of hardware
resources.

Listing 5.1: Process exec log example
1 " process_exec " : {
2 " p roc e s s " : {
3 " exec_id " : "Z2tlLWpvaG4tNjMyLWRlZmF1" ,
4 " pid " : 52699 ,
5 " uid " : 0 ,
6 " cwd" : " / " ,
7 " b inary " : "/ usr / bin / c u r l " ,
8 " arguments " : " https : // ebpf . i o / a p p l i c a t i o n s/#

tet ragon " ,
9 " f l a g s " : " execve rootcwd " ,

10 " start_time " : "2023−10−06T22 :03 : 57 . 700327580Z" ,
11 " auid " : 4294967295 ,
12 " pod " : {
13 " namespace " : " d e f a u l t " ,
14 "name" : " xwing " ,
15 " conta ine r " : {
16 "name" : " space sh ip " ,
17 " image " : {
18 "name" : " docker . i o / t g r a f / ne tpe r f : l a t e s t

"
19 } ,
20 " start_time " : "2023−10−06T21 : 5 2 : 4 1 Z" ,
21 " pid " : 49
22 } ,
23 " pod_labels " : {

47

Tetragon

24 " app . kubernetes . i o /name" : " xwing " ,
25 " c l a s s " : " xwing " ,
26 " org " : " a l l i a n c e "
27 } ,
28 " workload " : " xwing "
29 } ,
30 } ,
31 " node_name " : " gke−john −632−de fau l t −pool −7041cac0 −9s95 " ,
32 " time " : "2023−10−06T22 :03 : 57 . 700326678Z"

Tetragon’s execution monitoring capabilities, powered by eBPF technology,
provide unparalleled visibility into the behavior of applications across various envi-
ronments such as Kubernetes clusters, virtual machines, and bare-metal systems.

5.3.2 File Access Monitoring
File access monitoring (FAM) is a crucial aspect of system security and performance
management, providing insights into how files are accessed, modified, and utilized
within an environment. Tetragon, leveraging eBPF technology, offers robust
file access monitoring capabilities that are essential for administrators managing
complex infrastructures. By capturing detailed telemetry on file operations in
real-time, Tetragon enhances visibility, security, and compliance across diverse
environments.

eBPF allows Tetragon to attach small, efficient programs to various kernel events
related to file operations, such as open, read, write, and close. These programs
capture detailed information about file access patterns, which is then processed
and analyzed in user space. This approach ensures minimal performance overhead
while providing granular visibility into file activities. Moreover, Tetragon leverages
eBPF technology to access the Linux file struct, enabling it to gather detailed
information about files directly from the system. An example of the information
that can be obtained are file paths, permissions and ownership.

This approach however has a few downsides since it uses the path to match
what file is being accessed. Doing this can lead to certain events not being tracked
as the same file is, for example, accessed via a hard link. Even if this type of links
are created only by users with elevated permissions it is still a flaw we should keep
in mind. To solve this problem completely though we can rely on the usage of
inode numbers, which uniquely identify a file within the file system [19].

5.3.3 File Integrity Monitoring
Complementary to file access monitoring is the concept of file integrity monitoring
(FIM) that helps us guarantee the integrity and content of our file system. In

48

Tetragon

addition to FAM which checks if certain files have been accessed, FIM on the other
hand checks the computes hashes of those files. This makes sure that since the last
check the contents of the file have not been modified or deleted.

To accomplish this goal we can rely on Linux’s Integrity Measurement Archi-
tecture (IMA-measurement) [20], which provides a framework for maintaining the
integrity of files on a system. Similarly to policies made for FAM where we track
syscalls such as open, here we can track the bprm_check_security hook and use
the IMA ima_file_hash operator inside our tracing policy to generate events with
the computed file hash.

5.3.4 Network Monitoring
Tetragon’s network monitoring capabilities leverage the power of eBPF technology to
provide deep, real-time visibility into network traffic and interactions within modern
cloud-native environments. By attaching eBPF programs to various network-
related kernel events, Tetragon can capture detailed telemetry on packet flows,
connection states, and network errors without significant performance overhead.
For example we can easily track tcp connections using kprobes within Tetragon,
specifically tcp_connect which hooks into the tcp_v4_connect kernel function to
track incoming and outgoing connections. This allows administrators to monitor
network activities at a granular level, facilitating the detection of anomalous
behavior, performance bottlenecks, and security threats. Tetragon’s integration
with Kubernetes and other orchestration platforms ensures that network monitoring
is context-aware, correlating network events with specific pods, services, and
deployments. This comprehensive approach to network monitoring enhances the
security, reliability, and performance of complex infrastructures, making Tetragon
an indispensable tool for managing dynamic and distributed systems.

5.4 Policy Enforcement
Beyond monitoring, Tetragon’s unique strength lies in its ability to enforce policies
directly within the kernel. By integrating user-defined policies and Kubernetes
context, Tetragon can dynamically respond to specific events and conditions,
enforcing security and operational rules at the system level. For example, it can
trigger alerts, log activities, or even terminate processes based on predefined policies.
For example, by issuing a SIGKILL signal to the process that has triggered an
event, it can stop its execution before it goes any further. This dual capability
of monitoring and policy enforcement allows Tetragon to not only detect and
analyze issues as they occur but also to proactively mitigate risks and maintain
compliance with security and operational standards. The combination of real-time

49

Tetragon

observability and automated policy enforcement makes Tetragon an indispensable
tool for managing and securing modern, complex infrastructures.

Tetragon employs two primary mechanisms for policy enforcement: overriding
return values and sending signals. These mechanisms allow Tetragon to dynamically
influence system behavior in response to specific conditions, providing administra-
tors with powerful tools to maintain security and operational integrity.

5.4.1 Overriding Return Values
One of Tetragon’s key policy enforcement capabilities is the ability to override
return values of system calls. When a monitored event meets certain predefined
conditions, Tetragon can alter the return value of the associated system call. This
mechanism effectively prevents unauthorized or undesirable actions from being
executed by manipulating the outcome of critical system operations. For example,
if an application attempts to access a sensitive file or change its privileges in a way
that violates security policies, Tetragon can override the return value to indicate
failure, thereby blocking the action. This approach ensures that potential security
threats are mitigated in real-time, enhancing the protection of the system against
malicious or erroneous activities.

5.4.2 Signals
In addition to overriding return values, Tetragon can enforce policies by sending
signals to processes. Signals are a fundamental mechanism in Unix-like operating
systems for handling asynchronous events. Tetragon leverages this capability to
enforce immediate and decisive actions on processes that violate predefined policies.
For instance, if a process exhibits behavior that matches a security threat, such as
executing unauthorized commands or accessing restricted resources, Tetragon can
send a signal to terminate the process (e.g., SIGKILL) or to trigger a specific action
(e.g., SIGTERM). This ability to send signals provides a flexible and powerful
means to control process behavior, enabling administrators to swiftly respond to
potential threats and maintain system stability and security.

The integration of these enforcement mechanisms within Tetragon’s monitoring
framework ensures that policy enforcement is tightly coupled with real-time observ-
ability. Administrators can define complex policies that leverage both overriding
return values and sending signals, tailoring responses to the specific needs and
security requirements of their environment. The flexibility of Tetragon’s policy
enforcement mechanisms allows for fine-grained control over system operations, mak-
ing it possible to enforce nuanced security measures and operational rules that are
critical for maintaining the integrity and reliability of cloud-native infrastructures.

50

Chapter 6

Implementation

In this chapter, I will discuss my research project involving Tetragon and its
potential to enhance observability and enforcement in a large, virtualized 5G
network using Kubernetes. We will explore how Tetragon can collect crucial data
from both the underlying system and the Kubernetes cluster it operates within.
Additionally, we will examine how this tool can centralize and organize the gathered
data, making it easier to visualize and understand what is happening in our network.
This centralized approach aims to provide a clearer and more comprehensive view
of network activities, thereby improving our ability to monitor and manage the 5G
infrastructure effectively.

The main challenge we faced in monitoring a large network of hundreds of
machines, typical in a 5G network, was centralizing all our observability data. If
we used traditional eBPF programs manually deployed on each machine, we would
be overwhelmed by the sheer volume of logs generated. Instead, by using Tetragon,
we demonstrate how this process can be streamlined, making it much simpler and
more efficient.

6.1 Proposed solution

In light of the previous chapter, we have undertaken the task of setting up a
workflow for Tetragon to gain a comprehensive understanding of its inner workings
and to explore the process of writing custom policies tailored to our specific needs.
This section details the steps we followed, the challenges we encountered, and the
solutions we implemented to effectively integrate Tetragon into our 5G network
environment.

51

Implementation

6.1.1 Studying the use cases

Before starting to work on the actual implementation, we took considerable time to
thoroughly brainstorm and analyze the potential use cases for our solution. Recog-
nizing the complexity and unique requirements of our 5G network environment, we
aimed to ensure that our efforts with Tetragon would address the most critical and
impactful scenarios. With the guidance and expertise of the rest of the team, we
managed to form a comprehensive list of use cases that would benefit significantly
from Tetragon’s advanced monitoring and policy enforcement capabilities.

Starting from basic use cases that simply monitor files being accessed or modified,
we expanded our scope to include more nuanced and complex scenarios.

• Initially, our focus was on establishing a baseline of file access activities,
capturing details such as which files were being accessed, by whom, and when.
This foundational monitoring allowed us to understand normal usage patterns
and detect any deviations that might indicate unusual behavior.

• As we delved deeper, we recognized the importance of identifying more sophis-
ticated threats, such as malicious access attempts to the nodes in our cluster.
This required us to define policies that could detect access to sensitive files at
unusual times, which is often a red flag for potential security incidents. For
instance, legitimate users typically access critical files during regular working
hours, so any attempts to access these files late at night or during weekends
would trigger an alert.

• Moreover, we identified the need to monitor for patterns indicative of ill-
intentioned actors, such as attempts to access a large number of files in a
short period. This behavior is characteristic of certain types of attacks, such
as data exfiltration or ransomware activities, where an attacker tries to read
or encrypt as many files as possible before being detected. To address this, we
implemented more complex policies that could recognize these patterns and
respond accordingly.

• In addition to monitoring file access, we extended our use cases to include the
detection of unauthorized file modifications. This involved tracking changes
to critical configuration files, where unauthorized modifications could lead to
significant disruptions or security breaches. By setting up alerts for unexpected
changes, we could quickly identify and respond to potential threats.

52

Implementation

Figure 6.1: Tetragon use cases

After identifying all the previously stated use cases, we began to strategize on
how we could implement them using Tetragon and assess their feasibility within
the platform. This process involved a detailed examination of Tetragon’s capabili-
ties, including its ability to handle complex monitoring requirements and enforce
sophisticated security policies. We reviewed the documentation, experimented with
different configurations, and consulted with the team to understand the practical
limits and strengths of the platform. Following careful consideration and initial
testing, we established two main groups of use cases:

• Supported by Tetragon: Use cases such as the simple detection of file
modifications or permission changes using system calls like setuid can be
entirely realized with Tetragon. This involves configuring Tetragon to monitor
specific system calls that alter file attributes or permissions, thereby providing
real-time alerts whenever such actions occur. For instance, if a critical config-
uration file’s permissions are modified unexpectedly, Tetragon can detect this
change and trigger an alert or block the system call, allowing administrators
to investigate and respond swiftly. Furthermore, tracking the execution of
certain sensitive commands, such as kubectl, is also feasible using Tetragon
policies. By setting up policies to monitor the execution of these commands,
Tetragon can provide visibility into administrative actions that might impact
the Kubernetes cluster’s state. This is particularly important in environments

53

Implementation

where the security and integrity of cluster operations need to be tightly con-
trolled. For example, if an unauthorized user attempts to execute kubectl
commands to modify cluster configurations or deploy resources, Tetragon can
detect this activity and take predefined actions, such as logging the event,
alerting the security team, or even blocking the command execution.

• Needing additional support: Whenever there is a need for further data
processing, such as in the case of anomaly detection, additional tools become
essential to augment Tetragon’s capabilities. Anomaly detection often requires
sophisticated analysis and correlation of large volumes of data to identify
patterns that deviate from normal behavior, which are indicative of potential
security threats or malicious activities. Tetragon excels at collecting detailed
telemetry and enforcing real-time policies, but the subsequent data processing
and analysis typically necessitate the integration of complementary tools.

6.1.2 Studying System Calls
After thoroughly assessing our use cases, the next crucial step was to determine
which system calls to monitor using our policies to achieve our goal. This phase
involved a detailed analysis of the activities and events that were most critical
to our infrastructure’s security and operational integrity. System calls, being the
primary interface between user applications and the kernel, provide a rich source of
information about the behavior and state of the system. By selectively monitoring
specific system calls, we could gather precise and actionable data to meet our
security and observability objectives.

To begin, we identified the primary goals of our monitoring efforts. These goals
included detecting unauthorized access to sensitive files, tracking changes to critical
system configurations, monitoring the execution of key administrative commands,
and observing network-related activities that could indicate security breaches or
misconfigurations. Each of these goals required a tailored approach to system call
monitoring, ensuring that we captured relevant data without overwhelming the
system with excessive logging.

File Monitoring
We then mapped these goals to specific system calls that would provide the necessary
insights. For example, to monitor file access and modifications, we focused on
system calls such as open, openat, read and write. These calls allowed us to detect
when sensitive files were accessed or altered, providing early warning of potential
security incidents. Another particularly useful syscall is the kprobe fd_install,
which plays a crucial role in our monitoring strategy by enabling us to detect when
a file has been loaded into memory and is prepared for access by the open syscall.

54

Implementation

This syscall is invoked before any program can interact with the file, giving us a
valuable early point of intervention. By monitoring fd_install, we can proactively
track which files are being prepared for access, allowing us to implement security
measures such as denying access or logging attempts to open files.

Additionally, we utilized the FollowFD action provided by Tetragon, which
creates an eBPF map to track monitored files by their File Descriptor (FD). In the
Linux OS, each file is assigned a unique FD, acting as an identifier. This feature
allowed us to efficiently monitor file activities, ensuring that we could track access
and modifications accurately by associating these actions with their respective
FDs. This capability was crucial for maintaining precise oversight over sensitive
files, enhancing our ability to detect and respond to unauthorized file operations
effectively.

Permission Changes
Monitoring system calls related to permission changes is critical for maintaining
the security and integrity of a system. System calls like chmod, chown and setfacl
are used to modify file permissions, ownership, and access control lists, respectively.
These modifications can significantly impact the security posture of the system by
altering who can read, write, or execute files. By tracking these syscalls, we can
gain valuable insights into changes made to file permissions, allowing us to detect
potentially unauthorized or malicious activities promptly.

Using eBPF-based tools like Tetragon, we can attach probes to these syscalls
to capture detailed information whenever they are invoked. For instance, when a
chmod syscall is executed, the probe can record the target file, the new permission
settings, the user who initiated the change, and the exact time of the modification.
This data is then logged and analyzed to ensure that all permission changes are
legitimate and comply with security policies.

6.1.3 Testing Use Cases
After the initial study of the use cases for Tetragon, we embarked on a testing phase
to evaluate its functionality within a controlled environment. To do this, we set up
a smaller cluster consisting of just three nodes as testing on a large cluster that
mimicks a 5G network would not be feasible. This scaled-down cluster provided a
manageable yet sufficiently complex setting to observe how Tetragon operates and
interacts with both the underlying system and the cluster as a whole. Our goal
was to understand Tetragon’s capabilities in a real-world scenario, focusing on its
observability and security features.

We began by deploying Tetragon on our three-node cluster, carefully configuring
it to monitor various system and network activities. This setup allowed us to observe

55

Implementation

how Tetragon collects and processes data from multiple sources, including system
calls, network traffic, and file system events. By examining these interactions, we
aimed to assess Tetragon’s ability to provide deep visibility into system behaviors
and its efficiency in identifying potential security threats.

File Monitoring
To thoroughly assess Tetragon’s capabilities, we initiated a series of tests focusing on
its file monitoring features. We began by deploying specific file monitoring policies
aimed at detecting any reads and writes to sensitive files within our three-node
cluster. These policies were carefully crafted to trigger alerts whenever critical
system files, such as configuration files or security logs, were accessed or modified.
Each event was logged with detailed context, allowing us to analyze the nature
and potential impact of the file operations. The results of these tests demonstrated
Tetragon’s robust capability to enhance our security posture by providing precise
and timely alerts on sensitive file activities, proving it to be an invaluable tool for
maintaining the integrity and security of our systems.

Listing 6.1: Example of a file access policy tracking the ’passwd’ file
1 ap iVers ion : c i l i um . i o / v1alpha1
2 kind : Trac ingPol i cy
3 metadata :
4 name : f i l e −a c t i v i t y
5 spec :
6 kprobes :
7 − c a l l : f d _ i n s t a l l
8 s y s c a l l : f a l s e
9 args :

10 − index : 0
11 returnCopy : f a l s e
12 type : i n t
13 − index : 1
14 returnCopy : f a l s e
15 type : f i l e
16 s e l e c t o r s :
17 − matchActions :
18 − ac t i on : FollowFD
19 argFd : 0
20 argName : 1
21 matchArgs :
22 − index : 1

56

Implementation

23 operator : Equal
24 va lues :
25 − / e tc /passwd

Permission Monitoring
Afterwards, we focused on implementing policies designed to track file permission
changes, particularly targeting sensitive system files. This effort was crucial
in enhancing our system’s security posture, ensuring that any unauthorized or
suspicious modifications to file permissions could be detected and prevented in
real time. By monitoring specific syscalls associated with permission-changing
commands such as chmod we were able to gain comprehensive visibility into all
permission alterations occurring within the system. Leveraging Tetragon’s use
of eBPF technology allowed us to intercept these syscalls at an early stage, even
before they were fully executed. This preemptive monitoring capability meant
that we could detect attempts to change file permissions as soon as the syscall was
invoked, rather than waiting for the action to complete. As a result, we had the
opportunity to block potentially harmful changes before they could impact the
system, effectively neutralizing threats in their nascent stages. For instance, if a
malicious actor attempted to escalate their privileges by changing the permissions
of a sensitive configuration file or a critical system binary, our monitoring policies
would immediately detect this activity. Tetragon would then use eBPF to log the
attempt and block the syscall, thereby preventing the change from taking place.
This not only thwarted the immediate threat but also generated detailed logs that
could be used for forensic analysis and future threat assessments. Furthermore,
this approach provided us with a robust audit trail of all permission changes.
Every invocation of a permission-changing syscall was recorded, along with relevant
details such as the user who initiated the command, the file targeted, the old and
new permissions, and the timestamp of the event. This data was invaluable for
maintaining compliance with security policies and regulations, as it allowed us to
demonstrate control over critical system configurations.

Listing 6.2: Example of a log file generated from tracking the ’sys_chmodat’
syscall

1 {
2 " p roce s s_tracepo in t " : {
3 " p roc e s s " : {
4 " exec_id " : "

aXQtc3VzaGktMToyMjkzMDAxMTI3NDU3MDE6NTIxNDM3" ,
5 " pid " : 521437 ,
6 " uid " : 1000 ,

57

Implementation

7 " cwd" : "/home/ su sh i " ,
8 " b inary " : "/ usr / bin /chmod " ,
9 " arguments " : "700 t e s t i n g " ,

10 " f l a g s " : " execve c lone " ,
11 " start_time " : "2024−02−05T17 :13 : 31 . 166002420Z" ,
12 " auid " : 4294967295 ,
13 " parent_exec_id " : "

aXQtc3VzaGktMToyMDU0MjE5MjAwMDAwMDA6Mjc4NTc=" ,
14 " r e f c n t " : 1 ,
15 " t i d " : 521437
16 } ,
17 " subsys " : " s y s c a l l s " ,
18 " event " : " sys_enter_fchmodat " ,
19 " args " : [
20 {
21 " long_arg " : "268 "
22 }
23] ,
24 " policy_name " : " s y s c a l l −fchmodat " ,
25 " a c t i on " : "KPROBE_ACTION_POST"
26 } ,
27 " node_name " : " c l u s t e r −node −1" ,
28 " time " : "2024−02−05T17 :13 : 31 . 166278805Z"
29 }

Kubectl Monitoring
We also implemented a policy to monitor the execution of the kubectl command,
which is crucial for managing Kubernetes clusters. This policy was specifically
designed to log the attributes and parameters passed with each kubectl invocation,
allowing us to track and analyze all changes made to the cluster in detail. By
capturing this data, we were able to audit administrative actions comprehensively,
ensuring that any modifications to the cluster configuration were both intentional
and authorized.

This detailed logging provided visibility into command usage patterns, which was
instrumental in detecting potential misconfigurations or unauthorized attempts to
alter cluster resources. For instance, we could see who executed kubectl commands,
what changes were attempted, and the context of these changes. This level of
scrutiny helped us to quickly identify and respond to any suspicious activity that
could compromise the cluster’s security or stability.

58

Implementation

Moreover, this monitoring policy allowed us to create a historical record of
all administrative actions, which is valuable for both operational oversight and
compliance purposes. By analyzing this log data, we could improve our operational
practices and ensure that our cluster management policies were being followed
correctly. Overall, this policy significantly enhanced our ability to maintain the
security and integrity of our Kubernetes environment, providing us with the
necessary tools to oversee and safeguard our infrastructure effectively.

Prometheus Integration
Furthermore, we observed the native integration of Tetragon with Prometheus,
which was a significant aspect of our evaluation. Tetragon exposes its own metrics
endpoint, allowing Prometheus to collect and monitor various metrics seamlessly.
This integration enabled us to capture both system-level metrics and policy-related
metrics, providing a comprehensive overview of our system’s behavior and security
posture. The metrics endpoint revealed valuable information, giving us insights
into potential security threats or policy violations.

For instance, we could quantify the number of times sensitive file monitoring
policies were activated, indicating attempts to read or write to critical system files.
Additionally, metrics on binary executions helped us track how often certain binaries
were called, which is essential for detecting unusual or malicious activities. This
real-time data was instrumental in understanding the effectiveness of our deployed
policies and the overall security landscape of our infrastructure. By leveraging
Prometheus’ powerful querying and alerting capabilities, we could set up custom
alerts based on these metrics, ensuring immediate response to any suspicious
activities. This integration showcased how Tetragon enhances our monitoring
capabilities, providing detailed, actionable insights that are crucial for maintaining
a secure and well-monitored system environment.

6.1.4 Log Gathering
After defining and testing our use cases, we needed to obtain the logs that Tetragon
was generating to study and analyze them for a better understanding of what is
going on in our system and cluster. There are two primary methods for obtaining
this data, each with its own advantages and disadvantages. The Prometheus
endpoint that Tetragon exposes provides basic metrics on the events that triggered
in our system, such as counts of occurrences and timestamps. However, it does not
offer detailed information about each individual event. Conversely, the log files that
Tetragon stores in the system in JSON format offer a much richer source of data.
These logs contain comprehensive details about the triggered events, including the
name of the node where the event occurred, the namespace, pod, binary, and other

59

Implementation

pertinent information.
Collecting and storing these JSON logs requires setting up an effective log

management system. We considered using centralized logging solutions like Loki,
integrated with Promtail, to forward these logs to a centralized location. This
setup would enable us to use powerful querying and visualization tools such as
Grafana to sift through the data, correlate events, and gain deeper insights into our
system’s behavior. Centralized logging would also facilitate long-term storage and
archival of logs, ensuring that historical data is readily available for trend analysis
and forensic investigations, thereby enhancing our ability to monitor and secure
our infrastructure effectively.

Setting up Promtail and Loki

Since Tetragon is running inside our cluster, we need to set up Promtail so that it is
deployed on every single one of our nodes. This requires configuring a deployment
YAML file, which specifies the deployment details and ensures that a DaemonSet
is created across all nodes. A DaemonSet ensures that Promtail runs on each
node, providing it with the necessary access to Tetragon’s log paths. This setup
allows Promtail to collect log data efficiently and tail the log files, preventing
duplicate entries by ensuring it only processes new log entries. To implement this,
we carefully configured the YAML file to include all necessary permissions and
paths for Promtail. Additionally, we configured Promtail to handle log rotation and
ensure continuous log monitoring without data loss. Once the YAML configuration
was complete, we applied it to our cluster, creating the Promtail DaemonSet and
verifying its correct deployment on all nodes. After successfully deploying Promtail,
we needed an instance of Loki to receive the aggregated log data. Setting up Loki
involved creating another YAML file to define its deployment configuration. This
file specified the creation of pods for Loki, a service endpoint for Promtail to send
data to, and a persistent volume for storing the collected log data. The persistent
volume configuration was crucial to ensure that Loki could store large amounts
of log data reliably over time, facilitating long-term analysis and historical log
retention. We configured Loki to listen on a specific port for incoming data from
Promtail, ensuring smooth data flow between the two components. Additionally,
we set up the necessary authentication and authorization mechanisms to secure
the log data during transit. Once the Loki configuration was applied to the cluster,
we verified its connectivity with Promtail, ensuring that logs were being forwarded
and stored correctly. This end-to-end setup enabled a robust logging infrastructure,
allowing us to monitor, analyze, and store Tetragon logs efficiently.

60

Implementation

Setting up Grafana

Figure 6.2: Dashboard configured with events gathered in our system

Similarly to Loki, setting up Grafana involves deploying several key components
within our Kubernetes cluster. We begin by creating a deployment YAML file for
Grafana, which specifies the creation of pods, a service, and a persistent volume.
The pods will run the Grafana instances, the service will expose Grafana to other
components within the cluster, and the persistent volume will store our dashboards,
configurations, and connections to logging tools such as Loki. In addition to these
components, we also need to set up an ingress resource. The ingress resource is
critical because it allows external access to the Grafana frontend, enabling us to
interact with Grafana’s powerful visualization and dashboard capabilities from
outside the cluster. The ingress configuration includes specifying the domain or
subdomain through which Grafana will be accessible, as well as setting up TLS for
secure communication.

After verifying that Grafana is running correctly and accessible via the specified
ingress endpoint, the next step is to configure Grafana to work with Loki. This
involves logging into the Grafana interface and adding Loki as a data source. We
provide the Loki endpoint defined during the Loki setup process, along with any
necessary authentication credentials. With Loki configured as a data source in
Grafana, we proceed to create dashboards tailored to our monitoring needs. These
dashboards will be designed to display the log data collected by Promtail and
stored in Loki, allowing us to visualize trends, identify anomalies, and gain insights
into system behavior. Grafana’s rich visualization options, including graphs, charts,

61

Implementation

and tables, enable us to create detailed and interactive dashboards that provide a
comprehensive view of our system’s health and performance.

Since Promtail gathers logs in raw JSON format, it’s crucial to understand the
structure of these logs to properly parse them using LogQL, the query language for
Loki. This knowledge allows us to extract the specific data we need to display in our
Grafana dashboards effectively. For logs generated from a File Monitoring event,
we focus on parsing key pieces of information such as the file name, the binary used
to access the file, the system call invoked, the user ID that performed the access,
and the node where the file is stored. Understanding these elements is essential
because it helps us filter and visualize the most relevant data points, providing
clear insights into file access patterns and potential security incidents. For instance,
knowing which binary accessed a file can help identify if a non-standard or malicious
program is trying to read sensitive information. Similarly, tracking user IDs (UIDs)
allows us to monitor and audit user activities, ensuring compliance with security
policies. Promtail also logs the timestamp of each event, which is invaluable for
creating time series data. This temporal information allows us to plot log entries
on a timeline, helping to visualize changes in log volume and identify when specific
events occurred. By leveraging Grafana’s powerful visualization capabilities, we
can create graphs that show spikes or trends in file access activity, making it easier
to spot anomalies or unusual behavior.

Figure 6.3: Example of a logql filter query to extract the logs containing the
’sys_read’ syscall

6.1.5 Log Usage
In this chapter, we will evaluate whether the data provided by Tetragon is adequate
for creating effective observability dashboards and alerts. This involves analyzing
the depth and accuracy of the collected data to ensure it meets our monitoring
needs and supports proactive system management and security measures.

Initially, we attempted to use the data provided by the Prometheus endpoint to
create our observability dashboards and alerts. However, it quickly became apparent
that this approach was insufficient for our needs. The Prometheus endpoint was
limited in its capabilities, offering only basic timestamp information for each event.
While this allowed us to know that an event had occurred, it did not provide any

62

Implementation

of the detailed context necessary for thorough analysis and actionable insights. For
example, the endpoint did not include crucial details such as the specific file that
was accessed, the binary responsible for the access, the system call invoked, the
user ID involved, or the node where the event occurred. Without this granular
data, we were unable to fully understand the nature of the events or their potential
impact on our system. This lack of detailed information meant that we could not
effectively track the precise activities occurring within our infrastructure, making
it difficult to identify patterns, diagnose issues, or respond to potential security
threats.

Recognizing these limitations, we realized that we needed a more comprehensive
solution to achieve our observability goals. We turned our attention to the JSON
log files generated by Tetragon, which contained the detailed information we
required. These logs provided a wealth of data, including file names, binaries,
system calls, user IDs, and node information, all of which were essential for creating
meaningful and actionable dashboards and alerts. By switching our focus to these
detailed log files, we were able to parse and analyze the data more effectively.
This approach allowed us to extract the necessary information to build robust
monitoring tools, capable of providing deep insights into system behavior and
security events. Through careful parsing and visualization of this data, we ensured
that our observability efforts were comprehensive and precise, enabling proactive
system management and enhanced security monitoring.

Despite our decision to use JSON logs to gather detailed event information, we
faced another challenge: filtering and grouping these events to create comprehensive
graphs and visualizations tailored to each of our use cases. The raw JSON logs
provided us with a rich dataset, but the sheer volume and complexity of the data
required effective tools and methods for parsing and analysis. To address this, we
turned to Loki LogQL, a powerful query language designed specifically for querying
logs stored in Loki. LogQL allows us to filter and group log events based on their
JSON properties, making it possible to extract precisely the data we need for each
specific use case. However, before we could fully leverage LogQL, we needed to
familiarize ourselves with its syntax and capabilities.

As we became more proficient with LogQL, we were able to create increasingly
sophisticated queries that combined multiple filters and groupings. This allowed us
to build detailed and dynamic dashboards in Grafana, where we could visualize
the data through various chart types, including line graphs, bar charts, and
heatmaps. These visualizations made it easier to identify trends, detect anomalies,
and understand the overall behavior of our system. Despite our decision to use JSON
logs to gather detailed event information, we faced another challenge: filtering and
grouping these events to create comprehensive graphs and visualizations tailored
to each of our use cases. The raw JSON logs provided us with a rich dataset, but
the sheer volume and complexity of the data required effective tools and methods

63

Implementation

for parsing and analysis.

To address this, we turned to Loki LogQL, a powerful query language designed
specifically for querying logs stored in Loki. LogQL allows us to filter and group
log events based on their JSON properties, making it possible to extract precisely
the data we need for each specific use case. However, before we could fully leverage
LogQL, we needed to familiarize ourselves with its syntax and capabilities.

We began by exploring the fundamental concepts of LogQL, such as log streams,
labels, and filter expressions. Log streams in Loki are categorized by labels, which
are key-value pairs that describe the log entries. By understanding how to utilize
these labels effectively, we could begin to craft queries that would filter logs based
on various JSON properties, such as the name of the file accessed, the binary used,
the system call invoked, the user ID, and the node where the event occurred.

For instance, to track file access events, we crafted LogQL queries that filtered
logs by the filename property, allowing us to group events based on the specific
files being accessed. Similarly, by filtering on the binary property, we could identify
which executables were responsible for accessing certain files, providing insights
into application behavior and potential security threats. The user id property
enabled us to monitor and audit user activities, ensuring compliance with security
policies and detecting unauthorized access attempts.

One of the significant challenges we faced was managing the different UIDs that
appeared in the generated logs. In the Linux operating system, UIDs are assigned
to users to distinguish between different accounts. While this system works well on
individual machines, it poses significant challenges in a distributed environment
like a cluster. The same UID can correspond to different users on different nodes,
and vice versa, making it nearly impossible to map UIDs to specific individuals
without a centralized identity management system. This limitation significantly
impacts our ability to perform accurate user attribution for security and compliance
purposes. In a large cluster with dozens or even hundreds of machines, this task
becomes exceptionally complex. Each node in the cluster might have different users
and corresponding UIDs, making it difficult to consistently identify the individuals
behind specific actions, even when the UID is available in the Tetragon event
logs. This variability complicates efforts to track and correlate activities across
multiple nodes, hindering our ability to maintain a clear and cohesive audit trail.
Despite this challenge, we found that tracking the UID 0 can be particularly useful.
Tracking UID 0, which is always associated with the root user who has all the
privileges inside the system, is critical. Monitoring these UID helps us identify
actions that could affect system integrity and security, such as changes to critical
files, installation of software, and other administrative tasks.

64

Implementation

6.2 Evaluating Feasability
In light of our work understanding and working with Tetragon, we discovered a
few key elements that helped us evaluate this tool and how it can be integrated in
our observability suite for our 5G network.

Firstly, considering our proposed use cases, we have determined that imple-
menting a solution using Tetragon could be feasible, especially for monitoring
critical security events. Tetragon’s capability to immediately log any intrusions or
malicious access attempts is particularly valuable in the context of a 5G network,
where the speed and volume of data transactions are significantly higher. The
real-time visibility provided by Tetragon can help safeguard sensitive operations
and data exchanges that are critical in a 5G environment. This data includes
detailed logs of system calls, file accesses, network interactions, and user activities,
all of which are invaluable for identifying patterns associated with security threats.

A significant concern regarding the deployment of Tetragon in our large 5G
network is the effective separation and identification of user access. In a 5G
environment, where multiple users and devices are constantly interacting with the
system, accurately tracking user activities is essential for security and operational
management. While Tetragon does provide the UID responsible for specific events,
it lacks the capability to cross-reference these UIDs with usernames by accessing
the local machine’s ’passwd’ file. This limitation poses a considerable challenge for
our use case. In a large-scale 5G network comprising thousands of machines, the
inability to directly link UIDs to usernames severely hampers our ability to identify
and trace the sources of security incidents quickly and efficiently. The necessity to
manually sift through different machines to match UIDs with usernames is not only
time-consuming but also impractical, especially during critical situations where
timely responses are crucial. This shortcoming could lead to significant delays in
identifying the perpetrators of malicious activities, potentially allowing security
breaches to escalate unchecked. The lack of direct UID-to-username resolution in
Tetragon means that we might miss out on crucial contextual information needed to
accurately attribute actions to specific users. This is particularly problematic in a
5G network where user activities can vary widely and be highly dynamic. Without
the ability to easily map UIDs to usernames, we lose an important layer of visibility
and accountability, making it difficult to enforce user-specific policies or track user
behavior effectively. To mitigate this issue, we would need to implement additional
systems or scripts to automate the process of resolving UIDs to usernames across
the cluster. This could involve setting up a centralized database or directory service
that maintains a consistent mapping of UIDs to usernames for all machines in the
cluster. However, this approach introduces additional complexity and potential
points of failure, and it requires ongoing maintenance to ensure the mappings
remain up-to-date and accurate.

65

Implementation

Another significant concern is the visualization and management of the vast
amounts of data generated by logs and events from thousands of machines in our
5G network. The current setup with Tetragon involves deploying a DaemonSet
on each node, which makes log collection more complex. Ideally, having a single
endpoint for all generated logs would streamline the process, reducing the overhead
associated with managing log data across numerous nodes. However, Tetragon’s
design necessitates the deployment of a Promtail agent on each node, as it creates
independent log files per node. This decentralized logging system requires us
to gather and organize data from multiple sources, adding to the complexity of
our monitoring setup. Once the logs are aggregated, we use Grafana to create
centralized dashboards for visualization, which somewhat mitigates the complexity.
Grafana’s powerful visualization capabilities make it easier to analyze and interpret
the collected data once the log gathering infrastructure is in place. Despite this,
the lack of built-in automation within Tetragon presents a challenge. There is
no straightforward way to set up thresholds or alerts that trigger based on the
occurrence of specific events directly within Tetragon. As a result, we must rely
on Grafana to handle these alerting mechanisms. This introduces latency between
the occurrence of an event and the alert reaching the system administrators. Such
delays can be critical in a high-speed 5G environment where timely responses
to security incidents are paramount. The current workflow involves logs being
generated and stored by Tetragon, collected by Promtail, sent to Loki, and finally
visualized and monitored in Grafana. Any latency in this pipeline can hinder our
ability to react swiftly to potential threats. An ideal solution would integrate
more proactive monitoring capabilities directly within Tetragon, leveraging eBPF
to detect and respond to malicious activities before they can cause harm. By
enabling real-time thresholds and alerts at the eBPF level, we could significantly
enhance our observability and response times. This would allow us to detect and
mitigate threats almost instantaneously, improving the overall security posture of
our 5G infrastructure. While Grafana provides an effective platform for visualizing
and analyzing log data, the lack of direct automation and real-time alerting in
Tetragon creates a gap in our monitoring strategy. Addressing this issue would
involve enhancing Tetragon’s capabilities to include real-time detection and alerting
mechanisms, reducing reliance on external tools and minimizing latency. This
integration would ensure that we can maintain robust and responsive security
measures across our extensive 5G network, safeguarding it against potential threats
more efficiently.

66

Chapter 7

Measurements

In this chapter we will evaluate the performance of Tetragon while it is deployed
inside our testing cluster. We wanted to compare the performance of different
eBPF based tools, measuring their impact on the system they are installed on while
they are running and a heavier workload is being executed on the tested node.

7.1 Benchmark

To ensure a common testing environment we used the same node for all of our
tests and made no changes to the cluster or the underlying system in between our
different tests. For the actual testing we used two different tools, one for gathering
information on the system load and one for generating a heavy workload. We used
sar for gathering the information and stress-ng for the workload, simulating around
20000 process forks every second, saturating one out of the 8 cores of the CPU.

7.1.1 Tables

Starting with our first test we executed the benchmark under three different
conditions: our system baseline resource consumption, while running the benchmark
without Tetragon and lastly executing the benchmark with Tetragon running.

The other two eBPF tools that we have chosen for these tests are similar products
that have achieved a similar popularity as Tetragon: KubeArmor and Tracee. We
have repeated the same tests for both of them, gathering the following results.

67

Measurements

Tetragon KubeArmor Tracee
91.63 98.36 100.00
95.52 96.59 100.00
94.02 98.35 100.00
86.30 98.23 100.00
88.21 98.61 99.88
93.87 97.00 99.89
90.66 98.49 100.00
93.42 98.11 99.88
92.18 98.24 100.00
93.24 97.10 100.00
93.16 98.60 100.00
91.39 94.87 99.88
87.40 97.85 100.00
88.48 98.35 100.00
92.68 97.47 99.88
93.58 97.73 100.00
93.92 98.48 100.00
92.86 96.98 100.00
90.41 98.74 100.00
93.89 97.97 99.88
88.82 98.61 100.00
94.04 97.58 100.00
92.26 98.35 99.90
88.49 97.37 100.00
95.35 97.98 100.00
94.25 98.61 99.88
91.06 98.49 99.88
92.37 98.23 100.00
85.17 97.98 99.88
91.98 98.00 100.00

Table 7.1: Idle benchmark results

68

Measurements

Tetragon KubeArmor Tracee
83.29 85.64 87.8
78.21 85.61 87.04
77.71 84.99 87.47
81.27 85.62 87.12
79.47 86.13 86.9
82.54 85.34 87.01
84.32 85.55 87.04
82.44 85.48 87.47
83.52 85.64 86.61
81.91 85.71 86.25
82.01 85.77 85.48
77.99 85.23 86.5
79.44 84.66 86.81
82.17 84.91 87.44
81.86 85.93 86.59
82.41 85.05 87.47
83.33 85.57 86.43
83.16 85.82 86.68
83.06 85.30 87.12
82.81 84.73 87.15
79.62 86.17 86.68
82.99 86.04 87.14
83.38 84.88 87.17
80.15 84.46 86.79
81.74 86.33 86.72
82.89 87.26 86.59
84.04 90.04 87.26
64.01 85.88 87.23
80.51 85.39 86.7
83.61 84.99 87.14

Delta: 9.65 12.52 13.14

Table 7.2: Benchmark running with eBPF tool not installed results (Delta
compared to table 7.1)

69

Measurements

Tetragon KubeArmor Tracee
76.99 82.61 81.61
59.44 84.65 81.55
77.27 85.25 81.63
78.43 85.70 81.82
78.02 84.54 81.90
74.71 84.05 82.41
78.18 83.48 82.99
76.53 85.08 82.35
78.47 84.99 81.12
75.45 83.82 82.84
78.31 84.08 82.82
78.08 85.41 83.20
75.92 84.78 81.30
73.09 84.70 82.65
77.52 85.03 81.95
78.82 84.20 81.76
79.67 83.63 82.82
78.63 85.04 81.45
78.90 85.61 83.01
76.09 85.41 82.07
75.42 83.23 82.24
75.29 85.39 81.95
77.59 84.89 82.69
76.06 85.41 82.45
76.58 86.10 82.65
78.51 84.18 82.16
80.08 83.63 81.95
77.86 84.28 82.82
78.79 85.51 82.71
79.30 85.15 82.05

Delta: 5.04 2.09 4.78

Table 7.3: Benchmark running with eBPF tools installed and running (Delta
compared to table 7.2)

After extensive research we have managed to evaluate only two of the three
eBPF tools we have chosen. KubeArmor was not compatible with our benchmark
that tests the performance of the system outside of the Kubernetes environment
which KubeArmor works. Tetragon and Tracee on the other hand have managed
similar results, with a slight advantage in terms of resource usage for Tetragon.

70

Measurements

Despite not being able to filter events related to our benchmark using KubeArmor
we have observed a relatively high resource usage after installing it on our system.
This could mean that it is less efficient than Tetragon or Tracee during more
intensive workloads where KubeArmor would have to also gather thousands of
events every second.

71

Chapter 8

Conclusions

With this thesis, we have successfully evaluated the feasibility of using Tetragon
in a large 5G network cluster. Our findings indicate that Tetragon is indeed well-
suited for monitoring our cluster. Despite an initial steep learning curve, Tetragon
eventually offers simple usability and precise customizability. Our initial efforts
at monitoring system calls are just the beginning of what can be achieved with
Tetragon, especially with a deeper understanding of the Linux kernel and its inner
workings. So far, we have tested Tetragon with basic system calls, integrated it
into our cluster, and organized the gathered data into a centralized dashboard for
easier visualization. Based on our work, Tetragon appears to be a viable tool for
the observability of a large cluster, with the potential to expand and be tailored to
meet more of our specific needs.

8.1 Future plans
While Tetragon can be excellent when dealing with use cases such as file integrity
monitoring, there are still plenty of cases where we would need further support
from other tools and software. One of such cases is the detection of malicious access
to our system, which falls short with the usage of just eBPF and Grafana. The
complexity and scale of modern networks, especially in 5G environments, necessitate
a more robust and nuanced approach to security monitoring. Using tools that can
rely on machine learning to better analyze all the data we gather from events can
help us more clearly identify which actions are malicious and distinguish them with
certainty from regular use, especially in clusters of thousands of machines where
automation is the only solution. Machine learning algorithms can detect patterns
and anomalies that are not immediately obvious to human analysts, providing a
higher level of insight and accuracy in threat detection. Integrating such advanced
analytical tools with Tetragon can enhance our ability to preemptively respond

72

Conclusions

to threats, reduce false positives, and ensure the integrity and security of our 5G
networks. Furthermore, the scalability of machine learning models makes them
particularly well-suited for the dynamic and expansive nature of 5G deployments,
where real-time data processing and decision-making are crucial.

Integrating machine learning with Tetragon requires further analysis to assess
its feasibility and business viability. However, this integration could significantly
enhance our ability to intercept malicious access attempts in our cluster, making it
a highly valuable future project.

73

Bibliography

[1] Kubernetes. Kubernetes: Production-Grade Container Orchestration. url:
https://kubernetes.io/docs/concepts/overview/ (cit. on p. 5).

[2] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. «Borg, Omega, and Kubernetes». In: ACM Queue 14 (2016), pp. 70–
93. url: http://queue.acm.org/detail.cfm?id=2898444 (cit. on p. 5).

[3] Chandler Harris. Microservices vs. monolithic architecture. url: https://
www.atlassian.com/microservices/microservices-architecture/micr
oservices-vs-monolith (cit. on p. 6).

[4] Avinetworks. Kubernetes Architecture. url: https://avinetworks.com/
glossary/kubernetes-architecture/ (cit. on p. 7).

[5] Cilium. eBPF-based Networking, Observability, Security. url: https://
cilium.io/ (cit. on p. 13).

[6] Flannel-io. Network fabric for containers, designed for Kubernetes. url: htt
ps://github.com/flannel-io/flannel (cit. on p. 13).

[7] Weaveworks. Weave Net - Weaving Containers into Applications. url: https:
//github.com/weaveworks/weave (cit. on p. 13).

[8] Kubernetes. Using RBAC Authorization. url: https://kubernetes.io/
docs/reference/access-authn-authz/rbac/ (cit. on p. 15).

[9] Kubernetes. Autoscaling Workloads. url: https://kubernetes.io/docs/
concepts/workloads/autoscaling/ (cit. on p. 16).

[10] eBPF. eBPF Documentation. url: https://ebpf.io/what-is-ebpf/ (cit.
on pp. 18–21, 23, 24).

[11] Aqua. eBPF Linux: How It Works, Use Cases and Best Practices. url:
https://www.aquasec.com/cloud-native-academy/devsecops/ebpf-
linux/ (cit. on p. 19).

[12] Grafana Labs. Dashboard anything. Observe everything. url: https : / /
grafana.com/ (cit. on p. 29).

74

https://kubernetes.io/docs/concepts/overview/
http://queue.acm.org/detail.cfm?id=2898444
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://avinetworks.com/glossary/kubernetes-architecture/
https://avinetworks.com/glossary/kubernetes-architecture/
https://cilium.io/
https://cilium.io/
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/workloads/autoscaling/
https://kubernetes.io/docs/concepts/workloads/autoscaling/
https://ebpf.io/what-is-ebpf/
https://www.aquasec.com/cloud-native-academy/devsecops/ebpf-linux/
https://www.aquasec.com/cloud-native-academy/devsecops/ebpf-linux/
https://grafana.com/
https://grafana.com/

BIBLIOGRAPHY

[13] Grafana Labs. Grafana Loki. url: https://grafana.com/oss/loki/ (cit. on
p. 31).

[14] Grafana Labs. Promtail agent. url: https://grafana.com/docs/loki/
latest/send-data/promtail/ (cit. on p. 33).

[15] Julius Volz and Björn Rabenstein. Prometheus: Monitoring at SoundCloud.
2015. url: https://developers.soundcloud.com/blog/prometheus-
monitoring-at-soundcloud (cit. on p. 35).

[16] Prometheus. From metrics to insight. url: https://prometheus.io/ (cit. on
pp. 35, 36).

[17] Tetragon. eBPF-based Security Observability and Runtime Enforcement. url:
https://tetragon.io/ (cit. on p. 39).

[18] Tetragon. Tetragon gRPC API. url: https://tetragon.io/docs/referen
ce/grpc-api/ (cit. on p. 44).

[19] Kornilios Kourtis and Anastasios Papagiannis. File Monitoring with eBPF
and Tetragon. 2024. url: https : / / isovalent . com / blog / post / file -
monitoring-with-ebpf-and-tetragon-part-1/ (cit. on p. 48).

[20] Mimi Zohar. «LSS-EU 2018: Overview and Recent Developments Linux
Integrity Subsystem». In: (2017), p. 29. url: https://events19.linuxfoun
dation.org/wp-content/uploads/2017/12/LSS2018-EU-LinuxIntegrit
yOverview_Mimi-Zohar.pdf (cit. on p. 49).

75

https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/send-data/promtail/
https://grafana.com/docs/loki/latest/send-data/promtail/
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://prometheus.io/
https://tetragon.io/
https://tetragon.io/docs/reference/grpc-api/
https://tetragon.io/docs/reference/grpc-api/
https://isovalent.com/blog/post/file-monitoring-with-ebpf-and-tetragon-part-1/
https://isovalent.com/blog/post/file-monitoring-with-ebpf-and-tetragon-part-1/
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/LSS2018-EU-LinuxIntegrityOverview_Mimi-Zohar.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/LSS2018-EU-LinuxIntegrityOverview_Mimi-Zohar.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/LSS2018-EU-LinuxIntegrityOverview_Mimi-Zohar.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Current solution
	The challenge
	Testing
	Thesis overview

	Kubernetes
	History
	From monolithic applications to containers
	Kubernetes architecture
	Control Plane
	Nodes

	Kubernetes components
	Resources
	Objects

	Kubernetes networking
	Custom Resources
	Security
	Workload Scaling
	Vertical and Horizontal Scaling

	eBPF
	History
	Architecture
	eBPF Program Exection
	eBPF Virtual Machine
	Verifier
	JIT Compiler
	eBPF Maps
	Helper Functions
	User Space Tools

	Monitoring Tools
	Grafana
	Grafana Loki
	Promtail
	Prometheus

	Tetragon
	Tracing Policies
	Defining Tracing Policies
	Implementation Steps
	Tracing Policies Advantages

	Events
	Visualization
	Event Filtering and Redacting
	Metrics

	Monitoring
	Execution Monitoring
	File Access Monitoring
	File Integrity Monitoring
	Network Monitoring

	Policy Enforcement
	Overriding Return Values
	Signals

	Implementation
	Proposed solution
	Studying the use cases
	Studying System Calls
	Testing Use Cases
	Log Gathering
	Log Usage

	Evaluating Feasability

	Measurements
	Benchmark
	Tables

	Conclusions
	Future plans

	Bibliography

