
POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

Master’s thesis

Edge-to-Cloud Multi-Cluster Orchestration for Smart
Grid Monitoring Services

Supervisors Candidate
prof. Fulvio Risso Riccardo Medina
ing. Stefano Galantino

Academic Year 2023-2024

Summary

In recent times, the introduction of edge/fog computing platforms, which operate on
the principle of processing data in locations other than the central node (directly at the
production node or at intermediate nodes), has enabled the development of monitoring
systems and data consumption with greater speed and precision.

Within the context of the energy network, these platforms can be particularly suitable
for the rapid (or automated) deployment of applications and services.

In fact, the geographically distributed compute infrastructure in combination with the
transparency of virtualized (or cloud native) platforms opens up unprecedented flexibility
for application deployment.

Furthermore, they facilitate the implementation of new functionalities, for example to
ensure the infrastructure’s operation in case of disconnection from the backbone network.

This is achieved by temporarily relocating essential software services locally and sub-
sequently realigning the data with the remote "main" instance once the connection is
restored (island mode operation).

Based on the feasibility of local solutions using the Kubernetes platform in a distributed
environment, this thesis presents a potential model to extend their edge/fog computing
features to the entire electrical network, employing the innovative open-source project
Liqo as the main technology for the management of the distributed cluster architecture.

In developing this model, significant emphasis was placed on ensuring a high degree of
resilience.

This was accomplished through the careful selection of a topology that not only sup-
ports the seamless integration of existing distributed database systems within a multi-
cluster environment, without requiring any additional modifications, but it also provides
the flexibility to distribute workload across any node, unrestricted by fixed architectural
constraints but allowing the addition of logical constraints depending on the desired hier-
archical architecture.

After examining the topology, the study progressed to creating a possible implemen-
tation in the domain of the electrical networks, analysing its behaviour in the event of
faults and assessing its scalability.

Comparing the obtained results with the initial solutions, the architecture adopted in
this thesis demonstrates its capability to integrate and extend the local solution’s features
to the entire network, without significant increases in latency despite the greater com-
plexity. It also introduces new functionalities such as island mode operation, enabling
separate management of the two network parts during disconnection and automatic re-
sources reconciliation once the link is restored.

2

Acknowledgements

I would like to dedicate this space to the people who, with their support, have helped
me in this wonderful journey of deepening the knowledge acquired during my university
years.

Led by my supervisor Risso, who, through his courses during my master’s years, en-
couraged me to give my best and made me passionate about this course of study, even
though it also brought some negative aspects, such as being forced to devise new low-tone
curses in front of yet another bug during evening debugging sessions.

Owed to my co-supervisor Galantino, always present in times of need and consistently
available to organize last-minute meetings despite his already busy schedule. I often
wonder how he didn’t uninstall Slack after yet another message from me asking desperately
for help.

Vital to my journey are my parents, who have always supported me in achieving my
projects. From the very beginning, they believed in my potential and invested in my
education, providing both moral and financial support. They were my pillars of strength
during moments of discouragement, offering unwavering encouragement and advice that
kept me focused on my goals. They celebrated my achievements as if they were their
own, sharing in my joy and pride at every milestone. It is primarily thanks to their love,
guidance, and sacrifices that I have reached this point. I could not have asked for better
parents, and I am profoundly grateful for their constant presence and support throughout
this journey.

Endlessly grateful to my little sister "Babbusè", with whom, despite our squabbles,
I have shared so much, from the interminable and dreadful lunchtime TV series to our
walks to stay fit.

Never forgetting my grandparents, who, in addition to making me experience the
hardships of farm life (harvesting potatoes under the sun is a nightmare), managed to
instill in me the values of humility intertwined with pride. I only regret not being able to
celebrate with all of them.

I thank my housemates, with whom I have lived for years, experiencing adventures of
all kinds and who found the strength to put up with me, despite trying to undermine my
confidence in my cooking abilities. I especially thank Mina "Dove è Mikkel, no DOVE è
Mikkel", who, besides instilling in me some musical culture, improved my discussion skills;
Mich "Occhio alla testa", for the countless moral debates and numerous duo matches in
FIFA; Pietro "Baba Piaga", who, besides leading me down the bad path of LoL, taught
me how to cook much better.

3

Grateful to my friends Antonino "Scaffa The Legend", Attilio "CT Fioradoni Sbarra
Tatanga", Davide "Hacker CBCR", Arianna "The 96 girl", and the other companions from
my hometown for always being there and putting up with me until now.

Generously thanking all the people at Lab 9, as they created a peaceful workplace
welcoming anyone who enters, even for someone as unsocial as me, and the people from
RSE, always available and professional even during my terrible presentations.

Appreciating their understanding, I conclude with a hope for forgiveness regarding my
preference for only my family at the ceremony. Additionally, I give an honorable mention
to the song ’No rules!’, which greatly aided in relieving stress over the past few months.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 9
1.1 Energy section . 9
1.2 Thesis objectives . 10
1.3 Overview . 11

2 Kubernetes 13
2.1 Basic concepts . 13
2.2 K3s . 15

3 State of the art 19
3.1 Smart Grid components . 19

3.1.1 Area Control Center . 19
3.1.2 Station . 20
3.1.3 Phasor Measurement Units . 20
3.1.4 Phasor Data Concentrator . 21
3.1.5 Grid State Estimation . 21

3.2 Multi-master station architecture . 21
3.2.1 Local extended solution limitations 22

4 Liqo 25
4.1 Basic concepts . 25

4.1.1 Network fabric . 25
4.1.2 Peering . 26
4.1.3 Offloading . 27
4.1.4 Storage fabric . 28

4.2 Distributed DB interaction . 28

5 General topology Partial Mesh Star 31
5.1 Cyber-Physical Architecture . 31
5.2 Logical hierarchy using labels and affinity 32

5.2.1 Independent Groups . 33

5

5.2.2 Dependent Groups . 33
5.3 Partial Mesh Star Analysis . 34

6 Possible implementations 37
6.1 Logical domains . 37

6.1.1 Logical domains analysis . 38
6.2 Multi-level logical domains . 40

6.2.1 Multi-level Logical domains analysis 42

7 Domain peering evaluation 45
7.1 Test Environment . 45

7.1.1 Crownlabs . 45
7.1.2 Nodes configuration . 45
7.1.3 Software configuration . 46
7.1.4 Cluster configuration . 47

7.2 Latency . 47
7.2.1 Latency test . 48

7.3 K3s reaction time . 50
7.4 Stream reaction time . 51

7.4.1 Pod failure . 52
7.4.2 Cluster failure . 53

7.5 Overall evaluation . 54

8 Conclusion and future work 57

6

List of Tables

3.1 Component failures overview . 22
6.1 Component failures on Logical Domains topology overview. 40
6.2 Component failures on Multi- level Logical Domains topology overview. . . 43
7.1 Kubelet and Controller Manager list of parameter safe changes 46
7.2 Kubelet and Controller Manager list of parameter min changes 47
7.3 Network average latency . 49
7.4 Latency between pod on different nodes, but on the same cluster 49
7.5 Latency between pod on different clusters, peered with Liqo 49
7.6 Average Liqo Latency . 50

7

List of Figures

1.1 General Overview of the Electric Energy Grid Macro Areas 10
2.1 Control loop mechanism . 14
2.2 Resource utilization for K8s, MicroK8s, and K3s. 16
3.1 Smart Grid abstract informatic model . 20
3.2 Possible failures in multi-level logical domains implementation 23
4.1 Out-of-band control plane peering. 27
5.1 Target Telecommunications Architecture Foreseen in the 2023 Development

Plan for e-distribution. 32
5.2 Independent Groups Scheme. 33
5.3 Dependent Groups Scheme. 34
6.1 Logical domains scheme. 37
6.2 Possible failures in logical domains implementation. 38
6.3 Data Stream comparison in case of failure. 39
6.4 2 Level logical domains. 41
6.5 Possible failures in multi-level logical domains implementation. 42
7.1 Configuration test environment . 47
7.2 Data flow from source to destination . 48
7.3 Reaction to set virtual node as Not Ready in case of remote cluster discon-

nession. 50
7.4 Reaction to set virtual node as Not Ready in case of local node disconnession. 51
7.5 Box plot regarding stream downtime from last old data to the first new

data in case of pod failure. 52
7.6 Box plot regarding stream downtime from last old data to the first new

data in case of cluster failure. 53
7.7 Time required to recover services on a disconnected node, on a traditional

kubernetes cluster. 54

8

Chapter 1

Introduction

In recent years, advancements in technology have significantly increased the capacity for
data collection across all sectors. However, these improvements have also resurrected
longstanding issues associated with managing large volumes of data, such as inefficiencies
in transportation networks and data processing centers.

The adoption of edge/fog computing paradigms has addressed these challenges by
decentralizing data processing. Edge computing involves processing data directly at the
source, while fog computing processes data at intermediate nodes within the network.
This approach enhances the speed and accuracy of data monitoring and consumption
systems by reducing the burden on transportation and central processing nodes.

Moreover, these paradigms facilitate the implementation of new functionalities, such as
enabling infrastructure to operate independently (island-mode) when disconnected from
the main network. They also increase flexibility by allowing data flows to be rerouted to
alternative destinations in response to failures.

Since data is partially processed at distributed nodes, there is less reliance on highly
specialized or memory-intensive destination centers, thereby supporting the creation of
multiple destination points.

1.1 Energy section
In Italy, the national electrical grid can be divided into four main areas, as highlighted in
Figure 1.1.

• Production: This area encompasses all energy production facilities, historically
dominated by large power plants such as fossil fuel and hydroelectric plants, as well
as imported energy. Nowadays, smaller-scale and more variable production outputs
from renewable energy sources have been introduced.

• Transmission: This area includes the infrastructure responsible for long-distance
transmission of produced energy, using high-voltage alternating current. Its primary
function, known as "dispatching"[1], is to balance consumption levels with supply
levels since energy cannot be efficiently stored. Managed in Italy by Terna[2], this

9

Introduction

Figure 1.1. General Overview of the Electric Energy Grid Macro Areas1.

infrastructure is highly automated to handle power plant failures or service interrup-
tions.

• Distribution: This area comprises the infrastructure that transports electrical en-
ergy to end-users, passing through primary substations (transforming high-voltage
electricity to medium voltage) and secondary substations (from medium voltage to
low voltage). It is divided into zones managed by independent distribution compa-
nies responsible for maintenance. The Smart Grid model, developed over the past
decade, aims to automate this infrastructure similarly to the transmission area to
enhance energy control and usage.

• Consumers: This area involves delivering electricity to the final customer, deter-
mining economic costs, and the characteristics of the supplied energy. These aspects
are managed by various sales companies that negotiate agreements with distributors
and end-users.

Each area plays a crucial role in the overall operation and management of Italy’s
electricity network, ensuring efficient and reliable energy supply across the country.

1.2 Thesis objectives
The Smart Grid model has revolutionize the traditional distribution network by establish-
ing an intelligent information network upon the entire traditional distribution architecture.
This new network could integrate edge/fog computing principles and could support new

1https://www.terna.it/it/sistema-elettrico/ruolo-terna/come-funziona-sistema-elettrico

10

https://www.terna.it/it/sistema-elettrico/ruolo-terna/come-funziona-sistema-elettrico

1.3 – Overview

functionalities such as enabling temporary indipendent management of network segments
(island mode operation) or securely managing different energy sources through centralized
automation.

Current approaches propose using the Kubernetes platform with multi-master clus-
ters to manage individual stations. While these solutions introduce edge/fog computing
and local centralized control, they face challenges in scalability, security, and cannot sup-
port critical features like temporary indipendent management in case of disconnession
(island-mode operationality) if they are translated to manage the entire network. Build-
ing manually a control logic between the various cluster could be a solution, but would
be very expensive to create, cumbersome to manage and time-consuming to update.

Starting from the current local Kubernetes solutions, this thesis aims to develop a
model that extends edge/fog computing capabilities across the entire power grid using
a centralized automatic control logic, thanks to the innovative open-source project Liqo.
It will be utilized to manage the distributed cluster architecture, enhancing resilience by
enabling the system to withstand failures of entire clusters while enabling new features as
the insland mode operation.

1.3 Overview
This thesis endeavors to create a scalable model for the entire network, building upon
successful local solutions.
Chapter 2 introduces Kubernetes, an open-source platform, with a focus on its lightweight
version, k3s, as the foundational technology.
Chapter 3 delves into the local solution based on Kubernetes, detailing its components
and addressing scalability and functionality challenges.
Chapter 4 introduces the Liqo project, pivotal for extending the local model across the
entire network, elucidating its core concepts. It examines how this technology interacts
with existing distributed database systems designed for single-cluster environments, em-
phasizing the adjustments needed for seamless integration.
From Chapter 5 onward, the thesis delves deeper into its core discussions. Chapter 5
initiates by outlining the rationale behind selecting the partial mesh star physical topology,
exploring various hierarchical configurations within this framework and analizing those
configuration in term of scalability and resilience.
Chapter 6 then presents two viable implementations of this model, tailored to the structure
of energy distribution grids.
Chapter 7 critically evaluates the first implementation chosen for its robust resilience,
contrasting its performance against the initial local solution.
Finally, Chapter 8 provides a reflective analysis of the findings and proposes future research
directions.

11

12

Chapter 2

Kubernetes

In this chapter, we will briefly describe Kubernetes technology, which has been used as the
foundation for local solutions studied in recent years. This thesis integrates Kubernetes
with Liqo technology.

As stated in its official documentation [3], Kubernetes is a portable, extensible, open
source platform for managing containerized workloads and services, that facilitates both
declarative configuration and automation. Kubernetes emerged as a platform designed to
automate the management of containerized applications, ensuring periodic checks to main-
tain alignment between the actual operational state and the defined ideal state through
a declarative language.

A decade since its release as an open-source project, Kubernetes stands as one of the
most extensively utilized platforms worldwide. This project focuses on k3s, a lightweight
variant of Kubernetes tailored for operation in resource-constrained environments.

2.1 Basic concepts
The foundational principles underlying the architecture of Kubernetes are articulated as
follows:

1. Implementation-agnostic APIs: Each Kubernetes object can be implemented differ-
ently depending on the version being used, yet the interface used to manage these
objects remains consistent across all versions.

2. Completely declarative specification: Kubernetes facilitates the use of a declara-
tive language instead of the traditional imperative approach, simplifying application
management by specifying the desired state directly rather than detailing how to
achieve that state from various starting points.

3. Control loop-oriented approach: Kubernetes employs components known as con-
trollers that cyclically monitor whether the current state aligns with the desired
state. If discrepancies are identified, these controllers initiate actions to minimize
the gap between the states. This behaviour is shown in Figure 2.1.

13

Kubernetes

Figure 2.1. Control loop mechanism1.

These principles are the cornerstone of Kubernetes, facilitating efficient management
and orchestration of containerized applications in a variety of computing environments.

Every object within Kubernetes is meticulously crafted to adhere to foundational prin-
ciples, starting with its smallest operational unit: the object Pod. A Pod may consist of
one or more containers that will run the application and its configuration is defined in
its respective YAML file. This file may reference other configuration files using key-value
pairs, such as Secrets or ConfigMaps, useful in case these configurations are repeated
multiple times.

Containers within pods typically share a common network and can communicate with
each other by default. However, Kubernetes provides flexibility to configure additional
sharing capabilities, including interactions with the underlying host infrastructure, de-
pending on specific deployment requirements. In addition to application containers, a
od can include init containers that execute during the Pod’s startup phase to set up the
environment.

Kubernetes also supports the injection of ephemeral containers for debugging purposes
while a Pod is running. In typical usage scenarios, direct interaction with Pods is uncom-
mon, as they are ephemeral entities within Kubernetes. Instead, management typically
focuses on higher-level objects such as controllers. The emphasis is on the collective state
of these replicas rather than individual Pods.

Pods are typically instantiated and taked care through the implementation of various
Kubernetes controllers. The Deployment controller, commonly used for stateless appli-
cations, describes the desired application state while managing scalability through the
ReplicaSet.

1https://k21academy.com/docker-kubernetes/kubernetes-operator/

14

https://k21academy.com/docker-kubernetes/kubernetes-operator/

2.2 – K3s

For stateful applications, the StatefulSet controller is normally utilized, managing the
Pod-to-volume binding and ensuring properties such as unique network IDs that the state-
ful application required to function properly. A DaemonSet places a replica of a Pod on
each node that matches its nodeSelector options (or on every node in the cluster if node-
Selector is not set).

As a controller, this behavior supports dynamic changes: if a node is added to the
network, the DaemonSet starts a Pod replica on that node; if a node is removed, the
corresponding pod is not rescheduled. Typically, DaemonSets are employed for specific
tasks such as log collection and node monitoring.

While controllers oversee the lifecycle of Pods, Pod discovery is entrusted to Services.
These Kubernetes objects target all pods matching their selector criteria, facilitating expo-
sure both within and outside the cluster. ClusterIP services expose pods solely within the
cluster, whereas NodePort or LoadBalancer services extend pod accessibility externally.

Pods are instantiated on physical or virtual machines known as nodes, which serve
either as master or worker nodes based on their role. A master node not only executes
various Kubernetes components, as previously discussed, but also hosts the cluster’s con-
trol plane such as the scheduler, controller manager, and API server. Conversely, a worker
node is dedicated solely to executing the workloads of Kubernetes objects.

The cluster, comprising these nodes, can be structured as a single-master or multi-
master configuration. In a multi-master setup, control plane components are replicated
across all master nodes, and decisions are made via a consensus mechanism facilitated by
the etcd quorum process, which utilizes the Raft algorithm [4].

This setup necessitates an odd number of master nodes to prevent split-brain [5] sce-
narios and reduce decision-making delays.

These structural and operational principles form the backbone of Kubernetes archi-
tecture, facilitating scalable and efficient container orchestration in diverse computing
environments.

2.2 K3s
K3s is a lightweight variant of Kubernetes tailored for operation in resource-constrained
environments, as described in the official documentation[6]:

• Edge

• Homelab

• Internet of Things (IoT)

• Continuous Integration (CI)

• Development

• Single board computers (ARM)

• Air-gapped environments

15

Kubernetes

• Embedded K8s

• And as the official page says, situations where a PhD in K8s clusterology is infeasible

K3s efficiently utilizes approximately half the memory resources compared to Kubernetes
(K8s) by implementing several optimizations. These include eliminating legacy libraries,
opting for lightweight alternatives such as SQLite instead of the standard etcd for database
management, and containerd instead of Docker as the container runtime.

Additionally, internal mechanisms have been adjusted to reduce memory consumption.
K3s gets its name from the fact that it uses about half the memory, hence it was

jokingly named K3s as it consists of 5 letters(K+3+s), which is half of the 10 letters in
Kubernetes(K+8+s).

This was demonstrated by two researchers in 2021, Sebastian Böhm and Guido Wirtz [7].
In their tests, they compared the standard Kubernetes technologies, K3s, and microk8s,
using 4 virtual machines with the following parameters:

• CPU: 2 vCPUs

• RAM: 4 GB memory

• Disk memory: SSD with a capacity of 50GB

• OS: Ubuntu 20.04

The results indicated that CPU and memory resource usage were quite similar across
the two version of Kubernetes, but the k3s version demonstrated significantly lower disk
space utilization compared to the standard Kubernetes version, approximately half as
much, as illustrated in the Figure 2.2.

Figure 2.2. Resource utilization for K8s, MicroK8s, and K3s.

The installation process is streamlined with a simple script that weighs less than 100
MB. Despite its compact size, this script effectively manages many of the complexities
typically associated with Kubernetes environments, such as automatically configuring TLS
certificates, configuring worker nodes inside an existing cluster or configuring new master
nodes.

16

2.2 – K3s

This revision clarifies the optimizations made in K3s to reduce memory usage and
highlights the streamlined installation process while maintaining readability and technical
accuracy.

17

18

Chapter 3

State of the art

In this chapter is presented the current implementation to support edge and fog computing
paradigms within the energy production and monitoring network, based on the Smart
Grid model (translating hardware components into an IT network) and the use of the
Kubernetes platform. The limitations that the implementation studied in this thesis aims
to eliminate will also be highlighted.

3.1 Smart Grid components

Currently, the Smart Grid model of the energy monitoring network, illustrated in Fig-
ure 3.1, consists of several integral components that work together to ensure efficient
energy management and distribution. At the core of this model is the Area Control Cen-
ter, which serves as the central hub for control and decision-making mechanisms, then
there are the production and distribution stations, which are divided into primary and
secondary stations.

To manage the network, three main applications are used: Phasor Measurement Units
(PMU) for measurements, Phasor Data Concentrator (PDC) from the openPDC project
for aggregating data from various PMUs, and Grid State Estimation (GSE) for monitoring
the network based on the data provided by the previous applications.

3.1.1 Area Control Center

A computing node within the context of the Smart Grid that serves as an Operational
Distribution Center, housing the control and management logic for the entire network.
This node is primarily responsible for overseeing the high-level PDC, where data streams
from other high-level PDCs situated at primary stations are aggregated. Additionally,
it manages the GSE application, which utilizes data from the aforementioned PDC to
control the network.

19

State of the art

Figure 3.1. Smart Grid abstract informatic model

3.1.2 Station

In the context of the Smart Grid, it is a computing node that represents an energy
production or distribution station. Primary stations typically utilize a high-level PDC to
aggregate data streams from their subnet of secondary stations. Additionally, they may
manage a certain number of PMUs (Phasor Measurement Units). Secondary stations
primarily handle PMUs or aggregate data streams generated by them through low-level
PDCs.

3.1.3 Phasor Measurement Units

PMUs provide measurements of fundamental electrical quantities, such as voltage and
current, in the form of phasors, including information on the amplitude and phase of the
measured quantities.

These measurements, synchronized via GPS and sampled at a frequency of 50 samples
per second, enable precise monitoring of rapid changes in the electrical system caused by
the dynamism of distributed energy resources, and do not need to be saved at this level.

PMUs offer a detailed perspective of system dynamics, overcoming the limitations
of more traditional Remote Terminal Units (RTUs), which have an update period of
several seconds and are not synchronized. The use of PMUs is expected to enhance the
observability and reliability of the distribution system, but due to being expensive they
could be put only on subset of the stations.

20

3.2 – Multi-master station architecture

3.1.4 Phasor Data Concentrator
A phasor data concentrator (PDC) is designed to receive streaming synchrophasor data
from phasor measurement units (PMUs) installed on power transmission lines and align
these data using GPS timestamps (i.e., it "concentrates" the data based on time).

The output of a PDC is a time-synchronized data set that is forwarded to one or
more software applications. These data need to be saved differently depending on the
importance of the aggregator. Data from lower-level PDCs should be stored for only 1-2
days for failure analysis, whereas data from higher-level PDCs should be stored for at
least 1 month for post-incident analysis.

openPDC is a flexible platform for high-speed time-series data processing, both in real-
time and historically. It does not have significant computational power requirements, so
it can be installed anywhere within the synchrophasor infrastructure, including on fanless
computers located in substations.

3.1.5 Grid State Estimation
State estimation is a technique that allows for the reconstruction of network states, such
as nodal voltages, based on available measurements and the electrical network model.
Unlike traditional meters, PMU measurements, which include the phase relative to an
absolute reference, simplify the state estimation problem by making it a linear system
and significantly reducing the computational load.

The objectives of state estimation include the recognition and reduction of measure-
ment errors, the identification of topology errors, the estimation of unmeasured network
quantities, and the determination of network parameters through redundant measure-
ments.

3.2 Multi-master station architecture
Recent research has progressed towards managing individual locations such as stations
within the Smart Grid using a multi-master architecture [8][9]. This approach leverages
enhanced resilience, allowing the system to withstand the failure of a master node. How-
ever, it comes with the trade-off of requiring additional resources for replicated control-
plane components.

Within the cluster, application configurations (such as those for a PDC if the cluster
represents a station) are stored in a high-availability distributed database system. This
setup facilitates rapid and automatic redeployment to another node within the cluster in
case of a failure, without needing to reconfigure the application parameters. Consequently,
the clusters support autonomous local recovery from both application and node failures.

Each cluster serves as a point of edge (for managing secondary stations) or fog (for
managing primary stations) computing within the Smart Grid, depending on its location.
However, the overall control architecture is manually established between each pair of
clusters, each of which operates as a fully independent entity.

This manual establishment of control logic between clusters exhibits limited resilience
due to potential errors in configuration and vulnerability in handling failures as shown in

21

State of the art

Table 3.1, while also presenting challenges in scalability.

Component Failure Severity Cause

Single PMU Low Generally the number of other PMUs guar-
antees the observability threshold.

Multiple PMUs Low-High
It depends on whether the number of other
PMUs guarantees the observability thresh-
old.

Single PDC-l Moderate-High

If the fault affects only some nodes the ob-
servability is stopped only for the time of
the rescheduling. Otherwise, that part of
the network is no longer be observable.

Multiple PDCs-l Moderate-High

If the fault affects only some nodes the ob-
servability is stopped only for the time of
the rescheduling. Otherwise, that part of
the network is no longer be observable.

Single PDC-h High

If the fault affects only some nodes the ob-
servability is stopped only for the time of
the rescheduling. Otherwise, the entire sub-
network is no longer be observable.

Table 3.1. Component failures overview.

3.2.1 Local extended solution limitations
While this approach of a multi-cluster kubernetes is effective for managing a single station,
it proves suboptimal when applied to the entire electrical control system.

This is due to both the complexity involved in managing a large number of nodes (with
stations alone numbering in the tens of thousands, whereas Kubernetes officially supports
up to 5000 nodes [10]) and the fundamental inability to function in isolation.

For example, it’s best to consider the possible failures that can occur within the ar-
chitecture, as shown in Figure 3.2. Despite there being no unrecoverable failures, since it
functions as a single large Kubernetes cluster where deployments are not concentrated in
one location and therefore continue to operate, any part that becomes disconnected from
the network will no longer be controllable.

This is because the master nodes on the isolated network loses the necessary consensus
to initiate new workloads (new pods to manage the isolated entities) and can only partially
manage existing workloads (because it can’t reschedule workloads if it fails).

The only additional failure scenario that the translated architecture (from local envi-
ronment to the entire network) can address without losing the ability to control, other
than the failure inside a station, is when an entire secondary station without source data
but with the aggregator applicative becomes isolated from the network, because it simply
transfer the PDC application to another healty node. However, this advantage does not

22

3.2 – Multi-master station architecture

Figure 3.2. Possible failures in multi-level logical domains implementation

outweigh the drawbacks in terms of complexity,lack of scalability, and resource demands
inherent in the overall architecture.

An additional limitation concerns the number of master nodes that must necessarily
remain healthy. Considering a cluster at its maximum size (which has already been
shown to be insufficient to cover an entire network), the highest resilience is achieved with
7 master nodes. In this case, the architecture continues to function as long as 4 out of the
7 master nodes remain active. These limitations can be effectively addressed by adopting
Liqo technology.

23

24

Chapter 4

Liqo

Due to the rapid adoption of containers as the development environment for applications,
there is now a well-established trend towards using orchestration platforms to automate
the lifecycle management of containerized applications. Among the various implementa-
tions of these platforms, Kubernetes has gained predominant traction, to the extent that
multinational corporations with dedicated cloud departments (such as Google, Amazon,
Microsoft, Alibaba...) have developed proprietary solutions based on it.

Recently, a trend similar to the one observed with container adoption has emerged,
in which there is a growing need for a system that can automate relationships between
various clusters managed by these platforms, whether in the cloud or on-premise.

In this chapter will be summarized the Liqo project, designed to address this necessity,
described by its creators [11] as "an open-source project that enables dynamic and seam-
less Kubernetes multi-cluster topologies, supporting heterogeneous on-premise, cloud, and
edge infrastructures."

4.1 Basic concepts
The Liqo technology facilitates the creation of a unified virtual network across diverse
clusters, enabling the execution of application pods on remote clusters as if they were
local. This system is founded on four primary characteristics: network fabric, peering,
offloading, storage fabric.

4.1.1 Network fabric
The network fabric is the subsystem of Liqo that seamlessly extends the Kubernetes
networking model across multiple independent clusters, enabling pods on different clusters
to communicate smoothly even when address NAT is applied.

The control plane of this subsystem resides in the network manager, instantiated as a
pod responsible for managing network parameters. It handles tasks both during cluster
peering and inter-cluster communications, as example featuring an interface used by the
reflection logic for IP address translation.

25

Liqo

Interconnecting two clusters involves deploying a secure VPN tunnel using WireGuard,
typically established at the end of the peering process based on negotiated parameters.
This functionality is implemented by the Liqo gateway component, operating within the
cluster as a privileged pod. It also manages routing tables and configures necessary NAT
rules to resolve address conflicts.

Although initialized within the cluster’s network, this pod utilizes a separate network
namespace and policy routing to avoid conflicts with Kubernetes’ existing Container Net-
work Interface (CNI) plugins. Traffic from local nodes/pods directed to a remote cluster
is routed through an overlay network, based on VXLAN, managed by a DaemonSet com-
ponent. This component is responsible for routing entries and ensures proper handling of
traffic across the VPN tunnels.

4.1.2 Peering
Standard peering is the process that establishes a unidirectional link between two dif-
ferent Kubernetes clusters, enabling the sharing of resources and services. Through this
connection, the consumer cluster can initiate processes using resources provided by the
provider cluster, but not vice versa.

In this context, the consumer cluster initiates an outgoing peering towards the provider,
which reciprocates with an incoming peering from the consumer. This linkage is not
exclusive, supporting possible bidirectionality and the scenario where a cluster can act as
a consumer for some peerings and as a provider for others.

The peering process unfolds through the following steps:

1. Authentication: Each cluster uses a pre-shared token to verify its identity, which has
some permissions for Liqo-related resources and negotiations.

2. Parameter Negotiation: The two clusters exchange sets of parameters necessary for
finalizing the peering, including network information such as their respective CIDRs
or as the amount of resources shared by the provider.
Some of these parameters can be modified directly or using dedicated plugins, for
example is possible adjusting the available resources that the provider cluster shows
to the consumer cluster.

3. Creation of the Virtual Node: Within the consumer cluster, a virtual node is created
to represent the resources shared by the provider cluster. Processes instantiated us-
ing the provider cluster’s resources appear to be located within this virtual node,
maintaining transparency in the offloading process and adhering to standard Kuber-
netes practices without requiring API modifications.

4. Configuration of the Network Fabric: The two clusters configure their respective
network fabrics and establish a secure VPN tunnel using the previously negotiated
parameters (address remapping, endpoints, etc.).

Each connection can be differentiated based on how Liqo’s control plane traffic is managed:
whether it passes through the VPN tunnel alongside pod traffic (in-band control plane
peering) or uses traditional communication channels (out-of-band control plane peering).

26

4.1 – Basic concepts

In the former case, it is required to expose only the Liqo VPN endpoint to the pod of
the remote cluster. However, this setup requires control over both clusters to negotiate
network parameters through Liqo CTL tool [12], resulting in a static peering configuration
that requires manual intervention for updates.

In the latter case, while to the remote pods must be expose not only the Liqo VPN
endpoint but also the Kubernetes API and Liqo authentication service endpoints (as shown
in the Figure 4.1), it offers the flexibility to connect clusters across different domains using
a pre-shared token and enables dynamic peering, so that an automatic renegotiation of
parameters occurs in response to configuration changes.

Figure 4.1. Out-of-band control plane peering.

4.1.3 Offloading
Offloading is the method enabling transparent extension of the local cluster into a remote
cluster, allowing Kubernetes scheduler to seamlessly schedule workloads in the remote
cluster when it’s deemed optimal. The virtual node is managed by an extended version
of the Virtual Kubelet project, which replaces the traditional kubelet if the node isn’t
physical.

In the context of Liqo, it interacts with the Kubernetes API servers of both clusters
to manage artifact propagation (pods, services, config maps) and reconcile state in case
of changes on the negotiated configurations. It also performs configurable periodic health
checks to assess reachability of the remote API server, marking the node as unready in
case of repeated failures and triggering standard Kubernetes evacuation strategies. An
instance of the virtual kubelet is created for each remote cluster to ensure isolation and
segregation of authentication tokens.

The offloading process comprises three stages:

1. Namespace Extension: The local cluster’s namespace is extended into the remote
cluster by creating a gemini counterpart namespace, which will host both offloaded
pods and resources required for pod reflection.

2. Resource Reflection: Selected arctifacts from the control plane are reflected in re-
mote clusters to ensure the operational functionality of the pods. Supported re-
sources for reflection include service exposure (Ingress, Services, EndpointSlices),
persistent storage (PersistentVolumeClaims, PersistentVolumes), and configuration
data (ConfigMaps, Secrets).

27

Liqo

3. Pod Offloading: After the scheduler schedules a pod on the virtual node, the corre-
sponding virtual kubelet creates a mirrored pod object in the remote cluster. This
object is managed by the custom resource ShadowPod [13], serving as a representa-
tion of the pod to maintain service functionality even if connectivity with the remote
cluster is lost.

Both stateless and stateful pods are supported, with the latter utilizing either the storage
fabric or relying on an external volume provider.

4.1.4 Storage fabric
The storage fabric is the Liqo subsystem responsible for managing the creation of remote
volumes for stateful applications. Its operation revolves around delaying the binding of
a volume to a pod until it has been scheduled to a node, ensuring volumes are always
created where their associated pod is scheduled.

Subsequent scheduling adheres to a data gravity principle, transparently rescheduling
the pod to the node where the physical volume resides. These behaviors are implemented
through Liqo’s virtual storage class, utilizing reflection mechanisms when pods are sched-
uled on virtual nodes to create the mirrored PVCs in remote clusters. Alternatively, it
relies on the real storage class when pods are scheduled on local physical nodes.

4.2 Distributed DB interaction
At present, most of the distributed database systems doesn’t support general multi-cluster
architecture, primarily due to their reliance on internal headless services for direct pod-
to-pod communication. These services return the IP address of the corresponding pod
directly when queried, using their DNS entry, unlike regular services that route requests
via kube-proxy.

Liqo employs an address remapping mechanism to facilitate seamless communication
between clusters; however, this approach results in incorrect IP resolutions for pods sched-
uled on remote clusters when queried by headless services. To enable the use of these
architectures, Liqo developers currently recommend[14] leveraging the peering process,
which exposes the address ranges of the two clusters in two different ways:

1. Connecting a cluster to all others via peering while forcing a pod of the distributed
system onto it: This approach ensures that the service in that cluster is aware of all
real address ranges, allowing replication through the forced pod, which becomes a
critical point.

2. Creating a full mesh of peering between various clusters: This ensures that each
headless service knows the addresses of all others, and this is the solution adopted
in this research.

Some distributed database architectures, such as those implemented by the Percona
XtraDB Cluster Operator, may introduce additional complexity. After receiving the

28

4.2 – Distributed DB interaction

translated IP of a remote pod, they may encounter difficulties establishing a connec-
tion, primarily because their cluster logic operates with standard Kubernetes component
independently of Liqo. This requires the implementation of distinct CIDRs across clus-
ters, ensuring that traffic is routed through Liqo components to establish connections
correctly.

29

30

Chapter 5

General topology Partial Mesh
Star

In this chapter will be described the process that led to the selection of the partial mesh
star architecture, a model capable of applying the logical paradigms of edge/fog computing
to a multi-cluster architecture while ensuring the possibility of deploying high-availability
systems. Initially, the structural choices will be discussed, based on both the multi-cluster
environment and the requirements of the adopted technologies (Percona, Liqo, etc.).

Potential use cases will then be described, demonstrating the flexibility of the logical
hierarchical architectures that can be implemented. Finally, we will evaluate the charac-
teristics and various limitations that this model entails.

5.1 Cyber-Physical Architecture
The first step was to consider how to abstract a logical model from the initial real-world
situation. The electric power control and monitoring network, as shown in the Figure 5.1,
can be schematized using both hierarchical tree topology graphs and peer-to-peer topology
graphs.

Peer-to-peer should be discarded because, although the nodes representing the stations
can be both data providers and receivers, the node representing the Area Control Center
needs to exercise centralized control over all other nodes. Additionally, not all nodes have
sufficient processing capabilities, especially if they represent secondary stations.

Among the various tree topology models, the star model is the only one that can be
physically implemented using the standard version of Liqo. Indeed, it does not allow the
offloading of an already offloaded namespace to prevent critical situations such as circular
offloading. This means that all multi-level hierarchical topologies cannot be physically
implemented without making customized changes to the technology’s code. Moreover,
distributed HA database systems tend to need to be in a single namespace, and multi-
namespace solutions via operators do not support multi-cluster technologies as they cannot
know the namespaces of other clusters.

31

General topology Partial Mesh Star

Figure 5.1. Target Telecommunications Architecture Foreseen in the 2023 Devel-
opment Plan for e-distribution.

The partial mesh version of the star model, which allows direct connections between
leaves, is necessary for the correct transparent multi-cluster functioning of distributed
database systems that rely on headless services. Each cluster that uses the same database
system will need, in addition to having the offloaded namespace of the database, a direct
connection with all other clusters, thus creating a partial mesh topology (partial because
the connections do not necessarily have to be bidirectional).

5.2 Logical hierarchy using labels and affinity
A simple partial-mesh star topology offers only a two-level physical separation: a central
node and the leaves. It lacks the necessary flexibility to manage the various real-world
scenarios encountered in a monitoring and distribution network. Therefore, it is nec-
essary to introduce a strategy to construct a complex logical topology on the existing
physical model. This strategy is based on the use of Kubernetes’ native label and affinity
mechanisms.

Each cluster will be identified by a group of labels that specify its position in the desired
logical topology and can be used by the scheduler to distribute the workload according
to the intended logic. The node affinity mechanism can be used both to distinguish
between different clusters and to differentiate the various nodes within a cluster, as it
allows specifying different labels as targets. This way, one can define the label that
identifies the cluster as well as the labels of the individual nodes within the cluster.

Pod affinity, on the other hand, is used to enforce coexistence conditions between pods
on the same node. These mechanisms also offer a degree of flexibility, as they provide
both "required" and "preferred" options. The "preferred" option allows the scheduler to

32

5.2 – Logical hierarchy using labels and affinity

prioritize the specified target for pod placement while still considering alternative targets
if the preferred one is unavailable.

The following subsections will discuss some basic logical topologies, from which one
can start to build their desired configuration.

5.2.1 Independent Groups
The leaf clusters of the partial-mesh star model are segmented into independent groups by
assigning each node within the cluster a label that uniquely identifies its respective group.
This method establishes distinct logical areas, as peering between clusters is only necessary
within the same group (and only in case of using a distributed database system), to which
separated workloads can be allocated. To enhance the delineation of these divisions,
the root node could assign a separate namespace to each group, thereby also increasing
security between them.

These groups are not mutually exclusive regarding the ownership of a node, provided
there is no logical contradiction among the identifying labels. Consequently, a cluster may
simultaneously belong to multiple groups, as demonstrated by leaf C in Figure 5.2.

Figure 5.2. Independent Groups Scheme.

5.2.2 Dependent Groups
The leaf clusters of the partial-mesh star model are divided following a logical hierarchy
by assigning a label indicating their position within the hierarchy. This approach creates
dependent logical areas, as peering is necessary even between clusters belonging to differ-
ent groups if a distributed database system is used. Figure 5.3 illustrates the worst-case

33

General topology Partial Mesh Star

scenario, where the database domain encompasses all leaf clusters. This topology sup-
ports new behaviors, such as allowing not only the selection of which groups to schedule
workloads within the same domain.

This mechanism allows for the creation of multiple logical hierarchies within the same
physical network, each with its own set of labels. Within a given logical hierarchical
structure, a cluster can belong to only one group. However, when considering multiple
structures, a cluster can belong to different groups.

Figure 5.3. Dependent Groups Scheme.

5.3 Partial Mesh Star Analysis
As previously illustrated, the partial mesh star topology allows for the use of systems
not originally designed for multi-cluster environments, such as distributed HA databases.
However, this feature results in a quadratic increase in the number of peerings required
between clusters within the database domain. This is because it requires at least a unidi-
rectional peering full mesh. The number of links can be determined using the formula (5.1):

Link = N(N − 1)
2 (5.1)

where N is the number of clusters.
The increase in the number of peerings only affects the time required to set up the

entire architecture during its creation, as the consumption of additional resources is neg-
ligible, as noted in the article "Computing without Borders: The Way Towards Liquid
Computing" [15].

34

5.3 – Partial Mesh Star Analysis

The label mechanism offers substantial flexibility in selecting the logical architecture
to overlay on the physical infrastructure. However, a drawback is the linear increase in
setup time as the number of clusters expands. This characteristic renders the partial mesh
star topology ideal for systems with relatively stable physical topologies, facilitating quick
adjustments in logical configurations. While significant logical topological changes are
supported, they require a corresponding setup time.

It should also be noted that this topology enhances the overall system resilience. Since
clusters operate as independent entities, the architecture can support any number of dis-
connections as long as the central node remains unaffected. Therefore, resilience no longer
depends on the number of disconnected clusters (as is the case in a Kubernetes cluster,
where at least half plus one of the master nodes must remain healthy) but will instead
depend on the constraints of the various applications installed within the architecture.

35

36

Chapter 6

Possible implementations

This chapter will discuss the potential implementations of the partial mesh star topology
within the context of a computer network dedicated to energy monitoring. The network
primarily consists of the Area Control Center, primary stations, and secondary stations,
each managed by its own Kubernetes cluster.

6.1 Logical domains
This implementation is depicted in Figure 6.1, where the Area Control Center occupies the
central position in the star topology, establishing unidirectional peering with offloading to
every other entity in the topology, whether it is a primary station or a secondary station.

Figure 6.1. Logical domains scheme.

37

Possible implementations

This allows the Area Control Center to manage all application deployments with-
out the need to delegate them to other nodes. The remaining clusters are divided into
groups, typically consisting of a primary station and its associated secondary stations.
These groups represent a logical domain of applications with their own high-availability
distributed database system and, therefore, do not have interconnections among them.
Within a group, the clusters form a full mesh of unidirectional peerings for the database
system’s operation, and they share the same offloaded namespace from the Area Control
Center.

6.1.1 Logical domains analysis
This architecture allows for the highest degree of resilience, as considering every possible
failure in the control and power distribution network infrastructure, represented in Fig-
ure 6.2, the only fault that is not automatically recoverable is the disconnection of the
Area Control Center.

Figure 6.2. Possible failures in logical domains implementation.

The cluster representing the Area Control Center is a critical point as it hosts the
central logic of the network, but the effects of a failure or disconnection of this node are
negligible when compared to environmental constraints:

1. In the event of a physical failure of the central node, deployments would be lost,
making the reconciliation process with the entire network impossible. However, this
is negligible because without the central node’s logic, the network would not be
observable by default.

38

6.1 – Logical domains

2. In the event of a complete disconnection from the network, active workloads would
continue to function, but the reconciliation process for stateful applications (as the
database system) will not occur since, by the point of view of the deployments, there
would not be enough surviving replicas to maintain the system. Yet, this is also
negligible as it falls under the same scenario as before.

In contrast, all other failures are recoverable from the perspective of the Area Control
Center. Failures within a cluster are generally recoverable in a short time as the appli-
cations are automatically and quickly ricreated into a healthy node (which can belong to
either the local cluster or a remote cluster) in case of disconnection or internal pod failure.

Disconnections of nodes, entire clusters, or parts of the network containing data pro-
duction sources (PMUs) are automatically recoverable only with the restoration of the
connection itself, as the PMU is physical hardware tied to its node and cannot be moved
to others.

The aforementioned concerns the perspective of the Area Control Center, but as de-
scribed in the previous chapter, the disconnected part of the network continues to function
perfectly, and thanks to Liqo technology, additional applications can be instantiated to
support the temporary independence of the network.

The continuation of operations can be observed in Figure 6.3, which illustrates the data
stream about frequency values seen by an instance of PDC lower and its directly superior
PDC higher, shortly before and shortly after the disconnection of the cluster hosting the
PDC lower and its data sources, which occurred at 44,633 s. PDC lower continues to
receive data from the sources, operating in an isolated environment, while PDC higher
stops receiving the data stream from the isolated source.

40 s 42 s 44 s 46 s 48 s

Timestamp

Higher Data Stream

Lower Data Stream

44.633 s

Data Stream received

Figure 6.3. Data Stream comparison in case of failure.

Comparing the risks arising from the failure of one component with those that an

39

Possible implementations

extended local solution encompassed, as shown in Table 6.1, it can be noted that many
have decreased, as there is no longer the possibility of the network remaining unobservable.
The risks related to PMU failures have remained the same, as it cannot be rescheduled to
another node.

Component Failure Severity Cause

Single PMU Low-> Low

Generally the number of
other PMUs guarantees
the observability thresh-
old.

Multiple PMUs Low-High-> Low-High

It depends on whether the
number of other PMUs
guarantees the observabil-
ity threshold.

Single PDC-l Moderate-High-> Low-Moderate

The observability of the
network is impaired un-
til the PDC is rescheduled
onto another node.

Multiple PDCs-l Moderate-High-> Low-Moderate

The observability of the
network is impaired until
the PDCs are rescheduled
onto another nodes.

Single PDC-h High-> Moderate

The observability of the
network is impaired un-
til the PDC is rescheduled
onto another node.

Table 6.1. Component failures on Logical Domains topology overview.

The limitations of this architecture pertain to scalability, as each cluster requires its
own distinct CIDR for the transparent operation of high-availability distributed database
systems. Additionally, each peering creates a virtual representative node in the central
cluster, limiting the number of possible clusters to 5000, according to the official Kuber-
netes documentation.

6.2 Multi-level logical domains
The implementation described in this section leverages a star topology twice, once with
a partial mesh version and once with a full version, as shown in Figure 6.4. This follows
the division of stations into primary and secondary, although it could be adapted to n
subdivisions.

The first topology used is a partial mesh star topology used to connect the Area Con-
trol Center (central cluster) with all primary stations (leaf clusters). The central cluster
handles the deployment of high-level applications along with their respective distributed

40

6.2 – Multi-level logical domains

Figure 6.4. 2 Level logical domains.

database systems, offloading the corresponding namespace through peering to the respec-
tive group of primary stations.

The groups of primary stations are composed of a main primary station, where work-
load is preferably directed (using labels), while the others in the group primarily serve as
backups in case of failure of the main station. This means that primary stations can be in
multiple groups, one where they are primary and others where they function as backups,
leveraging the topology seen in Chapter 5 section 5.2.1.

The main primary station of each group also serves as the central cluster in the sec-
ond star topology, connecting not only to the backup primary stations but also to all
secondary stations under its jurisdiction. In our implementation, this will be a full mesh
star topology, but a partial mesh could also be used if the secondary stations do not share
the same distributed database system.

In this second topology, the main primary station handles the deployment of low-level
applications along with their respective high-availability distributed databases, conse-
quently offloading the namespace to its secondary stations. The data stream for monitor-
ing, which passes through two different namespaces (from the low-level to the high-level),
relies on external exposure services such as load balancers and ingress, enabling access to
the high-level application whether it resides in the primary station or, due to a failure, in
one of the backup primary stations.

41

Possible implementations

6.2.1 Multi-level Logical domains analysis
This architecture enhances scalability limits compared to the previous implementation by
reducing the number of peerings managed by the Area Control Center, as shown in Fig-
ure 6.5, and by requiring distinct CIDRs only within the secondary topologies associated
with a primary station, allowing for reuse across different types.

Figure 6.5. Possible failures in multi-level logical domains implementation.

However, this benefit is balanced by a decrease in overall resilience, because in addition
to the critical point represented by the Area Control Center, all primary stations that
manage a subnetwork of secondary stations also become critical points. This is because a
failure or disconnection of the primary station results in the loss of deployment for low-
level applications, which is not a feature supported by Liqo technology, thus necessitating
a system reset upon reconnection.

Comparing the risks arising from the failure of one component with those that an
extended local solution encompassed, as shown in Table 6.2, it can be noted that many
have decreased, as there is no longer the possibility of the network remaining unobservable.
The risks related to PMU failures have remained the same, as it cannot be rescheduled to
another node.

This thesis focuses on achieving the highest degree of resilience; therefore, the following
chapter will focus on testing the first implementation, as there is no risk of having to
redeploy the software components in a subnetwork of secondary substations in the event
of a failure of the entire associated primary station cluster.

It is important to note that these two implementations are not mutually exclusive;
they can be implemented simultaneously within the same physical network, in cases where
different parts of the network require varying degrees of resilience.

42

6.2 – Multi-level logical domains

Component Failure Severity Cause

Single PMU Low-> Low

Generally the number of
other PMUs guarantees
the observability thresh-
old.

Multiple PMUs Low-High-> Low-High

It depends on whether the
number of other PMUs
guarantees the observabil-
ity threshold.

Single PDC-l Moderate-High-> Low-Moderate

The observability of the
network is impaired un-
til the PDC is rescheduled
onto another node.

Multiple PDCs-l Moderate-High-> Low-Moderate

The observability of the
network is impaired until
the PDCs are rescheduled
onto another nodes.

Single PDC-h High-> Moderate

The observability of the
network is impaired un-
til the PDC is rescheduled
onto another node.

Table 6.2. Component failures on Multi-level Logical Domains topology overview.

43

44

Chapter 7

Domain peering evaluation

In this chapter, we present the analyses conducted on the logical domain grouping imple-
mentation, chosen for its higher resilience compared to the multi-level implementation.

7.1 Test Environment
The test environment was created by leveraging the functionalities of Crownlabs, an open-
source platform associated with the Politecnico di Torino, which was developed during
the years of the Coronavirus spread.

7.1.1 Crownlabs
Crownlabs is an open-source project created to provide students with access to laboratory
systems and services during the challenging times of the coronavirus pandemic, which
imposed severe travel restrictions. In fact, the name derives from the virus itself and its
initial purpose, as "Crown" translates to "Corona" in Italian and labs measn laboratories.

The authors of this project were a group of volunteers primarily composed of MSc
students who, within just a few weeks of very hard work, as described on the project
website [16], managed to deliver a functioning version, to address the university places
closures mandated by the Italian government.

Nowadays, Crownlabs continues to be supported by students, and its functionalities
have expanded: it not only allows the remote use of laboratory machines through a
web browser, enabling both personal exercises and group work, but also leverages the
Politecnico di Torino’s data center to instantiate and use virtual machines transparently
within an internal network. It is precisely this latter functionality that has been utilized,
as the Kubernetes clusters used were composed of these virtual machines.

7.1.2 Nodes configuration
Each virtual machine representing a node in a cluster possesses the following character-
istics, chosen to simulate low computational capacity typical of devices found in energy
monitoring and distribution stations.

45

Domain peering evaluation

• Operating system: Ubuntu server 20.04 LTS.

• CPU: 4 core.

• RAM: 8 GB.

• Disk memory: 25 GB.

7.1.3 Software configuration
Di seguito vengono specificate le versioni delle piattaforme utilizzate:

• K3s: v1.24.17+k3s1.

• Liqoctl: v0.10.2.

• Liqo: v0.10.2.

• PDC: v2.4.

• Database: Percona XtraDB operator v1.11.0.

• Database connector: MYSQL connector v8.2.
It should be noted that certain parameters of the k3s kubelet and manager controller

have been adjusted to decrease the cluster response time in case of failure, as detailed
in the Table 7.1, and these values can be considered safe for networks of any size. In
contrast, the virtual kubelet instantiated by Liqo has not undergone any changes.

Option Value Description

node-status-update-frequency 10s -> 5s Specifies how often kubelet posts node
status

node-monitor-grace-period 40s -> 20s

Specifies the amount of time in seconds
that the Kubernetes Controller Manager
waits for an update from a kubelet before
marking the node unhealthy. Must be N
times more than kubelet’s nodeStatusUp-
dateFrequency, where N means number of
retries allowed for kubelet to post node
status

pod-eviction-timeout 300s -> 5s
This parameter specifies how long Kuber-
netes waits before evicting pod from a
node marked as "NotReady"

node-monitor-period 5s -> 5s
The period for syncing NodeStatus in
cloud-node-lifecycle-controller.

Table 7.1. Kubelet and Controller Manager list of parameter safe changes

These parameters can be reduced again to the values shown in Table 7.2. However, it
is important to note that they are highly dependent on the size of the network.

46

7.2 – Latency

Option Value
node-status-update-frequency 10s -> 4s
node-monitor-grace-period 40s -> 12s
pod-eviction-timeout 300s -> 4s
node-monitor-period 5s -> 4s

Table 7.2. Kubelet and Controller Manager list of parameter min changes

7.1.4 Cluster configuration
Due to the limit of 5 virtual machines, the system was organized into 5 Kubernetes clusters,
each comprising a single node. As shown in Figure 7.1, the topology is a fully-meshed
star topology where the root cluster occupies the central position, hosting all deployments
of the PMU, PDC, and database applications. Through Liqo peering, it offloads the test
namespace to the leaf clusters.

The leaf clusters are connected by unidirectional peering for the transparent operation
of the distributed Percona database system, and they will be the only locations where the
pods of the aforementioned applications can be scheduled.

Figure 7.1. Configuration test environment

7.2 Latency
In this section, the latency increase due to the overhead generated by Liqo technology will
be evaluated using 4 virtual machines. One machine is consistently used as the secondary
member (Root), while the others represent the primary member (Leaves). The maximum
tolerated data communication latency for state estimation applications is approximately
1000 ms.

47

Domain peering evaluation

Typically, data, as depicted in Figure 7.2, traverses about 4 clusters. The first two
clusters usually consist of secondary stations, the third is the primary station overseeing
the subnetwork of the two secondary stations, and the fourth is the Area Control Center
containing the applications utilizing the data.

Figure 7.2. Data flow from source to destination

Therefore, the overall latency derives from the sum of Kubernetes + Liqo overhead
for each individual cluster, plus the latencies of the networks connecting these clusters.
The networks connecting these clusters typically consist of optical fiber networks for links
between primary stations and Area Control Centers, and either fiber optic or radio links
for the subnetwork of secondary stations.

According to the 2023 Development Plan of e-distribution [17], these networks include
fiber optic cables illuminated with DWDM technology for connecting primaries to the con-
trol center, GPON fiber architectures, or 5G/LTE/4G radio links for connections between
secondary and primary stations.

Let’s consider the New AT/MT transformation station "Livigno" (SO) as presented
in the 2023 development plan of e-distribuzione [18], as it represents an extreme case
regarding the extension of the managed territory, approximately 400 km2 in a rural en-
vironment. To estimate the network latency, we consider a fairly central location of the
station within the area, hence the maximum distance between it and the secondary sub-
stations can be hypothesized to be about 30 km in the worst case. Over this distance, we
consider a worst-case scenario of a 4G LTE network based on radio links, with cell towers
approximately 5 km apart.

The network latency is calculated by adding the propagation speed over 30 km and the
signal processing time for each cell tower. Assuming a signal processing time of about 20
ms and a propagation speed of 0.1 ms, the total latency would be 20 * 6 + 0.1 = 120.1 ms.
For the distance between the primary station and its respective Area Control Center, a
time of 1 ms can be assumed, as this technology operates at around tens of microseconds
over 140 km. Therefore, the network latency considering one of the worst-case scenarios
(use of radio links in a vast territory) can be approximated to about 122 ms, leaving a
theoretical limit of 878 ms for the overhead of the technologies.

7.2.1 Latency test
Given that data in the architecture is transmitted using TCP protocols, which utilize
acknowledgments (ACKs), latency is measured as the round-trip time of a packet. The
tests were conducted using the ping command, with approximately 1000 iterations per
test, individually executed from the Leaf machines to the Root machine.

48

7.2 – Latency

Firstly, to establish a baseline for the tests, the network latency was calculated by
averaging the mean of three ping values obtained from the virtual machines towards the
root machine, as shown in the Table 7.3. In this and the following tables, the arith-
metic average will be calculated because every measures ah the same importance, and the
avg standard deviation will be calculated using the formula (7.1) because tha data are
uncorrelated:

σmean =

óqn
i=1 σ2

i

n
(7.1)

where:

• σi is the standard deviation of the value i.

• n is the total number of values.

Virtual machine Latency σ
Leaf-1 0.689 ms 0.447 ms
Leaf-2 0.760 ms 0.731 ms
Leaf-3 0.715 ms 0.468 ms
Avg 0.721 ms 0.564 ms

Table 7.3. Network average latency

After establishing the network latency, we proceed to calculate the latency between a
pod located on different Leaf nodes and a pod in the Root node, where the Leaf nodes
and the Root node belong to the same cluster, shown in Table 7.4, or belong to different
clusters peered with Liqo, shown in Table 7.5.

Cluster Node Latency σ
Leaf-1 0.735 ms 0.294 ms
Leaf-2 0.992 ms 0.568 ms
Leaf-3 0.936 ms 0.483 ms
Avg 0.888 ms 0.463 ms

Table 7.4. Latency between pod on differ-
ent nodes, but on the same cluster

Remote Node Latency σ
Leaf-1 1.269 ms 0.724 ms
Leaf-2 1.400 ms 0.829 ms
Leaf-3 1.368 ms 0.903 ms
Avg 1.346 ms 0.822 ms

Table 7.5. Latency between pod on differ-
ent clusters, peered with Liqo

The increase due to Liqo is measured by subtracting the average latency from Table 7.4,
which is the sum of network latency + Kubernetes overhead, from the average latency
shown in Table 7.5, which is the sum of network latency + Kubernetes overhead + Liqo
overhead. This calculation yields the result shown in Table 7.6.

The result shows that the overhead added by Liqo is negligible compared to the total
tolerated latency of 1000 ms, as well as compared to one of the worst-case scenarios such
as the Livigno case.

49

Domain peering evaluation

Average Liqo Latency σ
0.458 ms 0.679 ms

Table 7.6. Average Liqo Latency

The latency between pods on different Kubernetes clusters without multi-cluster tech-
nologies was not tested, as the goal is to demonstrate the latency increase using Liqo across
different clusters compared to using a single Kubernetes cluster connecting all nodes.

7.3 K3s reaction time

In the upcoming test, two clusters of virtual machines connected via unidirectional Liqo
peering were utilized: the consumer cluster and the provider cluster. The objective was
to show the consumer cluster’s response time in the event of disconnection of the virtual
node representing the provider cluster, for any reason.

The test involved two scripts. The first script disabled the network interface on the
virtual machine running Liqo in the provider cluster and recorded the timestamp. The
second script executed a loop on the consumer cluster, running ’kubectl get node’ every
0.4 seconds, and appending the output with a timestamp. (A shorter interval wasn’t
feasible due to the command execution time.)

The results are depicted in Graph 7.3.

11
9 s

9.2 s

9.4 s

9.6 s

9.8 s

10 s

10.2 s

10.4 s

10.6 s

Do
wn

tim
e

9.75 s

10.587 s

9.06 s

Figure 7.3. Reaction to set virtual node as Not Ready in case of remote
cluster disconnession.

50

7.4 – Stream reaction time

Comparing these results with findings from previous thesis [19] about the local solu-
tion using only Kubernetes, which utilized virtual machines running on different physical
machines with slightly different parameter settings, it is evident that the order of magni-
tude remains consistent. This indicates that the introduction of Liqo technology does not
add noteworthy delays compared to the typical delays of a straightforward Kubernetes
architecture.

Moreover, using the same machines but connecting them through a single Kubernetes
server and utilizing identical parameter settings, it was observed that the cluster response
time in the event of a node failure is slightly higher by a few seconds compared to the time
required to detect a node failure representing a Liqo cluster, as depicted in Figure 7.4.
This difference stems from the Virtual Kubelet’s unique management and health check
optimization implemented by Liqo, which supersedes traditional kubelet functions for the
virtual node management.

11

12 s

14 s

16 s

18 s

20 s

22 s

24 s

Do
wn

tim
e

17.3305 s

23.817 s

11.396 s

Figure 7.4. Reaction to set virtual node as Not Ready in case of local node disconnession.

7.4 Stream reaction time
The following tests demonstrate the downtime of a data stream from a PMU in the
following scenarios:

1. Internal failure of a PDC pod, resulting in the rescheduling of the application.

2. Fault/disconnection of the cluster hosting a PDC pod, resulting in the application
being rescheduled to another cluster.

51

Domain peering evaluation

Downtime is calculated from the timestamp of the last data frame of the old stream to
the timestamp of the first data frame of the new stream, encompassing the time required
for rescheduling the PDC pod, retrieving configurations from the database system, and
reconnecting to the data stream.

These tests examine a data stream originating from a PMU that traverses through two
PDC pod, one considered low-level and the other considered high-level, before reaching its
intended application. The use of the data frame timestamp is crucial due to the PMU’s
real-time production of data frames at 33-millisecond intervals, ensuring precise downtime
calculations and analysis.

7.4.1 Pod failure
The failure scenario of the PDC pod was simulated by customizing the liveness probe
mechanism, intentionally triggering a failure check after the pod had been running for 60
seconds. The pod was located in a remote cluster managed by Liqo.

The test results, displayed in Graph 7.5, illustrate the median duration required for
the lower-level PDC application to resume normal operation. This duration encompasses
the time from detecting the PDC pod failure to its subsequent recovery, including the
processes of restarting the pod, retrieving configurations from the system database, and
re-establishing connection to the data stream.

Comparing these results with findings from previous thesis [19] about the local solution
using only Kubernetes, where the pod recovery time ranged between 17-25 seconds, it is
noted that here too, despite slight differences of a few seconds primarily due to environ-
mental variables such as machine power, the order of magnitude remains consistent.

11

16.3 s

16.4 s

16.5 s

16.6 s

16.7 s

Do
wn

tim
e

16.4165 s

16.733 s

16.267 s

Figure 7.5. Box plot regarding stream downtime from last old data to the first
new data in case of pod failure.

52

7.4 – Stream reaction time

7.4.2 Cluster failure

The failure scenario was simulated by deliberately disabling the network interface of the
lower-level PDC pod within the cluster. The deployment configuration of the lower-level
PDC includes specific affinities to ensure that in the event of rescheduling, it can only
be placed on another leaf cluster. As depicted in Figure 7.1, these leaf clusters are also
managed by Liqo.

11

32 s

33 s

34 s

35 s

36 s

37 s

Do
wn

tim
e 34.6505 s

37.166 s

31.466 s

Figure 7.6. Box plot regarding stream downtime from last old data to the first
new data in case of cluster failure.

The test results, displayed in Graph 7.6, illustrate the median duration required for the
lower-level PDC application to resume normal operation. This duration includes the time
required for the cluster to detect that the virtual node hosting the PDC is unreachable
(9.75 seconds as shown in Graph 7.3), the waiting time before it can be rescheduled to
another node (5 seconds as indicated in table 7.1), and the time necessary for the pod to
restart (16.41 seconds as depicted in Graph 7.5).

Comparing the results with the values shown in Figure 7.7, illustrating findings from
the previous thesis [19] focusing on the local solution using only Kubernetes, it is observed
that the order of magnitude remains consistent. This reaffirms alongside previous tests
that the introduction of Liqo technology does not introduce significant changes in terms
of architectural overhead. In fact, in some cases, such as the optimization of the Kubelet,
it enables better performance compared to the traditional Kubernetes architecture.

53

Domain peering evaluation

Figure 7.7. Time required to recover services on a disconnected node, on a
traditional kubernetes cluster.

7.5 Overall evaluation
In this section, we summarize the findings from the various tests conducted to evaluate
the performance, reliability, and resilience of the logical domain grouping implementa-
tion using Crownlabs and Liqo technology. The following points encapsulate the overall
evaluation:

• Test Environment and Configuration: The test environment, meticulously con-
figured using Crownlabs and Kubernetes clusters, accurately simulated real-world
scenarios. The use of low-capacity virtual machines reflects typical setups in en-
ergy monitoring and distribution stations, ensuring relevance and applicability of
the results.
The fully-meshed star topology with a central root cluster efficiently managed the
workload distribution and ensured robustness in case of node or cluster failures. The
unidirectional peering for distributed database operations, as implemented through
Liqo, facilitated seamless resource sharing and enhanced system reliability.

• Latency Analysis: The latency tests revealed that the additional overhead intro-
duced by Liqo technology is minimal. The measured average Liqo latency of 0.458
ms is well within acceptable limits for state estimation applications, which tolerate
up to 1000 ms. This demonstrates that Liqo can be effectively utilized in distributed
systems without significantly impacting communication performance.

• K3s Node Reaction Time: The reaction time tests indicated that the introduction
of Liqo technology did not introduce substantial delays. In fact, the Liqo-managed

54

7.5 – Overall evaluation

virtual kubelet demonstrated optimized health checks and node management, re-
sulting in slightly faster response times in certain failure scenarios compared to
traditional Kubernetes setups.

• Stream Reaction Time: The tests simulating pod and cluster failures demon-
strated that the downtime for resuming data streams was comparable to, if not
slightly better than (in the case of cluster failure), traditional Kubernetes-only envi-
ronments. This, along with new features such as the temporary independent manage-
ment of a part of the network (with the continuation of the data stream inside) and
the optimization of control capacity by a central entity to manage the rescheduling of
the aggregator on other clusters, illustrates the significant advantages of introducing
Liqo technology.

• Reliability and Resilience: Overall, the tests conducted on the logical domain
grouping architecture have demonstrated its high resilience against both internal
and external cluster failures. Throughout the testing process, there was not a single
instance where the system failed to automatically converge to a new stable state after
a fault was introduced. Moreover, in scenarios where a cluster became disconnected,
the system reliably reintegrated the cluster into the architecture automatically once
the connection was restored. This seamless reintegration highlights the robustness
and efficiency of the architecture in maintaining operational continuity and stability,
underscoring the significant advantages of adopting this approach.

• Scalability and Flexibility: The modular setup of clusters and the dynamic na-
ture of Liqo peering allow for a high degree of adaptability, enabling the inclusion or
exclusion of clusters without compromising the entire architecture. This is crucial
for evolving system requirements and expanding infrastructure without significant
overhauls. Scalability remains anchored to the official limits present in the Kuber-
netes documentation, although it has increased considerably since the set of nodes
within a cluster is perceived as a single virtual node.

• Comparison with Traditional Kubernetes: Throughout the evaluations, it was
evident that the logical domain grouping implementation leveraging Liqo provided
performance metrics on par with those of traditional Kubernetes architectures. Ad-
ditionally, the introduction of Liqo offers several benefits, such as isolated operation
in case of disconnections, enhanced central control over the entire network, and the
ability to manage cluster failures that a Kubernetes-only architecture cannot easily
implement.

In conclusion, the analyses confirm that the chosen implementation of logical domain
grouping offers a robust, scalable, and efficient solution for managing distributed systems.
The minimal overhead introduced by Liqo, coupled with its advanced features, makes
it a valuable addition to Kubernetes-based infrastructures, ensuring high resilience and
optimal performance.

55

56

Chapter 8

Conclusion and future work

The introduction of Liqo technology, used to implement the paradigms of Edge and Fog
computing within the Smart Grid model, has not only increased scalability by condensing
multiple nodes into a single virtual node but has also enabled the introduction of new
functionalities that were previously difficult to implement. For example, in case of discon-
nection from the central network, the two parts of the network can operate autonomously,
with the capability to deploy new applications until reconnection with the central network
(island-mode operation).

The chosen topology in this thesis, humorously called the "winning" topology, for real
implementation is the partial mesh star topology. Compared to the other possible archi-
tectures, this topology efficiently satisfies all constraints, all constraints, stemming from
the transparent operation of non-multi-cluster native applications, such as distributed
database systems, and from design constraints like seeking the lowest possible power con-
sumption and high resilience. These results were described in the previous chapter, com-
paring them with the baseline solution values and demonstrating their similarity, without
significant latency increases despite increased complexity.

Obviously, this solution does not represent a panacea for all issues; for instance, it is
still quite limited in terms of scalability. There are various potential research direction,
such as:

• Hierarchical physical topology: Explore the possibility of introducing a hierarchical
physical layer, as exemplified in the second implementation in Chapter 6 or by mod-
ifying the Liqo code to support the offloading of a namespace that has already been
offloaded, while maintaining the high level of reliability demonstrated in this thesis.

• Updating the software: This study utilized software versions from previous research
to compare results and showcase the efficiencies enabled by Liqo technology. open-
PDC v2.4 currently only supports Kubernetes until v1.24 and Percona until v1.11.0.
Upgrading this software would enable the use of recent functionalities, such as the
use of the Kubernetes spread operator in the newer versions of Percona, reducing
complexity when creating logical topologies with labels and affinity.

• Security: Future research could focus on investigating the security implications of

57

Conclusion and future work

deploying such decentralized systems and the potential damages that various cyber
attacks can cause. Furthermore, collaboration with industry partners could facilitate
the transition from theoretical research to practical, real-world applications.

In conclusion, this thesis has demonstrated that integrating Liqo technology into Smart
Grid models significantly enhances scalability and functionality comparing to the previous
solutions. While challenges remain, the groundwork laid here provides a solid foundation
for future advancements. The continued evolution and optimization of these technolo-
gies promise to drive significant improvements in the efficiency and resilience of critical
infrastructures.

58

Bibliography

[1] Wikipedia. Dispacciamento, 2024. URL https://it.wikipedia.org/wiki/
Dispacciamento. (citation on page 9).

[2] Terna. Terna, 2024. URL https://www.terna.it/it. (citation on page 9).

[3] Kubernetes documentation. Kubernetes overview, 2024. URL https://kubernetes.
io/docs/concepts/overview/. (citation on page 13).

[4] RAFT documentation. Raft algorithm, 2024. URL https://raft.github.io/. (ci-
tation on page 15).

[5] Sidero Labs. Split brain scenario, 2024. URL https://www.siderolabs.com/blog/
why-should-a-kubernetes-control-plane-be-three-nodes/. (citation on page
15).

[6] K3s documentation. Best environment for k3s, 2024. URL https://docs.k3s.io/.
(citation on page 15).

[7] Sebastian Böhm and Guido Wirtz. Profiling lightweight container platforms: Mi-
crok8s and k3s in comparison to kubernetes., 2021. (citation on page 16).

[8] Andrea Cazzaniga Fabrizio Garrone Roberta Terruggia Riccardo Lazzari Ste-
fano Galantino, Fulvio Risso. An edge-based architecture for phasor measurements in
smart grids. 2022 AEIT International Annual Conference (AEIT), pages 1–6, 2022.
(citation on page 21).

[9] Sebastiano La Terra. Analysis of the resilience of monitoring services in smart grid.
2022. URL https://webthesis.biblio.polito.it/24583/. (citation on page 21).

[10] K3s documentation. Large cluster consideration, 2024. URL https://kubernetes.
io/docs/setup/best-practices/cluster-large/. (citation on page 22).

[11] Liqo documentation. Liqo definition, 2024. URL https://docs.liqo.io/en/v0.
11.0-rc.3/. (citation on page 25).

[12] Liqo documentation. Liqo ctl tool, 2024. URL https://docs.liqo.io/en/v0.11.
0-rc.3/installation/liqoctl.html. (citation on page 27).

59

https://it.wikipedia.org/wiki/Dispacciamento
https://it.wikipedia.org/wiki/Dispacciamento
https://www.terna.it/it
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://raft.github.io/
https://www.siderolabs.com/blog/why-should-a-kubernetes-control-plane-be-three-nodes/
https://www.siderolabs.com/blog/why-should-a-kubernetes-control-plane-be-three-nodes/
https://docs.k3s.io/
https://webthesis.biblio.polito.it/24583/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://docs.liqo.io/en/v0.11.0-rc.3/
https://docs.liqo.io/en/v0.11.0-rc.3/
https://docs.liqo.io/en/v0.11.0-rc.3/installation/liqoctl.html
https://docs.liqo.io/en/v0.11.0-rc.3/installation/liqoctl.html

BIBLIOGRAPHY

[13] Giuseppe Alicino. Prototyping a cloud resource broker. 2021. URL https:
//webthesis.biblio.polito.it/21145/. (citation on page 28).

[14] Riccardo Medina. Issue distributed database, 2024. URL https://github.com/
liqotech/liqo/issues/2386. (citation on page 28).

[15] Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti, and Antonio Man-
zalini. Computing without borders: The way towards liquid computing. IEEE Trans-
actions on Cloud Computing, 11(3):2820–2838, 2022. (citation on page 34).

[16] Crownlabs authors. Crownlabs history, 2024. URL https://crownlabs.polito.it/
about/. (citation on page 45).

[17] e-distribuzione. Piano di sviluppo 2023, page 101, 2023. URL https:
//www.e-distribuzione.it/content/dam/e-distribuzione/documenti/
piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf. (citation on page
48).

[18] e-distribuzione. Piano di sviluppo 2023, page 51, 2023. URL https:
//www.e-distribuzione.it/content/dam/e-distribuzione/documenti/
piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf. (citation on page
48).

[19] Sebastiano La Terra. Analysis of the resilience of monitoring services in smart grid.
pages 45–47, 2022. URL https://webthesis.biblio.polito.it/24583/. (citation
on page 53).

60

https://webthesis.biblio.polito.it/21145/
https://webthesis.biblio.polito.it/21145/
https://github.com/liqotech/liqo/issues/2386
https://github.com/liqotech/liqo/issues/2386
https://crownlabs.polito.it/about/
https://crownlabs.polito.it/about/
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/piano-di-sviluppo/Piano_di_sviluppo_2023_ARERA.pdf
https://webthesis.biblio.polito.it/24583/

	List of Tables
	List of Figures
	Introduction
	Energy section
	Thesis objectives
	Overview

	Kubernetes
	Basic concepts
	K3s

	State of the art
	Smart Grid components
	Area Control Center
	Station
	Phasor Measurement Units
	Phasor Data Concentrator
	Grid State Estimation

	Multi-master station architecture
	Local extended solution limitations

	Liqo
	Basic concepts
	Network fabric
	Peering
	Offloading
	Storage fabric

	Distributed DB interaction

	General topology Partial Mesh Star
	Cyber-Physical Architecture
	Logical hierarchy using labels and affinity
	Independent Groups
	Dependent Groups

	Partial Mesh Star Analysis

	Possible implementations
	Logical domains
	Logical domains analysis

	Multi-level logical domains
	Multi-level Logical domains analysis

	Domain peering evaluation
	Test Environment
	Crownlabs
	Nodes configuration
	Software configuration
	Cluster configuration

	Latency
	Latency test

	K3s reaction time
	Stream reaction time
	Pod failure
	Cluster failure

	Overall evaluation

	Conclusion and future work

