
POLITECNICO DI TORINO
Master’s Degree course in LM-32 (DM270) - Computer Engineering

(Software)
Department of Control and Computer Engineering (DAUIN)

Master of Science’s Thesis

“Agent Code, James Code”:
AI-based code generation

framework

Supervisor
Prof. Riccardo Coppola

Candidate
Giovanna Di Benedetto

matricola: 306136

Internship Tutor
Dott. Gianmarco Dragonetti

Academic year 2023-2024

This work is subject to the Creative Commons Licence

Summary

In contemporary society, Artificial Intelligence (AI) permeates numerous
facets of daily life, including healthcare, manufacturing, and education. How-
ever, the fields of computer science and computer engineering have tradition-
ally emphasized enhancing efficiency over practical implementation in daily
environments, focusing on areas such as algorithm optimization, network traf-
fic management, and compiler optimization. This thesis addresses this gap
by constructing a framework aimed at aiding developers in resolving GitHub
issues through AI-driven solutions. By doing so, developers can interact with
AI in a more straightforward and practical manner.

Central to this framework is an Agent, serving as the interface between hu-
man requests and AI responses. Adapted from the open-source LangChain
framework, this Agent leverages AI to analyze issues, generate code solu-
tions, develop corresponding unit tests (if required), and execute necessary
code modifications post-review. By interfacing directly with GitHub via its
toolkit, the framework employs GitHub Actions for code building and GitHub
Webhooks to trigger Agent operations.

Notably, the framework’s AI component relies on OpenAI’s ChatGPT,
renowned for its sophistication and versatility. Nevertheless, this framework
is built with the aim of making it as customizable as possible to accommodate
various AI models as they evolve. Since GitHub is the most well-known and
widely used service for hosting code, the Agent’s integration with GitHub
ensures a seamless workflow for developers.

This thesis not only presents a practical solution for streamlining issue
resolution on GitHub but also underscores the evolving landscape of AI in
computer science. As the AI domain continues to burgeon, this framework
represents a dynamic avenue for future exploration and refinement. The
project developed through this internship and analyzed in this thesis is prone
for evolution in the near future, driven by the ongoing advancement of AI

3

technology and the increasing incentive to study this growing branch of com-
puter science.

4

Contents

List of Figures 7

1 Introduction 9
1.1 Purpose of the Thesis . 9

2 Background 11
2.1 Artificial Intelligence (AI) . 11

2.1.1 What is AI? . 11
2.1.2 Artificial Intelligence applications 13
2.1.3 Natural Language Processing 30
2.1.4 Machine Learning and Deep Learning 31

2.2 OpenAI and ChatGPT . 31
2.2.1 OpenAI . 32
2.2.2 ChatGPT . 32

2.3 Fine-Tuning and Few-Shots 34
2.3.1 Fine-Tuning . 36
2.3.2 Few-Shots . 37

2.4 Software testing . 39
2.4.1 Unit testing . 41
2.4.2 Other types of software testing 43

2.5 Spring Boot . 45
2.6 GitHub . 47

3 Methodology 51
3.1 A brief explanation . 51
3.2 Analysis of different GPT models 53

3.2.1 Analyzed models . 54
3.2.2 Static analysis parameters 55
3.2.3 Static analysis methodology 56

5

3.2.4 Static analysis results 58
3.3 Creation of the Spring Boot application 60
3.4 Giving context to ChatGPT 61

3.4.1 Extraction of main information 62
3.5 LangChain . 62

3.5.1 LangChain Agent . 65
3.5.2 GitHub Integration . 67
3.5.3 GitHub Agent - a coding perspective 69
3.5.4 Note on LangChain usage 70

3.6 GitHub Webhooks . 73
3.7 GitHub Actions . 76
3.8 GitHub branch protection rules 80

4 Results 83
4.1 Structure of the application 83

5 Conclusions and Future Work 91

6

List of Figures

2.1 OpenAI logo . 32
2.2 GPT performance on academic and professional exams [109] . 34
2.3 ChatGPT 3.5 and 4 - overview of main differences 35
2.4 Conversational chat format example 37
2.5 OpenAI Fine-tuning UI (1) . 38
2.6 OpenAI Fine-tuning UI (2) . 39
2.7 OpenAI Playground: 2-shots example inserted by the user, UI

before the model’s answer . 40
2.8 OpenAI Playground: 2-shots example inserted by the user, UI

after the model’s answer . 41
2.9 Agile testing pyramid . 42
2.10 Spring Boot logo . 45
2.11 Spring Boot - MVC pattern 46
2.12 GitHub logo . 47
2.13 GitHub - basic workflow . 48
2.14 GitHub - articulate workflow 49
3.1 JaCoCo output example . 58
3.2 PITest output example . 58
3.3 Static analysis - Case 1 . 59
3.4 Static analysis results (coverage not considered) 59
3.5 Static analysis results (coverage considered) 59
3.6 Fine-tuning dataset - single message overview 61
3.7 LangChain logo . 63
3.8 LangChain - main overview 63
3.9 LangChain - tools overview 65
3.10 LangChain Agent - flow overview 66
3.11 LangChain Agent - details on flow 66
3.12 GitHub App - overview . 67
3.13 GitHub App - permission overview 68
3.14 GitHub App - settings overview 69

7

3.15 LangChain Agent - preparation overview 70
3.16 GitHub toolkit - overview . 71
3.17 LangChain Agent - input overview 72
3.18 LangChain Agent - invocation overview 72
3.19 AgentExecutor - pseudocode 72
3.20 LangChain - library error example 72
3.21 LangChain - library error solution 73
3.22 GitHub Webhooks logo . 73
3.23 GitHub Webhook - overview 75
3.24 GitHub Webhook - detail on issues 76
3.25 GitHub Webhook - restriction to opened/reopened issue . . . 76
3.26 GitHub Actions logo . 77
3.27 GitHub Action - Workflow run overview 78
3.28 GitHub Action - Workflow code 79
3.29 Merge status - Code to be reviewed 80
3.30 Merge status - Changes requested by the reviewer 81
3.31 Merge status - Review approved 81
4.1 Final application flow . 84
4.2 Code Gen Agent - Start of the application 85
4.3 Code Gen Agent - Example of file update 85
4.4 Code Gen Agent - Creation of pull request 86
4.5 Code Gen Agent - Overview of commits 86
4.6 Code Gen Agent - Creation of review request 86
4.7 Unit Test Agent - Creation of unit tests 87
4.8 Unit Test Agent - Overview of commits 87
4.9 Successful conclusion of the Action - Bug Fix Agent not activated 87
4.10 Example of changes requested 88
4.11 Review Agent - Solving requested changes 88
4.12 Review Agent - Commits overview and creation of a new re-

view request . 89
4.13 Review Agent - Final thought 89
4.14 Merging of PR created by the framework 89

8

Chapter 1

Introduction

1.1 Purpose of the Thesis
The objective of this thesis is to take advantage of artificial intelligence (AI,
2.1.1) to automate several critical steps in the software development process,
such as writing unit tests or developing code to solve issues opened in a
GitHub repository.

The project of this thesis was developed during an internship at Blue Re-
ply1, from February to July 2024.

The initial objective of this thesis was to take advantage of artificial intel-
ligence to do in a faster way activities that may take more time than needed.

One of these activities is writing unit tests since it is needed to follow the
software development best practices. However, most of the time, these tests
are not done correctly or may cause a waste of time in terms of working hours.

To solve this problem, it has been conducted an analysis (3.2.3) on how
the AI behaves when writing Java unit tests (from a qualitative point of
view). If the performance had been satisfying, the second part of the thesis
would have been doing the opposite process: making the AI generate code
starting from unit tests.

Nevertheless, this initial idea was changed to a project that could be poten-
tially used more in a working environment: an AI-based code generation

1https://www.reply.com/blue-reply/it/

9

1 – Introduction

framework, that uses various GitHub features (webhooks, apps, actions) to
automate the code generation, the unit test generation and the bug fixing.

Since the tools used are called Agents (3.5.1), this thesis has the title
“Agent Code, James Code”, to make wordplay with the famous movie
series: as James Bond’s abilities have been crucial to complete his missions,
the Agents in this project are the building block of the entire framework and
represent a way in which the artificial intelligence can lighten the human
workload and, in general, can be used for a good purpose.

In the following sections, there will be an explanation of how everything
is built:

• Chapter 2 (Background) answers the question “what is this?” : there is
an explanation of all the concepts that will be used in this project, such
as AI, unit testing and GitHub interaction;

• In chapter 3 (Methodology), the attention is on “how it is done?” : how
the topics explained in the previous chapter take place inside the frame-
work, how the thesis ideas evolved, the difficulties met during the various
analyses and implementations and the workarounds used to reach the
solution;

• Chapter 4 (Results) contains the whole structure and flow of the final
application, the solved puzzle made by the correct joint of the elements
presented in the preceding chapter, and answers to “what is the out-
come?” ;

• Lastly, chapter 5 (Conclusions and Future Work) contains the answer to
“is there anything to add?” : this project is just the start of something
that could be a turning point in the software development field and
many areas can help this basic framework to become the next big thing
in computer science.

10

Chapter 2

Background

2.1 Artificial Intelligence (AI)
Before analyzing in depth what has been done during this thesis project, it
is crucial to explain the main organism involved, with all its benefits and
the difficulties a person may encounter when interacting with it: Artificial
Intelligence.

2.1.1 What is AI?
Even though it is becoming more and more common to use it, it is quite dif-
ficult to define what AI is: based on the way it is used, it can be a blessing,
since it makes it possible to do slow tasks in a faster way, as well as a curse,
since the outcome of the task done by the AI may be wrong.

So, what is AI? Artificial intelligence is a field of science concerned
with building computers and machines that can reason, learn, and act in
such a way that would normally require human intelligence or that involves
data whose scale exceeds what humans can analyze [1, 2].

As stated by Bharadiya [3], artificial intelligence (AI) is a technique for
simulating human intellect using a collection of algorithms to create a new
computer that can accomplish similar tasks to humans while also performing
parallel computing.

AI is a broad field that encompasses many different disciplines, includ-
ing computer science, data analytics and statistics, hardware and software

11

2 – Background

engineering, linguistics, neuroscience and even philosophy and psychology.

On an operational level for business use, AI is a set of technologies that are
based primarily on machine learning and deep learning (2.1.4). These disci-
plines involve the development of AI algorithms, modeled after the decision-
making processes of the human brain, that can learn from available data and
make increasingly more accurate classifications or predictions over time.

Artificial Intelligence can be distinguished into two kinds: weak AI and
strong AI [4].

Weak AI (also known as narrow AI) is AI trained and focused on per-
forming specific tasks. Since “narrow” is a better term to describe how strong
this AI is, it is also generally known as artificial narrow intelligence (ANI).
It does not exhibit any creativity, nor does it have the explicit ability to
independently learn in the universal sense. Its learning abilities are mostly
limited to training in detection patterns (machine learning) or comparison
and search operations with large quantities of data. Using weak AI, clearly
defined tasks can be handled based on a defined methodology to solve more
complex problems which, however, are recurrent and precisely specified. The
benefits of weak AI are especially relevant in automation and control pro-
cesses as well as in speech recognition and processing. To make a few exam-
ples, it is the basis of Amazon’s Alexa, Apple’s Siri and self-driving vehicles.

On the other side, strong AI is the basis of artificial general intelligence
(AGI) and artificial super intelligence (ASI), two theoretical concepts that
may have practical applications in the future. The realization of strong AI
is not yet within reach: the objective underlying the idea of strong AI is
to allow natural and artificial intelligence media (e.g. humans and robots)
to establish a level of mutual understanding and trust when working in a
joint field of activity. Thus, efficient human-machine collaboration could be
learned and facilitated. Strong AI can independently recognize and define
tasks and independently develop and expand upon knowledge in the corre-
sponding application domain. Strong AI studies and analyses problems to
find an adequate solution and the problems can also be new or creative.

• AGI (also known as general AI) is a theoretical form of AI where a
machine would have an intelligence equal to humans; it would be self-
aware with a consciousness that would have the ability to solve problems,

12

2.1 – Artificial Intelligence (AI)

learn and plan for the future;

• ASI (also known as superintelligence) aims to surpass the intelligence
and ability of the human brain. To be classed as an ASI, the technology
would have to be more capable than a human in every single way pos-
sible. This means that not only these AI tools can carry out tasks, but
they would even be capable of having emotions and relationships [5].

2.1.2 Artificial Intelligence applications
There are numerous real-world applications for AI systems and it is an envi-
ronment that will evolve rapidly, covering many aspects of daily life. These
applications are becoming increasingly common in a wide variety of indus-
tries (healthcare, finance, retail, manufacturing, etc.). Generally, artificial
intelligence can be applied in the following ways:

• Natural Language Processing (NLP): it allows computers to under-
stand human language. This technology is used in a variety of applica-
tions (machine translation, spam filtering, etc.) (2.1.3);

• Computer vision: it allows computers to identify and interpret visual
content. This technology is used in a variety of applications, such as
self-driving cars, facial recognition and object detection;

• Machine Learning: it allows computers to learn from data and im-
prove their performance over time. This technology is used in applica-
tions, such as predictive analytics and recommendation systems (2.1.4);

• Robotics: this is the branch of AI that deals with the design, construc-
tion and operation of robots. Robots are used in a variety of applications,
such as manufacturing, healthcare and space exploration.

Business Intelligence

Going into detail, AI is becoming increasingly important in business intel-
ligence: AI-powered tools can help companies collect, analyze and see data
more efficiently. As a direct consequence, there is an increment in produc-
tivity, improvement in decision making and reduction of costs.

AI can be included in this field through data collection (including struc-
tured data, such as databases, and unstructured data, such as text docu-
ments); data analysis (to identify patterns and relationships), data visual-
ization (to understand data more easily) and in decision-making (thanks to

13

2 – Background

insights and recommendations generated by AI models).

As stated by Bharadiya [3], business intelligence (BI) is a broad cat-
egory of information technology (IT) solutions that include tools for ac-
quiring, analyzing, and reporting data to users about an organization’s
performance and its surroundings. These IT solutions are among the highest-
priority investment opportunities.

It is a strategy and method of boosting corporate performance by
giving strong support to executive decision-makers, allowing them to have
actionable information at their fingertips. BI tools are considered a technol-
ogy that improves the effectiveness of company operations by increasing the
value of corporate data and, as a result, the way that data is used.

BI technology attempts to assist individuals in making better busi-
ness choices by providing accurate, current, and relevant data when needed.
Competitive firms gather BI to analyze the environment to achieve a lasting
competitive edge, and in some cases, such intelligence may be regarded as a
valued core capability.

Analysts and managers may use it to determine which modifications are
most likely to respond to shifting patterns. It’s evolved into a paradigm for
analyzing data and assisting decision-making units.

Kaushik [6] affirms that using Artificial Intelligence in marketing would
benefit entrepreneurs with higher returns and responses from customers
and make them achieve strong competition in the market. Other than mar-
keting it can renovate the business with invention and attractive ideas.

Artificial Intelligence is considered essential for business houses as it pre-
dicts choices of the customer and helps sales expansion through data analysis
and automation.

Lastly, Pallathadka et al. [7] state that in the industry of finance and e-
commerce, Artificial Intelligence has been used for the achievement of better
customer experience, effective management of supply change, improved effi-
ciency of operation of business, reduction in mate size having the main aim of
designing standards, consistent and dependable methods of product quality
control, and searching new methods of serving and reaching customers at low
maintenance costs.

14

2.1 – Artificial Intelligence (AI)

Healthcare

Another field in which AI help is becoming dominant is healthcare: it can
help doctors in many ways, such as disease diagnosis (by analyzing patient
data and identifying patterns), treatment development (identifying patterns
given by large amounts of patient data, to develop new therapies) and per-
sonalized care (the patient’s specific needs can be satisfied through a deep
analysis of the data and a resulting treatment plan).

With deep learning algorithms meeting, and in some cases surpassing, the
performance of clinicians, AI is positioned to have a major role in a range
of healthcare delivery areas, including diagnostics, prognosis, and patient
management [8, 9].

Pharmaceutical firms have benefited from AI in healthcare by speeding up
their drug discovery process and automating target identification. Artificial
Intelligence (AI) can also help to eliminate time-consuming data monitoring
methods. Shaheen’s study [10] also indicates that AI-assisted clinical trials
are capable of handling massive volumes of data and producing highly accu-
rate results. Medical AI companies develop systems that assist patients at
every level. Patients’ medical data is also analyzed by clinical intelligence,
which provides insights to assist them improve their quality of life.

Sharing pre-trained and approved AI models could help solutions adapt
faster to different situations. Models used to diagnose illness from pictures,
forecast patient results, filter misinformation and disinformation depending
on propagating patterns through social media, and distill knowledge graphs
from massive collections of scholarly papers are instances of algorithms that
could be broadly useful [11, 12, 13].

Through his study, Woo [14] noted that applying predictive AI models
and advanced analytics to unlock real-world data (RWD) can help researchers
better understand diseases, find relevant patients and important investi-
gators, and enable revolutionary clinical study designs.

In combination with an efficient digital infrastructure, clinical trial data
might be cleansed, aggregated, coded, preserved, and maintained using AI
algorithms [15].

AI-aided technologies and their applications can provide lifestyle inter-
ventions and daily reminders based on an individual’s vital signs through
digital devices. Within healthcare organizations, AI-based technologies are

15

2 – Background

set to significantly transform how healthcare systems operate, opti-
mize, and interact with patients, and provide care services to increase the
overall efficiency of patient outcomes [16].

For example, Dawes et al. [17] reported how patients with high blood
pressure and lung disease can be treated with more accurate data based on
an AI-supported magnetic resonance imaging (MRI)-based algorithm of car-
diac motion.

AI-enabled devices, such as personal assistants could significantly in-
fluence the monitoring and support of patients at times when medical staff
are unavailable. AI-supported smart robots can also perform operations and
augment physicians’ work with certain diagnoses, treatment methods, cost
and time reduction, and improved response time to patients’ needs [18].

From a pharmaceutical point of view, Díaz et al. [19] noted that AI tech-
nology in healthcare has helped companies speed up their drug discovery
process. It, on the other hand, automates the identification of targets.
In addition, by analyzing off-target compounds, AI in healthcare 2021 aids
in drug repurposing.

AI can overcome limitations with traditional rules-based clinical decision
support systems and enable better diagnostic and decision support. Oppor-
tunities to automate triage and screen and administer treatment are also
becoming a reality. AI embedded in smart devices, supported by the Inter-
net of Things and fast Wi-Fi, could bring AI-enabled health services into
patient’s homes, thus democratizing health care [8, 20, 21].

As a result, clinical trial automation has proven to be a benefit for AI
and the healthcare business. Furthermore, Artificial Intelligence and health-
care assist in the elimination of time-consuming data monitoring procedures.
Additionally, AI-assisted clinical trials handle large amounts of data and pro-
duce very accurate outcomes [10].

Artificial intelligence has the potential to help healthcare providers in a
variety of ways, including patient treatment and administrative tasks: health-
care staff is often inundated with much paperwork in the care process. This
workload has prompted the industry to transition to electronic systems that
integrate and digitize medical records, which are aided by AI-based tech-
nology. In addition, the use of chatbots has been identified as a potentially
effective tool for engaging in conversation with patients and family members

16

2.1 – Artificial Intelligence (AI)

in hospitals [22].

The continuous research in the use of AI systems will greatly augment the
work of medical staff as they can alert some areas that humans often miss or
help minimize medical errors during the patient treatment.

If proponents of these strategies are correct, AI and machine learning will
bring in a new era of drug development that is faster, cheaper, and more
effective.

The expanded use of AI is undoubtedly creating a major change in the
healthcare service market and the spread rate should increase as advances in
AI accelerate in the future [16, 23].

Education

The third main field in which AI can be used in an efficient way is edu-
cation: it can improve the students’ engagement (by providing interactive
and engaging learning experiences), automate administrative tasks (such as
grading papers or scheduling classes) and personalized learning (identifying
areas where the student needs additional support by tracking their progress).

With the thriving of AI technology, its applications in education have
been increasing, with promising potential to provide customized learning,
offer dynamic assessments and facilitate meaningful interactions in online,
mobile or blended learning experiences [24].

Hwang et al. [25] investigated the effects of a fuzzy expert system on
elementary students’ math learning outcomes in Taiwan. In this study, stu-
dents in the experimental group outperformed those in the other two groups
in mathematics learning achievement. In addition, the adaptive learning
model with affective and cognitive performance analysis was found effective
in reducing math anxiety among fifth graders in Taiwan.

One of the main contributions of AI in the world of education is the
usage of intelligent tutors. Intelligent tutors or agents provide customized,
timely, and appropriate materials, guidance, and feedback to learners. With
great potential, research indicates mixed implications regarding its effects on
learning.

A study with high school students in the USA found that connecting
math to students’ personal interests that were not school-related would in-
crease learning in an intelligent tutoring system, and thus highly customized

17

2 – Background

personalization could promote learning and thus may lead to student success
[26].

Artificial Intelligence in Education (AIEd) research carried out by
Dias et al. [27] suggested that dynamic, holistic expert systems can help with
pedagogical planning and fully unleash the potential of learning manage-
ment systems (LMS) for teaching and learning. Their study proved that
the structural characteristics of an expert system can model how LMS users
interact with it, and thus facilitate and improve the teaching and learning
experiences on the LMS.

A study with over 1300 participants in Hong Kong investigated an AI-
enhanced e-learning system called SmartTutor [28]. It was found that cus-
tomized learning materials and resources were well received and both stu-
dents and faculty confirmed that they were helpful in the teaching/learning
process.

Hwang et al. also demonstrated the potential of AI in addressing learners’
affective or emotional needs, which in turn may improve learning. It also
suggests the need for more inclusive designs of AIEd technologies to address
students’ varied needs and preferences.

A similar concept of the intelligent tutor is the Teaching Assistant (TA).
Gulz et al. [29] indicated that young children perceived the TA as an inde-
pendent entity, and researchers thus suggested that TA was promising in
facilitating metacognitive scaffolding.

Research also suggested that TA with a similar level of self-efficacy with
target students may help improve learners’ performance in math [30].

Another useful feature of AIEd is the development of intelligent feed-
back systems, which can also measure how people learn, in addition to what
is learned. Machine learning, for example, can predict at-risk or marginal
college students as well as gifted students with high accuracy, which then
empowers educators to intervene accordingly for student success [31, 32, 33].

Regarding this, Kose [34] found that personalized mobile learning, via
AI and Augmented Reality (AR), improved learning experiences as well as
learning outcomes in open computer education.

In another study, machine learning algorithms were used to predict un-
dergraduate students’ attitudes toward educational applications of cloud-
based mobile computing services by their information management behaviors
with 74% accuracy [35].

Lastly, a study on a smart glass system also confirmed that AI technology

18

2.1 – Artificial Intelligence (AI)

with visualizations helped both children and adults with autism, by serving
as a social communication aid [36].

To sum up, for learners, AIEd may facilitate varied interactions, increase
learner engagement, generate adaptive learning materials, offer meta-cognitive
prompts, provide enriched learning environments, and improve learning out-
comes. For educators and administrators, AIEd may provide predictive
models, identify gifted or at-risk students, monitor the learning progress,
create personalized learning materials, assessments and feedback, and an-
alyze scaled data instantly for evaluation or administrative purposes. AI-
enhanced learning environments may improve the LMS for both instructors
and students through expert systems, generate visual feedback, and enrich
the learning experience with visualization and immersive technologies.

Agriculture

Additionally, it can be used in agriculture. Here it can improve crop yield
(by analyzing data on soil conditions or weather patterns), reduce labor costs
(by automating tasks such as field irrigation) and protect the environment
(by monitoring and managing natural resources, such as water and soil).

Agriculture entails a variety of processes and phases, the majority of which
are performed manually. AI can help with the most complex and routine
jobs by supplementing existing technology. When integrated with other
technology, it can gather and evaluate massive data on a digital platform,
determine the best course of action, and even initiate that action [37].

Farmers can create more output with less input, improve the quality of
their product, and ensure a faster time to market for their harvested crops
owing to AI-based technological solutions [38].

By analyzing soil management data sources such as temperature, weather,
soil analysis, moisture, and historic crop performance, AI systems are able to
provide predictive insights into which crop to plant in a given year and when
the optimal dates to sow and harvest are in a specific area, thus improving
crop yields and decrease the use of water, fertilizers, and pesticides.

Via the application of AI technologies, the impact on natural ecosystems
can be reduced, and worker safety may increase which in turn will keep food
prices down and ensure that the food production will keep pace with the
increasing population [39].

19

2 – Background

The first way to adopt AI in agriculture is soil management, since it is
one of the most important parts of the agricultural process. To do so, there
are various techniques:

• Management-oriented modeling (MOM) minimizes nitrate leaching
as it consists of a set of generated plausible management alternatives, a
simulator that evaluates each alternative, and an evaluator that deter-
mines which alternative meets the user-weighted multiple criteria. MOM
uses “hill climbing” as a strategic search method that uses “best-first”
as a tactical search method to find the shortest path from start nodes
to goals [40];

• The second way is to classify soil according to associated risks: knowl-
edge of engineering for constructing the Soil Risk Characterization
Decision Support System (SRC DSS) involves knowledge acquisition,
conceptual design and system implementation [41];

• Lastly, an artificial neural network (ANN) model can be used to
predict soil texture (sand, clay and silt contents) based on attributes
obtained from existing coarse-resolution soil maps combined with hy-
drographic parameters derived from a digital elevation model (DEM)
[42].

Crop management is the second field in which AI can be used in agricul-
ture. Precision crop management (PCM) is an agricultural management
system designed to target crop and soil inputs according to field require-
ments to optimize profitability and protect the environment. PCM has been
hampered by the lack of timely, distributed information on crop and soil
conditions [43].

PROLOG is a technique that utilizes weather data, machinery capacities,
labor availability, and information on permissible and prioritized operators,
tractors, and implements for evaluating the operational behavior of a farm
system. It also estimates crop production, gross revenue, and net profit for
individual fields and for the whole farm. In short, it removes less-used farm
tools from the farm [44].

Other than crop management, another related way to use AI is crop pre-
diction methodology. This is used to predict the suitable crop by sensing
various soil parameters and parameters related to the atmosphere. Param-
eters like soil type, PH, nitrogen, phosphate, potassium, organic carbon,

20

2.1 – Artificial Intelligence (AI)

calcium, magnesium, sulfur, manganese, copper, iron, depth, temperature,
rainfall and humidity [45].

About harvesting, a study has been conducted to analyze how cucum-
ber growth changes. The use of AI in harvesting cucumber comprises the
individual hardware and software components of the robot including the au-
tonomous vehicle, the manipulator, the end-effector, the two computer vision
systems for detection and 3D imaging of the fruit and the environment and,
finally, a control scheme that generates collision-free motions for the manip-
ulator during harvesting [46].

The last aspect related directly to the field is weed management. A sys-
tem can utilize an unmanned aerial vehicle (UAV)-imagery to divide images,
compute and convert to binary the vegetation indexes, detect crop rows, op-
timize parameters and learn a classification model. Since crops are usually
organized in rows, the use of a crop row detection algorithm helps to sepa-
rate properly weed and crop pixels, which is a common handicap given the
spectral similitude of both [47].

Accuracy agriculture uses AI to help identify plant ailments, irritations,
and helpless plant nutrition on ranches. Weeds may be detected and targeted
using simulated intelligence sensors, which can then be used to identify which
herbicides to administer in the appropriate buffer zone. Pesticides and other
potentially harmful substances are kept out of our food by prohibiting their
misuse [48].

From an analytical point of view, data analytics in agriculture can result
in large production gains and significant cost reductions. Farmers can acquire
recommendations based on well-sorted real-time information on crop needs
by merging AI and big data. As a result, guesswork will be eliminated,
allowing for more exact farming methods such as irrigation, fertilization,
crop protection, and harvesting [49].

Predictive analytics has the potential to be a game changer. Farmers
can collect and process substantially more data using AI than they could
without it, and they can do so much faster. Farmers may use AI to handle
critical difficulties including analyzing market demand, projecting pricing,
and deciding the best time to sow and harvest [50].

Farmers can save money by using driverless tractors, smart irrigation and
fertilization systems, smart spraying, vertical farming software, and AI-based

21

2 – Background

harvesting robots. AI-driven farm tools are faster, tougher, and more accu-
rate than any human farm worker [51].

Although AI has made some remarkable improvements in the agricultural
sector, it still has a below-average impact on agricultural activities when
compared to its potential and impacts in other sectors. More still needs
to be done to improve agricultural activities using AI as there are many
limitations to its implementation.

Manufacturing

In the case of manufacturing, AI is directly linked to improvement, in effi-
ciency (by automating tasks), productivity (with production processes opti-
mization) and quality (by detecting defects).

Recent developments in artificial intelligence (AI) and the extensive amount
of generated manufacturing data, known as big data, are allowing the integra-
tion of new kinds of analytics tools in the supply chain, which are optimizing
the way goods are produced.

With such systems, the quality stays constant, which benefits businesses
by increasing their customer satisfaction, while the production time and costs
involved for a product or a service decrease. Several approaches in machine
learning are available for such methods. Supervised learning can be used
to differentiate between certain characteristics for products that have only
a limited number of features. With sufficient data available, it is there-
fore possible to perform a classification task and thus find quality defects
more quickly. These classifications can be optimized by neural networks and
trained to near perfection.

One of the main reasons why preventative maintenance could be useful
is the capability to predict when a mechanical part may require replacing.
Combined with historical evidence, machine learning produces an algorithm
that detects possible problems when they emerge, helping organizational spe-
cialists take the steps required to eliminate problems that can delay or even
interrupt development [52].

In supply chain management (SCM), for example, AI is used to plan
the routing of products optimally and dynamically. With such applications,
AI can be used to achieve many benefits in both manufacturing and SCM.
By optimizing processes and minimizing errors, costs and manpower can be

22

2.1 – Artificial Intelligence (AI)

saved. However, in order to exploit the full potential of AI, a certain level
of commitment is required. The integration of such concepts is a step that
requires investment of resources and time [53, 54].

Machine learning is in general important to optimize the decision-
making process in the flow of goods and services alongside supply chain
management. Properly applied, these methods can lead to time and resource
savings. In particular, the planning process can benefit from well-known sta-
tistical methods that have long been used and extended by ML. Especially
for non-linear problems, ML has a fundamental advantage over more tradi-
tional methods. Despite the clear benefits, a study shows that ML with one
or more supply chain functions, was applied in only 15% of companies. The
lack of data or ignorance about the subject could be reasons why such meth-
ods are not yet much more widespread. These technological developments
influence the purchasing and supply management function and the personnel
deployment and will improve those systems in the future [55, 56, 57].

In sales forecasting for short shelf-life and highly perishable goods, the
advantages of applied AI methods exceed the precision level of conventional
statistical techniques and as a consequence, boost inventory balance across
the chain, minimize stock-out rates, enhance supply and increase profitabil-
ity [58].

In areas such as the stock market or crypto exchanges, trading bots
that use deep reinforcement learning have been successful. Reinforcement
learning algorithms, in contrast to the other machine learning methods men-
tioned earlier, do not need as much data to achieve promising results. This
approach is much more oriented towards human learning behavior of learning
optimal ways through trial and error. The agent needs an environment that
the learner can influence with their own actions. The environment sends him
rewards for his actions. The goal of the agent is to maximize these rewards to
find the best way for the environment. Adapted to the market, the required
parts for a reinforcement learning approach would be clear. The agent would
be the bot, the environment would be the market, and the reward would be
the profit or loss generated [59].

One of the most valuable advantages of AI in manufacturing is real-time
monitoring, as it gives a more accurate description of where and if any
inefficiencies exist in the production chain and what causes the bottleneck.

23

2 – Background

The potential to identify the exact process that needs adjusting, helps or-
ganizations to solve the problem rapidly, resulting in time and cost savings.
The benefits illustrated in the work of Kumar et al. show that cloud manu-
facturing, a real-time monitoring method, may lead to increased efficiency of
resources by recognizing the current machine state, minimizing system down-
time with the help of condition-based real-time tracking through analysis of
the obtained sensor data. This information can then be reused by machine-to-
machine communication protocols and cloud service data retrieval methods.
Moreover, this concept can help small and medium-sized companies (SMEs)
registered in the network, which can benefit from this cooperation and pro-
vide cost-effective production services with short lead times [60].

One of the most widely used methods for incorporating AI in purchasing
departments is to automate and optimize processes. These improve-
ments can be achieved with similar techniques, which are used in supply
chain management. Globalization has also increased the number of markets.
The large range of products makes it difficult for people to keep an overview.
This is where neural networks, which classify the offers according to certain
features, can be used again to make the purchase decision autonomously or
to make it immensely easier. Through this application, companies could
develop a non-negligible advantage over competitors who do not use such
methods [56].

The continuous evolution of smart cities, intelligent medical care, intelli-
gent transportation, intelligent logistics, intelligent robots, self-driving vehi-
cles, smart-phones, intelligent toys, smart communities, and smart economies,
to name but a few, provide a broad market demand and driving force in terms
of new development of both AI technologies and applications [61].

In Customized Manufacturing (CM) factories, automated devices can
potentially make decisions with reduced human interventions. Technologies
such as ML and computer vision are enablers of cognitive capabilities, learn-
ing, and reasoning (e.g., analysis of order quantities, lead time, faults, errors,
and downtime). Product defects and process anomalies can be identified
using computer vision and foreign object detection.

Scheduled maintenance ensures that the equipment is in the best state.
Sensors installed on a production line collect data for analysis with ML al-
gorithms, including convolutional neural networks.

AI technologies still have their limitations when they are formally adopted

24

2.1 – Artificial Intelligence (AI)

in real-world manufacturing scenarios. On the one hand, AI and ML algo-
rithms often have stringent requirements for computing facilities [62].

Today, information and communication technologies are the base of smart
manufacturing and intelligent systems driven by AI are the core of CM.
With the development of AI technologies, new theories, models, algorithms,
and applications - towards simulating, extending, and enhancing human in-
telligence - are continuously developed [63, 64].

The AI-assisted CM is to construct smart manufacturing systems sup-
ported by cognitive computing, machine status sensing, real-time data anal-
ysis, and autonomous decision making. AI permeates through every link of
CM value chains, such as design, production, management, and service [65,
66, 67, 68].

Finance

The powered technologies of AI are useful to predict cash flows, detect frauds,
adjust credit scores, make investment decisions and manage risks.

Starting from risk management, fraud detection and prevention to credit
decisions and financial advisory, everywhere the application of AI is undeni-
able. Artificial intelligence can be used to analyze the customers’ spend-
ing patterns and their regular financial activities based upon which loan
borrowing behavior can be predicted. The technologies are also helpful in the
automation of work by which the financial firms can do the stock market
prediction along with the sales forecasting [69].

The use of AI-powered technologies is very helpful for a finance firm to
manage its daily records and transactions. The continuous increment of
the data and transaction history from a huge population is quite difficult to
manage by using the typical manual process [70].

AI brought automated computerized digital transaction processes where
individuals can get financial services at any time. Moreover, in case any is-
sues arise related to financial transactions or relevant to them, AI also offers
chatbots and virtual assistants to provide the customer support at any time
[71].

25

2 – Background

AI also helps to reduce the repetitive mundane activities that usu-
ally need to be done in the financial sectors. In addition to this, the combi-
nation of machine learning and artificial intelligence effectively makes time-
consuming work faster by using the same data to fill similar blank boxes [72].

AI-based powered technology offers a cybersecurity-based encrypted
environment through which the user can easily transact with full safety. To
turn this concept into reality, the AI-based algorithm boosts company secu-
rity by analyzing and determining the pattern of the normal data and trends
that effectively alter companies on an immediate basis when discrepancies
and unusual activities are detected [73].

Government

As people become dissatisfied with digital government products, artificial in-
telligence (AI) might help close the interaction and service delivery
gap while also enhancing public participation. However, it should not
be employed in governance just because it is a fresh and exciting technolog-
ical advancement. To be effective in their jobs, government officials need to
be prepared to deal with challenges that arise. Artificial intelligence (AI)
should be one tool in a toolbox that may be used to deal with a particular
situation [74].

Adding the advantages of artificial intelligence to government entities
should not necessitate the creation of new systems. Although most of the
advancement in artificial intelligence has come from early government-funded
research, governments may also benefit from the gains being made by corpo-
rations and entrepreneurs in the field.

Chatbots and other types of AI solutions (e.g. machine learning algo-
rithms, process automation and image recognition software) can significantly
reduce the administrative burden of public organizations and advance
the communication between government and citizens within the provision of
public services, which has been problematic for a long time [75].

Artificial intelligence is being used by government entities all around the
globe, from small towns in the United States to whole countries like Japan,
to improve the quality of citizen services. As a result, although future
uses of artificial intelligence in governance are constrained by several factors,
including government resources and the inventiveness and trust of individuals

26

2.1 – Artificial Intelligence (AI)

in their governments, the most obvious and directly favorable possibilities are
those where AI can reduce administrative burdens, assist with the allocation
of resources challenges, and perform extremely difficult tasks [76].

New York Municipal intends to collaborate with IBM’s artificial intelli-
gence platform, Watson, to develop a new customer-management sys-
tem that will reduce the time and effort required to respond to queries and
complaints about city services sent via the city’s 311 portal. Approximately
65 percent of queries are answered on municipal websites, and the app is
utilized to handle those issues [77].

AI is increasingly being applied to citizen inquiries and information
initiatives. They may not fully use AI and machine learning’s powers, but
this shows how AI is transforming this sort of employment for the future. To
better comprehend citizen feedback and queries, AI may be employed in the
future for sentiment analysis of demands and conversations.

In certain circumstances, artificial intelligence (AI) might also be used to
assist with in-person public interaction and service delivery. Because
of AI’s ability to expand citizen access to real-time replies, it may even be
utilized in ordinary occupations to create and fill out paperwork [78].

Retail

Consumer shopping behavior data is used to create a database, which is then
trained repeatedly to improve recognition accuracy and predict what
consumers want so that an enterprise can deliver a more enjoyable shop-
ping experience [79].

New retail could create value-added products and services using
big data analysis and cloud computing. Innovative technology applications
can help retailers predict consumer needs and recommend products based on
their preferences. It also can help suppliers optimize inventory management,
logistics, and transportation [80].

By applying AI-based technologies and services to retail shopping, con-
sumers can have a smoother shopping experience. In most cases, services
and technology applications are still in the pre-purchase phase, concentrating
on collecting consumer shopping data. The purchase phase is less diverse,
but electronic payment and self-checkout are increasingly popular, with over
60 billion dollars in transactions per year [81, 82].

27

2 – Background

The use of AI in supplier management enables suppliers to adapt pro-
duction plans to orders from the retail and to identify suitable suppliers for
the retail. This makes supplier selection more objective and subject to both
qualitative and quantitative performance indicators with AI-based decision
models that take various factors into account and go beyond the traditional
role of pure price reduction [83, 84, 85].

In today’s society, both stationary retail and e-commerce are highly dy-
namic and as the market is changing rapidly, prices are too. Complex anal-
yses and decisions in price management can be carried out with intelligent
and self-learning solutions. Dynamic pricing, as a new development, is a
pricing strategy in which companies adjust prices for products or services in
real-time based on the current market demand. This is a model that calcu-
lates prices using automatic algorithms, as human decisions would not cope
with the required speed and amount of data to be considered [72].

With improvements at the inventory level, it is also possible to reduce
unsold goods and enhance the cash flow (as inventory costs cannot be in-
vested in new products). Another field of application here is the optimiza-
tion of shelf space within the stores and the determination of an optimal
base-stock level so that the shelf always looks filled up and replenishment is
not needed too often. AI algorithms can also optimize the order and delivery
to individual customers [86, 87, 88].

AI systems can interactively monitor and optimize all logistics pro-
cesses and even the product’s characteristics (size, shape and weight) and
order demand factors can be considered during logistics strategy formulation
[89].

The retail chain uses AI during replenishment tasks to reduce waste. On
the customer side, the optimization of the fulfillment processes within
the supply chain can be implemented with AI technologies [90].

A major application of AI within this task set is the replacement or au-
tomation of activities at the point of sales (POS). AI applications
related to serving customers have particularly been developed for POS dig-
itization, automation and advertising. Here, solutions are based on AI in
connection with displays, language assistants and robots [91].

In terms of interactive displays and digital signage, AI is used to adver-
tise products from a store in a targeted manner, related to age, gender,
emotions or objects detected in real-time on the body of a customer [92].

28

2.1 – Artificial Intelligence (AI)

Lastly, another major area of implementation for fraud detection sys-
tems based on AI is credit card and payment fraud. AI-based video surveil-
lance systems with image processing and recognition algorithms register at
real-time speed when goods remain in the trolley and signal the checkout
staff or the supervisor [93, 94].

Transportation

To efficiently create and manage a sustainable transport system, technology
could be of immense support. With urban areas struggling with traffic con-
gestion, AI solutions have emerged in accessing real-time information from
vehicles for traffic management, and utilizing mobility on demand in trip
planning through a single user interface [95].

AI in its current form can solve problems in real time transport thus man-
aging design, operation, schedule and administration of logistical systems and
freight transport. AI techniques allow the utilization of these applications
for the entire transportation management – vehicle, driver, infrastruc-
ture and how these components dynamically offer transport services [96].

Since the past couple of decades, due to the emergence of smart technolo-
gies, various information systems for logistics, routing, mapping and planning
have been developed. These systems have provided increased data processing
capabilities to better plan the transportation process leading to Intelligent
Transportation Systems (ITS) [97].

Building ITS into the transport systems has ensured increased perfor-
mance due to information acquisition, exchange and integration across ve-
hicles, city infrastructure and other related activities. It is observed that
ITS supports the decision-making process for the city authorities and vehicle
users.

To build an effective and efficient mobility ecosystem in a city, a holistic
approach to mobility management is required. Connected vehicles send
data in real time, thus generating immense amounts of data. With trans-
portation demands continuing to increase, data growth through devices also
grows; thus, creating a need for smarter management of road traffic [95].

Connected cars are capable of accessing the Internet through smart
devices and are also capable of communicating with other cars and infras-
tructure. They draw real-time data from multiple sources supporting drivers

29

2 – Background

through stressful operations during driving. These cars ensure safety and
reliability [98].

Safe integration of AI-based decision-making, traffic management, routing,
transportation network services and other mobility optimization tools are
other possibilities for efficient traffic management.

Pattern recognition is used with image processing for automatic incident
detection and identifying cracks in pavements or bridge structures. The
clustering technique is used for identifying specific classes of drivers based on
driver behavior [99].

2.1.3 Natural Language Processing
As a branch of artificial intelligence, Natural Language Processing (NLP),
uses machine learning to process and interpret text and data. Natural lan-
guage recognition and natural language generation are types of NLP [100].

Natural language processing applications are used to derive insights from
unstructured text-based data and give the user access to extracted informa-
tion to generate a new understanding of that data. Some examples of the
usage of NLP in real life applications are the following:

• Content classification: it can be used to classify documents by com-
mon entities or domain-specific customized entities;

• Customer sentiment: entity analysis can be used to find and label
fields within documents to understand customer opinions better;

• Document analysis: here, custom entity extraction is used to iden-
tify domain-specific entities without having to spend time on manual
analysis;

• Healthcare: it helps to improve clinical documentation and automate
registry reporting, to accelerate clinical trials;

• Receipt and invoice understanding: even here the technique of ex-
tracting entities to identify common entries in receipts is useful, since
it can help understand better the relationships between requests and
payments;

• Trend-spotting: aggregating news with text helps marketers extract
relevant content about their brands from online news or articles.

30

2.2 – OpenAI and ChatGPT

2.1.4 Machine Learning and Deep Learning

Machine learning is a sub-discipline of AI, while deep learning is a sub-
discipline of machine learning.

Both algorithms use neural networks to learn from huge amounts of
data. These neural networks are programmatic structures modeled after the
decision-making processes of the human brain. They consist of layers of in-
terconnected nodes that extract features from the data and make predictions
about what the data represents (the interconnections and the distribution of
nodes inside each neural network resemble the human neural system, hence
the name).

The main difference is in the type of neural network used by each discipline:

• Machine learning enables supervised learning: the networks used here
have a specific layout, with an input layer, one or two “hidden” layers
and an output layer. In these cases, the data needs to be structured or
labeled by human experts, so that the algorithm can efficiently extract
features from the data;

• Vice versa, deep learning enables unsupervised learning: the networks
used are deep neural networks, composed of an input layer, three or more
(usually hundreds) hidden layers and an output layout. The “unsuper-
vised” part is given by the fact that the extraction of features is done
automatically, without requiring human intervention. This essentially
enables machine learning at scale.

2.2 OpenAI and ChatGPT

The world of AI is growing more and more and many developers are taking
advantage of its capabilities to automate operations, such as writing a script
in a particular programming language or checking if the code written by a
user presents some flaws or not.

Even the less skilled users from a technological point of view have a general
knowledge of what ChatGPT is, but many need to be aware of the details of
this tool. In the following sections, there will be a basic explanation of what
ChatGPT is and who is behind this powerful tool: OpenAI.

31

2 – Background

2.2.1 OpenAI
One of the most famous artificial intelligence research and deployment com-
panies is OpenAI [101], founded in the United States in 2015, with the
mission to ensure that artificial general intelligence benefits all of humanity.

Figure 2.1. OpenAI logo

It offers many models that can be used to generate text (ChatGPT,
2.2.2), turn audio into text (Whisper, [102]) and vice versa (TTS, [103]),
generate images (DALL-E, [104]) or understand their content (Vision, [105])
and many more functions.

Along with the models, the newly developed Assistant is a tool that can
be thought of as an evolution of the generative text interaction with the user:
it can analyze the content of files uploaded to the Assistant UI and let the
user build their own AI assistant.

In this project, this tool will constitute a turning point in the static anal-
ysis of unit tests, since its usage accelerated incredibly the analysis itself
(3.2.3).

Since 2022 this company is gaining more and more attention thanks to the
release of what will be their most famous and used product: ChatGPT.

2.2.2 ChatGPT
OpenAI’s text generation models (often called generative pre-trained
transformers or large language models) have been trained to under-
stand natural language, code and images. The models provide text outputs
in response to their inputs. The inputs to these models are also referred to
as prompts. Designing a prompt is essentially how the user programs an
LLM model, usually by providing instructions or some examples of how to
complete a task [106].

32

2.2 – OpenAI and ChatGPT

Developed by OpenAI, ChatGPT [107] is a chatbot based on a large
language model (LLM) that enables users to refine and steer a conversation
towards a desired length, format, style, level of detail and language. This
model interacts with the user conversationally: the dialogue format makes
it possible for ChatGPT to answer follow-up questions, admit its mistakes,
challenge incorrect premises and reject inappropriate requests.

By itself, ChatGPT offers many models to choose from, each one with its
characteristics; these can be grouped into two categories (Figure 2.3): GPT
3.5 and GPT 4.

The former [108] can be used by everyone freely, through the provided UI
on a web browser, and will answer pretty rapidly to the user’s request; it is
also supported better for specific features, such as fine-tuning (2.3.1) or chat
completions.

The major downside of this model is that the retrieved results may not be
accurate and may be easily influenced by the way the user writes the request.

Another problem is given by the hallucinations, the typical behaviour of
an LLM in which it makes up information when the model does not have
enough data to solve the user’s problem.

On the other hand, as analyzed in its technical report [109], the latter offers
a more accurate result and is more capable of carefully following complex
instructions (while gpt-3.5 models are more likely to follow just one part of a
complex multi-part instruction), thanks to its wider knowledge and improved
reasoning abilities; generally, performs better on a wide range of evaluations.

It also outperforms the previous large language models and most state-of-
the-art systems; it also outperforms existing models both in cases in which
the request is in English or other languages.

The downside is that it returns outputs with higher latency (due to its
larger context window) and costs much more per token.

There are various models in these two categories, each one differing for
context window, training data aging and other specific characteristics. For
example, gpt-4-vision-preview is the model able to understand the content
of images, while gpt-4-0125-preview’s main characteristic is the reduction
of cases of “laziness” where the model doesn’t complete a task1. Overall,

1as of April 2024

33

2 – Background

Figure 2.2. GPT performance on academic and professional exams [109]

regarding text generation models, OpenAI recommends choosing the model
that performs the best depending on the complexity of the tasks it is being
used for. To do so, the user can perform some tests in the OpenAI Play-
ground, to investigate which models provide the best price-performance
trade-off for the needed usage.

2.3 Fine-Tuning and Few-Shots
There are many strategies to manage a conversation with ChatGPT in order
to obtain the desired result, but they have a common factor: the more specific

34

2.3 – Fine-Tuning and Few-Shots

Figure 2.3. ChatGPT 3.5 and 4 - overview of main differences

is the user request, the better is the result provided by ChatGPT. However,
most of the times the users may be too lazy to write all the specifications,
or there is a really high probability that something may be missed: the user
may consider useless some information that the model doesn’t know and, if
provided, it would have changed the result significantly.

Another problem is given by the context window of ChatGPT (that
can be thought of as its memory): the information written in the prompt
is collected into “tokens”, that may be represented by some group of words
or just one word. Most of the time, the information that the user has to
give to the model is too much and cannot be contained into the context
window of the specific model efficiently: by summarizing it, some important

35

2 – Background

details might be missed and the result will not be the one desired by the user.

To solve this problem, two strategies can be used: fine-tuning and few-
shots.

2.3.1 Fine-Tuning
With the technique of fine-tuning [110], the model is trained with some
data examples, to have results specific to what is desired. Fine-tuning can
be applied to the desired model only if an API Key provided by the specific
AI development company (in this case, OpenAI) is available.

In this case, the user must create some training data and validation
data. The first is used to train the model, while the second is used to see
a second benchmark produced during fine-tuning: not just how much the
learning on the training set has progressed, but how well similar questions
are inferred.

It’s important to note that OpenAI models only accept the JSONL format
for both the training file and validation file: this means that the data have
to follow the JSON line format.

Based on the type of models, the messages can be either a conversation
between system-user-assistant entities or a prompt-completion pair format.
Since for GPT models the first kind of messages is the supported one (while
the other is for models like babbage or davinci, which are not analyzed in this
thesis), it will be analyzed in detail (Figure 2.4).

As previously mentioned, in the fine-tuning conversation there are three
entities:

• system: it explains what the model embodies and gives a general con-
text to the model of how should behave;

• user: this is the request done by the user;

• assistant: this is how the model should answer according to the request
done by the user.

For each message “triplet”, it is important that the amount of tokens
doesn’t go over the maximum possible; since this number differs among the
models, it is important to check which model has the right amount of tokens
available for the training.

36

2.3 – Fine-Tuning and Few-Shots

Figure 2.4. Conversational chat format example

In case none of them satisfies this request, most probably the training
data is too long and needs to be shortened, to follow the OpenAI indica-
tions; however, at the same time, the amount of information that is kept
should be enough to make sure that the context of the model can be consid-
ered acceptable to train it.

Once the model is trained, the output model is retrieved, with all its data,
and it can be used for the specific goal (Figures 2.5 and 2.6).

As stated by Latif et al. [111] in their study on the ChatGPT behavior
with automatic scoring, fine-tuned GPT models are more suited to tasks like
text completion, response evaluation, or open-ended queries because of their
autoregressive nature, which excels in sequence formation. GPT’s already
strong generating capacities will be strengthened by fine-tuning it for specific
tasks or domains.

2.3.2 Few-Shots
As opposed to the previous strategy, the few-shots methodology aims to
give context to the model “on the fly”: the model is not fine-tuned through
the OpenAI UI, instead it receives some example messages called shots (each
pair of user-assistant messages is one shot). Using the OpenAI Playground,

37

2 – Background

Figure 2.5. OpenAI Fine-tuning UI (1)

the user can insert the system message to give a minimum context to the
model (if necessary) and a little interaction between the user and the assis-
tant, so that the model understands how the answer should be built based
on the format of the input.

As stated by Cao et al. [112], few-shot classification is the task of predict-
ing the category of an example from a few labeled examples. The number of
labeled examples per category is called the number of shots (or shot number).
Recent works tackle this task through meta-learning, where a meta-learner
extracts information from observed tasks during meta-training to quickly
adapt to new tasks during meta-testing.

In the following example, the model is asked to tell if the affirmation of
the user is true or false. First, the user writes two examples, to show how

38

2.4 – Software testing

Figure 2.6. OpenAI Fine-tuning UI (2)

the model should answer the request; in this example, the model shouldn’t
write all the calculations done and a detailed explanation of what it did to
come to the result (Figure 2.7). Then, the user writes the actual request,
which is the last “user” message.

Once the user clicks the “Submit” button, the model retrieves the answer;
this answer is written in the same way as desired by the user (Figure 2.8).

This method is useful in case there are not enough examples to fine-tune a
model (a fine-tuned model can be achieved if it receives at least 10 examples)
and if the examples need to be edited (in case of fine-tuning, the model needs
to be trained again in case the examples are modified).

2.4 Software testing
One of the most important activities to do to make sure that the code written
by someone is correct is to perform some tests on it. As stated by Hellmann
et al. [113], beyond implications for the quality of the code and the effort
that will be required to fix bugs post-release, the effectiveness of testing in
an agile context can determine the outcome of an agile software development
effort.

39

2 – Background

Figure 2.7. OpenAI Playground: 2-shots example inserted by the user, UI
before the model’s answer

Every stage of the software life cycle involves testing, but the testing done
at each level of software development is different and has different objectives
[114]:

• Unit Testing is done at the lowest level. It tests the basic unit of
software, which is the smallest testable piece of software, and is often
called “unit”, “module”, or “component” interchangeably;

• Integration Testing is performed when two or more tested units are
combined into a larger structure. The test is often done on both the
interfaces between the components and the larger structure being con-
structed, if its quality property cannot be assessed from its components;

• System Testing tends to affirm the end-to-end quality of the entire sys-
tem. System test is often based on the functional/requirement specifica-
tion of the system. Non-functional quality attributes, such as reliability,
security, and maintainability, are also checked;

40

2.4 – Software testing

Figure 2.8. OpenAI Playground: 2-shots example inserted by the user,
UI after the model’s answer

• Acceptance Testing is done when the completed system is handed over
from the developers to the customers or users. The purpose of acceptance
testing is rather to give confidence that the system is working than to
find errors;

In this thesis, the focus is on unit tests.

2.4.1 Unit testing
Unit testing is the process where the developer tests the smallest functional
parts of code, called units, that can be logically isolated in a system (a func-
tion, a subroutine, a method or a property) [115, 116]. As stated by Michael
Feathers [117], such tests are not tests if they rely on external systems: “If it
talks to the database, it talks across the network, it touches the file system,
it requires system configuration, or it can’t be run at the same time as any
other test.”.

41

2 – Background

Figure 2.9. Agile testing pyramid

The growth of object-oriented programming has influenced the way pro-
grammers approach software testing. Being predominantly bottom-up, it is
natural that object-oriented programming favors a similar testing methodol-
ogy that focuses on classes. A unit test exercises a “unit” of code in isolation
and compares actual with expected results. In Java, the unit is usually a
class. Unit tests invoke one or more methods from a class to produce observ-
able results that are verified automatically [118].

Software testing helps ensure code quality, and it’s an integral part of
software development. The best practice is to write software as small, func-
tional units and then write a test for each code unit. At first, each test
can be written as code; then, every time there is a change in the software
code, the tests run automatically. This way, if a test fails, the developer can
quickly isolate the area of the code that has the bug or error. Unit testing
enforces modular thinking paradigms and improves test coverage and quality.

42

2.4 – Software testing

Different from integration tests, in which the code is being tested in its
entirety to make sure that the various parts of the software system interact
with each other correctly, unit tests are focused on a specific portion, to
make sure it is written correctly. It is also a good practice to write unit tests
for error cases (for example, if some parameter is of the wrong type or it is
empty), to make sure that also these cases are considered.

These multiple tests related to a single block of code are called test cases:
they should cover the full expected behaviour of the code block (most of the
times, it is not necessary to define the full set of test cases, but it is a good
practice to do so).

Unit testing benefits software development in many ways: it isolates bugs
efficiently (smaller tests give a more granular view to the developer on how
the code performs) and can be considered as a form of documentation. For
the latter question, the tests can be analyzed to understand how the related
code should behave when it runs.

They are also used to do test-driven development, a pragmatic method-
ology that takes a meticulous approach to build a product using continual
testing and revision: to do so, developers build tests to check the functional
requirement of a piece of software before building the full code itself. An-
other strategy is continuous integration and continuous development
(CI/CD), one of the core activities in the application of DevOps to software
development: any change to the code is automatically integrated into the
wider codebase, run through automated testing and deployed in case of suc-
cessful tests.

Some best practices with unit tests consist of the usage of a unit test
framework (for Java, the most common and supported one is JUnit, recently
upgraded to the fifth version [119]), automate unit testing and implement
unit testing thoroughly (it should be as important as code development).

2.4.2 Other types of software testing
After focusing specifically on unit tests, a brief analysis [120] of other tests
must be done, to understand how deep can an application be controlled to
solve its possible bugs:

• Integration tests: these tests verify that different modules or services
used by the application work well together. Most of the time, the inter-
action with the database is tested or they are used to make sure that

43

2 – Background

microservices work together as expected. These types of tests are more
expensive to run as they require multiple parts of the application to be
up and running;

• Functional tests: these focus on the business requirements of an ap-
plication. They only verify the output of an action and do not check
the intermediate states of the system when performing that action. The
difference with integration tests is that an integration test may simply
verify that the user can query the database while a functional test would
expect to get a specific value from the database as defined by the product
requirements;

• End-to-end tests: End-to-end testing replicates a user behavior with
the software in a complete application environment. It verifies that var-
ious user flows work as expected and can be as simple as loading a
web page or much more complex scenarios (verifying email notifications,
online payments, etc.). End-to-end tests are very useful, but they’re
expensive to perform and can be hard to maintain when they’re au-
tomated. It is recommended to have a few key end-to-end tests and
rely more on lower-level types of testing to be able to quickly identify
breaking changes;

• Acceptance testing: these tests are formal tests that verify if a system
satisfies business requirements. They require the entire application to
be running while testing and focus on replicating user behaviors;

• Performance testing: performance tests evaluate how a system per-
forms under a particular workload. These tests help to measure the
reliability, speed, scalability and responsiveness of an application. For
instance, a performance test can observe response times when executing
a high number of requests, or determine how a system behaves with a
significant amount of data. It is used to determine if an application
meets performance requirements, locate bottlenecks, measure stability
during peak traffic and more;

• Smoke testing: these are simple tests that check the basic functionality
of an application. They are meant to be quick to execute and their goal
is to assure the developer that the major features of your system are
working as expected. Smoke tests can be useful right after a new build
is made to decide whether or not you can run more expensive tests, or

44

2.5 – Spring Boot

right after a deployment to make sure that the application is running
properly in the newly deployed environment.

2.5 Spring Boot
One of the most known frameworks to create a stand-alone application in
Java is Spring Boot [121, 122]. Spring Boot is a convention-over-configuration
extension for the Spring Java platform intended to help minimize configura-
tion concerns while creating Spring-based applications. Most of the applica-
tions can be preconfigured using the Spring team’s “opinionated view” of the
best configuration and use of the Spring platform and third-party libraries.

Figure 2.10. Spring Boot logo

It has many useful features:

• Create stand-alone Spring applications;

• Embed Tomcat, Jetty or Undertow directly (no need to deploy WAR
files);

• Provide a radically faster and widely accessible getting-started experi-
ence for all Spring development;

• Be opinionated out of the box but get out of the way quickly as require-
ments start to diverge from the defaults;

• Automatically configure Spring and 3rd party libraries whenever possi-
ble;

• Provide a range of non-functional features that are common to large
classes of projects (such as embedded servers, security, metrics, health
checks, and externalized configuration);

45

2 – Background

• Absolutely no code generation (when not targeting native image) and
no requirement for XML configuration.

Spring Boot does not require any special tools integration, so the user can
use any IDE or text editor. Also, there is nothing special about a Spring Boot
application, so the developer can run and debug a Spring Boot application
as they would do with any other Java program. It explicitly supports both
Maven and Gradle as building tools to support dependency management.

One of the many features of Spring Boot is the support of the Model-
View-Controller (MVC) pattern (Figure 2.11), an architectural design pat-
tern that separates an application into three interconnected components:

• Model: represents the application’s data and business logic. It is re-
sponsible for managing the data and the rules that govern it;

• View: represents the presentation layer and is responsible for displaying
the data to the user. It handles user interface elements and rendering;

• Controller: acts as an intermediary between the Model and View. It
receives user input, processes it, and manages the flow of data between
the Model and View.

This pattern has many advantages, such as separation of concerns, reusabil-
ity, scalability and testability.

Figure 2.11. Spring Boot - MVC pattern

These are translated in Spring Boot in the following way:

46

2.6 – GitHub

• The Model is represented by Java objects, often known as beans or
entities. These objects encapsulate data and business logic;

• In Spring Boot, the View corresponds to the user interface, the part
the user employs to interact directly with the application;

• Spring Boot controllers handle user requests, manage the interaction
between the Model and View and control the application’s flow. These
controllers are annotated with @Controller and handle the requests com-
ing from the View, translate them in a format comprehensible by the
Model and transfer them to the backend; then the responses are given
back to the UI.

In this thesis, the developed Spring Boot application is really basic: it
doesn’t contain a View (since it was not needed), but it contains some model,
service and controller classes, as explained further below (3.3).

2.6 GitHub
One of the most used platforms to store, share and work together with other
users to write code is GitHub [123]. Using a repository and storing the code
inside it lets the user track their activity efficiently, share their work, let
others review the code and suggest how to improve it and, most importantly,
securely collaborate on a project. Collaborative working, one of GitHub’s
fundamental features, is made possible by the open-source software, Git,
upon which GitHub is built.

Figure 2.12. GitHub logo

Git is a version control system that tracks changes in files. It is partic-
ularly useful when a group of people make changes to the same files at the
same time.

To do so, the user would create a branch off from the main copy of files
that all the collaborators are working on, edit files independently and safely

47

2 – Background

on their branch. Then Git intelligently merges the user changes back into
the main copy of files and keeps track of changes made by all the users.

Figure 2.13. GitHub - basic workflow

GitHub and Git are strictly related: when the files are uploaded to
GitHub, they are stored on a Git repository; when the user makes changes
(or commits) to the files on GitHub, Git will automatically track and manage
these changes.

Most of the users work on the files locally and then sync these local changes
with the central remote repository on GitHub (Figures 2.13 and 2.14).

To sum up, Git figures out how to merge this flow of changes, while GitHub
helps the developer manage the flows through various features (such as pull
requests).

GitHub contains many features that will be used inside the project of this
thesis and will be analyzed further in the next chapter: GitHub App, GitHub
Webhooks (3.6) and GitHub Actions (3.7).

48

2.6 – GitHub

Figure 2.14. GitHub - articulate workflow

49

50

Chapter 3

Methodology

3.1 A brief explanation
This project embodies many complex concepts and its objective is quite am-
bitious: make the AI do what a developer does daily. At first, it might
seem quite easy, since it is known that LLM models can answer correctly to
requests about writing some code scripts.

What is not always considered is what is behind the job done by the
developer:

• The written code must be understandable by everyone: for example,
a new employee has to comprehend in the least amount of time possible
what is going on in the script they are currently watching, and if it is
not written understandably, this activity may take too much time;

• The written code should always follow the clean code best practices:
coherence in variable and function names, keeping method short, avoid-
ing useless repetitions, etc.;

• Every piece of written code should be tested before the merge in a
collaborative environment, to discover bugs as soon as possible and fix
them before provoking a waterfall effect on the whole project;

• It may be obvious, but the developer needs to have the whole con-
text before approaching the environment, to avoid writing useless code
scripts.

With this brief list, everyone can understand that this project is way more
difficult than expected.

51

3 – Methodology

Despite this, if this challenging idea comes true, this would be the start
of a new era for the AI world.

At first, the idea was to use AI in a double way: first, given the code, the
artificial intelligence would have to write the correspondent unit tests; in the
second phase, given the unit tests, the AI would have to generate the code
for which these tests were made.

To do so, the first thing that has been done is an analysis of the various
GPT models (3.2), to understand in practice the capabilities of each one
of them: how quickly they generate the tests, how deep in detail the system
prompts should be to give them enough context, how much code is covered
by the generated test classes and so on.

To have an objective result, the static analysis method is the one used to
examine in detail these tests, as it will be explained in the following section.

Since this analysis took some time and the internship had a specific time
frame, after discussing with the tutor, the conclusion was that the second part
of the thesis (the generation of the code starting from human-written unit
tests) was more useful from a statistical point of view instead of a practical
one, so it was substituted with an objective probably more challenging but
also more fulfilling: the whole code generation starting from a GitHub
issue.

Actually, the idea was to consider Jira issues [124], since it is the ticket
and project monitoring software used in the company, but there were some
problems with the integrations between this software and the AI, so this idea
was archived.

Once the project had changed its course, the next dilemma to solve was un-
derstanding how could the LLM model obtain the same knowledge of
an entire code base as a developer would do (3.4): as seen in the previous
chapter, different models have different context windows and remembering
every content in a GitHub repository, understanding the various interactions
and the reasons behind them is not doable only with the basic models.

To do so, there is a feature that includes the interaction with AI and
a database containing the needed information to give context to a model:
RAGs.

The Retrieval Augmented Generation can be described as a technique
for enhancing the accuracy and reliability of generative AI models with facts
fetched from external resources. The obtained models combine pre-trained

52

3.2 – Analysis of different GPT models

parametric and non-parametric memory for language generation [125].
Even with these, there was a problem: the world of RAGs is quite dis-

tributed and there were some doubts regarding what would be the best
provider to use for this project, without spending too much money. One
example was Azure AI Search, given that the company was associated with
OpenAI and an OpenAI API Key was available to be used for this project,
but this aspect was not examined deeply.

By doing some research, it was discovered what will be the turning point
of this application: the LangChain framework (3.5). This framework has
direct integration with GitHub (which is where the code would have been
uploaded) and with LLMs, providing an efficient way to link these two far
concepts.

In some way, the RAG is integrated into LangChain: the bridge built to
link the GitHub repository and the LLM is given by a GitHub Application.

Given this, the focus has now changed to where the LLM will operate.
The test subject of this project is a Spring Boot application written in
Java 17 and using Gradle 8.6, in which there is a fictional university, with
students, professors and courses as models (3.3). A bit of code has been
previously written, so that the LLM model has a basic context on how it
should be formatted and how the various classes interact with each other.

Once the code is written and inserted in a GitHub repository, the automa-
tion of the application is enhanced with the usage of GitHub Webhooks
(3.6) and GitHub Actions (3.7), two features useful to interact with a
repository: the first will receive notifications when something happens on
the repository and will trigger some actions, the second will automate oper-
ations such as building and deployment.

Lastly, to simulate a real life environment, a GitHub branch protection
rule (3.8) has been added, to prevent irresponsible merges of code into the
main branch.

3.2 Analysis of different GPT models
As written before (2.2.2), there are many models to choose from, each one
with different characteristics (context window length, training data, etc).

Before jumping into action, it is important to decide which one of the

53

3 – Methodology

various models offered by OpenAI is the best to use to do the unit test in
Java in a good way. To do so, the static analysis comes to help: it is the
best strategy to see how the unit test performs given the Java class and some
parameters.

3.2.1 Analyzed models
The analysis involved the following 8 models from OpenAI [126]:

• gpt-3.5-turbo: The latest GPT-3.5 Turbo model with higher accuracy
at responding in requested formats. Returns a maximum of 4,096 output
tokens. Its context window is 16,385 tokens long and the training data
is up to September 2021;

• gpt-3.5-turbo-16k: (legacy) Snapshot of gpt-3.5-16k-turbo from June
13th 2023. Its context window is 16,385 tokens long and the training
data is up to September 2021;

• gpt-3.5-turbo-0125: The latest GPT-3.5 Turbo model with higher
accuracy at responding in requested formats. Returns a maximum of
4,096 output tokens. Its context window is 16,385 tokens long and the
training data is up to September 2021;

• gpt-3.5-turbo-0613 (fine-tuned): (legacy) Snapshot of gpt-3.5-turbo
from June 13th 2023. Its context window is 4,096 tokens long and the
training data is up to September 2021. This model has been trained
with 10 examples;

• gpt-3.5-turbo-1106_10 (fine-tuned): GPT-3.5 Turbo model with im-
proved instruction following, JSON mode, reproducible outputs, parallel
function calling, and more. Returns a maximum of 4,096 output tokens.
Its context window is 16,385 tokens long and the training data is up to
September 2021. This model has been trained with 10 examples;

• gpt-3.5-turbo-1106_30 (fine-tuned): Same as above, but it has been
trained with 30 examples;

• gpt-4: Snapshot of gpt-4 from June 13th 2023 with improved function
calling support. Its context window is 8,192 tokens long and the training
data is up to September 2021;

54

3.2 – Analysis of different GPT models

• gpt-4-turbo-preview: GPT-4 Turbo preview model intended to re-
duce cases of “laziness” where the model doesn’t complete a task. Re-
turns a maximum of 4,096 output tokens. Its context window is 128,000
tokens long and the training data is up to December 2023.

At the time of training1, most of the models now marked as legacy were
considered up to date, so they were the only ones available (for both fine-
tuning and few-shots).

3.2.2 Static analysis parameters
The following parameters are the ones used in the static analysis. Each one
of them has a different impact on the unit test (in terms of relevance) that
can be low, medium or high.

• Cyclomatic complexity (medium): it measures the complexity of a
test method based on the number of linearly independent paths through
the code. Higher values indicate more complex and potentially harder-
to-maintain tests;

• Cognitive complexity (high): it measures how difficult it is for humans
to read and understand a test method, taking into account factors like
nesting, recursion, and the readability of control structures;

• Lines of code (medium): the total number of lines in a test class or
method. Can indicate the potential for refactoring if the test is exces-
sively long;

• Number of methods (medium): high counts can indicate a test class
is testing too many functionalities or could benefit from being split into
multiple classes;

• Assertion density (high): the ratio of assertion statements to non-
assertion statements. It helps evaluate the focus of the test on actual
testing;

• Arrange-Act-Assert (AAA) Sequence Compliance (high): it mea-
sures adherence to the AAA pattern, which helps maintain test structure
clarity;

1February-March 2024

55

3 – Methodology

• Test smells (high): useful to identify patterns in test code that suggest
potential issues, such as Flaky Test, Eager Test, Lazy Test, and Mystery
Guest. Tools can detect these smells, indicating areas for improvement;

• Duplicated code (high): it identifies repeated code blocks within test
classes. Duplicates can make maintenance harder and might suggest a
need for parameterized tests or utility methods;

• Magic numbers (medium): the use of hard-coded values in tests with-
out clear explanation. Using named constants can make tests more read-
able and maintainable;

• Code coverage (high): it measures the extent to which the source code
is executed by the tests. Commonly includes Line Coverage, Branch
Coverage, and Path Coverage;

• Mutation coverage (high): it assesses the quality of the tests by mod-
ifying (mutating) the production code in small ways and checking if the
tests detect the changes. High mutation coverage suggests effective tests;

• Comment-to-code ratio (low): the proportion of comments within the
test code, which can indicate the maintainability and understandability
of tests;

• Test code consistency (high): the uniformity of coding style, naming
conventions, and structure across all test cases, improving readability
and maintainability.

3.2.3 Static analysis methodology
The analysis has been divided into 5 cases:

• Case 1: pure interaction with the model with a small Java class;

• Case 2: pure interaction with a bigger Java class, that has more than
one constructor, many methods and many exceptions considered;

• Case 3: few-shots method, with 1 shot (one user-assistant interaction
before the actual request of the user);

• Case 4: few-shots method, with 3 shots;

• Case 5: few-shots method, with 5 shots.

56

3.2 – Analysis of different GPT models

All these interactions have been done on the OpenAI Playground, which al-
lows to manage the interactions in an easy and user-friendly way and allows
changing the model in a faster way.

The various classes have been saved in different Java files and, once all of
them have been generated, the OpenAI Assistant performed the analysis.

Since the Assistant can check the content of files, the Java class contain-
ing the code to be tested and the related generated unit test by the model
are uploaded, along with a PDF file in which there is a description of the
parameters to be considered to perform the static analysis.

Once everything had been analyzed, the Assistant gave a percentage rat-
ing for each metric and an overall score on how good the test generated by
the model was. The only two parameters that have been checked by hand
are Code Coverage and Mutation Coverage.

For the Code Coverage, the software that has been used is JaCoCo [127],
while for the Mutation Coverage, it has been used PITest [128]. Both these
different types of coverage can easily be analyzed thanks to the user interface
provided once the correspondent command is run (Figure 3.1 and Figure 3.2).

JaCoCo’s mission is to provide the standard technology for code coverage
in Java VM-based environments: the focus is providing a lightweight, flexible
and well-documented library for integration for various build and develop-
ment tools. It was developed to have a code coverage technology that could
be widely used in various contexts, since most of the preexisting technologies
were fit for a specific Java tool and did not offer a documented API that may
have allowed embedding in different contexts.

On the other hand, PITest (also known as simply PIT) is a state-of-the-
art mutation testing system, providing gold standard test coverage for Java
and the JVM. It’s fast, scalable and integrates with modern test and build
tooling.

PIT runs the unit tests against automatically modified versions of the
application code. When the application code changes, it should produce
different results and cause the unit tests to fail. If a unit test does not fail
in this situation, it may indicate an issue with the test suite.

Traditional test coverage measures only which code is executed by the
tests. It does not check that these tests can detect faults in the executed

57

3 – Methodology

code.

Figure 3.1. JaCoCo output example

Figure 3.2. PITest output example

3.2.4 Static analysis results
At the end of the analysis, all the results have been gathered in different
tables, one for each case (Figure 3.3). Once all the results are gathered, the
different performances have been analyzed, to see which model builds the

58

3.2 – Analysis of different GPT models

Figure 3.3. Static analysis - Case 1

most accurate unit tests. To make sure that the parameters have different
importance, each one of them has been multiplied by a number, that rep-
resents its impact on the test quality (1 for low, 2 for medium, 3 for high).
Without considering the coverage parameters (Figure 3.4), the model that

Figure 3.4. Static analysis results (coverage not considered)

performs the best is gpt-4, while the one with the worst performance on av-
erage is gpt-3.5-0613. Most probably this is caused by the low width of the
context window of the model. Considering the coverage (Figure 3.5), the

Figure 3.5. Static analysis results (coverage considered)

best-performing model is still gpt-4, while the worst is another one of the
fine-tuned models (gpt-3.5-1106_10).

59

3 – Methodology

Overall the best-performing model is gpt-4, and it will be the one used
in the application to generate the unit tests.

3.3 Creation of the Spring Boot application

The initial idea was to create a little Spring Boot application of a fictional
university, with students, courses and professors as models, and to write
some issues about the creation of endpoints (GET, POST, PUT, DELETE)
related to these models. There was an equal distribution between easy issues
(such as the creation of a single student) and more difficult ones (such as the
deletion of a professor with cascade deletion logic on courses).

The aim of these issues was to use the differences that can be retrieved
in the opened pull request to fine-tune a GPT-3.5 model. In this way,
the model would have provided the code in the same way and with the same
strategy chosen by the developer (for example, error checks on the controller
files and usage of MongoTemplate on service files).

After solving 13 issues (since at least 10 are required to fine-tune a model
[129]), the gpt-3.5-1106 model (chosen since it is the one with the most sat-
isfying characteristics, both in context window length and in training data
aging) has been fine-tuned with the issue title and issue description as the
user message, while the diffs related to that issue were used as the assistant
message (Figure 3.6). Even though the data had been written in the best
way possible to create an efficient fine-tuned model, the results retrieved by
using this fine-tuned model were not satisfying, since it was difficult to ex-
plain that the diffs were not the desired output of the issue, but they should
have been used as a blueprint to understand how the code should be writ-
ten. Most probably this information had to be written somewhere in the
fine-tuning conversation, but it has been considered a dangerous move, since
many messages were slightly below the token limit and the conversation must
be the same for all the messages (otherwise the dataset would have not been
considered valid).

Since the cost of fine-tuning is advantageous only if it is going to be used
for a long time and it is quite difficult to provide a satisfactory dataset, the
preferred model used for the code generation point of view is still gpt-4.

60

3.4 – Giving context to ChatGPT

Figure 3.6. Fine-tuning dataset - single message overview

3.4 Giving context to ChatGPT

The most difficult task was to give enough context to ChatGPT, since
even though the gpt-4 model is highly performing, it has a restricted context
window; also, finding a good strategy to retrieve the main information of a
repository and give them to the model without going over the token limit is
pretty tricky, since there will be some information that may be useless for
the user, but could represent a turning point for the model.

61

3 – Methodology

3.4.1 Extraction of main information
Since in this project everything is done on a Spring Boot application, the code
will be written in Java. Knowing that a Java class has a pretty straightfor-
ward structure, the position of the information could be used to extract
the main data of each class, such as imports, class names, attributes
and method prototypes.

The initial strategy consisted of giving the model these four elements,
accompanied by a brief user explanation and seeing if it was able to
understand what was the general content of the repository.

After this, another test was provided, which consisted of giving a basic
task, such as writing a specific method, to see if the format would be coherent
with the received data, or to extend the specific class with more methods,
to see how well the content of the repository was understood and to be able
to fix the request in the moment (by extending the user explanation, for
example).

Nevertheless, if the project is big (or it contains many well-structured
classes) or the user explanation is not good enough, the model would not re-
ceive the desired context and this extraction operation would be completely
worthless.

Overall, this process provided good results at first, but it would take too
long and the amount of time wasted on giving the information could be used
on solving the tasks manually.

Since the objective of this thesis is to automate various operations, this
strategy won’t work efficiently and it is necessary to find another way to solve
this problem.

3.5 LangChain
The turning point of this whole project was given by the usage of LangChain
[130], an open-source framework for developing applications that connect
external sources of data and computation to large language models (LLMs).
In this way, the developed applications are powered by large language
models (Figure 3.8).

Concretely, this framework consists of some open-source libraries, such
as langchain-core (that contains the base abstractions and LangChain Ex-
pression Language), langchain-community (third-party integrations, such as

62

3.5 – LangChain

Figure 3.7. LangChain logo

Figure 3.8. LangChain - main overview

langchain-openai) and langchain (that contains chains, agents and retrieval
strategies that constitute an application’s cognitive nature).

LangChain provides standard, extendable interfaces and external integra-
tions for the following main components [131]:

• Model I/O: formatting and managing language model input and out-
put;

– Prompts: formatting for LLM inputs that guide generation;

63

3 – Methodology

– Chat models: interfaces for language models that use chat mes-
sages as inputs and returns chat messages as outputs (as opposed to
using plain text);

– LLMs: interfaces for language models that use plain text as input
and output;

• Retrieval: interface with application-specific data (e.g. RAG);

– Document loaders: load data from a source as Documents for
later processing;

– Text splitters: transform source documents to suit the application
better;

– Embedding models: create vector representations of a piece of
text, allowing for natural language search;

– Vector stores: interfaces for specialized databases that can search
over unstructured data with natural language;

– Retrievers: more generic interfaces that return documents given
an unstructured query;

• Composition: higher-level components that combine other arbitrary
systems and/or LangChain primitives;

– Tools: interfaces that allow an LLM to interact with external sys-
tems;

– Agents: constructs that choose which tools to use given high-level
directives;

– Chains: building block-style compositions of other runnables;

• Memory: persist application state between runs of a chain;

• Callbacks: log and stream intermediate steps of any chain;

This constitutes a complete set of interoperable and interchangeable
building blocks (Figure 3.9).

Common end-to-end use tasks with LangChain include chatbots, query
analysis, extraction of structured output, usage of RAGs, combined usage of
SQL and CSV, etc.

Since the main problem was in the amount of information given to the
LLM, LangChain solves this using the retrieval logic, to provide additional

64

3.5 – LangChain

Figure 3.9. LangChain - tools overview

context to the user message. Then, a retriever can be used to fetch only the
most relevant pieces of information and pass those in.

3.5.1 LangChain Agent
The most useful LangChain feature in this project is the Agents [132]: they
can be used to turn LLMs into reasoning engines that take action, re-
sponsibly. These agents can be considered as copilots, able to write first
drafts for reviews, wait for approval before execution or act on behalf of the
developer.

The core idea of agents is to use a language model to choose a sequence

65

3 – Methodology

of actions to take. In chains, a sequence of actions is hardcoded; in agents,
a language model is used as a reasoning engine to determine which actions
to take and in which order. This is usually powered by a prompt, a language
model and an output parser. (Figure 3.10). The great advantage over chains

Figure 3.10. LangChain Agent - flow overview

is that is the model itself that decides how many times the tools must be
used and when. Most of the time (and also in this project), the agent type
used is the tool-calling agent, which is the most reliable kind and the
recommended one for most use cases (Figure 3.11).

Figure 3.11. LangChain Agent - details on flow

66

3.5 – LangChain

3.5.2 GitHub Integration
Among the various available integrations in LangChain, one of the most im-
portant and supported ones is the GitHub integration. It enables the
communication between a large language model and a GitHub repository in
an efficient way through a LangChain Agent.

This communication is conveyed through a GitHub Application (Figure
3.12): GitHub Apps are tools that extend the basic GitHub functionality
[133]; these can do both things on GitHub (open issues, comment on pull
requests, etc.) or do things outside GitHub but related to it in some way
(such as post on Slack when an issue is opened on GitHub).

Figure 3.12. GitHub App - overview

To use an App (whether it was created or downloaded through the GitHub
Marketplace), this must be installed on the user or organization account: in
this way, the user grants the app permissions to read or modify a repository
or organization data (the specific permissions can be chosen in the settings
menu of the app). Also, the GitHub App can only do things that both the
user and the app have permission to do. For example, if the user has
write access to a repository but the GitHub App only has read access, then
the app can only read the contents of the repository even when it is acting
on the user’s behalf.

When the app is installed, the user specifies the repositories on which
this app can access and operate (Figure 3.13). As seen in the figure, there
are five repositories permissions (two of type read-only and three of type
read and write), explicitly required by LangChain to execute operations in a
GitHub repository.

It must also be noted that, if the app is created by the developer, the
source code has to be in a repository different from the one in which the
application is operating and cannot be a local source code, since a URL

67

3 – Methodology

Figure 3.13. GitHub App - permission overview

must be inserted in the app settings. In this case, the source code is stored
on GitLab, since it is the platform preferred by the company, even though
the app operates on a GitHub repository. This apparent incoherence doesn’t

68

3.5 – LangChain

cause problems, since there are no particular restrictions on the GitHub App
settings.

Figure 3.14. GitHub App - settings overview

Unlike GitLab, which has just a personal access token that doesn’t allow
to go in depth in the repositories operations like the app, this GitHub App
is exactly what was needed in this project: it constitutes the perfect bridge
between the OpenAI model and the repository.

3.5.3 GitHub Agent - a coding perspective
From a coding point of view, the agent is composed of three main parts: the
preparation, the input and the invocation.

In the preparation, there is the selection of the preferred large language
model (as stated before (3.3), gpt-4 is the model that will be used in this
project) and the preparation of the needed toolkit (in this case, the GitHub
toolkit), to gather all the possible operation that the agent can do in the

69

3 – Methodology

GitHub repository (Figure 3.15).

Figure 3.15. LangChain Agent - preparation overview

The following are the available tools in the GitHub toolkit (Figure 3.16),
which indicate the actions that the agent can perform inside a specific GitHub
repository.

After the agent preparation, the next step is to give the input to the model
(Figure 3.17). First of all, the developer must create the system message,
which is the one that gives the model the general overview of the situation
(the more detailed it is, the better); it is also possible to keep the chat his-
tory, to add context to the model and make sure it remembers the actions
done previously. It is not used in this case, since it was redundant and the
agent_scratchpad functionality was sufficient (it is where the tools descrip-
tions are loaded for the agent to understand and use them properly in the
intermediate steps).

Lastly, the agent is invoked, with the AgentExecutor creation (Figure
3.18). The AgentExecutor is the actual tool that performs all the thinking
operations: calls the agent, executes the actions it chooses, passes the action
outputs back to the agent and repeats (Figure 3.19).

3.5.4 Note on LangChain usage
A thing to be noted before proceeding further is that, since this library is
open source and is growing rapidly, there were some errors in the version used
in this project (0.1.11) that have been manually fixed and the documentation
is not always up to date.

For example, the invocation of the Agent in the documentation is shown
with a deprecated method, or the GitHub toolkit taken with the new agent
invocation method is not retrieved correctly, since this new function follows
a specific regular expression in which characters such as blank spaces are not
allowed (Figure 3.20 and 3.21). Luckily, these errors were not that serious to
put the whole application construction at risk and have been solved correctly,

70

3.5 – LangChain

Figure 3.16. GitHub toolkit - overview

thanks to the active community that supports this really useful framework.

To help potential future developers, a Markdown file summing up the

71

3 – Methodology

Figure 3.17. LangChain Agent - input overview

Figure 3.18. LangChain Agent - invocation overview

Figure 3.19. AgentExecutor - pseudocode

Figure 3.20. LangChain - library error example

various fixes done inside the library has been created, with the general de-
scription of the error, why this happens, the correspondent GitHub issue on
the official LangChain repository and the solution of the correspondent error.

Also, it has opened an issue on the official LangChain repository, since a
task of the GitHub toolkit was not working correctly (the navigation of files

72

3.6 – GitHub Webhooks

Figure 3.21. LangChain - library error solution

in a pull request) and it was necessary to solve to continue with the project.

3.6 GitHub Webhooks
To make sure that the Agent operations are triggered at the correct mo-
ment, it has been used one of the most important GitHub features: GitHub
Webhooks [134]. They provide a way for notifications to be delivered to an
external web server whenever certain events occur on GitHub (opened issue,
opened pull request, merged code, etc). As opposed to polling an API (which

Figure 3.22. GitHub Webhooks logo

73

3 – Methodology

is an activity that wastes a lot of resources and time), webhooks are used to
receive data as it happens; the user only needs to express interest in an
event once, when the webhook is created.

By creating a webhook, the developer specifies a URL and subscribes to
events that occur on GitHub: when an event that the webhook is subscribed
to occurs, GitHub sends an HTTP request with data about the event to the
specified URL.

To underline the advantages, webhooks scale better than singular API
calls: if many resources need to be monitored, calling the API for each one
may cause it to hit the API rate limit quota quickly and the developer may
even not realize that. Instead, the user can subscribe to multiple webhooks
and receive information only when an event happens.

It must also be noted that to create and manage webhooks, the user must
own or have admin access to the resource where the webhook is created
and listen for events. For example, to manage webhooks in an organization,
the user needs admin permissions for that organization.

In this case, four main events are the ones needed for the interaction of
the application (all of these are repository webhooks):

• An issue has been opened;

• A pull request has been opened;

• A GitHub Action has failed and the bug must be fixed;

• A reviewer requested changes in the code.

A webhook can be inserted in the repository easily, however, it is important
to make sure that it is triggered only when needed, so that the amount of
work done by the servers is minimal.

Also, its URL cannot be the localhost, but it is necessary to use an-
other tool to expose the localhost URL as if it is external [135]. In this case,
ngrok [136] is the tool used to test the functionalities of the webhooks.

The webhooks can be inserted directly through GitHub (Figure 3.23); the
needed parameters are the webhook URL, the content type (application/json
in this example), the webhook secret (it is a good practice to use it, to ensure

74

3.6 – GitHub Webhooks

Figure 3.23. GitHub Webhook - overview

that the webhook delivery is from GitHub), the SSL verification and the type
of event for which the webhook must be triggered.

In the following example, the webhook is activated when something that
involves the issue event is triggered (opened, closed, labeled, etc.) (Figure
3.24).

The detail on when the Agent is triggered can be found in the code: as
seen in the picture below (Figure 3.25), the Agent operation is triggered only
if the issue is opened or reopened.

75

3 – Methodology

Figure 3.24. GitHub Webhook - detail on issues

Figure 3.25. GitHub Webhook - restriction to opened/reopened issue

3.7 GitHub Actions

To automate the user’s build, test and deployment pipeline, GitHub has a
feature called GitHub Actions [137]. It is a continuous integration and con-
tinuous delivery (CI/CD) platform that lets the user automate, customize
and execute the software development workflows right in their repos-
itory.

76

3.7 – GitHub Actions

Figure 3.26. GitHub Actions logo

A GitHub Actions workflow can be configured to be triggered when an
event occurs in the repository, such as a pull request being opened or an
issue being created. The workflow contains one or more jobs that can run se-
quentially or in parallel. Each job will run inside its virtual machine runner,
or inside a container, and has one or more steps that either run a script that
you define or run an action, which is a reusable extension that can simplify
the entire workflow (Figure 3.27).

The terms written above must be examined in depth to understand better
how a single GitHub Action is composed:

• A workflow is a configurable automated process that will run one or
more jobs. Workflows are defined by a yaml file checked into the repos-
itory and will run when triggered by an event in the same repository, or
they can be triggered manually, or at a defined schedule. There could be
multiple workflows in the same repository, each one related to a specific
task, and a workflow can also be referenced within another one;

• An event is a specific activity in a repository that triggers a workflow
run. For example, activity can originate from GitHub when someone
creates a pull request, opens an issue or pushes a commit to a repository.
The event in question can also trigger a workflow to run on a schedule,
by posting to a REST API, or manually;

• A job is a set of steps in a workflow that is executed on the same runner.
Each step is either a shell script that will be executed or an action that
will be run. Steps are executed in order and are dependent on each
other. Since each step is executed on the same runner, the data can be
shared from one step to another. Job’s dependencies can also be related
to other jobs (by default, jobs have no dependencies and run in parallel
with each other). When a job takes a dependency on another job, it will
wait for the dependent job to complete before it can run;

77

3 – Methodology

• An action is a custom application for the GitHub Actions platform
that performs a complex but frequently repeated task. Using an action
helps to reduce the amount of repetitive code that may be written in
your workflow files. An action can pull a git repository from GitHub,
set up the correct toolchain for the build environment or set up the
authentication to a cloud provider.

• A runner is a server that runs workflows when they’re triggered. Each
runner can run a single job at a time. GitHub provides Ubuntu Linux,
Microsoft Windows and macOS runners to run workflows; each workflow
run executes in a fresh, newly-provisioned virtual machine. GitHub also
offers larger runners, which are available in larger configurations.

GitHub Actions feature is free for public repositories, to follow the open
source legacy that characterizes the whole GitHub environment; however, it
comes with a price in usage when the repository in question is private or
the action is used in a company context (GitHub Enterprise system). Even
though there is this apparent stumbling block, GitHub Actions plan includes
free usage based on how much the action is run (using a “pay-as-you-go”
pricing technique).

Figure 3.27. GitHub Action - Workflow run overview

In this project, the GitHub Action that is configured is activated each time
a pull request is opened or edited. Since the repository contains a Spring Boot
application that uses Gradle, this action performs a Gradle Build and a Gra-
dle Run Test operations, to make sure that the code written by the agents
is correct (Figure 3.28).

If the code contains errors, the log of the failed GitHub Action is retrieved
and it is given to the agent to solve the problem(s) underlined in the workflow.

78

3.7 – GitHub Actions

Figure 3.28. GitHub Action - Workflow code

79

3 – Methodology

3.8 GitHub branch protection rules
To ensure that the main branch is protected from irresponsible PR merges,
a GitHub branch protection rule [138] can be added. In this case, the
most important rule is to request a review of the code in the PR before merg-
ing it into the main branch.

If the code is not reviewed for the time being (Figure 3.29), or if the
reviewer has requested some changes (Figure 3.30), the “Merge pull request”
button is black, to indicate that this action cannot be done for now.

Instead, if the code is reviewed and it is considered approved (Figure 3.31),
the “Merge pull request” button is green and the code can be merged into
the main branch correctly.

Figure 3.29. Merge status - Code to be reviewed

A note to be added is that this rule is actually bypassed if the branch is
private and the GitHub profile is not of type Team or Enterprise. To follow
the rule (as if it was applied correctly), the code is not merged until the
approval of the code review.

80

3.8 – GitHub branch protection rules

Figure 3.30. Merge status - Changes requested by the reviewer

Figure 3.31. Merge status - Review approved

81

82

Chapter 4

Results

4.1 Structure of the application
The final application contains 4 LangChain GitHub Agents that will be trig-
gered by a specific webhook; 3 of them are specific actions related to oper-
ations on a GitHub repository (opened issue, opened pull request and pull
request review), while one is related to a GitHub Action.

Specifically, in this case, the flow of the application is the following:

1. First, a user opens an issue;

2. When the issue is opened, the first GitHub Webhook is triggered. This
webhook calls the Code Gen Agent (the code generator);

3. The Code Gen Agent will write the code to solve the issue, by creating
a branch and pushing the code there. Once it is done, it will open a pull
request and request a review to the issue sender;

4. Once the PR is opened, the second webhook is triggered. This one will
call the Unit Test Agent, that will write unit tests related to the code
inside the PR and push it in the same branch of this PR;

5. At the same time, another webhook is triggered. This one governs the
GitHub Action, which will perform a Gradle Build on the code and a
Gradle Run Tests on the unit tests. If the Action fails, the Bug Fix
Agent is called to solve the bugs noted in the log of the failed GitHub
Action. Once it is done, the code will be pushed to the same branch of
the PR;

83

4 – Results

6. If the Action doesn’t fail, the last operation is to perform the code review
(requested by the various Agents) to a specific developer;

7. If there are some changes to be done, this will trigger the final webhook,
that calls the Review Agent. As the ones before, this Agent analyzes
the code in the branch and studies the changes requested by the reviewer;

8. Once the Review Agent is done, it performs the necessary corrections to
the code and pushes it into the PR branch. To ensure that everything
is correct, the reviewer is asked again to check if the code now satisfies
entirely the issue request;

9. If everything is correct, the Action doesn’t fail, the code is approved by
the reviewer and there are no conflicts with the main branch, the code
can be merged.

Figure 4.1. Final application flow

84

4.1 – Structure of the application

Figure 4.2. Code Gen Agent - Start of the application

Figure 4.3. Code Gen Agent - Example of file update

85

4 – Results

Figure 4.4. Code Gen Agent - Creation of pull request

Figure 4.5. Code Gen Agent - Overview of commits

Figure 4.6. Code Gen Agent - Creation of review request

86

4.1 – Structure of the application

Figure 4.7. Unit Test Agent - Creation of unit tests

Figure 4.8. Unit Test Agent - Overview of commits

Figure 4.9. Successful conclusion of the Action - Bug Fix Agent not activated

87

4 – Results

Figure 4.10. Example of changes requested

Figure 4.11. Review Agent - Solving requested changes

88

4.1 – Structure of the application

Figure 4.12. Review Agent - Commits overview and creation of a
new review request

Figure 4.13. Review Agent - Final thought

Figure 4.14. Merging of PR created by the framework

89

90

Chapter 5

Conclusions and Future
Work

Overall, the usage of LangChain helped in the creation of this application,
since the interaction between the repository and gpt-4-1106-turbo model
through a GitHub application represented a turning point in this project.

Although this aspect, there are many ways in which this application can
be evolved, some of them more immediate, while others a bit more complex
to achieve.

First of all, this whole project is done locally, so it is necessary to deploy
it in a production server and apply all the security-related features.

For the less cumbersome activities, it’s to be noted that unit tests are not
enough to establish the correctness of the application, so it might be neces-
sary to add other types of tests, such as integration tests or end-to-end
tests (2.4.2).

Another activity that might be useful to automate more the whole appli-
cation is to make the AI do an initial code review and give suggestions
to the developer, so that the code follows the clean code best practices (using
meaningful variable and function names, keeping methods short, following
the Don’t Repeat Yourself principle, etc.). Once the review is done, the AI
would write a comment in the PR, giving specific suggestions on where to
intervene and how to modify the existing code. Then, there could be another
agent that solves the bugs noted in the specific comment (such as done by
the agent that solves the errors noticed by the GitHub Action).

91

5 – Conclusions and Future Work

For the more complex activities, since the application is a Spring Boot
application and Java 17 is used, a useful activity to do would be to upgrade
it to Java 21, to exploit the usage of particular components, such as virtual
threads or structured concurrency [139]. The cumbersome part is that in this
case, the gpt-4 model may have restricted knowledge of this version of Java,
considering that it has reached the general availability on September 2023
and the model’s knowledge is up to December 2023. Nevertheless, it is to be
noted that a new GPT model will be launched in the second half of 2024, and
most probably its knowledge of Java 21 will be wider and better than gpt-4’s.

From the AI point of view, it is not a good strategy to restrict this applica-
tion to just OpenAI models, since many software companies may have part-
nerships with other AI model providers, with models that possess equal per-
formances as the most known ChatGPT. Therefore, the application’s scope
should be extended to be able to use other large language models, like
Gemini (provided by Google [140]), LLaMA (provided by Meta [141]) or
Claude (provided by Anthropic [142]).

It must also be specified that using LangChain might constitute a restric-
tion, since it is optimized to interact with GitHub through OpenAI. So the
solution to this problem can be constituted in the usage of RAGs to have
a major scope of the application.

RAG (Retrieval Augmented Generation) is the process of optimizing the
output of a large language model through the usage of external data sources
(such as a database); in this system, the chosen LLM uses both the user query
and the external data to provide the optimized answer, while augmenting the
LLM.

In conclusion, the project developed through the internship and analyzed
in this thesis is prone to evolution in the near future, with the increasing
development of the AI world and, at the same time, the increasing incentive
to study this growing branch of computer science.

92

Bibliography

[1] IBM. What is artificial intelligence (AI)? url: https://www.ibm.
com/topics/artificial-intelligence.

[2] Google Cloud. What is Artificial Intelligence (AI)? url: https://
cloud.google.com/learn/what-is-artificial-intelligence.

[3] Jasmin Praful Bharadiya. “A comparative study of business intelli-
gence and artificial intelligence with big data analytics”. In: American
Journal of Artificial Intelligence 7.1 (2023), p. 24.

[4] Technical University of Applied Sciences Würzburg-Schweinfurt. Weak
vs. strong AI. url: https://ki.thws.de/en/about/strong-vs-
weak-ai-a-definition/.

[5] EDI Weekly. The three different types of Artificial Intelligence - ANI,
AGI and ASI. url: https : / / www . ediweekly . com / the - three -
different-types-of-artificial-intelligence-ani-agi-and-
asi/.

[6] Priyanka Kaushik. “Role and application of artificial intelligence in
business analytics: a critical evaluation”. In: International Journal for
Global Academic & Scientific Research 1.3 (2022), pp. 01–09.

[7] Harikumar Pallathadka et al. “Applications of artificial intelligence in
business management, e-commerce and finance”. In: Materials Today:
Proceedings 80 (2023), pp. 2610–2613.

[8] Marcel Salathé, Thomas Wiegand, and Markus Wenzel. “Focus group
on artificial intelligence for health”. In: arXiv preprint arXiv:1809.04797
(2018).

[9] Sandeep Reddy et al. “A governance model for the application of AI
in health care”. In: Journal of the American Medical Informatics As-
sociation 27.3 (2020), pp. 491–497.

93

https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence
https://cloud.google.com/learn/what-is-artificial-intelligence
https://cloud.google.com/learn/what-is-artificial-intelligence
https://ki.thws.de/en/about/strong-vs-weak-ai-a-definition/
https://ki.thws.de/en/about/strong-vs-weak-ai-a-definition/
https://www.ediweekly.com/the-three-different-types-of-artificial-intelligence-ani-agi-and-asi/
https://www.ediweekly.com/the-three-different-types-of-artificial-intelligence-ani-agi-and-asi/
https://www.ediweekly.com/the-three-different-types-of-artificial-intelligence-ani-agi-and-asi/

BIBLIOGRAPHY

[10] Mohammed Yousef Shaheen. “Applications of Artificial Intelligence
(AI) in healthcare: A review”. In: ScienceOpen Preprints (2021).

[11] Miguel Luengo-Oroz et al. “Artificial intelligence cooperation to sup-
port the global response to COVID-19”. In: Nature Machine Intelli-
gence 2.6 (2020), pp. 295–297.

[12] Mohammed Yousef Shaheen. “Adoption of machine learning for med-
ical diagnosis”. In: ScienceOpen preprints (2021).

[13] Stefan Harrer et al. “Artificial intelligence for clinical trial design”. In:
Trends in pharmacological sciences 40.8 (2019), pp. 577–591.

[14] Marcus Woo. “An AI boost for clinical trials”. In: Nature 573.7775
(2019), S100–S100.

[15] Irene Mayorga-Ruiz et al. “The role of AI in clinical trials”. In: Arti-
ficial Intelligence in Medical Imaging: Opportunities, applications and
risks (2019), pp. 231–243.

[16] DonHee Lee and Seong No Yoon. “Application of artificial intelligence-
based technologies in the healthcare industry: Opportunities and chal-
lenges”. In: International journal of environmental research and public
health 18.1 (2021), p. 271.

[17] Timothy JW Dawes et al. “Machine learning of three-dimensional right
ventricular motion enables outcome prediction in pulmonary hyper-
tension: a cardiac MR imaging study”. In: Radiology 283.2 (2017),
pp. 381–390.

[18] DonHee Lee. “Effects of key value co-creation elements in the health-
care system: focusing on technology applications”. In: Service Business
13.2 (2019), pp. 389–417.

[19] Óscar Díaz, James AR Dalton, and Jesús Giraldo. “Artificial intelli-
gence: a novel approach for drug discovery”. In: Trends in pharmaco-
logical sciences 40.8 (2019), pp. 550–551.

[20] Effy Vayena, Alessandro Blasimme, and I Glenn Cohen. “Machine
learning in medicine: addressing ethical challenges”. In: PLoS medicine
15.11 (2018), e1002689.

[21] Robert Challen et al. “Artificial intelligence, bias and clinical safety”.
In: BMJ quality & safety 28.3 (2019), pp. 231–237.

[22] Adam Palanica et al. “Physicians’ perceptions of chatbots in health
care: cross-sectional web-based survey”. In: Journal of medical Internet
research 21.4 (2019), e12887.

94

BIBLIOGRAPHY

[23] HC Stephen Chan et al. “Advancing drug discovery via artificial intel-
ligence”. In: Trends in pharmacological sciences 40.8 (2019), pp. 592–
604.

[24] Ke Zhang and Ayse Begum Aslan. “AI technologies for education:
Recent research & future directions”. In: Computers and Education:
Artificial Intelligence 2 (2021), p. 100025.

[25] Gwo-Jen Hwang et al. “A fuzzy expert system-based adaptive learning
approach to improving students’ learning performances by considering
affective and cognitive factors”. In: Computers and Education: Artifi-
cial Intelligence 1 (2020), p. 100003.

[26] Candace Walkington and Matthew L Bernacki. “Personalizing algebra
to students’ individual interests in an intelligent tutoring system: Mod-
erators of impact”. In: International Journal of Artificial Intelligence
in Education 29 (2019), pp. 58–88.

[27] Sofia B Dias et al. “Fuzzy cognitive mapping of LMS users’ quality
of interaction within higher education blended-learning environment”.
In: Expert systems with Applications 42.21 (2015), pp. 7399–7423.

[28] Bruce Cheung et al. “SmartTutor: An intelligent tutoring system in
web-based adult education”. In: Journal of Systems and Software 68.1
(2003), pp. 11–25.

[29] Agneta Gulz, Ludvig Londos, and Magnus Haake. “Preschoolers’ un-
derstanding of a teachable agent-based game in early mathematics as
reflected in their gaze behaviors–an experimental study”. In: Interna-
tional Journal of Artificial Intelligence in Education 30 (2020), pp. 38–
73.

[30] Betty Tärning et al. “Instructing a teachable agent with low or high
self-efficacy–does similarity attract?” In: International Journal of Ar-
tificial Intelligence in Education 29 (2019), pp. 89–121.

[31] Maria Cutumisu, Doris B Chin, and Daniel L Schwartz. “A digital
game-based assessment of middle-school and college students’ choices
to seek critical feedback and to revise”. In: British Journal of Educa-
tional Technology 50.6 (2019), pp. 2977–3003.

[32] Kwok Tai Chui et al. “Predicting at-risk university students in a virtual
learning environment via a machine learning algorithm”. In: Comput-
ers in Human behavior 107 (2020), p. 105584.

95

BIBLIOGRAPHY

[33] Jaret Hodges and Soumya Mohan. “Machine learning in gifted educa-
tion: A demonstration using neural networks”. In: Gifted Child Quar-
terly 63.4 (2019), pp. 243–252.

[34] Utku Köse. “An augmented-reality-based intelligent mobile applica-
tion for open computer education”. In: Virtual and Augmented Re-
ality: Concepts, Methodologies, Tools, and Applications. IGI Global,
2018, pp. 324–344.

[35] Ibrahim Arpaci. “A hybrid modeling approach for predicting the edu-
cational use of mobile cloud computing services in higher education”.
In: Computers in human Behavior 90 (2019), pp. 181–187.

[36] Neha U Keshav et al. “Social communication coaching smartglasses:
Well tolerated in a diverse sample of children and adults with autism”.
In: JMIR mHealth and uHealth 5.9 (2017), e8534.

[37] MJ Aitkenhead et al. “A novel method for training neural networks for
time-series prediction in environmental systems”. In: Ecological Mod-
elling 162.1-2 (2003), pp. 87–95.

[38] Halimatu Sadiyah Abdullahi, F Mahieddine, and Ray E Sheriff. “Tech-
nology impact on agricultural productivity: A review of precision agri-
culture using unmanned aerial vehicles”. In: Wireless and Satellite
Systems: 7th International Conference, WiSATS 2015, Bradford, UK,
July 6-7, 2015. Revised Selected Papers 7. Springer. 2015, pp. 388–400.

[39] Ngozi Clara Eli-Chukwu. “Applications of artificial intelligence in agri-
culture: A review.” In: Engineering, Technology & Applied Science Re-
search 9.4 (2019).

[40] MengBo Li and RS Yost. “Management-oriented modeling: optimiz-
ing nitrogen management with artificial intelligence”. In: Agricultural
Systems 65.1 (2000), pp. 1–27.

[41] Eva M López et al. “A fuzzy expert system for soil characterization”.
In: Environment international 34.7 (2008), pp. 950–958.

[42] Zhengyong Zhao et al. “Predict soil texture distributions using an ar-
tificial neural network model”. In: Computers and electronics in agri-
culture 65.1 (2009), pp. 36–48.

[43] M Susan Moran, Yoshio Inoue, and EM Barnes. “Opportunities and
limitations for image-based remote sensing in precision crop manage-
ment”. In: Remote sensing of Environment 61.3 (1997), pp. 319–346.

96

BIBLIOGRAPHY

[44] H Lal et al. “FARMSYS—a whole-farm machinery management deci-
sion support system”. In: Agricultural systems 38.3 (1992), pp. 257–
273.

[45] Snehal S Dahikar and Sandeep V Rode. “Agricultural crop yield pre-
diction using artificial neural network approach”. In: International
journal of innovative research in electrical, electronics, instrumenta-
tion and control engineering 2.1 (2014), pp. 683–686.

[46] Eldert J Van Henten et al. “An autonomous robot for harvesting cu-
cumbers in greenhouses”. In: Autonomous robots 13.3 (2002), pp. 241–
258.

[47] María Pérez-Ortiz et al. “Machine learning paradigms for weed map-
ping via unmanned aerial vehicles”. In: 2016 IEEE symposium series
on computational intelligence (SSCI). IEEE. 2016, pp. 1–8.

[48] José Blasco et al. “AE—Automation and emerging technologies: Robotic
weed control using machine vision”. In: Biosystems Engineering 83.2
(2002), pp. 149–157.

[49] Koushik Anand et al. “Automatic drip irrigation system using fuzzy
logic and mobile technology”. In: 2015 IEEE technological innova-
tion in ict for agriculture and rural development (TIAR). IEEE. 2015,
pp. 54–58.

[50] David Anthony et al. “On crop height estimation with UAVs”. In:
2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2014, pp. 4805–4812.

[51] Juliane Bendig, Andreas Bolten, and Georg Bareth. “Introducing a
low-cost mini-UAV for thermal-and multispectral-imaging”. In: The
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 39 (2012), pp. 345–349.

[52] Mito Kehayov, Lukas Holder, and Volker Koch. “Application of ar-
tificial intelligence technology in the manufacturing process and pur-
chasing and supply management”. In: Procedia Computer Science 200
(2022), pp. 1209–1217.

[53] Manuel Woschank, Erwin Rauch, and Helmut Zsifkovits. “A review of
further directions for artificial intelligence, machine learning, and deep
learning in smart logistics”. In: Sustainability 12.9 (2020), p. 3760.

97

BIBLIOGRAPHY

[54] Poti Chaopaisarn and Manuel Woschank. “Requirement analysis for
SMART supply chain management for SMEs”. In: Proceedings of the
International Conference on Industrial Engineering and Operations
Management Bangkok, Thailand. 2019, pp. 3715–3725.

[55] Du Ni, Zhi Xiao, and Ming K Lim. “A systematic review of the re-
search trends of machine learning in supply chain management”. In:
International Journal of Machine Learning and Cybernetics 11 (2020),
pp. 1463–1482.

[56] Oihab Allal-Chérif, Virginia Simón-Moya, and Antonio Carlos Cuenca
Ballester. “Intelligent purchasing: How artificial intelligence can rede-
fine the purchasing function”. In: Journal of Business Research 124
(2021), pp. 69–76.

[57] Chaoliang Han and Qi Zhang. “Optimization of supply chain efficiency
management based on machine learning and neural network”. In: Neu-
ral Computing and Applications 33.5 (2021), pp. 1419–1433.

[58] Elcio Tarallo et al. “Machine learning in predicting demand for fast-
moving consumer goods: An exploratory research”. In: IFAC-PapersOnLine
52.13 (2019), pp. 737–742.

[59] Akhil Raj Azhikodan, Anvitha GK Bhat, and Mamatha V Jadhav.
“Stock trading bot using deep reinforcement learning”. In: Innova-
tions in Computer Science and Engineering: Proceedings of the Fifth
ICICSE 2017. Springer. 2019, pp. 41–49.

[60] Manoj Kumar, Rahul Vaishya, et al. “Real-time monitoring system to
lean manufacturing”. In: Procedia Manufacturing 20 (2018), pp. 135–
140.

[61] Bo-hu Li et al. “Applications of artificial intelligence in intelligent man-
ufacturing: a review”. In: Frontiers of Information Technology & Elec-
tronic Engineering 18.1 (2017), pp. 86–96.

[62] Jiafu Wan et al. “Artificial-intelligence-driven customized manufactur-
ing factory: key technologies, applications, and challenges”. In: Pro-
ceedings of the IEEE 109.4 (2020), pp. 377–398.

[63] John R Baldwin and David Sabourin. “Impact of the adoption of ad-
vanced information and communication technologies on firm perfor-
mance in the Canadian manufacturing sector”. In: (2002).

98

BIBLIOGRAPHY

[64] HW Lightfoot, T Baines, and P Smart. “Examining the information
and communication technologies enabling servitized manufacture”. In:
Proceedings of the institution of mechanical engineers, part b: journal
of engineering manufacture 225.10 (2011), pp. 1964–1968.

[65] Miguel Dopico et al. “A vision of industry 4.0 from an artificial intelli-
gence point of view”. In: Proceedings on the international conference on
artificial intelligence (ICAI). The Steering Committee of The World
Congress in Computer Science, Computer . . . 2016, p. 407.

[66] Nela Mircică. “Cyber-physical systems for cognitive Industrial Internet
of Things: Sensory big data, smart mobile devices, and automated
manufacturing processes”. In: Analysis and Metaphysics 18 (2019),
pp. 37–43.

[67] VC Vasiliou and DA Milner. “Computer-integrated manufacture for
cold roll forming”. In: Advances in Manufacturing Technology: Pro-
ceedings of the First National Conference on Production Research.
Springer. 1986, pp. 79–85.

[68] Ibtissam El Hassani, Choumicha El Mazgualdi, and Tawfik Masrour.
“Artificial intelligence and machine learning to predict and improve ef-
ficiency in manufacturing industry”. In: arXiv preprint arXiv:1901.02256
(2019).

[69] Gangu Naidu Mandala et al. “A critical review of applications of ar-
tificial intelligence (AI) and its powered technologies in the financial
industry”. In: 2022 2nd international conference on advance computing
and innovative technologies in engineering (ICACITE). IEEE. 2022,
pp. 2362–2365.

[70] Han Shi Jocelyn Chew and Palakorn Achananuparp. “Perceptions
and needs of artificial intelligence in health care to increase adoption:
scoping review”. In: Journal of medical Internet research 24.1 (2022),
e32939.

[71] C Vijai and P Nivetha. “ABC technology-artificial intelligence, blockchain
technology, cloud technology for banking sector”. In: Advances in Man-
agement 13.4 (2020).

[72] Felix Dominik Weber and Reinhard Schütte. “State-of-the-art and
adoption of artificial intelligence in retailing”. In: Digital Policy, Reg-
ulation and Governance 21.3 (2019), pp. 264–279.

[73] Sherali Zeadally et al. “Harnessing artificial intelligence capabilities to
improve cybersecurity”. In: Ieee Access 8 (2020), pp. 23817–23837.

99

BIBLIOGRAPHY

[74] Dhaya Sindhu Battina. “Research on artificial intelligence for citizen
services and government”. In: International Journal of Creative Re-
search Thoughts (IJCRT), ISSN (2017), pp. 2320–2882.

[75] Aggeliki Androutsopoulou et al. “Transforming the communication be-
tween citizens and government through AI-guided chatbots”. In: Gov-
ernment information quarterly 36.2 (2019), pp. 358–367.

[76] Stevan Dedijer. Governments, business intelligence-a pioneering report
from france1. 1994.

[77] Ronald Stamper. “Pathologies of AI: Responsible use of artificial in-
telligence in professional work”. In: AI & society 2 (1988), pp. 3–16.

[78] Ingolf Dittmann. “The optimal use of fines and imprisonment if gov-
ernments do not maximize welfare”. In: Journal of Public Economic
Theory 8.4 (2006), pp. 677–695.

[79] Hsi-Peng Lu et al. “Technology roadmap of AI applications in the
retail industry”. In: Technological Forecasting and Social Change 195
(2023), p. 122778.

[80] Venkatesh Shankar et al. “How technology is changing retail”. In:
Journal of Retailing 97.1 (2021), pp. 13–27.

[81] Rajasshrie Pillai, Brijesh Sivathanu, and Yogesh K Dwivedi. “Shop-
ping intention at AI-powered automated retail stores (AIPARS)”. In:
Journal of Retailing and Consumer Services 57 (2020), p. 102207.

[82] Minghua Xiao et al. “Applying Deep Learning-Based Personalized
Item Recommendation for Mobile Service in Retailor Industry”. In:
Mobile Information Systems 2022 (2022).

[83] Sébastien Thomassey. “Sales forecasts in clothing industry: The key
success factor of the supply chain management”. In: International
Journal of Production Economics 128.2 (2010), pp. 470–483.

[84] Renjieh J Kuo, Yu C Wang, and Fangchih C Tien. “Integration of arti-
ficial neural network and MADA methods for green supplier selection”.
In: Journal of cleaner production 18.12 (2010), pp. 1161–1170.

[85] Mark Ko, Ashutosh Tiwari, and Jörn Mehnen. “A review of soft com-
puting applications in supply chain management”. In: Applied Soft
Computing 10.3 (2010), pp. 661–674.

[86] Tereza Sustrova. “A suitable artificial intelligence model for inven-
tory level optimization”. In: Trends Economics and Management 10.25
(2016), pp. 48–55.

100

BIBLIOGRAPHY

[87] Dario Landa-Silva, Fathima Marikar, and Khoi Le. “Heuristic ap-
proach for automated shelf space allocation”. In: Proceedings of the
2009 ACM symposium on Applied Computing. 2009, pp. 922–928.

[88] Woonghee Tim Huh et al. “An adaptive algorithm for finding the opti-
mal base-stock policy in lost sales inventory systems with censored de-
mand”. In: Mathematics of Operations Research 34.2 (2009), pp. 397–
416.

[89] HY Lam et al. “A knowledge-based logistics operations planning sys-
tem for mitigating risk in warehouse order fulfillment”. In: Interna-
tional Journal of Production Economics 170 (2015), pp. 763–779.

[90] Andrew Ning et al. “Fulfillment of retailer demand by using the MDL-
optimal neural network prediction and decision policy”. In: IEEE Trans-
actions on Industrial Informatics 5.4 (2009), pp. 495–506.

[91] Gedas Bertasius et al. “First person action-object detection with egonet”.
In: arXiv preprint arXiv:1603.04908 (2016).

[92] Christine Bauer, Paul Dohmen, and Christine Strauss. “Interactive
digital signage-an innovative service and its future strategies”. In: 2011
International Conference on Emerging Intelligent Data and Web Tech-
nologies. IEEE. 2011, pp. 137–142.

[93] Linda Delamaire, HAH Abdou, and John Pointon. “Credit card fraud
and detection techniques: a review”. In: Banks and Bank systems 4.2
(2009).

[94] Clifton Phua et al. “A comprehensive survey of data mining-based
fraud detection research”. In: arXiv preprint arXiv:1009.6119 (2010).

[95] Lakshmi Shankar Iyer. “AI enabled applications towards intelligent
transportation”. In: Transportation Engineering 5 (2021), p. 100083.

[96] D Šusteková and Marta Knutelská. “How is the artificial intelligence
used in applications for traffic management”. In: Machines. Technolo-
gies. Materials. 9.10 (2015), pp. 49–52.

[97] Julián Andrés Zapata Cortés, Martín Darío Arango Serna, and Ro-
drigo Andres Gomez. “Information systems applied to transport im-
provement”. In: Dyna 80.180 (2013), pp. 77–86.

[98] Riccardo Coppola and Maurizio Morisio. “Connected car: technolo-
gies, issues, future trends”. In: ACM Computing Surveys (CSUR) 49.3
(2016), pp. 1–36.

101

BIBLIOGRAPHY

[99] Adel W Sadek. “Artificial intelligence applications in transportation”.
In: Transportation research circular (2007), pp. 1–7.

[100] Google Cloud. What is Natural Language Processing? url: https://
cloud.google.com/learn/what-is-natural-language-processing.

[101] OpenAI. About OpenAI. url: https://openai.com/about.
[102] OpenAI. Speech to text. url: https://platform.openai.com/docs/

guides/speech-to-text.
[103] OpenAI. Text to speech. url: https://platform.openai.com/docs/

guides/text-to-speech.
[104] OpenAI. Image generation. url: https://platform.openai.com/

docs/guides/images.
[105] OpenAI. Vision. url: https://platform.openai.com/docs/guides/

vision.
[106] OpenAI. Text generation models. url: https://platform.openai.

com/docs/guides/text-generation.
[107] OpenAI. Introducing ChatGPT. url: https://openai.com/blog/

chatgpt.
[108] OpenAI. GPT-3.5 Turbo. url: https: //platform .openai.com /

docs/models/gpt-3-5-turbo.
[109] Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774

(2023).
[110] OpenAI. Fine Tuning. url: https://platform.openai.com/docs/

guides/fine-tuning.
[111] Ehsan Latif and Xiaoming Zhai. “Fine-tuning chatgpt for automatic

scoring”. In: Computers and Education: Artificial Intelligence (2024),
p. 100210.

[112] Tianshi Cao, Marc Law, and Sanja Fidler. “A theoretical analysis of
the number of shots in few-shot learning”. In: arXiv preprint arXiv:1909.11722
(2019).

[113] Theodore D Hellmann et al. “Agile Testing: Past, Present, and Future–
Charting a Systematic Map of Testing in Agile Software Develop-
ment”. In: 2012 Agile Conference. IEEE. 2012, pp. 55–63.

[114] Lu Luo. “Software testing techniques”. In: Institute for software re-
search international Carnegie mellon university Pittsburgh, PA 15232.1-
19 (2001), p. 19.

102

https://cloud.google.com/learn/what-is-natural-language-processing
https://cloud.google.com/learn/what-is-natural-language-processing
https://openai.com/about
https://platform.openai.com/docs/guides/speech-to-text
https://platform.openai.com/docs/guides/speech-to-text
https://platform.openai.com/docs/guides/text-to-speech
https://platform.openai.com/docs/guides/text-to-speech
https://platform.openai.com/docs/guides/images
https://platform.openai.com/docs/guides/images
https://platform.openai.com/docs/guides/vision
https://platform.openai.com/docs/guides/vision
https://platform.openai.com/docs/guides/text-generation
https://platform.openai.com/docs/guides/text-generation
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning

BIBLIOGRAPHY

[115] AWS. What is Unit Testing? url: https://aws.amazon.com/what-
is/unit-testing/?nc1=h_ls.

[116] Smartbear. What Is Unit Testing? url: https://smartbear.com/
learn/automated-testing/what-is-unit-testing/.

[117] Michael Feathers. Working effectively with legacy code. Prentice Hall
Professional, 2004.

[118] Michael Olan. “Unit testing: test early, test often”. In: Journal of Com-
puting Sciences in Colleges 19.2 (2003), pp. 319–328.

[119] The JUnit Team. JUnit 5 - the 5th major version of the programmer-
friendly testing framework for Java and the JVM. url: https : / /
junit.org/junit5/.

[120] Atlassian. The different types of software testing. url: https://www.
atlassian.com/continuous-delivery/software-testing/types-
of-software-testing.

[121] VMware Tanzu. Spring Boot. url: https://spring.io/projects/
spring-boot.

[122] VMware Tanzu. Spring Boot - Documentation. url: https://docs.
spring.io/spring-boot/docs/current/reference/htmlsingle/.

[123] GitHub. About GitHub and Git. url: https://docs.github.com/
en/get-started/start-your-journey/about-github-and-git.

[124] Atlassian. Great outcomes start with Jira. url: https://www.atlassian.
com/software/jira.

[125] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-
intensive nlp tasks”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 9459–9474.

[126] OpenAI. OpenAI Models. url: https: // platform. openai. com/
docs/models/models.

[127] Marc Hoffmann et al. JaCoCo - Java Code Coverage Library. url:
https://www.jacoco.org/jacoco/trunk/index.html.

[128] Henry Coles. PIT Mutation Testing. url: https://pitest.org/.
[129] OpenAI. Fine Tuning - Example count recommendations. url: https:

//platform.openai.com/docs/guides/fine- tuning/example-
count-recommendations.

[130] LangChain Inc. LangChain. url: https://www.langchain.com/.

103

https://aws.amazon.com/what-is/unit-testing/?nc1=h_ls
https://aws.amazon.com/what-is/unit-testing/?nc1=h_ls
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://junit.org/junit5/
https://junit.org/junit5/
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://platform.openai.com/docs/models/models
https://platform.openai.com/docs/models/models
https://www.jacoco.org/jacoco/trunk/index.html
https://pitest.org/
https://platform.openai.com/docs/guides/fine-tuning/example-count-recommendations
https://platform.openai.com/docs/guides/fine-tuning/example-count-recommendations
https://platform.openai.com/docs/guides/fine-tuning/example-count-recommendations
https://www.langchain.com/

BIBLIOGRAPHY

[131] LangChain. LangChain Components. url: https://python.langchain.
com/docs/modules/.

[132] LangChain. Go autonomous with LangChain Agents. url: https://
www.langchain.com/agents.

[133] GitHub. GitHub Apps overview. url: https://docs.github.com/
en/apps.

[134] GitHub. About Webhooks. url: https : / / docs . github . com / en /
webhooks/about-webhooks.

[135] GitHub. Using webhooks with GitHub Apps. url: https : / / docs .
github.com/en/apps/creating- github- apps/registering- a-
github-app/using-webhooks-with-github-apps.

[136] ngrok. ngrok. url: https://ngrok.com/docs/.
[137] GitHub. Understanding GitHub Actions. url: https://docs.github.

com/en/actions/learn-github-actions/understanding-github-
actions.

[138] GitHub. Managing a branch protection rule. url: https://docs.
github.com/en/repositories/configuring-branches-and-merges-
in-your-repository/managing-protected-branches/managing-
a-branch-protection-rule.

[139] Aneshka Goyal. From Java 17 to Java 21 - Features and Benefits. url:
https://www.linkedin.com/pulse/from-java-17-21-features-
benefits-aneshka-goyal-impdc/.

[140] Google. Gemini: chat to expand your ideas. url: https://gemini.
google.com/.

[141] Meta. Meet LLaMA. url: https://llama.meta.com/.
[142] Anthropic. Meet Claude. url: https://www.anthropic.com/claude.

104

https://python.langchain.com/docs/modules/
https://python.langchain.com/docs/modules/
https://www.langchain.com/agents
https://www.langchain.com/agents
https://docs.github.com/en/apps
https://docs.github.com/en/apps
https://docs.github.com/en/webhooks/about-webhooks
https://docs.github.com/en/webhooks/about-webhooks
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/using-webhooks-with-github-apps
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/using-webhooks-with-github-apps
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/using-webhooks-with-github-apps
https://ngrok.com/docs/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://www.linkedin.com/pulse/from-java-17-21-features-benefits-aneshka-goyal-impdc/
https://www.linkedin.com/pulse/from-java-17-21-features-benefits-aneshka-goyal-impdc/
https://gemini.google.com/
https://gemini.google.com/
https://llama.meta.com/
https://www.anthropic.com/claude

	List of Figures
	Introduction
	Purpose of the Thesis

	Background
	Artificial Intelligence (AI)
	What is AI?
	Artificial Intelligence applications
	Natural Language Processing
	Machine Learning and Deep Learning

	OpenAI and ChatGPT
	OpenAI
	ChatGPT

	Fine-Tuning and Few-Shots
	Fine-Tuning
	Few-Shots

	Software testing
	Unit testing
	Other types of software testing

	Spring Boot
	GitHub

	Methodology
	A brief explanation
	Analysis of different GPT models
	Analyzed models
	Static analysis parameters
	Static analysis methodology
	Static analysis results

	Creation of the Spring Boot application
	Giving context to ChatGPT
	Extraction of main information

	LangChain
	LangChain Agent
	GitHub Integration
	GitHub Agent - a coding perspective
	Note on LangChain usage

	GitHub Webhooks
	GitHub Actions
	GitHub branch protection rules

	Results
	Structure of the application

	Conclusions and Future Work

