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Summary

Cloud computing has revolutionized the deployment of innovative services, with
cloud-native applications becoming a fundamental design pattern. Kubernetes has
emerged as the leading platform for container and application management in this
paradigm. For telecommunication companies (Telcos) with numerous edge sites,
adopting cloud-native solutions offers the potential for rapid deployment, configura-
tion, and maintenance of network applications, while ensuring a robust certification
process.

However, this shift requires a certified, modular, and extensible framework to man-
age multiple edge sites along with their associated Network Functions and services.
The Sylva Project aims to provide such a framework, offering a reference imple-
mentation based on open-source software tailored to European Telcos’ needs. Sylva
seeks to automate and standardize the traditionally manual and fragmented process
of deploying and managing edge sites with bare-metal or virtualized nodes.

The automation of bare-metal Sylva deployments presents a unique challenge, re-
quiring deep, domain-specific knowledge of the underlying infrastructure. This the-
sis proposes an architecture based on the Server Operator and its related Custom
Resource Definitions (CRDs).

An important component of this solution is to seamlessly integrate within the exist-
ing stack, while following the patterns and standards of Kubernetes and the tools
used within Sylva. This is achieved by extending Sylva’s current operators to sim-
plify the configuration of bare-metal nodes. By doing so, the proposed architecture
aims to enhance collaboration between infrastructure administrators and applica-
tion developers, ultimately increasing deployment agility in Telco environments.
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Chapter 1

Introduction

1.1 Introduction

The telecommunications industry is undergoing a significant transformation, driven
by the widespread adoption of cloud-native technologies and the increasing demand
for edge computing capabilities. This shift presents both opportunities and chal-
lenges for telecom operators (telcos) as they strive to modernize their infrastructure
and service delivery models.

Cloud-native applications, characterized by their scalability, resilience, and flexibil-
ity, are becoming the norm in modern software development. For telcos, this trend
manifests in the growing need to efficiently manage an expanding number of edge
sites and network functions.

The edge computing paradigm, which brings computation and data storage closer
to the end-users, is particularly crucial for telcos due to their distributed nature
and territorial presence. It enables them to offer ultra-low latency services, process
data locally, ensure privacy, and maintain limited autonomy in case of disconnection
from central data centers.

However, the adoption of cloud-native technologies in the telco industry is not
without its challenges. One of the most significant hurdles is the fragmentation
of infrastructure and platforms. Telcos often find themselves managing multiple
separate infrastructures, each tailored to specific applications or network functions.
This fragmentation leads to increased operational complexity, inefficient resource
utilization, and difficulties in certifying applications across different cloud plat-
forms.

The Sylva project, an initiative under the Linux Foundation Europe, aims to ad-
dress these challenges by establishing a common, open-source cloud-native infras-
tructure stack for the telecommunications industry. Sylva provides a crucial refer-
ence framework for European telcos and vendors, promoting interoperability and
standardization. However, despite its advantages, Sylva still faces several chal-
lenges, particularly in managing the inherent complexities of bare metal environ-
ments.

One critical issue is the substantial domain-specific knowledge required for the
effective deployment of new bare metal Workload Clusters. This complexity often
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creates a barrier between infrastructure administrators and application developers,
hindering efficient collaboration and slowing down the deployment process. The
current approach typically involves manual configuration and management of bare
metal resources, which is time-consuming, error-prone, and requires specialized
expertise.

Given this context, the primary objective of this thesis is to design and imple-
ment a robust architecture that streamlines the deployment process of Kubernetes
clusters on bare metal instances, specifically focusing on managing domain-specific
configurations for the deployment of Sylva Workload Clusters (SWC). The pro-
posed solution aims to bridge the gap between high-level cluster requirements and
low-level bare metal configurations, enabling a more seamless and automated de-
ployment process.

To achieve this goal, we leverage Kubernetes closed-loop reconciliation patterns,
implementing a custom controller and a Custom Resource Definition (CRD). This
approach allows us to extend the existing Sylva framework, providing a more user-
friendly and efficient method for deploying and managing bare metal clusters. The
solution is designed to integrate seamlessly with Sylva’s declarative and GitOps-
driven workflow, maintaining compatibility with existing operators while offering
enhanced functionality for bare metal deployments.

By addressing these challenges, this thesis contributes to the broader evolution and
enhancement of the Sylva project, facilitating the adoption of cloud-native tech-
nologies in telco environments and supporting the industry’s digital transformation
journey.

1.2 Goal

The primary objective of this thesis is to design and implement a robust archi-
tecture that streamlines the deployment process of Kubernetes clusters on bare
metal instances. Specifically, the focus is on managing domain-specific configura-
tions for the deployment of Sylva Workload Clusters (SWC). This challenging task
is accomplished through the implementation of Kubernetes closed-loop reconcilia-
tion patterns, which involve a custom controller and a Custom Resource Definition
(CRD). The proposed solution is carefully crafted to integrate seamlessly with the
existing Sylva project ecosystem and its established operators. By leveraging these
advanced Kubernetes concepts, the architecture aims to enhance the efficiency and
reliability of cluster deployments, ultimately contributing to more manageable and
scalable infrastructure solutions in complex bare metal environments.

1.3 Structure of the thesis

This thesis is composed of the following chapters:

❼ Chapter 2 will provide an overview of Kubernetes the core technology that
enables The Sylva project and the Cloud Native approach.
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❼ Chapter 3 focuses on the Sylva project itself, its goals and architecture.

❼ Chapter 4 will give an overview of some of the technologies that allow Sylva
to operate in a bare metal environment.

❼ Chapter 5 introduces the work of the thesis, the faced challenges and pro-
posed solution.

❼ Chapter 6 explains the practical implementation of the proposed CRD and
controller.

❼ Chapter 7 provides the achieved results and performance obtained.

❼ Chapter 8 presents challenges of the current approach and possible future
work.

❼ Chapter 9 discusses the conclusions of the work carried out.
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Chapter 2

Kubernetes

This chapter provides an overview of the Kubernetes architecture and its funda-
mentals, as the Sylva project and the subject of this thesis are based upon its model.
Kubernetes, often abbreviated to k8s, is a large open-source system for automating
deployment, scaling, and management of containerized applications [1].

We will give an overlook of the general concepts and components and how they work
together. Particular focus is going to be given to its extensibility and versatility,
by exploring Custom Resource Definitions and the Operator framework. These
powerful tools allow Kubernetes to evolve beyond the out-of-the-box functionality,
catering to diverse and specialized application requirements, such as the particular
needs of telcos.

We will also spend some time to understand Kubebuilder, a tool used to scaffold
these custom resources, with which the implementation of this work was built

2.1 Cloud Native Evolution

The way applications are developed has evolved substantially over time, reflecting
the shift in technological capabilities and business requirements.

Traditionally, applications were built to run on a physical server, in this so-called
’bare metal’ approach each application was tightly coupled with its hardware, envi-
ronment and had virtually no way of defining resource constraints, forcing system
administrators to deploy one or few applications per server, causing underutiliza-
tion of server resources, increasing cost and maintenance work. Scalability was
also a concern, as applications would rarely be designed to scale horizontally, leav-
ing vertical scaling as the primary option, an increasingly costly option. Even
when horizontal scalability was possible, augmenting more servers was an expen-
sive proposition and required considerable time and effort.

Virtualization Technology emerged as possible solution to these challenges. Vir-
tualization allows for multiple virtual machines to run concurrently on a single
server. This grants isolation of the applications running on a physical server, al-
lows for better control over resource limits and provides better overall resource
utilization compared to the bare metal approach. Creating and managing VMs is
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an easy task, a VM can be scaled up or down as needed and can run on uniform
hardware, reducing operational complexity, hardware cost and much more.

For all its advantages, Virtualization still introduces significant overhead, as each
VM includes its operating system, virtualized devices and related resources.

Containerization is the next step in the evolution of workload deployment. Con-
tainers, in a way, work similarly to Virtual Machines, but they share the same host
operating system, this allows for virtually zero runtime overhead[2], at the cost of
relaxed isolation and security properties.

One key feature of containers is their decoupled nature and thus portability, they
encapsulate an application along with its dependencies into a standalone unit that
can operate anywhere, offering a highly portable, environment-agnostic solution for
software deployment.

2.1.1 Container Orchestration

Despite the advantages of containers, managing a large number of them across dif-
ferent servers presents new challenges, particularly around scheduling, networking,
and scalability. Kubernetes was introduced to address these issues, providing a
robust platform for orchestrating containers.

K8s automates the deployment, scaling, and management of containerized applica-
tions, and provides other essential tools such as Service Discovery and Load Bal-
ancing, Storage Orchestration, Secrets and Configuration Management, Automated
rollouts and Rollbacks[4].

One of the primary advantages of Cloud Native infrastructure technologies, which
makes use of Kubernetes, is the modular, interoperable and scalable approach to
application deployment. Kubernetes provides an open platform called CaaS (Con-
tainer as a Service) on top of which applications can be deployed consistently across
locations.

2.2 Architecture

Kubernetes is based around a modular and highly extensible architecture in which
we can identify two main components, a Control Plane, which is the source of truth
for the state of the cluster and is responsible for managing and maintaining the
desired state of the cluster, and Worker Nodes, which run the actual containerized
applications and workloads.

2.2.1 Nodes

Nodes are the actual physical or virtual machines where applications run. Each
node is a self-contained runtime environment containing the necessary services to
support running containers.

These services include [5]:
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❼ Kubelet An agent that resides in each node in the cluster. It’s responsible
for maintaining the state of the node and ensuring that all the components
and applications within the node are running as expected. It communicates
with the control plane to receive commands and report back.

❼ Kube-Proxy Serves as network proxy and load balancer for a node, it im-
plements part of the Kubernetes Service concept. Allows network communi-
cation from inside or outside of the cluster.

❼ Container Runtime A fundamental component that allows Kubernetes to
run containers effectively. Kubernetes supports many container runtimes,
such as containerd, CRI-O and any other implementation of Kubernetes CRI.

Typically, many nodes constitute a cluster, however, even a single node can fulfill
both roles, of control-plane and worker, thus forming a Kubernetes cluster.

2.2.2 Control Plane

The term is used to identify the set of nodes running control plane components.
These make global decisions about the cluster, as well as detecting and responding
to cluster events. Some of the main components include:

❼ API Server It exposes the Kubernetes API and acts as the front end of the
Kubernetes control plane. It serves as the communication hub with which
both internal and external components perform various operations.

❼ etcdIs a consistent and highly available key-value store, used as Kubernetes’
backing store for all cluster data. An external database may be used instead.

❼ Scheduler The scheduler is responsible for scheduling pods ( the smallest
deployable unit of computing in Kubernetes ), on nodes. It continually keeps
the state of the cluster consistent taking into account resource requirements,
hardware/software/policy constraints , data locality and user specifications.

❼ Controller Manager It runs various controllers, control loops which are
responsible for reconciling the state of the cluster with the desired one. Such
as the Node Controller, responsible for noticing and responding when a node
goes down.

2.2.3 Objects

One fundamental aspect of Kubernetes, and central to its whole operation, is that of
Objects. They are persistent entities used to represent the state of the cluster. An
object is a “record-of-intent” which describes the desired resource[6]. The control
plane will continually work to ensure the object exists and matches the provided
specification.

Almost all Kubernetes objects includes two nested object fields that govern the
object’s configuration: the object spec and the object status. The spec of an
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object must be set at creation time, providing a description of the characteristics
the object must have, its desired state.

The status describes the current state of the object, it is supplied and managed
by the Kubernetes system and its components. The control plane continually and
actively manages every object’s state to match the one specified in the spec.

On top of these parameters, to describe a Kubernetes object some other basic
information needs to be provided:

❼ ApiVersion Identifies the specific version of the schema representing this ob-
ject.

❼ Kind A string that identifies the REST resource for the object.

❼ Metadata Other information such as its name, annotations, label and an
optional namespace

Trough the API Server we can interact with these resources in a typical CRUD
(create, read, update, delete ) fashion. The API may be accessed by internal
components, such as controllers, or by external tools, like Kubectl.

Within the metadata of an object, we need to make a distinction between two fields
that initially may seem very similar:

❼ Labels Key-value pairs containing information and are used to identify and
Group objects into subsets by defining and organizing them. Objects can
then be filtered and indexed based on labels.

❼ Annotations Extra key-value pairs attached to an object, not usable to
select an object, unstructured, that can be used by clients and third-party
tools. Can contain lightweight configurations.

In both cases the key of the metadata can optionally contain a prefix that must be
in the format of a DNS subdomain name as defined in RFC-1123.

Listing 2.1. Example object metadata

1 metadata:

2 name: label-demo

3 labels:

4 environment: production

5 app: nginx

6 annotations:

7 imageregistry: ’https://hub.docker.com/’

Listing 2.2. Example Kubernetes Object

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: nginx-deployment

5 spec:
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6 selector:

7 matchLabels:

8 app: nginx

9 replicas: 2 # tells deployment to run 2 pods matching the template

10 template:

11 metadata:

12 labels:

13 app: nginx

14 spec:

15 containers:

16 - name: nginx

17 image: nginx:1.14.2

18 ports:

19 - containerPort: 80

2.3 Namespaces

In Kubernetes, namespaces provide a mechanism for isolating groups of resources
within the cluster. They act as virtual partitions providing a scope for names,
meaning resource names only need to be unique within their namespace, not across
the entire cluster. Each Kubernetes resource can only belong to one namespace,
however It’s important to note that namespace-based scoping is only applicable for
namespaced objects, like Deployments and Services. Cluster-scoped objects like
Nodes and PersistentVolumes do not exist within namespaces.

2.4 Helm

Kubernetes offers powerful and extensible tools for managing applications, however,
as the size and complexity of an application grows so does its required configuration.
In order to manage this complexity in a reusable way we can use Helm.

Helm Charts are collections of files used to define, install and manage Kubernetes
applications. Charts simplify the deployment of applications that range in com-
plexity from a single pod to a complete application with multiple components,
networking, volumes and authorization settings Charts are versioned and can be
stored in repositories, similar to Linux package managers, to facilitate sharing and
reuse.

A Helm chart is based around the idea of templating. Hem Chart templates are
written using the Go template language and provide a mechanism for dynamically
generating Kubernetes manifests based on configurable values. Charts can be de-
pendent on and make use of Charts, allowing for complex yet modular, versatile
and dynamic definitions.

The main components of a Helm Chart are:

Chart.yml A file containing information and metadata about the chart;
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Values.yaml A file containing the default configuration values for the chart;

Templates A directory of templates that reference the values to generate valid
k8s manifests

2.5 Operator Pattern

Kubernetes was designed with automation in mind, and its core offers a wide array
of built-in automation capabilities. One fundamental concept within Kubernetes
is the Controller Pattern enabling automation through control loops that monitor
and adjust the cluster’s state.

Controllers are clients of the Kubernetes API and operate by comparing the desired
state, specified in object specifications, with the actual state, fetched from the etcd
data store. This pattern allows for continuous reconciliation, ensuring that the
cluster’s state aligns with user definitions.

The Operator pattern is a software extension mechanism in Kubernetes that uses
custom resources to manage applications and their components. It essentially is a
specialization of the Controller Pattern building upon custom resources to provide
domain-specific automation encapsulating expert knowledge about a particular ap-
plication or service. The Operator pattern, building upon the Controller pattern,
introduces powerful self-healing capabilities to Kubernetes clusters. Self-healing
is a crucial aspect of maintaining the health and stability of complex distributed
systems, particularly in the context of cloud-native applications.

Self-healing in the Operator pattern works by continuously monitoring the state of
custom resources and their associated components. When discrepancies between
the desired state (as defined in the custom resource specification) and the actual
state of the system are detected, the Operator automatically takes corrective ac-
tions. These actions might include restarting failed pods, scaling resources up or
down, updating configurations, or even initiating more complex recovery procedures
specific to the application domain.

This autonomous operation reduces the need for manual intervention, enhanc-
ing system reliability and operational efficiency. By encapsulating domain-specific
knowledge and best practices, Operators can implement sophisticated self-healing
strategies that go beyond simple restarts, addressing complex failure scenarios and
maintaining the overall health of the application ecosystem.

2.5.1 Custom Resource Definitions (CRDs)

Custom Resource Definitions in Kubernetes provide a mechanism to define new
Object Kinds, essentially allowing users to define their own API Objects integrat-
ing arbitrary configurations and states into Kubernetes’ declarative management
approach, that behave like native K8s objects. Their entire lifecycle is managed by
the Kubernetes API server.
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2.5.2 Controllers

As previously mentioned, controllers operate in a control-loop to manage the state
of objects. In the context of the Operator pattern there usually is one Controller
per CRD, that owns and reconciles the resource.

A Controller receives a filtered stream of events by the API Server to then call a
Reconciler. The controller is also responsible for handling back-off, queuing and
requeuing of events. These usually signify changes happening within the cluster.

It is common for Controllers to watch for changes to the Resource type that they
Reconcile and Resource types of objects they create.

2.5.3 Kubebuilder

Kubebuilder is a SDK for building K8s APIs using CRDs. It greatly reduces the
time needed to build an operator, by scaffolding the necessary structure for CRDs
and related controllers, taking advantage of a collection of libraries and tools from
the Kubernetes ecosystem, Kubebuilder streamlines the development process for
Kubernetes APIs.

Kubebuilder encourages good development practices by organizing code into sepa-
rate packages based on domain logic. Each package encapsulates the API definition
and its associated controller, improving code maintainability

Trough the Kubebuilder CLI it is possible to easily generate files and scaffolding
for custom CRDs and controllers. It provides facilities to generate CRDs and API
objects, controllers, webhooks, manage RBAC permissions and much more.
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Chapter 3

Sylva Project

Project Sylva is a collaborative effort within the Linux Foundation Europe focused
on establishing a common, open-source cloud-native infrastructure stack for the
telecommunications industry. The project seeks to streamline the adoption of cloud
technologies in the telecommunications sector by addressing the technical challenges
and fragmentation that hinder progress.

3.1 Introduction

In a close parallel to what’s been discussed previously, the evolution toward cloud
native solutions is particularly important for telecommunication companies and is
one of the major technological trends of recent years in the telco industry.

3.1.1 Edge Computing

During recent years the need to increase the proximity between cloud services and
end users has clearly emerged. The edge-computing model encourages the deploy-
ment of ’mini-cloudlets’ close to the end users, catering to different use cases [7]:

❼ Ultra Low Latency
Measured in ≈ ms is critical for real time applications such as Robotics,
AR/VR, gaming.

❼ Local Processing
Local elaboration of produced data to extract information and take decisions,
avoiding moving large quantities of data towards a central DC.

❼ Privacy
Sensible or personal data will remain local without going into the public
domain.

❼ Limited Autonomy
Ability to continue operations when disconnected from a central DC.
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Given telco’s distributed nature and territorial presence, they are in the best posi-
tion to implement the cloud and digital communication model of edge computing.

It is increasingly common for cloud services to no longer be accessed solely trough
remote data centers, instead they are deployed in multiple locations, providing
the same capabilities and latency advantages of small remote cloudlets to the final
users. This architecture of cloud evolution can be named ”edge/cloud continuum”.

As telecommunications and cloud computing industries increasingly converge, their
technologies are also aligning. The software technologies and concepts that have
driven the commercial success of cloud services are now available for telecommuni-
cations companies to leverage and implement in their own operations.

3.1.2 Opportunities

As the need to deploy hundreds of edge cloud nodes will manifest in the coming
years, Telcos will be faced with accommodating in the same location traditional
Telco functionality, such as 5G RAN functions and modern cloud services. Cloud
Native infrastructure provides an opportunity to greatly simplify deployment and
increase efficiency., as one computing platform can be used to share computing and
connectivity resources among applications.

Examples of applications from the Telco industry are:

❼ 5G Radio Access Network (RAN) functions

❼ 5G Mobile Core network functions

❼ IP Network Functions

❼ Border Network Gateways

3.1.3 Market Fragmentation

Figure 3.1. Fragmentation example
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While the benefits of a cloud-native approach are clear, the Telco industry cur-
rent deployment model leads to inevitable fragmentation as it mandates the use of
proprietary CaaS, sometimes on top of specific physical machines

This inevitably leads to increased complexity for both vendors and operators. The
former need to develop their applications, and NF and certify them for multiple
cloud layers. While the Latter need to deal with multiple separate infrastructures,
leading to increased operational complexity.

This presents several challenges that render the whole approach unsustainable:

❼ Prevents the possibility of sharing CaaS and physical resources among differ-
ent applications, resulting in wasted compute power with CAPEX and energy
impacts

❼ Creates unnecessary complexity for vendors as they look to certify multiple
cloud platforms

❼ Creates operational burdens on Telcos by having to support several environ-
ments

❼ Fails to provide a solution that can evolve with the necessary speed of cloud
native

Figure 3.2. Fragmentation from the vendor point of view

3.2 Goals

The first goal of the Sylva Project is thus to converge the cloud layer, creating
a common infrastructure among European operators by incorporating capabilities
required for a CaaS to handle specific use cases such as 5G, O-RAN, and Edge
deployments. benefitting both operators, vendors and ultimately leading to better
services.
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Figure 3.3. Unification goal of the Sylva project

this cloud layer should align with well-established cloud native technologies and
operating processes. In particular, the target architecture should be based on multi-
cluster Kubernetes automated deployments on Bare Metal, managed with GitOps
approach (including Infrastructure as code).

The second goal of the Sylva project is to develop a Reference Implementation of
this cloud software framework and create an Integration and Validation program to
validate commercial network functions and implementations based on the released
framework and its components [8].

3.3 Implementation Details

When analyzing the architecture of the Sylva implementation we can identify three
main components, the Management Cluster, Workload Clusters, Units.

Sylva is designed to leverage open source projects and be lightweight enough to
house all of the needed components even in a single node.

3.3.1 Management Cluster

As the name suggests, it is a Kubernetes cluster with all of the components needed
to deploy, manage and monitor itself and other Sylva Workload Clusters using a
declarative approach. Drawing an analogy to the Kubernetes model, it can be seen
as the k8s control plane equivalent of a Sylva system. As such, its responsibilities
and characteristics are:

❼ Centralized Control The Management Cluster acts as a central point for
deploying and managing workload clusters.

❼ Declarative Approach

❼ Gitops The management cluster leverage GitOps tools and workflows to
reconcile the desired state with the deployed state. All configuration about

22



Sylva Project

itself or Workload clusters are stored in central repositories, enabling version
control, automated deployments and simplified rollbacks.

❼ Units The MC is responsible for deploying and managing Sylva Units within
itself and its workload clusters.

3.3.2 Workload Cluster

A Workload Cluster is a full Kubernetes cluster, with its own Control Plane and
Worker node. It is managed by the Management Cluster, the specific units (ap-
plications or components) deployed to a workload cluster vary depending on the
target infrastructure.

Due to Kubernetes’s lack of strong multi-tenancy support, critical CNFs requiring
high security isolation often necessitate dedicated workload clusters, potentially on
separate hardware. This approach ensures better security for sensitive applications
and services.

3.3.3 Units

Sylva units are applications or components, which can be either mandatory or
optional, that come from open-source projects and make up Sylva clusters. ”Units”
is used instead of ”components” to avoid confusion with the Kustomize terminology
also used in Sylva.

To manage the large number of clusters in the Sylva stack, a declarative approach is
used for both clusters and units. This means that unit kustomizations and cluster
definitions are kept in central repositories that are managed by GitOps tools, which
are responsible for reconciling what is declared with what is actually deployed.

Within Sylva, Units are deployed via the sylva-units Helm Chart. This chart
is not a typical one, while most Helm Charts create base Kubernetes objects to
deploy a given service, this chart instanciates Flux resources that tell Flux how to
deploy the units. Throughout the chart extensive user of Helm templating is used,
allowing greater flexibility. Clear dependencies are specified for all components to
avid wasting time and processing resources when the environment is not ready yet.

3.4 Sylva Operators

Thanks to the highly modular design of Sylva, the creation and management of
Sylva Clusters is very similar between any of the types of Sylva Clusters, Bootstrap,
Management and Workload.

Before the introduction of these operators, the creation and configuration manage-
ment of SWC and clusters in general was possible trough the usage of Bash scripts
and baseline configuration files present within the official Sylva Core repository.

While it is possible to automate their execution, the workflow remained quite man-
ual. The final result of is the creation or modification of a Helm Release containing
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all the necessary configuration for creating the cluster. To better align the project
with Kubernetes and Cloud Native standards, two operators have been introduced

3.4.1 Sylva Units Operator

The Sylva Units Operator Introduces two CRDs, the SylvaUnitsRelease (SUR) and
SylvaUnitsReleaseTemplate (SURT). They are essentially the same CRD, sharing
the exact same parameters except for the status, which is not needed and thus
omitted from the Template.

Its controller is in charge of keeping a Helm Release of the Sylva Units chart in
sync, along with its required resources, such as a Git or OCI repository for the
chart source. It will sync the required values and value references from the SUR to
the HR. Given Sylva modular design, this operator is capable of generating a HR
for all types of Sylva clusters, bootstrap, management and workload. This requires
some extra configuration parameters to be given to the HR, which the operator will
provide based on the type of requested cluster.

3.4.2 Sylva Workload Cluster Operator

The Sylva Workload Cluster Operator could be considered an extension of Sylva
Units Operator, it introduces a new CRD, the SylvaWorkloadCluster, which holds
curated configuration parameters to deploy a Sylva workload cluster, such as the
k8s version, the number of requested machines for the control plane and worker
nodes, the infrastructure provider and some cluster customization parameters.

The SWC resource holds few parameters compared to those required to spin up a
Workload Cluster, therefore, the SWC Operator makes use of the SURT to correctly
generate a SUR. The SURT role is to hold default configuration values for new
Workload Clusters which contain information specific to their parent Management
Cluster.

In essence, once a SWC resource is created on the MC, the SWC Operator will
generate a SUR, copying over the spec from the SURT and including any config-
uration fields specified in the SWC Resource and other parameters required by a
workload cluster. The SUR Operator, in turn, will generate a HelmRelease with
all the components necessary for a successful deployment.

Thus, the process of creating and managing Workload Clusters is greatly simpli-
fied. Global values can be shared across all deployments and the creation of new
Workload Clusters is as simple as creating one single resource in its own namespace.
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Bare Metal Deployment

To enable the creation and management of Workload Clusters and specifically ones
deployed on bare metal infrastructure, Sylva makes use of a couple key technologies.

4.1 ClusterAPI

ClusterAPI (CAPI) is an open-source Kubernetes project that provides declarative
APIs and tools for creating, configuring, and managing Kubernetes clusters. Its
primary goal is to simplify cluster lifecycle management and enable infrastructure
providers to offer Kubernetes as a service[9].

Within the context of the Sylva project, CAPI is a core technology, that enables
the creation and management of all types of Sylva clusters.

4.1.1 Key Conecpts

ClusterAPI is composed of several key components:

❼ ClusterAPI Provider This component extends ClusterAPI to manage clus-
ters on a specific infrastructure platform. It allows ClusterAPI to interact
with an infrastructure provider using platform-specific implementations.

❼ Cluster Controller It manages the life cycle of cluster resources, handling
operations such as creating, scaling and deleting. Ensuring that the desired
state of the cluster is maintained.

❼ Bootstrap Provider This provider handles the initialization and bootstrap-
ping of the nodes within the cluster. It provisions necessary resources and
configures the nodes to join the desired Kubernetes cluster. Some platforms
supported by the bootstrap provider are: Amazon EKS, K3s, Kubeadm, Mi-
crok8s, ecc.

❼ Infrastructure Provider It interacts with the underlying infrastructure to
provision and manage resources required for the cluster. This includes vir-
tual machines, bare metal servers, containers or any other implementation,

25



Bare Metal Deployment

depending on the infrastructure being used. Examples of supported plat-
forms go from big cloud vendors: AWS, Azure, GCP. To enterprise IaaS
providers like OpenStack, vSphere, Proxmox. To local environments like
Metal3, Docker.

Given Sylva framework’s deep reliance on ClusterAPI we can find similarities in the
terminology and workflows. A ClusterAPI Management Cluster is a Kubernetes
cluster that manages the life cycle of Workload Clusters. One or more providers can
run within a Management cluster and it is the location where Machine resources
are stored.

The typical workflow for deploying a cluster using CAPI involves the following
steps:

1. Infrastructure Provisioning
The initial phase of cluster deployment is infrastructure provisioning. This
involves setting up virtual machines or bare metal servers that will act as
the cluster’s worker nodes. ClusterAPI offers infrastructure providers to han-
dle this process. These providers interact with the underlying infrastructure,
automating the creation and management of necessary resources. They pro-
vision the required virtual machines or bare metal servers according to the
specified cluster configuration.

2. Cluster Configuration
After provisioning the infrastructure, the next step is cluster configuration.
This involves setting parameters like the number of control plane nodes,
worker node specifications, networking details, and any necessary customiza-
tion. ClusterAPI typically uses YAML manifests or custom resources to define
this cluster configuration.

3. Bootstrap
Once the cluster configuration is set, bootstrapping begins. The bootstrap
provider initializes the control plane nodes. It provisions resources and con-
figures these nodes to join the Kubernetes cluster. This process establishes a
functional control plane ready to manage the cluster.

4. Worker Node Joining
After control plane bootstrapping, worker nodes join the cluster. ClusterAPI
configures these nodes, whether virtual machines or bare metal servers, with
required Kubernetes components. It manages the joining process, ensuring
proper configuration and communication with the control plane.

5. Validation and Health Checks
ClusterAPI then performs validation and health checks on the cluster. It ver-
ifies node connections, control plane functionality, and worker node readiness.
If issues arise, ClusterAPI offers diagnostics and solutions. This workflow en-
ables efficient cluster deployment and management. The declarative approach
simplifies life cycle management, ensures consistency, and facilitates scaling
and upgrades.
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4.2 Metal3

Managing bare metal servers has always been a particularly challenging topic. With
the current shift towards Cloud Native and Kubernetes Native software, it is impor-
tant to have a solution that abstracts away complexities and allows administrators
to seamlessly integrate physical servers within Kubernetes deployments.

Closely linked to ClusterAPI, Metal3 (pronounced “metal cubed”) is an open-source
project that provides a set of tools for managing bare-metal infrastructure using
Kubernetes [10]. Empowering organizations with a flexible, open-source solution
for bare metal provisioning that combines the benefits of bare metal performance
with the ease of use and automation provided by Kubernetes.

Metal3 aims to build on top of other technologies, such as Ironic, for bare metal host
provisioning. It leverages the Kubernetes control plane and various components to
manage bare metal infrastructure. Its close integration with ClusterAPI allows
Metal3 to be used as an infrastructure provider backend.

4.2.1 Major Components

Metal3 is made up of a collection of operators that work together to manage and
operate bare metal infrastructure.

Bare Metal Operator

The Bare Metal Operator, a fundamental component of Metal3, manages the entire
lifecycle of bare metal hosts within a Kubernetes environment. It serves as the
interface between the Kubernetes cluster and the underlying physical infrastructure,
orchestrating critical processes such as host discovery, provisioning, and integration.

This operator automates the registration of bare metal hosts, oversees their provi-
sioning with required operating systems and software stacks, and seamlessly incor-
porates them as worker nodes into the Kubernetes cluster. It maintains continuous
surveillance of host health and status, initiating automated repair procedures when
necessary and facilitating software updates to ensure optimal performance and se-
curity.

The Bare Metal Operator’s responsibilities extend to the graceful decommissioning
of hosts, managing this process to maintain cluster stability. By automating these
complex tasks, it significantly reduces the manual overhead typically associated
with bare metal infrastructure management, enabling more efficient and scalable
operations in Kubernetes environments utilizing physical hardware.

BareMetalHost Custom Resource Definition

The BareMetalHost (BMH) Custom Resource Definition (CRD), allows administra-
tors to define and manage bare metal hosts as Kubernetes objects. The BareMet-
alHost CRD specifies the desired configuration for each host, including hardware
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characteristics, network settings, storage options, and other custom at tributes. Ad-
ministrators can create, update, and delete BareMetalHost objects using standard
Kubernetes API operations.

Cluster API Provider Metal3 (CAPM3)

CAPM3 is one of the providers for Cluster API and enables users to deploy a
ClusterAPI based cluster on top of bare metal infrastructure using Metal3. By
leveraging ClusterAPI’s capabilities for cluster lifecycle management and Metal3’s
functionalities for bare metal provisioning, administrators can seamlessly deploy
and manage Kubernetes clusters on bare metal servers.

In the context of the work of this thesis, understanding the inner working and
available configuration parameters exposed by Metal3’s APIs is crucial.
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Automation of bare metal
infrastructure provisioning

In a typical telco environment, the deployment of a new application involves sev-
eral teams with distinct roles and responsibilities. We can broadly categorize these
teams into a user team and an infrastructure admin team. The user team is re-
sponsible for defining the application requirements and specifying the desired state
of the application deployment, while the infrastructure admin team ensures the
availability and configuration of the underlying infrastructure resources.

Given the declarative nature of Kubernetes and Sylva’s GitOps workflow, there are
one or more Git repositories that act as the source of truth for the desired state
of the system. These repositories contain the definitions and configurations for the
applications, workload clusters, and other infrastructure components. To maintain
a separation of concerns and ensure the security and stability of the system, it is
crucial to have a clear delineation of responsibilities and access controls between
the internal teams.

In certain scenarios, such as demanding performance or security requirements, it
may be necessary to deploy applications directly on bare metal servers rather than
virtualized environments. Since applications deployed using Kubernetes make use
of containers they share the kernel on the same host, depending on the type of
security requirements this kind of deployment may not be suitable.

However, configuring and managing bare metal clusters can be a complex and
knowledge-intensive task, requiring expertise in areas like hardware provisioning,
network configuration, and low-level system administration. Thus, user teams,
whose primary focus is on application development and deployment, may not pos-
sess the specialized knowledge or privileges required to supplement the configuration
needed to create a bare metal cluster.

5.1 Challenges

We need a system that leverages the Kubernetes patterns and is able seamlessly
integrate within the existing Sylva framework. It should enable SWC deployment
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to users and infrastructure admins with ease of use yet granular end extensive
configuration. This includes respecting the patterns of underlying technologies in
use within Sylva.

There should be deep integration with the existing operators granting complete
compatibility, yet enough decoupling to allow for smooth day to day operation and
independent usage. The sylva project is an open-source, distributed and quickly
evolving environment, ensuring compatibility and adherence to the latest updates
necessitates careful consideration.

5.2 Server Operator

By extending the Kubernetes API server with an operator, we are able to design
a solution to manage bare metal configuration complexity and offer an ergonomic
way of supplementing the required configuration.

The Server operator, running within the management cluster, is the core element
of the proposed architecture. It is responsible for assigning Workload clusters with
their respective bare metal configuration parameters and keeping the system up to
date.

It is supposed to be deployed alongside the official Sylva operators, making use of
their schema and flexibility to offer a better bare metal deployment environment.

Figure 5.1. Proposed architecture

5.2.1 Server CRD

The central resource that enables us to easily represent bare metal servers and thus
manage their configurations is the ‘Server‘ CRD.
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This is a fairly simple structure that represents a single physical machine within
one DC or edge location, externally provisioned in the management cluster. Its
parameters are linked to a physical machine, it does not need to be updated, created
or deleted by the operator itself, instead, it is the duty of the infrastructure admin
team to manage them. When in use it becomes linked to the relative Workload
Cluster, as such there must be a way to represent this state.

Within the resource are present the parameters needed for node provisioning as
required by Metal3, such as Address and credentials for the BMC, Respective MAC
address, physical location of the machine, Network interfaces to use.

5.2.2 Server Controller

The controller is tasked with keeping the system up to date and bring the configu-
ration to a coherent state. It makes use of both the ‘Server‘ CRD and SWC/SURT
to perform its duties.

In contrast to conventional controllers which directly manage their own resources,
this controller will instead complementarily manage a SWC resource in concert
with the existing Sylva operators, using the Server CRDs as source of additional
information.

The controller must provide the configuration necessary to the SWC and keep
the state of Server resources updated. This can be achieved by exploiting the
Sylva Units Operator design to our advantage, as the Sylva Workload Operator
reconciles SWC resources by creating, updating or deleting SUR resources. These,
in turn, rely on a respective SURT. This can either be missing or already pre-
configured in the corresponding namespace. The job of the Server controller is to
select appropriate servers to be allocated and create or update an existing SURT
with the all the relevant configuration parameters needed to successfully deploy the
cluster.

The SUR and SURT CRDs share the same spec, and together share one parameter
with Flux’s HelmRelease API called ValuesFrom, that implements a list of the
the ValuesReference spec. This in essence is a list of value files that offers a very
powerful pattern, allowing the composability of multiple value files.

This layering system also implements a precedence system, so that any configuration
present in files “higher” in the list takes precedence over values defined lower in the
list. By placing the bare metal configuration within the base layers we can provide
a baseline to the rest of the configuration, without precluding any other possible
manual or automated intervention.

Since the Server objects are allocated to the SWC and every reconciliation must be
stateless and idempotent, we need to keep track of which servers are allocated to
which SWCs, this can be achieved by updating the Servers status fields.

5.2.3 Workflow

There are multiple considerations to be made when designing a workflow that in-
tegrates many complex technologies and the interests of various teams, from the
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source of truth of the cluster state to the way the different teams should interact.

To achieve this, we can make use of the annotation mechanism of Kubernetes to
complement a new or existing SWC object. Only two parameters are needed: a
flag to check if the operator should act on the resource and a string identifying
the physical location in which to create the cluster. Additional annotations can be
used for example to specify a particular class of machines to be used, or some other
implementation detail.

In essence, to deploy a Workload Cluster using the proposed operator, a SWC
resource needs to be created or annotated with the “enabled” and relative “site”
keys. Provided there are enough Server resources available in the requested site,
the Server Operator will provision the necessary configuration within the SURT,
thus producing a valid configuration that will be reconciled first by the SWC Oper-
ator and then by the SUR Operator, producing a valid HelmRelase and associated
resources that will initiate the workload cluster deployment.

A SWC can be easily deployed on different providers, such as vSphere or OpenStack,
however when the target infrastructure are bare metal servers, more configuration is
required. Unlike virtual machines, bare metal nodes are intrinsically more coupled
to the underlying hardware. Special care needs to be taken when provisioning them.
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Implementation

This chapter contains a proof-of-concept implementation that has been tested and
proven to work under virtualized and bare metal scenarios. We will look into more
detail how the implementation is achieved, the languages used and how it integrates
within the Sylva framework.

This work leverages extensively the comprehensive scaffolding and development
ecosystem provided by Kubebuilder. The project structure, API definitions, and
controller implementations are all built upon the foundational elements generated
by Kubebuilder’s CLI tool. Beyond mere scaffolding, Kubebuilder’s utilities for
testing, building, and deploying have been integral to the development process.
The tool’s opinionated approach to Kubernetes extension development has guided
the architecture of our custom controllers and resources, ensuring adherence to best
practices in cloud-native application development.

By utilizing Kubebuilder’s framework, this work benefits from a standardized,
maintainable codebase that aligns with the broader Kubernetes ecosystem, thereby
enhancing compatibility and easing future extensions or modifications to the oper-
ator.

6.1 Server CRD

We start with the implementation of a base version of the CRD as previously
described:

Listing 6.1. Server CRD Implementation

1 package v1alpha1

2
3 import (

4 corev1 "k8s.io/api/core/v1"

5 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

6 )

7
8
9 type ServerSpec struct {

10 // +kubebuilder:validation:Required
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11 Bmc string json:"bmc"

12
13 // +kubebuilder:validation:Required

14 Credentials BmcCredentials json:"credentials"

15
16 // +kubebuilder:validation:Required

17 BootMac string json:"bootMac"

18
19 // +kubebuilder:validation:Required

20 Site string json:"site"

21 }

22
23 type BmcCredentials struct {

24 Username string json:"username"

25 Password string json:"password"

26
27 // +optional

28 SecretRef corev1.SecretKeySelector json:"secretRef"

29 }

30
31 type ServerStatus struct {

32
33 // +kubebuilder:default=false

34 Allocated bool json:"allocated"

35 Role string json:"role,omitempty"

36 Errors []string json:"errors,omitempty"

37
38 WorkloadCluster WorkloadCluster

json:"workloadCluster,omitempty"

39 }

40
41 type WorkloadCluster struct {

42 Name string json:"name"

43 Namespace string json:"namespace"

44 }

45
46 //+kubebuilder:object:root=true

47 //+kubebuilder:subresource:status

48 //+kubebuilder:printcolumn:name="Site",type="string",JSONPath=".spec.site"

49 //+kubebuilder:printcolumn:name="Allocated",type="boolean",JSONPath=".status.allocated"

50 //+kubebuilder:resource:scope="Cluster"

51
52 type Server struct {

53 metav1.TypeMeta json:",inline"

54 metav1.ObjectMeta json:"metadata,omitempty"

55
56 Spec ServerSpec json:"spec,omitempty"

57 Status ServerStatus json:"status,omitempty"

58 }

59
60 //+kubebuilder:object:root=true
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61
62 // ServerList contains a list of Server

63 type ServerList struct {

64 metav1.TypeMeta json:",inline"

65 metav1.ListMeta json:"metadata,omitempty"

66 Items []Server json:"items"

67 }

68
69 func init() {

70 SchemeBuilder.Register(&Server{}, &ServerList{})

71 }

We can note the simplicity of the design as only the base parameters are required
within the object itself.

There is one main object defined in this code, Server, which is implemented as a
Go struct. As a standard Kubernetes object, it is composed of the standard Type
and Object metadata, followed by its spec and status.

The status contains the parameters necessary to maintain a link between a SWC
and its allocated Servers. We also specify some validation parameters using Kube-
builder’s Markers, they are single-line comments that start with a plus, followed
by a marker name, optionally followed by some marker specific configuration. We
make use of this mechanism to also add some extra parameters when retrieving
objects with Kubectl, namely we print the site and allocation status, to allow for
debugging.

6.2 Server Controller

The management of Servers and their interaction with SWCs falls to the Server
Controller. Thanks to Kubebuilder scaffolding, the implementation follows Kuber-
netes standards and is easy to navigate and maintain.

A Kubernetes controller is based upon the Reconcile loop, that usually involves:

❼ Observing the state of the cluster and listening for changes and events the
controller is responsible for.

❼ Retrieving the current state of objects affected by said events and any other
related resources.

❼ Comparing the retrieved result with the expected one and determine if ac-
tion needs to be taken.

❼ Take Action Based on the result of the comparison. This may involve
creating, deleting or modifying Kubernetes objects or calling external services.

❼ Update the Status of affected resources to reflect their current state and
any action taken, providing visibility within the reconciliation process.

35



Implementation

❼ Requeue the reconciliation in the event that another reconciliation is needed
in the future, for example due to errors in the previous one. This may hap-
pen immediately or after a period of time. The framework will take care of
eventual exponential backoff.

When implementing the proposed solution, care must be taken to ensure idempo-
tency, to avoid any unwanted side effects, which are likely to happen in an asyn-
chronous and event-based architecture. The controller framework also takes care
internally of optimizations like caching to reduce load and improve performance.

6.2.1 Sylva Operators reconciliation loop

To better fit in withing the Sylva context we imitate their reconciliation loop struc-
ture, which could be broadly simplified as follows:

Listing 6.2. Sylva controller structure

1 package controller

2
3 import (

4 ...

5 )

6
7 type ResourceReconciler struct {

8 client.Client

9 Scheme *runtime.Scheme

10 record.EventRecorder

11 }

12
13 const finalizerName = "..."

14
15 func (r *ResourceReconciler) Reconcile(

16 ctx context.Context,

17 req ctrl.Request,

18 ) (result ctrlResult, retErr error) {

19
20 // Retrieve the object that triggered the reconciliation

21 resource := &apis.Resource{}

22 if err := r.Get(ctx, req.NamespacedName, resource); err != nil

{

23 // log

24 return ctrl.Result{}, client.IgnoreNotFound(err)

25 }

26
27 // Initialize the patch helper.

28 patchHelper := patch.NewSerialPatcher(resource, r.Client)

29
30 // Always attempt to Patch the Cluster object

31 // and status after each reconciliation.

32 defer func() {

33 patchOpts := []patch.Option{}
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34 if retErr != nil {

35
36 } else if ... {

37 // Patch ObservedGeneration as the reconciliation

38 // completed successfully

39 r.Eventf(

40 resource, "Normal",

41 "ReconciliationSucceeded",

42 "Successfully reconciled Resource %s",

43 resource.Name

44 )

45 patchOpts = append(

46 patchOpts,

47 patch.WithStatusObservedGeneration{}

48 )

49 }

50 if err := patchHelper.Patch(ctx, resource,

patchOpts...); err != nil {

51 retErr = kerrors.NewAggregate([]error{retErr,

err})

52 }

53 }()

54
55 // Handle deletion request

56 if !resource.ObjectMeta.DeletionTimestamp.IsZero() {

57 return r.reconcileDelete(ctx, resource)

58 }

59
60 // Apply finalizer if not present

61 if !controllerutil.ContainsFinalizer(resource, finalizerName) {

62 controllerutil.AddFinalizer(resource, finalizerName)

63 return ctrl.Result{Requeue: true}, nil

64 }

65
66 // Handle normal reconciliation loop.

67 return r.reconcile(ctx, resource)

68
69 }

70
71 func (r *ResourceReconciler) reconcile(

72 ctx context.Context,

73 req ctrl.Request

74 ) (ctrl.Result, error) {

75 // Check current status against requested status,

76 // take action as needed

77 }

78
79 func (r *ResourceReconciler) reconcileDelete(

80 ctx context.Context,

81 req ctrl.Request)

82 (ctrl.Result, error) {
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83 // Gracefully delete associated resources,

84 // once completed remove the finalizer

85 }

This structure is modular, adaptable and is peculiar due to its use of the patch-
Helper. The controller can act directly on the main object specified in line 19,
greatly simplifying object handling and, within the deferred function at the end of
the reconciliation loop, we try to apply any changes to the Kubernetes server.

6.2.2 Server Operator implementation

We can adapt this general structure to fit the needs of our controller, considering
that the Server controller does not act directly on the Server resource, but watches
for SWCs and acts on SURTs.

The process begins when a user team creates or annotates a SylvaWorkloadCluster
(SWC) resource. Two key annotations are required:

1. An enabled flag to indicate that the Server Operator should act on this
resource.

2. A site string to specify the physical location for cluster deployment.

These simple annotations trigger the Server Operator to begin its reconciliation
process, bridging the gap between the user’s high-level cluster requirements and
the low-level bare metal configuration.

We specify this requirement when registering the reconcile loop with the Controller
Manager, where we also specify additional parameters such as resource indexing for
more efficient query operations:

1 func (r *ServerReconciler) SetupWithManager(mgr ctrl.Manager) error {

2 // Index Server resources based on allocation status

3 if err := mgr.GetFieldIndexer().IndexField(

4 context.Background(),

5 &inventoryv1alpha1.Server{},

6 allocatedStatusField,

7 serverIndexer,

8 ); err != nil {

9 return err

10 }

11
12 // Index SylvaWorkloadCluster by the enabled annotation

13 if err := mgr.GetFieldIndexer().IndexField(

14 context.Background(),

15 &wc1a1.SylvaWorkloadCluster{},

16 annotationEnabledField,

17 sylvaWorkloadClusterIndexer,

18 ); err != nil {

19 return err
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20 }

21
22 return ctrl.NewControllerManagedBy(mgr).

23 // watches for changes of SylvaWorkloadCluster resources

24 Named("ServerReconciler").

25 Watches(

26 &wc1a1.SylvaWorkloadCluster{},

27 &handler.EnqueueRequestForObject{},

28 builder.WithPredicates(cdPredicate{})

29 ).

30 Complete(r)

31 }

This controller reacts to updates on a SWC Resource which is managed by another
operator, furthermore, to not waste time and computing resources reconciling for-
eign objects, we need to consider events only when the resource in question has out
enabled annotation. This is achieved by implementing custom Predicates which
will filter events before enqueuing.

Listing 6.3. Filtering events before handing them to the reconciler

1 type cdPredicate struct {

2 client.Client

3 }

4
5 func (cdPredicate) Create(e event.CreateEvent) bool {

6 if !wcIsEnabled(e.Object) {

7 return false

8 }

9 return true

10 }

11
12 func (cdPredicate) Delete(e event.DeleteEvent) bool {

13 if !wcIsEnabled(e.Object) {

14 return false

15 }

16 return true

17 }

18
19 func (cdPredicate) Update(e event.UpdateEvent) bool {

20 if !wcIsEnabled(e.ObjectNew) || !wcIsEnabled(e.ObjectOld) {

21 return false

22 }

23 // Only update on changes to relevant parameters

24 old, ok := e.ObjectOld.(*wc1a1.SylvaWorkloadCluster)

25 if !ok {

26 return false

27 }

28 new, ok := e.ObjectNew.(*wc1a1.SylvaWorkloadCluster)

29 if !ok {

30 return false

31 }
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32
33 ...

34 }

35
36 func (cdPredicate) Generic(e event.GenericEvent) bool {

37 if !wcIsEnabled(e.Object) {

38 return false

39 }

40 return false

41 }

42
43 func wcIsEnabled(o client.Object) bool {

44 wc, ok := o.(*wc1a1.SylvaWorkloadCluster)

45 if !ok {

46 return false

47 }

48 return wc.Annotations[annotationEnabledKey] == "true"

49 }

Once the controller receives an event with the proper requisites we can begin. The
reconciliation process for a SWC involves several key steps:

1. Initiation and Suspension The process begins by suspending the target
SWC. This prevents potential conflicts with other controllers operating con-
currently, creating a stable environment for our operations.

2. Resource Assessment The controller retrieves the specifications for both
control plane and worker nodes from the SWC. It also identifies any servers
already allocated to this resource, comparing the current state to the desired
state.

3. Resource Allocation If discrepancies exist between the current and desired
states, the controller allocates additional servers that meet the specified loca-
tion requirements. As servers are assigned, their status is updated to reflect
the new allocation.

4. Configuration Generation and Deployment The controller generates the
necessary configuration, which is split into two Kubernetes resources:

ConfigMaps Contain non-sensitive information about the bare metal infras-
tructure.

Secrets Store sensitive data, such as the BMC credentials

Both resources are deployed in the same namespace as the SWC, using the
server-side apply strategy. This approach allows for configuration merging
while avoiding potential conflicts.

5. SURT Configuration Integration The new configuration is integrated
into the SylvaUnitsReleaseTemplate (SURT). This is achieved by adding the
bare metal configuration to the ”lower” levels of the SURT spec, ensuring it
coexists with other configuration elements.
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6. SWC Reactivation Finally, the SWC is resumed, allowing other controllers
to resume their activities. The cluster, now updated with its bare metal
components, is ready to be deployed and operated upon by other controllers.

1 func (r *ServerReconciler) reconcileSylvaWorkloadCluster(

2 ctx context.Context,

3 wc *wc1a1.SylvaWorkloadCluster

4 ) (ctrl.Result, error) {

5
6 // Suspend the SylvaWorkloadCluster

7 if err := r.suspendSylvaWorkloadCluster(ctx, wc); err != nil {

8 return ctrl.Result{}, err

9 }

10
11 // Gather requirements

12 controlPlaneNodes := getControlPlaneNodes(wc)

13 workerNodes := getWorkerNodes(wc)

14
15 // Get already allocated servers

16 allocatedServers, err := r.getAllocatedServers(ctx, wc)

17 if err != nil {

18 return ctrl.Result{}, err

19 }

20
21 // Check if more servers need to be allocated

22 if needsMoreServers(

23 controlPlaneNodes,

24 workerNodes,

25 allocatedServers

26 ) {

27 availableServers, err := r.getAvailableServers(ctx, wc)

28 if err != nil {

29 return ctrl.Result{}, err

30 }

31
32 if len(availableServers) <

int(controlPlaneNodes)+int(workerNodes)-allocatedServers.Total()

{

33 return ctrl.Result{Requeue: true}, nil

34 }

35
36 allocatedServers, err = r.allocateServers(

37 ctx,

38 wc,

39 allocatedServers,

40 controlPlaneNodes,

41 workerNodes,

42 availableServers

43 )

44 if err != nil {

45 return ctrl.Result{}, err
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46 }

47 }

48
49 // Update server statuses

50 if err := r.updateServerStatuses(ctx, allocatedServers); err != nil

{

51 return ctrl.Result{}, err

52 }

53
54 // Generate resources

55 resources, err := r.generateResources(ctx, allocatedServers.All(),

wc)

56 if err != nil {

57 return ctrl.Result{}, err

58 }

59
60 // Apply generated resources

61 if err := r.applyResources(ctx, resources); err != nil {

62 return ctrl.Result{}, err

63 }

64
65 if err := r.resumeSylvaWorkloadCluster(ctx, wc); err != nil {

66 return ctrl.Result{}, err

67 }

68
69 return ctrl.Result{}, nil

70 }

This reconciliation process demonstrates how bare metal resources can be effectively
managed within the Kubernetes orchestration framework, bridging traditional in-
frastructure with cloud-native paradigms.

Configuration Generation

In the current implementation we use a simple approach. When deploying a Work-
load Cluster on bare metal machines, we need to supply the Sylva Units Chart
Values with information about its baremetal-hosts. Specifically the BMH meta-
data, spec and a reference to the location of relative credentials for each bare-metal
machine we wish to use.

This is accomplished by making use of Go templates for both the ConfigMap and
Secret generation. These templates may be hard-coded as strings within the opera-
tor itself, or can be saved on a Kubernetes resource like a ConfigMap and referenced,
to facilitate easier configuration and upgrades.

Server Resource Cleanup

The Server Operator can gracefully delete resources when it receives the event of a
SWC deletion, but to ensure consistency of resources within the cluster, the Server
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Operator implements a robust cleanup mechanism to ensure efficient resource man-
agement and maintain system integrity. This process is crucial for handling sce-
narios such as SWC deletion, scaling down operations, or recovering from failures.
The cleanup procedure gets called at every reconciliation in a deferred function,
following the Sylva Operator pattern, and it involves they key steps:

1. Orphaned Server Detection The operator scans for orphaned servers -
those that are marked as allocated but are no longer associated with an
existing SWC.

2. Server Relase and Resource Deletion When an orphaned server is de-
tected the operator initiates the server release process.

Considerations

While the SWC is in a transition phase, as in, it has been created but not yet
reconciled by the Server operator, we need to discuss some considerations:

The other Sylva operators may be acting on the same resources. Given the
asynchronous, and event-based architecture of operators, changes could have
been made concurrently to our operator. So the SWC Operator could have
already created a relative SUR, which in turn could have already been handled
by the Sylva Units Operator, generating an HelmRelase. This is not a problem
for our operator, as any conflicting or concurrent change would be rejected
by the Kubernetes API server. Such rejections would trigger a requeue of
our operator’s reconciliation loop, ultimately leading to eventual consistency
across the system.

The HelmRelease is not complete before the Server operator has completed
its tasks. In fact, it would be missing any infrastructure detail needed for a
successful deployment. This is not a problem since, just as in the case of our
operator, the Helm controller would requeue the reconciliation to eventually
achieve a succesful deployment.

The solution maintains a clear separation of concerns between the user team and
the infrastructure admin team. The user team only needs to specify high-level
cluster requirements in the SWC, while the infrastructure admin team manages
the underlying Server resources. This separation allows each team to focus on their
area of expertise while the Server Operator bridges the gap between them.

6.3 Usage

Before deploying a Workload Cluster on bare-metal instances using the Server Oper-
ator, an infrastructure admin must create Server resources within the Management
Cluster.
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The origin of these resources is not fixed, they can be create manually, can be
included in the main repository detailing the cluster infrastructure and definition,
or can reside in a repository controlled separately from the main one, for separation
of concerns. Following GitOps standards and procedures it is advisable to have their
definition in a separate repository, linked to the Management cluster.

Listing 6.4. Sample Server Object

1 apiVersion: inventory.sylva.telecomitalia.it/v1alpha1

2 kind: Server

3 metadata:

4 labels:

5 app.kubernetes.io/name: server

6 app.kubernetes.io/instance: server-sample

7 app.kubernetes.io/part-of: inventory-operator

8 app.kubernetes.io/managed-by: kustomize

9 app.kubernetes.io/created-by: inventory-operator

10 name: server-sample-1

11 spec:

12 bmc: "test:ip-address/uri"

13 credentials:

14 username: "username"

15 password: "password"

16 bootMac: "mac"

17 site: "to-1"

Once the Server resources are present in the cluster a SWC can be deployed succes-
fully by simply requesting the intervention of the Server Operator and specifying
in which location the Workload Cluster should be created. This is done via anno-
tations.

Listing 6.5. Example of annotated SylvaWorkloadCluster

1 ,apiVersion: workloadclusteroperator.sylva/v1alpha1

2 ,kind: SylvaWorkloadCluster

3 ,metadata:

4 , labels:

5 , app.kubernetes.io/name: sylvaworkloadcluster

6 , app.kubernetes.io/instance: sylvaworkloadcluster-sample

7 , app.kubernetes.io/part-of: workload-cluster-operator

8 , app.kubernetes.io/managed-by: kustomize

9 , app.kubernetes.io/created-by: workload-cluster-operator

10 , name: sylvaworkloadcluster-baremetal

11 , annotations:

12 , inventory.sylva.telecomitalia.it/enabled: "true"

13 , inventory.sylva.telecomitalia.it/site: "to-1"

14 ,spec:

15 , k8sVersion: "1.27"

16 , infrastructure: metal3

17 , controlPlane:

18 , provider: rke2

19 , replicas: 1

20 , machineDeployments:
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21 , md0:

22 , replicas: 2

At this point the reconciliation of all the involved controllers takes place, creating
a Workload Cluster and connecting it to the Management Cluster.
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Results

To test and verify proper operation of the Server Operator, two different environ-
ments have been utilized, an emulated setup and a bare metal setup.

Operating with real bare-metal machines is an expensive and time consuming pro-
cess, so during the development stages of the thesis, we exploited an emulated
bare-metal environment. This allowed for quick iterations and testing, with in-
creased flexibility and without occupying entire servers.

7.1 General Configuration

Regardless of the environment used, the goal of the thesis is that of simplifying
and automating the provisioning of bare metal infrastructure, facilitating the work
of infrastructure admin and product teams. Thus we can compare the amount of
additional configuration needed, measured in lines of code, for the deployment of a
Workload Cluster made up of 3 control plane nodes.

Manual approach Server Operator
Sylva Units values 54 2

Additional Resources 18 33
Total 72 35

Table 7.1. Additional LOC required for bare metal deployment

In the manual approach case, on top of the standard Sylva Units configuration we
need to take into account the Secrets containing credentials of the BMH relative
to the physical machines in use. While for the Server Operator case we have to
consider the configuration required to create the Server objects in the cluster.

7.2 Emulated Environment

The emulated environment makes use of another project born within Sylva, Libvirt
Metal. It builds an image that can emulate a bare metal server within a container,
without the need to use other possibly expensive operations.
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It leverages libvirt, a collection of software that provides a convenient way to man-
age virtual machines and other virtualization functionality, and sushy-emulator, a
virtual Redfish BMC, to mimic a baremetal server that can be provisioned with
metal3 [11].

The tests have been performed on a virtual machine with 32 CPU Cores and 128
GB of RAM which hosted both the Management Cluster and any created Workload
Cluster within virtual machines created using Libvirt Metal.

7.3 Bare Metal Environment

For the bare metal environment, two servers of the same model have been used
as target for the Workload Cluster. These are Dell PowerEdge R640 servers, each
with the following specifications:

❼ CPU: Intel(R) Xeon(R) Gold 6252N, operating at 2.30 GHz, with 24 cores

❼ Storage: 2x 1.2 TB SAS 10k

❼ RAM: 384 GB

❼ Network Interfaces: 4x 10GbE and 2x 25GbE

The nodes belonging to the Management Cluster instead were run inside vSphere
VMs, 3 for the control plane and 2 for worker nodes, each with 4 CPU cores and
8GB of RAM.

7.4 Results

Running the Server Operator on both environments produces extremely similar
results as it does not directly communicate with bare metal machines. While the
time to complete the creation of a Workload Cluster varied greatly between the
environments, it is mostly outside the scope of this work.

We can compare the time and resources spent reconciling different events regarding
a SWC of the Server Operator against the official Sylva Operators. We will take in
account the time and resources elapsed between the creation of an annotated SWC
resource requesting 2 bare metal servers in a management cluster with already
provisioned and available Server resources.

We note how the majority of the time spent in the deletion scenario by the Sylva op-
erators reconciliation process is caused by deletion requests sent to the Kubernetes
API server, not their own processing time.

Similarly we can compare the amount of physical resources used by all of the oper-
ators. We use the resident memory size as measure of RAM usage. Since operators
usually are idle and wait for events emitted by the control plane, there is not a
continuous usage of resources thus we measure the cumulative CPU spent time to
reconcile one SWC resource.
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Server Operator SUR Operator SWC Operator
SWC Creation 260 ms 675 ms 300 ms
SWC Edit 450 ms 185 ms 1850 ms
SWC Deletion 305 ms 12905 ms 15215 ms

Table 7.2. Time to reconcile SWC events

CPU RAM
Server Operator 50ms 42.8 KB
SUR Operator 100ms 35.4 KB
SWC Operator 50ms 33.9 KB

Table 7.3. Resources used by involved operators

7.5 Conclusions

Thanks to the lightweight and event-based model of the Kubernetes operator pat-
tern, trough this benchmarking we can see that the Server Operator is lightweight
on resources and given the time taken to perform its operations when responding
to SWC events, such as selecting, allocating Servers and generating the relative
Kubernetes resources, it is relatively efficient compared to the rest of the Sylva
ecosystem.

Nevertheless, it’s essential to recognize that the results obtained from these bench-
mark tests are closely linked to the particular hardware employed during the test-
ing phase. The computational capabilities and features of servers, virtual machines,
and network devices directly impact performance outcomes. In cloud environments,
system performance is often intricately connected to the capabilities of the nodes
in operation. Consequently, observed performance characteristics could vary sig-
nificantly if the system were to undergo changes.
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Future Work

8.1 Possible Integrations

While the work of this thesis focuses on a solution to easily provide the correct
parameters for bare metal servers, deploying bare metal Workload Clusters requires
even more configuration, which for the purposes of this work has been hard-coded
within the resource generation code.

One example is the IP Address configuration required by Metal3, while it could
exist as a completely separate component, a deeper integration with the Server
Operator could greatly simplify the workflow.

As it stands, the proposed solution requires that Server objects be provisioned
within the Management Cluster. An integration with some external inventory man-
agement tool, which Telcos are bound to use already in some capacity, could auto-
mate the provisioning and management of Server resources, reducing the manual
burden placed onto infrastructure administrators.
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Conclusion

The shift towards Cloud Native applications has driven the ever growing necessity
of efficiently managing an increasing number of Edge sites and Network Functions,
renewing challenges for Telcos.

The work of this thesis fits in the broader evolution and enhancement process of
the Sylva project. While providing an important, common reference framework
for european Telcos and vendors, it still faces several challenges, particularly in
managing the inherent complexities of bare metal environment.

One critical challenge addressed in this work is the substantial domain-specific
knowledge required for effective deployment of new bare metal Workload Clusters.
The solution proposed and implemented in this thesis offers a practical and efficient
approach to this challenge. By leveraging Kubernetes patterns and extending the
existing Sylva framework, we have developed a Server Operator that seamlessly
integrates with Sylva’s declarative and GitOps-driven workflow.

This operator significantly simplifies the process of bare metal cluster deployment,
allowing infrastructure administrators and application developers to focus on their
respective areas of expertise. It achieves this by automating the provisioning of
necessary configurations, thereby reducing operational complexity and minimizing
the potential for human error. The implemented solution not only streamlines
the deployment process but also enhances collaboration between different teams
involved in cluster management.

As the telecommunications industry continues its digital transformation, solutions
like the one presented in this thesis will play a crucial role in realizing the full
potential of cloud-native technologies in telco environments.
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