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Summary

The advancement of autonomous systems has catalyzed significant transformations
across various industries, notably the automotive sector. This disruptive technology
has become a cornerstone of innovation, fundamentally reshaping conventional
paradigms of transportation and mobility. The incorporation of autonomous
features into vehicles holds immense potential for enhancing efficiency, comfort,
and, most importantly, safety on our roadways.

This study aims to implement autonomous driving functionalities through
a systematic approach encompassing perception, motion planning, control, and
actuation. The primary objective is to evaluate the efficacy and outcomes of
different control and motion planning algorithms concerning the critical facet of
autonomous driving: safety.

For safety assessment, the study will adhere to the Automotive Safety Integrity
Level (ASIL) standards outlined in ISO 26262. Hazardous scenarios identified
through Hazard Analysis and Risk Assessment (HARA) will be leveraged to
compare the most and least complex control algorithms (PID and MPC). Real-
world scenarios, representing both urban and rural settings, will be simulated
within the Carla Simulation environment due to its capability in scenario modeling.
Path planning will utilize the Carla Simulator API, while both the camera and
obstacle sensors of the simulator will be employed for perception tasks. The car
model will be based on the bicycle model, and motion planning will utilize adaptive
cruise control.

The project will be developed in Python programming, adhering to PEP8
standards, and executed on the Ubuntu operating system. Code quality and
readability will be evaluated using Pylint linting analysis, with logging and output
tracking in log and CSV file formats to store operational data.

The study will culminate in a practical exploration of real-life scenarios within
the Carla simulator, followed by a comparative analysis of outcomes, including
cross-track and heading errors. These parameters will be used for ISO 26262 safety
assurance by employing HARA to evaluate the safety parameters of the control
algorithm.
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Chapter 1

Introduction

The concept of self-driving vehicles may seem futuristic, but its roots can be traced
back to the curious minds of the Middle Ages. Throughout history, humans have
harbored a curiosity for autonomous transportation. However, it wasn’t until the
early 20th century that the first steps towards self-driving cars were taken, albeit
rudimentary due to limited technological understanding of physical laws.

In 1920, an early experiment with a crude ratio controller car was conducted,
aiming to control a 1926 model Chandler equipped with a transmitter antenna[1].
This vehicle, operated by a person in another car, sent out radio impulses to control
its movements.

Fast forward to 1948, and the dawn of advanced driver assistance systems
emerged with the invention of Cruise Control by Ralph Teetor, then president of
the Society of Automotive Engineers (SAE). This pioneering technology was first
commercially applied in Chrysler’s luxury model "Auto Pilot" in 1958, later known
as Cruise Control.

Japan’s Tsukuba Mechanical Engineering Laboratory made significant strides in
1977 with the development of the first semi-autonomous self-driving car[2], albeit
with support from an elevated rail. By 1995, Navlab5 in the USA had developed
neural networks to control steering, marking a milestone in autonomous vehicle
technology even though throttle and brakes were human-controlled, chiefly for
safety reasons??.

In the early 2000s, the integration of obstacle avoidance systems began to
emerge within autonomous car projects. By 2005, incorporating Light Detection
and Ranging(LiDAR) sensors for motion planning became prevalent. In 2007, the
DARPA challenge unfolded in an urban setting, witnessing the introduction of
various control methods, each contributing to a significant milestone in control
algorithms. The rapid pace of technological advancement and innovation fueled
car companies to intensify their efforts in autonomous car projects. However, the
proliferation of projects using the term "autonomous" confused, necessitating the
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Introduction

establishment of standardized definitions. Consequently, in 2014, the Society of
Automotive Engineers (SAE) introduced Autonomy standards encompassing six
levels[3] as shown in Figure 1.1.

Figure 1.1: SAE levels of driving automation.

In the following years, the development of autonomous vehicle projects began
to adhere to these standardized definitions. In 2017, major automotive companies
opted to release open-source software modules and interface Automotive Open
System Architecture (AUTOSAR)[4]. This initiative gained momentum in 2019
when legal adjustments commenced in Europe, the USA, the United Kingdom,
Japan, and various other countries. Presently, the deployment and standardization
of autonomous driving technologies are regulated according to specific deployment
models. The autonomous driving mission is typically divided into localization and
mapping, perception, motion planning, and control. In the subsequent pages, we
will delve into these steps along with applications developed in the Carla Simulator.

2
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1.1 Autonomous Driving
Autonomous driving represents the endeavor to empower a vehicle with the ability to
navigate diverse scenarios independently. That expectation comes with challenges
and limitations: safety concerns, and regulatory hurdles. Additionally, there are
technological limitations, such as the reliability of sensors in adverse weather
conditions. Those challenges entail encountering hazardous situations where the
vehicle must make decisions promptly. Consequently, the vehicle in every situation
must be:

• Self-aware of its location;

• Understand of dynamic and static objects in its environment;

• Adapt to location and environment, determine real-time paths to be reached;

• Implement the planned path for vehicle operation.

As illustrated in Figure 1.2, the vehicle is outfitted with hardware and software
elements to ensure its safety and efficiency to satisfy the expected conditions
as previously listed. The hardware includes Electrical Control Units (ECUs),
cameras, LiDAR, and a variety of other sensors. Meanwhile, the software consists
of Localization, Perception, Motion Planning, and Control algorithms. These four
main software components contribute to the vehicle’s attainment of different SAE
autonomy levels.

Figure 1.2: Autonomous driving pipeline.

As the level of SAE autonomy increases, the complexity of hazard situations
and risks also rises. In this context, Hazard and Risk Assessment (HARA) analysis
is employed to verify whether the expectations are met. HARA assesses different
scenarios and expects the vehicle to behave appropriately in each one to avoid
hazardous and risky situations. Therefore, the tasks of Localization, Perception,
Motion Planning, and Control software gain significance in the vehicle’s operation.

3
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1.1.1 Autonomous Driving Software Stack
The dream of self-driving vehicles hinges on the power of software. This software
serves as the vehicle’s "brain," transforming raw data into intelligent decision-
making and ultimately enabling autonomous operation. The Autonomous Driving
Software Stack (AD Stack) encompasses four critical functions working in concert:
perception, localization, motion planning, and control.

Figure 1.3: Software Stack Pipeline of Autonomous Driving.

Perception

Perception is the software component responsible for interpreting data from various
sensors to understand the vehicle’s surroundings. It involves processing information
from cameras, LiDAR, radar, and other sensors to identify objects such as vehicles,
pedestrians, and road signs. Perception algorithms analyze sensor data to detect

Figure 1.4: Perception detection.

and classify objects, estimate their positions and velocities, and predict their future
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movements as in Figure 1.4. This information forms the basis for higher-level
decision-making in autonomous driving systems.

Localization and Mapping

Figure 1.5: Localization and Mapping representation.

Localization and mapping software enables the vehicle to accurately determine
its position and orientation within its environment, often referred to as the "pose."
Localization algorithms use sensor data, such as GPS (Global Positioning System)
and inertial measurement units (IMUs), to estimate the vehicle’s pose relative
to a known map of the environment. Simultaneously, mapping algorithms create
and update detailed maps of the surroundings, incorporating information from
sensors to represent features like roads, lanes, and landmarks. By continuously
comparing sensor data to the map, localization, and mapping software ensure
precise navigation and enable the vehicle to follow planned trajectories safely.

Motion Planning

Motion planning is a critical aspect of autonomous driving software responsible
for generating feasible and safe trajectories for the vehicle to follow. This process
involves computing optimal paths through the environment while considering various
factors such as the vehicle’s current position, destination, surrounding obstacles, and
dynamic constraints. Motion planning algorithms aim to find paths that minimize
travel time, maintain safe distances from other objects, adhere to traffic regulations,

5
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Figure 1.6: (a) Path planning, (b) maneuver planning, and (c) trajectory planning.

and optimize overall efficiency. These algorithms utilize advanced techniques such
as probabilistic roadmaps, potential fields, and optimization methods to navigate
complex environments and ensure reliable autonomous driving.

Control

Figure 1.7: Closed loop PID controller.

Motion planning is a critical aspect of autonomous driving software responsible
for generating feasible and safe trajectories for the vehicle to follow. This process
involves computing optimal paths through the environment while considering various
factors such as the vehicle’s current position, destination, surrounding obstacles, and
dynamic constraints. Motion planning algorithms aim to find paths that minimize

6
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travel time, maintain safe distances from other objects, adhere to traffic regulations,
and optimize overall efficiency. These algorithms utilize advanced techniques such
as probabilistic roadmaps, potential fields, and optimization methods to navigate
complex environments and ensure reliable autonomous driving.

1.1.2 Automotive Safety Integrity Level (ASIL)
The paramount concern in the development of autonomous vehicles is safety. The
automotive industry employs the Automotive Safety Integrity Level (ASIL), a
foundational principle within the ISO 26262 standard, to gauge safety levels. ASIL
categorizes the potential severity of hazards that could arise from malfunctions in
a vehicle’s electrical and electronic systems. These classifications directly influence
the development process, dictating the level of rigor required to achieve the neces-
sary safety objectives. ASIL functions as a tiered system, ranging from A (least
severe) to D (most severe), with each level mandating progressively stricter safety
requirements.

S1 S2 S3 S4 S5 S6 S7 S8 S9 ASIL
H1 S:0

E:4
C:2

S:3
E:4
C:2

S:2
E:3
C:0

S:1
E:4
C:1

S:3
E:4
C:2

S:1
E:4
C:0

S:3
E:4
C:3

S:0
E:4
C:2

S:0
E:4
C:2

D

H2 S:3
E:4
C:2

S:1
E:4
C:0

S:3
E:4
C:2

S:1
E:4
C:1

S:3
E:4
C:2

S:3
E:4
C:2

S:0
E:4
C:2

S:0
E:2
C:2

S:1
E:2
C:3

C

H3 S:1
E:4
C:0

S:0
E:4
C:0

S:0
E:3
C:0

S:0
E:4
C:0

S:0
E:3
C:0

S:2
E:4
C:2

S:1
E:4
C:1

S:0
E:4
C:1

S:0
E:2
C:2

A

Table 1.1: HARA analysis concerns scenarios (1-9) with regards to the probability
of severity, exposure, and controllability.

Working in tandem with ASIL is Hazard Analysis and Risk Assessment. HARA
establishes the groundwork for ASIL classification by systematically identifying
and appraising potential hazards that could stem from system malfunctions. This
process involves defining safety goals and assigning corresponding ASIL levels
specific to different operational scenarios. In essence, HARA guides the risk
assessment process by identifying potential hazards, assessing their severity, and
defining appropriate safety objectives and ASIL classifications. This collaborative
approach between ASIL and HARA forms the foundation of safety protocols
for autonomous vehicles, ensuring reliable and secure operation across various
driving conditions. An example of HARA analysis is provided in Table 1.1. In
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this table, scenarios and hazards are analyzed with respect to severity, exposure,
and controllability. The results of the analysis are presented in the last column,
indicating their ASIL score.

Both ISO 26262 standards further emphasize a systematic approach to safety
throughout the entire development lifecycle, encompassing not only the design
and production phases but also operation, service, and decommissioning. In this
study will leverage HARA to create specific operating scenarios in the Carla Sim
environment, to facilitate the testing and comparison of various autonomous vehicle
control algorithms.

1.2 State of the Art
The landscape of autonomous vehicles is experiencing a profound transformation,
fueled by relentless advancements across a spectrum of technological domains. In
this comprehensive exploration, we delve into the current state-of-the-art for each
pivotal component of the autonomous vehicle software stack, namely perception,
localization and mapping, motion planning, and control algorithms.

Perception

Modern autonomous vehicles employ an array of sensors, including cameras, LiDAR,
radar, and ultrasonic sensors, to gain a comprehensive understanding of their
surroundings. Sensor fusion integrates data from these diverse sources, enabling
Autonomous vehicles to perceive their environment holistically. Deep learning
algorithms are instrumental in this process, facilitating accurate object detection,
classification, and tracking, thereby enabling Autonomous vehicles to recognize
vehicles, pedestrians, traffic signs, and other relevant objects with high precision
[5], [6].

• LiDAR for High-Resolution Perception: LiDAR sensors provide Au-
tonomous vehicles with precise 3D point cloud data, allowing for meticulous
object detection and localization. This capability is particularly valuable in
navigating complex urban environments and challenging weather conditions
where traditional sensors may struggle. By leveraging LiDAR technology,
Autonomous vehicles can achieve enhanced precision and confidence in their
operations [7].

• Camera-Based Perception with Deep Learning: Cameras are ubiquitous
sensors in Autonomous vehicles due to their affordability and ability to capture
rich visual data. Deep learning algorithms have revolutionized camera-based
perception tasks, including object detection, lane recognition, and traffic sign
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identification. By harnessing deep neural networks, Autonomous vehicles can
extract crucial information from visual scenes, facilitating real-time decision-
making with unparalleled accuracy [8].

Localization and Mapping

• Simultaneous Localization and Mapping (SLAM): SLAM algorithms
are essential for autonomous navigation systems, enabling Autonomous vehicles
to construct real-time maps of their surroundings while simultaneously deter-
mining their precise location within these maps. By synthesizing data from
LiDAR and visual odometry, SLAM algorithms play a crucial role in ensuring
reliable path planning and obstacle avoidance capabilities in Autonomous
vehicles [9] [10].

• High-Definition (HD) Maps: HD maps provide detailed representations of
the environment, including lane markings, traffic signs, and landmarks. These
meticulously crafted maps are used in conjunction with SLAM algorithms to
enhance localization accuracy and overcome potential limitations of on-board
sensors. By leveraging HD maps, Autonomous vehicles can navigate complex
environments with greater precision and confidence [11].

Motion Planning

• Probabilistic Roadmaps (PRM): PRM is a fundamental motion planning
technique for Autonomous vehicles, offering a robust framework for generating
feasible paths in complex environments. By probabilistically sampling the en-
vironment, PRM algorithms construct a roadmap of potential paths, enabling
Autonomous vehicles to navigate towards their destination efficiently while
avoiding obstacles and adhering to safety constraints [12].

• Rapidly-exploring Random Trees (RRT): RRT algorithms provide an
efficient approach to motion planning in dynamic environments, incrementally
growing a tree-like structure within the environment. By iteratively exploring
the configuration space, RRT algorithms enable Autonomous vehicles to adapt
to changing surroundings while ensuring collision-free trajectories [13].

• Learning-based Motion Planning: Reinforcement learning algorithms are
emerging as promising tools for developing adaptive motion planning strategies
in Autonomous vehicles. By learning from simulated driving experiences, these
algorithms can iteratively refine their policies, leading to agile and efficient
motion planning strategies that can handle diverse driving scenarios with ease
[14].

9
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Control Algorithms

• Proportional-Integral-Derivative (PID) Control: PID control remains
a popular choice for regulating vehicle motion due to its simplicity and
effectiveness. By adjusting proportional, integral, and derivative terms, PID
controllers can maintain desired vehicle dynamics, such as speed and trajectory.
However, PID control may struggle in highly dynamic environments or when
faced with complex vehicle dynamics [15].

• Model Predictive Control (MPC): MPC algorithms leverage mathematical
models of the vehicle to predict its future behavior and optimize control inputs
over a finite time horizon. This proactive control strategy enables Autonomous
vehicles to anticipate and mitigate potential risks, making them well-suited for
handling complex dynamics and uncertain environments with confidence [16].

• Learning-based Control: Deep reinforcement learning techniques are gain-
ing traction in the realm of autonomous vehicle control algorithms, offering a
data-driven approach to developing robust and adaptable control strategies. By
learning directly from simulated driving experiences, these algorithms can au-
tonomously acquire optimal control policies, leading to enhanced performance
and safety in diverse driving scenarios [17].

This comprehensive overview highlights the significant progress and ongoing in-
novation in perception, localization and mapping, motion planning, and control
algorithms for autonomous vehicles.

ASIL analysis on autonomous vehicle technologies

ASIL analysis is an iterative process that evolves alongside advancements in au-
tonomous vehicle technologies. As new features are introduced and algorithms are
refined, continuous ASIL assessment is essential to adapt to emerging risks and
maintain the highest standards of safety.

Through meticulous risk assessment and classification, ASIL analysis categorizes
potential hazards into four levels: ASIL A, B, C, and D, with ASIL D representing
the highest level of risk. By assigning ASIL levels to different components and
functions within autonomous driving systems, engineers can prioritize safety-critical
elements and allocate resources accordingly to ensure robustness and reliability.

The ASIL standard HARA analysis is crucial for estimating and assessing the
risk posed by electronics in road vehicles. With the capabilities of autonomous
vehicles expanding, there’s a need to broaden the analysis scope to encompass more
complex scenarios [18]. As the development of autonomous vehicles progresses,
there is a growing demand for different and more specific scenarios, prompting
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research efforts to focus on function-specific impacts on operations like braking,
acceleration and some other operations[19][20]. Some studies suggest that Real-time
decision-making in autonomous driving necessitates tailoring using a quantitative
risk norm (QRN) with consequence classes, each with defined limits for occurrence
frequency. Incident types are then categorized and assigned to these consequence
classes, with requirements serving as safety goals for implementation. The QRN
approach ensures the completeness of safety goals and prevents limitations imposed
by poorly formulated safety goals for an Autonomous Driving System (ADS)[21].

1.3 Thesis Motivation
The transportation landscape is undergoing a profound transformation, driven by
the increasing potential of autonomous vehicles. These advanced vehicles hold
the promise of a future marked by heightened safety, efficiency, and convenience.
However, ensuring the safety of passengers and others on the road remains of
utmost importance. To achieve this objective, rigorous development processes and
robust control systems are indispensable.

The ISO 26262 standard, with its HARA methodology, plays a crucial role
in ensuring safety in autonomous vehicle development. Traditionally utilized for
assessing the electronics of autonomous vehicles, we aim to leverage HARA analysis
in this thesis to benchmark the safety performance of different control algorithms.
Given our constraints of limited time and resources, our focus will be on comparing
the safety aspects of the most and least complex widely used control algorithms:
Proportional-Integral-Derivative (PID) and Model Predictive Control (MPC).

Within the AD software stack, two key components significantly impact safety:
control algorithms and motion planning. Control algorithms are responsible for
translating high-level motion plans into real-time steering, acceleration, and braking
commands for the vehicle. Meanwhile, motion planning determines the optimal
path for the vehicle to navigate while adhering to traffic rules and avoiding obstacles.

This thesis undertakes a comparative analysis of PID and MPC algorithms
within the context of Adaptive Cruise Control (ACC), a fundamental technology
for maintaining safe distances from preceding vehicles. Additionally, we will explore
the implementation of these algorithms for obstacle avoidance, a critical function
for ensuring safety in dynamic driving scenarios.

To facilitate this comparative analysis, we will utilize the CARLA Simulator,
which provides a realistic and adaptable virtual environment for testing and eval-
uating autonomous vehicle control systems. Python, a versatile and widely used
programming language, will serve as the primary development platform within the
Ubuntu operating system.

By thoroughly evaluating the performance of PID and MPC algorithms in both
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ACC and obstacle avoidance scenarios within a HARA framework, our thesis aims
to highlight the differences between these algorithms in the context of autonomous
vehicle control. The outcomes of our study will unveil distinct strengths and limita-
tions of each algorithm across various driving scenarios, providing valuable insights
that set this research apart from existing efforts. These insights have the potential
to inform more effective selection and optimization of control strategies aimed at
enhancing safety in autonomous vehicles, thereby contributing to advancements in
the field.

The forthcoming chapters in this thesis are meticulously structured to provide
a comprehensive exploration of the research topic. The Background chapter will
offer a thorough examination of relevant theories, concepts, and technological
advancements pertinent to autonomous vehicles, control algorithms, and safety
standards. Following this, the Architecture and Methodology chapter will delin-
eate the overarching framework and methodological approach employed in the
research, offering insights into the system architecture and research methodology.
Subsequently, the Implementation chapter will delve into the practical aspects
of executing the research, detailing the development process, software tools uti-
lized, and challenges overcome. Finally, the Conclusion chapter will synthesize
the key findings, implications, and future research directions, ensuring a cohesive
culmination of the research endeavor.
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Chapter 2

Background

In this chapter, we lay the foundation for understanding the intricacies of control
and motion planning algorithms in the context of autonomous vehicles operating
within ASIL HARA scenarios. Autonomous vehicles represent a paradigm shift in
transportation, promising safer and more efficient mobility solutions. Central to
their operation are sophisticated control algorithms and motion planning strategies
that enable vehicles to perceive their environment, make decisions, and navigate
autonomously.

Firstly, we delve into the fundamentals of vehicle dynamics, exploring the
principles governing the movement and behavior of vehicles. Understanding vehicle
dynamics is crucial for designing effective control systems that can stabilize the
vehicle and optimize its performance in diverse driving conditions.

Next, we provide an overview of control theory, which forms the theoretical
framework for designing control algorithms in autonomous vehicles. Control theory
encompasses a range of methodologies for regulating the behavior of dynamical
systems, offering insights into how to design controllers that can achieve desired
objectives while accounting for uncertainties and disturbances.

Furthermore, we examine the basics of motion planning algorithms, which play
a vital role in determining the trajectory of autonomous vehicles as they navigate
through their environment. Motion planning algorithms generate feasible and safe
paths for vehicles to follow, considering factors such as obstacles, traffic rules, and
vehicle dynamics constraints.

Lastly, we introduce the ASIL (Automotive Safety Integrity Level) and HARA
(Hazard Analysis and Risk Assessment) standards, which provide a systematic
approach to ensuring the safety and reliability of autonomous vehicles. ASIL and
HARA standards guide the development process, helping engineers identify and
mitigate potential hazards arising from system malfunctions and external factors.

By exploring these foundational concepts, this chapter sets the stage for the
subsequent discussion on control and motion planning algorithms in autonomous
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vehicles within ASIL HARA scenarios.

2.1 Vehicle Dynamics
In this section, we delve into the intricate dynamics governing the motion and
behavior of vehicles. Understanding vehicle dynamics is paramount for the design,
control, and optimization of autonomous vehicles, as it directly impacts their
stability, maneuverability, and overall performance.

2.1.1 Tire Forces and Moments
Tires play a crucial role in vehicle dynamics by providing traction and transmitting
forces and moments between the vehicle and the road surface. The interaction
between the tire and the road can be modeled using various tire models, such as
the Pacejka magic formula.

Figure 2.1: Tire Forces and Moments

One of the key relationships in vehicle dynamics is the relationship between tire
forces and moments. For example, the lateral force Fy generated by the tire can be
related to the slip angle α and the vertical load Fz as follows:

Fy = Cαα · Fz (2.1)
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where Cα is the cornering stiffness of the tire.
Similarly, the longitudinal force Fx generated by the tire can be related to the

longitudinal slip β and the vertical load Fz as follows:

Fx = Cββ · Fz (2.2)
where Cβ is the longitudinal stiffness of the tire.

2.1.2 Bicycle Model
The bicycle model is a simplified representation of vehicle dynamics that is com-
monly used in control and motion planning algorithms for autonomous vehicles.
It does work in a consideration where the left and right sides of the tires behave
perfectly in the same way. In the bicycle model, the vehicle is represented as a
single track with two wheels, allowing for modeling of both longitudinal and lateral
dynamics.

Figure 2.2: Bicycle Model

The equations of motion for the bicycle model can be expressed as follows:

ẋ = v cos(θ + β) (2.3)
ẏ = v sin(θ + β) (2.4)

θ̇ = v cos(β) tan(δ)
L

(2.5)

v̇ = a (2.6)
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where

• x and y: coordinates of the vehicle’s center of mass

• θ: yaw angle (heading angle) of the vehicle

• v: velocity

• β: sideslip angle

• δ: steering angle

• L: distance between the front and rear axles (wheelbase)

• a: longitudinal acceleration

The bicycle model provides a simplified yet effective representation of vehicle
dynamics for use in control and motion planning algorithms, allowing for efficient
simulation and optimization of vehicle behavior in various driving scenarios.

2.1.3 Longitudinal and Lateral Motion
Longitudinal motion refers to the forward or backward movement of a vehicle
along its longitudinal axis, which runs parallel to its direction of travel. This
type of motion involves changes in speed or velocity, commonly referred to as
acceleration or deceleration. It is influenced by various factors such as engine
propulsion, aerodynamic drag, rolling resistance, road grade, and braking. Precise
modeling of these forces is crucial for autonomous control systems to ensure smooth
and efficient vehicle operation.

The longitudinal movement governed by the following equation:

m · v̇ = Fprop − (Fdrag + Frolling + Fgrade) − Fbrake (2.7)

where:

• m is the vehicle mass (kg)

• v̇ is the longitudinal acceleration (m/s2)

• Fprop is the engine propulsion force (N)

• Fdrag is the aerodynamic drag force (N)

• Frolling is the rolling resistance force (N)

• Fgrade is the force due to road grade (N) (positive uphill, negative downhill)
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• Fbrake is the braking force applied to the wheels (N)

For autonomous control, precise modeling of these forces is essential. It involves
incorporating drag coefficients, rolling resistance parameters, and accurate engine
torque characteristics for reliable performance. Additionally, factors like wind gusts
and varying road inclines must be considered to ensure safe operation.

Figure 2.3: Lateral and Longitudinal distances.

Lateral movement is crucial for executing maneuvers such as turning corners,
changing lanes, and avoiding obstacles on the road. Factors influencing lateral
movement include steering inputs, tire forces, road conditions, and vehicle dynamics.
Precise control of lateral forces is paramount, especially for ASIL HARA safety
levels in autonomous driving. This necessitates accurate tire modeling considering
factors like tire slip angle, lateral force saturation, and camber thrust. The control
system must manage steering inputs to maintain stability during maneuvers and
ensure the vehicle adheres to the planned trajectory.

The equation governing lateral dynamics is:

Iz · ψ̈ = Mz (2.8)

where:

• Iz is the vehicle’s yaw moment of inertia (kg·m2)

• ψ̈ is the yaw acceleration (rad/s2)

• Mz is the total moment acting around the vehicle’s yaw axis (N·m)

Understanding and controlling both longitudinal and lateral motions are critical
for ensuring the stability, maneuverability, and safety of vehicles, particularly in
autonomous driving systems where precise control is indispensable.
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2.1.4 Vehicle Stability
Vehicle stability is a critical aspect of vehicle dynamics, especially for autonomous
vehicles where maintaining control is essential for safe operation. Even when an
autonomous vehicle follows a planned trajectory, external factors and inherent
system limitations can impact its stability. These factors include; mass distribution,
suspension geometry, and the sophistication of control systems. To mitigate the
effects of those factors it is necessary to minimize the path track and heading errors.

Even it’s important to keep the vehicle within the planned trajectory through
a safe operation. When the vehicle deviates from the path due to unforeseen
circumstances, the control system should make informed decisions to ensure the
safety of occupants and surrounding vehicles. Achieving this requires a deep
understanding of the errors that can occur. Two key errors impacting stability are
cross-track error and heading(yaw) error.

Figure 2.4: Heading Error.

The heading errors’ main aspect is the yaw moment, which indicates the vehicle’s
tendency to rotate around its vertical axis. Yaw stability, closely linked to factors
such as the positioning of the center of gravity and the distribution of mass within
the vehicle, is crucial for maintaining control. It is quantified by the measurement
of yaw heading error, which indicates the deviation of the vehicle’s heading from
its intended direction of travel. Minimizing yaw heading error is crucial for precise
navigation and trajectory tracking, ensuring that the vehicle stays on course.

The heading error, typically denoted as ψ, represents the deviation between
the vehicle’s actual heading angle δ and its desired or reference heading angle δref.
Mathematically, the heading error formula can be expressed as:

ψ = δref − δ (2.9)
where:

• ψ is the heading error;
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• δref is the desired or reference yaw angle;

• δ is the actual yaw angle (heading angle) of the vehicle.

Figure 2.5: Cross Track Error.

Furthermore, the cross-track error (CTE) plays a pivotal role in assessing stability.
CTE measures the lateral deviation of the vehicle from its desired trajectory or path.
Minimizing CTE is essential for maintaining effective lane-keeping and trajectory
tracking performance, ensuring that the vehicle remains aligned within its lane or
adheres to a specified path accurately.

The cross-track error (CTE), denoted as eCTE, quantifies the lateral deviation
between the vehicle’s actual position and its desired trajectory or path. Mathemat-
ically, the cross-track error formula can be expressed as:

eCTE = yactual − (ydesired + d · sin(ψdesired − ψactual)) (2.10)

where;

• eCTE is the cross-track error.

• yactual is the actual lateral position of the vehicle.

• ydesired is the desired lateral position along the planned trajectory or path.

• d is the perpendicular distance between the vehicle’s position and the desired
trajectory.

• ψdesired is the desired yaw angle (heading angle) of the vehicle along the planned
trajectory, and

• ψactual is the actual yaw angle (heading angle) of the vehicle.
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In summary, the field of vehicle dynamics encompasses a diverse array of phe-
nomena and principles that govern the motion and behavior of vehicles. A thorough
understanding of these dynamics, coupled with knowledge of their underlying equa-
tions, empowers engineers to develop control systems for autonomous vehicles that
not only enhance efficiency but also elevate performance and safety standards on
the road.

2.2 Control Dynamics
Control theory is a field of engineering and mathematics that deals with the
behavior of dynamical systems. A dynamical system is one that evolves over time
according to a set of rules or equations. These systems can be described using
mathematical models, such as differential equations or difference equations. The
main goal of control theory is to design controllers that manipulate inputs to the
system in order to regulate its outputs.

2.2.1 Control theory in autonomous vehicles
As in other areas, control theory plays a critical role in the development and opera-
tion of autonomous vehicles, representing a vital component of their functionality
and safety. In the context of autonomous vehicles, control theory is indispensable
for orchestrating the intricate interactions between various subsystems, sensors,
actuators, and environmental factors to ensure safe and efficient operation.

Autonomous vehicles, also known as self-driving cars, rely heavily on control
theory to navigate complex and dynamic environments autonomously. These
vehicles must perceive their surroundings, interpret sensory data, plan optimal
trajectories, and execute control actions in real-time to safely transport passengers
from one location to another. Control theory provides the mathematical foundation
and algorithms necessary to achieve these objectives.

For instance, in autonomous vehicle navigation, control theory is employed to
design controllers that regulate steering, acceleration, and braking inputs based
on sensor feedback and high-level commands. These controllers must account for
factors such as vehicle dynamics, road conditions, traffic patterns, and obstacle
avoidance to ensure smooth and safe operation.

Moreover, control theory facilitates the integration of various control algorithms
and decision-making processes within autonomous vehicle systems. This includes
reactive control strategies for immediate responses to unforeseen events, as well
as optimal control techniques for long-term planning and trajectory optimization.
By leveraging control theory principles, autonomous vehicles can adapt to diverse
driving scenarios, minimize energy consumption, optimize passenger comfort, and
enhance overall performance and safety
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2.2.2 Reactive Control in Autonomous Vehicles

Figure 2.6: Example of Reactive Control.

Reactive control in the context of autonomous vehicles refers to a control strategy
that enables real-time response to immediate sensory input without explicit reference
to a pre-defined global plan. Instead of relying on complex predictive models of the
environment, reactive control algorithms make decisions based solely on the vehicle’s
current sensor readings and local perceptions. This approach allows autonomous
vehicles to react quickly to changing road conditions, dynamic obstacles, and
unexpected events without the need for extensive planning or deliberation.

In autonomous vehicles, reactive control plays a crucial role in various aspects
of driving, including obstacle avoidance, lane keeping, adaptive cruise control, and
collision mitigation. By continuously monitoring sensor data such as lidar, radar,
and cameras, reactive control algorithms can adjust vehicle trajectory, speed, and
behavior to ensure safe and efficient navigation through complex environments.

2.2.3 Proportional-Integral-Derivative (PID) Control
PID control is one of the most widely used feedback control algorithms in various
engineering applications due to its simplicity and effectiveness in regulating system
behavior. The PID controller computes the control signal based on three terms:
proportional, integral, and derivative, each contributing to the overall control
action.

Proportional (P) Term

The proportional term in a PID controller generates a control signal that is
proportional to the current error between the desired setpoint and the actual
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output. Mathematically, it is represented as:
P (t) = Kp · e(t) (2.11)

where;
• P (t) is the proportional term of the control signal at time t.

• Kp is the proportional gain.

• e(t) is the error at time t, calculated as the difference between the desired
setpoint and the actual output.

The proportional term provides immediate response to changes in the error signal,
ensuring that the system quickly approaches the desired setpoint. However, it alone
may result in steady-state error, where the system settles at a non-zero error value.

Integral (I) Term

The integral term accounts for the cumulative sum of past errors over time and
aims to eliminate steady-state error. It integrates the error signal over time and
applies a control action to reduce the accumulated error. Mathematically, the
integral term is given by:

I(t) = Ki

Ú t

0
e(τ) dτ (2.12)

where;
• I(t) is the integral term of the control signal at time t.

• Ki is the integral gain.

• e(τ) is the error at time τ .

• The integral is evaluated over the interval from 0 to t.
The integral term becomes increasingly significant for sustained errors over time,
effectively driving the system towards the desired setpoint. However, it can also
introduce instability if not properly tuned, leading to overshoot or oscillations.

Derivative (D) Term

The derivative term anticipates the future trend of the error signal by measuring
its rate of change. It dampens the control action based on the rate of change, thus
improving system stability and reducing overshoot. Mathematically, the derivative
term is expressed as:

D(t) = Kd
de(t)
dt

(2.13)

where:
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• D(t) is the derivative term of the control signal at time t,

• Kd is the derivative gain,

• de(t)
dt

represents the derivative of the error with respect to time.

The derivative term helps in smoothing out rapid changes in the error signal,
thereby enhancing the transient response of the system while minimizing overshoot
and oscillations.

PID Control Signal

The overall control signal u(t) generated by the PID controller is the sum of the
proportional, integral, and derivative terms:

u(t) = P (t) + I(t) +D(t) (2.14)

Tuning the PID controller involves adjusting the proportional, integral, and deriva-
tive gains (Kp, Ki, and Kd) to achieve desired system performance, such as
stability, responsiveness, and minimal steady-state error. Proper tuning is essential
to optimize the controller’s performance under various operating conditions and
disturbances.

PID control finds widespread application in systems requiring precise control,
such as temperature regulation, speed control of motors, robotics, process control,
and automotive control systems. Its versatility, simplicity, and effectiveness make
it a fundamental tool in control engineering.

2.2.4 Optimal Control

Figure 2.7: Example of Optimal Control.
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Optimal control is a branch of control theory that focuses on finding control
inputs that optimize a certain performance criterion. Unlike reactive control strate-
gies, which respond directly to current sensory inputs, optimal control algorithms
consider future states and system dynamics to determine the most suitable con-
trol action. By formulating and solving optimization problems, optimal control
aims to minimize or maximize a defined objective function while satisfying system
constraints.

In the context of autonomous vehicles, optimal control plays a crucial role in
trajectory planning, path optimization, and energy management. By optimizing
control inputs over a finite or infinite time horizon, optimal control algorithms can
improve vehicle efficiency, reduce fuel consumption, and enhance safety.

2.2.5 Model Predictive Control (MPC)
Model Predictive Control (MPC) is an advanced control strategy that utilizes
a dynamic model of the system to predict future behavior and optimize control
actions over a finite time horizon. Unlike traditional control methods that compute
control inputs in real-time, MPC solves an optimization problem at each time step
to determine the best sequence of control inputs that minimize a cost function
while satisfying system constraints.

In the context of autonomous vehicles, MPC enables proactive decision-making
by considering the vehicle’s dynamics, environmental conditions, and mission
objectives. By incorporating predictive models of the vehicle’s motion and external
factors such as traffic and road conditions, MPC can generate optimal control
commands that anticipate future events and optimize vehicle behavior accordingly.

Nonlinear Model Predictive Control (NMPC)

Nonlinear Model Predictive Control (NMPC) extends the principles of MPC to
systems with nonlinear dynamics and constraints. Unlike linear MPC, which relies
on linearized models of the system, NMPC directly handles nonlinearities in the
system dynamics and constraints, allowing for more accurate predictions and control
actions.

NMPC formulates an optimization problem with nonlinear objective functions
and constraints, which are typically solved using nonlinear optimization techniques
such as gradient-based methods or numerical optimization algorithms. By con-
sidering the full nonlinear dynamics of the system, NMPC can achieve superior
performance and robustness compared to linear MPC, especially in highly nonlinear
systems like autonomous vehicles.

NMPC finds applications in various autonomous vehicle tasks, including trajec-
tory tracking, obstacle avoidance, and vehicle stabilization. By leveraging accurate
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nonlinear models and sophisticated optimization algorithms, NMPC enables precise
and agile control of autonomous vehicles in complex and dynamic environments.

Formulas and Explanations

The general formulation of an optimal control problem involves minimizing or
maximizing an objective function J subject to system dynamics and constraints.
Mathematically, it can be represented as:

min
u
J(x, u) (2.15)

subject to:
x(k + 1) = f(x(k), u(k)) (2.16)
umin ≤ u(k) ≤ umax (2.17)

Where:

• x is the state vector,

• u is the control input vector,

• J is the cost function,

• f is the system dynamics model,

• umin and umax are the lower and upper bounds on the control inputs, respec-
tively.

For Model Predictive Control (MPC), the optimization problem is solved at
each time step within a receding horizon framework. The control input sequence
u∗ that minimizes the cost function while satisfying constraints is calculated as:

u∗ = arg min
u
J(x, u) (2.18)

subject to:
x(k + 1) = f(x(k), u(k)) (2.19)
umin ≤ u(k) ≤ umax (2.20)

NMPC extends this framework to handle nonlinear dynamics and constraints
directly, allowing for more accurate predictions and control actions in highly
nonlinear systems.

These optimization problems are typically solved using numerical optimization
techniques such as gradient-based methods, nonlinear programming, or convex
optimization algorithms, depending on the complexity of the system dynamics and
constraints.
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2.2.6 Control Algorithms

Figure 2.8: Example of Autonomous Vehicle Flowchart.

Control algorithms are computational procedures used to implement control
strategies in practice. These algorithms calculate control signals based on feedback
from sensors and desired setpoints, enabling real-time adjustment of system inputs
to achieve desired outcomes. There are various types of control algorithms, each
suited to different types of systems and control objectives.

One of the key challenges in autonomous vehicle control is the need to balance
competing objectives, such as safety, comfort, and efficiency, while navigating
through complex and dynamic environments. Control algorithms must be robust
to uncertainties in sensor measurements, road conditions, and the behavior of other
road users. They should also be capable of adapting to rapidly changing situations
and making decisions quickly and reliably.

Control algorithms in autonomous vehicles often employ a combination of
reactive and predictive approaches. Reactive control strategies enable immediate
responses to local sensory input, allowing the vehicle to react quickly to obstacles
and unexpected events. On the other hand, predictive control techniques use
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models of the vehicle dynamics and environment to anticipate future states and
plan optimal trajectories.

Advanced control algorithms like model predictive control (MPC) are increasingly
being deployed in autonomous vehicles to address these challenges. MPC takes into
account the vehicle’s dynamics, environmental constraints, and desired objectives
to optimize control actions over a finite time horizon. By considering future states
and system constraints, MPC enables smoother and more efficient vehicle operation
while ensuring safety and comfort.

Development steps of Control Algorithm

Control algorithms are typically developed through a systematic process that in-
volves several key steps. Initially, engineers analyze the requirements and objectives
of the control system, considering factors such as system dynamics, performance
criteria, and operating constraints. Based on these requirements, they design
mathematical models that describe the behavior of the system and its interactions
with the environment.

Once the models are established, engineers proceed to design control strategies
that achieve the desired system behavior. This often involves selecting appropriate
control architectures, such as feedback or feedforward control, and choosing control
algorithms that best suit the application requirements. For example, in the context
of autonomous vehicles, control algorithms must be able to handle the complexities
of real-world driving scenarios while ensuring safety and efficiency.

After selecting candidate algorithms, engineers conduct simulations and experi-
ments to evaluate their performance under various conditions. This iterative process
allows them to refine the algorithms and tune their parameters to optimize system
performance. Additionally, engineers may employ techniques such as model-based
design, where control algorithms are developed and validated using computer-aided
design tools before implementation.

Once the control algorithms have been thoroughly tested and validated, they
are implemented in software or hardware components of the autonomous vehicle’s
control system. During integration, engineers ensure that the algorithms inter-
act seamlessly with other vehicle subsystems, such as perception, planning, and
actuation, to enable coordinated and effective control.

Throughout the development process, engineers must also consider factors such
as computational efficiency, real-time performance, and scalability to ensure that
the control algorithms meet the requirements of the autonomous vehicle platform.
Continuous testing, validation, and refinement are essential to ensure that the
control algorithms operate reliably and safely in real-world driving conditions.

Overall, the development of control algorithms for autonomous vehicles requires
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a multidisciplinary approach, combining expertise in control theory, robotics, com-
puter science, and automotive engineering. By leveraging advances in technology
and research, engineers can continue to improve the capabilities of autonomous
vehicles and pave the way for a future where safe and efficient autonomous trans-
portation is a reality.

2.3 Basics of Motion Planning
Motion planning and algorithms are fundamental components of autonomous
systems, enabling them to navigate through complex environments and reach
desired goals safely and efficiently. These algorithms are designed to generate
trajectories or paths for robots or vehicles by considering various factors such as
obstacles, dynamic constraints, and environmental conditions.

One of the primary objectives of motion planning is to find a feasible path from
a start configuration to a goal configuration while avoiding collisions with obstacles
in the environment. These obstacles can be static, such as walls or obstacles, or
dynamic, such as moving vehicles or pedestrians. Motion planning algorithms must
account for uncertainties and disturbances in the environment to ensure robustness
and reliability in real-world scenarios.

There are several types of motion planning algorithms, each with its own
advantages and limitations. Some of the commonly used types include:

1. Sampling-Based Algorithms: These algorithms, such as Probabilistic
Roadmap (PRM) and Rapidly-exploring Random Tree (RRT), construct a
roadmap or tree structure by randomly sampling the configuration space of
the robot. They then connect these samples to form a graph that represents
feasible paths. Sampling-based algorithms are particularly suitable for high-
dimensional configuration spaces and environments with complex obstacles.

2. Optimization-Based Algorithms: Optimization-based algorithms formu-
late motion planning as an optimization problem, where the objective is to
minimize a cost function subject to constraints. Examples include trajectory
optimization and optimal control techniques. These algorithms are often
used for generating smooth and dynamically feasible trajectories, especially in
continuous and time-varying environments.

3. Grid-Based Algorithms: Grid-based algorithms discretize the environment
into a grid or lattice structure and search for collision-free paths using tech-
niques like Dijkstra’s algorithm or A* search. While these algorithms are
computationally efficient and easy to implement, they may suffer from the
curse of dimensionality in high-dimensional configuration spaces.

28



Background

4. Hybrid Approaches: Hybrid approaches combine elements of different types
of motion planning algorithms to leverage their respective strengths. For
example, a hybrid algorithm may use sampling-based techniques to explore the
configuration space and optimization-based techniques to refine the generated
paths.

Implementing motion planning algorithms and control systems involves several
steps, including representation of the environment, selection of appropriate algo-
rithms, and integration with perception and control systems. Engineers use various
data structures and algorithms to represent the environment, such as occupancy
grids, voxel grids, or point clouds. They then choose suitable motion planning
algorithms based on factors like computational complexity, real-time performance,
and environmental characteristics.

Once selected, the chosen algorithms are implemented in software or embedded
systems, often using programming languages like C++ or Python. Engineers
conduct extensive testing and validation to ensure that the motion planning system
operates reliably and safely in diverse scenarios, accounting for factors like sensor
noise, localization errors, and uncertainties in the environment.

Overall, motion planning algorithms and control systems play critical roles in
the autonomy and intelligence of robotic and autonomous systems, enabling them
to navigate, interact with their surroundings effectively, and maintain safe and
efficient operation in various domains.

2.3.1 Adaptive Cruise Control (ACC)

Figure 2.9: Adaptive Cruise Control.

Adaptive Cruise Control (ACC) is a sophisticated form of cruise control that
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automatically adjusts a vehicle’s speed to maintain a safe following distance from
the vehicle ahead. This system is pivotal in enhancing driving comfort and safety,
especially in varying traffic conditions. ACC leverages control theory principles to
dynamically adjust the vehicle’s speed based on real-time sensor data.

Principles of ACC

ACC systems rely on sensors such as radar, lidar, and cameras to detect the distance
and relative speed of the vehicle ahead. The primary goal of ACC is to maintain a
predefined safe distance while ensuring smooth acceleration and deceleration. The
system continuously monitors the traffic conditions and adjusts the throttle and
brakes to maintain the desired gap.

Control Strategy of ACC

The control strategy of Adaptive Cruise Control (ACC) can be broadly categorized
into three modes: speed control, distance control, and autonomous emergency
braking.

• Speed Control(SC): When there is no vehicle ahead within the ACC’s
range, the system functions like conventional cruise control, maintaining the
set speed.

• Distance Control(DC): When a vehicle is detected ahead, the ACC adjusts
the speed to maintain a safe following distance, which is often set by the driver
or predefined by the system.

The mode selection for the adaptive cruise control system is given by:

mode =


VC if d > dtar and atar,VC ≤ atar,SC

SC if d > dtar and atar,VC > atar,SC

SC if d ≤ dtar

where:

• mode represents the current mode of the adaptive cruise control system.

• d is the current distance to the vehicle ahead.

• dtar is the target distance to the vehicle ahead.

• atar,VC is the target acceleration in vehicle control mode (VC).

• atar,SC is the target acceleration in speed control mode (SC).
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For safety reasons, the arrangement of Emergency Braking is an important
aspect of ACC:

• Emergency Braking: In case a pedestrian crosses between the host and lead
vehicle, the control algorithm must react safely and brake to avoid a collision.

The minimum deceleration distance for safety is given by:

xdect,min = − v2
0

2ah,min
+ xsafe (2.21)

where:

• xdect,min is the minimum deceleration distance.

• v0 is the initial velocity.

• ah,min is the minimum deceleration (should be a maximum of 2 m/s2 for safety).

• xsafe is the safety distance.

Control Algorithms in ACC

The control algorithms used in ACC typically involve Proportional-Integral-Derivative
(PID) control or Model Predictive Control (MPC), depending on the system’s com-
plexity and desired performance. These algorithms help regulate the vehicle’s speed
and maintain a safe distance.

PID Control in ACC

In ACC, PID control is used to adjust the vehicle’s speed based on the error
between the desired distance and the actual distance to the vehicle ahead. The
control signal u(t) is computed as follows:

u(t) = Kpe(t) +Ki

Ú t

0
e(τ)dτ +Kd

de(t)
dt

(2.22)

where:

• e(t) = ddesired − dactual is the distance error at time t.

• ddesired is the desired following distance.

• dactual is the actual distance to the vehicle ahead.

• Kp, Ki, and Kd are the proportional, integral, and derivative gains, respec-
tively.
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The proportional term Kpe(t) provides an immediate response to the current
error. The integral term Ki

s t
0 e(τ)dτ addresses accumulated past errors to elimi-

nate steady-state error. The derivative term Kd
de(t)

dt
anticipates future errors by

considering the rate of change of the error.

Model Predictive Control (MPC) in ACC

MPC is a more advanced control strategy used in ACC systems to handle com-
plex and dynamic driving environments. MPC predicts future vehicle states and
optimizes control inputs over a finite time horizon.

The MPC problem for ACC can be formulated as:

min
u

N−1Ø
k=0

J(x(k), u(k))

subject to:
x(k + 1) = f(x(k), u(k)),
umin ≤ u(k) ≤ umax,

dmin ≤ d(k) ≤ dmax,

(2.23)

where:

• x(k) is the state vector at time step k.

• u(k) is the control input vector at time step k.

• J(x(k), u(k)) is the cost function to be minimized, which typically includes
terms for speed error, distance error, and control effort.

• f(x(k), u(k)) represents the system dynamics.

• umin and umax are the lower and upper bounds on the control inputs, respec-
tively.

• dmin and dmax are the minimum and maximum allowable distances to the
vehicle ahead, ensuring safety and comfort.

MPC iteratively solves this optimization problem at each time step, using the
current state and predicted future states to determine the optimal sequence of
control inputs. This approach allows the ACC system to proactively adjust the
vehicle’s speed, accounting for changes in traffic conditions and vehicle dynamics.
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Formulas and Explanations

The objective function J(x, u) in MPC is designed to balance multiple criteria, such
as minimizing speed deviation, maintaining a safe distance, and reducing control
effort. A typical cost function might be:

J(x, u) =
N−1Ø
k=0

1
Qd(ddesired − d(k))2 +Qv(vdesired − v(k))2 +Ru(k)2

2
(2.24)

where:

• Qd and Qv are weights for the distance and speed errors, respectively.

• R is the weight for the control effort.

• d(k) and v(k) are the distance to the vehicle ahead and the vehicle’s speed at
time step k, respectively.

• vdesired is the desired speed.

By solving this optimization problem, MPC provides control inputs that ensure
the vehicle maintains a safe following distance, adapts to traffic conditions, and
achieves smooth and efficient driving behavior.

In summary, Adaptive Cruise Control (ACC) is a critical feature in autonomous
vehicles, utilizing advanced control algorithms like PID and MPC to maintain safe
and comfortable driving conditions. These algorithms enable real-time adjustments
to the vehicle’s speed, ensuring optimal performance in diverse driving scenarios.

2.4 ASIL and HARA Standards
Automotive Safety Integrity Level (ASIL) and Hazard Analysis and Risk Assessment
(HARA) are fundamental concepts in automotive safety engineering, particularly in
the development of advanced driver assistance systems (ADAS) and autonomous
vehicles. These standards provide a systematic framework for identifying, analyzing,
and mitigating potential hazards associated with automotive systems, thereby
ensuring the safety and reliability of vehicles on the road.

ASIL Standards

The Automotive Safety Integrity Level (ASIL) classification, as defined by the ISO
26262 standard, serves as a crucial framework for assessing and managing the safety
of automotive systems. The four ASIL levels—A, B, C, and D—categorize safety
functions based on their potential risk to vehicle occupants and other road users.
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ASIL A represents the lowest level of risk among the classifications, indicating
safety functions where the risk of severe injury or harm to occupants and other
road users is relatively low. These functions typically involve basic vehicle controls
and operations, such as turn signal activation or interior lighting.

ASIL B signifies a moderate level of risk, where safety functions may involve
more critical vehicle systems that could lead to minor injuries or accidents if they
were to malfunction. Examples of ASIL B functions include adaptive cruise control
and lane departure warning systems.

ASIL C denotes a higher level of risk, indicating safety functions that, if com-
promised, could result in significant injuries or fatalities. These functions often
involve advanced driver assistance systems (ADAS) such as automatic emergency
braking or blind-spot detection.

ASIL D represents the highest level of risk and requires the most stringent safety
measures. Safety functions classified as ASIL D are those that, if they were to
fail or malfunction, could lead to catastrophic consequences, including multiple
fatalities or widespread property damage. Examples of ASIL D functions include
autonomous driving systems and vehicle-to-vehicle communication systems.

HARA Standards

Hazard Analysis and Risk Assessment (HARA) is a systematic process for identify-
ing and evaluating potential hazards associated with the operation of automotive
systems. It involves analyzing various system components, functions, and failure
modes to identify potential hazards, assessing their severity, and estimating the
associated risk. HARA aims to ensure that safety goals are defined and met
throughout the development lifecycle of automotive systems.

Implementation

The implementation of ASIL and HARA standards involves several key steps.
First, the automotive system under consideration is thoroughly analyzed to identify
potential hazards and failure modes. This analysis may involve techniques such
as Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to
systematically identify and evaluate potential risks.

The determination of ASIL for a particular safety function involves the assessment
of three HARA key factors:

1. Severity of Potential Injury: This factor considers the potential harm or
injury that could occur if the safety function were to fail. It evaluates the
severity of injuries to vehicle occupants, pedestrians, and other road users in
the event of a malfunction.

34



Background

Figure 2.10: ISO development cycle.

2. Probability of Exposure to the Hazard: This factor assesses the likeli-
hood of the safety function encountering hazardous situations during normal
operation. It considers factors such as driving conditions, traffic density,
and environmental factors that could increase the probability of exposure to
potential hazards.

3. Controllability of the Driver or System: This factor examines the ability
of the driver or the automated system to mitigate or control the hazard
once it is detected. It evaluates the effectiveness of safety measures, such as
warning signals, emergency braking, or vehicle maneuvering, in preventing or
minimizing the consequences of a hazardous event.

By considering these factors, automotive researchers can assign appropriate
ASIL levels to safety functions and implement the necessary safety measures to
mitigate risks and ensure the overall safety and reliability of vehicles on the road.

Throughout the development process, rigorous verification and validation ac-
tivities are conducted to ensure that the safety goals are effectively implemented
and verified. This may involve testing the system under various operating condi-
tions, simulating potential failure scenarios, and assessing the system’s response to
safety-critical events.

Overall, ASIL and HARA standards are essential components of the automotive
safety engineering process, providing a systematic approach to identifying, analyzing,
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and mitigating potential hazards to ensure the safety and reliability of vehicles on
the road.
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Chapter 3

Architecture and
Methodology

In this section, we transition from the theoretical aspects of the research to their
practical implementation, detailing both the methodology and the architecture.
Our approach is built upon the creation and testing of Hazard Analysis and
Risk Assessment (HARA) scenarios within the CARLA simulator, executed on an
Ubuntu Linux operating system using Python programming. We emphasize clean
code practices throughout the development process, with code quality rigorously
evaluated using Pylint to ensure adherence to Python PEP8 standards.

The methodology encompasses several key components. We begin with the setup
and configuration of the CARLA simulation environment, which is meticulously
detailed to provide clarity on the initial conditions and system requirements.
Following this, we delve into the design and implementation of HARA scenarios,
which serve as the foundation for our risk assessment and hazard analysis processes.
Various control and motion planning algorithms are then applied within these
scenarios, with each step of the process documented to ensure a comprehensive
understanding of the experimental setup, data collection methods, and the criteria
used for algorithm evaluation.

Our approach is iterative and structured, following Agile methodology. This
allows for continuous improvement and refinement of the implemented solutions,
ensuring that each iteration brings us closer to achieving our research objectives.
The Agile framework facilitates adaptive planning, evolutionary development, early
delivery, and continual improvement, encouraging flexible responses to change.

In addition to the methodology, we also outline the architecture that underpins
our research framework (as shown in Figure 3.1). The architecture section details
the overall system design, including the hardware and software components utilized
in our experiments. To address compatibility issues, we run the application within
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a Conda environment, ensuring a consistent and isolated setup that avoids conflicts
between different software dependencies. The CARLA environment and client are
invoked from a shell script, streamlining the setup process and ensuring that all
necessary components are correctly initialized.

We discuss the integration of the CARLA simulator with other tools and libraries,
the configuration of the Ubuntu Linux operating system, and the use of Python for
scripting and automation. The architectural design ensures a robust and scalable
platform capable of supporting complex simulation scenarios and extensive data
analysis.

Furthermore, we provide an in-depth examination of the software architecture,
highlighting the modular design that allows for easy extension and maintenance.
Each module is designed to perform specific tasks, from data acquisition and
preprocessing to algorithm execution and result analysis. The interconnections
between these modules are clearly defined, ensuring smooth data flow and efficient
processing.

By combining a detailed methodology with a well-defined architecture, we
establish a solid foundation for our research. This comprehensive approach not
only facilitates the effective implementation of HARA scenarios within the CARLA
simulator but also ensures that our system is scalable, maintainable, and capable of
adapting to future research needs. Each aspect of the methodology and architecture
is introduced in this section, providing a clear roadmap for replicating and building
upon our work.

Figure 3.1: Project System Architecture.
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3.0.1 Environment Management with Conda

Conda is a versatile package and environment management tool that streamlines
the installation, organization, and utilization of software packages and dependencies
across various environments. It is particularly useful for managing the Python
environment and dependencies in this project due to CARLA’s compatibility
limitations with Python versions beyond 3.7.

Creating and Managing Environments

The primary advantage of Conda lies in its capability to create isolated environments.
This feature allows for the creation of multiple Python environments with distinct
package versions, enabling the simultaneous execution of diverse projects with
unique requirements without encountering conflicts.

In our project, Conda is employed to manage the Python environment and
dependencies due to CARLA’s compatibility limitation with Python versions beyond
3.7. By utilizing Conda, we can effortlessly establish a Python 3.7 environment
and install the requisite packages, ensuring seamless compatibility with CARLA.

The primary advantage of Conda lies in its capability to create isolated en-
vironments. This feature enables the creation of multiple Python environments
with distinct package versions, facilitating the simultaneous execution of diverse
projects with distinct requirements without encountering conflicts. Furthermore,
Conda provides a straightforward command-line interface for environment manage-
ment, simplifying tasks such as environment creation, activation, deactivation, and
deletion.

For this study, Ubuntu is used as the operating system, and a Python environ-
ment version 3.7 or earlier is required for compatibility with CARLA. By utilizing
Conda, we ensure that the development environment remains stable and consistent,
preventing potential conflicts and issues related to package dependencies.

3.1 Python language and libraries

In this thesis, the development of control algorithms is accompanied by a strong
emphasis on clean coding practices and effective environment management. This
section outlines the tools and methodologies employed to ensure code quality,
readability, and compatibility, focusing on Python as the primary programming
language.
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3.1.1 Python
Python’s versatility and extensive library support make it an ideal choice for
implementing and testing control algorithms. The following subsections detail
the specific tools and libraries used to maintain code quality and manage the
development environment.

3.1.2 Code Linting and Formatting
To maintain high code quality, standardization, and readability, several tools were
integrated into the development workflow.

PEP8 Compliance

PEP8 is the Python Enhancement Proposal that outlines the conventions for
Python code style. Adhering to PEP8 ensures that the code is consistent and
readable, which is crucial for collaborative development and long-term maintenance.
In this thesis, all Python scripts follow PEP8 guidelines, enhancing the overall code
quality.

Pylint

Pylint is a static code analysis tool used to enforce coding standards and detect
programming errors. By integrating Pylint into the development process, the code
is continuously analyzed for potential issues such as coding standard violations,
potential bugs, and other errors. This proactive approach helps maintain a high
standard of code quality and prevents common programming mistakes, ensuring
the robustness of the control algorithms developed in this work.

Black

Black is an uncompromising code formatter for Python that automatically formats
code to comply with PEP8 standards. Using Black enhances code readability and
consistency, making it easier for team members to understand and modify the code.
By automating the formatting process, Black saves time and reduces the likelihood
of formatting-related errors, allowing the focus to remain on the development and
refinement of control algorithms.

Plotting

To visualize and compare the performance of PID and MPC controllers, plotting
functions are utilized. These functions generate graphs that depict key performance
metrics such as heading and cross track error. Visualizations are critical in this
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thesis as they provide an intuitive way to assess the effectiveness of different control
strategies, facilitating the analysis and comparison of various approaches.

3.2 Carla Simulator
CARLA is an open-source, photorealistic simulator developed to facilitate the
training, validation, and testing of autonomous driving algorithms. Built using
C++ and Unreal Engine, CARLA provides a rich simulation environment with
extensive features, including comprehensive control over actors, environmental
condition adjustments, a versatile sensor suite, map generation capabilities, a
flexible API, and server-client based communication.

The core simulation, including all control logic, rendering, physics, and actor
properties, is handled by the CARLA Simulator. Additionally, CARLA offers a
Python API module that allows users to interface with the simulator. In this
architecture, the simulator acts as the server, while the client-server communication
is managed through the Python API. Through the Python API, users can access

Figure 3.2: Carla Simulator.

most aspects of the simulation. Python scripts enable the retrieval of raw data
from CARLA sensors attached to the ego vehicle, the processing of this data, the
computation of control parameters, and the transmission of throttle, brake, and
steering commands back to the simulator.

Client-side Python scripts are typically divided into two main components:

1. World and client: The client in CARLA is a crucial module that users run
to request information or make changes within the simulation. Each client
operates with a designated IP address and port number, communicating with
the server through the terminal. Multiple clients can run simultaneously,
but advanced management of these clients requires a deep understanding of
CARLA and synchronization techniques.
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To set up a client, you initiate it to communicate with the CARLA server.
This setup allows the client to interact with the server, whether it’s running
locally or on a different network machine. The client’s ability to load new
maps, record simulations, and initialize the traffic manager showcases its
versatility and control over the simulation environment.
The client-server link is pivotal because it enables dynamic and flexible control
of the simulation world. Through the client, users can load different maps,
adjust simulation settings, and manage various actors within the environment.
This interaction is essential for real-time testing and validation of autonomous
driving algorithms, as it allows for immediate adjustments and data retrieval.
In CARLA, the world is an object that represents the entire simulation. It
serves as an abstract layer encompassing the primary methods needed to spawn
actors, change weather conditions, retrieve the current state of the simulation,
and more. There is only one world per simulation, and it is recreated whenever
the map changes.
The client retrieves the world object, which can then be used to access and
manipulate various elements within the simulation. This includes modifying
weather, controlling vehicles, managing traffic lights, interacting with buildings,
and navigating the map.
By linking the client and server, users can efficiently manage the simulation’s
environment and actors, making it possible to create realistic and varied scenar-
ios for testing autonomous driving systems. This interaction is fundamental to
the iterative development and validation process, ensuring that the algorithms
perform reliably under diverse conditions.

2. Synchronous and asynchronous mode: CARLA operates on a client-server
architecture where the server runs the simulation, and the client retrieves
information and requests changes within the simulation. This section addresses
the communication dynamics between the client and server, focusing on the
modes of operation and their implications for simulation control and data
integrity.
By default, CARLA operates in asynchronous mode, where the server runs
as fast as possible, handling client requests on the fly. Asynchronous mode is
suitable for experimental setups or initial simulations where users can freely
navigate the map and place actors. However, when generating training data or
deploying an agent within the simulation, synchronous mode is recommended
for greater control and predictability.
In synchronous mode, the client, running Python code, dictates when the
server updates. This mode is particularly important for maintaining synchrony
between different elements, such as sensors, ensuring all sensors use data from
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the same simulation moment. If the client application is slow and the server
does not wait, information overflow can occur, leading to data loss or mixing.
Synchronous mode helps prevent this by making the server wait for a client
tick, ensuring the client can manage the incoming data effectively.
In a multiclient architecture, only one client should control the ticks. The
server treats each tick received as if it came from the same client, and multiple
client ticks can create inconsistencies between the server and clients.
Switching between synchronous and asynchronous modes involves changing
a boolean state in the simulation settings. Enabling synchronous mode
ensures that the server waits for client ticks, providing better control over the
simulation. However, if synchronous mode is enabled and a Traffic Manager
is running, the Traffic Manager must also be set to synchronous mode to
maintain consistency.
Using synchronous mode is particularly relevant for applications requiring
synchronization between various sensors. For instance, GPU-based sensors
like cameras often generate data with a slight delay, making synchrony crucial
to ensure data accuracy. The world object in CARLA provides methods to
make the client wait for a server tick or perform specific actions upon receiving
a tick, ensuring that all simulation elements remain coordinated.
By maintaining synchrony in client-server communication, users can produce
more reliable and consistent simulation results, crucial for developing and
testing autonomous driving algorithms.

In addition to those two aspects, CARLA’s rendering capabilities are critical to
its simulation environment, contributing to the realism and immersion of virtual
scenarios. Leveraging the power of Unreal Engine, CARLA offers a range of
rendering options that can vary from epic quality to low quality. Rendering quality
plays a vital role in simulating real-world environments accurately. High-quality
graphics enhance the fidelity of the simulation, allowing for more detailed and
visually rich scenes. This level of realism is essential for tasks such as perception
training, where objects need to be accurately identified based on visual cues.

However, rendering quality can also be adjusted to meet specific requirements.
Lower-quality rendering settings can reduce computational demands, making it
possible to run simulations on less powerful hardware or at higher speeds. This
flexibility allows users to optimize their simulation setup according to their compu-
tational resources and performance needs.

As a result, CARLA, as a simulation platform, offers unparalleled freedom and
the capability to generate highly realistic scenarios compared to other simulators.
Its advanced features and flexibility make it an ideal choice for implementing HARA
scenarios in our study. By leveraging CARLA, we can create diverse and detailed
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Figure 3.3: Low rendering quality of Carla Simulator.

driving environments that closely mimic real-world conditions, thus enabling a
more accurate and robust evaluation of the safety performance of various control
algorithms. This capability is crucial for our research, as it ensures that the
scenarios tested are not only varied but also true to life, providing meaningful
insights into the efficacy of PID and MPC algorithms under different driving
conditions. Consequently, CARLA’s comprehensive simulation environment is
instrumental in our quest to enhance the safety protocols of autonomous vehicles
through meticulous HARA analysis.

Lastly, in our study, we will use Synchronous mode to ensure consistent results in
each iteration, as it is also suitable for the computer running the CARLA simulation.
Rendering will be set to Low due to the computer’s graphics capabilities.
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Figure 3.4: Epic rendering quality of Carla Simulator.

3.2.1 Client to Carla Environment Localhost Communica-
tion for Efficient Interaction

This project adopts a modular design philosophy, separating the core controller
logic from the simulation environment (e.g., CARLA). This approach offers several
advantages:

Clear Separation of Concerns: Modular design promotes cleaner code by iso-
lating the controller logic from the complexities of the simulator. This facilitates
independent development and testing of the controller, reducing the risk of unin-
tended consequences. Enhanced Reusability: The isolated controller module can
be potentially reused with different simulators or even real hardware in the future,
enhancing project flexibility.

To further enhance these benefits and facilitate collaboration, the project utilizes
Git, a version control system, as described elsewhere in this document.

CARLA, the chosen simulation platform, leverages localhost communication
for interaction between the controller and the simulation environment during
development and testing. This communication facilitates several functionalities:

• Sensor Data Visualization: A separate application running on the same
machine as CARLA acts as the client. The CARLA simulator acts as the
server, continuously generating sensor data (e.g., camera images, LiDAR point
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clouds) from the simulated environment. The client connects to the CARLA
server on localhost and receives a stream of sensor data in real-time, allowing
for visualization and analysis of the vehicle’s perception of the environment.
Communication protocols like TCP or UDP can be employed depending on
data format and real-time requirements.

• External Control of the Simulator: An external control application running
on localhost can send control commands (e.g., steering commands, accelera-
tion/deceleration) over localhost to the CARLA server. The server interprets
these commands and modifies the behavior of the simulated vehicle accordingly.
This setup facilitates the development and testing of external applications
controlling the simulation. Depending on the desired level of control and
real-time responsiveness, TCP or a custom binary protocol could be suitable
options.

Localhost communication offers several benefits for development and testing:
Simplified Development and Testing: It allows for rapid development and testing

of applications interacting with CARLA’s data or controlling the simulation. Fast
Data Transfer: Communication within the same machine ensures faster data transfer
compared to using external networks. Secure Environment: Data exchange remains
confined to the local machine, offering a secure testing environment. However,
limitations also exist:

• Limited Accessibility: The client application can only access the CARLA
server running on the same machine, limiting collaboration across different
devices.

• Deployment Considerations: Localhost communication is primarily for devel-
opment and testing. Real-world deployments might necessitate communication
with external systems over a network, requiring adjustments to the communi-
cation setup.

In conclusion, the project’s modular design and utilization of localhost communica-
tion with CARLA promote efficient development, testing, and collaboration. The
modular design fosters clean, maintainable code, while localhost communication
allows for rapid interaction with the simulation environment. These strategies pave
the way for a well-structured and adaptable autonomous vehicle control system.

3.3 Linux Ubuntu Operating System and Shell
Script

In this work, the Linux Ubuntu operating system was utilized due to its robust
support for development environments and extensive library support. Ubuntu
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provides a stable and secure platform, making it an ideal choice for running
simulations and managing software dependencies efficiently.

Ubuntu is particularly well-suited for the CARLA simulation environment, as it
offers enhanced compatibility and performance. The open-source nature of Ubuntu
provides more freedom to customize and optimize the system for specific simulation
needs, ensuring a seamless and efficient workflow.

To streamline the workflow and enhance productivity, various shell commands
were employed. Shell commands offer powerful capabilities for automating tasks,
managing files, and executing scripts, all of which are crucial for handling complex
simulation environments and data processing tasks.

Moreover, an interface was created to facilitate the use of shorter and more
intuitive commands. This interface acts as a wrapper around commonly used shell
commands, enabling quicker execution and reducing the potential for errors. By
simplifying command syntax, the interface significantly improves efficiency and
accessibility, especially for repetitive tasks.

This approach not only optimizes the interaction with the Linux operating system
but also ensures that the development process remains smooth and user-friendly,
thereby enhancing overall project management and execution.

The Project Shell Command Toolkit

As previously mentioned, the CARLA Simulator can be somewhat user-unfriendly,
requiring numerous shell commands to execute even simple tasks. This becomes
particularly tedious when writing long scripts or repeatedly testing functional-
ity and partial code segments. To address this issue, a project toolkit named
luxad_toolkit.sh was developed.

The luxad_toolkit.sh script simplifies and automates many of the repetitive
and complex shell commands needed to run CARLA simulations. This toolkit
enhances productivity by reducing the amount of manual command entry, thereby
minimizing errors and saving valuable development time.

To activate the toolkit, it must be sourced into the Linux system each time it is
used. This is achieved with the following command:

1

2 source luxad_too lk i t . sh

By sourcing this script, the Linux operating system treats the commands within
the script as if they were typed directly into the terminal. This makes the toolkit’s
functions immediately available for use, streamlining the workflow significantly.

Key benefits of using luxad_toolkit.sh include:
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• Efficiency: Automates repetitive commands, reducing the time and effort
required for each simulation run.

• Consistency: Ensures that the same commands are used each time, reducing
the likelihood of human error.

• Convenience: Simplifies the process of running and testing CARLA simula-
tions, making it more user-friendly and accessible.

Overall, the luxad_toolkit.sh script is a valuable addition to the development
environment, enhancing the usability and efficiency of the CARLA simulation
process.

luxad_toolkit.sh is implemented as follows:

1

2 #! / bin /bash
3

4 export LUXAD_TOOLKIT_VERSION=" 0 . 1 . 0 "
5 export CARLA_ROOT_FOLDER=lux_ad_carla
6 export CARLA_BINARIES=$CARLA_ROOT_FOLDER/CarlaUE4/ B ina r i e s
7 export CARLA_PYTHON_API=$CARLA_ROOT_FOLDER/PythonAPI
8 export PYTHONPATH=$CARLA_PYTHON_API/ c a r l a / d i s t / car la −0.9.15−py3.7−

l inux −x86_64 . egg :$CARLA_PYTHON_API/ c a r l a :$CARLA_PYTHON_API/ c a r l a /
agents

The export commands are crucial for setting up path and versioning issues.
They ensure the validity of the CARLA Simulator directory and the correct Python
version. When the source luxad_toolkit.sh command is executed, the script
first verifies the Python version, which should be 3.7 or an older version. The
verification script is as follows:

1

2 f unc t i on luxad_check_python
3 {
4 python_version=$ ( python −−ver s i on 2>&1)
5 major_version=$ ( echo $python_version | cut −d ’ ’ −f 2 | cut −d ’

. ’ −f 1)
6 minor_version=$ ( echo $python_version | cut −d ’ ’ −f 2 | cut −d ’

. ’ −f 2)
7

8 i f [ " $major_version " −eq 3 ] && [ " $minor_version " −eq 7 ] ; then
9 echo " Python ve r s i on 3 .7 i s compatible with CARLA"

10 e l s e
11 echo "Wrong Python ve r s i on $python_version , p l e a s e use 3 .7 "
12 f i
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13 }

In this script, the variables are:

• python_version: Checks the version of Python being used.

• major_version: Extracts the major version number.

• minor_version: Extracts the minor version number.

• These variables are then compared to the required 3.7 version. If the version
matches, the toolkit can be activated.

If the version is correct, the script activates the toolkit as follows:

1

2 f unc t i on luxad_act ivate_too lk i t
3 {
4 echo " Luxoft AD t o o l k i t a c t i va t ed "
5 chmod +x "$CARLA_BINARIES/Linux/CarlaUE4−Linux−Shipping "
6 }

As mentioned before, CARLA has issues due to .egg files. The export command
aims to set this directory as the PYTHON_PATH for CARLA.

1

2 f unc t i on luxad_run_server {
3 "$CARLA_BINARIES/Linux/CarlaUE4−Linux−Shipping " \
4 CarlaUE4 \
5 −p r e f e r n v i d i a \
6 −qua l i ty −l e v e l=Low \
7 "$@" 2>&1 > /dev/ n u l l &
8 }
9

10 f unc t i on luxad_run_cl ient {
11 # Check i f an argument i s provided
12 i f [ −z " $1 " ] ; then
13 echo " Usage : luxad_run_cl ient <contro l l e r_type >"
14 re turn 1
15 f i
16

17 # Run p l o t s . py in the background and s t o r e i t s p roce s s ID
18 python p l o t s . py " $1 " &
19
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20 # Run c l i e n t . py in the background and s t o r e i t s p roce s s ID
21 python c l i e n t . py " $1 "
22 }

As previously mentioned, CARLA operates using a Server-Client communication
model.

In the server command:

• CARLA_BINARIES: This is the root directory.

• The CarlaUE4 is activated with:

– -prefernvidia: Indicates that an Nvidia GPU is preferred.
– -quality-level=Low: Sets the rendering quality to low to ensure perfor-

mance.
– The last part of the command ensures that the server process runs as a

child process in the background.

These commands ensure that the server-side runs correctly with the specified
options. After executing these commands, the server screen will open as shown in
Figure 3.5.

Figure 3.5: The CARLA (UE4) Server Interface.

The client part needs to be activated, which is responsible for sending com-
mands via local communication. To activate the client application, the function
luxad_run_client includes:
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• First, the function checks if an argument is provided.

• If no additional command is provided after luxad_run_client, it sends
the message: "Usage: luxad_run_client <controller_type>", indicat-
ing that a controller type is required.

• By indicating PID, we run a PID controller.

• Alternatively, using the MPC command, we run a Model Predictive Controller.

These commands enable the client side to function correctly, ensuring effective
communication with the server.

The CARLA Simulator API allows the creation of city traffic scenarios. The
command for generating traffic can be seen as follows:

1

2 f unc t i on luxad_run_tra f f i c
3 {
4 python "$CARLA_PYTHON_API/ examples / g e n e r a t e _ t r a f f i c . py " −−asynch

−s 2 −n 40 −w 0 &
5 }

This command means:

• –asynch: Runs the traffic API in asynchronous mode since only one client
can run in synchronous mode at a time in CARLA.

• -s 2: Sets the seed number to produce the same scenario each time CARLA
runs.

• -n 40 -w 0: Specifies that 40 vehicles will be produced for traffic and no
pedestrians will be on the road.

The values and arrangements can change depending on the scenarios being
produced. Thus, versioning of the code becomes important to keep track of
different setups, which is managed with luxad_version function.Where the different
scenarios and plot types can be differentiated.

3.3.1 Project File Directory; Modules and Submodules

Lux_ad_control
Lux_ad_carla
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luxad_docs
controller_luxoft.plantuml
Error.csv
MPC_Errors.csv
PID_Errors.csv
records.log

src
benchmark_error_plot.py
client.py
constant.py
cutils.py
luxad_mpc.py
luxad_pid.py
luxad_toolkit.sh
mpc_control.py
mpc_utils.py
plots.py
setup_luxoft.py

This project adopts a modular design philosophy, separating the core controller
logic from the simulation environment (e.g., CARLA). This approach offers several
advantages. It promotes cleaner code by fostering a clear separation of concerns.
The controller module’s development and testing become independent of the
simulator, reducing the risk of unintended consequences. Furthermore, the isolated
controller module can be potentially reused with different simulators or even real
hardware in the future, enhancing project flexibility.

To further enhance these benefits and facilitate collaboration, the project utilizes
Git, a version control system. Git offers several key functionalities:

• Tracking Changes: Git meticulously tracks all modifications made to the
codebase, enabling developers to revert to previous versions if necessary. This
ensures a safety net during development and experimentation.

• Branching and Merging: Git facilitates the creation of branches, allowing
developers to work on independent features or bug fixes without affecting the
main codebase. Once satisfied, these branches can be merged back into the
main codebase, promoting efficient collaboration.

• Version Control History: Git maintains a comprehensive history of all changes
made to the codebase. This history provides valuable insights into the project’s
evolution and can be crucial for debugging or identifying the origin of specific
code sections.
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The project’s modular design translates into a well-organized Git repository struc-
ture. The controller code resides in a separate directory within the repository,
potentially named "controller." The simulator submodule (e.g., CARLA integration
code) might be located in a subdirectory within the controller directory, or even as
a separate Git submodule altogether. This structure reflects the modular design
and simplifies code management.

Utilizing Git alongside the modular design fosters several additional benefits:

• Collaboration: Git streamlines collaboration among developers by enabling
them to work on different parts of the codebase simultaneously while main-
taining a synchronized code history.

• Reproducibility: With Git, it’s easy to recreate the project’s state at any point
in time, facilitating the reproducibility of results and debugging efforts.

• Backup and Disaster Recovery: Git serves as a robust backup solution, allowing
for the recovery of lost or corrupted code.

• While adopting a modular design and Git might introduce some initial overhead
regarding setup and learning curve, the long-term benefits in maintainability,
collaboration, and code organization outweigh this overhead. This combination
lays the groundwork for a well-structured, maintainable, and future-proof
autonomous vehicle control system.
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Implementation

4.1 Client Implementation
The Client class is designed to manage the lifecycle of a simulation run using
either a Model Predictive Controller (MPC) or a Proportional-Integral-Derivative
(PID) controller. This class ensures that the simulation is initialized, executed,
and cleaned up correctly, providing a robust framework for running various control
algorithms within the CARLA simulation environment.

The Client class is implemented as a singleton to avoid multiple initializations,
which could lead to inconsistent states or resource conflicts. The class structure is
as follows:

• __new__: Ensures that only one instance of the Client class is created.

• __init__: Initializes the simulation setup and selects the appropriate
controller based on the input argument.

• _get_controller: A class method that returns the controller class (either
MPC or PID) based on the specified type.

• run_simulation: Manages the entire simulation process, including vehicle
and sensor setup, waypoint navigation, and cleanup.

The singleton pattern is implemented using the __new__ method, which
ensures that only one instance of the Client class is created:
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1 c l a s s C l i en t :
2 _instance = None
3

4 de f __new__( c l s , cont ro l l e r_type , ∗ args , ∗∗ kwargs ) :
5 i f not c l s . _instance :
6 c l s . _instance = super ( ) .__new__( c l s , ∗ args , ∗∗ kwargs )
7 c l s . _instance . _con t r o l l e r = c l s . _get_contro l l e r (

con t ro l l e r_type )
8 re turn c l s . _instance

In the __init__ method, the SetupLuxad class is instantiated to handle the
environment setup, and the controller type is set:

1 de f __init__( s e l f , c on t ro l l e r_type ) :
2 s e l f . setup = SetupLuxad ( )
3 s e l f . c o n t r o l = s e l f . _con t r o l l e r ( )

The _get_controller method selects the appropriate controller class based on
the input argument:

1 @classmethod
2 de f _get_contro l l e r ( c l s , c on t ro l l e r_type ) :
3 i f c on t ro l l e r_type == "MPC" :
4 re turn ControllerMPCLuxad
5 e l i f c on t ro l l e r_type == "PID" :
6 re turn Control lerLuxad
7 e l s e :
8 r a i s e ValueError ( " I n v a l i d c o n t r o l l e r type . P lease s p e c i f y ’

MPC’ or ’PID ’ . " )

The run_simulation method manages the entire simulation process. Initially,
it checks if a dummy vehicle is needed, which is used for emergency braking
purposes. If the scenario includes the dummy vehicle, it will be spawned; otherwise,
it will be skipped to avoid unnecessary resource allocation and potential simulation
regeneration issues.

Then, the method handles vehicle spawning, sensor setup, and waypoint naviga-
tion, using the selected controller to drive the vehicle through the planned route.
It also includes error handling to manage interruptions and ensure that resources
are cleaned up properly:
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1 i f constant .HAS_DUMMY_CAR:
2 dummy_vehicle = s e l f . setup . vehicle_spawn ( constant .DUMMY_SPAWN_POS

)
3 e l s e :
4 dummy_vehicle = None
5

6 t ry :
7 v e h i c l e = s e l f . setup . vehicle_spawn ( constant .CAR_SPAWN_POS)
8 camera , sp e c t a t o r = s e l f . setup . camera_spawn ( v e h i c l e )
9 obs tac l e_sensor = s e l f . setup . obs_sensor_spawn ( v e h i c l e )

10 obs tac l e_sensor . l i s t e n ( s e l f . setup . on_obstac le_cal lback )
11 s enso r_ob jec t s = [ spec tator , camera , s e l f . setup . world ]
12 s e l f . c o n t r o l . drive_through_plan ( s e l f . setup . waypoint_l ist , v eh i c l e

, s ensor_ob jec t s )
13 except ( IndexError , KeyboardInterrupt ) :
14 l o gg ing . warning ( "KEYBOARD INTERRUPT" )
15 except RuntimeError :
16 l o gg ing . warning ( "SPAWN ERROR, r e t r y : ) " )
17 f i n a l l y :
18 s e l f . setup . de le te_objects_and_sett ings ( veh i c l e , dummy_vehicle )
19 l o gg ing . warning ( " done . \ n " )

4.2 Setup Environment and Objects
The Setup class is designed to configure the simulation environment, including the
creation of the world, setting up waypoints, and spawning vehicles and sensors.
This class ensures that the environment is correctly initialized and provides the
necessary infrastructure for running the simulation.

4.2.1 World Creation
The create_world method establishes a connection between the client and server,
ensuring communication is properly set up. It initializes the world to a specific
map, "Town01", and sets the weather conditions as defined in the constants. This
setup is crucial for maintaining a consistent simulation environment.

1 de f create_world ( s e l f ) :
2 c l i e n t = c a r l a . C l i en t ( " l o c a l h o s t " , 2000)
3 c l i e n t . set_timeout ( 1 5 . 0 )
4

5 world = c l i e n t . get_world ( )
6

7 i f "Town01" not in world . get_map ( ) . name :
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8 world = c l i e n t . load_world ( "Town01" )
9

10 weather = constant .WEATHER
11 world . set_weather ( weather )
12 l o gg ing . debug ( "The worlds i s c r ea ted " )
13 re turn world

4.2.2 Synchronized Settings
To ensure deterministic behavior and avoid asynchronous issues between the server
and client, the create_synch_settings method configures the simulation to run
in synchronous mode. This synchronization ensures that the server waits for the
client to complete its tasks in each iteration. The delta seconds are the discrete
frequency of the simulation.

1 de f create_synch_sett ings ( s e l f ) :
2 s e t t i n g s = s e l f . world . g e t_se t t i ng s ( )
3 s e t t i n g s . synchronous_mode = True
4 s e t t i n g s . f ixed_delta_seconds = constant .SERVER_DELTA_SECOND
5 s e l f . world . app ly_set t ings ( s e t t i n g s )

4.2.3 Waypoint Visualization
The draw_waypoints method is used to visually represent the waypoints in the
simulation environment. By drawing waypoints, we can visually track the vehicle’s
adherence to the planned route. The waypoints are drawn with different markers to
indicate their position and are essential for debugging and ensuring correct vehicle
navigation.

1 de f draw_waypoints ( s e l f ) :
2 spawn_points = s e l f . world . get_map ( ) . get_spawn_points ( )
3

4 start_p = c a r l a . Locat ion ( spawn_points [ 0 ] . l o c a t i o n )
5 f in i sh_p = c a r l a . Locat ion ( spawn_points [ 1 0 0 ] . l o c a t i o n )
6

7 s e l f . world . debug . draw_point (
8 start_p , c o l o r=c a r l a . Color ( r =0, g=255 , b=0) , s i z e =1.6 ,

l i f e_t ime =120.0
9 )

10 s e l f . world . debug . draw_point (
11 f in i sh_p , c o l o r=c a r l a . Color ( r =0, g=255 , b=0) , s i z e =1.6 ,

l i f e_t ime =120.0
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12 )
13

14 amap = s e l f . world . get_map ( )
15 sample_reso lut ion = 2
16 wps = [ ]
17 grp = GlobalRoutePlanner (amap , sample_reso lut ion )
18

19 waypoints = grp . trace_route ( start_p , f in i sh_p )
20

21 f o r i t e r_ i , way in enumerate ( waypoints ) :
22 i f i t e r _ i % 10 == 0 :
23 s e l f . world . debug . draw_string (
24 way [ 0 ] . t rans form . l o ca t i on ,
25 "O" ,
26 draw_shadow=False ,
27 c o l o r=c a r l a . Color ( r =255 , g=0, b=0) ,
28 l i f e_t ime =120.0 ,
29 p e r s i s t e n t _ l i n e s=True ,
30 )
31 e l s e :
32 s e l f . world . debug . draw_string (
33 way [ 0 ] . t rans form . l o ca t i on ,
34 "^ " ,
35 draw_shadow=False ,
36 c o l o r=c a r l a . Color ( r =0, g=0, b=255) ,
37 l i f e_t ime =1000 ,
38 p e r s i s t e n t _ l i n e s=True ,
39 )
40

41 f o r waypoint in waypoints :
42 wps . append ( waypoint [ 0 ] )
43

44 l o gg ing . debug ( "The wayponts are drawn " )
45 re turn wps
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Figure 4.1: Waypoints drawn on the path.

4.2.4 Vehicle Spawning
Within the intricate framework of CARLA (Car Learning to Act), the process
of vehicle spawning emerges as a foundational element, facilitating the creation
and integration of vehicular entities within the virtual environment. At the core
of this functionality lies the vehicle_spawn function, a meticulously crafted piece
of code designed to orchestrate the seamless instantiation of vehicles. In the
context of this discussion, our focus turns to the instantiation of vehicles modeled
after the Microlino – a compact and innovative electric vehicle designed for urban
mobility. By leveraging the capabilities of vehicle_spawn, we delve into the process
of bringing the Microlino to life within the CARLA simulation environment.
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Figure 4.2: Microlino car that will be used.

1 de f vehicle_spawn ( s e l f , o f f s e t ) :
2 spawn_points = s e l f . world . get_map ( ) . get_spawn_points ( )
3 new_pose = c a r l a . Transform (
4 c a r l a . Locat ion (
5 x=spawn_points [ 0 ] . l o c a t i o n . x + o f f s e t [ 0 ] ,
6 y=spawn_points [ 0 ] . l o c a t i o n . y + o f f s e t [ 1 ] ,
7 z=spawn_points [ 0 ] . l o c a t i o n . z ,
8 ) ,
9 c a r l a . Rotation (

10 p i t ch=spawn_points [ 0 ] . r o t a t i o n . pitch ,
11 yaw=spawn_points [ 0 ] . r o t a t i o n . yaw ,
12 r o l l=spawn_points [ 0 ] . r o t a t i o n . r o l l ,
13 ) ,
14 )
15

16 b l u ep r i n t _ l i b r a r y = s e l f . world . ge t_b luepr in t_l ib ra ry ( )
17 vehic le_bp = b lue p r i n t_ l i b r a ry . f i l t e r ( " v e h i c l e . micro . m i c ro l i no " )

[ 0 ]
18

19 l o gg ing . debug ( "The v e h i c l e i s c r ea ted " )
20 re turn s e l f . world . spawn_actor ( vehicle_bp , new_pose )
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4.2.5 Sensors Spawning
In autonomous vehicles, the roles of camera and LiDAR sensors are pivotal, as they
form the backbone of perception systems, enabling the vehicle to sense and interpret
its surrounding environment. These sensors gather crucial data about the vehicle’s
surroundings, including objects, obstacles, pedestrians, and road conditions. The
algorithms responsible for navigation, obstacle avoidance, and decision-making
heavily rely on the information provided by these sensors.

It’s important to note that, in our project, the perception and sensor fusion
aspects are simulated using the Carla Simulator(by obstacle_sensor). While
the data generated by the simulator may not fully replicate real-world conditions,
it provides a valuable testing environment for developing and fine-tuning our
algorithms. By leveraging the mock functions provided by the Carla Simulator,
we can simulate various scenarios and assess the performance of our perception
algorithms under different conditions.

Figure 4.3: Real life camera and lidar.

The camera_spawn method attaches a camera to the vehicle, providing a visual
feed of the vehicle’s surroundings. This is crucial for monitoring the vehicle’s
behavior and navigation during the simulation.
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1 de f camera_spawn ( s e l f , veh i c l e_obj ) :
2 camera_bp = s e l f . world . ge t_b luepr in t_l ib ra ry ( ) . f i n d ( " s enso r .

camera . rgb " )
3 camera_transform = c a r l a . Transform (
4 c a r l a . Locat ion ( x=−6, z=5) , c a r l a . Rotation ( p i t ch =330)
5 )
6 cam = s e l f . world . spawn_actor ( camera_bp , camera_transform ,

attach_to=veh ic l e_obj )
7

8 spec = s e l f . world . get_spectator ( )
9 spec . set_transform (cam . get_transform ( ) )

10 cam_spec = [ cam , spec ]
11 l o gg ing . debug ( "The camera i s c r ea ted " )
12 re turn cam_spec

The obs_sensor_spawn method spawns an obstacle sensor on the vehicle. This
sensor detects obstacles within a specified radius and triggers callbacks for obstacle
detection events. Its working principle combines lidar and camera sensors to perform
image classification through segmentation. This enables us to detect objects such
as pedestrians or cars. By utilizing this information, we can ensure safer navigation
for our vehicle in various scenarios. The detection distance of the sensor is selected
for worst-case scenarios, which is 30 meters. Lastly, the sensor is attached to the
vehicle.

1 de f obs_sensor_spawn ( s e l f , veh i c l e_obj ) :
2 obs_bp = s e l f . world . ge t_b luepr in t_l ib ra ry ( ) . f i n d ( " s enso r . other .

o b s t a c l e " )
3 obs_bp . s e t_at t r i bu t e ( " d i s t ance " , s t r (30) )
4 obs_bp . s e t_at t r i bu t e ( " h i t_rad ius " , s t r (1 ) )
5 obs_bp . s e t_at t r i bu t e ( " only_dynamics " , s t r ( True ) )
6 obs_bp . s e t_at t r i bu t e ( " s ensor_t i ck " , s t r ( 0 . 0 2 ) )
7 obs_locat ion = c a r l a . Locat ion (0 , 0 , 0 . 4 )
8 obs_rotat ion = c a r l a . Rotation (0 , 0 , 0)
9 obs_transform = c a r l a . Transform ( obs_locat ion , obs_rotat ion )

10

11 l o gg ing . debug ( "The Obstac le s enso r i s c r ea ted " )
12 re turn s e l f . world . spawn_actor ( obs_bp , obs_transform , attach_to=

veh ic l e_obj )

Detected obstacle callback

In Carla UE4 (server), the sensor operates at an assigned frequency of constant.SERVER_DELTA_SECOND.
At each discrete step, the sensor produces results. However, if the callback function
is invoked each time, it might miss detected objects between the loop iteration
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seconds. As the loop interval increases, the number of missed values will also
increase. To avoid this, we use Queues, a synchronization threading library. The
implemented callback function can be seen below:

1 de f on_obstac le_cal lback ( s e l f , event ) :
2 " " " Access the o b s t a c l e d i s t anc e in fo rmat ion
3 when the ob j e c t detec ted
4

5 Args :
6 event ( ob j e c t ) : i n f o rmat i ons on ob j e c t
7 " " "
8 obs tac l e_d i s tance = event . d i s t anc e
9 actor_type_str = s t r ( event . other_actor )

10

11 actor_loc_rot = event . other_actor . get_transform ( )
12

13 Obstac l e In fo = namedtuple (
14 " Obs tac l e In fo " , [ " a c to r_pos i t i on " , " obs tac l e_d i s tance " ]
15 )
16

17 actor_type = actor_type_str . s p l i t ( " , " ) [ 1 ] . s p l i t ( "=" ) [ 1 ] .
s p l i t ( " . " ) [ 0 ]

18 l o gg ing . debug ( " Yes OBS detec ted i t s name i s : %s " ,
actor_type_str )

19 i f actor_type == " v e h i c l e " and not actor_type == " s t a t i c " :
20 obs_sensor_out = Obstac l e In fo ( actor_loc_rot ,

obs tac l e_d i s tance )
21 s e l f . obs_queue . put_nowait ( obs_sensor_out )
22 l o gg ing . debug ( " Yes OBS detec ted : %s " , obs_sensor_out .

ac to r_pos i t i on )
23 e l s e :
24 l o gg ing . debug ( "No OBS detec ted . . " )

Braking Distance Calculation

The braking_distance method calculates the minimum detection distance for the
obstacle sensor, ensuring that the vehicle can safely decelerate to avoid collisions.

1 de f brak ing_distance ( s e l f , speed , d e c c e l e r a t i o n , c r_di s t ) :
2 speed_ms = speed ∗ 1000 / 3600
3 d i s t = speed_ms ∗ speed_ms / (2 ∗ d e c c e l e r a t i o n ) + cr_di s t
4 l o gg ing . i n f o ( "The emergency break ing d i s t ance i s : %s " , d i s t )
5 re turn d i s t
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4.2.6 Cleanup and Resource Management
Finally, the delete_objects_and_settings method ensures that all created ob-
jects are destroyed, and the simulation settings are reverted to their defaults. This
cleanup step is essential to maintain a stable simulation environment for subsequent
runs.

1 de f de le te_objects_and_sett ings ( s e l f , veh ic le_obj , dummy_obj) :
2 s e l f . world . app ly_set t ings ( c a r l a . WorldSett ings ( False , False , 0) )
3 veh i c l e_obj . des t roy ( )
4 i f dummy_obj i s not None :
5 dummy_obj . des t roy ( )

4.3 Controller; Driving Car Through Path.
As explained before, in this study, the Adaptive Cruise Controller (ACC) is imple-
mented using both Model Predictive Control (MPC) and Proportional-Integral-
Derivative (PID) controllers. The ACC functions as a motion planner, controlling
the car through its path using these two different controllers. In the client file, the
function is called as shown below:

1 t ry :
2 v e h i c l e = s e l f . setup . vehicle_spawn ( constant .CAR_SPAWN_POS)
3

4 # Get the camera ac to r and attach i t to v e h i c l e
5 camera , sp e c t a t o r = s e l f . setup . camera_spawn ( v e h i c l e )
6

7 obs tac l e_sensor = s e l f . setup . obs_sensor_spawn ( v e h i c l e )
8

9 # Spawn and arrange the Obstac le s enso r and l i s t e n
10 obs tac l e_sensor . l i s t e n ( s e l f . setup . on_obstac le_cal lback )
11

12 # Fetch and draw the waypoints
13 s ensor_ob jec t s = [ spec tator , camera , s e l f . setup . world ]
14

15 # Control the car through the waypoints
16 s e l f . c o n t r o l . drive_through_plan (
17 s e l f . setup . waypoint_l ist , v eh i c l e , s ensor_ob jec t s
18 )

As can be seen above, the camera, spectator (simulator view), obstacle sensor,
and vehicle are passed as an array to the drive_through_plan function. These
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sensors are created by calling their setup functions, where their properties are set
as previously explained.

The drive_through_plan function, located on the self.control side, deter-
mines which controller to use based on the command given in the client file. When
the client file is started with the bash command "run_client <controller_name>",
the specified controller name dictates whether the PID or MPC controller will be
used. This mechanism allows the system to dynamically choose and initialize the
appropriate controller based on the provided controller name.

4.3.1 PID Controller Implementation
The Proportional-Integral-Derivative (PID) controller is a fundamental control
mechanism widely used in various engineering applications, including vehicle con-
trol systems. In this section, we delve into the specifics of the PID controller
implementation within the context of the Adaptive Cruise Controller (ACC) system
in CARLA.

As explained in the Background section, the PID controller is designed to
maintain a desired setpoint by adjusting the control inputs based on the difference
(error) between the desired and actual system states. The PID controller combines
three control strategies:

• Proportional (P) Control: Directly proportional to the current error.

• Integral (I) Control: Based on the accumulation of past errors.

• Derivative (D) Control: Based on the prediction of future errors by consid-
ering the rate of change of the error.

The PID controller implementation in our system is encapsulated within the
ControllerLuxad class, specifically in the create_pid method. The PID controller
is tailored for the ego vehicle, ensuring precise control over its movements.

1 de f create_pid ( s e l f , veh ic l e_ego ) :
2 " " " Function that d e f i n e s PID c o n t r o l l e r
3

4 Args :
5 vehic l e_ego ( ob j e c t ) : The car parameters
6

7 Returns :
8 f unc t i on : PID that c reated s p e c i f i c a l l y f o r the passed car
9 " " "

10

11 a r g s _ l a t e r a l = { "K_P" : 1 . 5 , "K_D" : 0 . 35 , "K_I" : 0 . 4 , " dt " : 1 . 0 /
5 .0}
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12

13 args_long = { "K_P" : 0 . 9 , "K_D" : 0 . 18 , "K_I" : 0 . 3 , " dt " : 1 . 0 /
5 .0}

14

15 re turn c o n t r o l l e r . Veh ic l ePIDContro l l e r ( vehic le_ego , a rg s_ la t e ra l ,
args_long )

In this function, two sets of PID parameters are defined:

• Lateral Control Parameters: These parameters (K_P, K_D, K_I, dt) are
tuned to control the vehicle’s lateral position, ensuring it follows the planned
route accurately.

• Longitudinal Control Parameters: These parameters are tuned to control
the vehicle’s speed, ensuring it maintains the desired velocity.

Integration with the Control Loop

The drive_through_plan method integrates the PID controller into the vehicle’s
control loop. The method orchestrates the vehicle’s movement through a series
of waypoints while continuously adjusting its speed and direction based on sensor
inputs. The control of the car is done by the car_control object.

1 de f drive_through_plan ( s e l f , planned_route , ego_vehic le , sense_obj ) :
2 " " " Contro l s the v e h i c l e on the waypoints
3

4 Args :
5 planned_route ( matrix ) : waypoints that needed to be passed
6 ego_vehic l e ( ob j e c t ) : a car that needed to be c o n t r o l l e d on

path
7 sense_obj ( matrix ) : Sensors that w i l l be used
8 " " "
9

10 spec , cam , world_obj = sense_obj
11

12 pid_value = s e l f . create_pid ( ego_vehic le )
13 l o gg ing . debug ( "The PID c o n t r o l l e r c r ea ted " )
14

15 s e l f . target_waypoint = planned_route [ 0 ]
16 t im e _f i r s t = f l o a t ( time . time ( ) / 1000 .0 )
17 whi le s e l f . waypoint_index != ( l en ( planned_route ) − 1) :
18 world_obj . t i c k ( )
19 # get the l o c a t i o n o f the car in each i t e r a t i o n
20 ego_vehicle_pose = ego_vehic le . ge t_locat i on ( )
21 ego_vehicle_yaw = ego_vehic le . get_transform ( ) . r o t a t i o n . yaw
22 ego_veh i c l e_ve loc i ty = 3 .6 ∗ math . s q r t (
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23 ego_vehic l e . g e t_ve loc i ty ( ) . x ∗∗ 2 + ego_vehic le .
g e t_ve loc i ty ( ) . y ∗∗ 2

24 )
25 ego_veh ic l e_ve loc i ty_error = constant .SPEED −

ego_veh i c l e_ve loc i ty
26

27 # make spe c t a t o r go with the camera o f the car
28 spec . set_transform (cam . get_transform ( ) )
29 f ra_angle = 90
30 cross_track_error , heading_error = s e l f .

check_vehicle_to_waypoint_distance (
31 ego_vehicle_pose , planned_route , ego_vehicle_yaw ,

f ra_angle
32 )
33 current_time = f l o a t ( time . time ( ) / 1000 .0 ) − t im e _f i r s t
34 s e l f . write_to_document ( current_time , cross_track_error ,

heading_error , ego_veh ic l e_ve loc i ty_error )
35 i f not s e l f . fo l lowing_obstac le_queue . empty ( ) :
36 # dequeue o b s t a c l e d i s t anc e in fo rmat ion from the queue
37 obs = s e l f . fo l lowing_obstac le_queue . get ( timeout =0.1)
38 f r ont_obstac l e_d i s tance = obs . obs tac l e_d i s tance
39 l o gg ing . warning ( "The d i s t anc e to OBS: %s " ,

f ront_obstac l e_d i s tance )
40

41 car_contro l = s e l f . upper_level_control_acc (
42 f ront_obstac l e_di s tance , pid_value
43 )
44

45 e l s e :
46 s e l f . c on t ro l l e r_speed = constant .SPEED
47 car_contro l = pid_value . run_step (
48 s e l f . cont ro l l e r_speed , s e l f . target_waypoint
49 )
50

51 s e l f . speed_history . append ( ( current_time , s e l f .
c on t ro l l e r_speed ) )

52 l o gg ing . debug ( "The app l i ed c o n t r o l i s : %s " , car_contro l )
53 ego_vehic l e . apply_contro l ( car_contro l )
54

55 l o gg ing . debug ( "The l a s t waypoint i s reached ! " )
56 car_contro l = pid_value . run_step (0 , planned_route [ l en (

planned_route ) − 1 ] )
57 ego_vehic l e . apply_contro l ( car_contro l )

In this method:

1. The PID controller is created using the create_pid method.

2. The vehicle’s position, velocity, and orientation are continuously monitored.
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3. The check_vehicle_to_waypoint_distance function calculates the cross-
track and heading errors.

4. If an obstacle is detected within a critical distance, the upper_level_control_acc
method adjusts the vehicle’s speed to maintain a safe distance. Otherwise, the
vehicle’s speed is controlled based on the PID controller’s outputs to maintain
a constant speed.

5. The vehicle’s control inputs are applied using the apply_control method.
Which is assigned by the car_control which is a CARLA object that has
Steering, throttle, brake and gear box information.

In summary, the implementation of the PID controller within the Adaptive
Cruise Controller system provides precise control over the ego vehicle’s movements.
By continuously monitoring its position, velocity, and orientation, and adjusting
its speed and direction based on sensor inputs and controller outputs, the system
ensures safe and efficient navigation through planned routes while dynamically
responding to obstacles in real-time.

Logging and Documentation

Throughout the control loop, key variables such as timestamp, cross-track error,
heading error, and velocity error are logged for analysis. This is done using the
write_to_document method, which writes these values to a CSV file for later
review.

1 de f write_to_document ( s e l f , timestamp , cross_track_error , error_theta
, v eh i c l e_ve l o c i t y_e r r o r ) :

2 " " " Function i s used to log the va lue s o f c r o s s t rack e r r o r and
heading e r r o r ( er ror_theta ) with r e s p e c t to timestamp .

3

4 Args :
5 timestamp ( f l o a t ) : time in m i l l i s e c o n d s
6 cross_track_error ( f l o a t ) : l a t e r a l d i s t anc e to waypoint
7 error_theta ( f l o a t ) : heading e r r o r
8 " " "
9 f i e ldnames = [ " timestamp " , " c ros s_track_error " , " e r ror_theta " , "

v e l o c i t y _ e r r o r " ]
10 with open (
11 " . / luxad_docs/PID_Errors . csv " , " a " , newl ine=" " , encoding=" utf

−8"
12 ) as f i l e :
13 wr i t e r = csv . DictWriter ( f i l e , f i e ldnames=f i e ldnames )
14

15 # Check i f f i l e i s empty , i f so wr i t e header
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16 f i l e . seek (0 , 2)
17 i f f i l e . t e l l ( ) == 0 :
18 wr i t e r . wr i t eheader ( )
19

20 wr i t e r . writerow (
21 {
22 " timestamp " : timestamp ,
23 " c ross_track_error " : cross_track_error ,
24 " e r ror_theta " : error_theta ,
25 " v e l o c i t y _ e r r o r " : v eh i c l e_ve l o c i t y_e r r o r
26 }
27 )

This method ensures that vital performance metrics are recorded for analysis and
system refinement.

4.3.2 MPC Controller Implementation
In this section, we delve into the implementation of the Model Predictive Con-
trol (MPC) algorithm used to control the autonomous vehicle within the Carla
Simulator environment. This subsection will cover the setup, functionality, and
key components of the ControllerMPCLuxad class, which is responsible for the
MPC-based path following and obstacle avoidance.

Data Classes for Vehicle Parameters

We define data classes to store current and historical vehicle parameters and
waypoints for the MPC algorithm logging.

Listing 4.1: Data Classes for Vehicle Parameters
1 @datac la s se s . d a t a c l a s s
2 c l a s s CurrentVehic leParameters :
3 speed : i n t
4 time : i n t
5 pose_x : i n t
6 pose_y : i n t
7 yaw : i n t
8 speed_l imit : i n t
9

10 @datac la s se s . d a t a c l a s s
11 c l a s s His toryVehic l eParameters :
12 speed : np . ndarray
13 time : np . ndarray
14 pose_x : np . ndarray
15 pose_y : np . ndarray
16 yaw : np . ndarray
17
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18 @datac la s se s . d a t a c l a s s
19 c l a s s Waypoint :
20 mpc : np . ndarray
21 index : i n t
22 d i s t anc e : np . ndarray
23 i n t e r p o l : np . ndarray # i n t e r p o l a t e d va lue s −> ( rows = waypoints ,

columns = [ x , y , v ] )
24 hash_interpo l : np . ndarray # s e l f . waypoints_mpc to the index o f

the waypoint in i n t e r p o l

These data classes encapsulate the necessary attributes for managing the vehicle’s
state and the waypoints it must follow.

ControllerMPCLuxad Class

The Model Predictive Control (MPC) is an advanced control strategy that leverages
a model of the system to predict future behavior and optimize control actions over a
specified prediction horizon. In the realm of autonomous driving and adaptive cruise
control (ACC) systems, MPC offers significant advantages in terms of handling
constraints, optimizing performance, and ensuring safety.

In this section, we delve into the specifics of the MPC implementation within
the ACC system in CARLA. The MPC controller aims to follow a predefined path
while dynamically adjusting the vehicle’s speed and steering to maintain optimal
performance and safety. Unlike traditional controllers, MPC takes into account
future predictions and constraints, making it well-suited for complex, real-time
applications in autonomous driving.

As explained in the Background section, the MPC algorithm involves solving an
optimization problem at each control step. This problem formulation incorporates:

A cost function that captures the deviation from the desired trajectory and
control effort. Constraints that ensure the vehicle operates within safe and feasible
limits, such as maximum speed, acceleration, and steering angles. A predictive
model that simulates the vehicle’s future states based on current conditions and
control inputs. The MPC implementation in our system is encapsulated within
the ControllerMPCLuxad class, specifically in the drive_through_plan method.
This implementation is tailored for the ego vehicle, ensuring precise control over
its movements, path following, and obstacle avoidance in a dynamic environment.

Initialization

1 c l a s s ControllerMPCLuxad :
2 de f __init__( s e l f ) :
3 s e l f . c on t ro l l e r_speed = constant .SPEED
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4 s e l f . fo l lowing_obstac le_queue = constant . obstacle_queue
5 s e l f . h i s t o ry_ veh i c l e = HistoryVehic l eParameters (
6 speed =[0 ] , time =[0 ] , pose_x =[0 ] , pose_y =[0 ] , yaw=[0]
7 )
8 s e l f . c l o s e s t_ index = 0
9 s e l f . c l o s e s t _ d i s t a n c e = 0

10 s e l f . cu r r ent_veh i c l e = CurrentVehic leParameters (
11 speed =0, time=0, pose_x=0, pose_y=0, yaw=0, speed_l imit

=−1
12 )
13 s e l f . mpc_waypoints = Waypoint (
14 mpc=[ ] , index =0, d i s t anc e =[ ] , i n t e r p o l = [ ] , hash_interpo l

=[ ]
15 )

The constructor initializes various parameters, including the controller speed,
obstacle queue, historical vehicle parameters, and waypoints.

Drive Through Plan

As in the PID implementation drive_through_plan method controls the vehicle
along the planned route, using the MPC algorithm to update control commands
dynamically. The main difference is in Model Predictive controller we are trying
to predict the future paths and iteratively correct the behavior of the vehicle and
keep it in the planned path. Due to that, the the x and y location and heading of
the vehicle data needed to be collected in the each iterationn. The loop is executed
until the last point of the path is achieved.

1 de f drive_through_plan ( s e l f , planned_route , ego_vehic le , sense_obj ) :
2 spec , cam , world_obj = sense_obj
3 c o n t r o l l e r = s e l f . c o n t r o l l e r _ d e f i n i n g ( planned_route )
4 s e l f . waypo int_interpo lat ion ( planned_route )
5

6 s e l f . h i s t o ry_ veh i c l e . pose_x [ 0 ] = ego_vehic le . ge t_ locat i on ( ) . x
7 s e l f . h i s t o ry_ veh i c l e . pose_y [ 0 ] = ego_vehic le . ge t_ locat i on ( ) . y
8 s e l f . h i s t o ry_ veh i c l e . yaw [ 0 ] = ego_vehic le . get_transform ( ) .

r o t a t i o n . yaw ∗ 0.0174533
9

10 l o gg ing . debug ( "The MPC c o n t r o l l e r c r ea ted " )
11

12 whi le s e l f . mpc_waypoints . index != ( l en ( planned_route ) − 1) :
13 world_obj . t i c k ( )
14 spec . set_transform (cam . get_transform ( ) )
15 ego_vehicle_pose = ego_vehic le . ge t_locat i on ( )
16 s e l f . cu r r ent_veh i c l e . pose_x = ego_vehicle_pose . x
17 s e l f . cu r r ent_veh i c l e . pose_y = ego_vehicle_pose . y
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18 s e l f . cu r r ent_veh i c l e . yaw = ego_vehic l e . get_transform ( ) .
r o t a t i o n . yaw ∗ constant .ANGLE_TO_RADIAN

19 s e l f . cu r r ent_veh i c l e . speed = math . sq r t ( ego_vehic le .
g e t_ve loc i ty ( ) . x ∗∗ 2 + ego_vehic le . g e t_ve loc i ty ( ) . y ∗∗ 2)

20 s e l f . cu r r ent_veh i c l e . time = f l o a t ( time . time ( ) / 1000 .0 )
21

22 s e l f . h i s t o ry_ veh i c l e . pose_x . append ( s e l f . cu r r ent_veh i c l e .
pose_x )

23 s e l f . h i s t o ry_ veh i c l e . pose_y . append ( s e l f . cu r r ent_veh i c l e .
pose_y )

24 s e l f . h i s t o ry_ veh i c l e . yaw . append ( s e l f . cu r r ent_veh i c l e . yaw)
25 s e l f . h i s t o ry_ veh i c l e . speed . append ( s e l f . cu r r ent_veh i c l e . speed )
26 s e l f . h i s t o ry_ veh i c l e . time . append ( s e l f . cu r r ent_veh i c l e . time )
27

28 i f not s e l f . fo l lowing_obstac le_queue . empty ( ) :
29 obs = s e l f . fo l lowing_obstac le_queue . get ( timeout =0.1)
30 f r ont_obstac l e_d i s tance = obs . obs tac l e_d i s tance
31 l o gg ing . warning ( "The d i s t anc e to OBS: %s " ,

f ront_obstac l e_d i s tance )
32

33 i f f r ont_obstac l e_d i s tance < constant .CRITICAL_DISTANCE:
34 c o n t r o l = constant . control_emergency_br
35 e l s e :
36 s e l f . cu r r ent_veh i c l e . speed_l imit = s e l f .

distance_braking_speed (
37 f ront_obstac l e_di s tance ,
38 constant .CRITICAL_DISTANCE,
39 constant .DECELERATION,
40 )
41 s e l f . update_contro l l e r ( c o n t r o l l e r )
42 c o n t r o l = s e l f . cont ro l l e r_ass i gnment ( c o n t r o l l e r )
43 e l s e :
44 s e l f . cu r r ent_veh i c l e . speed_l imit = −1
45 s e l f . update_contro l l e r ( c o n t r o l l e r )
46 c o n t r o l = s e l f . cont ro l l e r_as s i gnment ( c o n t r o l l e r )
47

48 l o gg ing . debug ( "The app l i ed c o n t r o l i s : %s " , c o n t r o l )
49 ego_vehic l e . apply_contro l ( c o n t r o l )
50 s e l f . mpc_waypoints . index = +1
51

52 l o gg ing . debug ( "The l a s t waypoint i s reached ! " )
53 ego_vehic l e . apply_contro l ( c o n t r o l )

Again was the same as the previously implemented control loop the obstacle list
is always checked from the queue. If the obstacle detected in a safe distance the
vehicle adopts the front vehicle speed by revoking the "distance_breaking_speed"
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Waypoint Interpolation

The waypoint_interpolation method in the MPC controller plays a crucial role
in creating smooth navigation paths for the vehicle by generating interpolated
waypoints between the given planned waypoints. This finer resolution of waypoints
helps the controller to track the path more precisely, ensuring smoother transitions
and more accurate following of the desired trajectory.

1 de f waypo int_interpo lat ion ( s e l f , planned_wayponts ) :
2 s e l f . mpc_waypoints . mpc = [
3 [
4 waypoint . trans form . l o c a t i o n . x ,
5 waypoint . trans form . l o c a t i o n . y ,
6 s e l f . c on t ro l l e r_speed / constant .MS_TO_KMH,
7 ]
8 f o r waypoint in planned_wayponts
9 ]

10

11 s e l f . mpc_waypoints . mpc = np . array ( s e l f . mpc_waypoints . mpc)
12

13 f o r i in range (1 , s e l f . mpc_waypoints . mpc . shape [ 0 ] ) :
14 s e l f . mpc_waypoints . d i s t anc e . append (
15 np . s q r t (
16 ( s e l f . mpc_waypoints . mpc [ i , 0 ] − s e l f . mpc_waypoints .

mpc [ i − 1 , 0 ] ) ∗∗ 2
17 + ( s e l f . mpc_waypoints . mpc [ i , 1 ] − s e l f . mpc_waypoints .

mpc [ i − 1 , 1 ] ) ∗∗ 2
18 )
19 )
20 s e l f . mpc_waypoints . d i s t anc e . append (0)
21

22 interp_counter = 0
23

24 f o r i in range ( s e l f . mpc_waypoints . mpc . shape [ 0 ] − 1) :
25 s e l f . mpc_waypoints . i n t e r p o l . append ( l i s t ( s e l f . mpc_waypoints .

mpc [ i ] ) )
26 s e l f . mpc_waypoints . hash_interpo l . append ( interp_counter )
27 interp_counter += 1
28

29 np . s e t e r r ( i n v a l i d=" i gnore " )
30 num_pts_to_interp = i n t (
31 np . f l o o r (
32 s e l f . mpc_waypoints . d i s t anc e [ i ]
33 / f l o a t ( constant .INTERPOL_INCREMENT_ITERATION)
34 )
35 − 1
36 )
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37 wp_vector = s e l f . mpc_waypoints . mpc [ i + 1 ] − s e l f .
mpc_waypoints . mpc [ i ]

38 wp_uvector = wp_vector / np . l i n a l g . norm( wp_vector )
39 f o r j in range ( num_pts_to_interp ) :
40 next_wp_vector = (
41 constant .INTERPOL_INCREMENT_ITERATION ∗ f l o a t ( j + 1)

∗ wp_uvector
42 )
43 s e l f . mpc_waypoints . i n t e r p o l . append (
44 l i s t ( s e l f . mpc_waypoints . mpc [ i ] + next_wp_vector )
45 )
46 interp_counter += 1
47

48 s e l f . mpc_waypoints . i n t e r p o l . append ( l i s t ( s e l f . mpc_waypoints . mpc
[ −1]) )

49 s e l f . mpc_waypoints . hash_interpo l . append ( interp_counter )
50 interp_counter += 1

This method ensures that the waypoints are interpolated at a finer resolution
for smoother path tracking.

The waypoint_interpolation method starts by taking a list of planned_wayponts
as input. These planned waypoints are processed to extract their x and y coor-
dinates and normalize the speed component using a constant conversion factor
from km/h to m/s (constant.MS_TO_KMH). These values are then stored in the
mpc_waypoints.mpc attribute as a NumPy array for efficient computation.

Next, the method calculates the Euclidean distance between each consecutive
waypoint. This is achieved by iterating over the waypoints starting from the second
one and computing the distance using the Pythagorean theorem. These distances
are stored in the mpc_waypoints.distance list. An additional 0 is appended to
the distance list to account for the distance from the last waypoint to itself, which
is inherently zero.

The method then initializes an interpolation counter, interp_counter, to keep
track of the indices of the interpolated waypoints. For each pair of consecutive
waypoints, the method first adds the original waypoint to the interpol list and
maps this index in the hash_interpol list.

To determine the number of points to interpolate between each pair of way-
points, the method calculates the number of interpolation points needed based on
the desired resolution defined by constant.INTERPOL_INCREMENT_ITERATION. It
computes the vector between the current and next waypoint and normalizes it to
create unit vectors for interpolation. Using these unit vectors, the method generates
intermediate waypoints and appends them to the interpol list, incrementing the
interp_counter for each new interpolated point.

Finally, the last waypoint is appended to the interpol list to ensure the end of
the path is included, and the corresponding index is recorded in the hash_interpol
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list.
The usage of np.seterr(invalid="ignore") helps suppress potential warnings

during calculations, ensuring the method runs smoothly without interruption.
Overall, this interpolation process ensures a finer resolution of waypoints, allow-

ing for smoother path tracking and more precise control of the vehicle.

Controller Assignment and Update

The controller_assignment and update_controller methods are essential com-
ponents of the MPC controller, responsible for generating control commands and
updating the controller with new waypoints and vehicle parameters, respectively.

1 de f cont ro l l e r_as s i gnment ( s e l f , c o n t r o l l e r ) :
2 c o n t r o l = c a r l a . Veh ic l eContro l ( )
3 c o n t r o l . t h r o t t l e , c o n t r o l . s t e e r , c o n t r o l . brake = c o n t r o l l e r .

get_commands ( )
4 c o n t r o l . hand_brake = False
5 c o n t r o l . manual_gear_shift = Fal se
6 c o n t r o l . r e v e r s e = False
7

8 re turn c o n t r o l
9

10 de f update_contro l l e r ( s e l f , control ler_mpc ) :
11 new_waypoints = s e l f . new_propper_waypoint_iteration (
12 s e l f . cu r r ent_veh i c l e . pose_x , s e l f . cu r r ent_veh i c l e . pose_y
13 )
14

15 control ler_mpc . update_waypoints ( new_waypoints )
16 current_vehic le_parameters = [
17 s e l f . cu r r ent_veh i c l e . pose_x ,
18 s e l f . cu r r ent_veh i c l e . pose_y ,
19 s e l f . cu r r ent_veh i c l e . yaw ,
20 s e l f . cu r r ent_veh i c l e . speed ,
21 ]
22 pr in t ( s e l f . cu r r ent_veh i c l e . speed ∗ constant .MS_TO_KMH)
23 control ler_mpc . update_values (
24 current_vehic le_parameters ,
25 s e l f . cu r r ent_veh i c l e . time ,
26 True ,
27 )
28 control ler_mpc . update_contro ls ( s e l f . cu r r ent_veh i c l e . speed_l imit )

The controller_assignment method takes a controller object as input and
creates a VehicleControl object containing throttle, steer, and brake commands
obtained from the controller using the get_commands method. Additional attributes
such as hand brake, manual gear shift, and reverse are set to their default values.
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Finally, the method returns the control object.
The update_controller method updates the MPC controller with new way-

points and vehicle parameters. It first generates new waypoints using the new_propper_waypoint_iteration
method based on the current vehicle position. Then, it updates the controller with
these waypoints and the current vehicle parameters, including position, yaw angle,
speed, and time. Additionally, it sets a flag to indicate if the vehicle is in motion.
Finally, the method updates the controller with the current speed limit.

These methods dynamically adjust the control commands based on the vehicle’s
current state and the updated waypoints, ensuring accurate and responsive control
of the vehicle.

New Waypoint Iteration

The new_propper_waypoint_iteration method is responsible for generating a
subset of waypoints that the vehicle will follow, based on the current vehicle
position and the lookahead distance. This method ensures that the vehicle receives a
manageable number of waypoints from the MPC controller for smoother navigation.

1 de f new_propper_waypoint_iteration ( s e l f , current_x_pose ,
current_y_pose ) :

2 s e l f . c l o s e s t _ d i s t a n c e = np . l i n a l g . norm(
3 np . array (
4 [
5 s e l f . mpc_waypoints . mpc [ s e l f . c lo se s t_index , 0 ] −

current_x_pose ,
6 s e l f . mpc_waypoints . mpc [ s e l f . c lo se s t_index , 1 ] −

current_y_pose ,
7 ]
8 )
9 )

10 new_distance = s e l f . c l o s e s t _ d i s t a n c e
11 new_index = s e l f . c l o s e s t_ index
12 whi le new_distance <= s e l f . c l o s e s t _ d i s t a n c e :
13 s e l f . c l o s e s t _ d i s t a n c e = new_distance
14 s e l f . c l o s e s t_ index = new_index
15 new_index += 1
16 i f new_index >= s e l f . mpc_waypoints . mpc . shape [ 0 ] : # End o f

path
17 break
18 new_distance = np . l i n a l g . norm(
19 np . array (
20 [
21 s e l f . mpc_waypoints . mpc [ new_index , 0 ] −

current_x_pose ,
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22 s e l f . mpc_waypoints . mpc [ new_index , 1 ] −
current_y_pose ,

23 ]
24 )
25 )
26 new_distance = s e l f . c l o s e s t _ d i s t a n c e
27 new_index = s e l f . c l o s e s t_ index
28 whi le new_distance <= s e l f . c l o s e s t _ d i s t a n c e :
29 s e l f . c l o s e s t _ d i s t a n c e = new_distance
30 s e l f . c l o s e s t_ index = new_index
31 new_index −= 1
32 i f new_index < 0 : # Beginning o f path
33 break
34 new_distance = np . l i n a l g . norm(
35 np . array (
36 [
37 s e l f . mpc_waypoints . mpc [ new_index , 0 ] −

current_x_pose ,
38 s e l f . mpc_waypoints . mpc [ new_index , 1 ] −

current_y_pose ,
39 ]
40 )
41 )
42

43 waypoint_subset_f irst_index = s e l f . c l o s e s t_ index − 1
44 waypoint_subset_f irst_index = max( waypoint_subset_first_index , 0)
45

46 waypoint_subset_last_index = s e l f . c l o s e s t_ index
47 total_distance_ahead = 0
48 whi le tota l_distance_ahead < constant .TOTAL_DISTANCE_AHEAD:
49 total_distance_ahead += s e l f . mpc_waypoints . d i s t anc e [
50 waypoint_subset_last_index
51 ]
52 waypoint_subset_last_index += 1
53 i f waypoint_subset_last_index >= s e l f . mpc_waypoints . mpc . shape

[ 0 ] :
54 waypoint_subset_last_index = s e l f . mpc_waypoints . mpc . shape

[ 0 ] − 1
55 break
56

57 new_waypoints = s e l f . mpc_waypoints . i n t e r p o l [
58 s e l f . mpc_waypoints . hash_interpo l [
59 waypoint_subset_f irst_index
60 ] : s e l f . mpc_waypoints . hash_interpo l [

waypoint_subset_last_index ]
61 + 1
62 ]
63

64 re turn new_waypoints
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The new_propper_waypoint_iteration method is crucial for determining the
subset of waypoints that the vehicle will follow at any given moment during
navigation. It operates by dynamically selecting waypoints based on the vehicle’s
current position and the lookahead distance specified by the system.

To begin, the method calculates the closest waypoint to the vehicle’s current
position. This is done by computing the Euclidean distance between the vehicle’s
coordinates and the coordinates of each waypoint along the planned route. The
waypoint with the minimum distance to the vehicle is identified as the closest
waypoint.

Once the closest waypoint is determined, the method selects a subset of waypoints
to be followed by the vehicle. This subset includes waypoints both ahead of and
behind the vehicle, providing a buffer for smooth navigation. The number of
waypoints included in the subset is determined based on a specified lookahead
distance, which represents the distance ahead of the vehicle that the controller
should consider for planning its trajectory.

The method iterates over the planned route, incrementing and decrementing
the waypoint index from the closest waypoint to identify the subset of waypoints.
It ensures that the subset includes at least one waypoint behind the vehicle and
extends sufficiently ahead of the vehicle to cover the specified lookahead distance.

Once the subset of waypoints is determined, it is returned for use by the MPC
controller. These waypoints serve as key reference points for trajectory planning
and control, enabling the vehicle to navigate safely and effectively along its planned
route.

Overall, the new_propper_waypoint_iteration method plays a critical role in
ensuring that the vehicle receives a manageable number of waypoints for navigation,
thereby facilitating smooth and efficient path tracking.

Controller Definition

The controller_defining method is responsible for creating an instance of the
Model Predictive Control (MPC) controller used for trajectory planning and control.
This method plays a crucial role in initializing the controller with the appropriate
set of waypoints extracted from the planned route.

The method takes a list of route points (waypoints) as input, typically represented
as a matrix containing the (x, y, z) coordinates of each waypoint along the planned
route. These waypoints are essential for guiding the vehicle’s trajectory and ensuring
it follows the desired path accurately.

To create the MPC controller, the method iterates over the list of route points
and converts each waypoint into a format suitable for MPC trajectory planning.
This involves extracting the x and y coordinates of each waypoint and converting
the speed limit from meters per second (m/s) to kilometers per hour (km/h), as
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required by the MPC controller.
Once the list of converted waypoints is prepared, it is passed as input to

the constructor of the MPC controller class (mpc_control.Controller2D). This
initializes the MPC controller with the necessary waypoints and other parameters
required for trajectory planning and control.

The initialized MPC controller object is then returned by the method, ready
to be used for guiding the vehicle along its planned route. By encapsulating the
creation of the MPC controller within this method, the system maintains modularity
and flexibility, allowing for easy integration of different controller implementations
or modifications to the trajectory planning algorithm.

Overall, the controller_defining method serves as a vital component in the
initialization of the MPC controller, ensuring that it is properly configured with
the relevant waypoints for effective trajectory planning and control.

1 de f c o n t r o l l e r _ d e f i n i n g ( s e l f , r ou te s ) :
2 waypoints_mpc_list = l i s t (
3 (
4 waypoint . trans form . l o c a t i o n . x ,
5 waypoint . trans form . l o c a t i o n . y ,
6 s e l f . c on t ro l l e r_speed / 3 . 6 ,
7 )
8 f o r waypoint in route s
9 )

10

11 re turn mpc_control . Contro l ler2D ( waypoints_mpc_list )

Distance Braking Speed

The distance_braking_speed method that ensuring the safety of the vehicle
by calculating the appropriate speed based on the distance to obstacles in the
environment.

When called, this method takes three arguments: obstacle_dist, which repre-
sents the distance to the nearest obstacle, critical_dist, the threshold distance
beyond which emergency braking is required, and decelleration, the rate at
which the vehicle should decelerate.

The method calculates the safe braking speed (speed_br) by first determining
the difference between the obstacle distance (obstacle_dist) and the critical
distance (critical_dist). This difference is then multiplied by two times the
deceleration rate (decelleration).

Subsequently, the square root of the resulting value is taken to obtain the final
safe braking speed. Finally, the speed is converted from meters per second (m/s)
to kilometers per hour (km/h) using the conversion factor provided by the constant
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MS_TO_KMH.
The calculated safe braking speed is returned by the method, providing the

vehicle with the necessary information to adjust its speed dynamically based on
the proximity of obstacles in its path.

1 de f distance_braking_speed ( s e l f , obs tac l e_d i s t , c r i t i c a l _ d i s t ,
d e c e l e r a t i o n ) :

2 speed_br = ( obs ta c l e_d i s t − c r i t i c a l _ d i s t ) ∗ 2 ∗ d e c e l e r a t i o n
3 speed_br = math . s q r t ( speed_br )
4 pr in t ( speed_br ∗ constant .MS_TO_KMH)
5 re turn speed_br # conver s i on from m/ s

80



Chapter 5

Conclution and Final
Assessment

5.1 Benchmark on Control Operations and Algo-
rithms

As previously described, the autonomous driving control algorithms implemented in
this study are PID (Proportional-Integral-Derivative) and MPC (Model Predictive
Control) for Adaptive Cruise Control (ACC) in motion planning. These algorithms
are critical for maintaining the vehicle’s desired speed and trajectory while adapting
to changing road conditions and obstacles.

To comprehensively evaluate the performance of these control algorithms, sce-
narios were created and tested in both rural and urban environments. The rural
scenarios typically feature fewer cars and simpler road layouts, which provide a
controlled environment to observe the basic performance and tuning of the control
algorithms. On the other hand, the urban scenarios include a higher density of
pedestrians, bicycles, and complex traffic patterns, offering a more challenging
environment to test the robustness and adaptability of the algorithms.

The comparison between PID and MPC algorithms is conducted using two
primary metrics: heading error and cross-track error. Heading error measures the
difference between the vehicle’s actual heading and the desired heading, reflecting
the accuracy of the vehicle’s steering control. Cross-track error, on the other hand,
measures the lateral distance between the vehicle’s current position and the desired
trajectory, indicating how well the vehicle maintains its path.

Figures depicting the created rural scenario, which features fewer cars, and the
urban scenario, which includes more pedestrians and bicycles, are shown below.
These scenarios were carefully designed to test the control algorithms under various
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conditions and complexities:

Figure 5.1: Operation view in a rural scenario.
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The analysis of the PID implementation in the rural scenario can be seen below:

Figure 5.2: PID controller errors in a rural scenario.

Similarly, the MPC implementation in the rural scenario is shown below:

Figure 5.3: MPC controller errors in a rural scenario.

As seen in these graphs, the peak cross-track error for the MPC is within 5 cm,
whereas for the PID controller, it exceeds 2 meters. Another critical aspect is the
heading error, which measures the correctness of the vehicle’s steering. For the
PID controller, the heading error is around 25 degrees, while for the MPC, it is
only 5 degrees.

In rural scenarios, it is evident that the MPC outperforms the PID controller
significantly. Next, we will examine the scenarios where the controllers are tested
in urban environments with more traffic and pedestrians.
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Figure 5.4: Complex urban scenario.

As depicted in the image, the urban scenario is more complex, featuring two
bicyclists and a car ahead. In such a scenario, the vehicle must detect the front
obstacle and maintain the speed of the front vehicle according to Adaptive Cruise
Control.
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The performance of the two different control algorithms with ACC in the urban
scenario is shown below:

Figure 5.5: MPC algorithm operation in an urban scenario.

The analysis of the PID implementation in the urban scenario is shown below:

Figure 5.6: PID algorithm operation in an urban scenario.

From the error analysis, it is clear that both algorithms respond in a similar
manner, but the time taken to correct errors varies. The PID controller shows
more peaks in response, particularly on curves where centripetal force is applied,
indicating less smooth performance.

In conclusion, the more complex control algorithm methodology, Model Pre-
dictive Control, performs better as it evaluates hazardous scenarios and provides
responses that also consider driving safety in autonomous models. Therefore, MPC
is more suitable for adaptive cruise control in complex environments, ensuring a
smoother and safer driving experience.
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5.2 Hazard and Risk Assessment: PID vs MPC
As one of the most important parts of the study, the ISO analysis will be used
for the software algorithm application analysis. In the previous sections, scenarios
were created in different environments where various operations are implemented.

The scenarios include the most and least dangerous situations: complex traffic
in the city and a more comfortable rural area. These will be evaluated in terms of
emergency braking, adaptive cruise control driving, and lateral movements.

The scenarios can be classified as follows:

1. Scenario 1 (S1): In city the adaptive cruise control.

2. Scenario 2 (S2): In a city the emergency braking.

3. Scenario 3 (S3): In a city the lateral (curve) movement.

4. Scenario 4 (S4): In a rural area the adaptive cruise control movement.

5. Scenario 5 (S5): In a rural area the emergency braking movement.

6. Scenario 6 (S6): In a rural area the lateral (curve) movement.

The two algorithms considered are:

• Algorithm 1 (A1): PID control algorithm

• Algorithm 2 (A2): MPC control algorithm

The parameters for hazard analysis are Severity (S), Exposure (E), and Control-
lability (C).

S1 S2 S3 S4 S5 S6 ASIL
A1 S:2

E:1
C:1

S:2
E:2
C:2

S:3
E:4
C:3

S:1
E:1
C:1

S:1
E:2
C:2

S:1
E:4
C:3

D

A2 S:1
E:1
C:1

S:1
E:2
C:1

S:3
E:2
C:1

S:1
E:1
C:1

S:1
E:1
C:1

S:1
E:2
C:1

B

Table 5.1: HARA analysis for scenarios (1-6) with respect to PID Algorithm (A1)
and MPC Algorithm (A2).

The analysis is based on cross-track and heading errors (Figures 5.2, 5.3, 5.6,
and 5.5). The main differences occur during lateral movements, which become
more severe in city scenarios. Therefore, Scenario 3 is the riskiest scenario for
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both algorithms. For the PID controller, it has a 25-degree heading error and a
2-meter cross-track error in city scenarios during lateral movements, which results
in an ASIL D rating. In contrast, thanks to its predictive behavior, the MPC
controller performs with a 5-degree heading error and a peak cross-track error of
20 cm, resulting in an ASIL B rating.

5.3 Final Considerations
In conclusion, both PID and MPC controllers are integral components of the ACC
system, yet they exhibit distinct characteristics and origins. The PID controller
library, provided by CARLA, offers a well-established control mechanism for
maintaining desired setpoints. Its implementation is relatively straightforward,
relying on proportional, integral, and derivative control strategies to adjust vehicle
behavior based on error signals. While PID controllers are effective in many
scenarios and are easy to implement, they may struggle in complex environments
with nonlinear dynamics or stringent constraints.

Conversely, the MPC library utilized in this project is sourced from the University
of Toronto’s Autonomous Driving course. MPC offers significant advantages over
PID in terms of handling constraints, optimizing performance, and ensuring safety.
Its predictive nature allows it to anticipate future states and optimize control actions
over a specified horizon, making it well-suited for complex, real-time applications
in autonomous driving. However, MPC controllers tend to be more complex to
implement and require detailed modeling of the system dynamics.

Our exploration has revealed that the MPC controller exhibits greater flexibility
and adaptability compared to PID, particularly in scenarios with dynamic obstacles,
complex road geometries, or stringent safety requirements. By testing various
scenarios, such as highway merging, urban navigation, and emergency braking, the
strengths and weaknesses of each controller were assessed in different contexts.

Overall, the MPC algorithm demonstrates superior performance compared to
the PID algorithm, particularly in more complex urban scenarios. The predictive
nature of the MPC allows it to handle dynamic environments and maintain better
control of the vehicle’s trajectory and speed. This results in safer and more reliable
performance, making MPC a preferable choice for adaptive cruise control and other
advanced driver assistance systems in autonomous driving applications.

As our maiden results in Table 5.1 show, the HARA analysis resulted in an
ASIL B for the MPC controller and an ASIL D for the PID controller, indicating
that MPC offers two levels higher safety assurance compared to PID.
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In this study, we did not have the time to implement highway scenarios due to
time constraints. Instead, we focused on the most and least dangerous scenarios for
the HARA analysis. For future work, it is recommended to create highway scenarios
and implement AI-based nonlinear MPC for predicting the cost function variables of
the MPC. Reinforcement learning algorithms can be employed in conjunction with
Rapidly-exploring Random Tree (RRT) methods for enhanced motion planning.
This approach will potentially improve the adaptability and performance of control
systems in more complex and dynamic environments, further advancing the safety
and reliability of autonomous driving technologies.
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User Handbook for Project Setup and Execution

This section provides a detailed guide on setting up and running the LUXOFT
AD Control repository, which includes the control algorithm and the CARLA
setup submodule (lux_ad_carla). Follow these steps to ensure a proper setup and
execution environment for CARLA.

SSH Key Setup

To interact with the repository, ensure that you have an SSH key set up on your
local machine. If you do not have an SSH key, follow the instructions here to create
one. This step is crucial for secure access to the repository.

Anaconda Installation

The project requires Anaconda with Python 3.7. Anaconda is a widely used distri-
bution that simplifies package management and deployment. You can download
Anaconda here. Make sure to choose the version that includes Python 3.7.

Cloning the Repository

Follow these steps to clone the LUXOFT AD Control repository and initialize the
necessary submodules:

1. Clone the Repository with SSH: Open a terminal and run the following
command to clone the repository:

git clone git@bitbucket.org:your_username/lux_ad_control.git

2. Navigate to the Directory: After cloning, navigate to the repository
directory:
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cd lux_ad_control

3. Initialize Submodules: Initialize and update the submodules to ensure all
components are correctly set up:

git submodule update --init --recursive --progress

.0.1 Setting Up the Environment
With the repository cloned and submodules initialized, set up the Python environ-
ment using Anaconda:

1. Configure Anaconda with Python 3.7: Create a new Anaconda environ-
ment with Python 3.7 and activate it:

conda create -n lux_ad_env python=3.7
conda activate lux_ad_env

2. Run the Setup Script: Source the setup script to configure the environment
with necessary dependencies and settings:

source luxad_toolkit.sh

Running CARLA

Once the environment is set up, follow these steps to run CARLA:

1. Start CARLA Server: Launch the CARLA server, which is required for
the simulation environment:

luxad_run_server

After starting the server, a screen will open. Press ENTER to proceed.

2. Start CARLA Client: With the server running, start the CARLA client to
interact with the simulation and observe the control algorithms in action:
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luxad_run_client

This command initiates the client interface, allowing you to visualize and test
the implemented code.

By following these steps, you can successfully set up and run the LUXOFT AD
Control system with CARLA, enabling you to evaluate and analyze the performance
of the implemented control algorithms in various driving scenarios.
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