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Abstract

This thesis investigates time series classification through the application of various
algorithms on two distinct datasets, developed in collaboration with Eltek S.p.A.
The research aims to assess the performance of these algorithms on both artificially
generated and experimentally obtained data. The first case study involves an ar-
tificially generated dataset created via simulations to analyze the heat transport
of a sensor immersed in a fluid under an applied voltage. The simulations were
divided into four groups: one with normal Fourier heat transport and three with
different models of anomalous transport, the primary objective was to recognize the
four heat transport models using temperature time series. The second case study
utilized experimentally obtained data from a capacitor that is discharged through
the use of two microelectrodes immersed in a fluid, with a gap of approximately 2
micrometers between them, generating time series of the capacitor’s voltage. Each
experiment was classified by assigning classes from 0 to 15, where classes 0,4,8,12
stands for normal diffusion while others means anomalous diffusion, the objec-
tive was to evaluate the performance of various time series classification models
on both real and artificially generated datasets. The study’s results highlighted
the strengths and limitations of different algorithms in controlled and real-world
settings, providing insights into their generalizability and practical industrial ap-
plications. This research demonstrates the feasibility of using time series classifica-
tion algorithms to differentiate between transport models and classify experimental
data based on transport parameters. The collaboration with Eltek S.p.A under-
scores the industrial relevance of these techniques, suggesting future exploration of
more sophisticated models and experimental conditions to enhance accuracy and
applicability in various domains.
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Chapter 1

Introduction

Machine learning (ML) is a subset of artificial intelligence (AI) that empowers sys-
tems to learn from data, identify patterns, and make decisions with minimal human
intervention. As a rapidly evolving field, machine learning has revolutionized vari-
ous sectors, including healthcare, finance, transportation, and entertainment. This
chapter provides an overview of machine learning, its core principles and method-
ologies.

The rationale for using machine learning begins with the concept of pattern recog-
nition. Pattern recognition involves the automatic discovery of regularities in data
through computer algorithms and using these regularities to take actions such as
classifying data into different categories. Consider the example of detecting spam
emails. The goal is to develop a system that takes an email as input and deter-
mines whether it is spam or not. This task could be approached by crafting specific
rules or heuristics to identify spam based on keywords, email structure, and other
features. However, in practice, this leads to an overwhelming number of rules and
exceptions, resulting in poor performance and constant maintenance as spammers
adapt their tactics.

A far more effective approach is to employ machine learning, where a large set
of labeled emails (spam and non-spam) is used to train an adaptive model. This
training set enables the model to learn the distinguishing features of spam emails
through patterns in the data, such as common phrases, sender information, and
formatting styles. The model’s parameters are adjusted during training to improve
its accuracy in identifying spam. This approach not only simplifies the process but
also results in significantly better performance as the model continuously improves
with more data and evolves with changing spam tactics.

7



Introduction

1.1 Machine Learning Process

1.1.1 Problem definition

A machine learning process is divided into several essential phases, each of which
must be carefully followed. It begins with problem definition, where you clearly
identify the problem you need to solve and establish the scope and goals of the
study.

1.1.2 Data collection

Next, you proceed to data collection phase. Data can originate from various
sources such as databases, online repositories, sensors, or user-generated content.
The steps you take following this phase are heavily dependent on the data you have
gathered. Machine learning is in fact data-driven, this means that the quality and
quantity of your data directly influence the performance of the models you select.
For this reason, the collection of high-quality data is crucial to the success of your
machine learning project.

1.1.3 Data preparation

At this point, you should prepare your data to present it in a correct manner to
the models you will select. Typically, raw data is incomplete or noisy, making data
preparation as crucial as data collection. The philosophy behind data preparation
is to uncover and expose the underlying structure of the problem to the learning al-
gorithms as effectively as possible. Data preparation generally involves four phases
[15]:

o Data Cleaning: Handling missing values, correcting errors, and filtering out
noise to ensure the dataset is accurate and reliable.

o Feature Selection: Identifying the most relevant features that contribute
significantly to the predictive power of the model, removing any redundant
or irrelevant features.

o Data Transformation: Applying techniques such as normalization, scaling,
and encoding to convert data into a suitable format for the algorithms.

« Dimensionality Reduction: Reducing the number of features while pre-
serving the essential information, helping to simplify the model and reduce
computational cost. Techniques like Principal Component Analysis (PCA)
are commonly used for this purpose.

8



1.1 — Machine Learning Process

Data cleaning

Data cleaning refers to identifying and correcting errors in the dataset that may
negatively impact a predictive model. For example you should remove columns
that contain single value, low variance or duplicate data in order to have data that
only have some kind of importance in the learning phase of the model [20].

Feature Selection

Feature selection is the process of reducing the number of input variables when
developing a predictive model. Reducing the number of input variables is crucial
to decrease the computational cost of modeling and, in many cases, improve the
performance of the model [15]. Various feature selection methods can be classified
into filters, wrappers, embedded, and hybrid methods. Filter methods select fea-
tures based on a performance measure independent of the employed data modeling
algorithm. First it is identified the best features and then it is used the model-
ing algorithms with these selected features. Examples of filter methods include
correlation coefficients [92], chi-square tests [90], and fisher scores [28]. Wrap-
pers consider feature subsets based on their performance on a specific modeling
algorithm, treating the algorithm as a black-box evaluator. For example for clas-
sification tasks, a wrapper evaluates subsets based on the classifier’s performance,
such as Naive Bayes [13] or Support Vector Machines (SVM) [60]. These meth-
ods often involve iterative testing and evaluation to identify the optimal subset of
features. Embedded methods perform feature selection during the execution of
the modeling algorithm. These methods are integrated into the algorithm with its
normal or extended functionality. Examples include Lasso regression [58], which
includes feature selection as part of the training process, and tree-based methods
like Random Forests [80], which perform feature importance ranking. Hybrid
methods combine the advantages of filters and wrappers. Initially, a filter method
is employed to reduce the feature space, potentially resulting in several candidate
subsets, then, a wrapper method is used to identify the best candidate subset. This
two-step approach aims to get the efficiency of filters and the accuracy of wrappers
to achieve optimal feature selection. By utilizing these feature selection methods,
the process ensures a more efficient and effective modeling approach that lead to
improved predictive performance.

Data Transformation

Many machine learning algorithms perform better when numerical input variables
are scaled to a standard range [2]. The two most popular techniques for scaling
numerical data prior to modeling are normalization and standardization [3]. Nor-
malization scales each input variable separately to the range 0-1, which is the range
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Introduction

for floating-point values where we have the most precision. This technique is par-
ticularly useful when the data is bound within a specific range and you want to
preserve the relative relationships between the values. Standardization scales each
input variable separately by subtracting the mean (called centering) and dividing by
the standard deviation. This process shifts the distribution to have a mean of zero
and a standard deviation of one. Standardization is useful when the data follows a
Gaussian distribution and is often required by algorithms that assume the data is
centered around zero with unit variance. By applying these scaling techniques, the
performance of machine learning algorithms can be significantly improved, ensuring
that the input variables contribute appropriately to the model’s learning process.

Dimensionality reduction

Dimensionality represent the number of input variables or features in a dataset. In
dimensionality reduction, the objective is to reduce this dimensionality. The prob-
lem is that when the number of dimensions increases (i.e., more input variables),
the dataset tends to become sparse and less representative of the true data space.
Instead of just selecting a subset of features, another approach is to project the
data into a lower-dimensional space that preserves the most important properties
of the original data. As we saw this process is known as dimensionality reduction
and serves as an alternative to feature selection. Applying dimensionality reduction
techniques to a dataset offers several advantages: it decreases the number of di-
mensions and reduces data storage space, requires less computation time, eliminates
irrelevant, noisy, and redundant data, optimizes data quality, improve algorithm
efficiency, improves accuracy, facilitates data visualization, simplifies classification,
and boosts performance [47] [56]. Dimensionality reduction methods such as Prin-
cipal Component Analysis (PCA) [34], Linear Discriminant Analysis (LDA), and
Multidimensional Scaling, transform the original features into a new set of features
based on their combinations. The goal is to uncover more meaningful information
in this new set. These methods reduce dimensionality by focusing on the features
that contribute most to the variance or discriminative power of the data, thus
simplifying the dataset while retaining its essential characteristics.

1.1.4 Model selection and evaluation

Now that we have prepared our data, we need to insert them into a model in order
to see if the model can learn effectively from the data and predict unseen data.
First, we need a model, or better yet, a set of models that could potentially fit our
problem. This step is crucial and depends strictly on the nature of the problem and
what the literature suggests. Common algorithms include decision trees, support
vector machines, neural networks, and ensemble methods. Next, we need a method
to evaluate the models in order to compare them and select the best one.
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The holdout method is the simplest model evaluation technique and can be
summarized as follows: we take a labeled dataset and split it into two parts, a
training set and a test set. Then we fit a model to the training data and predict the
labels of the test set. The fraction of correct predictions, computed by comparing
the predicted labels to the ground truth labels of the test set, gives us an estimate
of the model’s prediction accuracy. It is important to note that we do not train and
evaluate a model on the same training dataset, as this would typically introduce
an overly optimistic bias due to overfitting. In other words, we cannot determine
whether the model has merely memorized the training data or if it generalizes well
to new, unseen data.

Almost every machine learning algorithm comes with some settings that we need
to specify, known as hyperparameters. those settings help control the behavior of
machine learning algorithms when optimizing for performance. In order to practice
hyperparameter tuning with the holdout method, we must modify our initial ap-
proach, the "two-way" split into a "three way split", and split the dataset into three
parts: a training set, a validation set, and a test set. Reusing the test set multiple
times would introduce bias into the final performance estimate and likely result in
overly optimistic estimates of generalization performance.

There are different methods for hyperparameter tuning, but the most well-
known are k-fold cross-validation and leave-one-out cross-validation. The main
idea behind cross-validation is that each sample in our dataset has the opportunity
to be tested. In K-fold cross-validation we iterate over a dataset k times. In each
round, we split the dataset into k parts: one part is used for validation, and the
remaining k — 1 parts are merged into a training subset for model evaluation. If
we set the number of folds equal to the number of training instances, we refer to
this process as Leave-One-Out Cross-Validation (LOOCYV). During LOOCV, we fit
a model to n — 1 samples of the dataset and evaluate it on the single remaining
data point. Even if this process is computationally expensive, given that we have
n iterations, it can be useful for very small datasets where withholding data from
the training set would be too wasteful.

The main difference between the "two-way" holdout method and k-fold cross-
validation is that k-fold cross-validation uses all data for training and testing. This
approach reduces the pessimistic bias by using more training data.

At this point we must select the best model among them. To approach the
model selection phase, we can still use our three-way holdout method. First, we
use the training-validation set for hyperparameter tuning. Then, we train the
models with the best hyperparameters on the entire training dataset and evaluate
them on the test dataset to determine which model performs best. However, the
most effective approach when you do not have large size dataset is still k-fold
cross-validation [75].The key idea is to keep an independent test dataset that we
leave during training and model selection to avoid any leakage of test data into
the training stage. Similar to the holdout method, we split the dataset into two
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parts: a training set and an independent test set, reserving the test set for the
final model evaluation step. We can then experiment with various hyperparameter
settings using methods such as Bayesian optimization [81], randomized search [74],
grid search [86] and so on. For each hyperparameter configuration, we apply the
k-fold cross-validation method on the training set, resulting in multiple models and
performance estimates. We then take the hyperparameter settings that produced
the best results in the k-fold cross-validation procedure, use the complete training
set for train the model with these settings, and perform the final evaluation on
the test set that we get earlier. Finally, after completing the evaluation stage, we
can optionally fit a model to the entire dataset (both training and test datasets
combined). This final model is then ready for deployment.

1.2 Classification Techniques and ML Models

Machine learning can be broadly categorized into four main types: Supervised
learning, unsupervised learning, semi-supervised learning and reinforcement learn-
ing.

1.2.1 Supervised Learning

This is the most common type of learning where the model is trained on a labeled
dataset, which means that each training example is paired with an output label.
The algorithm learns to map inputs into the desired output. Common applications
include classification (e.g., spam detection in emails) and regression (e.g., predicting
house prices). Supervised learning is the most common technique in classification
problems, since the goal is often to get the model to learn a classification system
that we've created. Most commonly, supervised learning leaves the probability for
input undefined, such as an input where the expected output is known. This process
provides a dataset consisting of features and labels. The main task is to construct
an estimator able to predict the label of an object given by the set of features. Then,
the learning algorithm receives a set of features as inputs along with the correct
outputs and it learns by comparing its actual output with corrected outputs to
find errors. In this process, the supervised learning algorithm builds the predictive
model. After its training, the fitted model would try to predict the most likely
labels for a new set of samples X in the testing set. Depending on the nature of
the target y, supervised learning can be classified in: If y has values in a fixed set
of categorical outcomes (integers), the task to predict y is called classification. If y
has floating point values, the task to predict y is called regression.
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1.2.2 Unsupervised Learning

Unsupervised learning uses pattern recognition without the involvement of a target
attribute, so, all the variables used in the analysis are used as inputs and because
of the approach, the techniques are suitable for clustering and association mining
techniques . The goal is to find hidden patterns or intrinsic structures in the in-
put data. Unsupervised learning algorithms are suitable for creating the labels in
the data that will be used to implement supervised learning tasks. That is, un-
supervised clustering algorithms identify inherent groupings within the unlabeled
data and then assign a label to each data value. On the other hand, unsuper-
vised association mining algorithms tend to identify rules that accurately represent
relationships between attributes.

1.2.3 Semi-Supervised Learning

Semi-supervised learning (SSL) is a type of Machine Learning (ML) technique where
it is half-way between supervised and unsupervised learning, i.e., the dataset is
partially labeled. The main objective of SSL is to overcome the drawbacks of
both supervised and unsupervised learning. Supervised learning requires a huge
amount of training data to classify the test data, which is a cost-effective and
time-consuming process. On the other hand, unsupervised learning doesn’t require
any labeled data and clusters the data based on similarity in the data points by
using either clustering or maximum likelihood approach. The main downfall of
this approach is that it can’t cluster unknown data accurately. To overcome these
issues, SSL can learn with a small amount of training data to label the unknown
test data. SSL builds a model with few labeled patterns as training data and treats
the rest of the patterns as test data.

1.2.4 Reinforcement Learning

This type involves an agent that interacts with its environment by performing ac-
tions and receiving rewards or penalties. The main goal of RL is learning through
interaction, indeed the agent tries to learns how optimize its behavior in order
to maximize the cumulative reward. Applications include game playing (e.g., Al-
phaGo) and robotics. An RL agent interacts with its environment and, by observing
the consequences of its actions, can learn to alter its own behavior in response to
rewards received. This paradigm of trial-and-error learning has its roots in psy-
chology and is one of the main foundations of RL. The other key influence on
RL is optimal control, which has lent the mathematical formalisms (most notably
dynamic programming) that sustain the field.

13



Introduction

1.3 Swupervised Learning Algorithms

Now we will focus on supervised learning algorithms, because it is the most common
approach in machine learning and is actually used in this thesis work.

1.3.1 Naive Bayes

Naive Bayes [11] is a probabilistic classification algorithm based on Bayes’ the-
orem. It is called “naive” because it assumes that the features are independent
of each other, which is a strong and often unrealistic assumption. It assumes an
underlying probabilistic model and allows capturing uncertainty about the model
in a principled way by determining probabilities of the outcomes. The basic pur-
pose of Bayesian classification is to solve predictive problems. This classification
provides practical learning algorithms and can combine observed data. Bayesian
classification provides a useful perspective for understanding and evaluating learn-
ing algorithms. It calculates explicit probabilities for hypotheses and is robust to
noise in input data.

1.3.2 Decision Tree

Decision Tree [59] is a non-parametric algorithm used for both classification and
regression. It splits the data into subsets based on the feature that results in the
most significant information gain or least impurity. A decision tree is a tree-like
model used for decision-making and prediction, consisting of nodes that form a
hierarchical structure starting from a root node. The root node is the top node
with no incoming edges, serving as the starting point of the tree. All other nodes
have exactly one incoming edge. Nodes with outgoing edges are referred to as
internal nodes or test nodes, while nodes without outgoing edges are called leaves
or terminal nodes. In a decision tree, each test node splits the instance space
into two or more sub-spaces according to a specific discrete function of the input
values. In the simplest case, each test considers a single attribute, partitioning
the instance space based on the attribute’s value. For categorical attributes, this
means splitting the data based on distinct values, while for numeric attributes, the
condition involves splitting based on a range of values. Each leaf in the decision tree
is assigned to a class that represents the most appropriate target value for the given
input conditions. For example, the root node might test the first attribute, and
depending on the result, the data is passed down to one of its child nodes. These
child nodes, now internal nodes, perform further tests on subsequent attributes.
This process continues, with each internal node splitting the data further until
the data reaches a leaf node. The leaf node then assigns a class label or target
value based on the majority class or most appropriate outcome for the instances
that have followed that particular path through the tree. The overall goal of a
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decision tree is to create a model that accurately classifies or predicts the target
variable by systematically splitting the data into more homogeneous sub-groups at
each internal node. This process of splitting and assigning values continues until
the stopping criteria are met, which could be a maximum depth of the tree, a
minimum number of instances in a node, or another criterion that helps prevent
overfitting and ensures generalization to new, unseen data.

1.3.3 Linear Regression

The goal of linear regression [11], as part of the family of regression algorithms, is
to identify relationships and dependencies between variables. It models the rela-
tionship between a continuous scalar dependent variable y (also known as the label
or target in machine learning terminology) and one or more explanatory variables
(also referred to as independent variables, input variables, features, observed data,
observations, attributes, dimensions, data points, etc.), denoted as X, using a lin-
ear function. In regression analysis, the objective is to predict a continuous target
variable, in contrast to classification, which aims to predict a label from a finite set.
In the case of multiple regression, where the model involves a linear combination
of multiple input variables, the relationship is represented as:

y:b0+b1$1—|—...+6.

1.3.4 Logistic Regression

Logistic Regression [46] is a classification algorithm used for binary classification
problems. Despite its name, it is a linear model for classification rather than
regression. Similar to Naive Bayes, logistic regression works by extracting a set of
weighted features from the input, taking logarithms, and combining them linearly.
This means that each feature is multiplied by a weight and then summed. However,
the most significant difference between Naive Bayes and logistic regression is that
logistic regression is a discriminative classifier, while Naive Bayes is a generative
classifier. Logistic regression is a type of regression that predicts the probability
of occurrence of an event by fitting data to a logistic function. Like many forms
of regression analysis, logistic regression uses several predictor variables that may
be numerical or categorical. The hypothesis in logistic regression is represented by
the logistic function (or sigmoid function):

1

hole) = T emms

Here, hg(z) represents the predicted probability that the output is 1 (the event of
interest) given the input x. The vector # contains the weights for the features. The
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cost function for logistic regression, often referred to as the logistic loss or log loss,
is used to measure the performance of the model. It is given by:

= 3 [y o(ha(a)) + (1~ y) log(1 — ho(a?)]

=1

In this equation: m is the number of training examples, y® is the actual label
for the i-th training example, and hy(x) is the predicted probability for the i-
th training example. The goal is to find the values of § that minimize this cost
function, typically using optimization techniques such as gradient descent.

1.3.5 Deep Learning

Conventional machine-learning techniques were limited in their ability to process
natural data in their raw form. For decades, constructing a pattern-recognition
or machine-learning system required careful engineering and considerable domain
expertise to design a feature extractor that transformed the raw data (such as the
pixel values of an image) into a suitable internal representation or feature vec-
tor from which the learning subsystem, often a classifier, could detect or classify
patterns in the input. Representation learning is a set of methods that allows a
machine to be fed with raw data and to automatically discover the representations
needed for detection or classification. Deep-learning methods are representation-
learning methods with multiple levels of representation, obtained by composing
simple but non-linear modules that each transform the representation at one level
(starting with the raw input) into a representation at a higher, slightly more ab-
stract level. With the composition of enough such transformations, very complex
functions can be learned. For classification tasks, higher layers of representation
amplify aspects of the input that are important for discrimination and suppress
irrelevant variations.

Fully Connected Feed Forward Neural Network (FFNN)

The fundamental unit of neural networks is a neuron, which acts as a processing
node. In a neural network, neurons are interconnected through synaptic weights,
or simply weights. Each neuron receives information weighted by these synaptic
connections from the neurons it is linked to and generates an output. This output
is produced by passing the weighted sum of input signals (whether from external
sources or other neurons) through an activation function.

Neural network architectures can be broadly classified into two categories based
on the connections between neurons: feed-forward neural networks and recurrent
neural networks. If the network does not have feedback loops from the outputs of
neurons back to the inputs, it is termed a feed-forward neural network. Conversely,
if there are such feedback loops, meaning that outputs loop back as inputs (either to
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the same neurons or to others), the network is known as a recurrent neural network.
Typically, neural networks are structured in layers. Feed-forward neural networks
are further divided based on the number of layers: "single-layer" and "multi-layer"
networks.

A single-layer feed-forward neural network is illustrated in 1.1. This structure
has two layers, but the input layer is not counted as it does not perform any
computation. The input signals are transmitted to the output layer through the
weights, and the neurons in the output layer process these signals to produce the
final output. In Figure 1.2, a multi-layer feed-forward neural network with one
hidden layer is depicted. Unlike the single-layer network, this setup includes at least
one layer of hidden neurons between the input and output layers. Hidden neurons
play a crucial role by mediating between external inputs and network outputs in a
beneficial way [36]. Having one or more hidden layers allows the network to capture
higher-order statistics. In the example shown in Figure 1.2, there is only one hidden
layer, making it a 3-3-2 network, as it contains 3 input neurons, 3 hidden neurons,
and 2 output neurons. Both networks are "fully connected," meaning each neuron
in a layer is connected to every neuron in the subsequent layer.

Figure 1.1: Single layer fully connected neural network

Among many other learning algorithms, backpropagation is the most popular
and the mostly used one for the training of feed-forward neural networks. The
training of a feed-forward neural network using backpropagation involves several key
steps: forward propagation, loss calculation, backpropagation, and weight updates.
This process is iteratively performed over multiple epochs to minimize the loss and
improve the model’s performance.
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. outputs
inputs

input layer hidden layer output layer

Figure 1.2: Two layer fully connected neural network by Chrislb, licensed under
CC BY-SA 3.0. No changes were made.

In forward propagation, the input data is passed through the network, layer by
layer, to generate an output. The input data are fed into the input layer. The data
are then passed through each hidden layer. For each neuron in a hidden layer, the
following steps occur: compute the weighted sum of inputs, z = > (w; - z;) + b, and
apply an activation function, a = ¢(z), to introduce non-linearity. Here, w; are the
weights, x; are the input values, b is the bias term, and ¢ is the activation function.
Finally, the processed data reaches the output layer, where it generates the output
predictions using a similar process (weighted sum and activation function).

The network’s output is compared with the true target values to calculate the
loss (error). A common loss function for classification problems is the cross-entropy
loss, while mean squared error (MSE) is often used for regression problems. For
instance, if using cross-entropy loss,

L= —;L > lyilog(y') + (1 — ;) log(1 — y')],

where 3 is the predicted output, w; is the true label, and m is the number of
samples.

Backpropagation is the process of calculating the gradient of the loss function
with respect to each weight by the chain rule, propagating this error backward
through the network. Starting from the output layer, compute the gradient of the
loss function with respect to the output of the neurons.

The weight updates are performed using an optimization algorithm such as
stochastic gradient descent (SGD) or Adam. The weights are adjusted in the op-
posite direction of the gradient to minimize the loss function.

This entire process (forward propagation, loss calculation, backpropagation, and
weight updates) is repeated for multiple epochs, where an epoch is a single pass
through the entire training dataset. The goal is to minimize the loss function,
thereby improving the model’s predictions. The backpropagation algorithm is cen-
tral to training feed-forward neural networks, enabling the model to learn from the
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data by iteratively adjusting weights and biases to minimize the error. Through
this process, the network improves its ability to make accurate predictions on new,
unseen data.

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs), also known as ConvNets, are specifically
designed to process data that come in the form of multiple arrays. For instance,
a color image is composed of three 2D arrays, each containing pixel intensities for
one of the three color channels. Various data modalities fit into this framework: 1D
arrays for signals and sequences, such as language; 2D arrays for images or audio
spectrograms; and 3D arrays for video or volumetric images.

There are four key concepts that enable ConvNets to effectively leverage the
properties of natural signals: local connections, shared weights, pooling, and the
use of multiple layers. The architecture of a typical ConvNet is structured as a
series of stages, with the initial stages consisting of convolutional layers and pooling
layers.

In a convolutional layer, units are organized into feature maps. Each unit within
a feature map is connected to local patches in the feature maps of the previous layer
through a set of weights known as a filter bank. The result of this local weighted
sum is then passed through a non-linear function, called activation function, such
as ReLU (Rectified Linear Unit) and many others [27]. All units in a feature map
share the same filter bank, while different feature maps within the same layer use
different filter banks.

This architecture is designed for two main reasons. First, in array data like
images, local groups of values are often highly correlated, forming distinctive local
patterns that can be easily detected. Second, the local statistics of images and
other signals are invariant to location. This means that a pattern appearing in
one part of an image could potentially appear anywhere in the image. Therefore,
having units at different locations share the same weights allows the network to
detect the same pattern in various parts of the array.

Mathematically, the filtering operation performed by a feature map is a discrete
convolution, which is the origin of the term "convolutional" in Convolutional Neural
Networks.

Recurrent Neural Network (RNN) and ResNet

For tasks involving sequential inputs, such as speech and language, RNNs often
outperform other types of neural networks. RNNs process an input sequence one
element at a time, maintaining a ’state vector’ in their hidden units that implicitly
contains information about the history of all past elements in the sequence. This
mechanism allows RNNs to effectively handle temporal dependencies in sequential
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data.

To understand how backpropagation is applied to RNNs, consider the outputs
of the hidden units at different discrete time steps. These outputs can be viewed
as analogous to the outputs of different neurons in a deep multilayer network. This
perspective makes it clear how the backpropagation algorithm can be extended to
train RNNs by propagating errors backwards through time. Despite their theoret-
ical power, training RNNs has historically been challenging. This difficulty arises
because the backpropagated gradients tend to either grow or shrink at each time
step, leading to the problems of exploding or vanishing gradients [39, 7] over many
time steps. These issues hinder the effective training of RNNs, particularly for long
sequences. However, advancements in RNN architectures [37] and training methods
[88, 72] have significantly improved their performance. Techniques such as Long
Short-Term Memory (LSTM) [40] and Gated Recurrent Units (GRUs) have been
developed to address the vanishing and exploding gradient problems. As a result,
RNNs have become highly effective for tasks such as predicting the next charac-
ter in a text sequence or the next word in a sentence. They are also applied in
more complex tasks, including machine translation and time series forecasting. In
parallel with advances in RNNs, another significant development in neural network
architecture is the Residual Network (ResNet). ResNet was introduced to address
the difficulties in training very deep neural networks, particularly the degradation
problem where adding more layers leads to higher training error. ResNet introduces
the concept of residual learning by using skip connections, which allow the network
to learn residual functions with reference to the layer inputs, instead of learning
unreferenced functions.

A typical ResNet block includes a skip connection that bypasses one or more
layers by connecting the input of a layer directly to the output of a subsequent
layer. This kind of architecture is able to train much deeper networks effectively
because it helps in maintaining the flow of gradients through the network. The
success of ResNet has led to its adoption in numerous applications, including image
classification, object detection, and segmentation.
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Chapter 2

Time Series Classification
Algorithms

Time series (TS) are a type of data that represent the evolution of a variable over
time, where observations are recorded in chronological order. This kind of data
appears in many fields such as economics, social sciences, environmental sciences
and finance, to name a few.

Time series have a temporal dependency structure, where successive observa-
tions can be influenced by previous ones, indeed compared to other types of data,
TS are unique and requires the use of specific techniques and models for their
analysis and forecasting.

time series can display various types of behavior: trends, seasonality, cyclicity,
and randomness. The trend represents the general direction of the series’ move-
ment over time, while seasonality refers to regular variations that occur at specific
intervals, such as seasons of the year. Cyclicity indicates fluctuations that do not
follow a regular pattern but occur at irregular intervals. Lastly, randomness refers
to random behavior in the series.

Analyzing time series could involve several activities, including visualizing the
data to identify temporal patterns, identifying statistical models that capture the
series’ characteristics, and forecasting future observations. Techniques such as se-
ries decomposition, autocorrelation, ARIMA (AutoRegressive Integrated Moving
Average) models, and neural network-based models are widely used to analyze and
model time series to make accurate predictions.
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2.1 Time series definition

Time series classification (T'SC) involves modeling a discrete response variable based
on a continuous, ordered sequence of real-valued observations (a time series). These
time series can be either univariate (with a single variable observed at each time
point) or multivariate (involving multiple variables at each time point). For in-
stance, daily stock prices can be treated as univariate time series for tasks like
predicting market trends, while weather data with temperature, humidity, and
wind speed could form a three-dimensional multivariate time series for forecasting
weather conditions.

TSC problems span diverse domains, including electroencephalograms, elec-
trocardiograms, motion data (such as HAR), image outlines, spectrograms, light
curves, audio, traffic levels, electricity usage, and more. The wide range of problem
domains characterizes TSC research.

2.1.1 Time Series (TS)

A time series T = (t1,ta,...,1,) is an ordered sequence of n data points. We
represent the j-th value of 7' by ¢;. If each point ¢; € T represents a single value
(t; € R), the series is a univariate time series (UTS). If each point represents the
observation of multiple variables at the same time point then each point is a vector
t; € R? of length d, and we can refer to it as a multivariate time series (MTS).

2.1.2 Multivariate Time Series (MTS)

A multivariate time series T' = (t1,...,t,) € R¥™" is a sequence of n vectors, where
each ¢; is a vector with d components (sometimes called dimensions). We denote
the j-th observation of the k-th component by the scalar ¢, ; € R. Note that an
MTS can also be viewed as a collection of d separate time series, as this is often
how they are processed in practice. However, the vector representation emphasizes
that we assume the dimensions are synchronized, i.e., all observations in ¢; occur
at the same time point or spatial location.

2.1.3 Dataset

A dataset D = (X,Y) = {(TW, D)}, consists of m time series, where each
T is paired with a label ¢® from a predefined set of discrete class labels C. For
example, T could represent the daily sales data for a store, and ¢ could be a
label indicating whether the sales are above or below a certain threshold.
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2.2 Time Series Classification Models

[68] defined the taxonomy of time series classification algorithms as following:
Distance-based, feature-based, interval-based, Shapelet-based, dictionary-based, convolution-
based, deep learning based and hybrid approaches.

2.2.1 Distance-Based algorithms

Distance-based methods play a crucial role in time series classification defining a
dissimilarity measure between time series, which is then incorporated into classifi-
cation algorithms such as k-nearest neighbor (k-NN) or Support Vector Machines
(SVMs). However, several challenges arise due to the unique characteristics of time
series data:

o Temporal Nature: Time series data are inherently ordered, requiring careful
consideration of their temporal relationships.

» High Dimensionality: Time series often have many data points, making dis-
tance computation complex.

e Noise: Real-world time series data can be noisy, affecting the choice of dis-
tance metric.

o Varying Lengths: Different time series may have varying lengths, posing chal-
lenges for direct comparison.

Two main types of time series distance measures exist:

1. Lock-Step Measures: These compare corresponding points between two
time series (e.g., Euclidean distance).

2. Elastic Measures: FElastic measures create non-linear mappings to align
series, allowing one-to-many comparisons (e.g., Dynamic Time Warping).

Additionally, there are structure-based and edit-based distance measures. It
was explored three primary approaches for time series classification:

1. Direct Distance Use: Distances are directly employed with k-NN classifiers.

2. Feature Transformation: Distances are used to transform time series into
feature vectors.

3. Kernel Methods: Distances contribute to kernel functions for time series
classification.

Choose an appropriate distance measure is crucial for accurate classification.
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K-Nearest Neighbor (k-NN)

The k-NN approach utilizes existing time series distances within classifiers. Specif-
ically, the 1-NN classifier is commonly used in time series classification, thanks to
its performance and simplicity [26, 54]. Given a distance measure and a time se-
ries, the 1-NN classifier predicts the class by identifying the closest object from the
training set. However, it’s important to note that this method is sensitive to noise
in the training data, a common characteristic of time series datasets.

Distance Features

In this group of features, methods employ time series distance measures in order
to create feature vectors. these approaches handle the challenges presented in time
series classification (e.g., handling ordered sequences and varying instance lengths)
by transforming series into order-free vectors in R™. The goal is to fill the gap
between time series and conventional classification by using classifiers based on
vector while still using the potential of time series distances. Calculating distance
features is a preprocessing step, compatible with any classifier.

Distance Kernel

Methods in this category don’t directly transform time series using existing dis-
tances. Instead, they construct kernels specifically for time series. These kernels
capture underlying structures and enable powerful learning algorithms to operate
directly on pairwise relationships between time series instances.

2.2.2 Feature-Based algorithms

When dealing with time series data, one common approach is instance-based classi-
fication, like distance-based algorithm, where the focus is on comparing time series
directly by measuring the similarity or distance between their raw data points. For
instance, if you have short time series with meaningful patterns, you can compare
them to known instances by matching them based on similarity. This approach
involves finding the nearest neighbors for a given time series. However, it can be
computationally expensive, especially for large datasets or long time series. Ex-
amples of instance-based classifiers as we saw before include k-nearest neighbors
(k-NN) and dynamic time warping (DTW) algorithms. These methods directly
operate on the raw time series data without feature extraction. An alternative ap-
proach is feature-based classification. Instead of comparing raw data points, a time
series can be represented using a set of derived properties (features). These features
summarize the entire time series, allowing us to characterize them as series-to-vector
transforms, as shown in the Figure 2.1 . Common features include statistical mo-
ments (such as mean and variance) [70], frequency domain features (e.g., Fourier
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coefficients) [69], and autocorrelation properties [31]. By extracting relevant fea-
tures, it simplify the classification process and reduce the dimensionality of the
data. The typical pipeline involves feature extraction followed by a classifier (e.g.,
decision trees, neural networks). Examples of feature-based classifiers include Ran-
dom Forests and Support Vector Machines (SVMs). In summary, feature-based
classification uses informative features extracted from time series, making it com-
putationally efficient and providing insights into the dataset.

Training Data

S=S<
—

Unseen Case ‘

Feature Vector
_>|f1|f2|f3| ... 1]

— Transformer

0 -

Predicted Class

Figure 2.1: Figure of the process of feature extraction of a time series followed by
a classifier, image taken from [68] with permission

2.2.3 Interval-Based algorithms

What we actually saw is two categories of algorithms: instance-based and feature
based. Instance-based classifiers predict the class of a test instance by comparing
it directly to training instances, relying on measures of similarity or distance be-
tween time series. Feature-based classifiers, on the other hand, build models using
derived features from the time series. An alternative approach within feature-based
methods is the use of interval-based features. Interval features are calculated from
specific segments or intervals of the time series, such as "the interval between time
10 and time 30". Various types of features can be derived from these intervals, but
simple and interpretable features like the mean and standard deviation are often
preferred. For example, one might consider "the average value of the time series
segment between time 10 and time 30".

Interval-based classifiers, as introduced by [23], extract intervals of fixed lengths
and offsets from the time series and compute summary statistics on these intervals.
Many approaches to interval-based classification use some form of random selection
to choose intervals, essentially employing a randomized feature selection method.
These randomly selected interval locations are consistent across all series in the
dataset, and many interval-based classifiers combine features from multiple inter-
vals to improve robustness and accuracy. The motivation for using intervals is to
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reduce the impact of noise and capture more localized, phase-dependent proper-
ties of the time series that might be informative for classification. Interval-based
classifiers often adopt a random forest ensemble model, where each base classifier
consists of a pipeline of transformation followed by a tree classifier. This approach,
injects diversity into the model by randomizing the intervals for each tree in the
ensemble. By focusing on interval-based features, classifiers can mitigate the ef-
fects of noise and capture important local temporal patterns that are missed by
global feature methods, due to this we can have potentially more accurate and
interpretable models.

2.2.4 Shaplet-Based algorithms

Shapelet-based algorithms offer a powerful approach to time series classification,
particularly in cases where traditional instance-based methods struggle. According
to [91], the poor performance of instance-based classifiers is often attributed to the
presence of noise in the data, which can obscure the subtle differences in the shapes
of time series. Shapelet-based methods address this issue by focusing on smaller,
more discriminative subsections of the time series, known as shapelets.

Shapelets are essentially small "sub-shapes' extracted from the training data
that are highly indicative of class membership. shapelet-based classifiers, by com-
paring these local features rather than the entire time series, can provide more ro-
bust and accurate results than other classic approaches, especially in noisy datasets,
where global features used by other state-of-the-art classifiers might be less effec-
tive. One of the key benefits of shapelets is their interpretability, indeed they are
derived from actual subsections of the time series, so they can be directly related
to specific patterns or events within the data. This can help domain experts un-
derstand which features are most important for classification and provide insights
into the underlying processes generating the data. In practice, shapelets are sub-
series from the training data that are independent of the phase of the time series.
This means that they can be used to discriminate between classes based on their
presence or absence, regardless of where they appear in the series. To evaluate a
shapelet, the algorithm slides the subseries across the time series and calculates the
z-normalized Euclidean distance between the shapelet and the underlying window.
The distance between a shapelet and any time series, denoted as sDist(), is the
minimum distance over all such windows. Figure 2.2 provides a visualization of
the sDist() process. In this figure, a shapelet S is shifted along a time series A. At
each position, the distance between the shapelet and the corresponding window in
the time series is calculated. The minimum distance and its corresponding offset
are recorded as the sDist() for that shapelet and time series pair. This process
ensures that the shapelet is matched to the most similar segment of the time series,
providing a robust measure of similarity.

The quality of a shapelet is evaluated based on its ability to discriminate between
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Figure 2.2: Visualization of shapelet distance operation sDist(), image taken from
[68] with permission

different classes. Once the distances between a shapelet and all training series are
computed, these distances can be used as features in a classifier.

2.2.5 Dictionary-Based algorithms

Dictionary-based methods offer another effective approach to time series classi-
fication by focusing on phase-independent subseries. These methods differ from
shapelet-based algorithms in that, instead of measuring the distance to a specific
subseries, they convert each window of the time series into a sequence of discrete
symbols, commonly referred to as words. The classification is then based on the
frequency of these words, which is why these methods are often described as bag-
of-words approaches.

The fundamental structure of dictionary-based algorithms involves several key
steps. Initially, a window of a fixed length w is moved across each time series. Each
subseries captured by this window is then transformed into a string or pattern that
represents it. To achieve this, the subseries is first compressed from length w to
a shorter length 1. This compression reduces the dimensionality of the subseries,
making the following steps more manageable.

Once compressed, the subseries is discretized, meaning that each of the 1 data
points is converted into one of a predefined set of o discrete values. This process,
that is entirely showed in figure 2.3,effectively converts the continuous time series
data into a sequence of symbols or words. The occurrence of each resulting word
r is then recorded in a histogram, also known as a bag. During a stage called
numerosity reduction, contiguous series of identical words are counted as a single
occurrence to avoid over-representation of repetitive patterns.

Each time series is thus represented by a separate histogram that captures the
frequency of different words. To classify a new instance, the algorithm compares
the histogram of the new time series to the histograms of the training set. This
comparison is typically done using a distance measure, with the 1-nearest neighbor
classifier being a common choice. However, other classification methods can also
be employed depending on the specific requirements of the problem.
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Figure 2.3: Visualization of the process of transformation of a T'S into the dictionary
model, image taken from [68] with permission

2.2.6 Convolution-Based algorithms

Convolutional neural networks (CNNs), that has some convolutional layers, have
shown good results in time series classification. These networks contain a large
number of trainable parameters that are optimized through stochastic gradient
descent or its variants. Compared to classic algorithms like logistic regression or
support vector machines, CNNs typically require a larger sample size to effectively
train these parameters due to their complexity.

for this reason, some algorithms [21, 22| have been developed to extract fea-
tures from time series using numerous random convolutional kernels. Here, all the
parameters of the kernels (including length, weights, bias, dilation, and padding)
are generated randomly from predefined distributions. FEach kernel is then applied
to a time series through a sliding dot product operation, producing a series-to-
series transformation known as an activation map. Instead of extracting a single
feature from each kernel (such as the maximum or mean, which is common in tra-
ditional CNNs), these algorithms extract two features: the maximum value and the
proportion of positive values within the activation map.

Convolution-based algorithms typically follow a standard approach as shown
in Figure 2.4, the process starts with the formation of activation maps for each
convolution. These maps then undergo pooling operations to extract relevant fea-
tures, specifically the maximum and the proportion of positive values. The resulting
features are concatenated into a single feature vector, which is then used for clas-
sification. A ridge regression classifier is usually used for this purpose.
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Figure 2.4: Visualization of a tipical convolution based approach, image taken from
[68] with permission
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2.2.7 Deep Learning-Based algorithms

Deep learning has significantly advanced time series classification by offering meth-
ods to automatically learn complex patterns from data. Among various deep learn-
ing techniques, Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs), including advanced forms like Long Short-Term Memory (LSTM)
are particularly prominent.

CNNg, initially designed for image processing, have been adapted effectively for
time series classification, using convolutional layers to extract local patterns and
features from time series data. These layers apply filters to the input time series,
performing convolutions to produce feature maps that capture specific patterns
such as trends or seasonal variations. Pooling operations, like max pooling or av-
erage pooling, reduce the dimensionality of these feature maps, retaining the most
important features while reducing computational complexity. After several convo-
lutional and pooling layers, fully connected layers combine the extracted features
to make final classification decisions.

RNNs are specifically designed to handle sequential data, making them well-
suited for time series classification. They maintain a hidden state that captures
information from previous time steps, allowing them to model temporal dependen-
cies. However, vanilla RNNs can suffer from problems like vanishing and exploding
gradients when dealing with long sequences. LSTMs address these limitations by in-
corporating memory cells and gating mechanisms (input, forget, and output gates)
to control the flow of information, making them capable of learning long-term de-
pendencies.

Combining CNNs and RNNs we can have the strengths of both architectures.
A common approach is to use CNN layers to extract spatial features from the time
series data, followed by RNN layers to capture temporal dependencies. This hybrid
model can be particularly powerful for complex time series classification tasks.
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2.2.8 Hybrid methods

The nature of the data and the specific problem often dictate which category of al-
gorithm is most appropriate for time series classification. Without prior knowledge
of the best approach, the most accurate algorithms on average tend to combine mul-
tiple transformation types into a hybrid model. This strategy uses the strengths of
different methods to create a more robust predictive model. A common approach
to enhance the performance of a final model is to average the predictions of sev-
eral independently trained models. Traditional ensemble methods, such as random
forests, consist of base classifiers that all belong to the same type of algorithm, such
as decision trees, however, this approach limits the model’s advantages. In contrast,
using multiple types of algorithms within an ensemble allows for learning a more
diverse representation of the data. This diversity can capture various aspects of
the time series, which might be missed by a single type of algorithm. For time
series classification, ensemble models that integrate different types of algorithms,
such as dictionary approaches, shapelet-based algorithms, and convolutional neu-
ral networks, have been developed [6, 5, 67]. These hybrid models often achieve
state-of-the-art performance in terms of predictive accuracy at the cost of high
computational complexity.

2.3 Conclusion

In this chapter, we have explored and presented a comprehensive overview of various
time series classification types of models. The models covered include traditional
machine learning algorithms, as well as more advanced methods and hybrid models
that combine multiple approaches. We conducted extensive evaluations on these
models using two distinct datasets based on anomalous transport phenomena, which
present unique challenges due to their complex and often unpredictable nature. The
first dataset was synthetically generated, the second dataset was experimental, fo-
cusing on real-world data. We evaluated seven models on these datasets, aiming to
use the best model for each type of algorithm, so, as described in [68], we employed
the following models: HIVE-COTE 2.0 (HC2) [67], Hydra+MultiROCKET (multi-
Hydra) [22], RDST [33], drCIF [67], Weasel 2.0 (weasel-d) [85], freshPRINCE [64],

and inceptionTime [42].

30



Chapter 3

Experiments

Anomalous transport refers to nonequilibrium processes that cannot be described
using standard methods of statistical physics. This novel class of transport phenom-
ena has recently been observed in a wide variety of complex systems. A transport
process x(t) is considered anomalous if its mean square displacement does not in-
crease linearly over time [50, 35, 94]. Anomalous transport is observed in a wide
range of phenomena, including the movement of molecules within living cells [82],
dynamics on cell membranes [71], disordered solid-state systems [12], telomeres
within the nuclei of mammalian cells [14], soil transport [61], and heat transfer in
low-dimensional systems [52]. Extensive research has been conducted to investigate
its microscopic origins [50, 43, 44, 49, 41]. The statistical properties of transport
are described by the probability density of the displacement P(Ax,t). However,
this density is often unknown, so transport is typically studied in terms of the
asymptotic behavior of its moments over time:

(Az(t)]) ~ 77

where () mean the average over a group of trajectories, p € R is the order of the
moment, and y(p) is referred to as the spectrum of the moments of the displacement.

The exponent n = ¥(2) denotes the mean-square displacement. We can have
four different kind of transport: subdiffusive when 0 < n < 1, diffusive when
n = 1, superdiffusive when 1 < 7 < 2, and ballistic when n = 2.

Transport is termed scale-invariant when the probability density of displace-
ments Az follows the scaling P(Ax,t) = ¢tV F(Az/t") with constant v, meaning
all moments of the displacement are characterized by a single scale t. The spectrum
of the moments of the displacement will then be a linear function of p: v(p) = vp.

When the spectrum v(p) is nonlinear, the transport is called strong anomalous
diffusion [17]. This phenomenon has been observed in various simple stochastic
systems [4], polygonal billiard channels [79], one-dimensional maps [73], running
sand piles [16], stochastic models of inhomogeneous media [§8], diffusion in laser-
cooled atoms [1], experiments on the mobility of particles inside living cancer cells
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[32], particles passively advected by dynamic membranes [87], and bulk-mediated
diffusion on lipid bilayers [51]. Another studied case involves different scalings of
the bulk and the tail of the probability distribution, resulting in a piecewise linear
form of the scaling exponent v(p):

(p) = vp for p < p.,
T p—(1—=v)p. forp=>p..

Strong anomalous diffusion is thought to be generic [76, 93] for dynamics with
fat-tailed waiting-time distributions. In those years, its dynamical basis has been
analyzed through generalizations of the central limit theorem and non-normalizable
densities [30, 76]. Concurrently, numerous studies have explored the relationship
between the properties of deterministic dynamics and transport. Generally, chaos
is associated with rapid decay of correlations and normal diffusion, whereas non-
chaotic dynamics often leads to anomalous transport and slow decay of correlations
[50, 94, 49, 45, 78]. Stochastic processes, while often resembling chaotic dynamics,
can result in either normal or anomalous diffusion depending on their correlation
decay rate [25, 18].

In this chapter, we will focus specifically on both the anomalous transport of
heat and anomalous discharge of a capacitor. Transport in materials can exhibit
anomalous behavior due to various factors such as fractal-like structures, varying
thermal conductivity, and non-uniform energy distribution. Understanding these
phenomena is crucial for applications in thermal management, energy storage, and
the design of materials with tailored thermal properties. Our objective is to study
the anomalous transport through time series data analysis. This thesis explores the
domain of time series classification through the application of various algorithms on
two distinct datasets and case studies where we aims to evaluate the performance of
these algorithms on both artificially generated and experimentally obtained data.
The first dataset was created through simulations to study the heat transport of
a sensor immersed in a fluid under an applied voltage, the second task utilized
experimentally obtained data, specifically the discharge of a capacitor where each
experiment resulted in a time series of the capacitor’s voltage.

3.1 Sensor Case Study

I conducted my thesis work at ELTEK GROUP S.p.A, that is a company based in
Casale Monferrato, Italy, specialized in the design, development, and production
of advanced electronic and electromechanical components. They focuses on creat-
ing high-precision parts for various industries, including automotive, medical, and
industrial applications. There, we studied the heat transport in a sensor immersed
in a fluid. The sensor was modeled in a simplified manner, consisting of two par-
allelepipeds of 500 x 500 x Z um? connected by a filament of 100 x 200 x Z um?.
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The same material was used for both the main bodies and the filament, with two
materials tested: platinum and copper. Our objective was to simulate an applied
voltage to the sensor in order to measure the temperature of the filament, and then
analyze the data using artificial intelligence to determine the type of transport oc-
curring. The sensor was immersed in various fluids for testing. Specifically, five
different fluids were tested: water, ethanol, a 50% mixture of water and ethanol,
hydrogen, and air. By conducting these experiments, we aimed to understand how
different fluid environments affect the heat transport properties of the sensor and
to explore the capability of Al in recognizing the transport mechanisms involved.

3.1.1 COMSOL Simulations

COMSOL Multiphysics is a simulation software platform used for modeling and
solving complex scientific and engineering problems. It is widely recognized for
its versatility and powerful capabilities in multiphysics simulations, where multiple
physical phenomena interact with each other. The core strength of COMSOL Mul-
tiphysics lies in its ability to handle coupled physics problems seamlessly, whe users
can combine various physical models such as fluid dynamics, heat transfer, struc-
tural mechanics, electromagnetics, chemical reactions, and more within a single
simulation environment. The software provides an intuitive graphical user inter-
face (GUI) that simplifies the setup, simulation, and post-processing of models. The
tree-like model builder guides users through the simulation process, from defining
geometry and materials to specifying physics and meshing. COMSOL comes with a
wide range of physics modules that can be added as needed, each designed to han-
dle specific types of physical phenomena. These modules include the Heat Transfer
Module, AC/DC Module, CED Module, among others.

Geometry

As previously mentioned, the setup is fairly simple. We have a sensor composed
of two squares and a rectangle situated within a cube, as shown in the figures
3.1(a) and 3.1(b). This sensor undergoes extrusion to render the entire structure
three-dimensional. The squares have dimensions of 500 x 500 micrometers, while
the filament represented by the rectangle measures 100 x 200 micrometers. The
extrusion thickness, denoted as s, is variable, as different thicknesses were tested
to understand how heat transport behaves as a function of this parameter. In the
initial analysis, five thicknesses were examined: 100 nm, 200 nm, 500 nm, 1000 nm,
and 2000 nm.

Materials

Once the geometry is chosen, the materials are inserted. the materials should be
associated with the figure of the sensor and the volume of the fluid, in our case, two
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materials were chosen for the sensor: platinum and copper; and five different fluids
in which to "immerse" the sensor, which are: water, ethanol, 50 percent mixture of
water and ethanol, hydrogen and air. Each material that is placed in the library
contains properties, namely: electrical conductivity, thermal conductivity, density,
heat capacity at constant pressure, and relative permittivity. We modified some
properties related to the sensor materials, particularly electrical conductivity so
that it was time-dependent, to make it more realistic, since we were given a constant
value by the software, and thermal conductivity (which we will see how later) to
simulate anomalous heat transport.

Equation

At this point the physics will be chosen to be applied to our model, as already
mentioned we want to simulate a sensor immersed in a fluid to which a certain
voltage is applied, and what we want to measure is the temperature obtained by the
sensor over time. Comsol provides different modules to simulate different situations,
in our case we had to use three of them: heat transfer in solids and fluids because
of the heat exchange between the sensor and the fluid, electric currents because of
the voltage we have to apply at the ends of the sensor, and laminar flow to describe
the turbulent flow of the fluid because of the high temperature reach by the sensor.
Now we will see the equations in detail:

e Heat transfer in solids:
oT
pcpa—i-v-q:() (3.1)

q=—kVT (3.2)
where:
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— p is the density of the material.
— ¢, is the specific heat capacity of the material at constant pressure.
— T is the temperature.

— k is the thermal conductivity of the material.

e Heat transfer in fluids:
oT
e +pcu-VI'+V.-q=0 (3.3)

q=—kVT (3.4)

where:

p is the density of the material (fluid).

— ¢, is the specific heat of the material (fluid) at constant pressure.

T is the temperature.

k is the thermal conductivity of the material (fluid).

— u is the velocity vector.

e Thermal insulation:

-n-q= (3.5)
where:
— n is the normal vector.
— q is the heat flow.
e Surface to ambient radiation:
—n-q=ceo(Tt , —T" (3.6)

where:

— n is the normal vector.

q is the heat flow.

€ is the surface emissivity.
— Tomp is the ambient temperature.

— o is the Stefan-Boltzmann constant.
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Laminar flow:

0
pa—‘;+p(u~V)u:v-[—pI+k]
dp B
E—FV-(pu)—O

k=pu (Vu + (Vu)T) — gu(v ~u)l

where:

p is the density.

p is the pressure.
— k is the viscous stress tensor.
—  is the dynamic viscosity.

— u is the velocity vector.
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e Current conservation:

V-J=0 (3.10)

oD
J—UE"‘E—FJe (311)
E=-VV (3.12)

— J is the current density vector.
— 0 is the electrical conductivity.

E is the electric field.

D is the electric displacement field.

— J. is the external current density.

e Electric insulation:

n-J=0 (3.13)

— J is the current density vector.

— n is the normal vector.

Mesh

Finally, meshing had to be applied. This technique involves discretizing the geo-
metric domain into smaller, manageable elements to perform numerical simulations.
COMSOL provides various types of automated meshes and also allows for custom
mesh construction. For our model, two different types of meshes were chosen:

o Free Tetrahedral Mesh: This mesh type was applied to the outer cube, rep-
resenting the fluid volume as you can see in Fig 3.1(c). The free tetrahedral
mesh automatically generates tetrahedral elements, which are well-suited for
complex geometries.

o Custom Mesh: This mesh was manually constructed and applied to the sensor
as you can see in Fig 3.1(d). It consists of:

— A grid of 20 x 20 squares applied to the two square areas of the sensor.

— A grid of 15 x 5 rectangles applied to the filament area.
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3.1.2 Simulations Analysis

As mentioned earlier, different types of simulations were conducted, primarily vary-
ing five factors: the fluid, the sensor material, the sensor thickness, the time and
frequency of temperature sensing, and the voltage applied to the sensor terminals.
The goal was to plot the temperature trend for each case to understand its char-
acteristics better. The temperature was recorded at each instant by volumetrically
averaging the filament area, the rectangle between the two squares that can be seen
in 3.1(b).

Classic Transport

Initially, simulations were performed using only the platinum sensor while varying
the other characteristics. The temperature trends were analyzed considering all
fluids: water, ethanol, a 50% mixture of water and ethanol, air, and hydrogen, as
well as all sensor thicknesses: 100 nm, 200 nm, 500 nm, 1000 nm, and 2000 nm,
with an applied voltage of 1V.

Initial simulations were conducted over a time range from 0 to 1 second, consid-
ering 10 time instants. For example, in Figure 3.1, we can observe the temperature
trend of the sensor immersed in water, showing a curve for each thickness. The
numbers in the legend correspond to the thickness in nanometers. The first thing
that stands out in this figure is the high temperature reached from the very first
moments. Indeed, all the figures show a very high initial spike, which then re-
mains at the same level. Additionally, as expected, increasing the thickness also
increases the temperature. Another consistent pattern is the comparison of tem-
peratures among the fluids. Essentially, we can notice from the figure 3.2 that
while the shapes are similar, the temperature in ethanol is noticeably higher than
in the other two fluids. This is better illustrated in the figure 3.3. In this case,
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the figure shows 10 curves: 5 corresponding to the temperature measured in wa-
ter with different thicknesses, exactly as shown in the previous figure 3.1, and the
other 5 in ethanol. As can be seen, the shape of the curves for ethanol is very
similar to those for water but reaches higher temperatures. The curves resulting
from experiments conducted with gases show different shapes, as can be seen in
Figure 3.4. In this case, the 5 curves corresponding to the different thicknesses
are also shown, and again an initial spike can be observed. The difference lies in
the behavior after the first moment in time, which tends to be increasing for the
thinner layers. As expected, the temperature of the sensor immersed in a gas is
significantly higher, which can also be observed in Figure 3.5, showing a temper-
ature comparison between the sensor immersed in hydrogen (blue) and the sensor
immersed in air (red). In this case, it can be seen that, in addition to the generally
high temperatures, the temperatures of the sensor immersed in air are higher than
those of the sensor immersed in hydrogen, given the same thickness. What stands
out in this initial analysis are the somewhat high temperatures and the very steep
initial spike. Therefore, we focused our analysis on two different aspects: First, we
decided to reduce the analysis time to 0.2 seconds with a time step of 1074 seconds
to understand what happens during the spike while in the second case, we lowered
the voltage applied to the sensor to 0.1V to reduce the temperature.

Sensor in water
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o
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T
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Time (s)

Figure 3.1: Sensor in water

Regarding the latter case, i.e., simulating with an applied voltage of 0.1V, a
significant reduction in temperature is immediately noticeable. In fact, looking
at Figure 3.6 and comparing it with the previous one, we can see that the shape
has remained almost unchanged, but the temperature has dropped dramatically.
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Figure 3.2: Comparison between water, ethanol and mixture of water and ethanol
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Figure 3.3: Comparison between water and ethanol with different thickness dimen-
sion

Observing the purple curve, which corresponds to the 2000nm thickness, a difference
of about 1000 degrees Celsius can be noted. The temperature difference between
water and ethanol remains the same, as seen in Figure 3.8. However, observing the
curves for the sensor immersed in hydrogen 3.7, a substantial difference in shape

40



3.1 — Sensor Case Study

Sensor in hydrogen
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Figure 3.5: Comparison between hydrogen and air with different thickness dimen-
sion

can be seen, in this case the curves seem to diverge. Similarly, the curves for the
sensor immersed in air are very similar. From Figure 3.9, it can be observed that the
temperature difference between air and hydrogen is maintained, with the difference
that in this case the curves have a very similar shape.

In the analysis of the first case, related to the reduction of time, it can be
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seen that in the very first moments, the temperature reaches its highest points,
then proceeds as previously observed, as shown in Figures 3.10(a), 3.10(b). In this
case, the two figures show 3 curves for each fluid, corresponding to three filament
thicknesses: 100 nm, 500 nm, and 2000 nm. Simulating all five cases was avoided
due to the high computational cost associated with running simulations over all
these time instants, while still demonstrating the trends of the most extreme curves.
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Figure 3.6: Sensor in water with 0.1V applied

The same experiments were conducted using copper as the sensor material. As
expected, the temperatures for copper are generally higher. However, the shape of
the curves is very similar to those for platinum. Figures 3.10 and 3.11 show the com-
parison between the temperature of a platinum sensor and that of a copper sensor
measured in water and in hydrogen. The five curves for each material correspond
to the five different sensor thicknesses. As mentioned earlier, the temperatures are
higher, but the shapes are nearly identical.

Anomalous Transport

As previously mentioned, anomalous transport refers to non-equilibrium phenom-
ena that cannot be described by standard physics methods. These phenomena can
occur in various cases, such as when an object is very small (but not extremely
tiny). In these cases, the object’s dimensions are large enough to avoid quantum
effects, yet small enough for classical physics to be insufficient. This intermediate
scale can lead to unique behaviors where traditional transport models fail, and more
sophisticated approaches are required to accurately describe the system’s dynamics.
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Sensor in hydrogen
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Figure 3.7: Sensor in hydrogen with 0.1V applied
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Figure 3.8: Comparison between water and ethanol with different thickness dimen-
sion with 0.1V applied

Heat transport processes in various low-dimensional systems no longer follow
Fourier’s law, which is a diffusion law.
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Figure 3.9: Comparison between hydrogen and air with different thickness dimen-
sion with 0.1V applied
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Fourier’s law describes a well-known macroscopic behavior, which is fully char-
acterized once the conductivity, k, and the initial and boundary conditions are
given. Transport is called anomalous when this is not the case, and it is identified
by deviations from the linear time dependence of the mean-square displacement of
the transported quantity.

Several models of anomalous diffusion have been proposed. In our study, we
chose the model presented in [9], known as the Time-dependent Diffusion Coeffi-
cient (TdDC) model. This model considers a modification of the diffusion equation
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Figure 3.10: Comparison between platinum and copper with different thickness
dimension with 1V applied in water
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Figure 3.11: Comparison between platinum and copper with different thickness
dimension with 1V applied in hydrogen

that accounts for a general growth rate, thereby describing anomalous behavior.
Specifically, it is assumed a concentrated initial distribution, u(x,0) = d(z), and
that the spreading has a Gaussian profile with diffusion coefficient D, zero mean,
and mean-square displacement growing as t7, with « in the range [0,2].
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This leads to a model analogous to Fourier’s law, described as follows:

du 1 0%u
T Dt 92 (3.15)
For v = 1, the above equation coincides with the diffusion equation 3.14 for
v # 1, it describes anomalous diffusion. In Comsol, the classical diffusion equation,
is used, as shown in 3.1, 3.3. However, the thermal conductivity coefficient k of
the material can be modified. To induce the TdDC, the following modification was
made:

k=Fk-t! (3.16)

setting D = k in 3.15. After this modification, simulations were conducted to
observe any differences. Figure 3.12 represents a simulation of a platinum sensor
with a thickness of 100 nm immersed in water, conducted with three different values
of v: 0.5, 1.5, and 2. As can be seen, the shape varies based on the value of =,

but at 1 second, they all have the same value, as expected, since according to 3.16,
k=k.
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Figure 3.12: Comparison between Fourier transport and the TdDC with v = 0.5,
v = 1.5 and v = 2 using a platinum sensor with 1V applied in water

3.1.3 ML Analysis

Based on the results obtained in the previous chapter, it was decided to use the
simulations conducted with an applied voltage of 0.1V to keep the temperature low.
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Both platinum and copper were considered, as the shapes of the curves generated by
these two materials were found to be similar. Additionally, a simulation duration of
8 seconds was chosen, as it appeared sufficient to discriminate between the different
transport models.

Datasets Creation

In this phase, two univariate datasets were generated, using a single feature for each
sample, which in this case is the temperature. Specific experiments were designed
for this phase, always considering the five fluids in which the sensor is immersed:
water, ethanol, a 50% mixture of water and ethanol, hydrogen, and air. As men-
tioned earlier, experiments were conducted for 8 seconds, with a measure each 0.1
second, resulting in 80 time points, with an applied voltage of 0.1V. However,
unlike the previous experiments, seven different thicknesses were considered to cre-
ate a broader dataset that are: 100, 200, 500, 1000, 1200, 1400, and 2000 nm. So,
for each fluid, seven experiments were conducted, totaling 35 experiments, which
were doubled since each simulation was performed for both platinum and copper.

Experiments were conducted using four different diffusion models: the Fourier
model and the TdDC model with v = 0, 1.5, and 2. Thus, with 70 experiments
per diffusion model, we obtained a dataset of 280 samples. Figure 3.13(a) shows
7 samples per class. As can be seen from the images, there are some outliers that
have a different shape compared to other samples in each class. These samples
are related to the experiments conducted using gases (hydrogen and air) as the
immersion fluid. Consequently, a new dataset was created, which is a subset of this
one, using only the experiments conducted with liquids, this new dataset counts 168
samples. As shown in Figure 3.13(b), these are significantly more homogeneous
concerning their respective classes.

Preprocessing

Upon obtaining the complete dataset, as seen in the images, the data are on different
scales. Although the shapes are quite similar for each class, the temperatures vary.
As mentioned in 1, many machine learning algorithms achieve better results when
the inputs are scaled to a standard range. Even though the inputs are time series,
the preprocessing techniques are very similar, in this case, standardization was
applied. Specifically, for each sample, the mean and standard deviation of the time
series were calculated, then the mean was subtracted and the result was divided
by the standard deviation. This process ensures that each sample has a mean of 0
and a standard deviation of 1. Figures 3.13(c) and 3.13(d) show the two datasets
after normalization.
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All the experiments described in this thesis were conducted using Google Colab,
that is a cloud-based platform that allows users to write and execute Python code
in a web-based interactive environment. Additionally, the source code for the ex-
periments can be accessed through the following GitHub repository *.

The experiments were conducted as follows for both datasets: the dataset was

Thttps://github.com/Peppepelle99/ATP-C
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divided into two parts, with 60% of the data used for training and 40% for testing.
A substantial portion was allocated to the test set because the datasets are not
very large, and we want to evaluate the model’s ability to generalize. The 80%
Of the training portion was used for actual training and 20% for model validation.
Figure 3.13 shows the dataset division. Because the datasets are small, k-fold
cross-validation with k=5 was used to explore the entire training dataset. Two
metrics were used to evaluate the models: the mean and the standard deviation of
accuracy across the 5 folds. Using k=5 results in an 80%-20% split for training and
validation sets of the training dataset for each fold. Therefore, for each fold, the
model undergoes a training phase using the training split, makes predictions on the
validation split, and calculates accuracy by comparing the actual labels with the
predicted ones, as shown in Figure 3.14.

VALIDATION

- 0/
TRAINING DATA - 80% 20%

Figure 3.13: Division of the dataset

Models used

The models selected for the experiments were all taken from the aeon framework.
This toolkit is dedicated to time series analysis and contains models for various
tasks, including forecasting, classification, regression, clustering, and anomaly de-
tection. The aeon team has compiled extensive literature on time series and consol-
idated all the information on their website (see the footnote ?). Most of the content
is related to classification and includes all types of models.

In our case, seven models were selected, one for each category described in
the section 2. The models were chosen based on the analysis done in [68] which

https://www.aeon-toolkit.org/en/latest /api_ reference.html
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Figure 3.14: visualization of the experiment

classified the state of the art in time series classification using the extensive UCR
archive as a benchmark. The models in question are: HIVE-COTE 2.0 (HC2),
HYDRA+MultiROCKET (multiHydra) , RDST, DrCIF, Weasel 2.0 (weasel-d),
freshPRINCE (freshP), and inceptionTime (inceptionT).

« multiHydra: Hydra [22] is a dictionary-based method that utilizes convolu-
tional kernels, integrating features from both ROCKET [21] and traditional
dictionary methods. It transforms the input time series using a set of random
convolutional kernels, organized into g groups with k kernels per group. At
each time point, the method counts the kernels that best match the input time
series for each group. These counts are then used to train a linear classifier.
Similar to other dictionary methods, Hydra uses patterns that approximate
the input and generates features representing the counts of these patterns.
However, unlike typical dictionary methods, Hydra employs random patterns
represented by random convolutional kernels. Hydra has two distinguishing
features: the kernels are organized into groups and counts the kernels in each
group that represent the closest match to the input at each time point. In
essence, Hydra treats each kernel as a pattern in a dictionary and each group
as a separate dictionary. The kernels in each group compete to be counted at
each time point, effectively capturing the most representative patterns.

ROCKET transforms input time series using a large number of random con-
volutional kernels (by default, 10,000), and uses these transformed features to
train a linear classifier. The two key aspects of Rocket in terms of accuracy
are the use of dilation and PPV (proportion of positive values) pooling. Mul-
tiRocket represents an extension of Rocket, adding three additional pooling
operations (besides PPV) and transforming both the original time series and
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the first-order difference. MultiRocket [89] uses a fixed kernel length of 9,
and a small fixed set of 84 kernels, bias values drawn from the convolution
output, and a fixed set of dilation values relative to the length of the input
time series. It only produces PPV features, enhancing the model’s ability to
capture complex patterns in the data.

The combination of Hydra with MultiRocket, referred to as Hydra+MultiRocket
obtain the strengths of both approaches. Hydra’s structured grouping and
competitive counting mechanism, combined with MultiRocket’s advanced pool-
ing operations and first-order difference transformation, create a powerful and
versatile time series classification model.

RDST: The Random Dilated Shapelet Transform (RDST) [33] is a shapelet-
based algorithm that use different mechanism from convolutional approaches.
Unlike traditional shapelet algorithms that search for the best shapelets within
the training dataset, RDST adopts a more efficient and scalable strategy by
randomly selecting a vast number of shapelets from the training data. These
shapelets typically range from thousands to tens of thousands. Features de-
rived from these randomly selected shapelets are then used to train a linear
Ridge classifier. A key innovation of RDST is the employment of dilation
with shapelets. Dilation is a form of down-sampling that defines spaces be-
tween time points. When a shapelet with dilation x is compared to the time
series, it matches against time points that are x steps apart, effectively allow-
ing the algorithm to capture patterns at different temporal resolutions. This
is particularly advantageous in time series data where relevant patterns may
occur at varying scales and intervals. RDST represents a blend of traditional
shapelet-based methods and modern convolutional techniques, making it a
powerful algorithm for capturing complex temporal patterns in time series
data. Its ability to handle large datasets and uncover multi-scale patterns
has proven effective in a wide range of applications.

DrCif: The Time Series Forest (T'SF) [24], is a foundational interval-based
tree ensemble method. In TSF, each tree is constructed using /m intervals,
where m is the length of the time series. These intervals are selected randomly
in terms of position and length but are consistent across all series in the
dataset. For each interval, mean, variance, and slope are calculated in order
to build a feature vector. This feature vector serves as the basis for building
each tree, and predictions are made using the features extracted from the
same intervals.

The Canonical Interval Forest (CIF) [65] extends TSF by improving accuracy
through the integration of more informative features and increasing diversity.
Similar to other interval-based approaches, CIF is still an ensemble of decision
tree classifiers, but in addition to the mean, standard deviation, and slope,
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CIF incorporates Catch22 features [57], which are a set of 22 time series
features that are both interpretable and highly discriminative. Intervals are

still generated randomly, with each tree selecting k = \/m+/d intervals, where
d is the number of dimension.

The Diverse Representation Canonical Interval Forest (DrCIF) [67], enhances
CIF by incorporating two new series representations: periodograms and first-
order differences. For each of these three representations (the original series,
periodograms, and first-order differences), DrCIF randomly selects intervals

using the formula (4 + \/7v/d)/3, where r is the length of the series for a
given representation. These intervals are concatenated into a comprehensive
feature vector, which is then used to train the ensemble of decision trees.
This approach not only maintains the phase-dependent interval selection but
also obtain diverse representations to capture a broader range of temporal
patterns, thereby enhancing the classifier’s performance.

WEASEL-D: The Word Extraction for Time Series Classification [84], is
a pipeline classifier that focuses on identifying words whose frequency counts
can distinguish between different classes while discarding those without dis-
criminatory power. The classifier generates histograms of word counts over
a wide range of window sizes and word length parameters, including bigram
words derived from non-overlapping windows. A Chi-square test [90] is ap-
plied to assess the discriminatory power of each word, and words falling be-
low a specific threshold are discarded through feature selection. Like many
other approach the final step involves training a linear Ridge classifier on
the refined feature space. WEASEL uses a supervised variation of Symbolic
Fourier Approximation (SFA) to create discriminative words and employs an
information-gain-based methodology to identify breakpoints that differentiate
between classes.

WEASEL v2.0 [85] is a enhancement of the original WEASEL v1.0 classifier.
It control the search space through randomly parameterized SFA transforma-
tions to address the problem of extensive memory footprint. WEASEL 2.0
uses a dilated sliding window, with a fixed gap between each value (of this
dilation parameter) to extract subseries with non-consecutive values from a
time series. Words are still generated from SFA, by passing the dilated sub-
series through a Fourier transform.

InceptionTime: InceptionTime [42] is a deep learning model. It consists of
an ensemble of five deep learning classifiers, each with the same architecture
built upon cascading Inception modules. Diversity among the five models is
obtained by randomizing the initial weight values for each model.
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The network architecture, comprises two consecutive residual blocks coin-
taining three Inception modules. In order to resolve the vanishing gradient
problem, the input of the residual block is connected to the block’s output
via a shortcut connection. Following the residual blocks, a Global Average
Pooling (GAP) layer is used. Finally, a fully-connected softmax output layer
is employed.

An Inception module begins by applying a bottleneck layer, transforming an
input multivariate time series to a lower-dimensional time series. It then
applies multiple convolutional filters of varying kernel sizes to capture tem-
poral features at different scales, this is a technique known as multiplexing
convolution.

FreshPRINCE: Before to talk about freshPRINCE we should talk about
TSFresh (Time Series Feature extraction based on scalable hypothesis tests)
[19], that is a comprehensive library that extracts nearly 800 features from
time series data. These features encompass a wide range of characteristics,
including statistical properties, time-frequency domain characteristics, and
more. These features can be used directly for time series classification, but
TSFresh add also a feature selection method known as FRESH (Feature Ex-
traction based on Scalable Hypothesis tests) in order to delete irrelevant fea-
tures. The FRESH algorithm evaluates each feature using multiple hypothe-
sis tests, including Fisher’s exact test [29], the Kolmogorov-Smirnov test [62],
and the Kendall rank test [48]. This rigorous selection process ensures that
only the most relevant features are used for the classification task. Com-
paring various pipelines of feature extractors and classifiers turns out that
the most effective approach was to use the complete set of TSFresh features
without any feature selection, combined with a Rotation Forest classifier [77].
This technique was called FreshPRINCE [64], that uses the extensive feature
set provided by TSFresh, ensuring a rich representation of the time series
data. By combining this with the Rotation Forest classifier, which is known
for its robustness and high performance in classification tasks, FreshPRINCE
achieves superior accuracy and effectiveness in time series classification.

HIVE-COTE 2.0: The original version of HIVE-COTE (HIVE-COTE «)
(Hierarchical Vote Collective of Transformation-based Ensembles) [55], is an
ensamble model that comprises five different models that each worked on fea-
tures derived from different domains. These ensembles included the Elastic
Ensemble [53], the Shapelet Transform Classifier [38], the Time Series Forest
[24], the Bag of Symbolic-Fourier-Approximation Symbols [83], and the Ran-
dom Interval Spectral Ensemble [55]. Each module was independently built
and trained on the data. For new data, each module provided an estimate of
class probabilities to a control unit, which combined these estimates to form
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a single prediction by weighting each module’s probabilities according to an
estimate of its testing accuracy derived from the training data.

HIVE-COTE 1.0 (HC1), demonstrated the utility and scalability of the sys-
tem but dropped the distance-based EE due to its high computational over-
head.

HIVE-COTE 2.0 (HC2), replaced three classifiers from HIVE-COTE 1.0. The
updated component modules in HC2 include the Shapelet Transform Clas-
sifier (STC), a shapelet-based classifier; the Arsenal, a convolution-based
ensemble of ROCKET [21] classifiers; the Temporal Dictionary Ensemble
(TDE) [66], a dictionary-based representation; and the Diverse Represen-
tation Canonical Interval Forest (DrCIF), an interval-based classifier.

Each component in HC2 is trained independently and is required to produce
an estimate of its accuracy on unseen data. For new data, each module gen-
erates a probability estimate for each class. The controller then constructs a
tilted distribution through exponentiation (with a@ = 4 by default) to accen-
tuate differences between classifiers, weighting them with the accuracy esti-
mates. This approach improve the overall predictive performance by mantain
the strengths of each constituent classifier.

Hyperparameter Tuning

For each model, a hyperparameter tuning phase was conducted using the NNI (Neu-
ral Network Intelligence) framework. NNI is an open-source automated machine
learning toolkit that facilitates hyperparameter optimization, neural architecture
search, and model compression [63]. It enables users to define search spaces, select
optimization algorithms, and run experiments efficiently.

For each model, a series of experiments were conducted as described in the
previous section. The mean and standard deviation of the accuracy were considered,
and when these metrics were comparable, the execution time was evaluated to select
the best hyperparameters. The parameter space for each model is shown in Table
A.1, while the best hyperparameters are presented in Table A.2 and A.3. Figures
3.15(b) and 3.15(a) display the mean accuracies with associated variances for each
model based on the best experiments.

Results

After obtaining the best hyperparameters, the models were tested. The entire
training dataset, which is 60% of the full dataset, was used for training. Predictions
were then made on the test dataset and compared with the actual labels to compute
accuracy. Tables 3.1 and 3.2 show the results obtained from the models, ordered
by accuracy for the two datasets. As we can see, all models perform quite well in
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(a) Accuracies results for dataset Complete (b) Accuracies results for dataset Liquid

both cases. For the liquid dataset, as expected, the results are significantly better
due to the absence of outliers from gas experiments. Figures 3.15(c) and 3.15(d)
are confusion matrices generated by summing the results from all models. In these
matrices, the x-axis represents the predicted labels, while the y-axis represents
the actual labels. Label 0 corresponds to Fourier transport, label 1 corresponds
to TdDC with v = 0.5, label 2 to v = 1.5, and label 3 to v = 2. A confusion
matrix is a table used to describe the performance of a classification model. It
shows the number of true positive, true negative, false positive, and false negative
predictions. Each cell in the matrix indicates the number of samples that were
predicted to belong to a specific class versus the actual class. This allows for a
detailed analysis of the model’s performance, the diagonal elements indicate the
number of correctly predicted samples, while the off-diagonal elements represent
the errors, highlighting which classes are often confused. In the case of the liquid
dataset, we can see that the most frequently misclassified label is 2, which was
incorrectly predicted 12 times out of 126 times, it was confused with label 0 seven
times and with label 3 five times, remember that this result represents the sum
of model results, so each number should be divided by 7 (number of models) to
obtain an average over model. Similarly, for the complete dataset, label 2 is the
most frequently misclassified, often mistaken for label 0 or label 3, with a higher
error percentage due to the presence of outliers.

Table 3.1: Accuracy table for Dataset Liquid

Model Accuracy (%) | Prediction Time (s) | Training Time (s)
multiHydra | 98.5 0.566 1.202

freshPrince | 98.5 4.608 8.77

hivecote2 97.1 83.678 183.309

drCif 97.1 3.243 6.844

weasel-d 94.1 0.91 1.138
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Model Accuracy (%) | Prediction Time (s) | Training Time (s)
rdst 94.1 0.121 0.625
inceptionT | 92.6 1.229 53.252
Table 3.2: Accuracy table for Dataset Complete
Model Accuracy (%) | Prediction Time (s) | Training Time (s)
multiHydra | 89.3 0.707 2.325
hivecote2 89.3 126.184 293.385
weasel-d 84.8 0.554 1.377
freshPrince | 83.9 6.4 12.656
drCif 83.9 5.43 9.507
rdst 83.0 0.175 0.722
inceptionT | 78.6 1.216 54.649

True Labels

(¢) Confusion matrix for dataset Complete

Confusion Matrix

Predicted Labels

Confusion Matrix

S
3
True Labels

120

100

3

Predicted Labels

3.2 Capacitor Case Study

As previously mentioned, this study examines the use of time series classification
models to identify anomalous transport in two different datasets: one artificially
created and the other derived from experiments. The artificially created dataset
concerned the heat transport of a sensor immersed in a fluid, whereas the experi-
mental dataset involves the discharge of a capacitor. The experiments, as will be
seen in [10], were conducted as follows: A charged capacitor with a certain voltage
is discharged through the use of two microelectrodes immersed in a fluid, with a gap
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of approximately 2 micrometers between them, and its discharge was measured us-
ing an oscilloscope. The data were captured and serialized into 10,000 time points.
The goal was to determine the type of diffusion occurring during the capacitor’s
discharge, in fact, the close proximity of the electrodes, their shape, and the fluid in
which they are immersed can cause anomalous transport phenomena. The obtained
data were then classified as follows: using the TdDC model and Bayesian analysis
with a specific distance metric, each experiment was compared with various values
of D and v from 3.15, so the curve that best fit the experimental data was identified.
The results were plotted on a graph, as shown in Fig. 3.15. This graph represents
all experiments conducted on a single day with an applied voltage of 12V. Each
point represents an experiment, characterized by shape and color indicating the
fluid used, and position indicating the best-fitting D and . The further v deviates
from 1 (which represents classical Fourier diffusion), the more we are in a condition
of anomalous diffusion.
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Figure 3.15: Experiment with a 12V voltage applied, images given by [10] with
permission

3.2.1 ML Analysis

The objective of this phase was to train models capable of recognizing whether an
experiment belonged to a class of normal or anomalous transport. More specifically,
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the goal was to determine the corresponding values of D and . However, since we
only analyzed classification models, we couldn’t extract such information from these
models indeed determining the specific values of D and v for a given experiment is
a regression problem, as D and v exist in a continuous space.

Dataset Creation

What we did was to create classes based on the received data. The parameter space
was divided into 16 blocks as shown in Figure 3.16, with each block associated with
a specific class. The classes range from 0 to 15. All experiments in the blocks of
the first column, corresponding to a v value between 0.8 and 1.1, are considered
normal diffusion experiments, the further to the right one goes, the more anomalous
the diffusion condition becomes. Table A.4 shows the precise association between
parameters (7 and D) and classes. In this case, the dataset is larger, containing 350
elements. Unlike the sensor dataset, the classes are highly imbalanced, with 200
elements belonging to class 0 (which corresponds to normal diffusion) and only like
150 elements in the anomalous diffusion zone, occupying the remaining positions,

some grid positions are not occupied at all. More details can be found in Table
A5,
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Figure 3.16: Parameters space division
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Preprocessing

Each experiment contained 10,000 data points, and since these were real-world
experiments, the amount of noise in each experiment was quite high, The image
3.17 shows a single curve that includes an initial segment before zero seconds, which
exhibits indeterminate shapes. In this phase, this part was removed, resulting in
each single curve being reduced to 8,900 points, as can be seen in the fig 3.18 that
shows some sample of the entire dataset for each class. As we said, these data are
very noisy, so the first step in this phase was to downsample the experiments in
order to remove the noise and work with smaller number of data. We tried several
methods, but found that the moving average technique was the most effective.
This approach not only reduced the amount of data but also mitigated the noise
problem. Using the complete dataset would mean that training each model would
take too long, given that each sample contained 8,900 points.

Air-5V

U (V)

OM
-0,05 00 0,05 0,10 0,15 0,20

Figure 3.17: A single experiment conducted with 5V applied in Air, images given
by [10] with permission

The moving average is a technique that involves averaging a subset of data points
within a moving window. Specifically, it smooths the data by creating a series of
averages of different subsets of the full data set. In our case, we used a window size
of 10. This means that for every 10 consecutive data points, we calculated their
average and used this value to represent that segment of the data. By doing this,
we effectively reduced the dataset size to 1/10th of the original, resulting in each
sample containing 890 points. This reduction made the dataset more manageable
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Figure 3.18: Original Dataset

for training while also smoothing out the noise inherent in the real-world data.
As shown in figure 3.19(a), this approach results in smoother curves with reduced
noise.

We also applied standardization to ensure that the samples were scaled to have
a mean of 0 and a variance of 1. The result of this standardization process is shown
in figure 3.19(b).

Results

Experiments were conducted similarly to the sensor case, In this case, however, the
dataset was divided as follows: 80% for training (and validation) and 20% for test-
ing, due to the larger dataset. Using the NNI toolkit and 5-fold cross-validation,
all experiments for each model were executed to obtain the best hyperparameters.
Figure 3.20 displays the mean and variance of accuracy for each model on the
dataset. Table 3.3 lists the accuracy of the models on the test dataset. A confusion
matrix was also created, fig 3.19 reveals that label 8 was the most misclassified,
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with 8 errors out of 28 samples, also in this case the confusion matrix was gen-
erated summing the prediction of each model. On this occasion, there were also
other experiments conducted on different days, resulting in the creation of three
additional datasets: one consisting only of experiments using insulating fluids, one
consisting only of conductive fluids, and one consisting of mixtures. These datasets
were used as tests to unequivocally evaluate the generalization ability of the models.
Tables A.8, A.7 and A.6 show the number of elements per class for each dataset,
with the classes that are also present in the training dataset highlighted in bold,
thus indicating the classes that we expect the models to recognize. The insulating
and mixture datasets also contain elements of class -1, which indicates that the
elements present do not belong to any previously indicated class, meaning that
their v and D do not belong to the table A.4. For this test, the entire previous
dataset, consisting of 350 elements and divided into the following classes A.5, was
used for training. Table A.9 shows the results obtained on the insulating dataset,
where all models achieve 100% accuracy because the dataset is composed only of
class 0 elements, which is the class that the models recognize best, as seen in 3.19.
Table A.11 instead shows the results obtained on the conductive fluids dataset,
where all models achieve 0% accuracy. This is because the only recognizable class
by the models, using that specific dataset for training, is class 8, which contains
only 3 elements and is the class that is recognized the worst, as we can also see in
3.19. Finally, we have Table A.10 related to the results obtained on the mixture
dataset, where the best model (weaselD) achieves 29.96%. Considering that the
number of elements recognizable by the models, i.e., belonging to classes present
also in the training dataset, constitutes 42% (124/297) of the entire dataset, this
result is somewhat below expectations. Analyzing the confusion matrix related to
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the multiHydra model A.1, we can note that classes 0, 6, 9, 11 are recognized quite
correctly, while class 8 turns out to be the worst because 24 out of 25 times it
is recognized as 9, just as happened in 3.19 but with a higher percentage. From
3.19(b) we can see how similar the elements of the two classes are, so such errors
can be accepted. A possible solution could certainly be to increase the number of

class 8 samples in the training dataset.
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Figure 3.19: Confusion matrix for Capacitor’s dataset

Table 3.3: Accuracy table for Capacitor’s dataset

Model Accuracy (%) | Prediction Time (s) | Training Time (s)
multiHydra | 98.6 5.515 25.256

hivecote2 98.6 13.272 100.244

drCif 98.6 14.77 67.434

freshPrince | 98.6 57.668 235.904

weasel-d 97.1 7.482 47.713

rdst 95.7 1.667 8.766

inceptionT | 92.9 0.92 122.267
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Chapter 4

Conclusions

The research conducted during this thesis at Eltek focused on the application of
time series classification models to the detection of anomalous transport phenom-
ena. Specifically, the study evaluated the models proposed in the Aeon toolkit
across two different case studies: a simulated case and an experimental case. The
first case involved creating a dataset from simulations. These simulations concerned
a sensor immersed in a fluid, with an applied voltage to measure the temperature
over time. The second case study dealt with measuring the discharge of a capaci-
tor. In both scenarios, the models aimed to determine whether the transport was
normal or anomalous and, if anomalous, identify the corresponding mathematical
model. For the simulated case, two datasets were created: one for the liquid and
one complete dataset. The results for the liquid dataset were highly promising,
with all models achieving over 90% accuracy and some reaching up to 98.5% (e.g.,
multiHydra and freshPRINCE). However, for the complete dataset, the results were
slightly lower due to several outliers, though all models still exceeded 80% accuracy.
In this case, multiHydra and HC2 emerged as the best performers, each achieving
89.3% accuracy. MultiHydra stood out as the best model for this task, being the
most accurate and one of the fastest models, though not the absolute fastest that is
RDST. The experimental task yielded even better results. Among the seven mod-
els tested, four achieved top performance: multiHydra, HC2, freshPRINCE, and
drCIF, each reaching 98.57% accuracy. Consequently, multiHydra was identified as
the best overall model for these two tasks, combining high accuracy with impressive
speed.

There are numerous avenues for future research. For the artificially created dataset,
it may be beneficial to remove curves generated by sensors at 100/200 nm, as these
curves are very similar regardless of the transport model used, potentially increas-
ing accuracy to 100%. Additionally, exploring other transport models, such as
the porous medium equation or the telegrapher equation, could provide further
insights. Another thing that could be tested is create a different type of dataset,
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such as a multivariate one where each sample includes both the temperature curve
and a constant related to the fluid in which the sensor is immersed, this could help
mitigate outliers in the complete dataset in order to reach better results. For the
experimental dataset, future work should focus on increasing the number of classes,
currently, only nine out of fifteen possible classes are occupied, expanding this to
see if the models can recognize the additional sections would be a valuable next
step.
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Supplementary Tables and Figures

Table A.1: Models and Hyperparameters
Model Hyperparameter | Type | Values
drCif n_ estimators randint | 10, 500
freshP n_ estimators randint | 10, 1000
multiHydra | n_ kernels randint | 1, 50
n_ groups randint | 10, 100
inceptionT | batch_ size choice | 14, 24, 34, 44, 54, 64
num__epochs choice | 100, 150, 200, 250
depth choice | 1,2,3,4,5, 6
n_classifiers choice | 1,2,3,4,5,6
rdst max_ shapelets choice | 100, 1000, 5000, 10000, 20000, 30000, 40000
shapelet_ lengths choice | 5,7,9, 11, "None"
weaselD min_ window choice | 2,4, 6,8, 10
word__lengths choice | [1, 2], [3, 4], [5, 6], [7, 8], [7, 10], [10, 11]

Table A.2: Best Hyperparameters Dataset Liquid

Model Hyperparameter | Value
multiHydra | n_ kernels 8
n_ groups 64
inceptionT | batch_ size 64
num__epochs 250
depth 2
n_classifiers 3
rdst max_ shapelets 1000
shapelet_ lengths )
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Model Hyperparameter | Value
weasel-d min window 4
word__lengths (3, 4]
freshPrince | n_ estimators 15
drCif n_estimators 25

Table A.3: Best Hyperparameters Dataset Complete

Model Hyperparameter | Value
multiHydra | n_ kernels 46
n_ groups 91
inceptionT | batch size 34
num__epochs 250
depth )
n_ classifiers 2
rdst max_ shapelets 1000
shapelet_ lengths 11
weasel-d min  window 4
word__lengths [7, 10]
freshPrince | n_ estimators 15
drCif n_estimators 225

Table A.4: Association between parameters and classes

Class | v (Interval) | D (Interval)
0 (0.8, 1.1) | (107, 103%)
1 (1.1, 1.4) | (1077, 10 3%)
2 (1.4, 1.7) | (1077, 103%)
3 (1.7,2.0) | (105, 10°%)
1 (0.8, 1.1) | (1032, 10 19)
5 (L1, 14 (1075, 10°)
6 (4, 17) (1075, 10)
7 (17, 20) | (1055, 10-15)
8 (08, 11) | (10°75, 10°%)
9 (L1, 14) | (1015, 10°%)
10 (04,17 | (10715, 10°%)
11 (1.7, 2.0) (10~ T, , 109-2%)
12 (0.8, 1.1) (10025 1027)
13 (1.1, 1.4) | (10°%, 10%9)
14 (1.4, 1.7) | (10°%, 10%9)
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Class | v (Interval) | D (Interval)
15 (1.7,2.0) | (10°%, 10°7)

Table A.5: Number of elements for each class

Class | # Elements
0 200
1 0
2 0
3 0
4 0
5 0
6 11
7 4
8 13
9 38
10 27
11 48
12 0
13 8
14 1
15 0

Table A.6: Class distribution for Mixtures dataset

Class Number of Elements
Class -1 3
Class 0 34
Class 1 16
Class 5 40
Class 6 7
Class 7 4
Class 8 25
Class 9 3
Class 11 48
Class 12 1
Class 13 3
Class 14 71
Class 15 42
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Table A.7: Class distribution for Insulating Fluids dataset

Class

Number of Elements

Class 0

230

Table A.8: Class distribution for Conductive Fluids dataset

Class Number of Elements
Class -1 51
Class 8 3
Class 12 6
Class 14 2
Class 15 38

Table A.9: Accuracy table for Insulating’s dataset

Model Accuracy (%) | Prediction Time (s) | Training Time (s)
rdst 100.0 10.271 58.647
multiHydra | 100.0 20.987 32.310
inceptionT | 100.0 1.322 220.701
weasel-d 100.0 17.487 51.251
hivecote2 100.0 35.697 103.825
freshPrince | 100.0 208.731 323.348
drCif 100.0 50.884 91.649
Table A.10: Accuracy table for Mixtures’s dataset
Model Accuracy (%) | Prediction Time (s) | Training Time (s)
rdst 29.63 13.076 59.027
multiHydra | 29.63 27.164 34.889
inceptionT | 25.25 1.307 255.013
weasel-d 29.97 18.639 30.320
hivecote2 25.59 63.095 91.459
freshPrince | 26.60 276.071 328.488
drCif 25.93 67.648 83.201
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Table A.11: Accuracy table for Conductives’s dataset

Model Accuracy (%) | Prediction Time (s) | Training Time (s)
rdst 0.0 4.997 58.282

multiHydra | 0.0 9.510 32.669

inceptionT | 0.0 1.214 219.011

weasel-d 0.0 5.919 29.458

hivecote2 0.0 29.883 120.134

freshPrince | 0.0 91.576 323.143

drCif 0.0 23.799 78.151
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Figure A.1: Confusion matrix for Mixture’s dataset produced by multiHydra model
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