
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree thesis

Configuration and optimization of the
operating system running on the

infotainment ECU

Supervisor:

Prof. Massimo Violante

Company Tutor:

Ing. Daniele Costarella

Candidate:

Alessandro Migale

Academic Year 2023/2024

Abstract

This thesis investigates boot performance optimization for the Android Auto 14
operating system. The rapid advancement of automotive technology, particularly in
infotainment systems, requires efficient and reliable performance to improve user ex-
perience and safety. This study focuses on achieving a fast start-up, which is critical
to minimizing delays and improving overall system efficiency.
The work is divided into several phases: initially, the architecture of infotainment
systems and the integration of Android Auto within the Android ecosystem are ana-
lyzed. Next, optimization methodologies are explored, with a specific focus on startup
time optimization. A practical case study is presented, detailing the configuration
environment using Raspberry Pi 4 and Android 14, based on the existing "raspberry-
vanilla" project on GitHub. Detailed analysis of logs using tools such as Bootchart
and Android studio’s Logcat identified key performance indicators (KPIs) related to
boot performance.
The optimization phase initially involved removing non-essential projects within the
operating system, such as the startup animation file, resulting in significant improve-
ments in startup performance. A new kernel was then configured within the project,
with an improved and optimized version. The use of a bootgraph.pl script allowed
the identification of bottlenecks system initialization, leading to a net improvement
in performance thanks to the disabling of serial console. A critical aspect of the op-
timization process was the detailed study of Android kernel configurations, analyzing
active and inactive settings to understand their impact on system performance and
boot time. Changes based on this analysis have resulted in significant efficiency gains
and reduced boot times.
Additionally, the study included an evaluation of the kernel’s compression and de-
compression algorithms. Various algorithms were compared to assess their impact on
boot time and system responsiveness. This comprehensive analysis provided insight
into the selection of optimal compression techniques, but the limitations of the cur-
rent design made available a single compression algorithm that was not optimal from
the point of view of compression speed. Research shows that targeted optimization
efforts, including component removal, kernel optimization, and compression algorithm
selection, can substantially improve Android Auto boot performance on Raspberry Pi
4. The results indicate that a well-optimized system not only boots faster, but also
works more efficiently, providing a smoother user experience.
Future research could explore further optimisation techniques and their application
to other components of automotive infotainment systems, further improving overall
system performance and user satisfaction.

2

Contents

List of Figures III

1 Introduction 1
1.1 The Infotainment System . 1

1.1.1 Evolution of System . 2
1.1.2 Structure of the System . 7

1.2 Android . 11
1.2.1 Linux . 12
1.2.2 Android Architecture . 14
1.2.3 Android Auto . 16

1.3 Thesis objective . 17

2 Optimization of the Infotainment system 19
2.1 Concept of optimization . 19
2.2 Optimization methodologies . 20
2.3 Boot Time Optimization . 21
2.4 Boot Sequence . 23

2.4.1 Kernel Compression and Decompression 25

3 Case study 26
3.1 Work environment configuration . 26

3.1.1 Raspberry Pi 4 . 26
3.1.2 Android 14 . 28

3.2 Android connection via Android Debug Bridge 32
3.2.1 Logcat . 33

3.3 Measurements and tools used . 34
3.3.1 Key Performance Indicator . 34

3.4 Bootchart . 37
3.5 Bootgraph . 39

I

CONTENTS

4 Boot time Optimization 42
4.1 Removing unnecessary projects . 42
4.2 Removing Initial Animation . 44
4.3 Configuration of new version of Kernel 45
4.4 Disabling Serial Console . 48
4.5 Disabling unnecessary Kernel options 50
4.6 Compression of Kernel Image . 53

4.6.1 Benchmark Kernel Compression Algorithms 53

5 Results 57
5.1 Analysis of results . 57

5.1.1 Removing unnecessary projects 58
5.1.2 Removing Initial Animation . 60
5.1.3 Configuration of new version of Kernel 61
5.1.4 Disabling Serial Console . 62
5.1.5 Disabling unnecessary Kernel options 63
5.1.6 Compression of Kernel Image 65

5.2 Comparison with initial system performance 66

6 Conclusion 67

Bibliography 69

II

List of Figures

1.1 A Motorola car radio installation diagram (circa 1930) [20]. 2
1.2 Preset radio station buttons in 1950s [2]. 3
1.3 Car Cassette tape deck,1980s [2]. 3
1.4 Honda Electro Gyrocator map-based navigation system [16]. 4
1.5 Car CD player [2]. 5
1.6 Ford Sync, 2007 [26]. 5
1.7 Carplay & Android Auto. 6
1.8 ChatGPT integrated into DS Automobiles [12]. 7
1.9 IVI-System Architecture [13]. 10
1.10 Block diagram of a typical IVI system [11]. 11
1.11 Linux icon. 14
1.12 The Android software stack [21]. 16

2.1 Boot Sequence. 24

3.1 Raspberry Pi 4 Model B [22]. 26
3.2 Android Auto Launcher. 31
3.3 Menu Interface. 31
3.4 Menu Interface. 32
3.5 Example of Logcat messages in Android studio. 34
3.6 Bootchart graph full project. 38
3.7 Bootchart graph full project. 38
3.8 Example of log messages produced by dmesg command. 41
3.9 Example of generated graph. 41

4.1 Log messages related to the initial animation. 45
4.2 New version 6.1.84 of Kernel. 47
4.3 Log messages of kernel. 48
4.4 Graph obtained through bootgraph.pl 48
4.5 Messages of deferred_probe_initcall. 48
4.6 Serial console enabled in config.txt file. 49

III

LIST OF FIGURES

4.7 Messages of deferred_probe_initcall after disabling serial console. . . . 49
4.8 Section related to the kernel Image. 56

5.1 Comparison of Boot before and after optimizations. 66

IV

Chapter 1

Introduction

1.1 The Infotainment System

In recent years, Infotainment systems have become a central component in the
automotive industry, evolving rapidly to satisfy the increasing demands for connec-
tivity, entertainment, and safety. Initially designed to provide basic features such as
radio and navigation, these systems have now developed into advanced platforms that
integrate GPS navigation, communication, multimedia entertainment, internet con-
nectivity, and vehicle control functions.
Infotainment is a combination of "Entertainment" and "Information", referring to a
system that delivers both informative content and entertainment services.
In this context, Android has become one of the most popular operating systems due
to its flexibility and extensive customizability. Specifically, Android Auto marks a
considerable progression by offering a driving-optimized user interface that integrates
navigation, communication and entertainment features.
Currently, the landscape of Infotainment systems is undergoing a profound transfor-
mation, marked by the increasing integration of artificial intelligence (AI) and voice
recognition technology. AI is capable of analyzing vast quantities of data in real time,
offering drivers precise information and recommendations. Voice recognition technol-
ogy allows drivers to interact with the infotainment system using natural voice com-
mands. This not only simplifies and enhances the safety of using car features while
driving but also allows drivers to focus more on their surroundings. Simultaneously,
it is crucial to guarantee the transparency of artificial intelligence in decision-making
processes and to assume responsibility for any unintended consequences that may re-
sult from its use [3].
The integration of cameras within vehicles has greatly increased, enhancing facial
recognition features through advanced processing technology. These cameras are now
capable of monitoring driver behavior and identifying potential issues.

1

CHAPTER 1. INTRODUCTION

Gesture recognition technology has revolutionized driver-vehicle interaction. It en-
ables the use of simple, standardized movements to switch tracks or adjust various car
settings, thereby significantly minimizing distractions while driving [1].
Moreover, Cybersecurity is gaining prominence, particularly in light of the expanding
data-sharing capabilities that could potentially endanger driver safety [3].

1.1.1 Evolution of System

Today’s Infotainment systems have reached a level of sophistication that was not
always present. Their evolution marks a journey through various technological eras,
radically altering the driving experience. Within this evolution, distinct stages of
development can be identified [14]:

• The 1930s: AM radio was first installed in a Chevrolet car in 1922, although
this was an experimental setup and not commercially produced. The first signif-
icant commercial success of car radios occurred in 1930 when Paul and Joseph
Galvin of the Galvin Manufacturing Corporation introduced the Motorola 5T71
[20]. Initially, due to their large size, these radios were often placed in the lug-
gage compartments and transmitted data through radio waves. However, they
frequently suffered from static interference, which affected the sound quality.

Figure 1.1. A Motorola car radio installation diagram (circa 1930) [20].

2

CHAPTER 1. INTRODUCTION

• The 1950s: Over the years, in-car radios have undergone a significant evolution,
incorporating physical buttons for saving favorite stations and rotary knobs for
navigating through frequency bands. Mechanically, these devices represented the
primary method of data storage in vehicles.

Figure 1.2. Preset radio station buttons in 1950s [2].

• The 1960s-’80s: In these years, the advent of compact cassettes marked the
beginning of a diversified musical period. With the introduction of cassette
players in automobiles, these recordings became essential for motorists, thanks
in part to their convenience and ease of use.

Figure 1.3. Car Cassette tape deck,1980s [2].

3

CHAPTER 1. INTRODUCTION

In that same period, in 1981, Honda introduced the Honda Electro Gyroca-
tor, the world’s first map-based automotive navigation system. Developed in
collaboration with Alpine, a renowned electronics manufacturer, and Stanley
Electric, a leader in automotive components, this system diverged from GPS
technology as it didn’t rely on satellites for positional determination. Instead, it
employed a helium gas gyroscope to detect the car’s direction, while a custom
servo gear attached to the transmission housing calculated the distance traveled
by the vehicle. By leveraging data from direction and driving distance sensors,
the equipment could estimate the vehicle’s position [16]. Their expertise and
collaboration were instrumental in the development of this groundbreaking nav-
igation system, highlighting the importance of industry partnerships in driving
technological advancements.

Figure 1.4. Honda Electro Gyrocator map-based navigation system [16].

• The 1990s: The introduction of CDs has been a central moment in the evolution
of car infotainment systems, providing enhanced portability and audio quality
over cassettes. During this time, there was witnessed the proliferation of MP3
units and the debut of screens in these systems, accompanied by the integration
of Bluetooth functionality and auxiliary inputs, paving the way for new in-car
entertainment possibilities.

4

CHAPTER 1. INTRODUCTION

Figure 1.5. Car CD player [2].

• The 2000s: CD players quickly became obsolete, overtaken by more sophisti-
cated technologies like MP3 players and USB storage devices for entertainment
purposes. The advent of Bluetooth connectivity marked a significant revolution
in the industry. In 2007, Ford Sync Technology was introduced, marking the
debut of the first voice-controlled infotainment system, which allowed drivers to
make hands-free calls and control music with voice commands.

Figure 1.6. Ford Sync, 2007 [26].

• The 2010s: In recent years, GPS navigation has gained popularity, supported
by phone connectivity with Google Android Auto and Apple Car Play, and the

5

CHAPTER 1. INTRODUCTION

introduction of several apps and in-car Wi-Fi. Physical buttons have gradually
been replaced by larger, fuller touchscreens that are compatible with phone con-
nectivity. Internet connectivity has facilitated the use of satellite navigation,
while advanced electronics and microchips have made it possible to incorporate
flash drives to support internal storage of apps, maps, and other information.
Today, you can connect your phone directly to your car’s infotainment system,
giving you access to features like music playback and hands-free calling.

Figure 1.7. Carplay & Android Auto.

• The 2020s: Over recent decades, automotive Infotainment systems have seen
a significant evolution in technology, providing an array of features to improve
the driving experience. These include expansive touch screens with geo-fencing,
intelligent 3D navigation offering traffic updates and alternative routes, and the
ability to control the vehicle through voice commands. Additionally, sensors,
cameras, and radar deliver essential real-time data, like tire pressure monitoring
and parking assistance, making driving more effortless. With continuous tech-
nological progress, it’s expected that car manufacturers will further incorporate
advanced features such as artificial intelligence and autonomous driving assis-
tance systems, leading to a future where vehicles may communicate with each

6

CHAPTER 1. INTRODUCTION

other and operate autonomously.

Figure 1.8. ChatGPT integrated into DS Automobiles [12].

1.1.2 Structure of the System

The on-board Infotainment system integrated within automobiles plays a central
role in the modern driving experience, providing an extensive array of functions de-
signed to meet the needs of both drivers and passengers. Through the integration
of elements from the vehicle’s interior and exterior, it serves as a centralized control
center for accessing and managing a diverse range of services and features, thereby
enhancing convenience and safety while on the road.
The architecture of the infotainment system can vary significantly depending on the
vehicle type and manufacturer, with different components and functionalities reflect-
ing the priorities and distinctive characteristics of various automotive brands.
Let’s explore the essential components that are present in the system and their function
in providing an optimal driving experience [13]:

• Integrated Head-Unit: It is a tablet-like device with a touchscreen interface,
mounted on the vehicle’s dashboard. This central unit acts as well as the control
hub for the entire system, managing car settings, audio system and navigation
information.

• Heads-Up Display: A display that shows real-time information, like climate,
speed or navigation maps, on a transparent screen integrated into the vehicle’s
windshield. Its purpose is to provide essential driving data instantly, allowing
drivers to maintain focus on the road without needing to shift attention to the
instrument panel. This minimizes the likelihood of accidents and enables a less
stressful driving experience.

• Processing Power: DSPs and GPUs Modern systems utilize sophisticated
digital signal processors (DSPs) and graphics processing units (GPUs). DSPs

7

CHAPTER 1. INTRODUCTION

enhance multimedia quality by processing audio and video signals, while GPUs
handle graphic operations, ensuring images and videos are rendered with excep-
tional clarity and detail. Their robust capabilities ensure seamless graphics and
multimedia performance, providing an optimal user experience.

• Operating Systems: Operating systems are crucial for a system as they sup-
port connectivity, provide useful features, and allow the integration of new func-
tionalities through downloadable software applications. They constitute the dig-
ital infrastructure on which the entire Infotainment system relies.

• CAN and other network protocol support: Electronic hardware compo-
nents within the system are interconnected using standard communication pro-
tocols like CAN and LVDS. This enables devices and sensors to exchange in-
formation in real-time, eliminating the need for a central computer to manage
communications. As a result, system efficiency is enhanced and complexity is
minimized.

• Connectivity Modules: The in-car Infotainment systems are equipped with
GPS, Wi-Fi and Bluetooth modules to allow connection to external networks and
devices, enabling features such as navigation, internet access and smartphone
integration.

• Automotive Sensor Integration: Numerous sensors, including proximity sen-
sors, along with cameras, are incorporated into the systems to deliver crucial
information regarding the safety of both the driver and passengers.

• Digital Instrument cluster: These clusters exhibit vehicle data like speed and
additional details from the vehicle’s ECU through the OBD-II port. Together
with the main unit and heads-up display, they constitute the vehicle’s digital
interface.

The architecture of the IVI (In-Vehicle Infotainment) system is illustrated in Figure
1.9. This architecture consists of five distinct layers, each responsible for different
functionalities of the system. Each layer interacts with the layers above and below it,
facilitating efficient communication and operation across the entire system. The main
layers of the system are as follows [17]:

• Hardware Layer includes:

1. CPU (Central Processing Unit): The primary processor that executes
instructions and manages tasks.

2. Memory: Provides temporary storage for data being processed by CPU.

8

CHAPTER 1. INTRODUCTION

3. CAN (Controller Area Network): A robust vehicle bus standard that
facilitates communication between different electronic components within
the vehicle.

4. Bootloader: A small program that initializes the hardware and loads the
operating system when the system is powered on.

• OS Layer includes:

1. BSP (Board Support Package): Software providing the essential sup-
port required for running a specific operating system on particular hard-
ware.

2. OS Core: The central part of the operating system that manages system
resources and hardware.

• Middleware Layer: Acts as the intermediary between the operating system
and the application layers, providing crucial services including:

1. Media & Graphics: Manages multimedia playback and graphic rendering,
ensuring high-quality audio and visual output.

2. Platform Management: Coordinates and manages various software com-
ponents and services running on the platform.

3. System Infrastructure: Provides essential services and support for the
overall system operation.

4. Automotive Connectivity: Manages communication and connectivity
between the IVI system and other vehicle systems.

• Application Layer: Includes user-facing applications providing various func-
tionalities to enhance the driving experience, such as:

1. Entertainment: Applications for playing music, videos, and other media
content.

2. Mobile Office: Tools for managing emails, calendars, and other produc-
tivity tasks.

3. Networking: Manages network connections, allowing the IVI system to
connect to the internet and other devices.

4. Navigation: GPS-based applications providing route guidance and real-
time traffic information.

• HMI Layer: The highest layer, responsible for user interaction, includes:

9

CHAPTER 1. INTRODUCTION

1. Speech: Voice recognition and synthesis capabilities that enable users to
interact with the system using voice commands.

2. User Interface: Graphical and touch interfaces through which users in-
teract with the system.

3. HMI Core: The essential components that support the HMI functionali-
ties.

Figure 1.9. IVI-System Architecture [13].

For a more detailed view of the hardware components and their interconnections, the
following block diagram in Figure 1.10 provides a comprehensive overview of the vari-
ous modules and interfaces involved in the infotainment system. The block diagram il-
lustrates the detailed connections and interactions between the processor, various com-
munication modules (e.g., CAN, LIN), and interfaces (e.g., HDMI, USB, Bluetooth).
It highlights the role of the processor in managing the flow of data between different
components, including the touch screen, audio system, and connectivity modules. A
thorough examination of the layered architecture and the detailed block diagram re-
veals the intricate complexity and integration necessary to provide a contemporary
in-vehicle infotainment experience.

10

CHAPTER 1. INTRODUCTION

Figure 1.10. Block diagram of a typical IVI system [11].

1.2 Android

The Android operating system holds the largest user base among mobile platforms
worldwide. As of the end of 2021, Android commanded 71% of the global market
share, a figure that continues to rise.
Initially conceived by the Open Handset Alliance, Android is constructed upon a mod-
ified Linux kernel and other open-source software components. Google provided early
backing for the project and acquired the company in 2005, subsequently introducing
the inaugural Android device in 2008.
Android maintains its dominance in the operating system market due to its extensive
features, user-friendly interface, strong community support, and vast customization
capabilities. While originally designed for mobile devices, Android has diversified its

11

CHAPTER 1. INTRODUCTION

applications, supported by advancements in code libraries and widespread developer
adoption across various sectors, thus evolving into a versatile software suite for tablets,
smart TVs, and notebooks [18].
Android was developed as part of the Android Open Source Project (AOSP), an ini-
tiative that made Android’s source code publicly available for anyone to use, modify,
and distribute, thus contributing to its adoption across a wide range of devices and
industries. However, it’s important to note that despite the open-source nature of An-
droid, some key components and services, such as the Google Play Store (the official
app store for certified devices running on the Android) and some system applications,
are proprietary and subject to Google’s policies and restrictions.

1.2.1 Linux

Linux, developed by Linus Torvalds in 1991, is a collection of open-source Unix-like
operating systems. It is available through various distributions, such as Debian and
Ubuntu, which are among the most well-known. These distributions package the Linux
kernel alongside various software applications, system libraries, and a graphical user
interface, providing a comprehensive operating system that is ready for immediate use.
Linux is primarily programmed in C and assembly language and operates on a mono-
lithic kernel (in which the operating system runs in the kernel space, allowing for
efficient process management and system calls). Linux distributions serve a wide
array of systems, including cloud computing, embedded systems, mobile devices, per-
sonal computers, servers, mainframes, and supercomputers. Linux provides a variety
of advantages that make it an ideal option for diverse user groups and application
contexts:

• Open Source: Linux is based on an open-source development philosophy, which
means that the source code is freely available for anyone to study, modify, or
distribute. This approach encourages collective innovation and ensures trans-
parency within the software development process. Contributions from a global
community of developers help in rapidly addressing bugs and introducing new
features.

• Reliability and Stability: Linux is renowned for its reliability and stability,
thanks to its robust architecture and modular design. Linux systems can operate
for extended periods without the need for reboots or extensive maintenance,
which makes them perfectly suited for critical and mission-critical applications.

• Flexibility and Customization: Linux provides a variety of distributions,
each customizable to meet individual user needs. This adaptability enables the

12

CHAPTER 1. INTRODUCTION

creation of work environments tailored for different purposes, ranging from per-
sonal desktop use to highly scalable server setups. Users have the ability to
adjust nearly every element of the system to enhance performance and usability
based on their individual needs.

• Security: The open-source nature of Linux and its extensive developer commu-
nity contribute to thorough code reviews and prompt resolution of vulnerabili-
ties. Moreover, the Linux kernel incorporates security features like SELinux and
AppArmor, which fortify the system against both external and internal threats.
These tools provide mandatory access controls, ensuring that even if a system
component is compromised, the damage can be contained.

• Performance: Linux is known for its high performance and efficient manage-
ment of system resources. Its optimized design and ability to run on a wide
range of hardware allow for optimal performance even on resource-constrained
devices. Linux’s minimal overhead and effective memory management render it
a superior option for performance-critical environments.

• Compatibility: Due to its flexibility and modular nature, Linux can support a
wide range of devices and hardware architectures, from embedded systems and
mobile devices to desktop workstations and supercomputers.

• Active Community and Support: Linux is supported by a large and active
community of users and developers distributed around the world. This com-
munity provides extensive technical support, educational resources, and a rich
variety of software and tools that are available for free.

• Interoperability: Linux’s support for open standards and protocols enhances
its ability to seamlessly communicate with other systems and devices. This is
particularly beneficial in the development of integrated infotainment systems,
for instance, which can effortlessly interact with smartphones and other external
components.

In conclusion, the choice to use Linux as the basis for Android development has proven
to be a winning decision, allowing for the creation of a flexible, stable, and feature-rich
mobile operating system that has had a significant impact on the world’s technology
landscape. The foundational attributes of Linux, including its open-source model,
robustness, and adaptability, have been key to Android’s dominance in the mobile
market. This integration of Linux into Android underscores the vital role Linux plays
in contemporary computing and its significant influence on future technological devel-
opments.

13

CHAPTER 1. INTRODUCTION

Figure 1.11. Linux icon.

1.2.2 Android Architecture

Android is a set of open-source software based on Linux, designed to be compatible
with different devices and formats. Within the Android structure we can distinguish
several key components [4]:

• Linux Kernel: The Linux kernel serves as the core of the Android architecture,
playing a central role in managing all necessary drivers, including those for the
display or memory, during runtime.
It incorporates various security features to safeguard the Android system, such
as process isolation and user-based permissions. Additionally, the Linux kernel
includes power management features to optimize power consumption, such as
adjusting the CPU frequency or suspending the device during periods of inactiv-
ity. Acting as an abstraction layer between the device’s hardware and the other
components of the Android system, it ensures a unified and reliable interface.
This kernel is open and editable by the community, allowing for customizations
and enhancements designed to the specific needs of Android devices. As already
mentioned previously, this flexible approach is reflected in the distribution of An-
droid under a combination of open-source and proprietary licenses, highlighting
the complexity of its structure and distribution.

• Hardware abstraction layer (HAL): It serves as a fundamental element in
the Android system’s architecture, acting as an intermediary between hardware-
specific drivers and the higher-level Java API framework used by applications on
the device. It consists of various modules, each aligning with a specific hardware
component such as the camera or audio. Whenever an application requests
hardware access via the Java API framework, the Android system initiates the
relevant module for that hardware component, ensuring efficient and reliable

14

CHAPTER 1. INTRODUCTION

access. Despite hardware-specific implementations, each HAL module exposes a
standardized interface to the Android framework. This standardization ensures
that the Android operating system can function consistently across different
hardware configurations [7].

• Runtime Android: The Android Runtime (ART) is the environment where
applications operate on Android devices. It executes application code, manages
memory, and handles all necessary operations for apps to function properly. ART
uses ahead-of-time (AOT) compilation to compile application code at the time
of installation rather than during execution. This approach enhances app per-
formance and optimizes resource management. ART also features an optimized
garbage collection system, which efficiently reclaims memory space no longer in
use, minimizing pauses and improving app responsiveness. Additionally, ART
provides advanced debugging tools, including detailed diagnostic exceptions and
crash reporting [21].

• Native C/C++ libraries: They are essential components for the operating
system and applications functionality. These libraries, such as libc (standard
C library providing essential system functions) and SQLite (database library
used for data storage), support central Android system components like the An-
droid Runtime (ART) and Hardware Abstraction Layer (HAL), ensuring efficient
performance and compatibility across a wide range of devices.

• Java API framework: Java-language APIs are crucial in Android app devel-
opment as they enable the reuse of fundamental system components and services.
These APIs provide essential building blocks, such as [21]:

– A flexible view system used to create app’s user interfaces, including ele-
ments such as grids or text boxes.

– A resource manager that grants access to non-code assets like layout files.

– A notification manager that allows apps to display custom alerts in the
status bar.

– An activity manager that manages the lifecycle of applications.

– Content providers that permit apps to retrieve data from other applica-
tions or to distribute their own data.

• System apps: In the system, several apps are integrated for managing emails,
SMS, contacts, and other essential functionalities. Users have the flexibility to
replace these apps with third-party alternatives, except for some like the system
Settings app, which holds a privileged status.

15

CHAPTER 1. INTRODUCTION

Figure 1.12. The Android software stack [21].

1.2.3 Android Auto

Launched in 2015 by Google, Android Auto represents a step forward in automo-
tive technology, aimed at improving safety and convenience for drivers. Integrating
smartphones with the vehicle’s infotainment system, Android Auto offers a range of

16

CHAPTER 1. INTRODUCTION

features designed to minimize distractions while on the road.
Android Auto allows users to connect their smartphones to the car’s display using
either a USB cable or wirelessly (on compatible vehicles with Android 11 and above).
Once connected, the smartphone’s applications and features are reflected on the car’s
display, offering convenient access to navigation, music, messaging, and additional
services. Additionally, Android Auto integrates seamlessly with Google Assistant,
enabling hands-free operation for tasks such as making calls, sending messages, and
controlling various functions through voice commands.
It’s important to note that while Android Auto offers access to a variety of apps, in-
cluding navigation and music streaming services, certain features, such as direct access
to the Google Play Store, are not available. Instead, users need to install compatible
apps on their smartphones, which can then be accessed and controlled through the
car’s interface.
In recent years, Android Auto has undergone significant enhancements and updates,
further enhancing its functionality and user experience. Features like predictive nav-
igation, personalized recommendations, and expanded app support continue to make
Android Auto a valuable companion for drivers. Overall, Android Auto represents a
revolutionary change in automotive technology, offering a safer, more convenient, and
interconnected driving experience. As automotive technology evolves, Android Auto
continues to lead the industry, driving innovation and shaping the future of in-car
Infotainment systems.

1.3 Thesis objective

The primary objective of this thesis is to enhance the boot performance of an
Android Auto 14 Operating System deployed on the Raspberry Pi 4. The startup
speed plays a pivotal role in the overall performance of an Infotainment system; effi-
cient boot-up is essential to ensure users can promptly access system features without
encountering delays or interruptions. Moreover, a quick startup can contribute sig-
nificantly to the vehicle’s overall energy conservation by minimizing the duration the
system spends in boot mode.
Selecting the Raspberry Pi 4 as the hardware platform for the Android Open Source
Project (AOSP) provides a cost-efficient development environment with robust pro-
cessing capabilities and extensive support from a vibrant online community of devel-
opers. Leveraging the "raspberry-vanilla" project on GitHub as a foundation, this
study involves meticulous log analysis using tools such as Android Studio’s Logcat,
Bootchart, and script bootgraph.pl. These tools enable comprehensive assessment of
system startup performance and identification of Key Performance Indicators (KPIs)
crucial for measuring progress and success.

17

CHAPTER 1. INTRODUCTION

This thesis aims to demonstrate that targeted optimization efforts can yield substantial
improvements in system performance during startup, showcasing practical methodolo-
gies and insights applicable to automotive infotainment systems.

18

Chapter 2

Optimization of the Infotainment
system

2.1 Concept of optimization

Optimizing embedded systems and, more specifically, Infotainment systems is a
strategic process aimed at enhancing the overall performance, stability and user sat-
isfaction. It involves meticulously refining different components to achieve an ideal
balance of system efficiency, resource consumption, and responsiveness. This optimiza-
tion is not only about making the system faster but also about ensuring it operates
smoothly under varying conditions and workloads.
The concept of optimization is based on three fundamental pillars that contribute to
improving end-user satisfaction:

• Performance Enhancement: This aspect involves increasing system speed
and responsiveness through software optimization and fully utilizing hardware
capabilities. By optimizing algorithms and workflows, Infotainment systems can
deliver smoother interactions and faster response times, thereby enhancing user
productivity and satisfaction.

• Resource Utilization: Optimizing system resources requires efficient manage-
ment of CPU, memory, and storage to ensure their optimal use. It’s about
striking a balance between performance and resource conservation. Through
meticulous management of resource allocation and utilization, systems can func-
tion efficiently, avoiding undue strain on hardware components and consequently
prolonging their service life.

• Stability Improvement: Ensuring robust stability in different hardware and
software environments is essential for optimizing Infotainment systems. Concen-
trating on compatibility and reliability allows these systems to deliver consistent

19

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

performance and user experience across various platforms and usage scenarios.
This approach includes thorough testing, debugging, and compatibility assess-
ments to reduce errors and guarantee smooth functionality.

Optimization is indispensable for ensuring Infotainment systems operate efficiently,
reliably, and satisfactorily over their lifecycle. By delivering prompt responses to user
demands while maintaining stability and longevity, optimized systems significantly
elevate user experience and overall system performance.

2.2 Optimization methodologies

Optimizing Infotainment systems involves various methodologies that enhance sys-
tem performance and efficiency. These methodologies are crucial for providing a seam-
less and responsive user experience throughout the system’s operation.

• Boot Time Optimization: This aspect focuses on minimizing the time re-
quired for the system to boot up and become operational. It involves eliminating
unnecessary boot steps that do not contribute to the core functionality of the
system. Additionally, optimizing Bootloader settings and executing initializa-
tion tasks in parallel are critical strategies to leverage the system’s multitasking
capabilities effectively. By reducing boot time, users experience quicker access
to essential functions upon starting the vehicle, enhancing convenience and us-
ability.

• Run time Optimization: During normal operation, run time optimization
aims to maximize system performance. This includes optimizing software al-
gorithms to ensure efficient data processing, which can significantly impact the
responsiveness and speed of applications within the Infotainment system. Al-
locating resources such as computing power and memory optimally helps in
achieving smoother execution of tasks. Furthermore, implementing real-time
task scheduling techniques minimizes delays and ensures that critical functions
operate seamlessly, thereby enhancing the overall user experience.

• Memory Optimization: Efficient management of system memory (RAM) is
crucial for maintaining optimal performance over time. This involves identify-
ing and resolving memory leaks that can gradually degrade system performance.
Optimizing data structures and reducing unnecessary memory usage further con-
tribute to enhancing the efficiency of memory management. By ensuring efficient
memory utilization, the Infotainment system can maintain responsiveness and
stability under varying workloads.

20

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

• Power consumption Optimization: Reducing energy consumption is another
critical aspect of optimizing Infotainment systems, particularly in vehicles where
efficient power management is essential. This optimization focuses on refining
components that consume significant amounts of power, such as displays and
processors. Implementing smart energy management strategies, including opti-
mizing background processes and controlling power usage during idle periods,
helps extend battery life and minimize overall energy consumption.

• Network Optimization: Efficient communication with external devices and
networks is vital for enhancing the connectivity and functionality of Infotain-
ment systems. Network optimization strategies include optimizing data trans-
mission protocols to minimize latency and maximize throughput. Enhancing
connectivity reliability ensures seamless integration with external devices, such
as smartphones and external sensors, enabling advanced features like real-time
navigation updates and multimedia streaming.

These methodologies are integral in providing an efficient and responsive driving ex-
perience, which is vital for fulfilling the expectations of contemporary vehicle users.
Through the optimization of boot time, runtime performance, memory usage, power
consumption, and network connectivity, Infotainment systems can offer improved func-
tionality and dependability, thus elevating user satisfaction and safety.

2.3 Boot Time Optimization

As previously emphasized, optimizing boot time is crucial for Infotainment systems.
The speed at which the system becomes operational is critical to ensuring a seamless
and immediate user experience. Decreasing startup times maximizes efficiency and
user satisfaction, enabling the system to be ready for use in the shortest time possible.
Considering this optimization, selecting the right key performance indicators (KPIs)
is crucial to ensure a focused and strategic approach. KPIs help in setting clear goals
and tracking progress effectively. There are several key aspects within the optimization
process:

• Measuring Boot Time: Precise measurement of startup time is essential for
identifying improvement opportunities. Defining the specific events that mark
the beginning and conclusion of the startup process is critical for accurate per-
formance tracking. Utilizing performance analysis software and advanced tech-
nology is vital for ensuring precise and reliable measurements.

• Select Reference Events: Baseline events should be selected according to the
objectives set. For instance, displaying a boot screen or animation can serve

21

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

as indicators that the system is operational and ready for subsequent interac-
tions. Alternatively, playing a sound to announce the device booting provides
immediate feedback that the system is initializing.

• Defining goals: Optimization goals should be clear and measurable, encom-
passing both technical requirements and end-user experience. Well-defined goals
help maintain project focus and enable objective success measurement. In this
context, the optimization objective revolves around critical applications. For in-
stance, in Android, this could include optimizing the loading time of the Launcher
or the initialization of essential startup applications.

Taking these key aspects into consideration and after measuring the boot time, a
methodical guideline is established:

1. Remove Unnecessary functions:

• Identify and remove functions that are not essential to the system’s ba-
sic functionality: numerous startup processes contain tasks that could be
deferred or discarded without impacting the core operations.

• Streamline the startup process by excluding non-essential tasks or services:
reducing the startup load can significantly decrease the overall startup time.

• Consider the impact of each feature on the user experience and system
performance: it is important to evaluate how removing or modifying a
feature will affect the overall usability and performance of the system.

2. Postpone, Parallelize, Reorder:

• Evaluate tasks that can be postponed to a later stage without compromis-
ing essential functionality: some operations do not need to be performed
immediately at startup and can be postponed to improve initial efficiency.

• Utilize task parallelization to take advantage of available resources simulta-
neously: running multiple tasks in parallel can reduce overall startup time
by better leveraging the system’s multitasking capabilities.

• Reorder tasks based on dependencies and critical path analysis for opti-
mal execution: critical path analysis helps identify the tasks that have the
greatest impact on startup time and organize the order of operations to
minimize delays.

3. Optimize Necessary Functionality:

• Optimize critical functions required for basic system operation: essential
functions must be performed as efficiently as possible.

22

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

• Use efficient algorithms, data structures, and resource management tech-
niques: adopting optimized algorithms and effective resource management
can significantly improve performance.

• Refine codes and configurations to minimize execution time: optimizing
code and system settings can reduce execution times and improve overall
efficiency.

In conclusion, optimizing the boot time of Infotainment systems is a multifaceted
process that requires careful consideration of various factors. Effective boot time
optimization not only improves the immediate user experience but also contributes to
the overall reliability and efficiency of the system, ensuring it meets the high standards
expected in modern automotive environments.

2.4 Boot Sequence

The boot sequence of an Infotainment system involves several stages, each playing
a crucial role in initializing the system and preparing it for user interactions. Under-
standing this sequence is essential for identifying optimization opportunities:

• Power-Up: The boot sequence starts when the system receives power. The
power supply unit ensures that a stable voltage is provided to all components
of the system. The BIOS (Basic Input/Output System) firmware performs a
power-on test (POST) to verify the integrity of hardware, including RAM
and storage devices. The process will only continue if the necessary hardware is
functioning properly; otherwise, the BIOS will generate an error message [27].
Hardware components such as the memory controller and system bus are then
initialized to prepare the system for next code execution.

• Boot ROM: The Boot ROM code, a small segment of code in CPU, begins
execution from a predefined, hardwired location in the ROM. It loads the Boot-
loader into RAM and initiates its execution. Once the power supplies are stable,
the Boot ROM code takes over, starting the process [5].

• 1st Stage Bootloader: The first phase of the Bootloader establishes the es-
sential environment needed to load the second part. It can performs operations
such as configuration of memory and access storage devices.

• 2nd Stage Bootloader: After confirming the integrity of the kernel and boot
partition, the system configures the network, memory, and other necessary set-
tings for the kernel’s operation. Subsequently, it loads the kernel into RAM and
transfers control to it.

23

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

• Kernel Loading Decompression: During this phase, the kernel and the
initramfs (initial RAM file system), which contains initialization scripts and
drivers needed to prepare the boot environment, are loaded into the system’s
RAM. If compressed to minimize space usage and speed up loading times, they
are decompressed at this stage.

• Kernel Init: The kernel then mounts the initramfs as a temporary root file sys-
tem, initializes system components, configures memory and process scheduling,
and loads the required drivers. Finally, it searches for and starts the Init process
within the system files.

• Init Process: It is the first process to start during the operating system’s boot
sequence. It plays a vital role in initializing the environment and launching key
system services [5].

• Init Scripts: Init process reads and carries out commands from initialization
files, which usually have the .rc file extension [5]. Services like network manage-
ment and device settings configuration are established.

• Mounting the Root Filesystem: The kernel locates and mounts the root file
system as designated by the bootloader. Initially, it’s mounted in read-only mode
to verify its integrity, and subsequently, after successful checks, it’s remounted
in read-write mode to permit write operations.

• Critical Applications: The system operates the primary applications, which
are monitored and managed to ensure they function correctly. These applications
are essential for the basic operation and user interaction of the Infotainment
system.

This process provides a detailed analysis of the complexity involved in booting the
operating system, emphasizing the importance of each step to ensure proper system
booting. Ultimately, understanding the start-up sequence enables the improvement
of system efficiency by intervening directly on critical points, focusing optimization
efforts on the most relevant parts of the system.

24

CHAPTER 2. OPTIMIZATION OF THE INFOTAINMENT SYSTEM

Figure 2.1. Boot Sequence.

2.4.1 Kernel Compression and Decompression

Kernel compression involves reducing the size of the kernel image to occupy less
storage space, which is crucial for devices with limited resources such as embedded
systems, and to decrease the loading time into memory during booting, facilitating
faster startup times.
This process represents a balanced trade-off between speed and space efficiency, en-
abling the selection of an optimal compression algorithm tailored to the specific op-
erating system and hardware requirements. Some of the most common compression
algorithms include:

• GZIP: The well-established gzip compression offers a solid balance between the
compression ratio and decompression speed.

• BZIP2: Provides better compression ratios than GZIP but is slower in terms of
compression and decompression. Bzip2 requires a significant amount of memory
(in modern Kernels at least 8MB RAM or more for booting).

• LZMA: It offers high compression ratios and is used in scenarios where space
is critical. Decompression speed is between gzip and bzip2, while compression is
slowest.

• LZ4: It offers fast compression and decompression speeds, making it suitable
for scenarios where speed is prioritized.

• LZO: Provides fast compression and decompression with moderate compression
ratios.

• XZ: Provides slow compression speed but excellent compression ratios.

• ZSTD: It offers a good balance between compression ratio and speed.

In addition to compression time, it is also crucial to evaluate decompression time when
selecting an algorithm, as this represents the extra time incurred during the boot
process. The actual speeds of compression and decompression can also be influenced
by kernel-specific optimizations and hardware capabilities. Therefore, benchmarking
these algorithms on the kernel and hardware configuration is essential to determine
the best choice.
The selection of a compression algorithm is based on factors such as compression speed,
decompression speed, and compression ratio, which is the ratio between the original
image size and the compressed image size.

25

Chapter 3

Case study

3.1 Work environment configuration

3.1.1 Raspberry Pi 4

Figure 3.1. Raspberry Pi 4 Model B [22].

The Raspberry Pi 4 Model B (Pi4B) is the first of a new generation of Raspberry
Pi computers supporting more RAM and with significantly enhanced CPU, GPU and
I/O performance in a similar form factor, power enveloper and cost as the previous
generation Raspberry Pi 3B+ [10].
This model is equipped with a high-performance 64-bit quad-core processor, enabling
support for dual displays with resolutions up to 4K via its two micro HDMI ports. It
offers hardware video decoding at up to 4kp60, up to 8GB of RAM, dual-band 2.4/5.0
GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet and USB 3.0.
This product maintains backward compatibility with the previous-generation Rasp-

26

CHAPTER 3. CASE STUDY

berry Pi3 with similar power consumption, making it an easy upgrade for existing
projects. However it brings substantial improvements in processor speed, multimedia
performance, memory capacity and connectivity options.
The availability of higher RAM options, reaching up to 8GB, facilitates the running
of more demanding applications and improves multitasking capabilities. Additionally,
Gigabit Ethernet improves network connectivity, offering quicker and more stable in-
ternet access. The inclusion of dual-band wireless LAN and Bluetooth 5.0 support
guarantees strong wireless communication, rendering the Raspberry Pi 4 Model B an
adaptable and potent device for both developers and enthusiasts.
These advancements make the Pi4B suitable for a wider range of applications, from
simple educational projects to complex industrial use cases, including embedded com-
puting and IoT applications.

Specification [10]:

• Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC
at 1.5GHz.

• Memory: 8GB LPDDR4-3200 SDRAM.

• Connectivity: 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless LAN, Bluetooth
5.0, Gigabit Ethernet, 2 USB 3.0 ports, 2 USB 2.0 ports.

• GPIO: Standard 40-pin GPIO header (full backwards-compatible with previous
boards).

• Video and Sound: 2 micro HDMI ports (up to 4Kp60 supported), 2-lane
MIPI DSI display port, 2-lane MIPI CSI camera port, 4-pole stereo audio and
composite video port.

• Multimedia: H.265 (4Kp60 decode), H.264 (1080p60 decode, 1080p30 encode).

• SD card support: Micro SD card slot for loading operating system and data
storage.

• Input power: 5V DC via USB-C connector, 5V DC via GPIO header, Power
over Ethernet (PoE)–enabled.

• Environment: Operating temperature 0-50 degrees Celsius.

To use Raspberry Pi, it is necessary a power supply (15W USB-C power supply) and a
boot media (for example a microSD card with sufficient storage capacity and speed).
By default, Raspberry Pis check for an operating system on any SD card inserted in

27

CHAPTER 3. CASE STUDY

the SD card slot. In our case study, the operating system image was installed directly
in microSD card. To set up the Raspberry Pi 4, begin by connecting the peripherals:

• Insert the microSD card with the operating system image into the microSD card
slot.

• Connect a monitor or TV using a micro HDMI cable.

• Attach a keyboard and mouse via the USB ports.

Next, power up the Raspberry Pi:

• Connect the USB-C power supply to the power port of the Raspberry Pi.

• Switch on the power supply; the Raspberry Pi should begin the boot process
automatically.

In our case study, the Raspberry Pi 4 is pivotal, showcasing its ability to handle com-
plex tasks and processes effortlessly. Its accessible setup and remarkable performance
underscore its popularity.

3.1.2 Android 14

In this section of the thesis, the process of configuring and compiling the project
for Raspberry Pi4 device will be explored, providing a detailed overview of the steps
required to successfully boot the Android operating system. From setting up the
development environment to compiling the source code, the step-by-step procedure
will be analyzed to ensure a perfect implementation of the Raspberry Vanilla project
[23]. To set up Android on the Raspberry Pi4 usign a Linux machine, follow these
detailed steps:

1. Establish Android build environment: Begin by installing essential pack-
ages needed for Android development. These packages include git, which is
crucial for downloading the Android Open Source Project (AOSP) source code,
and repo, which simplifies managing multiple Git repositories within a single
working directory. Here’s the command to install these packages: sudo apt-
get install git-core gnupg flex bison build-essential zip curl zlib1g-dev
libc6-dev-i386 x11proto-core-dev libx11-dev lib32z1-dev libgl1-mesa-
dev libxml2-utils xsltproc unzip fontconfig.
Additionally, install repo with: sudo apt-get install repo. These commands
set up the foundational tools required to build Android on your system [25].

28

CHAPTER 3. CASE STUDY

2. Install additional packages: These commands are commonly used to setup
a software development environment, providing the necessary tools and libraries
to compile and manage projects [25].

• sudo apt-get install bc coreutils dosfstools e2fsprogs fdisk kpartx
mtools ninja-build pkg-config python3-pip.

• sudo pip3 install meson mako jinja2 ply pyyaml dataclasses.

3. Initialize repo [25]: Initialize the local repository for the Android source code.
This involves setting up the repository and specifying the remote repository URL
as the origin, with a specific branch. Execute the following commands:

• repo init -u https://android.googlesource.com/platform/manifest
-b android-14.0.0_r22. This command sets up the local repository and
specifies the remote repository URL as the origin, with the branch ’android-
14.0.0_r22’.

• curl -o -repo/local_manifests/manifest_brcm_rpi.xml -L
https://raw.githubusercontent.com/raspberry-vanilla/android_
local_manifest/android-14.0/manifest_brcm_rpi.xml. This com-
mand fetches the XML file from the provided URL and saves it locally at
the specified path.

4. Sync source code [25]:

• repo sync. This process updates local working directory with the lat-
est changes from remote repositories, ensuring you have the most current
version of the codebase for your work.

5. Setup Android build environment [25]:

• . build/envsetup.sh. It is commonly used in Android development envi-
ronments to set up the necessary environment variables and functions for
building Android source code.

6. Select the device (rpi4) and build target (car for Android Automotive)
[25]:

• lunch aosp_rpi4_car-userdebug. The "lunch" command is a script
provided by the Android build system that allows you to choose a specific
build target from a list of available configurations.

7. Compile [25]: Finally, compile the Android source code to generate the nec-
essary system images required for running android on device. The following
command:

29

CHAPTER 3. CASE STUDY

• make bootimage systemimage vendorimage -j. This command is used
to compile Android source code and generate various system images required
for running Android on device. The boot image is a specialized package
that includes the kernel and RAMDisk, essential for the device’s booting
process. The system image holds the Android system files, encompassing
the framework, libraries, and system applications, and is mounted as the
/system partition on the device. The vendor image contains the hardware-
specific binaries and libraries necessary for the device’s operation, which are
part of the /vendor partition on the device.

8. Make flashable image for the device (rpi4) [25]:

• ./rpi4-mkimg.sh. It is a command used to execute a shell script that
automates the process of creating a customized image for running Android
on a Raspberry Pi 4 device.

After creating the image on a Linux machine, the next step involves flashing it onto
an SD card using the dd command. dd is a powerful utility present in Unix-like sys-
tems that is widely used for copying and converting files. This process ensures that
the SD card is prepared with the customized Android image ready for installation on
the Raspberry Pi. Once the flashing process is complete, insert the SD card into the
Raspberry Pi and power on the board to initiate the Android operating system.
Upon booting, the Raspberry Pi initializes with the newly installed Android image.
This step marks the transition from the development phase to practical application,
where the Raspberry Pi transforms into a functional Android device suitable for vari-
ous applications.
To visualize the successful boot process and confirm the operating system’s function-
ality, connect the Raspberry Pi board to a screen using an HDMI cable. This setup
allows interaction with the Android graphical interface, confirming the successful de-
ployment and enabling further configuration and testing as needed.
The following screenshots showcase the Android launcher, providing access to appli-
cations, and the menu interface, allowing navigation through various system settings
and functionalities.

30

CHAPTER 3. CASE STUDY

Figure 3.2. Android Auto Launcher.

Figure 3.3. Menu Interface.

31

CHAPTER 3. CASE STUDY

Figure 3.4. Menu Interface.

3.2 Android connection via Android Debug Bridge

Android Debug Bridge (adb) is an important command tool that enables the com-
munication between the device. This tool provides also access to a Unix shell, that
allowing the execution of different commands on the device [6]. It is composed by
three different components:

• A client that is responsible for sending commands and operates on our devel-
opment machine. It can be activated via command-line by executing an adb
command.

• A daemon (adbd) which executes commands on the devices. It is managed as
background process in each device.

• A server that manages communication between the client and daemon. Server
operates as background process in our development machine.

The connection with device can be established either over USB or Wi-Fi. In order to
utilize adb with a device connected via USB, it is necessary to activate USB debug-
ging in the Developer options located in the device’s system settings.
To activate the usb debugging it is necessary to access the Developer options. This
can be achieved by tapping 7 times consecutively the Build number option within
Settings > About phone > Build number.
After the activation of the developer options, Usb debugging can be activated di-
rectly within it. Debugging options provide methods to configure on device debugging

32

CHAPTER 3. CASE STUDY

and establish communication between device and development machine [6].
Alternatively, Android 11 and higher support wireless debugging via adb, without ever
needing to physically connect device via USB. To use wireless debugging, workstation
and device must be connected to the same wireless network. To establish a connection:

• Enable developer options on device.

• Open Android studio (integrated development environment officially provided by
Google for android application development) and select Pair Devices Using
Wi-Fi.

• On the device, tap Wireless debugging (found in the developer options) and
pair the device (with QR code or pairing code) [6].

In both cases we can verify that device is connected by executing adb devices. If
connected, the device name is displayed). Once the device is connected, it is possible
to access the system logs via the Logcat tool.

3.2.1 Logcat

Logcat is a system logging utility integrated into the Android operating system,
enabling the viewing of system logs. These logs include debug messages, errors, and
warnings from various operating system components and applications on the device.
It is incorporated into the Android Studio development environment, offering a com-
prehensive view of system activities. The Logcat tool is accessible directly via the
command line, or you can observe messages directly within Android Studio [19].
Logs contain multiple metadata fields, in addition to the tag and priority. The for-
mat of message output can be customized as needed. For the specific case study, the
’adb logcat -v time’ command was utilized; This format displays the date, recording
time, priority, tag, and PID of the process that generated the message. The next figure
shows an example of using logcat (in Android Studio) to view device logs.

33

CHAPTER 3. CASE STUDY

Figure 3.5. Example of Logcat messages in Android studio.

3.3 Measurements and tools used

3.3.1 Key Performance Indicator

The choice of key performance indicators (KPIs) is crucial to monitor the perfor-
mance of our android device. After a careful analysis of the logs obtained from the
device, different KPIs (each selected KPI has a corresponding printed log message)
were chosen. Each KPI corresponds to a specific log message indicating the successful
execution of a system service or functionality. Below is a detailed description of each
KPI and its associated log message:

1. Automotive Functionality Handling:

• Description: The system must be capable of managing automotive vehicle-
related functionalities, such as communication with automotive components
and integration with vehicle systems.

• Log: I/HidlServiceManagement: Registered android.hardware.automotive.

2. Bluetooth Service Initialization:

• Description: The Bluetooth service must be initialized correctly to ensure
the device is ready to handle Bluetooth functionalities, including connection
and communication with other Bluetooth devices.

• Log: I/HidlServiceManagement: Registered android.hardware.Bluetooth.

3. USB Device Management:

34

CHAPTER 3. CASE STUDY

• Description: The system should effectively manage USB devices and their
functionalities, such as data transfer and connection with external periph-
erals.

• Log: I/HidlServiceManagement: Registered android.hardware.usb.gadget.

4. External Camera Service:

• Description: The system should start a service that manages access to
external cameras on the Android device, allowing the use of webcams or
other connected cameras.

• Log: I/android.hardware.camera.provider-V1-external-service: external we-
bcam service is starting.

5. Audio Functionality Handling:

• Description: The system must handle audio functionalities effectively, in-
cluding sound playback and recording, ensuring an optimal audio experi-
ence.

• Log: I/HidlServiceManagement: Registered android.hardware.audio.

6. Media Functionality Management:

• Description: The system should manage media functionalities, particularly
those related to ffmpeg, for the playback and editing of multimedia content.

• Log: I/HidlServiceManagement: Registered android.hardware.media.

7. Boot Animation Start:

• Description: The system should initiate the boot animation process, pro-
viding a visual indication of the device startup.

• Log: D/BootAnimation: BootAnimationStartTiming start time.

8. PowerManager Service Start:

• Description: The PowerManager service, responsible for managing power-
related functions, must start correctly to ensure efficient energy manage-
ment.

• Log: D/SystemServerTiming: StartPowerManager.

9. TelephonyRegistry Service Start:

• Description: The TelephonyRegistry service, which manages telecommuni-
cation functionalities such as call information, network connections, and
SIM card management, must start correctly.

35

CHAPTER 3. CASE STUDY

• Log: D/SystemServerTiming: StartTelephonyRegistry.

10. WiFi Services Start:

• Description: The system should start WiFi services to ensure network con-
nectivity, including the management of wireless connections.

• Log: D/SystemServerTiming: StartWifi.

11. System Update Manager Service Start:

• Description: The System Update Manager, responsible for searching, down-
loading, and installing new system updates, must start correctly to keep the
device up-to-date.

• Log:D/SystemServerTiming: StartSystemUpdateManagerService.

12. Notification Manager Start:

• Description: The Notification Manager, which manages system notifica-
tions, must start correctly to ensure notifications are handled and displayed
properly.

• Log: D/SystemServerTiming: StartNotificationManager.

13. Location Manager Service Start:

• Description: The Location Manager service, responsible for managing location-
related tasks and data from GPS, WiFi, and cellular networks, must start
correctly.

• Log: D/SystemServerTiming: StartLocationManagerService.

14. System UI Start:

• Description: The System UI, which manages user interface components
like the navigation bar, status bar, and launcher, should start correctly to
provide a seamless user experience.

• Log: D/SystemServerTiming: StartSystemUI.

15. Boot Animation Stop:

• Description: The system should stop the boot animation process once the
booting is complete, indicating that the device is ready for use.

• Log: D/BootAnimation: BootAnimationStopTiming.

36

CHAPTER 3. CASE STUDY

3.4 Bootchart

Bootchart is a performance analysis and visualization tool for the system’s boot
process. Initially created for the Linux kernel, it captures and visually represents the
events and their interdependencies throughout the boot sequence. It gathers data on
resource utilization and process details during startup, which is then rendered into a
chart encoded in PNG or SVG format.
This diagram is useful for identifying bottlenecks and inefficiencies during the boot
process, simplifying the task of taking targeted actions to enhance your device’s over-
all performance. Bottlenecks can significantly slow down the startup time, affecting
user experience, especially in devices with limited hardware resources. By visualizing
the boot process, users can identify exactly where delays occur and which processes
consume the most resources.
Integrated into the Android development environment, this tool can be activated via
certain settings, serving as an essential instrument for refining the user experience
right from the initial stages of device startup.
Bootchart is already present on Android but it needs to be enabled with the following
commands after connecting the device with adb:

• adb shell ’touch /data/bootchart/enabled’.

• adb reboot.

After the reboot these files will be present in the directory /data/bootchart:

1. Header.

2. proc_diskstats.log.

3. proc_ps.log.

4. proc_stat.log.

To avoid data collection each time, delete /data/bootchart/enabled after the opera-
tion.
To render the graph on a Linux machine, download the "Bootchart" project directly
from Github, using the following URL: https://github.com/xrmx/bootchart.git.
After this operation, a folder called Bootchart will be created within the chosen direc-
tory.
The four files obtained inside the /data/boochart/ folder are moved, with command
adb pull, to the /bootchart folder, on Linux machine, and then compressed with the
tar command:

37

https://github.com/xrmx/bootchart.git

CHAPTER 3. CASE STUDY

• tar –cvf bootchartandroid.tar header proc_diskstats.log proc_ps.log
proc_stat.log.

Once the compressed file is generated, the SVG file will be create using the following
commands:

• make pybootchartgui/main.py.

• python pybootchartgui.py bootchartandroid.tar -f svg.

The following diagram, divided in two parts, provides a detailed visual representation
of the boot process captured from the Android device.

Figure 3.6. Bootchart graph full project.

Figure 3.7. Bootchart graph full project.

The graph represents three different sections:

• CPU (user+sys) usage (the sum of all the running tasks) and I/O
(wait):

38

CHAPTER 3. CASE STUDY

1. User CPU time: the duration the processor dedicates to executing user
application code.

2. System CPU time: the duration the processor spends handling operating
system tasks on behalf of the application.

3. I/O (wait): the amount of time the CPU spends waiting for input/output
operations to complete. During this wait time, the CPU is idle and cannot
proceed with the process until the necessary data is available.

• Disk Utilization and Disk Throughput:

1. Disk Utilization: the percentage of time the disk is actively engaged in
read/write operations. High disk utilization indicates frequent disk activ-
ity, which can lead to I/O bottlenecks if the workload exceeds the disk’s
throughput capacity.

2. Disk Throughput: the amount of data read from or written to the disk
over a given period, typically measured in MB/s. Peaks in disk throughput
indicate periods of intensive disk activity.

• Boot process tree: The most important part of bootchart graphs, showing
parent-child relationships, states and CPU usage. The process tree includes:

1. Running (%cpu): Percentage of CPU used by a specific process.

2. Unint.sleep (I/O): Indicates processes waiting for non-interruptible events,
typically I/O operations.

3. Sleeping: Indicates processes waiting for events.

4. Zombie: Indicates processes that have terminated but still have an entry
in process table, waiting for parents to read their exit status.

Each part horizontally evolves on a timeline from 0 seconds to the end of the process
analysis, providing a chronological view of events.
The Bootchart graph serves as a potent instrument, offering an extensive overview of
the system’s boot sequence. This allows developers to improve device performance by
making informed decisions and implementing targeted optimizations.

3.5 Bootgraph

Bootgraph is another valuable tool for analyzing startup performance. It converts
the output from the ’dmesg’ command into an SVG graph, emphasizing the initial-
ization time of different kernel functions. The dmesg command is essential for system
debugging, offering a comprehensive log of kernel events, such as errors and warnings.

39

CHAPTER 3. CASE STUDY

Initcalls are initialization calls that the kernel makes during boot time to configure var-
ious operating system subsystems and modules. These calls are essential to prepare
the operating environment before the system is ready to run user applications. Each
initcall is logged with a timestamp in the dmesg log upon invocation and completion,
enabling the calculation of its execution time. To enable this feature, it is necessary to
pass the "initcall_debug" option to the kernel command line. In this project, the
’cmdline.txt’ file inside the /boot folder of the SD card is edited directly. The SD card
is directly connected to the Linux PC, and the file within the boot folder has been
modified to include the following information: "printk.time=1 initcall_debug".
However, using the initcall_debug option increases the amount of messages produced
by the kernel during startup.
To avoid log buffer overrun, the size of the log printk buffer is increased. This can be
done by increasing the CONFIG_LOG_BUF_SHIFT value from 14 to 18, thus
increasing the buffer size from 16k to 256k.
Additionally, the following configurations must be set: CONFIG_PRINTK_TIME
and CONFIG_KALLSYMS. The first option displays printk times, while the sec-
ond ensures that function names are printed instead of memory addresses.
Then, reconnect the SD card to the Raspberry Pi, power on the device, and execute
the following commands after establishing the ADB connection of the device to the
PC:

• adb root - This command restarts the connection with root permissions.

• adb shell (and after ’su’) - Opens a shell on the device and switches to the
superuser.

• mount -o remount,rw / - Remounts the root file-system in read-write mode
to allow modifications.

• dmesg > boot.log - Redirects the dmesg output to a file named boot.log.

• exit - Exits from the shell.

• adb pull boot.log /path/to/local_directory - Pulls the boot.log file from
the device to a specified directory on the PC.

The dmesg command includes entries that start with "calling" and "initcall".

• calling: Indicates the kernel is invoking an initialization function.

• initcall: Indicates the completion of an initialization function.

These messages help in diagnosing and understanding the boot process, as they detail
which modules are being initialized, their success or failure status, and the time taken
for each initialization.

40

CHAPTER 3. CASE STUDY

Figure 3.8. Example of log messages produced by dmesg command.

After downloading the script from Github (bootgraph.pl) to the Linux PC, it is
placed in a folder where the file generated via dmesg is also present. It is important
to ensure that Perl is installed on PC, as it is required to run the script. Finally, to
generate the SVG file, the following command is executed directly inside the chosen
folder:

• perl bootgraph.pl boot.log > output.svg

The bootgraph.pl script analyzes the output of dmesg, identifying the start and end
of initialization calls, and generates a graph. This graph provides a clear represen-
tation of possible bottlenecks during startup, allowing for the optimization of system
performance.

Figure 3.9. Example of generated graph.

Interpreting the graph involves identifying long-running initcalls, which are potential
candidates for optimization. By reducing the time taken by these functions, overall
boot time can be significantly improved. This tool is essential for improving overall
kernel efficiency and reducing boot times.

41

https://github.com/torvalds/linux/blob/master/scripts/bootgraph.pl

Chapter 4

Boot time Optimization

In this chapter, we will discuss one by one the methodologies applied to reduce the
initial boot time of the Android system. The goal, as specified above, is to ensure a
quick and smooth start, thus improving the user experience.

4.1 Removing unnecessary projects

The first phase of optimization involved eliminating unnecessary OS components.
In the process of configuring and compiling the Android 14 project for RPI4, the
manifest file remove_projects.xml was added (this file is already present in the Git
project [23]), through the command:

• curl -o .repo/local_manifests/remove_projects.xml -L
https://raw.githubusercontent.com/raspberry-vanilla/ android_
local_manifest/android-14.0.0_r22/remove_projects.xml.

This file specifies a list of projects that are not required for the current build and that
can be excluded. The main removed projects are listed below:

• Amlogic Devices: A chipset manufacturer is renowned for its systems on chips,
commonly utilized in multimedia devices.

– ’device/amlogic/yukawa’ and ’device/amlogic/yukawa-kernel’: Re-
garding configuration and support for devices based on Amlogic Yukawa
chipsets, which are not relevant for Raspberry.

• Google Devices: Involving codenamed Pixel Devices [15].

– ’device/google/barbet’ and ’device/google/barbet-sepolicy’: Re-
garding configuration and SELinux security policies support for Google
Barbet (Pixel 5A), which are not relevant for Raspberry.

42

CHAPTER 4. BOOT TIME OPTIMIZATION

– ’device/google/bluejay’, ’device/google/bluejay-sepolicy’ and ’de-
vice/google/bluejay-kernel’: Regarding configuration and SELinux se-
curity policies support for Google Bluejay (Pixel 6A), which are not relevant
for Raspberry.

– ’device/google/bramble’ and device/google/bramble-sepolicy’: Re-
garding configuration and SELinux security policies support for Google
Bramble (Pixel 4a 5G), which are not relevant for Raspberry.

– ’device/google/contexthub’: Regarding support for Context Hub, a
platform hardware for sensor that is not relevant in Raspberry.

– ’device/google/coral’, ’device/google/coral-kernel’ and ’device/
google/coral-sepolicy’: Regarding configuration and SELinux security
policies support for Google Coral (Pixel 4), which are not relevant for Rasp-
berry.

– ’device/google/gs101’, ’device/google/gs101-sepolicy’, ’device/
google/gs201’, ’device/google/gs201-sepolicy’ and ’device/google/
gs-common’: Regarding configuration of Google chipsets that are not rel-
evant for Raspberry.

– ’device/google/lynx’, ’device/google/lynx-sepolicy’, and ’device/
google/lynx-kernel’: Regarding configuration and SELinux security poli-
cies support for Google Lynx (Pixel 7a), which are not relevant for Rasp-
berry.

– ’device/google/felix’, ’device/google/felix-sepolicy’, and ’device/
google/felix-kernel’: Regarding configuration and SELinux security poli-
cies support for Google Felix (Pixel Hold), which are not relevant for Rasp-
berry.

– ’device/google/redfin’ and ’device/google/redfin-sepolicy’ Regard-
ing configuration and SELinux security policies support for Google Redfin
(Pixel 5), which are not relevant for Raspberry.

– ’device/google/tangorpro’, ’device/google/tangorpro-sepolicy’ and
’device/google/tangorpro-kernel’ Regarding configuration and SELinux
security policies support for Google Tangorpro (Pixel Tablet), which are not
relevant for Raspberry.

– ’device/google/sunfish’, ’device/google/sunfish-sepolicy’ and
’device/google/sunfish-kernel’ Regarding configuration and SELinux
security policies support for Google Sunfish (Pixel 4a), which are not rele-
vant for Raspberry.

43

CHAPTER 4. BOOT TIME OPTIMIZATION

• Linaro Platforms: Involving projects of Linaro, an engineering organization
with the goal of improving the integration and performance of open source soft-
ware on ARM hardware. These projects are not relevant for Raspberry, such
as:

– ’device/linaro/dragonboard’.

– ’device/linaro/hikey’.

• Hardware Platforms: Involving projects for hardware components that are
not important in Raspberry, such us:

– platform/hardware/invensense’.

– ’platform/hardware/qcom/audio’.

– ’platform/hardware/qcom/gps’.

– ’platform/hardware/ti/am57x’.

Eliminating unnecessary projects from our device leads to a simplified operating system
and smaller size, which ensures a faster boot time for the device.

4.2 Removing Initial Animation

Subsequently, the initial boot animation was eliminated. This change resulted in a
decreased visible boot time by removing a step that, while visually appealing, added
to the overall time required to make the operating system accessible to the user.
Within the logs obtained through the command ’adb logcat -v time’, the following
debug message is obtained:

• D/BootAnimation(691): /system/media/bootanimation.zip is loaded
successfully.

The "bootanimation.zip" file is used for the Android startup animation and when the
system boots, this file is loaded by the process responsible for handling the initial
animation. The zipped file contains multiple folders, each filled with images that
sequentially create the initial animation. The following image contains the logs relevant
to the initial animation process, providing insights into how it is executed by the
system.

44

CHAPTER 4. BOOT TIME OPTIMIZATION

Figure 4.1. Log messages related to the initial animation.

To remove the initial boot animation, the following steps were performed:

• adb root: This command grants root privileges on the Android device via adb,
allowing advanced system operations.

• adb shell (and after ’su’): Opens a shell on the device and switches to the
superuser.

• mount -o remount,rw /: Remounts the root file-system in read-write mode
to allow modifications.

• cd /system/media : Changing the working directory to ’system/media’, where
the file ’bootanimation.zip’ is located.

• chmod 777 bootanimation.zip: Sets permissions on the file to allow read,
write, and execute access for all users, facilitating its removal. This command
might be necessary if permission issues are encountered when attempting to
delete the file.

• rm -rf bootanimation.zip: Finally deleting the file on the Android device.

Removing the initial boot animation not only accelerates the boot process but also
conserves system resources. Another alternative to deleting it could be replacing the
animation with a customization or adjusting the settings to minimize startup time.

4.3 Configuration of new version of Kernel

Following the analysis of Android 14’s configuration on device, this section will
delve into the new kernel image configuration. In particular, the newly configured

45

CHAPTER 4. BOOT TIME OPTIMIZATION

kernel version 6.1.84, replacing the previous 6.1.74, has resulted in improved initial
boot performance of the system.
To configure the Android Image on a Linux machine, the following steps are followed
[24]:

1. Establish Android build environment and install repo: As described in
the previous section, it is essential to have the Android development environment
set up and repo installed to proceed with kernel compilation.

2. Initialize repo [24]:

• repo init -u https://android.googlesource.com/kernel/manifest -b
common-android14-6.1-lts. This command initializes the local reposi-
tory for the kernel source code, specifying the remote repository URL and
the branch to use.

• curl -o .repo/local_manifests/manifest_brcm_rpi.xml -L
https://raw.githubusercontent.com/raspberry-vanilla/android_
kernel_manifest/android-14.0/manifest_brcm_rpi.xml –create-dirs.
The command retrieves the XML file from the given URL and stores it lo-
cally at the designated path.

3. Sync the source code [24]:

• repo sync. This command synchronizes the local working directory with
the remote repositories, ensuring the kernel source code is up to date.

4. Compile the kernel [24]:

• tools/bazel build –config=fast –config=stamp //common:rpi4. This
command compiles the kernel using Bazel, an advanced build system. The ’–
config=fast’ flag optimizes the build process for speed, while ’–config=stamp’
ensures the build outputs are stamped with metadata for debugging pur-
poses.

Following the operations, the compiled kernel image, dtbs, and overlays will be located
in the ’bazel-bin/common/rpi4/arch/arm64/boot’ directory. Configuring and
compiling the kernel separately avoids the need to recompile the entire Android project,
thus saving time and resources. This approach ensures that any changes to the kernel
can be quickly integrated and tested without affecting the rest of the project, thus
simplifying the development process.
The new kernel Image is then moved directly into the /boot folder of SD card, after
connecting SD card to the Linux machine, with the following command:

46

CHAPTER 4. BOOT TIME OPTIMIZATION

• cp bazel-bin/common/rpi4/arch/arm64/boot/Image /boot/ : The com-
mand ‘cp‘ copies the newly compiled kernel image from its location in the build
directory to the /boot folder of the SD card. This step is crucial as it updates
the kernel that the system will use during boot.

After transferring the new kernel Image to the SD card and ensuring its successful
boot on the Raspberry, follow these steps to verify the kernel configuration:

• Reconnect the SD card to the Raspberry Pi.

• Power on the Raspberry and monitor the boot process in order to confirm that
the system starts without errors using the new kernel.

• Once the Raspberry has booted successfully, execute these steps:

– adb root - This command restarts the connection with root permissions.

– adb shell (and after ’su’) - Opens a shell on the device and switches to
the superuser.

– mount -o remount,rw / - Remounts the root file-system in read-write
mode to allow modifications.

– exit - Exits from the superuser mode.

– exit - Exits from the adb shell.

– adb pull /proc/config.gz /path/to/local_directory: Pulls the kernel
configuration file from the device to the specified directory on PC.

• After these operations, open the file config.gz with text editor and verify that
the kernel version is correctly updated to 6.1.84.

The following image 4.2 shows that the new kernel version has been correctly config-
ured.

Figure 4.2. New version 6.1.84 of Kernel.

47

CHAPTER 4. BOOT TIME OPTIMIZATION

The new kernel version can also be checked directly from the logs obtained using the
command ’adb logcat -v time’. The following image shows the reference logs.

Figure 4.3. Log messages of kernel.

4.4 Disabling Serial Console

The next step in the optimization concerned the study of the logs obtained through
the dmesg command. As expected, utilizing the bootgraph.pl script enabled the iden-
tification of bottlenecks in the startup process.
First, the graph obtained through the bootgraph.pl script allowed the identification of
long-running initcalls, showing potential candidates for optimization. The following
image shows the graph obtained from the dmesg command:

Figure 4.4. Graph obtained through bootgraph.pl

In particular, the initcall deferred_probe_initcall shows remarkable latency, neg-
atively affecting the overall performance of the system.

Figure 4.5. Messages of deferred_probe_initcall.

Between the "calling deferred_probe" and "initcall deferred_probe" messages, certain
initializations appear to introduce a delay in the system. The excerpts below from the
logs underscore particular occurrences:

• probe of serial0-0 returned 0 after 255281 usecs: The message confirms
that the serial0-0 device has successfully completed the probing process, as in-
dicated by the returned value of 0, after approximately 255 milliseconds. The
serial0-0 device is one of the system’s serial ports.

• probe of fe215040.serial returned 0 after 280653 usecs: The message
confirms that the serial device, assigned the address fe215040, has successfully
completed the probing process, as indicated by the returned value of 0, in ap-
proximately 281 milliseconds. This device represents an additional serial port
within the system.

48

CHAPTER 4. BOOT TIME OPTIMIZATION

• probe of gpu returned 0 after 2066263 usecs: The message confirms that
the GPU (Graphics Processing Unit) device successfully finished the probing
process, as indicated by the returned value of 0, in approximately 2.07 seconds.
This duration is notably lengthy, particularly in comparison to the probing times
of other devices in the system.

Delays in probing serial ports contribute to the total system initialization time. In
particular, the GPU showed very long probing times, which could be related to the
delays introduced by the serials.
The issue was resolved by disabling the device’s serial console through direct modifica-
tions to the config.txt file in the /boot directory. In production environments, where
debugging is not required, serial consoles are not necessary.
The config.txt file in the boot partition is a configuration file that is primarily used
on Raspberry devices to configure various aspects of the hardware during the boot
process. This file is read by the device’s firmware at startup, and the settings in it
directly affect how the operating system is loaded and how hardware peripherals are
initialized [9].
Analyzing the config.txt file, the serial console is currently enabled as we can see from
the following image:

Figure 4.6. Serial console enabled in config.txt file.

To disable the serial console, it was necessary to add the # character at the beginning
of the "enable_uart=1" line. After saving the changes, close the file and reboot the
system to apply them effectively.
Turning off the serial console has led to a notable enhancement in system performance,
especially in terms of system boot time. Disabling serial ports has resulted in a major
change in the deferred_probe_initicall, as illustrated in the following image:

Figure 4.7. Messages of deferred_probe_initcall after disabling serial console.

Furthermore, the GPU probing duration, previously lengthy, has been reduced signifi-
cantly from approximately 2.07 seconds to just under 19 milliseconds, highlighting the
substantial performance gains achieved. This change was essential in improving the
initial boot performance of the device, ensuring faster and more efficient startup.

49

CHAPTER 4. BOOT TIME OPTIMIZATION

4.5 Disabling unnecessary Kernel options

Following the optimization achieved by disabling the serial console, the next phase
of the study focused on analyzing the active kernel configurations. The goal was
to identify and fine-tune specific settings that could further enhance the system’s
performance and stability.

The kernel configuration plays a crucial role in determining how the system in-
teracts with hardware components, manages resources, and executes processes. By
carefully reviewing and adjusting these settings, it is possible to optimize the system
for its intended use case, minimizing overhead and improving efficiency.
This optimization process involves removing kernel components and features that are
not essential to the intended operation of the device. The project’s target is the op-
timization of the system startup, which must be as fast as possible. In this specific
case, everything that does not concern the system startup is unnecessary and has been
removed. The main reasons why these changes lead to improvements are as follows:

• Kernel Size Reduction: Each enabled configuration adds code to the kernel,
increasing the overall kernel file size. A smaller kernel loads faster, reducing boot
time.

• Reducing Workload: Unnecessary configurations require the management of
extra drivers, modules, and services, which can decelerate the boot process. By
eliminating these components, the system has to perform fewer operations during
boot, thus speeding up the process.

• Resource Optimization: Removing unused features frees up system resources,
such as memory and CPU, which can be allocated for more critical operations.

As mentioned, the config.gz file located in the /proc directory within the device
shell serves as the kernel configuration file, detailing which configurations are active
or disabled. As mentioned above, configuration and compilation of the kernel were
performed separately to avoid compiling the entire project. Each change in kernel
configurations was made by directly editing a file within this project, compiling, and
creating the modified kernel Image.
The following steps outline the process for modifying the kernel configuration and
verifying the changes:

• Modify the kernel configuration: Edit the file android_rpi4_defconfig in
the directory /common/arch/arm64/configs/ directly within the kernel project.

• Build the modified kernel: Execute the following command to build the
modified kernel: ’tools/bazel build –config=fast –config=stamp //com-

50

CHAPTER 4. BOOT TIME OPTIMIZATION

mon:rpi4’. The resulting Image will be located in ’bazel-bin/common/rpi4/
arch/arm64/boot’ directory.

• Connect the SD card: Connect the SD card into the Linux machine where is
located the project.

• Identify the boot partition on SD card: Locate the partition corresponding
to the /boot directory on the SD card.

• Copy the modified kernel Image: Execute the following command to copy
the modified kernel to the SD card: ’cp bazel-bin/common/rpi4/arch/arm64/
boot/Image /boot.

• Verify the kernel Image update: Ensure that the Image file in the directory
has been updated.

• Reconnect the SD card and boot the Raspberry: Reinsert the SD card
into the Raspberry and verify that it boots correctly.

• Verify kernel configurations: Access the device shell and control the con-
fig.gz file in the /proc directory to confirm the applied configurations.

Below are the main configurations removed, divided by category, with the reasons
behind these choices:

• Input Device Drivers

– CONFIG_JOYSTICK_XPAD, CONFIG_JOYSTICK_XPAD_
FF, CONFIG_JOYSTICK_XPAD_LEDS, CONFIG_INPUT_
JOYDEV, CONFIG_INPUT_TABLET, CONFIG_TOUCH-
SCREEN_USB_E2I and CONFIG_TOUCHSCREEN_USB_
JASTEC: These configurations enable support for Xbox controllers, joy-
sticks, tablets, and touchscreen devices, which are not needed for the project.
Disabling them reduces unnecessary driver loading and initialization during
boot.

• IRQ subsystem

– CONFIG_GENERIC_IRQ_INJECTION and CONFIG_IRQ_
DEBUGFS: These configurations enable generic interrupt request (IRQ)
injection functionality and debug filesystem support for IRQs, mainly used
for testing or debugging. As they are not needed for production environ-
ment, they have been disabled to improve performance.

51

CHAPTER 4. BOOT TIME OPTIMIZATION

– CONFIG_CONTEXT_TRACKING: This configuration enables the
tracking of the context switches in the kernel. This option adds overhead
to the kernel and is not necessary for project.

• Power management options

– CONFIG_PM_DEBUG and CONFIG_PM_SLEEP_DEBUG:
These configurations support debugging for the power management frame-
work. These features are not necessary in a production environment, so
they have been disabled.

• Debug Options

– CONFIG_CIFS_DEBUG, CONFIG_DEBUG_KERNEL, CON-
FIG_DEBUG_INFO_NONE and CONFIG_DEBUG_MISC:
These configurations support debugging options. These features are not
necessary in production environment, so they have been disabled.

• Tracing options

– CONFIG_TRACER_MAX_TRACE, CONFIG_FUNCTION_
TRACER, CONFIG_FUNCTION_GRAPH_TRACER, CON-
FIG_DYNAMIC_FTRACE, CONFIG_DYNAMIC_FTRACE_
WITH_REGS and CONFIG_STACK_TRACER These configura-
tions enable various tracing features that are useful for detailed performance
analysis and debugging. However, they are not required for production en-
vironment and contribute to kernel bloat and overhead, thus they have been
disabled.

• Network Device Support and Vendor Drivers

– CONFIG_NET_VENDOR_NVIDIA, CONFIG_NET_VEN-
DOR_ AMAZON, CONFIG_NET_VENDOR_ALTEON and
CONFIG_NET_VENDOR_SOLARFLARE: These configurations
enable support for various network devices and vendor-specific drivers. Since
project does not require these specific network device drivers, they have
been disabled to reduce the kernel size and improve boot time.

• USB network device support

– CONFIG_USB_ALI_M5632, CONFIG_USB_BELKIN, CON-
FIG_USB_LAN78XX and CONFIG_USB_KC2190: These con-
figurations enable support for various USB network devices and chipsets.

52

CHAPTER 4. BOOT TIME OPTIMIZATION

Since project does not require these specific USB devices, they have been
disabled to save resources and reduce kernel bloat.

• Leds Triggers

– CONFIG_LEDS_TRIGGER_ONESHOT, CONFIG_LEDS_ TRIG-
GER_CPU and CONFIG_LEDS_TRIGGER_INPUT: These con-
figurations enable LED triggers that are unnecessary for the project’s re-
quirements, thus disabled.

• PWM options

– CONFIG_PWM_BRCMSTB, CONFIG_PWM_BCM2835 and
CONFIG_PWM_RASPBERRYPI_POE: These configurations en-
able Pulse Width Modulation (PWM) support on various platforms in the
Linux kernel. Since PWM functionality is not required for project, these
options have been disabled.

These configurations represent a selection aimed at improving the efficiency and re-
source utilization of the system, but they do not encompass all configurations that
were disabled.
This approach underscores the importance of targeted kernel optimization to achieve
optimal performance tailored to specific operational needs. It is important to note
that these adjustments are specific to the current case study. In other contexts, such
as a car infotainment system, certain disabled configurations could be essential.

4.6 Compression of Kernel Image

The last phase of the study focused on analyzing the compression algorithm of the
Kernel Image. Compressing the kernel image can significantly reduce the boot time by
decreasing the time required to load into memory during booting. This section details
the methodology used to analyze different compression algorithms. In particular, the
different compression algorithms were benchmarked in order to determine the best
algorithm regarding compression speed, decompression speed, and compression ratio.

4.6.1 Benchmark Kernel Compression Algorithms

To evaluate the impact of different compression algorithms on the boot time, a
series of tests were conducted using various commonly used compression techniques.
Each algorithm was applied to compress the kernel image using the ’tar’ utility. The

53

CHAPTER 4. BOOT TIME OPTIMIZATION

’tar’ command, which stands for "tape archiver", is commonly used in compression on
GNU/Linux. This utility supports various compression algorithms through command-
line options to compress and decompress archives efficiently. To create a compressed
file using ’tar’, the command ’tar -cf’ is executed along with a flag that represents
the desired compression algorithm, followed by the files to be included. The standard
flags for compression are: The following results were obtained by combining the ’time’

Long option Algorithm
–gzip gzip
–bzip2 bzip2

–xz xz
-I"lz4" lz4
–lzma lzma
–zstd zstd

Table 4.1. Compression Algorithms and their flags.

command with the ’tar’ command to measure the duration of the tar operation. The
benchmarking results offer insights into the efficiency of each compression algorithm,
aiding in the selection of the optimal method for reducing boot time while ensuring a
good balance of speed and compression efficiency.

Algorithm Time (s) Size Command
gzip 1.015 11907883 time tar c –gzip -f Image.tar.gzip Image
bzip2 1.981 11143162 time tar c –bzip2 -f Image.tar.bzip2 Image
lz4 0.185 15287271 time tar c -l"lz4" -f Image.tar.lz4 Image
xz 10.741 8444332 time tar c –xz -f Image.tar.xz Image

lzma 10.675 8444332 time tar c –lzma -f Image.tar.lzma Image
zstd 0.228 12131811 time tar c –zstd -f Image.tar.zstd

Table 4.2. Performance of Various Compression Algorithms.

For each algorithm used, the real time (obtained from the time command), the size
of the resulting compressed file, and the command used to perform the compression
were recorded and analyzed. The exact numbers obtained will vary depending on
CPU, number of cores, and SSD/HDD speed, but the relative performance differences
are expected to be somewhat similar [8].
The kernel must be decompress, making the decompression speed a critical factor
in selecting the algorithm, as it adds additional time to the boot process. In the
same way as compression, for each algorithm used, the real time and the command
used to perform the decompression of the previous compressed files were recorded and
analyzed.

The benchmarking results demonstrate significant variations among the tested com-
pression algorithms in terms of both compression and decompression speeds, as well as

54

CHAPTER 4. BOOT TIME OPTIMIZATION

Algorithm Time (s) Command
gzip 0.237 time tar x –gzip -f Image.tar.gzip
bzip2 0.956 time tar x –bzip2 -f Image.tar.bzip2
lz4 0.165 time tar x -l"lz4" -f Image.tar.lz4
xz 0.593 time tar x –xz -f Image.tar.xz

lzma 0.564 time tar x –lzma -f Image.tar.lzma
zstd 0.142 time tar x –zstd -f Image.tar.zstd

Table 4.3. Performance of Various Decompression Algorithms.

resulting file sizes. Each algorithm exhibit distinct advantages depending on specific
performance requirements. For instance, lz4 stands out for its exceptional compression
and decompression speeds, but with a larger compressed file size compared to some
alternatives like xz and lzma. Alternatively, zstd offers a compelling balance of com-
pression ratio and speed, making it a promising candidate for minimizing kernel image
load times during system boot. These findings provide valuable insights for optimizing
the kernel image compression process to enhance overall system performance, focusing
on achieving the most efficient balance between compression efficiency and operational
speed.
In conclusion, it is important to note that the benchmarking results serve primarily
as a demonstration exercise. Therefore it is essential to conduct extensive testing of
project to accurately assess how each algorithm affects the overall performance of the
system, particularly in terms of reducing system boot time.
In the context of this project, it’s important to note that although LZ4 and ZSTD show
better performance in compression and decompression speeds, only GZIP is available
for utilization.
To compress the kernel image with the GZIP algorithm, the following steps are per-
formed:

• Connect the SD card: Insert the SD card into the Linux machine.

• Identify the boot partition on SD card: Locate the partition corresponding
to the /boot directory on the SD card.

• Compress the Image file: Execute the command ’gzip Image’ to create the
compressed file Image.gz.

• Modify the file config.txt: Open the file ’config.txt’ and modify the line
related to the kernel from "kernel=Image" to "kernel=Image.gz". This
modification is necessary to instruct the bootloader to use the compressed kernel
Image. The modified section of the file should look like this:

55

CHAPTER 4. BOOT TIME OPTIMIZATION

Figure 4.8. Section related to the kernel Image.

• Reconnect the SD card and boot the Raspberry: Reinsert hte SD card
and verity that it boots correctly.

While GZIP may not offer the best performance compared to LZ4 or ZSTD, its com-
patibility and availability make it the practical choice for the project. This approach
underscores the balance between achieving optimal performance and practical imple-
mentation constraints, ensuring that the system operates reliably within the specified
parameters.

56

Chapter 5

Results

5.1 Analysis of results

This section presents a detailed analysis of the results using selected Key Perfor-
mance Indicators (KPIs), comparing the initial project state with the optimized state.
The analysis provides a comprehensive view of the improvements achieved in terms
of boot time for each phase of the optimization. Each subsection includes averaged
results of system boot times, derived from 20 measurements taken at system reboot
to ensure accuracy.
Below is the initial project state, accompanied by a descriptive table of various KPIs:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:08.797

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:15.289

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:15.290

4 I/Android.hardware.camera.provider-V1-external-service 00:16.008

5 I/HidlServiceManagement:Registered android.hardware.audio 00:16.847

6 I/HidlServiceManagement:Registered android.hardware.media 00:17.473

7 D/BootAnimation:BootAnimationStartTiming start time 00:21.441

Continue on the next page

57

CHAPTER 5. RESULTS

KPI Log Message Time (s)

8 D/SystemServerTiming:StartPowerManager 00:32.810

9 D/SystemServerTiming:StartTelephonyRegistry 00:50.982

10 D/SystemServerTiming:StartWifi 00:54.756

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:54.938

12 D/SystemServerTiming:StartNotificationManager 00:54.944

13 D/SystemServerTiming:StartLocationManagerService 00:55.150

14 D/SystemServerTiming:StartSystemUI 01:03.757

15 D/BootAnimation:BootAnimationStopTiming 01:20.820

Table 5.1. Android KPIs Performance of the AOSP full project.

The table above provides a comprehensive list of Key Performance Indicators
(KPIs) for the initial phase of the AOSP (Android Open Source Project) full project.
Each row corresponds to a critical event or log message throughout the system’s boot
sequence, paired with the specific time in seconds when the event took place.

5.1.1 Removing unnecessary projects

The initial optimization phase resulted in a substantial reduction in the system’s
boot time, significantly enhancing overall system speed. The results obtained from
this optimization are presented below:

58

CHAPTER 5. RESULTS

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:07.629

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:12.786

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:12.790

4 I/Android.hardware.camera.provider-V1-external-service 00:13.314

5 I/HidlServiceManagement:Registered android.hardware.audio 00:13.844

6 I/HidlServiceManagement:Registered android.hardware.media 00:14.418

7 D/BootAnimation:BootAnimationStartTiming start time 00:17.054

8 D/SystemServerTiming:StartPowerManager 00:28.342

9 D/SystemServerTiming:StartTelephonyRegistry 00:35.203

10 D/SystemServerTiming:StartWifi 00:36.734

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:36.734

12 D/SystemServerTiming:StartNotificationManager 00:37.041

13 D/SystemServerTiming:StartLocationManagerService 00:37.140

14 D/SystemServerTiming:StartSystemUI 00:41.683

15 D/BootAnimation:BootAnimationStopTiming 00:53.477

Table 5.2. Android KPIs Performance after removing unnecessary projects.

The optimization led to a more efficient boot process, with all key components
initiating more rapidly than before. This stage of optimization underscores the sig-
nificance of removing superfluous projects, resulting in a streamlined and faster boot

59

CHAPTER 5. RESULTS

sequence.

5.1.2 Removing Initial Animation

Removing the initial boot animation further streamlined the boot process. Al-
though boot animations are aesthetically pleasing, they extend the startup time by
consuming system resources. By removing this feature, the system can redirect re-
sources to other processes, significantly reducing the total startup time. The results
from this optimization phase are presented below:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:07.578

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:12.640

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:12.655

4 I/Android.hardware.camera.provider-V1-external-service 00:13.260

5 I/HidlServiceManagement:Registered android.hardware.audio 00:13.794

6 I/HidlServiceManagement:Registered android.hardware.media 00:14.343

7 D/BootAnimation:BootAnimationStartTiming start time 00:16.902

8 D/SystemServerTiming:StartPowerManager 00:27.963

9 D/SystemServerTiming:StartTelephonyRegistry 00:34.633

10 D/SystemServerTiming:StartWifi 00:36.141

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:36.424

12 D/SystemServerTiming:StartNotificationManager 00:36.429

Continue on the next page

60

CHAPTER 5. RESULTS

KPI Log Message Time (s)

13 D/SystemServerTiming:StartLocationManagerService 00:36.517

14 D/SystemServerTiming:StartSystemUI 00:40.896

15 D/BootAnimation:BootAnimationStopTiming 00:47.222

Table 5.3. Android KPIs Performance after removing Initial Animation.

This optimization step highlights the importance of removing non-essential visual
elements to achieve a faster and more efficient boot process.

5.1.3 Configuration of new version of Kernel

Updating and configuring a new version of the kernel brought several improvements
to the system’s performance and boot time. The kernel is the core component of the
operating system, managing hardware resources and system processes. Upgrading to
a newer version introduced optimizations and enhancements that were not present in
the older version. The results from this optimization phase are presented below:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:07.165

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:11.378

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:11.379

4 I/Android.hardware.camera.provider-V1-external-service 00:11.871

5 I/HidlServiceManagement:Registered android.hardware.audio 00:12.470

6 I/HidlServiceManagement:Registered android.hardware.media 00:12.884

Continue on the next page

61

CHAPTER 5. RESULTS

KPI Log Message Time (s)

7 D/BootAnimation:BootAnimationStartTiming start time 00:15.378

8 D/SystemServerTiming:StartPowerManager 00:25.422

9 D/SystemServerTiming:StartTelephonyRegistry 00:31.292

10 D/SystemServerTiming:StartWifi 00:32.509

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:32.732

12 D/SystemServerTiming:StartNotificationManager 00:32.737

13 D/SystemServerTiming:StartLocationManagerService 00:32.826

14 D/SystemServerTiming:StartSystemUI 00:36.453

15 D/BootAnimation:BootAnimationStopTiming 00:41.867

Table 5.4. Android KPIs Performance after configuring the new version of the Kernel.

5.1.4 Disabling Serial Console

Disabling the serial console was a strategic optimization aimed at improving sys-
tem boot performance. While the serial console is useful for debugging, its continuous
operation during boot can introduce delays, especially on systems where debugging
over serial is not actively required. This target optimization is useful for the bottle-
neck problem analyzed above. The results from this optimization phase are presented
below:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:04.109

Continue on the next page

62

CHAPTER 5. RESULTS

KPI Log Message Time (s)

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:07.612

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:07.613

4 I/Android.hardware.camera.provider-V1-external-service 00:08.045

5 I/HidlServiceManagement:Registered android.hardware.audio 00:08.618

6 I/HidlServiceManagement:Registered android.hardware.media 00:09.097

7 D/BootAnimation:BootAnimationStartTiming start time 00:11.559

8 D/SystemServerTiming:StartPowerManager 00:21.396

9 D/SystemServerTiming:StartTelephonyRegistry 00:27.281

10 D/SystemServerTiming:StartWifi 00:28.444

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:28.628

12 D/SystemServerTiming:StartNotificationManager 00:28.633

13 D/SystemServerTiming:StartLocationManagerService 00:28.718

14 D/SystemServerTiming:StartSystemUI 00:32.297

15 D/BootAnimation:BootAnimationStopTiming 00:37.739

Table 5.5. Android KPIs Performance after disabling serial console.

5.1.5 Disabling unnecessary Kernel options

The Linux kernel offers a wide array of configuration options, many of which may
not be essential for the specific hardware or use case of the system. By carefully
reviewing and disabling these non-essential options, the initialization process of the

63

CHAPTER 5. RESULTS

kernel was made more efficient. The results of this optimization phase are shown
below:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:03.820

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:07.267

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:07.270

4 I/Android.hardware.camera.provider-V1-external-service 00:07.717

5 I/HidlServiceManagement:Registered android.hardware.audio 00:08.264

6 I/HidlServiceManagement:Registered android.hardware.media 00:08.724

7 D/BootAnimation:BootAnimationStartTiming start time 00:11.119

8 D/SystemServerTiming:StartPowerManager 00:20.991

9 D/SystemServerTiming:StartTelephonyRegistry 00:26.755

10 D/SystemServerTiming:StartWifi 00:27.901

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:28.053

12 D/SystemServerTiming:StartNotificationManager 00:28.074

13 D/SystemServerTiming:StartLocationManagerService 00:28.156

14 D/SystemServerTiming:StartSystemUI 00:31.655

15 D/BootAnimation:BootAnimationStopTiming 00:36.826

Table 5.6. Android KPIs Performance after disabling unnecessary Kernel options.

64

CHAPTER 5. RESULTS

5.1.6 Compression of Kernel Image

The final phase of kernel compression optimization using the GZIP algorithm did
not yield significant improvements to the system. This outcome was primarily due to
the unavailability of more efficient compression algorithms suitable for our project’s
requirements. While GZIP compression reduced the size of the kernel image, the
impact on system boot performance was minimal. The results from this phase of
optimization are presented below:

KPI Log Message Time (s)

1 I/HidlServiceManagement:Registered android.hardware.automotive 00:03.709

2 I/HidlServiceManagement:Registered android.hardware.Bluetooth 00:07.130

3 I/HidlServiceManagement:Registered android.hardware.usb.gadget 00:07.133

4 I/Android.hardware.camera.provider-V1-external-service 00:07.534

5 I/HidlServiceManagement:Registered android.hardware.audio 00:08.132

6 I/HidlServiceManagement:Registered android.hardware.media 00:08.570

7 D/BootAnimation:BootAnimationStartTiming start time 00:11.074

8 D/SystemServerTiming:StartPowerManager 00:20.862

9 D/SystemServerTiming:StartTelephonyRegistry 00:26.610

10 D/SystemServerTiming:StartWifi 00:27.760

11 D/SystemServerTiming:StartSystemUpdateManagerService 00:27.908

12 D/SystemServerTiming:StartNotificationManager 00:27.924

13 D/SystemServerTiming:StartLocationManagerService 00:28.012

Continue on the next page

65

CHAPTER 5. RESULTS

KPI Log Message Time (s)

14 D/SystemServerTiming:StartSystemUI 00:31.507

15 D/BootAnimation:BootAnimationStopTiming 00:36.524

Table 5.7. Android KPIs Performance after kernel image compression.

5.2 Comparison with initial system performance

To evaluate the effectiveness of the optimizations, the KPI D/BootAnimation:Boot
AnimationStopTiming message at the end of the boot process was compared with
the results obtained after implementing all optimizations. The following graph illus-
trates the comparative analysis:

Figure 5.1. Comparison of Boot before and after optimizations.

As illustrated in the graph, the series of optimizations implemented led to a signif-
icant reduction in boot time, demonstrating the effectiveness of each optimization
phase. The initial system performance, represented by the longest boot time, was sys-
tematically improved through targeted interventions, including removing unnecessary
projects, disabling initial animations, updating the kernel, disabling the serial console,
and disabling unnecessary kernel options. Despite the minimal impact of kernel image
compression, the overall enhancements cumulatively resulted in a more efficient and
faster boot process. These optimizations not only highlight the importance of each
step but also emphasize the potential for further improvements with the availability
of more advanced algorithms and tools.

66

Chapter 6

Conclusion

The aim of this thesis work was to optimize the boot time of an Android system
through a series of targeted optimizations. The optimizations implemented have led
to a reduction of more than 50% in the startup time of the system, making it much
more efficient and faster. Each key performance indicator (KPIs) was meticulously
monitored to track the impact of each optimization step. The goal of this thesis was
to demonstrate that starting from the operating system, optimization is a clear and
precise methodology with guidelines that can be implemented to make the system as
fast as possible. It is essential to underline that this methodology can be used in any
operating system and with any available board. This thesis work serves as an example
of how this methodology has been implemented. The lack of official documentation
regarding the open source project led to several challenges, such as the disabling of ker-
nel configurations. Some configurations, which at first appeared non-essential for our
project, rendered the system unbootable when disabled. This highlights the complex-
ity of system, emphasizing the need of a comprehensive documentation of the project.
The presence of a single kernel compression algorithm, GZIP, led to a minimal im-
provements in boot time. This limitation underscores the importance of having access
to a different compression algorithms. Future works could explore the implementation
of alternative algorithm, such as LZ4 and ZSTD, which are known for their better
performance. Implementing these algorithms could potentially produce significant re-
ductions in boot time.

Further possible implementations could include using a more powerful board, such
as a Raspberry Pi 5, to monitor and compare the results obtained. These future
developments could provide even greater insights and improvements in system per-
formance. The methodology devised and utilized in this thesis can be adapted to
additional facets of system performance beyond boot time, including the optimization
of memory usage and power consumption. These domains present prospects for future
research and advancements, furthering the enhancement of system performance. Over-
all, this thesis demonstrated that substantial improvements in system boot time can

67

CHAPTER 6. CONCLUSION

be achieved through targeted optimizations. By addressing the challenges encountered
and exploring future enhancements, further advancements can be made, contributing
to more efficient and responsive Android systems. The methodologies presented in
this thesis work provide a base for ongoing research and development in the field of
system performance optimization. With continued effort even grater improvements
can be achieved, benefiting a wide range of applications and industries.

68

Bibliography

[1] 5 Futuristic In-Vehicle Infotainment Features in the Age of Software-Defined Ve-
hicles. url: https://autocrypt.io/5-futuristic-in-vehicle-infotainment-
features/.

[2] A brief history of in-vehicle infotainment and car data storage. url: https:
//www.tuxera.com/blog/a-brief-history-of-in-vehicle-infotainment-

how-tuxera-fits-in/.

[3] AI in Automotive Infotainment: Revolutionizing the Driving Experience. url:
https://datajob.se/ai-in-automotive-infotainment-revolutionizing-

the-driving-experience/.

[4] Android Architecture. url: https : / / www . geeksforgeeks . org / android -

architecture/.

[5] Android Boot Process. url: https://www.geeksforgeeks.org/android-boot-
process/.

[6] Android Developers. url: https://developer.android.com/tools/adb.

[7] Android Hardware Abstraction Layer (HAL). url: https : / / medium . com /

@dugguRK/about-android-hardware-abstraction-layer-hal-5d191dafeb2c.

[8] Comparison of Compression Algorithms. url: https://linuxreviews.org/
Comparison_of_Compression_Algorithms.

[9] config.txt. url: https://www.raspberrypi.com/documentation/computers/
config_txt.html.

[10] Datasheets Raspberry PI4. url: https : / / datasheets . raspberrypi . com /

rpi4/raspberry-pi-4-datasheet.pdf.

[11] Designing in-vehicle infotainment systems. url: https : / / my . avnet . com /

abacus/solutions/markets/automotive-and-transportation/automotive/

comfort-infotainment-and-safety/automotive-infotainment/.

[12] DS Automobiles integra Chatgpt. url: https : / / www . dsautomobiles . it /

brand-ds/scopri-marchio-ds/news/ds-automobiles-chatgpt.html.

69

https://autocrypt.io/5-futuristic-in-vehicle-infotainment-features/
https://autocrypt.io/5-futuristic-in-vehicle-infotainment-features/
https://www.tuxera.com/blog/a-brief-history-of-in-vehicle-infotainment-how-tuxera-fits-in/
https://www.tuxera.com/blog/a-brief-history-of-in-vehicle-infotainment-how-tuxera-fits-in/
https://www.tuxera.com/blog/a-brief-history-of-in-vehicle-infotainment-how-tuxera-fits-in/
https://datajob.se/ai-in-automotive-infotainment-revolutionizing-the-driving-experience/
https://datajob.se/ai-in-automotive-infotainment-revolutionizing-the-driving-experience/
https://www.geeksforgeeks.org/android-architecture/
https://www.geeksforgeeks.org/android-architecture/
https://www.geeksforgeeks.org/android-boot-process/
https://www.geeksforgeeks.org/android-boot-process/
https://developer.android.com/tools/adb
https://medium.com/@dugguRK/about-android-hardware-abstraction-layer-hal-5d191dafeb2c
https://medium.com/@dugguRK/about-android-hardware-abstraction-layer-hal-5d191dafeb2c
https://linuxreviews.org/Comparison_of_Compression_Algorithms
https://linuxreviews.org/Comparison_of_Compression_Algorithms
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://my.avnet.com/abacus/solutions/markets/automotive-and-transportation/automotive/comfort-infotainment-and-safety/automotive-infotainment/
https://my.avnet.com/abacus/solutions/markets/automotive-and-transportation/automotive/comfort-infotainment-and-safety/automotive-infotainment/
https://my.avnet.com/abacus/solutions/markets/automotive-and-transportation/automotive/comfort-infotainment-and-safety/automotive-infotainment/
https://www.dsautomobiles.it/brand-ds/scopri-marchio-ds/news/ds-automobiles-chatgpt.html
https://www.dsautomobiles.it/brand-ds/scopri-marchio-ds/news/ds-automobiles-chatgpt.html

BIBLIOGRAPHY

[13] Everything You Need to Know About In-Vehicle Infotainment Systems. url:
https://www.einfochips.com/blog/everything- you- need- to- know-

about-in-vehicle-infotainment-system/.

[14] Evolution of In-Car Infotainment systems. url: https://www.exhibit.tech/
auto-tech/evolution-of-in-car-infotainment-systems.

[15] Google Devices. url: https://wiki.lineageos.org/devices/.

[16] Honda praised for its Electro Gyrocator, first map-based nav system. url: https:
//www.motor1.com/news/137950/honda-electro-gyrocator-ieee-milestone/.

[17] In-Vehicle infotainment launches a new situation for Internet of Vehicle appli-
cations. url: https://www.arrow.com/en/research-and-events/articles/
in-vehicle-infotainment-launches-a-new-situation-for-internet-of-

vehicle-applications.

[18] Introduction to Android Development. url: https://www.geeksforgeeks.org/
introduction-to-android-development/?ref=lbp.

[19] Logcat. url: https://developer.android.com/tools/logcat.

[20] Motorola solutions. url: https : / / www . motorolasolutions . com / en _ us /

about/history/explore-motorola-heritage/sound-motion.html.

[21] Platform architecture. url: https://developer.android.com/guide/platform?
hl=it.

[22] Raspberry Pi 4 Model B. url: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/.

[23] Raspberry Vanilla. url: https://github.com/raspberry-vanilla.

[24] Raspberry vanilla Kernel. url: https://github.com/raspberry-vanilla/
android_kernel_manifest/tree/android-14.0?tab=readme-ov-file.

[25] Set up for AOSP development. url: https://source.android.com/docs/
setup/start/requirements.

[26] Sync: 2007’s Most Important Car Technology. url: https://au.pcmag.com/
gallery/17050/sync-2007s-most-important-car-technology?p=1.

[27] What is POST(Power-On-Self-Test)? url: https://www.geeksforgeeks.org/
what-is-postpower-on-self-test/.

70

https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://www.exhibit.tech/auto-tech/evolution-of-in-car-infotainment-systems
https://www.exhibit.tech/auto-tech/evolution-of-in-car-infotainment-systems
https://wiki.lineageos.org/devices/
https://www.motor1.com/news/137950/honda-electro-gyrocator-ieee-milestone/
https://www.motor1.com/news/137950/honda-electro-gyrocator-ieee-milestone/
https://www.arrow.com/en/research-and-events/articles/in-vehicle-infotainment-launches-a-new-situation-for-internet-of-vehicle-applications
https://www.arrow.com/en/research-and-events/articles/in-vehicle-infotainment-launches-a-new-situation-for-internet-of-vehicle-applications
https://www.arrow.com/en/research-and-events/articles/in-vehicle-infotainment-launches-a-new-situation-for-internet-of-vehicle-applications
https://www.geeksforgeeks.org/introduction-to-android-development/?ref=lbp
https://www.geeksforgeeks.org/introduction-to-android-development/?ref=lbp
https://developer.android.com/tools/logcat
https://www.motorolasolutions.com/en_us/about/history/explore-motorola-heritage/sound-motion.html
https://www.motorolasolutions.com/en_us/about/history/explore-motorola-heritage/sound-motion.html
https://developer.android.com/guide/platform?hl=it
https://developer.android.com/guide/platform?hl=it
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://github.com/raspberry-vanilla
https://github.com/raspberry-vanilla/android_kernel_manifest/tree/android-14.0?tab=readme-ov-file
https://github.com/raspberry-vanilla/android_kernel_manifest/tree/android-14.0?tab=readme-ov-file
https://source.android.com/docs/setup/start/requirements
https://source.android.com/docs/setup/start/requirements
https://au.pcmag.com/gallery/17050/sync-2007s-most-important-car-technology?p=1
https://au.pcmag.com/gallery/17050/sync-2007s-most-important-car-technology?p=1
https://www.geeksforgeeks.org/what-is-postpower-on-self-test/
https://www.geeksforgeeks.org/what-is-postpower-on-self-test/

	List of Figures
	Introduction
	The Infotainment System
	Evolution of System
	Structure of the System

	Android
	Linux
	Android Architecture
	Android Auto

	Thesis objective

	Optimization of the Infotainment system
	Concept of optimization
	Optimization methodologies
	Boot Time Optimization
	Boot Sequence
	Kernel Compression and Decompression

	Case study
	Work environment configuration
	Raspberry Pi 4
	Android 14

	Android connection via Android Debug Bridge
	Logcat

	Measurements and tools used
	Key Performance Indicator

	Bootchart
	Bootgraph

	Boot time Optimization
	Removing unnecessary projects
	Removing Initial Animation
	Configuration of new version of Kernel
	Disabling Serial Console
	Disabling unnecessary Kernel options
	Compression of Kernel Image
	Benchmark Kernel Compression Algorithms

	Results
	Analysis of results
	Removing unnecessary projects
	Removing Initial Animation
	Configuration of new version of Kernel
	Disabling Serial Console
	Disabling unnecessary Kernel options
	Compression of Kernel Image

	Comparison with initial system performance

	Conclusion
	Bibliography

