POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Characterization setup for biodegradable
stretchable electrodes in the context of
cardiac patches for organ transplant

monitoring
Supervisors Candidate
Prof. Matteo COCUZZA Edoardo DOMENELLA

Prof. Clementine BOUTRY

July 2024

Summary

This thesis focuses on the development of a characterization setup whose
ultimate goal is to evaluate the performance of novel biodegradable
stretchable electrodes intended for use in a more complex system,
namely a cardiac patch. In general, the setup, implemented using
LabVIEW and Arduino, provides a versatile platform for testing and
characterizing flexible electronics. Performance evaluation of the setup
was conducted to ensure its reliability and effectiveness. In addition
to the setup development, flexible electrodes composed of PDMS and
gold were fabricated during the thesis period. These electrodes were
not intended for use in the cardiac patches; rather, they were created
as a comparative benchmark against the innovative and biodegradable
electrodes. Furthermore, they were designed to test the setup with
a real-world use case and to begin exploring the characterization of
such devices. The combination of the characterization setup and the
fabricated electrodes represents a significant step towards the realization
of reliable, effective monitoring systems and a new class of medical
devices. Further research and refinement of both the setup and electrode
fabrication processes will contribute to the advancement in this critical

field.

IT

Table of Contents

List of Tables VI
List of Figures VII
Acronyms XII
1 Introduction 1
2 Literature Review 5)
3 Stretching Setup 9
3.1 General Overview 9
3.2 Components 14
3.2.1 Linear Stage 14
3.2.2 Motor Driver TB6600 17
3.2.3 Arduino UNO 22
324 LCR Meter 24
3.3 Algorithm 28
3.3.1 Stepper Motor Speed Profile 28
3.4 Labview Code implementation 40
3.4.1 STEP 1: Connection aperture 42
3.4.2 STEP 2 : parameters setting 46

3.4.3 STEP 3: parameters concatenation and sequence
start ... 50
3.4.4 Arduino code Implementation 52

v

3.4.5 STEP 4 : Data recording
3.4.6 STEP 5 : Plot and save the data .
3.4.7 STEP 6 : Close the connection . .
3.4.8 GUI : graphical user interface . . .

4 Frequency Sweep
4.1 Frequency sweep block diagram
4.2 Frequency sweep front panel

5 Testing
5.1 Setup evaluation
5.2 Frequency sweep test

6 PDMS-Au electrodes
6.1 Manufacture process
6.1.1 PDMS fabrication
6.1.2 Mask creation and metal sputtering
6.1.3 Electrodes preparation to the setup
6.2 Results and Discussion

7 Conclusion

Bibliography

103

105

List of Tables

5.1 Setup evaluation, stretching sequence settings 71
5.2 Frequency sweep, test 1 settings 82
5.3 Frequency sweep, test 2 settings 84
6.1 PDMS properties. 88

VI

List of Figures

2.1

Lab-on-Skin example, NFC tattoo with bare die chip
mounted on an arcylic adhesive film [5] 5

2.2 rubbery patch with 25 sensing nodes arranged in the for-

mat of a 5HxH thin-film transistor array on the epicardial

surface of a living porcine heart.[6] 6
2.3 Serpentine metal coplanar waveguide embedded in a slab

of PDMS and attached to standard SMA connectors for

a stretchable, high-frequency cable.[8] 7
2.4 Example of printable stretchable circuit while being

stretched.[9]o 8
3.1 Optical image of a polyethylene sheet under stretch [13] 10
3.2 Schematic of the developed setup with its main building

blockso 12
3.3 Newmark eTrack Series Linear stage 14
3.4 Motor driver TB6600 18
3.5 Motor driver TB6600 - acquisition board common anode

connection schematic 19
3.6 Possible microstepping configurations allowed by TB6600

Driver 20
3.7 Possible current configurations allowed by TB6600 Driver 21
3.8 Arduino UNO board 22
3.9 E4980A Precision LCR Meter 24
3.10 Parameter description LCR meter E4980A (1) 26

VII

3.11 Parameter description LCR meter E4980A (2)
3.12 Measurement combinations of primary and secondary
parameter with LCR meter E4980A
3.13 Stepper motor speed profile, the proposed algorithm aims
to compute the series of the coefficient C that define the
time interval between each pulse [18].
3.14 Input variable definition (1)
3.15 Input variable definition (2) and ¢y starting coefficient
calculation
3.16 Algorithm implementation
3.17 TB6600 - Arduino PINs declaration
3.18 Implemented C code to move the motor by directly
toggling the stepPin3

39

3.19 Operational workflow to implement the stretching sequence 42

3.20 LabVIEW code to open the connection with the Arduino
and the LCR meter
3.21 Parameters definition in LabVIEW
3.22 Implemented formula node to adapt the stepper motor
speed profile algorithm in LabVIEW
3.23 Parameters string creation, sequentially the string is sent
to Arduino through the 'Visa write" block.
3.24 Read from serial and parsing of the string
3.25 Driver Board connection
3.26 Stepper motor settings
3.27 "stretchingsequence’ function that controls the motor to
implement the stretching.
3.28 Acquisition loops, the bottom loop is used to read data
form Arduino while the upper one to read data coming
from the LCR meter
3.29 Elaboration loops, the bottom one is used to display the
incoming data within the LabVIEW GUI, the upper one
is used to save the same data in an excel file.
3.30 Connection close

3.31
3.32

4.1
4.2

5.1
5.2
5.3
5.4
0.0
5.6
5.7

5.8

5.9

5.10

5.11

5.12

5.13
5.14

6.1
6.2
6.3
6.4

Graphical user interface (1) 62
Graphical user interface (2) 63
Frequency sweep block diagram 67
Frequency sweep graphical user interface 68
Stretching sequence settings, resolution =1. 72
Stretching sequence plots, resolution =1 73
Stretching sequence settings, resolution = 10 74
Stretching sequence plots, resolution =10 74
Stretching sequence plots, resolution =50 75
Stretching sequence plots, resolution = 100 76
Stretching sequence plots, resolution = 50, acceleration

= 10000 step/s* 77
Stretching sequence plots, resolution = 100, acceleration

= 10000 step/s* 78
Stretching sequence plots, resolution = 1, elongation =

ITmm . ..o 79
Stretching sequence plots, resolution = 50, elongation =

Imm . .o 80
Stretching sequence plots, resolution = 100, elongation

=1lmm 81
Frequency sweep test of a standard 330 €2 resistor, num-

ber of sweep = 4, frequency range = [100 Hz - 2 MHz|,

frequency step = 10000 Hz. 83
Frequency sweep zoom 83
Frequency sweep test of a standard 330 €2 resistor, num-

ber of sweep = 4, frequency range = [100 Hz - 2 MHz],

frequency step = 1000 Hz. 84
PDMS-Au electrodes fabrication process 86
Wafer kept in vacuum desiccator for 2 hours 89
Mask design in Autocad 90
Developed kapton mask after laser cutting 92

IX

6.5 Developed PDMS-Au electrodes 93
6.6 Electrodes with silver paste and silicon layers in the pads

position while drying.o 95
6.7 Electrodes after that the second PDMS encapsulation

layer has been poured 96
6.8 Resistor equivalent circuit model 97
6.9 PDMS-Au resistors frequency sweep, resistance evaluation 98
6.10 PDMS-Au resistors frequency sweep, reactance evaluation 99
6.11 PDMS-Au electrodes stretching from 5 to 40 % 100
6.12 Capacitors Frequency sweep 101

Acronyms

PDMS
Polydimethylsiloxane

MI

Myocardial infarction

LV

Left ventricular

FeNW

Iron Nanowire

POMAC
poly(octamethylene maleate (anhydride) citrate)

Au
Gold

DUT

Device under test

VI

Virtual Instrument

XII

GUI

Graphical User Interface

NFC

Near Fiel Communication

VISA

Virtual Instrument Software Architecture

FIFO
First In First Out

XIII

Chapter 1

Introduction

Cardiovascular disease is one of the leading causes of mortality world-
wide and can often lead to Myocardial infarction (MI) and other heart
related illnesses which represents a formidable challenge in contempo-
rary healthcare. Despite advancements in medical science, the ischemic
insult inflicted by MI often culminates in irreversible damage to the
myocardium, precipitating a cascade of events that compromise cardiac
function and, ultimately, precipitate heart failure. The pathological
hallmark of MI lies in the occlusion of coronary arteries, resulting in
ischemia and subsequent necrosis of cardiomyocytes. This necrotic
process triggers the formation of fibrotic scar tissue, predominantly
within the left ventricular (LV) wall, disrupting the orderly propagation
of electrical impulses and impeding synchronized ventricular contrac-
tion. Consequently, patients afflicted by MI face an elevated risk of
life-threatening arrhythmias and progressive cardiac decompensation
[1], [2]. In the quest for innovative therapeutic strategies, recent years
have witnessed a burgeoning interest in the development of cardiac
patches, a novel class of bioengineered constructs designed to enhance
the structural and functional operation of the heart. These patches
serve to different purposes: they provide mechanical support to the
infarcted myocardium, concurrently they foster the restoration of native
electrical conductivity and act as drug-delivery system for the damaged

1

Introduction

tissue [3]. Through the judicious integration of metals and polymers,
these patches afford a temporary scaffold for cellular infiltration and
tissue regeneration, ultimately promoting myocardial healing and func-
tional recovery. Since wounded and fragile heart often can only tolerate
light or non-invasive medical treatments, cardiac patches, typically
composed of conductive materials, elastic polymeric substrates, and/or
cardiac tissues resembling normal myocardium, offer an equivalent
treatment approach to standard interventions such as heart transplan-
tation. However, the development of minimally invasive cardiac patches
poses a significant clinical challenge. Creating such patches requires
simultaneous consideration of various materials attributes, including
bioabsorption, non-toxicity, matching mechanical properties of heart
tissues, efficient operation in wet and dynamic environments, electrical
performances. The patch indeed is in contact with the heart tissue
and must follow the heart beating during all the operational life. This
obviously lead to the need of integrating conductive and non conductive
materials in the patch that must coexist together ensuring mechani-
cal and electronic performances. In this context soft and stretchable
electronics acquire a predominant role and in the last years further
improvement has been made in this direction. In order to acquire
detailed signal about the heart activity from the patch high quality and
stretchable electrodes are fundamental and represent one of the building
blocks of the patch itself [4]. The goal of this project is to develop
a characterization setup for biodegradable stretchable electrodes and
sequentially use the setup to characterize and investigate the properties
of novel biodegradable electrodes made up by iron nanowire (FeNW) on
a POMAC, poly(octamethylene maleate (anhydride) citrate), substrate.
The POMAC is a flexible and biodegradable polymer and the idea is
to deposit the synthesised FeNW on the flexible substrate in order to
build a stretchable electrode whose properties have to be investigated
upon different strain conditions. To have a term of comparison with the
FeNW electrodes also another type of electrodes made of gold (Au) and
PDMS (Polydimethylsiloxane) has been developed and characterized.

Introduction

Given their fragile and delicate nature, the characterization of such
devices is a challenging task and hence a dedicated setup has been devel-
oped. The main chore of the setup is to stretch the electrode in a very
precise manner in correspondence of a set of inputs given by software
and to record the real time variation of the electrical parameters due
to the applied elongation. The system components are here listed : PC
that act as control station for the whole setup, Newmark eTRACK serie
linear stage, motor driver TB6600, Arduino UNO board and Keysight
Technologies E4980A precision LCR meter. To properly interface with
the entire system and making everything automated the software from
National Instrument LabVIEW (Laboratory Virtual Instrumentation
Engineering Workbench) 2018 version has been adopted. LabVIEW is
a system-design platform and development environment for creating
custom applications that can monitor, control, and automate various
processes and measurements. LabVIEW uses a graphical programming
language called "G" (often referred to as "G code") that allows users to
visually connect functional nodes to create programs known as virtual
instruments (VIs). These VIs can incorporate hardware devices, analyze
data, perform calculations, and present results in real-time graphical
user interfaces (GUIs). LabVIEW is a very useful tool in those kind
of applications, where multiple instruments need to be controlled and
real time data acquisition is executed. A dedicated LabVIEW code has
been developed and through the LabVIEW GUI both the linear stage
and the LCR meter have been controlled to perform the stretching of
the sample, acquiring real time impedance data. The DUT is clamped
to the edges of the stage, one fixed and the other one movable, the stage
is actually moved by a stepper motor integrated in the stage itself that
let the user to precisely control the elongation applied to the electrode
under test by defining the number of step that the stepper motor has to
move. The stage is connected to the Arduino UNO board via the motor
driver TB6600, thus a custom code for the Arduino has been generated
to control the stepper motor. On the other end the LCR meter E4980A
is connected on one side to the PC so that the instrument is read

Introduction

by the LabVIEW application and on the other side the output ports
of the instrument are directly connected to the DUT (Device Under
Test) using a pair of Kelvin Clips. However this is just an introductory
description, a full detailed description of the setup building blocks and
working principle will be given in the next chapters. This project is part
of a major project whose goal is to manufacture a bioresorable cardiac
patch that operates as an innovative medical device. The patch should
accomplish to all the functionalities mentioned above, but, thanks to
the biodegradable nature of the materials used ,it led to avoid further
surgery that may be risky for the patient.

Chapter 2

Literature Review

In recent years, the challenge of coexistence between flexible electronic
devices and skin tissue has been extensively investigated, to the extent
that the class of "Lab-On-Skin" devices refers to all those electronic
devices used in the medical field that operate in contact with the skin,
providing indications on biopotential signals (such as ECG). These
are nothing but stretchable and flexible electronic devices for health
monitoring, whose physical properties seek to replicate those of the
skin as closely as possible [5].

Figure 2.1: Lab-on-Skin example, NFC tattoo with bare die chip
mounted on an arcylic adhesive film [5]

Literature Review

This short literature review chapter aims to give some insight about
recent advancements about stretchable electronic technology in medical
applications, with a particular focus on the integration of stretchable
electrodes for real-time monitoring and therapeutic applications. Car-
diac patches represent an innovative approach in the field of regenerative
medicine, offering potential solutions for repairing damaged heart tissue
and restoring cardiac functions. These patches, typically composed of
biocompatible materials and often incorporating stem cells or growth
factors, hold promise for treating conditions such as myocardial infarc-
tion and heart failure [6]. In Figure 2.2 an example of cardiac patch
that integrates a PDMS substrate and a stretchable array of electrodes
for sensing.

Figure 2.2: rubbery patch with 25 sensing nodes arranged in the
format of a 5x5 thin-film transistor array on the epicardial surface of a
living porcine heart. [6]

These electrodes play a crucial role in enabling real-time electri-
cal monitoring of the heart’s activity, providing valuable insights into
cardiac function and facilitating the delivery of targeted therapies.
The integration of stretchable electrodes into cardiac patches presents
both opportunities and challenges, indeed while these electrodes offer

6

Literature Review

unprecedented capabilities for monitoring cardiac activity and deliver-
ing therapeutic interventions, their successful implementation requires
careful consideration of factors such as mechanical compatibility, bio-
compatibility, and long-term stability. In [7] a bioresorbable, highly
conductive, and elastic cardiac patch is proposed. The patch is com-
posed by poly(1,8-octamethylene-citrate-co-octanol) (POCO) substrate
while the electrode is constitued by a metal mesh with a serpentine
shape to enhance the intrinsic stretchability of the structure that must
withstand the deformations of a beating heart. The decision, as ob-
served in this instance, to structure the electrode with a rippled and
winding pattern is a prevalent one. It’s widely recognized that when ma-
terials are thin enough, they inherently become flexible due to bending
strains that decrease proportionally with thickness. By arranging these
structures into "wavy' configurations and adhering them to elastomeric
substrates, we create systems capable not only of flexing but also of
stretching and compressing. The most common way to achieve this
result is to deposit a thin layer gold on PDMS substrate in order to
achieve structures that can hold a large applied strain (Figure 2.3) [§].

Figure 2.3: Serpentine metal coplanar waveguide embedded in a slab
of PDMS and attached to standard SMA connectors for a stretchable,
high-frequency cable.[§]

Regarding the electrode testing phase, in literature can be found
numerous insights that, beyond minor variations, follow a similar ap-
proach. The device under test is mounted and secured onto a stage,
one end fixed to the stationary side of the stage and the other end to
the movable panel (Figure 2.4). By appropriately and precisely moving
the stage, the desired elongation can be applied to the sample, and

7

Literature Review

the data regarding impedance variation can be processed using a data
acquisition board. LabVIEW is a commonly used software in setting up
test benches as it allows for the easy creation of user-friendly graphical
interfaces to control the setup [9],[10],[11], [12].

Figure 2.4: Example of printable stretchable circuit while being
stretched.[9]

Chapter 3

Stretching Setup

In this chapter a detailed description of the developed stretching setup to
characterize the stretchability of the flexible electronic samples is given.
Firstly a general overview of the setup is presented and its working
principle is provided in order to explain how the implementation of
this setup allows for stretching and characterizing flexible electronics,
particularly in this case, soft and stretchable electrodes. Fach hardware
and software component that constitutes the setup is described starting
from its features and then moving on to the hardware connections in
this particular case. Afterward the developed Arduino code to control
the movement of the linear stage through the stepper motor is analyzed
and in conclusion the final solution with the proposed LabVIEW code
and GUI is described.

3.1 General Overview

At the heart of this project lies a fundamental question: how does the
impedance of these components evolve in response to applied strain?
The setup that has been developed and constructed was designed to meet
the requirements necessary for the characterization and measurement
of electrical parameters on flexible electronic components. What was
needed was to stretch the DUT by a precise amount corresponding

9

Stretching Setup

to a well-defined strain, while simultaneously measuring with equal
precision the impedance value corresponding to the respective point in
space, namely at the respective stretching point. The primary objective
of this project is to investigate and quantify the intricate relationship
between the applied elongation and the impedance characteristics of the
DUT. By subjecting the DUT to controlled elongation along its x-axis,
the aim is to elucidate the nuanced changes in its electrical properties.
This endeavor is rooted in the fundamental understanding that the
mechanical deformation of flexible electronic components inherently
influences their electrical performance. Moreover, this project serves as
a testament to our commitment to advancing the frontier of flexible
electronics. By systematically characterizing the impedance response
of the DUTs under different strain levels, the goal is to pave the way
for the development of next-generation flexible electronic devices with
enhanced performance and reliability.

Figure 3.1: Optical image of a polyethylene sheet under stretch [13]

To match the stringent project requirements and achieve optimal
precision both in terms of elongation and measurement, some decisions
are made regarding our equipment selection. A linear stage integrated
with a stepper motor has been employed for controlled elongation, and

10

Stretching Setup

an LCR meter for accurate measurements. The choice of a linear stage
with a stepper motor offers unparalleled control and repeatability in the
elongation process. The stepper motor allows to precisely control the
applied elongation by properly defining the input parameters according
to our project specifications, ensuring consistency and reliability in
our experimental procedures. With the ability to program precise
movement sequences, we can confidently explore a wide range of strain
conditions with utmost accuracy. Indeed, as stated by the name a
stepper motor operates by dividing a full rotation of 360°into a fixed
number of discrete steps. Each step of the motor corresponds to a
precise angle of rotation, which can be controlled accurately. Each step
is thus translated in an equivalent linear movement of the stage, with
a sub-millimiter resolution. Similarly, the choice of an LCR meter for
measurement purposes embodies the commitment. Renowned for its
high precision and reliability, the LCR meter facilitated the capability
to accurately characterize the electrical properties of our specimens. Its
advanced features and intuitive interface lead to perform comprehensive
impedance measurements with confidence and efficiency. Hence, the
two main components of the setup are the linear stage and the LCR
meter but they are not the only ones. To automatized the stretching
sequence an Arduino UNO board has been chosen, thanks to the
"AccelStepper.h' library provided by Arduino the board is programmed
to control the motor and consequently move the stage based on certain
input parameters that are : the number of step that the motor has to
do correspondent to a given elongation, the acceleration and the speed
of the motor, the number of times that the stretching sequence has to
be performed and the resting time at each ending position. Through
these input parameters, it is possible to modify and vary the stretching
of the device, allowing for a multitude of different experiments to
be conducted, from simulations where the elongation is sequentially
increased from a minimum to a maximum, or simulations where the
elongation is constant but stretching is repeated for a greater number
of cycles. In Figure 3.2 a schematic representation of the setup with all

11

Stretching Setup

the connections between hardware components is showed.

LabVIEW GUI

TB6600 motor driver

E4980A LCR meter

Newmark Linear
Stage

— Arduino UNO

Figure 3.2: Schematic of the developed setup with its main building
blocks

Then a motor driver TB6600 is adopted to interface the board with
the stage wiring the pins of the Arduino to the correspondent ports
of the stage, moreover the driver is capable to withstand the voltage
and current needed to ensure optimum performance of the motor. In
conclusion, to achieve a fully automated and PC-controlled system that
is user-friendly and allows for the utilization of the setup by anyone
requiring measurements on flexible electronics, a LabVIEW code and
corresponding graphical user interface (GUI) have been developed. The
developed GUI enables the definition of the aforementioned parameters
as well as those related to the settings of the LCR meter. It subsequently
controls all the instruments responsible for stretching the DUT, displays
the collected results, and saves them in an Excel file for further analysis.
The working principle of the setup is almost straightforward: the DUT is
directly clamped on the stage and attached on one side to the fixed edge
of the stage while on the other side is attached on the movable part of
the stage. As already said the controls are defined through the GUI and

12

Stretching Setup

sent via serial communication to the Arduino. The board execute the
parsing of the command and based on these control the stepper motor
that consequentially move the stage applying the wanted elongation
on the device. At the same time, once that the LabVIEW code is
ran, the LCR meter setting are sent through serial communication as
well and the instrument is configured for the measurement. The LCR
meter ports are directly connected to the DUT by a kelvin clips and the
impedance values are measured and plotted on three different graphs
of the GUIL.

13

Stretching Setup

3.2 Components

3.2.1 Linear Stage

The Newmark eTrack Series linear stage, Figure 3.3, is a type of
precision positioning system used in various scientific, industrial, and
research applications. It offers high accuracy, repeatability, and stability
in motion control, making it versatile for a wide range of applications,
in particular for those tasks requiring precise linear movement. The
stage is engineered to provide precise linear motion with sub-micron
resolution, allowing for accurate positioning of objects or tools. It offers
excellent stability during motion, minimizing vibrations and ensuring
smooth movement, which is crucial for applications requiring precise
positioning. It is compatible with various motion control systems,
allowing for seamless integration into existing setups or automation
systems.

Figure 3.3: Newmark eTrack Series Linear stage

Hence, within the scope of this project, the linear stage aligns perfectly

14

Stretching Setup

with the objective of precisely stretching the electrodes. Its main
features include [14]:

1. Travel Range 300 mm
2. Resolution 0.04 um
3. 2 mm pitch lead screw

4. Maximum Speed 25 mm /sec

Furthermore, the movable part of the stage is controlled by a NEMA
17 bipolar stepper motor whose main features are [14]:

1. Step Size : 1.8 °/Step

2. Amps/Phase : 1.33

3. Holding Torque : 42 oz-in
4. -Resistance : 2.5 €)/Phase

The NEMA 17 stepper motor is a two-phase stepper motor, this
means that it has two sets of windings (coils) that are energized in
sequence to generate rotational motion. These motors are arranged in a
bipolar configuration, meaning that there are 4 phase (A, A’.B, B),each
phase has two wires and to drive the motor the current is alternately
applied to each coil to create a magnetic field that interacts with the
motor’s permanent magnets, causing the rotor to move in discrete steps.
To control the motion of a NEMA 17 stepper motor, a dedicated stepper
motor driver circuit is typically used. This driver circuit regulates the
current flowing through the motor coils and determines the sequence in
which the coils are energized to produce motion, in this project a motor
driver TB6600 is used. The NEMA 17 stepper motor typically has a
step angle of 1.8 degrees per step, meaning that it requires 200 steps
(360 degrees / 1.8 degrees per step) to complete one full revolution.

15

Stretching Setup

Many stepper motor drivers, including those used with NEMA 17
motors, support microstepping. Microstepping is a technique used
in stepper motors to increase resolution and precision of movement.
Instead of advancing the stepper motor by a single full step at a time,
as in standard operation, microstepping divides each step into a series
of smaller fractions. This allows the motor to move more smoothly and
precisely, also reducing noise and vibrations. To achieve microstepping,
the driver circuit for the stepper motor controls the current in each phase
of the motor windings with varying levels of intensity. By energizing
the coils with different current levels at precise timing intervals, the
motor can smoothly transition between microsteps, allowing for finer
control over the motor’s position and movement. In this project the
microstepping technique is adopted increasing the number of steps
per revolution to 800 in order to increase the resolution given to the
elongation applied to the samples under test. Indeed, with 800 steps
per revolution the step angle become

360°
800stepsperrevolution

stePangle = = 0.45°/step (3.1)

which correspond, considering a pitch lead screw of 2mm, to a linear
movement of the stage of

2mm
800step

stepmm = = 0.0025mm (3.2)

cach step.

16

Stretching Setup

3.2.2 Motor Driver TB6600

The TB6600 motor driver is a type of stepper motor driver commonly
used in various automation and motion control applications. It pro-
vides precise control over stepper motors, allowing for accurate and
reliable motion in robotic systems, CNC machines, 3D printers, and
other industrial and hobbyist projects. The TB6600 driver can handle
relatively high currents, making it suitable for driving stepper motors
with larger torque requirements, moreover it supports microstepping
[15], a technique that allows for smoother motion and finer resolution
by dividing each step of the motor into smaller increments. Users
can adjust the motor current settings and the type of microstepping
adopted through dip switches on the driver board, allowing for opti-
mization of motor performance and power consumption. The device
also includes protection features such as overcurrent protection and
thermal shutdown to prevent damage to the motor or driver due to
excessive current or temperature and it is compatible with a wide range
of stepper motors, making it versatile for different applications and
motor specifications.
The stepper motor driver TB6600 has 12 pins:

1. VCC and GND are the two power pins directly connected to the
power supply, the voltage can range between 9 V and 24 V, but to
have good performance and to move correctly the motor at least
20 V must be used.

2. A+ and A- pins are used to energize one of the two coils of the
two-phase stepper motor, while B4+ and B- are used for the other
one. These 4 pins are wired to the motor trough a male connector
installed on the stage and must be properly controlled to pilot the
motor and move the stage.

3. PUL+ (Pulse+): This is the positive pulse pin. When a positive
pulse is provided to this pin, the driver executes a step of the
stepper motor.

17

Stretching Setup

o
Q
w0
]
£
]
=
o
2]

=
=
& +

] u-»—u-' o

Figure 3.4: Motor driver TB6600

. PUL- (Pulse-): This is the negative pulse pin. It is used in conjunc-
tion with the PUL+ pin to provide control pulses to the driver.

. DIR+ (Direction+): This is the positive direction pin. It controls
the rotation direction of the stepper motor. When a high logic
signal (e.g., +5 V) is provided, the motor rotates in one direction,
whereas when a low logic signal (e.g., 0 V) is provided, the motor
rotates in the opposite direction.

. DIR- (Direction-): This is the negative direction pin. It is used
along with the DIR+ pin to control the direction of rotation of the
stepper motor.

. ENA+ (Enable+): This is the positive enable pin. When a high
logic signal is applied to this pin, the driver is enabled, allowing it
to respond to control signals. When a low logic signal is applied,

18

Stretching Setup

the driver is disabled, and the motor stops.

8. ENA- (Enable-): This is the negative enable pin. It is used in
conjunction with the ENA+ pin to enable or disable the driver.

These pins play crucial roles in controlling the operation of the TB6600
stepper motor driver, allowing precise control over the motion and
direction of the stepper motor.

EN- |©|— & |sv
21‘) EN+ ||© —]| © | PULSE
S DIR- ||© |— & |DIR
5 DIR+| © —I & |EN MCU
PUL- |© S| GND
O PUL+| © (
-
° [
b2 B S
| -
(] B+ |¢
2 - |
}B A+ S
wn GND |
vCC |8

Figure 3.5: Motor driver TB6600 - acquisition board common anode
connection schematic

In Figure 3.5 the implemented configuration and the connections
between the driver and the Arduino UNO board is showed. In Particular
a Common Anode connection for the motor driver TB6600 is chosen,
so all the negative signal (-) are grounded while the positive ones are
connected to the Arduino pins; eventually also a Common Cathode
could be used, in this situation the pin configuration is swapped. In
the common anode configuration the pins are hence disposed :

1. ENA- | DIR- , PUL- -> grounded.
2. ENA+ -> Connected to an Arduino pin as OUTPUT.

19

Stretching Setup

3. DIR+ -> Connect to an Arduino pin as OUTPUT.
4. PUL+ -> Connect to an Arduino pin as OUTPUT.

5. B+ and B- -> Connect to Phase B Phase B of the motor (MALE
cable).

6. A4+ and A- -> Connect to Phase B Phase B’ of the motor (MALE
cable).

7. VCC -> Connect to the high power supply.
8. GND -> Connect to ground.

On the TB6600 are presents 6 dip switches (SW1, SW2, SW3, SW4,
SW5, SW6) that can be used to implement different microstepping
technique and to apply an higher current to the motor. The first three,
SW1, SW2 and SW3 can be used to change the microstepping, while
the last three, SW4, SW5, SW6 are used to modify the current setting.
In Figure 3.6 the possible microstepping configurations are summarized.

Micro Step | Pulse/Rev S1 S2 S3
NC NC ON ON ON

1 200 ON ON OFF

2/A 400 ON OFF ON
2/B 400 OFF ON ON

4 800 ON OFF OFF

8 1600 OFF ON OFF

16 3200 OFF OFF ON

32 6400 OFF OFF OFF

Figure 3.6: Possible microstepping configurations allowed by TB6600
Driver

While in Figure 3.7 the allowed cuurent settings are listed.

20

Stretching Setup

Current (A) 5S4 S5 S6
0.5 ON ON ON
1.0 ON OFF ON
1.5 ON ON OFF
2.0 ON OFF OFF
2.5 OFF ON ON
2.8 OFF OFF ON
3.0 OFF ON OFF
35 OFF OFF OFF

Figure 3.7: Possible current configurations allowed by TB6600 Driver

In the chosen configuration the number of step is set to 800 while
the current to 1.5 A This provides a switch configuration of: ON OFF
OFF ON ON OFF.

21

Stretching Setup

3.2.3 Arduino UNO

The Arduino Uno is a popular open-source microcontroller board based
on the ATmega328P microcontroller chip. It is widely used in electronics
prototyping, hobbyist projects, and educational settings due to its
case of use, versatility, and affordability. The Uno is powered by the
ATmega3d28P microcontroller chip, which provides processing power and
input/output (I/O) capabilities for interfacing with sensors, actuators,
and other electronic components. The board includes a set of digital
input /output pins (14 in total), which can be used to read digital
signals from sensors or control digital devices like LEDs or motors.
Additionally, there are analog input pins (6 in total) that can read
analog voltage values from sensors.

Figure 3.8: Arduino UNO board

The Uno can be easily connected to a computer via USB, allowing for
programming and communication with the microcontroller using the
Arduino Integrated Development Environment (IDE). In the context
of this project, the Arduino Uno has proven to be incredibly valuable.

22

Stretching Setup

Initially, it facilitated motor testing by programming the board using the
AccelStepper.h library. Subsequently, it enabled seamless integration
with LabVIEW allowing for comprehensive control of the entire system
to drive the motor. For the hardware configuration of the connections,
four pins of the Arduino were utilized. The GND pin was used to
ground the ENA-, DIR-, and PUL- pins of the motor driver. Digital
pin 2 was connected to DIR+, digital pin 3 was connected to PUL+,
and finally, digital pin 4 was connected to ENA+.

23

Stretching Setup

3.2.4 LCR Meter

The Precision LCR Meter E4980A is a sophisticated electronic instru-
ment used for measuring the electrical properties of passive electronic
components, such as resistors, capacitors, and inductance.

Figure 3.9: E4980A Precision LCR Meter

The E4980A offers high measurement accuracy and precision, making
it suitable for demanding applications where precise characterization
of components is essential. It covers a broad frequency range, from 20
hertz to 2 megahertz, allowing for comprehensive testing of components
across various frequency domains. The instrument supports multiple
measurement modes, including impedance (Z), admittance (Y), ca-
pacitance (C), inductance (L), resistance (R), and other parameters.
This versatility enables comprehensive analysis of different types of
components. [t often features automatic measurement capabilities,
allowing users to quickly and efficiently measure multiple components
without the need for manual adjustments. The LCR meter E4980A
adopt a differential measurement method to minimize the effects of

24

Stretching Setup

parasitic components or wiring errors on electronic component measure-
ments. This approach involves using two separate connections to the
DUT, allowing for the measurement of the voltage or current difference
between them. An electrical signal is applied to the DUT through
the two connections, this signal can be an alternating current (AC) or
direct current (DC), depending on the measurement requirements. The
LCR meter then measures the voltage or current difference between
the two connections of the DUT, since the difference is indicative of
the electrical properties of the DUT itself, as it eliminates the effects of
parasitic components or wiring errors that may affect measurements
made with a single connection. Finally, the measured data is processed
and analyzed to determine the electrical properties of the DUT, such
as impedance, resistance, capacitance, or inductance, depending on the
type of measurement performed. The measurements on the LCR meter
are performed with the electrical parameters to be measured coupled
in pairs, referred to as primary parameters and secondary parameters.
In Figure 3.10 and Figure 3.11 are reported all the parameters that can
be evaluated through the LCR meter whit a short related description.
In Figure 3.12 instead all the possible measurement combinations are
listed [16].

25

Stretching Setup

Parameter Description

Cp Capacitance value measured using the parallel equivalent circuit model
Cs Capacitance value measured using the series equivalent circuit model
Lp Inductance value measured using the parallel equivalent circuit model
Ls Inductance value measured using the series equivalent circuit model

R Resistance

Absolute value of impedance

Conductance

Absolute value of admittance

Vde' DC voltage

Figure 3.10: Parameter description LCR meter E4980A (1)

Parameter Description

D Dissipation factor

Q Quality factor (inverse of dissipation factor)

G Conductance

Rs Equivalent series resistance measured using the series equivalent
circuit model

Rp Equivalent parallel resistance measured using the parallel equivalent
circuit model

X Reactance
Sustenance

0 Phase angle

Ide DC current

Rdc DC resistance

Figure 3.11: Parameter description LCR meter E4980A (2)

26

Stretching Setup

Primary parameter Secondary parameter
Cp D,Q,GRp
Cs D, Q.Rs
Lp D. Q.G Rp.Rde -
Ls D, Q, Rs, Rdc
R X
6d, or
G B
Y 6d, or
Vde Idc

Figure 3.12: Measurement combinations of primary and secondary
parameter with LCR meter E4980A

27

Stretching Setup

3.3 Algorithm

In this paragraph is described the algorithm that defines the motor
speed profile and the accelerated motion of the motor itself to obtain
the stage velocity profile. This was necessary to thoroughly study
the performance and operation of the motor and to evaluate the time
taken by the motor to achieve a certain displacement based on the set
acceleration. Additionally, is reported and described the Arduino codes
implemented following the aforementioned algorithm.

3.3.1 Stepper Motor Speed Profile

The development of an algorithm to calculate the stepper motor speed
profile represents a pivotal aspect of this project, indeed understanding
and effectively controlling the speed profile of the stepper motor is
crucial for achieving precise and efficient motion control. Moreover
through this algorithm I've extract the precise timing required for the
motorized stage to traverse a specified distance. By inputting the N
number of steps corresponding to a distance in millimeters and the
desired acceleration, the algorithm calculates the time required for
the stage to complete the designated travel. This calculated time is
of paramount importance in both the design and operation of the
developed setup. It ensures that the motorized components move
accurately and efficiently, aligning with the project’s objectives of
precision and reliability. However, the main reason for calculating
the time it takes for the stage to travel a certain distance is crucial
for maintaining synchronization in the serial communication between
LabVIEW and Arduino. Specifically, real-time data regarding the
position of the stage is sent from Arduino to LabVIEW through the
serial connection. This allows for the generation of a displacement vs.
time graph, which can be compared with the respective impedance
values. To acquire and display the data about the real time position of
the stage, Arduino sends data about the stage position to LabVIEW at

28

Stretching Setup

regular intervals, typically one value for every certain number of steps
completed by the stage. By knowing the time it takes for the stage
to complete this number of steps and setting the sampling frequency
of the LabVIEW system equal to the frequency of data transmission
over the serial connection from Arduino, we ensure accurate data
transmission and sampling. The algorithm employed in this project is
extracted from the "AccelStepper.h' library [17], which is provided by
Arduino. It’s worth noting that this library, as explicitly stated in its
documentation, relies on this very algorithm. Through this approach
is it possible to calculate both acceleration and deceleration curves,
including an intermediate phase characterized by a constant velocity
for the motor. Furthermore, it efficiently computes the time required
for the motor to accelerate from a standstill to the desired maximum
velocity, and likewise for the deceleration phase from maximum velocity
to a stop. This process involves segmenting the total number of steps
into three distinct phases. There are N1 steps dedicated to the linear
acceleration phase, during which the motor gradually ramps up to the
desired velocity, subsequently, N2 steps are allocated for maintaining a
steady velocity and finally, the remaining N3 steps are utilized for the
deceleration phase, gradually bringing the motor to a complete stop.
This nuanced approach ensures precise control over the motor’s motion
profile, facilitating smooth and accurate movement within the system.
The process unfolded in two stages: initially, the algorithm was studied
and an Arduino code implementing it was generated. Subsequently,
the same Arduino code underwent further refinement and adaptation
to seamlessly integrate the algorithm into the LabVIEW code. This
integration was necessary to incorporate the previously mentioned
stage travel time as a parameter to be given in input to the LabVIEW
system since it ensured synchronization in the serial communication
between the LabVIEW interface and Arduino, facilitating real-time
data transmission and effective coordination between the two platforms.
In Figure 3.13 is described the working principle of the algorithm and
the behaviour that it replicates.

29

Stretching Setup

e (|} sl
]
!

slope = m > ! slogpe lll';l
ol/C, S

wl, LI

/Gy

Figure 3.13: Stepper motor speed profile, the proposed algorithm
aims to compute the series of the coefficient C that define the time
interval between each pulse [18].

In the provided algorithm, the speed is increased by varying the
coefficient C, which in turn affects the time t between each step pulse.
From the graph in the picture, the x-axis represents time t, and the
distance between two successive time instants ¢,, — t,,_1 corresponds to
the distance between two pulses and thus two steps taken by the motor.
On the y-axis, there is the angular speed w. The algorithm and the
motion of the motor revolve around the series of divisor coefficients ¢,,;
indeed, these are constantly updated starting from ¢y and divided by
the pulse generator frequency f. The division between the coefficients
¢, and f defines the time interval ot between two successive pulses.
Considering that the frequency is constant, progressively decreasing the
value of the n-th ¢ will result in a progressively shorter time interval
between two successive pulses, corresponding to an increase in the
motor’s speed, which will rotate faster. The area under each pair of xy
points on the graph is the motor’s angular step o and remains constant
throughout the motor’s operation, while the slope of the line w' is the

30

Stretching Setup

motor’s angular acceleration.

The algorithm underlying the Arduino AccelStepper.h library is de-
signed to control the stepper motor to achieve a desired speed profile,
including acceleration, constant speed motion, and deceleration phases.
During the acceleration phase, the motor gradually accelerates from its
initial velocity to the desired speed. This calculation accounts for the
number of steps required to smoothly reach the desired speed and once
the desired speed is reached, the stepper motor moves at a constant
speed for the required duration. During this phase, the number of steps
per unit time remains constant, ensuring smooth and stable motion.
When it is necessary to stop the motor or change its direction, the
algorithm initiates deceleration to gradually bring the motor to a halt.
Deceleration occurs at a constant rate until the motor stops.

In the next section the full algorithm is reported and described.

31

Stretching Setup

Algorithm 1 Stepper motor speed profile : the goal is to calculate the
linear speed ramp of a stepper motor real time. This approach approx-
imates the motor behavior by accelerating constantly until reaching
maximum speed, then maintaining a constant speed until approaching
the destination, and decelerating constantly until coming to the selected
stopping point.

1: > An oscillator with frequency Fog is considered, this is the fre-
quency of the pulses of the motor, hence the frequency of the
steps

2: > The series of coefficient ¢ is divided by the frequency Fo g, varying

c properly is it possible to change the frequency of the steps and

hence the speed of the motor

> « is the motor step angle (radian)

> Fog is the timer frequency (Hz)

> a is the angular acceleration

> ¢ is the timer count

> t(n) is a generic time instant

Ayny = 72 > time that divides two motor steps and it last Ay,

Fe

At(n_l) = ”0*1 > previous motor step

10: > In Figure 3.13 each rectangle has an area equal to « so:

F
W wy = xm = o = 0K

12: ¢, = 2ok

13: > It’s p%nssible to write w,, as a function of w,,_1

14: wy, = Wp—1 + a - L\

15: Ayn) = Ay(n—1) > In the time interval Ay, _1) the motor goes from
Wy,—1 to wy,

16: > Replacing w,, in the ¢, formula we can now obtain

) _ afor a-Fog
17 cp = wy, Wp_1+a-Ay(n—1)

18: > Replacing
19: wy_y = Lo
20: At(n—l) = o=l
21: > We get

32

Stretching Setup

22:

23:

24:
25:
26:
27:
28:

29:

_ a-Fok
Cn - altpg +a_;n,1
n—1 CK
Cp = tn=l = o=l 2 > This formula permits to

1 a 2 — " Cp—1
+a,FCK‘Cn—1 1+Ka
calculate the ¢,, dynamically while the motor proceed knowing the
precedent ¢, 1

> with

K, = anCK

> Now we can compute ¢

AV o=

C a-F
a’.At(O):a’.WOK.:2.w0:2.%
2-«

30: ¢g = Fog - \/7
31: > In conclusion
32: ¢g = Fog - \/?
33: ¢, = fj}éa o
3. K, = %

a a~FCK

33

Stretching Setup

At this point, the algorithm has been adapted in C language and

written in the Arduino IDE to be tested, evaluating the achieved time
and speed variations as the input parameters change, particularly with
varying input acceleration.

Following are reported the main parts of the implemented code consid-
ering an acceleration ay;, = 1000 steps/s.

WG o~ Ovon

L.

4.

5.

double w;

double w lin;

double a = 7.58;
double alfa = ©.00758;
double Fck = 20000;
double K = 1.9;

int Step = 860;

int Cmin = 1;

Figure 3.14: Input variable definition (1)

w: Angular speed of the motor, measured in radians per second
(rad/s). wyy,: Linear speed of the motor, measured in steps per
second (steps/s), it is an output of the code.

. alfa: Motor step size, measured in radians per step (rad), consider-

ing 800 steps per revolution

360 w

Ifa ="t .
alfa= 205" 180

(3.3)

. a: Acceleration of the motor, measured in radians per second

squared (rad/s?).
a=ay,-alfa (3.4)

Fek: Pulse generator clock frequency, measured in Hertz (Hz).

K: Correction factor for ¢y, dimensionless.

34

Stretching Setup

6. Step: Total number of steps, dimensionless, in this example is 800

34
35
36
37
38
39
40
11
12
43
a4
45

so one revolution of the motor.

Cmin: Minimum amplitude of stepper pulses, dimensionless, serves
as the minimum amplitude of the stepper motor pulses. When the
motor speed reaches a certain point, the intervals between pulses
become very small, indicating that the maximum speed has been
reached. At this point, the Cmin variable is used to set a lower
limit on the pulse amplitude, preventing further speed increases.
This ensures that the motor maintains the desired speed without
further escalation.

double c, t, Ka;

int MidPoint;

int UpSteps = @;

int OpMode = UP RAMPING;
int i = @;

t =0.0;

MidPoint = sStep / 2;

Ka = a / alfa / (Fck * Fck);

c = Fck * sqrt(2.e * alfa / a) * K;

Figure 3.15: Input variable definition (2) and ¢y starting coefficient
calculation

1. ¢: Variable used to store the time interval between stepper motor

pulses, which determines the speed of the motor. Its value is
dynamically updated during the execution of the algorithm.

. t: Variable representing the current time in the algorithm, initially

set to 0.0.

Ka: Variable representing a coefficient used in the calculation of c.
It is computed based on the acceleration (a), motor step size (alfa),
and pulse generator clock frequency (Fck).

39

Stretching Setup

4. MidPoint: Variable representing the midpoint of the total number
of steps (Step). It is calculated by dividing Step by 2.

5. UpSteps: Variable used to count the number of steps taken during
the upward ramping phase of the motor.

6. OpMode: Variable representing the current operation mode of the
motor. It is initially set to U Prayprng. i: Variable used as an
index counter for the loop iterations

In Figure 3.16 the actual implementation of the algorithm in C
language to be uploaded and test through the Arduino board

58

59 while (Step--) {

60 t += ¢ / Fck;

61 w = (alfa * Fck) / ¢;

62 w_lin = w / alfa;

63

64 if (OpMode == UP_RAMPING)

65 {

66 c=c/ (1.0 + (Ka*c*c));
67

68 UpSteps++;

69 if (c <= Cmin)

70 {

71 ¢ = Cmin;

72 OpMode = @;

73 1

74 if (UpSteps >= MidPoint)

75 OpMode = DOWN_RAMPING;

76

77 if (lopmode && (Step <= UpSteps))
78 OpMode = DOWN_RAMPING;

79 if (OpMode == DOWN_RAMPING)

20 {

81 c=c/ (1.6 - (Ka * c * ¢c));
82 }

Figure 3.16: Algorithm implementation

The while loop iterates through each step of the motor motion,
decrementing the Step variable until it reaches zero. Within each
iteration, the code calculates the next instance of switching for the
motor.

Calculating Time and Speed: The variable t is updated to represent the
next time instance based on the current time t and the time interval
¢ between motor pulses. Additionally, the angular speed w and linear

36

Stretching Setup

speed wy;, of the motor are calculated based on the motor step size
alfa and the time interval c.

During the upward ramping phase (OpMode == U Prayping) the
time interval c¢ is recalculated to gradually decrease as the motor
accelerates. This calculation is based on the current value of ¢ and
the coefficient Ka. The variable UpSteps is incremented to count the
number of steps taken during the upward ramping phase. If the time
interval ¢ becomes less than or equal to the minimum pulse amplitude
Cmin, indicating that the maximum speed has been reached, the
upward ramping phase is stopped by setting ¢ to Cmin and switching
the operation mode to DOW Ngamping. If the number of steps taken
(UpSteps) exceeds the midpoint of the total steps (MidPoint), the
operation mode is switched directly to the downward ramping phase
(DOW Nganping). If the operation mode is not upward ramping
(!OpMode) and the current step is less than or equal to the number of
steps taken during the upward ramping phase (Step <= UpSteps), the
operation mode is switched to downward ramping (DOW Nganping).
During the downward ramping phase (OpMode == DOW Ngranping),
the time interval c is recalculated to gradually decrease as the motor
decelerates. This calculation is similar to that of the upward ramping
phase but with a negative acceleration coefficient. This code essentially
implements a control algorithm for the stepper motor, adjusting the
time intervals between motor pulses to achieve the desired speed profile,
including acceleration, constant speed, and deceleration phases.

Pulse generator clock frequency evaluation

Since the clock frequency of the pulse generator is one of the required
input parameters but was not known a priori while working with an
Arduino, an additional Arduino code for motor control was generated
solely for the purpose of evaluating the value of Fiox and determining the
appropriate value to use. This code does not use the 'AccelStepper.h'
library but is a "low level approach' in which the motor moves by

37

Stretching Setup

directly toggling the step pin for a certain number of times equal to
the required number of step, hence this code provides basic step-by-
step control without acceleration or deceleration. By directly acting
through the 'digital WRITE" function on the three pins, 2,3 and 4, of the
Arduino that are connected to the motor driver TB6600, respectively
to the DIR+, PUL+ and ENA+, is it possible to control the motor
and evaluate which is the lower limit of the pulse frequency at which
the motor moves.

Firstly, the pins are defined according to the connections between
Arduino and the motor driver TB6600.

#define dirpin 2
#define stepPin 3
#define ENA 4

Figure 3.17: TB6600 - Arduino PINs declaration

looking at Figure 3.18, the ENA pin is set to HIGH to enable the
motor driver, the outer loop controls the number of cycles the motor
will complete. After what the inner loop controls the number of steps
the motor will take in the specified direction, the first inner loop moves
the motor clockwise by the digitalWrite(dirPin, HIGH) function, while
the second inner loop moves the motor anti-clockwise by the digital-
Write(dirPin, LOW) function. The four lines digitalWrite(stepPin,
HIGH), delayMicroseconds(50), digitalWrite(stepPin, LOW), delayMi-
croseconds(50) sequence the steps, toggling the step pin to make the
motor move.

38

Stretching Setup

void MotorMove() {
pinMode(stepPin, OUTPUT);
pinMode(dirPin, OUTPUT);
pinMode (ENA, OUTPUT);

digitaluWrite(ENA, HIGH);
for (int m = @; m < cycle; m++) {

digitalWrite(dirPin, HIGH);
for (i = @; i < steps; i++) {
digitalWrite(stepPin, HIGH);
delayMicroseconds(59);
digitalWrite(steppin, LOW);
delayMicroseconds(50);
1
delay(Delay);
digitalwWrite(dirrin, LOW);
for (1 = 0; 1 < steps; i++) {
digitalWrite(stepPin, HIGH);
delayMicroseconds(50);
digitalWrite(stepPin, LOW);

delayMicroseconds(50);

delay(Delay);

3
Figure 3.18: Implemented C code to move the motor by directly
toggling the stepPin 3

By changing the delayMicroseconds value and hence the rate at
which the pin is toggled the clock frequency of the pulse generator has
been evaluated.

In particular with 50 us the motor move fine while going below the
frequency at which the steps are given is to high and the motor does
not move. Hence 50 us is taken as reference and a frequency of

1

= =20kHz (3.5)
50 - 10-6

Fex

is used

39

Stretching Setup

3.4 Labview Code implementation

LabVIEW, short for Laboratory Virtual Instrument Engineering Work-
bench, is a graphical programming environment developed by National
Instruments and uses a graphical programming language, called "G".
[t’s widely used in engineering and scientific research for creating control
systems and data acquisition applications. LabVIEW enables users
to create programs through an intuitive graphical interface, where
operations are executed by connecting graphical blocks called "virtual
instruments" (VI). These VIs can be configured to control hardware
devices, acquire data from sensors and analyze signals. LabVIEW
is constitued by two foundational components within the graphical
programming environment employed for application development, the
front panel and the block diagram. The block diagram serves as the
central canvas where the program’s logic and functionality are con-
structed using graphical icons and interconnections. It encapsulates
the data flow and underlying logic of the program. Throughout devel-
opment, various nodes, functions, structures, and controls/indicators
are placed onto the block diagram and interconnected via wires to
craft the desired behavior. This diagrammatic representation facilitates
the visualization and comprehension of the program’s operational flow.
On the other hand, the front panel functions as the user interface,
providing an intuitive means for users to interact with the program.
It hosts a graphical representation of user interface elements such as
buttons, sliders, graphs, and numeric displays. Controls are utilized
for user input, parameter adjustment, while indicators display out-
puts and results during program execution. The design of the front
panel is pivotal in ensuring user-friendliness and accessibility of the
application. Notably, the front panel and block diagram are closely
linked, with changes made to controls/indicators on the front panel
directly impacting the behavior of nodes on the block diagram, and vice
versa. Due to its flexibility and wide range of functionalities, LabVIEW
is employed across various sectors including industrial automation,

40

Stretching Setup

biomedical engineering, academic research, and test and measurement
system development. In this research, LabVIEW played a pivotal role
as a versatile and powerful tool for system control and data acquisition
and it provided the framework for integrating and controlling both
an Arduino microcontroller and a linear stage in the experimental
setup. Simultaneously, LabVIEW facilitated communication with an
LCR meter, enabling precise measurement and analysis. By leveraging
LabVIEW’s capabilities, the integration between different components
and instruments has been possible , automating and controlling the
experimental stretching setup to test the electrodes stretchability. In
constructing the setup, the aim was to utilize LabVIEW to create a
user-friendly interface for establishing the connection and configuring
parameters of the LCR meter, while also setting parameters for stretch-
ing the DUT. Communication between the PC and the LCR meter, as
well as between the PC and Arduino, occurs independently via serial
communication. Once all stretching parameters are configured and the
serial connection with Arduino is established, these parameters are sent
via serial to the board, acquired, and properly assigned to variables
within the Arduino code. Subsequently, Arduino is responsible for
moving the stage and performing the stretching operation. In addition
to parameter transmission, LabVIEW is concurrently employed for
data acquisition and plotting from both the LCR meter regarding
impedance and Arduino regarding stage position. The operational flow
implemented by the LabVIEW code to execute the tasks previously
described can be hence divided in six different macro step that are
reported and briefly explained in Figure 3.19. The first thing that
has to be done is to set the serial connection with the Arduino board
and LCR meter E4980A. After what the parameter for the stretching
sequence must be defined, those parameters are seven : a command
in char format, acceleration in steps/s?, speed in step/s, cycle e.g. the
number of iteration of the stretching sequence, delay ,e.g the time that
the stage has to remain blocked at the final and at the initial position

41

Stretching Setup

Open the connection Send parametrs to
with LCR and Arduino and start
Arduino the stretching Plot and Save data

000000

Set parameters for Record data about Close the connection
the stretching position and
impedance

Figure 3.19: Operational workflow to implement the stretching
sequence

and the resolution , e.g. the number of data points acquired by the
LCR meter and hence about the position of the stage while travelling.
The third step is about concatenating these seven parameters in an
unique string, send the string to the Arduino and start the stretching of
the sample. As soon as the third step is completed the fourth step can
start, the data are recorded both from the LCR meter and from the
Arduino, plotted separately and saved in an excel file. In conclusion the
connection with the instruments is closed and the LabVIEW program

stopped. In the next pages a more comprehensive description is given
and both the LabVIEW and Arduino code are showed and explained.

3.4.1 STEP 1 : Connection aperture

As already mentioned the very first thing to do is to open the serial
communication between the PC and the instrumentation, respectively
the LCR meter A4980e and the Arduino Board.

To properly interface with the LCR meter the LabVIEW driver
blocks for the LCR meter E4980A have been used, these driver blocks

42

Stretching Setup

timeout (10sec) E
VISA resource name Arduino ITEFL

=

'''''''

baud rate (9600)
[Usz}

data bits ()

parity (0:none)

OPEM THE CONMNECTION WITH ARDUINO BOARD
AND LCR METER

Measurement Time stop bits (10: 1 bit)

!
Enable Auto Range (T:Enable) ﬂzx control (linone)
@ Signal Frequency
¥
Manual Impedance Range (3: 100 Ohms) Signal Type (0: Voltage)
VISA resource name LCR vk
Function (0: Cp-0) { Signal Level (1.0V)

BT,

g Y L
MEAS

00 0000000000000 00°¢C

Figure 3.20: LabVIEW code to open the connection with the Arduino
and the LCR meter

provide users with the flexibility to tailor the measurement settings,
signal characteristics, and integration parameters of the LCR meter to
meet the specific requirements of the measurement application. These
drivers are based on VISA (Virtual Instrument Software Architecture),
which is a software library and set of APIs (Application Programming
Interfaces) provided by National Instruments for instrument control
and communication. It allows LabVIEW programs to communicate
with various instruments, such as oscilloscopes, multimeters, function
generators, and others, over different communication interfaces like

43

Stretching Setup

GPIB, USB, Ethernet, and serial ports. The first one, used to establish
the communication is the "initialize.vi', which gets as input only the
VISA resource name. The "VISA resource name" (Virtual Instrument
Software Architecture) is a unique identifier used to communicate with
hardware instruments, essentially, it is an address that specifies the
location and type of instrument you want to communicate with. The
next three blocks, from left to right, are the one actually used to set
the parameters for the measurement.

1. Configure Measurement: This block is used to set up the specific
measurement parameters such as the impedance range, which can
be also be imposed as AUTO with the proper control, and the
function, e.g. the pair of parameters (primary and secondary) that
the LCR has to measure in order perform different measurement
(impedance, capacitance, inductance, or resistance)

2. Configure Measurement Signal: This block enables users to specify
additional parameters related to the measurement signal applied
itself, such as the signal frequency, amplitude, and type. It allows
users to customize the characteristics of the signal that the LCR
meter will apply to the DUT during the measurement process.

3. Configure Aperture: The configure aperture block is used to adjust
the integration time or aperture time of the measurement. This
parameter determines the duration over which the LCR meter
will integrate the measured signal to obtain accurate results. By
configuring the aperture, users can optimize the measurement
resolution and accuracy based on the characteristics of the DUT
and the desired measurement precision.

Moving to the Arduino the connection was still established using VISA
blocks, notwithstanding the absence of drivers; instead, the original

VISA blocks were utilized. Indeed through the block VISA Configure
serial port is it possible to define the following parameters:

44

Stretching Setup

. Visa resource name for the Arduino

. timeout = 10 s, refers to the duration for which the system waits
for a response before considering the communication attempt un-
successful.

. baud rate = 9600, the rate at which data is transferred over the
serial connection, measured in bits per second (bps). It defines the
speed at which data is transmitted and received between LabVIEW
and Arduino.

. data bits = 8, the number of bits used for each character in the
serial communication.

. parity = none, is a method used to check the integrity of transmitted
data

. stop bits = 1, indicate the end of a data frame in serial communi-
cation.

. flow control = none, refers to the mechanism used to regulate the
flow of data between the transmitting and receiving devices

45

Stretching Setup

3.4.2 STEP 2 : parameters setting

The second step in the stretching sequence flow is about the parameters
setting to actually implement the stretching , so to make the motor
move following a precise "behaviour'. What is done here is the definition
of all the six parameters necessary to fully describe the movement of
the stage. These parameters are : acceleration in steps/s?, speed in
step/s, cycle e.g. the number of iteration of the stretching sequence,
delay ,e.g the resting time that the stage has to remain blocked at the
final and at the initial position and the resolution , e.g. the number
of data points acquired from the LCR meter and from the position of
the stage while travelling. The Figure 3.21 shows how the different
parameters are computed within the LabVIEW environment.

Acceleration Steps/s*2

Figure 3.21: Parameters definition in LabVIEW

The user must define the sample length [mm] and the desired elon-
gation to apply to the sample in mm, from these two controls the code
returns the correspondent strain e€,.

€ =~ (3.6)

46

Stretching Setup

where €, is the applied strain, Ax is the desired elongation and [is the
length of the sample. Those parameter are expressed in mm but what
the motor needs as input to move is the number of step correspondent
to the given elongation. To satisfy this requirement firstly the distance
correspondent to each step is computed by dividing the lead screw
pitch of 2 mm (value from data sheet , the 'lead screw pitch" in a linear
stage refers to the longitudinal distance traveled by the linear stage for
each complete rotation of the lead screw) by the number of step per
revolution, in that case 800.

2mm ~0.0025mm
8005t€p5revolution step

(3.7)

Distancegte, =

by dividing the elongation A, by the Distance each step the total
number of step can be obtained.

Ax

Distancesiep

The next two parameters that has to be defined through the Lab-

VIEW GUI are the number of Cycle and the Resolution. The Resolution
quantity is crucial because is used to divide the total number of step
computed before in sub intervals of steps that the motor has to do

TOTsteps
Resolution

TOTsteps = (3.8)

step = (3.9)
So for example if the motor has to move by 1000 steps and the resolution
parameter is 10 the motor will do 100 steps 10 times until it reach
the final position of 1000 steps. The resulting value of step is the one
actually sent to the Arduino with the Resolution one and with the
Cycle value, the working principle of these variables inside the Arduino
code will be explained later. The last three inputs that the user has to
defined to start the stretching are the Delay (ms), the speed (step/s)
and the acceleration (steps/s?), no data manipulation occur on those
variables.

47

Stretching Setup

Formula node

In step 2 also the travelling time taken by the stage to cover the re-
quired number of steps is computed thanks to the algorithm already
describer in the subsection 3.3.1. Here the algorithm has been adapted
to the LabVIEW paradigm through the Formula Node structure. In
LabVIEW, the Formula Node structure allows users to create custom
mathematical expressions using a syntax similar to traditional program-
ming languages, it is a graphical programming element that allows to
write mathematical or logical equations directly within a LabVIEW
block diagram. The Formula Node structure accept some inputs and
after the execution of the code inside of it return the wanted outputs.

In that case the two inputs are the Acceleration of the motor and
the number of steps to be executed, the code will return as outputs
the a value correspondent to the time (called FinalTime) taken by the
motor to complete the number of step. This time is multiplied by 1000
to bring it in ms and then will be use in STEP 4 and STEP 5 to give
synchronization to the LabVIEW-Arduino communication by defining
the time between each iteration of the for loop used to acquire and
plots the incoming data.

48

Stretching Setup

1int UpSteps = 0;

2float64 Fck = 20000;

Jint UP_RAMPING = 1;
4int DOWN_RAMPING = 2;

Number of steps 5 floathd we
! 6 floatbd w_lin;
iz S0 floatd alfa = 0.00758;
- 2floatbd a = alfa " a_lin;
Acceleration 9floatbd k = 1.000;
o5 10floatéd Cmin = 10;

= 11 11floatbd c;

- 12 float64 t = 0.0000;

13 floatbd Ka =a / alfa / (Fck * Fck);
14
15¢=Fck*sqrt(2.0*alfa/a) " k
16

17int MidPoint = Step / 2;

12int OpMode = UP_RAMPING;
19inti=0;

21 while (Step--) {
22t+=c/Fck

23w = (alfa*Fck) / ¢
24w_lin = w/ alfa;

25 FinalTime (ms)

2% if (OpMode == UP_RAMPING) o
27 { __|:> kw.zaﬂ
c=c/(1.0+ (Ka*c*q); 3L
UpSteps++;
i (c <= Cmin)
{

¢ = Cmin;

OpMode = 0;

O oo

IRTORTTN

1
if (UpSteps >= MidPoint)
OpMode = DOWN_RAMPING;
}
if (!{OpMode && (Step <= UpSteps))
OpMode = DOWN_RAMPING;
if (OpMode == DOWN_RAMPING)

wow

(=R N ey}

{
c=c/(1.0-(Ka*c*q));

Figure 3.22: Implemented formula node to adapt the stepper motor
speed profile algorithm in LabVIEW

49

Stretching Setup

3.4.3 STEP 3 : parameters concatenation and
sequence start

In this section the six parameters (step, resolution, delay, acceleration,
speed, cycle) are provided as input to "number to decimal string" blocks.
The LabVIEW block "Number to Decimal String" is used to convert
numerical data, such as integers or floating-point numbers, into a string
format that represents the number in decimal notation. This block
is particularly useful when it’s needed to display numerical data on a
user interface, save it to a file, or transmit it over a communication
interface that requires string data. In Figure 3.23 the LabVIEW code
used to concatenate the parameters and create the string, as well as the
blocks used to send the string to the Arduino to start the stretching
are showed. Once the data has been converted into string format (pink
wires), they are inputted into the "concatenate string" block. Through
this block, each parameter is concatenated with the others into a single
string. The string always begins with a letter (command), followed
by the values of the six aforementioned parameters, each separated
by a comma. The formed string now moves towards the next block,
namely "Visa Write', which writes the data from the write buffer to
the device specified by the Visa resource name. Since when the string
enters the input of Visa Write, the data is automatically sent to the
Arduino, causing the motor to move, the block has been incorporated
into a more complex structure, a case structure, which allows the string
to enter the write block only when the boolean control (green) ’start
stretching’ is pressed from the GUI. In fact, when the 'start stretching’
button is pressed, it assumes a logical value of 1, causing the case
to enter the true case and thus the string into the Visa Write block.
This approach provides the user with greater control over the system’s
operation. Furthermore, the entire case structure is embedded within
an additional structure, a while loop. This allows the user to press the
stretching button at any time. If the button is not pressed, the boolean

50

Stretching Setup

CONCATE THE PARAMETERS IN A UNIQUE
STRING IN ORDER TO SEND IT TO THE BOARD

number to decimal string
5

i
)
3 ot gl
L] Command
-’““"“"'”E
EER]
beg s
EN |AFTER THAT THE "SEND COMMAND" BUTTON
T "' 4] HAS BEEN PRESSED THE BOARD RECEIVE THE
Beg STRING
] =N
=N
=
sl Start
[l stretching T True 't
3 5]
E Doooooopooooon
H A o
abi-
w3
Doooooooooooon i

H

Figure 3.23: Parameters string creation, sequentially the string is
sent to Arduino through the "Visa write" block.

control value will be 0, causing the case to enter the 'false’ case and
the while loop to continue iterating indefinitely (unless the LabVIEW
program is stopped), effectively placing the system in a state of waiting
for an 'external” action from the user via the graphical interface.

o1

Stretching Setup

3.4.4 Arduino code Implementation

In this section the code that orchestrates the precise movement sequence
of the stepper motor, including forward and backward movements, as
well as pauses between cycles, is analyzed. This code leads to achieve
the desired stretching behavior through careful control of the loop
iterations and motor commands, it ensures the smooth and controlled
execution of the stretching sequence.

The section of code in Figure 3.24 is responsible for the parsing of the
incoming string, sent via the serial port, and assigning the extracted
values to specific variables. Parsing is the process of analyzing a string
to identify and extract structured information within it. In this context,
parsing the serial string involves analyzing the string to identify the
positions of commas and extracting the corresponding numerical values
to be used in the program.

39 void loop() {

19

41 if (Serial.available() > @) {

42

43

a4

45 string inputstring = Serial.readstringuntil('\n');

a6

a7

48 command = inputString.charat(e);

49

5@

51 int commaIndexl = inputString.indexof(',');

52 int commaIndex2 = inputString.indexof(’,', commaIndexl + 1);
53 int commaIndex3 = inputString.indexof(',', commaIndex2 + 1);
54 int commaIndex4 = inputString.indexof(’,', commaIndex3 + 1);
55 int commaIndex5 = inputString.indexof(’,’, commaIndex4 + 1);
56 int commaIndex6é = inputString.indexof(',', commaIndex5 + 1);
57

58 acceleration = inputString.substring(commaIndexl + 1, commaIndex2).toFloat();
59 Speed = inputString.substring(commaIndex2 + 1, commaIndex3).toFloat();
60 cycle = atol(inputstring.substring(commaIndex3 + 1).c_str());
61 steps = atol(inputstring.substring(commaIndex4 + 1).c_str());
62 Delay = inputString.substring(commaIndex5 + 1).toInt();

63 resolution = inputString.substring(commaIndexé + 1).toInt();

Figure 3.24: Read from serial and parsing of the string

In detail, the code performs the following:
The "indexOf" method is used to find the positions of commas within

52

Stretching Setup

the inputString. This method returns the index of the first occurrence
of the specified character within the string. Variables commalndexl1,
commalndex2, commalndex3, commalndex4, commalndex5, and com-
malndex6 represent the positions of commas within the string. Using
the values obtained from the comma positions, the code uses the "sub-
string" method to extract substrings from the inputString. These
substrings contain the values of acceleration, speed, cycle, steps, delay;,
and resolution parameters. The extracted values are then converted to
the appropriate data types using "toFloat' for floating-point values and
"tolnt" for integer values, and assigned to the acceleration, Speed, cycle,
steps, Delay, and resolution variables.

Once that the string has been parsed the code utilizes a switch state-
ment to determine the action to take based on the command received.
In this case, if the command character is 'R’, it proceeds to execute
the "stretchingsequence' function that contains the necessary logic for
performing a stretching sequence. If the command character does not
match 'R’ indicating an unrecognized or invalid command, the code
does not execute any specific action and continues with the loop.

69

70 switch (command) {

71

72 case 'R':

73 stretchingsequence();
74 break;

75 default:

76

77 break;

78 }

Figure 3.25: Driver Board connection

Moving forward the code enters in the 'strecthingsequence' function.
Here an unsigned long variable named "starttime" is initialized to track

53

Stretching Setup

the starting time of the sequence. Next, the code calculates the 'final-
position" by multiplying the number of steps by the resolution. This
variable signifies the ultimate position that the stepper motor needs to
reach during the stretching sequence.

After what, the code enables the outputs of the stepper motor using
the "stepper.enableOutputs' function call. This action ensures that
the motor is ready to receive commands and execute movements. Sub-
sequently, the current position of the stepper motor is set to 0 via
the "stepper.setCurrentPosition" function. This step effectively resets
the motor’s position to its initial state, preparing it for the upcoming
sequence.

Following this, the code configures the speed of the stepper motor
to the specified value using the "stepper.setSpeed(Speed)’ function.
This adjustment ensures that the motor moves at the desired ve-
locity during the stretching process. Additionally, the acceleration
of the stepper motor is set to the specified value using the 'step-
per.setAcceleration(acceleration)' function. By configuring the acceler-
ation, the code ensures smooth and controlled movements of the motor
as it transitions between different speeds.

82 void stretchingsequence() {

83 unsigned long starttime;

84 int finalposition = steps * resolution;
85 stepper.enableOutputs();

86 stepper.setCurrentPosition(e);

87 stepper.setSpeed(Speed);

88 stepper.setAcceleration(acceleration);

Figure 3.26: Stepper motor settings

In conclusion the core of the function to control the motor is here
reported in Figure 3.27. This segment of code contains a nested loop
structure repeated for the specified number of cycles designed to prop-
erly control the motor and hence move the stage to finally stretch

o4

Stretching Setup

the DUT. Firstly, an outer loop iterates cycle times, representing the
number of cycles for the stretching sequence. Within each cycle, an
inner loop executes resolution times, representing the number of steps
to be taken during each cycle. During each iteration of the inner
loop, the stepper motor is commanded to move forward by a distance
of steps using the 'stepper.move(steps)' function. Subsequently, the
'stepper.runToPosition" function ensures that the motor reaches the
desired position before proceeding. The current position of the motor,
represented by the variable x, is printed to the serial monitor using
"Serial.print(x)", followed by a space character. The value of x is then in-
cremented by steps to prepare for the next movement. After completing
the forward movement sequence, a delay is introduced using the "millis’
function to wait for the specified Delay duration. During this delay,
the final position of the stepper motor (calculated as "finalposition") is
repeatedly printed to the serial monitor, along with a space character.
Following the delay, another inner loop is executed to perform the
reverse movement sequence. Similar to the forward movement, the
stepper motor is commanded to move backward by a distance of steps
using "stepper.move(-steps)", followed by "stepper.runToPosition" to en-
sure precise positioning. The current position of the motor, represented
by the value "finalposition - z', is printed to the serial monitor, along
with a space character. The value of z is then incremented by steps
to prepare for the next backward movement. Finally, another delay is
introduced to wait for the specified Delay duration before proceeding to
the next cycle. During this delay, the value 0 is repeatedly printed to
the serial monitor, indicating the resting position of the stepper motor.

99

Stretching Setup

90 for (int 1 = 8; 1 < cycle; i++) {

91 int x = steps;

92 for (int n = 8; n < resolution; n++) {
93 stepper.move(steps);

94 stepper.runToPosition();

95 Serial.print(x);

96 Serial.print(" ");

a7 X += steps;

98 1

99

100 starttime = millis();

101 while (millis() - starttime < Delay) {
102 Serial.print(finalposition);

103 Serial.print(™ ");

104 delay(1e@);

105 1

1686

107 int z = steps;

108 for (int n = 8; n < resolution; n++) {
109 stepper.move(-steps);

110 stepper.runToPosition();

111 Serial.print(finalposition - z);

112 Serial.print(™ ");

113 Z += steps;

114 1

115

116 starttime = millis();

117 while (millis() - starttime < Delay) {
118 Serial.print(e);

119 Serial.print(" ");

120 delay(1e@);

121 1

122 1

123}

Figure 3.27: 'stretchingsequence' function that controls the motor
to implement the stretching.

o6

Stretching Setup

3.4.5 STEP 4 : Data recording

Returning to the LabVIEW code, the next step is to accurately acquire
real-time data from both the Arduino and the LCR meter. To achieve
this, the task has been broken down using a structure comprised of
multiple for loops and a queue system. In fact, the main challenge in
these types of real-time data acquisition systems lies in synchronizing
the various instruments and incoming data so that they are consistent
with each other, as well as ensuring their correct sampling [19]. In other
words, for every data point received from the Arduino regarding the
position, there must correspond the respective impedance data acquired
at the same instant. In figure are present two different rectangles that
in LabVIEW are two for loop, the upper one is used to collect the
serial data coming from the Arduino board about the position, while
the bottom is used to record data about the impedance from the LCR
meter. The two for loops start at the same time and are iterated
for the same number of time since the control N in each loop has in
input the same wire coming from STEP 2, so they also finish together.
The number of iterations and hence the number of data acquisition is
computed as follow

Niterations = 2 - Cycle - Resolution (3.10)

Furthermore, by creating a local variable, the timing value (in mil-
liseconds) calculated through the formula node section 3.4.2 is passed
as input to the wait function present in each of the for loops. This
ensures that each iteration of the for loop occurs every Timing millisec-
onds. As a result, the data reception between LabVIEW and Arduino
is synchronized, enabling correct sampling. Additionally, impedance
data is collected at the same instant, ensuring correspondence between
the impedance and position data. The data regarding position and
impedance are extracted in the LabVIEW interface respectively through
the VISA read blocks and the Read block from the Agilent E4980 library.
Precisely, one data is sampled by those two block at each iteration of

o7

Stretching Setup

the the respective for loop. The former returns the position data via
the output buffer (pink wire), while the latter simultaneously returns
two outputs, the primary parameter and the secondary parameter, at
each iteration of the loop.

~
[EOARD DATA ACQUISTION

s il
2l M=

nnn

Figure 3.28: Acquisition loops, the bottom loop is used to read data
form Arduino while the upper one to read data coming from the LCR
meter

The decision to use multiple for loops instead of a single loop that
encompasses all operations to be performed is tied to reducing compu-
tational burden. In fact, by employing multiple loops, it’s possible to
decrease the number of operations occurring within each loop, thereby
reducing the time required to complete the instructions and operations
within the loop. It’s essential, indeed, for the data to be sampled
correctly, that the operations carried out within each loop conclude
in a shorter time than the one defined by the "timing (ms)" variable.
Essentially, it’s necessary for the operations performed in a for loop
to conclude before a new data on the serial port arrives. Simultane-
ously dividing tasks and "breaking' the code into multiple for loops
entails increased complexity in managing the flow of incoming data,
as these, once sampled by their respective LabVIEW blocks, need to

o8

Stretching Setup

be "transported' to other for loops (described in the next section, Step
5), where they will be plotted and saved to Excel. To handle this
problem and manage the data flow a system of queue has been used
to make the different loops communicate and exchange the input data,
indeed, "Queue" blocks in LabVIEW are fundamental components used
for managing data flow within LabVIEW programs. They operate
based on the principle of a First In, First Out (FIFO) queue, and
they are particularly valuable in scenarios where data needs to be
exchanged asynchronously or synchronized between different sections
of the program One key advantage of "Queue’ blocks is their ability
to support asynchronous communication. This means that data can
be passed between different sections of the program without requiring
them to operate in lockstep. As a result, one part of the program
can continue its operation without waiting for another part to finish
processing the data. Additionally, "Queue" blocks provide a mechanism
for synchronization, ensuring that data is transferred in a coordinated
manner between different sections of the program, helping to prevent
issues such as data loss or inconsistency and ensures that the program
operates smoothly. Other benefit is that they help to decouple different
components of a LabVIEW program leading to a greater flexibility and
ease of development; furthermore their dynamic data handling capabili-
ties let them automatically resize based on the number of elements they
contain, eliminating the need for manual memory management and
improving overall program efficiency. To the scope of this project the
output data from the VISA Read and Agilent E4980 Read block are
inputted in two different '"Enqueue" block, where two different queue
for each type of data are created. In this way there will be two distinct
and identical streams of data output from each of the two loops, which
will then be processed and utilized in the subsequent step.

59

Stretching Setup

3.4.6 STEP 5 : Plot and save the data

In Figure 3.29, two additional loops are depicted: the bottom one is
utilized to perform the task of processing and plotting the data, while
in the top one, the data is simply saved to an Excel file. The data
reaches these two loops through the queue system, where the '"Dequeue
Element" block makes the data flow available to the instruction blocks
and functions within the loops.

build waveform

Figure 3.29: Elaboration loops, the bottom one is used to display
the incoming data within the LabVIEW GUI, the upper one is used to
save the same data in an excel file.

In the upper loop, the data output from the "Dequeue Element'
blocks is fed into the "Write to Measurement File" block, used to
generate an Excel spreadsheet where each row includes the date and
time, primary parameter, secondary parameter, and position. In the
lower loop, the data is input to three different "Waveform Graph'

60

Stretching Setup

blocks, namely "Position vs Time," "Primary Parameter vs Time," and
"Secondary Parameter vs Time," used for real-time visualization of the
incoming data. To maintain synchronization with the description in
Step 4, once again, the number of iterations N of the loops is the same
as calculated in Equation 3.10, while each iteration of the loops occurs
every "Timing (ms)" milliseconds (section 3.4.2).

3.4.7 STEP 6 : Close the connection

In conclusion, once the 4 aforementioned for loops have been completed,
and thus all the data has been acquired and processed, the connection
with the Arduino board and the LCR meter can be closed, and con-
sequently, the execution of the LabVIEW program terminated. This
is achieved using the two "VISA Close" blocks to close communica-
tion with the Arduino and the "Agilent E4980 Close" block to close
communication with the LCR meter.

VisA

i error out
o
¢

close session

Figure 3.30: Connection close

Additionally, these two blocks allow any error messages that may have
occurred during execution to be displayed via the graphical interface
using the two "error out' indicators.

61

Stretching Setup

3.4.8 GUI : graphical user interface

In the following the resulting graphical user interface developed from
the LabVIEW code is showed, this GUI has been used to stretch the
flexible electrodes and to evaluate how their electrical parameter change
in relation to the applied elongation. For simplicity, the GUI has been
divided into two images, Figure 3.31 and Figure 3.32, however, the two
images are to be imagined as one, seamlessly continuing from the other.

STRETCHING SETUP

LCR SETTINGS ARDUINO SETTING $ STRETCHING SETTINGS
VISA resource name LCR :"“ TEsprirce fome Artietne Define Sample Length and Elongation in mm.
' =l kK = Select a Resoluion , possible values - 1, 10, 25, 50, 100. Sample Length (mm) Resolution Delay (ms) Cycle
Set a Delay between each stretching phase in ms. B = B = =
Siotel Fretpicacy H) timeout (10sec) baud rate (9600) A o] 3 o] S] Al o] 3 o
o i‘W i‘W Type R command in the correspondent section.
- Enable Auto Ranae I
Manual Impedance Range flow control (0:none) Deafult number of steps per revolution - 800, each step
oo 3 Enable SNone o correspond o 0,0025 mm
Y Acceleration Steps/s*2 Speed Steps/s
> stop bits (10: 1 bit) = T3]
BOET 0 il o
il = =
A [0
) cp-D 0 do_|
parity (O:none)
Signal Type (Voltage or Current) a
p N
| Voltage 0 o None | Type a the name of the excel file in the section ‘Filename' to save the acquired . 01 e s oy
data bits (8) data for further anlysis 0 ‘] ‘ 0 ‘ [‘ 0 ‘]
Measurement Time r
i 3
&l Medium 1 E Filename.
S NN mEm mw | i out
Signallevel Vor &) pEEa]=================SEA testadsx 151 Commindn d . sop Start stretehing sequence
g i B sor [> start
source Filename Out2
- %

Figure 3.31: Graphical user interface (1)

In Figure 3.31 is showed the first part of the GUI, through this is
possible to set all the parameters described in the previous paragraphs
to control all the instrumentation involved. From left to right, the LCR
settings and the Arduino UNO settings, then in the central part there
is a short section with some basic instruction on how to use the GUI
and also the possibility to define a name for the excel worksheet where
the data will be saved. Finally on the right side of the the interface,
stretching settings, the parameters about the movement of the stage
must be specified. The software will return the "number of steps’, the
'correspondent strain' and the "'max allowed speed'. The stage will
start to move only after the "start" button has been pressed and the
execution of the LabVIEW program can be stopped through the 'Stop'
button.

62

Stretching Setup

Pingaf Palnetep v e pioto M Secondary Parameter vs time Piot0 g

301,356 ‘Secongay param Max

i

301,355

301,355 Secondany Param Min
301,354
301,354

2 301,353

§ 201,353

i

5. 301,352-]
2 301,352
& 301,351

301,351

& |
301,35 [re—
301,349 = @ Cursor
on
] 301,349 o D d 7|
200000 0 100000 150000 200000 | oy o
Time (ms)
HEw) |
Position vs time Plot0 b e BytesRead Output buffer
g o) |
Distance between each point mm)
o]
T
IE)
Cursors: X ¥ -]
/B8 Cursor 0
none o 0
0 2000 40000 G000 000D 100000 120000 14000 160000 180000 200000 'l JJ
Time ms)

CERR

Figure 3.32: Graphical user interface (2)

The second part of the GUI, that actually is underneath the first
one, is dedicated to the visualization of the data. In Figure 3.32
three different graphs are present, namely Primary parameter vs Time,
Secondary parameter vs Time, Position vs Time , plus an "output
buffer" section where what’s come from the serial port of the Arduino
is showed. Near to each graph some additional information are given,
the maximum and minimum values of the primary and secondary
parameter can be visualized, while the distance between two points
is reported near to the "Position vs Time' plot. In conclusion, The
two indicators, 'LCR time" and "Arduino Time," serve a dual purpose.
They indicate the distance on the x-axis between two consecutive points
but were also instrumental during the testing phase for verifying the
actual synchronization between the LCR meter and Arduino. Indeed,
these two times represent the execution time of their respective for
loops described in Step 4, where data was read from the Arduino and

63

Stretching Setup

LCR meter. As long as the time reported by these two indicators is
equal, the sampling between the two instruments occurs simultaneously,
and the data correspond one-to-one. However, if the two times are no
longer equal, synchronization is lost, along with the correlation between
impedance data and position data. These two indicators and the time
showed by them is hence used as a sort of "debug" tool to understand
which is the limit on the system performance, this will be explained
better later but what happen in general is that if the resolution is too
high or the space that the stage needs to cover is too small, the position
data sent by the Arduino will be transmitted too quickly, resulting in a
very small time interval between two consecutive points. On the other
hand, the LCR meter will not be able to send impedance data as quickly.
As a result, the for loop where data is sampled from the LCR will
be slower than that of the Arduino, causing a loss of synchronization
between them.

64

Chapter 4

Frequency Sweep

This chapter focuses on the implementation of a frequency sweep, a
fundamental procedure in characterizing the behavior of the DUT. The
frequency sweep is a technique used to systematically vary the frequency
of a signal applied to the DUT while observing its electrical response.
In this context, the LabVIEW code developed for the frequency sweep
serves as an essential component of the experimental setup, providing
valuable insights into the electrical properties of the DUT. The primary
purpose of the frequency sweep is to understand how the electrical
characteristics of the DUT vary with frequency. By sweeping through
a range of frequencies, it is possible to gain insights into the DUT’s
impedance, capacitance, and other electrical parameters across different
frequency regimes. This information is crucial for optimizing the
performance of electronic devices and circuits, as it helps identify
frequency-dependent effects and design considerations. It’s important
to note that the LabVIEW code for the frequency sweep represents
a preliminary step in respect to the stretching setup, preceding the
stretching experiments. While the stretching experiments involve both
the LCR meter and the linear stage, the frequency sweep focuses solely
on the LCR meter and the insights gained from the frequency sweep
inform the selection of the appropriate frequency for signal application
during the stretching experiments. Since the electrical properties of the

65

Frequency Sweep

electrode may vary with frequency, understanding these variations is
essential for ensuring accurate and reliable experimental results. Unlike
the setup used for stretching experiments, which involves more complex
procedures and interactions between multiple components, the frequency
sweep in LabVIEW is characterized by its simplicity and directness.
It focuses solely on controlling the frequency variations applied to the
DUT through the LCR meter. This streamlined approach facilitates
the systematic exploration of the DUT’s electrical response across
different frequencies, providing valuable insights into its frequency-
dependent behavior. The frequency sweep plays a critical role in the
characterization of the DUT’s electrical behavior and this chapter will
delve into the details of the LabVIEW code developed to control the
LCR meter E4980A for the frequency sweep.

4.1 Frequency sweep block diagram

In this paragraph the developed LabVIEW code is reported and de-
scribed. To control the LCR meter and execute the sweep the same
driver used for the previous LabVIEW code are adopted and the same
sequence of block to initially configure the instrument is followed :
Initialize , Configure measurement, Configure measurement signal and
Configure aperture. The approach to performing the frequency sweep in
LabVIEW is relatively straightforward. Essentially, it involves defining
an initial frequency, a final frequency, and a frequency step size. With
these three parameters, the number of iterations needed to reach the
final frequency from the initial one, advancing by the specified "step'
can be derived as follow:

Ffinal - Enitial
FStep

Acquired,pints = (4.1)

To execute the frequency sweep, two nested for loops are employed.
The outer loop is responsible for performing multiple consecutive sweeps,

66

Frequency Sweep

Figure 4.1: Frequency sweep block diagram

thereby measuring multiple values at the same frequency intervals. The
number of iterations is controlled by the value of "number of sweep.'
Within this loop, the inner loop conducts the actual sweep. The number
of iterations is set equal to the number of "acquired points," calculated
in Equation 4.1. Within this loop, two blocks are reused to manage the
operation of the LCR meter. Firstly, the 'configure measurement signal’
block is utilized. This block receives the frequency value at which the
electrical parameter of interest is measured during each iteration of the
sweep. This value is incremented by an amount equal to the "Frequency
Step" at each iteration of the loop. Subsequently, the 'Read" block is
encountered. Through this block, both the "primary parameter' and
the "secondary parameter' are extracted at each iteration. Finally, the
read values are plotted in two separate graphs and saved once again in
an Excel file, along with their respective frequency values, using the
'"write to measurement file" block.

67

Frequency Sweep

4.2 Frequency sweep front panel

The resulting graphical user interface is showed in Figure 4.2.

FREQUENCY SWEEP TEST

Filename
testxlsx =3 Manual Impedance Range

A Initial Frequency (Hz) Enable Auto Range (T:Enable)
100 3 A
1000 (.I
Filename Out - {acamrcment s Final Frequency (Hz) |
. — £ Medium | /e
= [
Signal Type (Voltage or Current) Frequency Step (Hz)
VISA resource name LCR votsge 0 1000
1
i B Signal Level (1.0V)
Function I ;
HcpD 0 i START
NUMBER OF SWEEP
do
Primary Parameter vs Frequency Plot0 A Secondary Parameter vs Frequency pioto g

700

ndary Parameter

Primary Parameter

Seco

? 0 0 0 D g ! ! !) d
0 200000 400000 G0ODOD B0C000 1E+6 1,2E+6 14E+6 16E+6 1,866 2E+6
Frequency (Hz) Frequency (Hz)

I o (B u
alnja o x (v || t@Ew® | PESCEE Cursors: (X [% i |
o B8 o HES (-
> Plotd |0 1,136 T
max value T.., s | minvalue
- L E [1 i <

Figure 4.2: Frequency sweep graphical user interface

Once again there is the possibility to chose the name for the excel
file and as for to the stretching setup, the same parameters need to be
specified for the proper functioning of the LCR meter. These include
the Visa resource name, function, impedance range, measurement time,
signal type, and signal level. In addition to these parameters, four more
fields must be filled for the frequency sweep application: the number
of sweeps to be executed, the initial frequency, the final frequency,
and the incremental frequency step in Hertz. Referring to the data
sheet of the Agilent E4980A LCR meter, the frequency range it can
operate within is 20 Hz to 2 MHz. Once these parameters are set,
pressing the "start' button will initiate the frequency sweep on the

68

Frequency Sweep

device connected to its terminals. The results will be graphed in the
two plots provided: "Primary parameter vs Frequency' and "Secondary
parameter vs Frequency," allowing for a visual representation of the
device’s response across different frequencies.

69

Chapter 5

Testing

5.1 Setup evaluation

This chapter, titled "Testing," aims to evaluate the actual performance
of the developed setup. The primary objective is to validate the setup’s
functionality through comprehensive tests and to achieve this, several
key experiments were conducted, focusing on assessing various aspects
of the setup’s operation. To validate the setup, the following approach
was adopted: a standard 330 €2 resistor was connected to the LCR
meter, ensuring that the measured value was known and could serve as a
reference for calibration, additionally, the linear stage was set in motion
without any attached device/electrode, allowing for the evaluation of its
movement and the reception and processing of data through LabVIEW.
In this chapter are presented the results of the most significant tests
conducted, aiming to elucidate the functionality and effectiveness of the
developed setup while also identifying any potential limitations. These
results provide valuable insights into the setup’s performance, guiding
further improvements and optimizations. Through those experiments
and analysis, the goal is to demonstrate the reliability and robustness
of the developed setup, paving the way for its effective utilization
in practical applications. First of all the resolution limit has been
tested, indeed increasing the resolution parameters means that the

70

Testing

space between two consecutive data points is smaller and hence the
correspondent number of step, a reduced number of steps will result
in the motor taking less time to execute them. If the time reduces
it means that the Arduino will send serial data faster and hence the
respective LabVIEW code must catch up to have a correct sampling.
Has already explained the time required by the motor to complete a
certain number of steps is computed a priori in the LabVIEW code,
through the formula node structure (section 3.4.2), before that the
stretching sequence start and given in input to the for loops so that
the timing of the LabVIEW code and the one of the Arduino are the
same, however, the LCR meter poses an additional limit on the speed
at which the system can operate and its maximum speed must be
taken into account. Actually the timing does not depend only on the
number of step but also the acceleration and speed of the motor play a
central role, in any case the scope of these tests is to verify how the
'Resolution" parameter impact on the system performances, hence the
tests are conducted by fixing all the parameters and increasing the
Resolution parameters among the different simulations.

In Table 5.1 are reported the settings used in the next tests.

Signal Frequency [Hz] | 1000
Impedance range Auto
Function R-X
Signal type Voltage
Measurement time | Medium
Signal level [V] 1
Sample Length [mm] 30
Elongation [mm]| 15
Delay [ms] 100
Cycle 10
Acceleration[Step/s?] | 1000
Speed[Step/s| 2000

71

Table 5.1: Setup evaluation, stretching sequence settings

Testing

At first a Resolution = 1 is imposed, this means that only the value
at the resting position (x = 0 mm) and at the final position are recorded
at each cycle. With a resolution = 1, one position/impedance point
every 15 mm is recorded in that case.

Hl i | B o |

- Y

Figure 5.1: Stretching sequence settings, resolution = 1

In Figure 5.2 the recorded data are displayed, obviously since a
standard 330 €2 resistor is connected to the LCR meter the resulting
measurement is an almost fixed value of 329 () that oscillates at the
third decimal digit, assessing however the goodness of the measurement.
For what concern the "Position vs Time" plots the result is consistent
with the expectation since ten different peaks are visible, meaning that
the stage has moved from 0 mm to 15 mm for ten times and only the
initial and the final position at each cycle have been recorded.

72

Testing

Primary Parameter vs time

Primary Parameter

60000
Time (ms)

EER

Positien (mm)

50000
Time (ms)

20000

Plot 0

100000

PlotQ

100000

120000

120000

pioto A

Secondary Paremeter vs time

Secondary Parameter

ors: XY
8 Cursor0
none | 0 320,93
L g 20000 40000 60000 80000 100000 1200001
Time (ms)
HEw |
Arduino time BytesRead Qutput buffer

4792

U

)
Distance between each point (mm)

15

i

@1

Cursors: P |

= 58 Cursor 0
none | 0 0
/]
[RS |

Seconsay Peram Max

-0,00807851

Secongary Param Min

-0,0145692

®]

Cursors:
=B Cursor
nen

<]
|l

Figure 5.2: Stretching sequence plots, resolution = 1

73

Testing

Next the resolution has been increased to 10 , keeping all the other
parameters fixed, in this case one point every 1.5 mm is recorded.

STRETCHING SETUP

LCR SETTINGS ARDUINO SETTINGS STRETCHING SETTINGS
VISA resource name LCR 1SR fpepoe papep fir. Define Sample Length and Elongation in mm
BiNsTR =l Hpsiusans® < Select a Resoluion , possible values : 10, 50, 100. Sample Length (mm) Elongation(mm) Resolution Delay (m3) Cycle
Set a Delay between each strefching phase in ms. = 1" & 1 & 1 & W= 1

el e timeout (10sec) baud rate (9600) S 30 S s S 0 Ao B2
S‘z;‘ LE=5 oo | oo | Type R command in the correspondent section. EEn) - G Enmn) Sy Emem)
7 Enable Auto Range

Manus! Impedance Range [ot ofefotmorey Deafult number of steps per revolution : 800, correspondent
4 Enzble None 10.0,0025 mm
g 10 3 E. o 2 Acceleration Steps/s2 Speed Steps/s
: stop bits (10: T bit) Pk > s 2
Function (5 Cp-D) o 5[1o 3200
e @ o | (Elnzm) (Elzm]
arity (0:none).
Signal Type (0:Voltage) Z‘ tme R R
HVoltage o d Type athe name ofthe excel e inthe section Filename"to save the acquired fumberoF Py [Patssponer Stsin [~ MewiAflojed e
; dta bits (2) datafor furher anlysis 5000 05 10000
R e Lo P P |
 Medium 1 o Fiename
Averaging Factor (1) s | e res3tonm resToi | Command S Sttswetcning ssquence
9 Wi ® B swor [Started
Signallevel (10V) || source Filerang Q2] T T T T 1] L
& s B udelfnenstat-
Read in "

Figure 5.3: Stretching sequence settings, resolution = 10

Again the results are correct and, as can been seen from the "Position
vs Time' graph in Figure 5.4, ten points each half cycle are sampled
and displayed.

prmay Pt time Poco A Lol Al P
prys . . i =

3299%
3299351 T

pimary Paramtin

320,935 LRREE Y s aa oo

329934

‘Secondayparamax

000957221

‘Seconsany Paamin

[-0,0163003

1 32004
E
£ 329033
g
LR .

329922

- EEEEEEE ; ®1 @1

" Gurors
329,931 Cursor 0 | —Hﬂmst
Plot0 0 non
201 : i -] 7|
S IJJ J
maw | @ |
8 AR Petd B8 | sunoume o]

]T\ [0 1f{oc000

Position (mm)

20000 30000 40000 SO0D 60000 70000 .

mmmmmmm

Figure 5.4: Stretching sequence plots, resolution = 10

Further increasing the resolution to 50, correspondent to 0.3 mm
of distance between each point, what is possible to notice from the

74

Testing

position vs time graph in Figure 5.5 is that some unwanted zeroes, 4 in
each cycle, are present. Those points results from a misalignment in the
serial communication between LabVIEW and Arduino. They start to
occur when pushing the performance of the system, in particular when
the resolution start to be high in respect the total distance covered by
the stage. However they does not affect the quality of the measurement
in the sense that through post analysis of the data saved in the excel
file can be easily eliminated

it Pattetu it poto N Secondary Parameter vs time Poto A
Sscnss Pt
[-o00rezra]
Pt
-0,01547
29922
329,02, SRR
29991 @
320,091 AR P
e = B8 Cursor
RESEEN] — — " " 1 4 ol
25000 SO0 7000 100000 125000 150000
125000 150000, . |
HEw |
Postion vstime Piot0 B | yinotime BytesResd Output buffer
o7 | [o]
Distance between each point (mm)
(o5 |
3
£
R S Cursors: x B
Time (ms)
el |

Figure 5.5: Stretching sequence plots, resolution = 50

The problem is even more clear doubling the resolution to 100,
correspondent to one point every 0.15 mm. In this case, besides the
zeros, sampling errors cause the number to be sampled halfway through
transmission, resulting in an incorrect value on the LabVIEW graph.

As can be seen in Position vs time plot in Figure 5.6, in the second
cycle there is a "random" not aligned point whose value on the y-axis
is 1.2 mm. Analyzing the collected data in the correspondent file is
clear that the correct value should be 12 mm but due to an incorrect
sampling the result is 1.2 mm.

75

= =
oo
00151 -
D D g WH—= D D d '@
om0 500 2000 o0) =
T e —) Ll
Eaw | H@o) |
T — pioto IR
Arduino time BytesRead Output buffer
422 L 0
Distance between each point (mm)
os |
£
E
Cursors: x I
50 20000 -

e |

Figure 5.6: Stretching sequence plots, resolution = 100

As previously mentioned, a crucial requirement for the system to
function properly is that the data sampling in LabVIEW by both the
LCR meter and the Arduino occurs simultaneously, ensuring that the
position and impedance data correspond to each other. The bottleneck
lies in the for loop containing the "read" block of the LCR meter,
as the execution time of an iteration of the loop cannot fall below a
certain threshold. On the other hand, the execution time of the for
loop containing the visa read block related to the Arduino can vary
significantly.

Previously, the only parameter varied was the resolution, but as
mentioned earlier, other factors contribute to the execution speed,
primarily acceleration, as well as the total distance the stage must
travel. Increasing the acceleration or decreasing the overall distance
reduces both the time taken by the motor to cover the desired number of
steps and the time taken by the respective for loops to be executed (as
they are correlated by the "timing (ms)" variable within the LabVIEW
code). Below, some illustrative examples will be presented to clarify

76

Testing

this concept further.

In this first example the same parameters given in the tab were
used with a resolution of 50 and an acceleration of 10000 steps/s?, the
distance between each point is equal to 0.3 mm with these settings.

B Baaioie et Pioto I ol i pioto B
Sl

f -0,00789031

Seconsany Paamin

(-0,0178175

-0015- [=2 = - 5

0016+
Cursors: |
=38 Cursor

0017

FRRREER | -0013-}
40000 50000 o

oo wow e ko
Time (ms) JIJ

e |
Positon v time pioto N

Arduino time BytesReed Output bufer

s X Y
Plot0 | 2732,88907 24
1]

T i 0 i [Plot0 | 29280054 2.7
40bo0 0000 F!
Time (ms) L=

Figure 5.7: Stretching sequence plots, resolution = 50, acceleration
= 10000 step/s*

The Arduino time indicator and the LCR time indicator show the
same time, 195 ms, meaning that the LCR meter still catch up with
the Arduino and there is a correspondence one to one between the two
types of data. Nevertheless some more errors appears in the Position
vs Time plot (Figure 5.7).

In Figure 5.8 below the same test is repeated but increasing the
resolution to 100. In that case a small difference begins to arise between
the two timings since the Arduino time is equal to 133 ms while the
LCR time is 138 ms , with a displacement of 5 ms and a gap between
points of 0.15 mm.

This is due to the dual increase in acceleration and resolution, where
the former becomes ten times larger than in the initial tests, while the

77

o ek oo
=rr .
— {
=
) -0,0170823
- (Exa)
329,936
4 035
o L Cursors:
0,017 rsgcmst
-0,012- n | |
J j N
e |
Arduino time BytesReed Output buffer
B [o]
Distance between each point (mm)
[0,15
E
E
Cursors: b3 B
oy et d
-
@ |

Figure 5.8: Stretching sequence plots, resolution = 100, acceleration
= 10000 step/s*

resolution doubles compared to the previous case. In this scenario, the
correspondence between the points is lost.

In conclusion, returning to the initial setup and the settings outlined
in the table, further tests were conducted with a significantly smaller
distance traveled, hence the "elongation" parameter, placing ourselves
in a limiting case once again to understand how the distance traveled
by the stage affects the speed and thus the functioning of the system.

In the next three test reported the elongation settled is equal to 1
mm, keeping all the other parameter unchanged in respect to the table,
the resolution has been made vary again. In Figure 5.9 is showed the
test with a resolution equal to 1, even though the travelled distance is
small the motor take 1178 ms to complete it. This can be addressed to
the fact that 1 mm, since one step is equal to 0.0025 mm, correspond
to

Imm

SEPS = 4 002mmm — (5:1)

78

Testing

which is however a reasonable number, also taking into account that
the acceleration and the speed are kept to 1000 steps/s* and 2000
steps/s, which gives a smooth speed profile to the motor but must
be considered as not excessively large values, especially considering
that, after some experimental tests, the motor also moves with an
acceleration of 40000 steps/s?. In any case the correspondence between

Primary Parameter vs fime piot0 S

J ERE

Time (ms)

@ |

:
HIEREEREIERR S]
T]
WA
IRRRARARSRATIRANN
P i
PO
[RH EIRIRTH RIS SRR
R R VIR | A &
.- | R R |
SR ANERE RN T~ —
RS 5 IS R O = —

07 T v v i T O v i
0 500 10000 15000 20000 25000 30000 35000 40000

)
Time (ms) e |

Bl |

Figure 5.9: Stretching sequence plots, resolution = 1, elongation = 1
mm

LCR time and Arduino time is still standing meaning that the system
is working properly.

By significantly increasing the resolution to 50 and keeping the
elongation = 1 mm the distance between each point is 0.02 mm. At
this point the LCR, whose timing is 138 ms, did not catch up anymore
with the Arduino, whose timing is 135 ms, hence the correspondence
between recorded data is lost (Figure 5.10).

Further increasing the resolution to 100 the distance between points
becomes even smaller and equal to 0.01 mm and the difference between
the Arduino and the LCR meter timing more evident. Indeed while

79

= 329931

320931 R
32993

32093 SRR

329,920
329,920
320928-) i 00165~

0 0

Ea | s |
Fosdonsete e et

()

e |

Figure 5.10: Stretching sequence plots, resolution = 50, elongation
= lmm

the LCR time remains constant, 139 ms actually so 1 ms more than
the previous test, the Arduino time drops to 29 ms (Figure 5.11).

In conclusion, after several test in which different combinations of
parameters has been tested, what has been noticed is that the lower limit
of the LCR for loop and hence the LCR time oscillates between 137 and
139 ms while the Arduino time can swipe over a wider range of values.
To ensure the system operates correctly, it’s advisable that when dealing
with extreme cases, such as when the distance traveled is particularly
small, some relaxation of the specifications on other parameters is
pursued. This may involve sacrificing a bit of performance (perhaps
acquiring fewer data points, making the measurement less precise), but
it ensures the validity and accuracy of the measurement.

80

Testing

Primary Parameter vs time

EELER coso @ommamomm o

Primary Parameter

2500 5000

el |

Position vs fime.

15

7500 10000 12500 15000
Time (ms)

7500 15000
Time (ms)

Secondary Parameter us time

nsnans
5]
139 |

2
5
g

Plat0 0
7}
e |
HEwl |
Arduino time BytesRead — Output buffer

(o)

Distance between each paint (mm)

001

21

Cursors: x =

7300
Time (ms)

10000

pioto M

12500 15000

Seconday ParamMar

-0,00657069

Secondary Param i

-0,0168552

1

Cursors: |
=B Cursor

S|

Figure 5.11: Stretching sequence plots, resolution = 100, elongation

= lmm

81

Testing

5.2 Frequency sweep test

Lastly also the frequency sweep LabVIEW code has been tested, a
couple of example are here reported.

In this simulation the same 330 €2 resistor has been connected to the
LCR meter E4980A, the simulation setting are showed in Table 5.2.

Signal Frequency [Hz| | 1000

Impedance range Auto
Function R-X
Signal type Voltage
Measurement time Long
Signal level [V] 1
Number of sweep 4

Initial Frequency [Hz] | 100
Final Frequency [Hz| | 200000
Frequency Step [Hz| | 10000

Table 5.2: Frequency sweep, test 1 settings

As expected the measured values are basically constant over a wide
range of frequency and oscillates from 329.686 €2 to 330.585 €2 (Fig-
ure 5.12).

In Figure 5.13 is showed a zoom on the primary parameter vs frequency
plot to highlight the number of sweep implemented , correspondent to
4. Indeed 4 resistance values are gained at the same frequency value on
the x axis.

In conclusion one last example of a sweep with a smaller frequency step
of 1000 Hz over the same frequency range is reported, test parameter
in Table 5.3.

The sweep as been made just for one time, the points measured are
closed due to the smaller step so the resolution is higher and the
measured resistance value oscillates between 329.666 and 330.678 €2

(Figure 5.14).

82

Testing

FREQUENCY SWEEP TEST

Filename

= Manual Impedance Range

sweepf_330ohmres 2xlsc Initial Frequency (1000 Hz) g
b . [C— | Enable Auto Range (T:Enable)
100 (7

Measurement Time (1: Medium) Final Frequency (1000 Hz)

Filename Out L)W 5 1
3 \Mudelft.net\ £J{200000

Signal Type (0: Voltage) Frequency Step (1000 Hz)

VISA resource name LCR flveitage 0 ol 10000
R MY46624553:INSTR =l Signal Level (10V)

Function (0: Cp-D) o
, START
Hrx 16

i Averaging Factor (1)
NUMBER OF SWEEP G

.

Primary Parameter vs Frequency Ploto A Secondary Parametervs Frequency

Frequency (Hz) Frequency (Hz)

Cursors: X v | #Ee | PEIZIRR Cursors: x iy -] B ol |
[-0.0166564]
E e 1
] — _n, 26 | —]

Figure 5.12: Frequency sweep test of a standard 330 €2 resistor,
number of sweep = 4, frequency range = [100 Hz - 2 MHz|, frequency
step = 10000 Hz.

Primary Parameter vs Frequency Plot0 'S J

329,703 -

I 1 1 1 1 1 1
60087,1 60090 60100 60105 60110 60115 60

Frequency (Hz)

1
60095

Figure 5.13: Frequency sweep zoom

83

Testing

Signal Frequency [Hz] | 1000
Impedance range Auto
Function R-X
Signal type Voltage
Measurement time | Medium
Signal level [V] 1
Number of sweep 4
Initial Frequency [Hz| | 100
Final Frequency [Hz] | 200000
Frequency Step [Hz| 1000

Table 5.3: Frequency sweep, test 2 settings

FREQUENCY SWEEP TEST
Filename:
Fsweep_res330ohmaxlsc = il Initial Frequency ?
li R s Enable Auto Range (T:Enable)
G o ‘
Measurement Time v
Filename Out),—M d 1 g
g Medium £4200000
% \tudelftnet ¥
. Signal Type (Voltage or Current) ey St
VISA resource name LCR HVoltage 0 1000
6 MVAG624663:INSTR = Signal Level (1.0V) .
Function f; 1
T ©» START
NUMBER OF SWEEP
2!
Primary Parameter vs Frequency Plot0 Secandary Parameter vs Frequency poco R

120000 140000 160000 180000 200000 "0 20000 40000 000D 20000 100000 120000 140000 10000 180000 300000

0 20000 40000 60000 80000 1

Frequency (Hz) Frequency (Hz)
min value 3 ¥ maxvalue | B el |
" o Cursors: X iy = el ikl SN Cursors: [|
S 3 ! =
el Plot0 | 1000 329,937 1 el Plot0 | 1000 'D,DCJ
- Tt r
Boon e E—

Figure 5.14: Frequency sweep test of a standard 330 €2 resistor,
number of sweep = 4, frequency range = [100 Hz - 2 MHz|, frequency
step = 1000 Hz.

84

Chapter 6

PDMS-Au electrodes

The idea of fabricating flexible electrodes to test their actual stretchabil-
ity, taking the first steps towards the characterization of an extensible
component, arises from a dual need. Firstly, the desire to use the
produced setup in a real-use case, by testing an actually flexible and
stretchable component, unlike what was done in Chapter 5, where a
standard resistor was used to evaluate the setup’s performance. This is
undoubtedly useful to understand the real problems involved in this
type of measurements, starting from the mechanical resistance of the
electrode, which must be mounted on the stage, through the difficulty of
actually detecting the electrical parameters of interest of a device whose
equivalent electrical circuit is not known a priori. In this perspective,
the decision was to attempt to fabricate and subsequently characterize
electrodes composed of a PDMS substrate on the surface of which
a layer of gold was deposited to act as a conductor. These types of
electrodes do not fall into the category of biodegradable electrodes, the
ultimate application for which the setup is intended to be used, but
they are nevertheless a challenging test to investigate and better under-
stand the dynamics and issues mentioned above. The choice of using
these materials, PDMS and gold, was dictated by practical reasons,
namely the ability to use more standard methodologies in fabrication,
such as those required in PDMS fabrication or gold evaporation [20]

85

PDMS-Au electrodes

[21], compared to other types of electrodes such as those composed of
iron nanowires, whose fabrication process is undoubtedly more difficult.
Additionally, a wider range of reference materials in the literature with
which to compare the obtained results certainly led to the choice of this
type of electrode. The second reason for the realization of these devices
is closely related to what has just been said. In fact, as anticipated in
the introductory chapter, the aim of the project was to use the setup
to provide an initial characterization of biodegradable electrodes com-
posed of Fe-NW deposited on a POMAC substrate.Hence, a comparison
between the latter and the PDMS-Au electrodes, a more widely-used
technology, can prove useful in the purpose of this thesis. In this chapter
the procedure followed to fabricate the electrodes will be described and
the methodology used to prepare them for the testing setup explained,
lastly the results achieved will be showed.

6.1 Manufacture process

In Figure 6.1, the main fabrication steps involved in the production of
the electrodes are shown.

Si Overnight Salinization

. [stane (oveng |

2- si m - (PDMS pouring)
Shadow Mask

3 si m - - (Patterned deposition)
Shadow Mask

4 Si m - cr Au (Patterned deposition)

Figure 6.1: PDMS-Au electrodes fabrication process

86

PDMS-Au electrodes

These can be summarized into 4 major steps: firstly a 10 cm wafer
has been placed in a petri dish acting as an holder and a preliminary
overnight silanization step has been executed. The idea was just to
pour the PDMS on top of the wafer inside the petri dish so this step
was necessary to easily remove the PDMS from the wafer after the
casting. Subsequently, the PDMS itself is fabricated and poured onto
the wafer inside a petri dish to obtain a thin substrate. Then, using a
specific mask, chromium (Cr) is deposited onto the PDMS, and finally,
the gold layer is deposited via sputtering.

87

PDMS-Au electrodes

6.1.1 PDMS fabrication

PDMS (Polydimethylsiloxane) is a silicone elastomeric polymer widely
used in various industrial and scientific applications, including biomedi-
cal ones. It is known for its properties of transparency, biocompatibility,
temperature resistance, it can be molded into complex shapes to be used
in a wide range of applications and it is often used for manufacturing
flexible shells or membranes due to its ability to conform to various
surfaces and its high tensile strength [22], [23]. Overall, in the scope of
this project, the most interesting feature of that the PDMS exhibits
is its hyperelastic characteristics, meaning it can endure significant
deformations without breaking, that makes the PDMS perfectly suited
to act as a substrate for stretchable electrodes. The PDMS properties
are listed in Table 6.1 for comprehensive coverage.

Index of refraction 14
Thermal conductivity (W /m - K | 0.2-0.27
Dielectric strength (kV / mm) 19
Dielectric constant 2.3-2.8
Electrical conductivity (ohm -m) | 4 x 103
Young’s modulus [kPa] 360-870
Poisson ratio 0,5
Tensile strength (MPa) 2.24-6.7
Viscosity (Pa - s) 3.5
Melting point (C) -49.9 to -40

Table 6.1: PDMS properties

To prepare the PDMS the curing agent and the base have been
mixed with a standard ratio 10:1, after the mixing the PDMS is poured
into the petri dish were the silanized wafer is located. Now the wafer
is completely covered by the liquid PDMS and the next step require
to put the wafer in the vacuum desiccator. The Wafer remains in the
vacuum desiccator to be degassed for 2 hours in order to completely
remove all the bubbles and given strength to the compounds. The last
step is about curing : the wafer with the

88

PDMS-Au electrodes

Figure 6.2: Wafer kept in vacuum desiccator for 2 hours

PDMS layer on top is placed in the oven for other 2 hours at 80°.
The curing is essential to bring the PDMS from the liquid state to
the solid elastomeric state in which the PDMS exhibits the desired
elesticity and mechanical strength.

89

PDMS-Au electrodes

6.1.2 Mask creation and metal sputtering

Based on various articles and previous works found in the literature,
aiming to have electrodes with the main characteristic of being stretch-
able, it was decided to give the deposited gold a serpentine shape. This
was done to increase the chances of the thin gold layer not breaking
during stretching, thus enhancing the resistance during strain. For
example in [24] "the tensile and conformal properties of three different
interconnection structures (mesh, arc, serpentine)’ are investigated,
stating that the serpentine shapes have the best stretchability, while
in [25] a stretchable strain sensor with an Au metal electrode with a
serpentine shape is proposed. To give to the electrode a serpentine
shape a mask has been designed using Autocad. To optimize time, it
was decided to create a single mask with the dimensions of the wafer.
On this mask, two different shapes were designed: one corresponding
to a resistor and one corresponding to a capacitor. Additionally, for
each type, two versions were made, one slightly smaller than the other,
to check for potential differences during characterization.

Figure 6.3: Mask design in Autocad

90

PDMS-Au electrodes

In Figure 6.3 a screenshot from the Autocad file is taken, basically
for different structure can be recognized :

1. Resistor big : width of the trace 0.5 mm, total length 30 mm |,
distance between pads 22 mm.

2. Resistor small : width of the trace 0.2 mm, total length 30 mm |,
distance between pads 22 mm.

3. Capacitor big : width of the trace 0.5 mm, total length 28 mm |,
distance between pads 20 mm, distance between plates 1.5 mm

4. Capacitor big : width of the trace 0.5 mm, total length 28 mm |,
distance between pads 19 mm, distance between plates 0.5 mm

Next, the mask was fabricated using laser cutting on a Kapton sheet.
Kapton is commonly used as a masking material, it is a polyimide
film known for its high temperature resistance, chemical inertness, and
excellent electrical insulation properties.

Also the Kapton film was chosen for its adhesive properties, ensuring
good adhesion to the PDMS surface and preventing the penetration of
other materials or the sputtered gold underneath.

91

PDMS-Au electrodes

Figure 6.4: Developed kapton mask after laser cutting

92

PDMS-Au electrodes

In Figure 6.4 the Kapton mask is showed and after the gold sputtering
the final result can be seen in Figure 6.5.

1

oy

7 .

=

AP M
. -
N AN 3
" i R
L
% NS
TR s
iy e <. WA
‘
AN
1
A

= ﬁ‘
ar

~
s

¥ -f"\\

N\

“’J:"- A f S
Wt/ s G

% pr LB, - OREAEET Y
S ~; “} ﬁ‘\"!%:_."_ R A -‘% w) 7 74 Y

; AR o = A A 4 Sl 2 o

NN\ S =~y

Figure 6.5: Developed PDMS-Au electrodes

6.1.3 Electrodes preparation to the setup

Once the electrodes were obtained, they needed to be prepared for
mounting on the setup in order to measure their electrical properties
at rest and under varying elongation. While this may seem like a
secondary issue, it is actually quite complex and of crucial importance
to ensure good and consistent results as well as reliable measurements.
Especially in contexts like this, where the device under test is very
fragile (the gold serpentine is only 100 nm thick) and delicate, the
variations in the parameters to be measured can be very small and the
testing setup itself applies further external forces that can compromise

93

PDMS-Au electrodes

the measurement and the integrity of the sample, various precautions
need to be taken, and the device must be somehow ’adapted’ to the
measurement context. Precisely, when the electrode is clamped on the
stage, one side to the fixed part and the other one to the movable part,
the two metal bars used the fix it exert some transversal forces on the
electrode. This may cause the electrode to bend even before stretching
begins or lead to damage to the underlying parts beneath the two bars.
To face do this problem and give strength to the electrodes the same
type of approach adopted in [26] has been followed. In this paper the
FeNW and carbon nanotubes compound is encapsulated in a double
PDMS layer and two copper foil at the ends are used as contacts for
the measurement. In this work the same PDMS encapsulation has been
replicated but differently two iron wires have been used instead of the
copper foil as contacts for the LCR meter.

The procedure is here summarized :

1. The PDMS layer is peeled of from the wafer and each electrode is
cut and separated to be placed in another petri dish

2. The iron wires are brought into contact with the electrode pads

3. To enhance the conductivity between pads and wire some droplets
of conductive silver paste have been poured on the point of contact

4. Once the silver paste has dried, to improve the mechanical strength
of the contact point between the two metal, which is the most
fragile point of the structure , some droplets of silicone have been
poured to cover the pads surface and the portion of wire that
overlaps.

5. When also the silicone paste has dried the samples are cured for
1.5 hours in the oven at 80°C

6. Now the encapsulation PDMS layer is poured on the petri dish
that contains the electrodes in order to cover everything with a

94

PDMS-Au electrodes

Figure 6.6: Electrodes with silver paste and silicon layers in the pads
position while drying,.

strong protective layer, keeping attention to leave some portion of
the wire outside the PDMS.

The final result is showed in Figure 6.7, each electrodes is covered
by a thicker PDMS layer that offer protection to the structure.

6.2 Results and Discussion

In this paragraph, the tests conducted on the developed electrodes are
summarized and the obtained results are discussed. Firstly, it should
be noted that not all the produced samples yielded successful results;
in fact, several electrodes ended up to be not conductive. This is
likely attributed to issues during the electrode construction phase and

95

PDMS-Au electrodes

Figure 6.7: Electrodes after that the second PDMS encapsulation
layer has been poured

preparation for the setup. As mentioned earlier, especially the latter
step is crucial and undoubtedly requires further refinement to achieve
more satisfactory outcomes. Furthermore, to ensure consistent and
reliable results, a larger number of samples need to be tested, which, due
to time constraints, was not feasible within this project. Therefore, the
following discussion should be viewed as a foundation for future research
concerning the fabrication and characterization of flexible electronics.

96

PDMS-Au electrodes

Before starting some preliminary considerations about the electrical
model that approximates the electrodes electrical behaviour themselves
has been made in order to understand which kind of measurements has
to be done with the LCR. Looking again in the literature some interest
insight can be taken, in [27] a flexible dry electrode is proposed and the
proposed equivalent circuit to approximate the device is composed by
a resistor and a stray capacitor in parallel. Also in [28] the proposed
electrode is approximated with the same scheme. Starting from these
basis some further considerations have been made on the developed
electrodes. Indeed considering the serpentine shape a simple model
composed by just a resistor and a capacitor cannot be satisfactory:.
To take into account the shape of the electrode a stray inductance in
parallel to the circuit is considered. This inductance is due to the wavy
shape of the gold serpentine, and its contribution can vary depending
on the frequency at which the electrode operates.

R L C

Figure 6.8: Resistor equivalent circuit model

Hence , in a first attempt, a frequency sweep was performed on the
larger resistor by connecting the two wires at the ends of the electrode
to the terminals of the LCR meter and running the corresponding
LabVIEW program.

The same test has been executed on three different serpentine-shaped
resistors, the frequency has been swept from 1 kHz to 2 MHz at step of
10 kHz applying 1 V signal to the DU'Ts.

Both resistors show the same behaviour among the frequency range.
They start from the same range of values [90-110 2] and remain more

97

PDMS-Au electrodes

Frequency sweep , Resistance vs Frequency

160 |
140 |

120
| Resistor 1

Ohmy)

100

i\—_ Resistor 2
——

80 i Resistor 3

Resistance (

60
40

20 |

Frequency (Hz)

Figure 6.9: PDMS-Au resistors frequency sweep, resistance evalua-
tion

or less constant till 60 kHz were all of them start to slightly increase
till a maximum value reached at 1.6 MHz. After that the resistance
suddenly drop to restore to the original value around 2 MHz.
Next, to further investigate the behaviour of the sample in respect
to different frequencies, other sweeps have been made to measure the
change of the stray component and which is their contribution.
In Figure 6.10 are showed three different graphs, the blue and the
black one represent the trend of the reactance of the resistor 1 and 3
respectively. The orange plot instead is the contribution of the series
stray inductance to the Resistor 2.
The trend of the two reactance show that the parasitic component is
initially positive and then drop very rapidly to negative values around
1.3 MHz , reaching a maximum value of 130 €.
The orange line representing the series stray inductance remains con-
stant to 1 pH among all the frequency range confirming that the
theoretical model was correct.
The blue and black plots are significant as they provide insights into

98

PDMS-Au electrodes

the nature of the parasitic component and its absolute value. Indeed,

Stray Inductance vs Frequency

5 -0,000001

Inductance (H)

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000
Frequency (Hz)

~——— Resistor 3 parallel stray inductance Resistor 2 series stray inductance —— Resistor 3 parallel stray inductance

Figure 6.10: PDMS-Au resistors frequency sweep, reactance evalua-
tion

with the reactance being positive between 1 kHz and 1.3 MHz, it
should be considered an inductance. However, at frequencies above 1.3
MHz, the capacitive component predominates, as the reactance values
become negative.
Finally, the stretchability of the same 3 electrodes was tested using
the stretching setup. Each electrode was elongated starting from a
strain of 5%, gradually increasing to reach a 40% strain. The change
in resistance relative to the applied strain was measured and plotted in
Figure 6.11 for each of the three resistors. The trend observed for each
of the three samples analyzed aligns with expectations, with resistance
increasing as elongation increases.
Overall, the results obtained are in line with expectations, but it should
be noted that only a small number of devices have been tested, and
testing on a larger scale is necessary to fully consider the results

99

PDMS-Au electrodes

Resistance vs Strain

200 187,242 191,034

180 166,789

159,016
160
145,646
133,369

125,812 Y G 122,31

118,19 —
131,38 g
20 107,024 104,45
99,3731 125,016
100

99,2554

140

ce (Ohm)

Resistan

80
60
40

20

=@ Resistor 3 Resistor 2 Resistor 1

Figure 6.11: PDMS-Au electrodes stretching from 5 to 40 %

reliable. Furthermore, the measured values, although reasonable in
magnitude, need to have the noise and resistance components intro-
duced by the measurement connections subtracted.
As for the electrodes composed of smaller dimension resistances, the
aforementioned issues regarding fabrication, noise, and contact resis-
tance have led to the inability to obtain any significant measurements.
This can be attributed, in particular, to several factors in the fabrica-
tion phase. Firstly, the very small thickness of the serpentine and the
number of folds composing it cause the traces to be almost in contact at
the folding points, greatly increasing the effect of the parasitic inductive
component. Furthermore, the silicone used during the setup preparation
phase to strengthen the contact point between the wire and the pad,
upon drying, caused the thin layer of PDMS serving as the substrate
to contract and bend slightly, inducing the same movement on the gold
serpentine. This resulted in microfractures already present on the gold
even before performing the measurements. The same issues related to
noise and conductivity were encountered with the capacitive electrodes.

100

PDMS-Au electrodes

In fact, by calculating the theoretical capacitance, the expected value
is in the range

oo et 2.3-20-107%-100- 1077
N dPDMS B 1.5-10-3

= 3.0667uF (6.1)

where C is the capacitance of the capacitor, € is the dielectric constant
of the material between the plates, in this case PDMS, 1 is the length
of the electrode, t is the thickness of the electrode and dppysg is the
distance between the two metal traces.
In Figure 6.12, frequency sweeps conducted on three different capacitors
are displayed. Each sweep is repeated four times on each device and
goes from 20 Hz to 2 MHz at each cycle.

Capacitor Frequency Sweep
2,55E-13
2,35E-13
2,15E-13
1,95E-13
1,75E-13

1,55E-13

Capacitance (F)

1,35E-13

1,15€-13

9,50E-14

7,50E-14

.. S0 8223222222022222333322252°222222292222
50550000000 00000000° CO0L00D0DO000S000000

...................... NMFNON0AC—HNMFINORRNO —ANMTF NG N0 NS—HNM FINOR QN0

A A A N A A A e A A A A e

01,
0.
0.
0
0
0.
0.
0
0
0.
0.
0
1
1
1
0
0.
0.
0.
0
0
0.
0.
0
0.
0.
1
1

Frequency (Hz)

e Capacitor 1 Capacitor 2 s Capacitor 4

Figure 6.12: Capacitors Frequency sweep

As it is clearly visible, the range of values in which the measured
capacitance oscillates is on the order of hundreds of femtofarads, sig-
nificantly distant from the expected capacitance. This is likely due

101

PDMS-Au electrodes

to the aforementioned fabrication issues with the electrodes and noise
factors arising from contacts and the setup, which became even more
predominant in the measurement of capacitance.

102

Chapter 7

Conclusion

As previously mentioned at the beginning of this work, this project is
part of a larger one aimed at creating a cardiac patch. Since the project
had just started, there was a need to develop and model each component
from scratch, and this is where my work fits in. The ultimate goal of
my work was to develop a tool for the characterization of biodegradable
electrodes that will be part of the aforementioned cardiac patch. The
objective can be considered achieved as the developed setup allows for
stretching and measurement of the electrical parameters of the DUTs
as the applied strain varies. The setup is highly flexible as it enables
various tests to be performed while varying a multitude of parameters
with good resolution.

That being said, there are still some limitations and areas for improve-
ment in order to achieve even better performance. As shown in Chapter
5, when pushing the system to its limits and measuring data with
very high precision (fraction of a millimeter), some errors occur during
sampling. These errors are not irreversible and do not significantly
affect the measurement overall, but they do affect the visualization
of the data through the LabVIEW interface to some extent. In order
to improve this aspect, a position sensor can be added to the system.
Some attempts have already been made in this regard, but the sensor
used was not precise enough for the purposes of this project.

103

Conclusion

Regarding the developed electrodes, these were not part of any specific
project but were produced based on my proposal. As mentioned earlier,
the purpose of this additional work was to compare the data measured
from non-biodegradable electrodes made of PDMS gold with biodegrad-
able electrodes composed of iron nanowires. Unfortunately, due to
various complications during fabrication, this second objective was not
achieved. However, beyond this, the fabrication and tests conducted
on the gold electrodes were valuable for testing the setup in a real-use
case scenario and for taking the first steps towards the characterization
of flexible electronic components.

104

Bibliography

1]

Manuel Franco, Richard S. Cooper, Usama Bilal, and Valentin
Fuster. «Challenges and Opportunities for Cardiovascular Disease
Prevention». In: The American Journal of Medicine,vol. 124 (2011),
pp. 95-96 (cit. on p. 1).

Xiaoyu Jiang et al. «A Bi-Layer Hydrogel Cardiac Patch Made
of Recombinant Functional Proteins». In: Advanced Materials,
vol.34 (2022), pp. 1-2 (cit. on p. 1).

Ron Feiner, Leeya Engel, Sharon Fleischer, Maayan Malki, Idan
Gal, Assaf Shapira, Yosi Shacham-Diamand, and Tal Dvir. «Engi-
neered hybrid cardiac patches with multifunctional electronics for
online monitoring and regulation of tissue function». In: Europe

PMC Funders Group Author Manuscript, vol.15 (Sept. 2022),
pp. 1-6 (cit. on p. 2).

Jia Liua et al. «Intrinsically stretchable electrode array enabled in

vivo electrophysiological mapping of atrial fibrillation at cellular
resolutiony. In: PNAS, 117 (May 2020), pp. 14769-14772 (cit. on

p. 2).
Yuhao Liu, Matt Pharr, and Giovanni Antonio Salvatore. «Lab-
on-Skin: A Review of Flexible and Stretchable Electronics for

Wearable Health Monitoring». In: ACS Nano 2017, vol. 11 (Sept.
2017), pp. 9614-9619 (cit. on p. 5).

105

BIBLIOGRAPHY

[10]

[11]

[12]

Xin Tang, Yichun He, and Jia Liu. «Soft bioelectronics for cardiac
interfaces». In: Biophysics Rev. 3 (Jan. 2022), pp. 3, 7 (cit. on
p. 6).

Hanjun Ryu et al. «Materials and Design Approaches for a Fully
Bioresorbable, Electrically Conductive and Mechanically Compli-

ant Cardiac Patch Technology». In: Advanced Science, vol. 10
(Oct. 2023), p. 10 (cit. on p. 7).

John A. Rogers, Takao Someya, and Yonggang Huang. « Materials
and Mechanics for Stretchable Electronics». In: Science, vol.327
(Oct. 2014), pp. 1605-1606 (cit. on p. 7).

Wei Yuan, Xinzhou Wu, Weibing Gu, Jian Lin, and Zheng Cui.
«Printed stretchable circuit on soft elastic substrate for wearable
application». In: Journal of Semiconductors,vol.39 (Jan. 2018),
pp. 1-5 (cit. on p. 8).

Nitin Kumar Singh, Kazuto Takashima, and Shyam S. Pandey.
«Fabrication, characterization and modelling of the fabric electrode-
based highly stretchable capacitive strain sensor». In: Materials
Today Communications, vol.32 (July 2022), p. 2 (cit. on p. 8).

Amer Abdulmahdi Chlaihawia, Binu Baby Narakathua, Sepehr
Emamiana, Bradley J. Bazuina, and Massood Z. Atashbara. «De-

velopment of printed and flexible dry ECG electrodes». In: Sensing
and Bio-Sensing Research, vol.20 (May 2018), p. 3 (cit. on p. 8).

F.J. Jimenez Romero, Jose R. Gonzalez-Jimenez, Felix Garcia-
Torres, Alvaro Caballero, and F.R. Lara Rayai. «A novel testing
equipment based on Arduino and LabVIEW for electrochemical
performance studies on experimental cells: Evaluation in lithium-
sulfur technology». In: Measurement, vol.224 (Nov. 2024), pp. 2-3
(cit. on p. 8).

106

BIBLIOGRAPHY

[13]

14

[15]
[16]

[17]

18]
[19]

[20]

[21]

[22]

Vishal Nayyar, K. Ravi-Chandar, and Rui Huang. «Stretch-induced
stress patterns and wrinkles in hyperelastic thin sheets». In: In-
ternational Journal of Solids and Structures, vol. 48 (Sept. 2011),
p. 3472 (cit. on p. 10).

eTrack SERIES LINEAR STAGFEdata sheet. Newmark system
inc. (cit. on p. 15).

Stepper motor driver TB6600 data sheet. Sorotec (cit. on p. 17).

Agilent E4/980A Precision LCR Meter data sheet. Agilent tech-
nologies (cit. on p. 25).

Mike McCauley. Stepper motor library. 2024. URL: https://w
ww.arduino.cc/reference/en/libraries/accelstepper/
(cit. on p. 29).

David Austin. «Generate stepper-motor speed profiles in real
time». In: EE Times-India (Jan. 2005), pp. 1-3 (cit. on p. 30).

LabVIEWTM Real-Time 1 Course Manual data sheet. Austin,
Texas: National Instruments (cit. on p. 57).

Namsun Chou, Soonki Yoo, and Sohee Kim. « FABRICATION OF
STRETCHABLE AND FLEXIBLE ELECTRODES BASED ON
PDMS SUBSTRATE». In: MEMS 2012 (Feb. 2012), pp. 247-248
(cit. on p. 85).

Florian Fallegger, Alix Trouillet, Florent-Valéry Coen, Giuseppe
Schiavone, and Stéphanie P. Lacour. «A low-profile electromechan-

ical packaging system for softto-flexible bioelectronic interfaces».
In: APL Bioeng., vol. 7 (Aug. 2023), p. 2 (cit. on p. 86).

Ines Miranda, Andrews Souza, Paulo Sousa, Joao Ribeiro, Elisa-
bete M. S. Castanheira, Rui Lima, and Graca Minas. «Properties
and Applications of PDMS for Biomedical Engineering: A Re-
view». In: Journal of Functional Biomaterials, vol. 13 (Dec. 2021),
pp. 24 (cit. on p. 88).

107

https://www.arduino.cc/reference/en/libraries/accelstepper/
https://www.arduino.cc/reference/en/libraries/accelstepper/

BIBLIOGRAPHY

[23]

24

[25]

[26]

27

28]

Flaminio C. P. Sales, Ronaldo M. Ariati, Veronica T. Noronha,
and Joao E. Ribeiro. « Mechanical Characterization of PDMS with

Different Mixing Ratios». In: Procedia Structural Integrity, vol.
37 (2022), p. 384 (cit. on p. 88).

Hao Zhang, Tingting Zhao, and Lunchao Zhong. «Design and
fabrication of electrode array on curved surfaces for wearable

electronicsy. In: 2023 International Conference on Applied Physics
and Computing (ICAPC) (2023), pp. 559-561 (cit. on p. 90).

Dhayalan Shakthivel, Nitheesh M. Nair, and Ravinder Dahiya.
«Nanowires-Based Stretchable Strain Sensor for Wearable Appli-
cations». In: IEEE Sensor Council, vol. 7| NO. 6 (June 2023),
p. 2 (cit. on p. 90).

Rui Li, Xin Gou, Chul Hee Lee, Haibo Ruan, Xiaojie Wang,
Zhihao Zhou, Xin Huang, Zhongbang Liu, and Ping-an Yang. «Fe
NWs/CNT/PUS composite constructed rigid-flexible coupling 3D
porous structure with highly linear response and large strain for

strain sensory». In: Sensors Actuators: A. Physical vol. 353 (Sept.
2023), p. 2 (cit. on p. 94).

Long-Fei Wang, Jing-Quan Liu, Bin Yang, and Chun-Sheng Yang.
«PDMS-Based Low Cost Flexible Dry Electrode for Long-Term
EEG Measurementy. In: (Sept. 2012), p. 2900 (cit. on p. 97).

Chin-Teng Lin, Lun-De Liao, Yu-Hang Liu, and Bor-Shyh Lin
[-Jan Wang. «Novel Dry Polymer Foam Electrodes for Long-Term
EEG Measurementy. In: IEEE TRANSACTIONS ON BIOMED-
ICAL ENGINEERING, VOL. 58, NO. 5 (May 2011), p. 1202
(cit. on p. 97).

108

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Literature Review
	Stretching Setup
	General Overview
	Components
	Linear Stage
	Motor Driver TB6600
	Arduino UNO
	LCR Meter

	Algorithm
	Stepper Motor Speed Profile

	Labview Code implementation
	STEP 1 : Connection aperture
	STEP 2 : parameters setting
	STEP 3 : parameters concatenation and sequence start
	Arduino code Implementation
	STEP 4 : Data recording
	STEP 5 : Plot and save the data
	STEP 6 : Close the connection
	GUI : graphical user interface

	Frequency Sweep
	Frequency sweep block diagram
	Frequency sweep front panel

	Testing
	Setup evaluation
	Frequency sweep test

	PDMS-Au electrodes
	Manufacture process
	PDMS fabrication
	Mask creation and metal sputtering
	Electrodes preparation to the setup

	Results and Discussion

	Conclusion
	Bibliography

