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Summary

Air pollution is one of the most pressing problems of our time, causing serious
issues for human health and the environment. It is a key factor in the development
of respiratory ailments, ranging from mild conditions like asthma to more severe
complications such as decreased lung function, cardiovascular diseases, and prema-
ture mortality. Additionally, it has serious environmental repercussions, such as
ecosystem degradation, biodiversity loss, and adverse effects on plant growth and
agricultural productivity.

To better understand and mitigate this problem, remote sensing technologies
have been adopted to monitor large areas, facilitating comprehensive air quality
assessments. For example, satellite data from the Copernicus Sentinel-5p mission
provide valuable information and are useful for forecasting pollutants.

In this study, Copernicus Sentinel-3 and Sentinel-5p data combined with other
meteorological and morphological data were used to predict the air quality in the
city of Milan, focusing on five pollutants: ozone (O3), nitrogen dioxide (NO2),
sulfur dioxide (SO2), particulate matter with a diameter of less than 10 micrometres
(PM10), and less than 2.5 micrometres (PM2.5).

Deep learning models, such as CNN, RNN, and LSTM, have demonstrated
considerable success in analyzing such data due to their ability to uncover complex
relationships. Expanding on this success, this study explores the adaptation of
TimeSformer, a transformer-based model initially designed for video classification,
to work on satellite data for forecasting tasks. The primary modification is the
initial encoding, which is designed to accommodate diverse sources, reflecting the
heterogeneous nature of the dataset. The developed model is capable of forecasting
all pollutants simultaneously, creating a forecasting mechanism that could be of
significant value to policymakers, as it enables them to implement timely protection
and prevention measures. It achieved a Mean Absolute Percentage Error of 30.6%,
improving the prediction accuracy for three out of the five pollutants compared to
a baseline model.
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Chapter 1

Introduction

The work presented in this thesis aims to study and analyze heterogeneous data
sources to build a deep learning model for predicting air quality in the central area
of Milan. In particular, satellite data obtained from the Copernicus missions and
meteorological data have been used. The following chapter provides an overview of
the pollution problem.

1.1 The problem of air quality
Pollution represents a significant global issue, as it has the potential to cause
severe health problems and damage the surrounding environment. It can result
in significant respiratory and cardiovascular complications for individuals and
environmental degradation. Pollution can manifest in several different forms,
including contamination of the air, water and soil. Air quality, which indicates
the cleanliness of the air, is influenced by both natural and human activities. Key
sources of air pollution include agricultural practices and natural disasters such
as fires and volcanic eruptions, vehicle emissions and industrial processes. This is
confirmed by a study [1] done in the city of Milan in 2020. The research reveals
that since late March 2020, reductions in private transportation (-77%), heavy
and light vehicles (-39%), and industrial production (-20%) resulted in a one-third
decrease in NO2 levels.

1.2 Principal pollutants
This work analyzes five pollutants, which are monitored by the European Environ-
ment Agency (EEA) to assess air quality and ensure public health and environmental
protection across Europe. These are Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2),
Particulate Matter of at most 10 micrometres in diameter (PM10), Fine Particulate
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Matter of at most 2.5 micrometres in diameter (PM2.5), and Ozone (O3). Each of
these pollutants has unique characteristics and sources, yet together they constitute
a significant problem to both human health and environmental integrity.

1. Nitrogen Dioxide (NO2): It is a red-brown gas at ordinary temperature
with a suffocating, irritating odour that is particularly humid and characteristic.
NO2 is denser than air, so its vapours tend to remain at ground level. It is a
strong irritant of the pulmonary tract; even at moderate concentrations in the
air, it causes coughing, chest pain, convulsions and circulatory failure. It can
also cause irreversible damage to the lungs, which can occur many months
after the attack.

2. Sulfur Dioxide (SO2): SO2 is a toxic gas, that is released naturally by
volcanic activity and is produced as a by-product of copper extraction and
the burning of sulfur-bearing fossil fuels. Inhaling SO2 can cause respiratory
issues, particularly in humans affected by asthma or other respiratory ills. It
also contributes to the environment’s formation of fine particulate matter and
acid rain.

3. Particulate Matter (PM10 and PM2.5): Particulate matter is one of
the most frequent pollutants in urban areas. PM10 refers to particles with
a diameter of 10 micrometres or less, while PM2.5 refers to particles with
a diameter of 2.5 micrometres or less. Examples of substances present in
particulate matter are natural and artificial fibres, pollen, spores, carbonaceous
particles, metals, silica and liquid pollutants. Particulate matter can be found
both in open and closed places, but generally, its concentration is higher in
closed places and urban and industrial areas. Particulate matter is dangerous to
the health of humans and other living beings. The World Health Organization
(WHO) has classified particulate matter as carcinogenic, i.e. capable of causing
tumours or promoting their onset and propagation.

4. Ozone (O3): Ground-level O3 is a byproduct of fossil fuel and coal burning.
It is formed when nitrogen oxide and volatile organic compounds (VOC)
released from internal combustion engines and fossil fuel power plants interact
with oxygen and UV rays. As ozone pollution sources come from fossil fuel
automobiles, it is commonly found in urban city environments and densely
populated areas. It is also more likely to occur during sunny, high-temperature
conditions as well as periods of high air pressure, where air becomes stagnant
and pollutants are more concentrated over certain areas. Ozone pollution poses
great harm to human health and increases the risks of respiratory illnesses such
as asthma and lung cancer. There has also been some limited evidence showing
that repeated, long-term exposures to O3 can inhibit the growth of lung tissue
in children and worsen cardiovascular diseases such as atherosclerosis.
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Table 1.1 illustrates the classification of pollutant concentrations as defined by
the European Environment Agency (EEA). It presents the concentration ranges in
micrograms per cubic meter (µg/m3) for different air quality categories, providing
a clear framework for understanding the levels of pollution and their potential
impacts on health and the environment.

Pollutant Good Fair Moderate Poor Very Poor Extremely Poor
PM2.5 0-10 10-20 20-25 25-50 50-75 75-800
PM10 0-20 20-40 40-50 50-100 100-150 150-1200
NO2 0-40 40-90 90-120 120-230 230-340 340-1000
O3 0-50 50-100 100-130 130-240 240-380 380-800
SO2 0-100 100-200 200-350 350-500 500-750 750-1250

Table 1.1: Classification of pollutant concentrations according to the European
Environment Agency (EEA). The table displays the concentration ranges in µg/m3

for various air quality categories.

1.3 The importance of monitoring air quality
The awareness of the detrimental effects of pollution on the environment and
human health has compelled the authorities to take a more serious look at the
environment and to encourage a desire to learn more about the quality of air
that surrounds us. To control atmospheric pollutant levels, agencies like the
European Environment Agency (EEA) have established air quality directives that
set thresholds countries must not exceed on a yearly, daily, and hourly basis [2].
Over the years, new technologies have been developed to analyze air quality. For
instance, the European Commission and the European Space Agency (ESA) created
the Copernicus program to utilize satellite data for air quality monitoring. This
program provides extensive coverage and can effectively oversee vast regions. On
the other hand, ground-based sensors, which collect non-satellite data, are restricted
to particular locations and can be expensive and complicated to set up and sustain.
While satellite imagery can address certain issues associated with managing local
stations and covered areas, it also has some disadvantages. First of all the presence
of missing values, which often occurs due to the presence of clouds that cover the
satellite’s view of the Earth’s surface. This limitation is particularly problematic
because it generates gaps in the data, making it difficult to manage in the data
pre-processing phase. Secondly, the resolution of satellite data is low, avoiding the
ability to make good forecasts of pollutant concentrations at the ground level.

The scope of this work is to develop an accurate and high-resolution air quality
model. The significance lies in delivering more realistic air quality predictions
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with specific spatial and temporal resolutions, which are essential for public health,
regulatory compliance, and environmental protection.

The thesis is organized in the following way:

• Chapter 2 shows previous works in the fields of pollutant forecasting and
computer vision models used for natural and satellite images.

• Chapter 3 explains the datasets adopted and the construction of the timeseries
used in the model.

• Chapter 4 presents the two methodologies applied to solve the problem.

• Chapter 5 reports the results obtained using the developed methodologies.

• Chapter 6 summarizes the work done in the thesis and explores potential
future works.

4



Chapter 2

Related Works

Air quality monitoring is a field that has been widely studied over the years.
In the beginning, researchers tried to analyze the quality of the air and the
environment with statistical models; then, with the invention of Convolutional
Neural Networks (CNN), they moved on to Deep Learning models, which are
a promising alternative. This chapter provides a comprehensive overview of the
methodologies that influence current approaches in this field. The chapter is divided
into 3 sections, which although seem unrelated to each other, all contributed to
the realization of this research. The first one introduces various models developed
for predicting air pollution. This research highlights an unexplored area, noting
that existing literature lacks models that incorporate diverse collections of satellite
data or those that predict multiple pollutants simultaneously. This study aims to
address these gaps and advance the field. The second section, however, focuses on
related works involving Vision Transformers (ViTs), examining their innovative
uses and potential in computer vision activities. There is also a small introduction
to the TimeSformer, which is the embryonic model of this research. The final
section explores the deep learning models used in Earth observation activities in
tasks other than forecasting, which show how to preprocess and use satellite data.

2.1 Approaches for air pollutant concentrations:
from classical methods to deep learning tech-
niques

A lot of studies have been devoted to the development of different models to predict
air pollutant concentrations. The existing methods can be classified into three
categories: statistical, machine learning and deep learning methods.
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Machine learning methods comprise deterministic and statistical models. Stirn-
berg et al. [3] present a statistical model developed to predict hourly concentrations
of PM10. Their model integrates satellite-borne aerosol optical depth (AOD) data
with various meteorological and land-use parameters, recognizing the significant
impact of weather conditions on air quality. This approach uses the Gradient Boost-
ing Regressor Tree (GBRT), which combines multiple decision trees using boosting
and gradient descent techniques. Four distinct seasonal models are analyzed to
account for seasonal variations in air quality, utilizing a comprehensive dataset
spanning seven years, where temporal features are particularly relevant.

In this field, some classical regression-based algorithms, such as Multiple Linear
Regression (MLR) and Auto-Regressive Integrated Moving Average (ARIMA),
including its seasonal variant SARIMA, are extremely used. Hong et al. [4] present
a study conducted in Labuan, Malaysia, that compares exponential triple smoothing
(ETS) and seasonal autoregressive integrated moving average (SARIMA) models to
analyze air pollutants data. The results indicate that SARIMA is the optimal model
for forecasting PM10, NO2 and O3. On the other hand, algorithms like Support
Vector Regression, Decision Trees, Random Forest, and K-Nearest Neighbors offer
robust alternatives: they are able to capture non-linear features but may struggle to
extract complex spatio-temporal correlations [5, 6, 7]. Regarding the deep learning
models, Cabaneros et al. [8] review the use of Artificial Neural Networks (ANNs)
for long-term prediction of outdoor pollutants, highlighting the predominance of
meteorological and source emissions predictors in identified works.

In the literature, there are also several summaries of the most commonly used
methods in the field of pollutant prediction. Bai et al. [9], for example, provides a
comprehensive overview of statistical prediction, numerical prediction and hybrid
models, along with a comparison of their advantages and disadvantages. On the
other hand, Masih et al. [10] survey machine learning methods for air pollutant
concentration prediction from 2013 to 2018, focusing on the fundamentals of
machine learning techniques and their role in improving predictive performance.
In addition, Liao et al. [11] provide a brief review of recent attempts to utilize
deep learning methods in air pollution prediction, emphasizing their potential
in exploring non-linear spatio-temporal correlations across multiple scales of air
pollution. Later on, Masood and Ahmad [12] present an overview of artificial
intelligence-based methods commonly used for air pollution prediction between
2003 and 2021.

A multimodal machine learning model is AQNet [13], which uses a new dataset
that has information about altitude, population density, environmental classification
of local areas, and satellite data. The realization of this dataset comes from imagery
from Sentinel2, NO2 concentration data from Sentinel5P, and tabular data. Finally,
more recent deep learning technologies, such as long-short-term Short Term Memory
models (LSTMs), excel at capturing non-linear spatio-temporal correlations in
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timeseries, thereby improving the accuracy of pollutant concentration prediction.
These methods can effectively extract spatial and temporal correlations from raw
data, enabling more accurate predictions of air pollutant concentrations [14, 15].

In addition, hybrid deep learning models, like Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM), integrate CNNs and LSTMs to extract
better spatio-temporal correlations [16, 17, 18, 19]. A famous model is DAQFF [20],
which uses a 1D-Convolutional Neural Network (CNN) with a Bidirectional Long
Short-Term Memory (Bi-LSTM) network. The 1D-CNN extracts local features
and spatial correlation from the data, while the Bi-LSTM component captures
spatio-temporal dependencies. This algorithm is compared with traditional models,
including the aforementioned ARIMA and Support Vector Regression (SVR), and
in both situations, the new model outperformed the traditional ones.

2.2 Vision Transformers
Transformers, proposed by Vaswani et al. [21], are nowadays the best-performing
models in NLP tasks. They introduce the attention mechanism, which allows the
model to assign different weights to the various parts of the input to focus more on
the most relevant information.

The idea of Dosovitskiy et al. [22] is therefore to look for a way to use the
same methodology for images. The model created is called Vision Transformer
(ViT). This model involves dividing an image into small, fixed blocks called patches,
which are then transformed into feature vectors. Positional information is added
to these vectors and provided to a Transformer encoder, which uses the attention
mechanism to grasp the semantic relationships between the different patches. The
relative importance of each patch is calculated by comparing it with all the other
patches. This relationship is expressed through an array of numbers between 0 and
1. These coefficients are then used to generate a weighted representation of the
characteristics of the image. Previously, Cordonnier et al. [23] proposed a similar
model with the only difference of using 2x2 patches, which led to a performance
result only on low and medium resolution images. Several studies also try to work
on global self-attention, looking for tricks to avoid long training times by comparing
each patch with all the others. Parmar et al. [24] restrict self-attention to local
neighbourhoods, which allows local multi-head dot-product self-attention blocks
to replace convolutions entirely [25, 26, 27]. Sparse Transformers [28] and other
scalable self-attention models [29, 30] also aim to make global self-attention feasible
for images. The use of these ViT models for images led to their application to videos.
Models like Video Vision Transformer (ViViT) [31] and TimeSformer (Time-Space
Transformer) [32] set new benchmarks. ViViT extends the ViT architecture to
handle video inputs by factorizing the spatio-temporal dimensions, enabling efficient
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processing of video frames as sequences of patches [31]. Similarly, TimeSformer
decomposes the attention mechanism into spatial and temporal components [32].

Figure 2.1: TimeSformer model architecture for the forecasting task. The model
processes input video frames by first passing them through a patch embedding layer.
The embedded patches are then fed into the encoder block. The final embeddings
from the encoder are passed to a classification head for the forecasting output.

Figure 2.1, shows the architecture of the TimeSformer, which is the starting
point for the analysis of this research. It takes as input a set of F RGB images
(X ∈ RH×W ×3×F ) of size H × W extracted from the original video with three-
channel. Next, as presented in the ViT model [22], each frame is decomposed into
N non-overlapping patches, each of size P × P , such that the N patches cover the
entire frame, i.e. N = HW

P 2 . These patches are flattened into vectors x(p, t) ∈ R3P 2

and linearly mapped in an embedding thanks to a learnable matrix E ∈ RD×3P 2 .
At this point, a positional embedding epos ∈ R2×D which represents spatio-temporal
information is added to each patch (p, t). The embedding is therefore obtained
from the equation

z(p, t) = Ex(p, t) + epos(p, t)

This embedding is then the input of the transformer, to which a learnable vector
is added for classification tasks, called CLS token embedding. The Transformer
consists of a series of encoding blocks, that calculate the multi-head self-attention.
The final embedding of the clip is obtained from the final block for the classification
token. Finally, a 1-hidden layer MLP is used to predict the classes of the final
videos. In Figure 2.2, two types of transformer blocks are shown, which mainly
differ in the way in which attention is calculated.
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Figure 2.2: Transformer encoder block. It compares the joint space-time attention
mechanisms with the divided space-time attention mechanism.

In the first case, called Joint Space-Time Attention, the output is obtained
with one or more single attention heads for time and space. In this approach, the
weighted sum of value vectors is calculated using the self-attention coefficients of
each attention head. Next, the concatenation of these all-head vectors is projected
and passed through an MLP, using the residual connections after each operation to
maintain the integrity of the original information.

In the second case, the attention mechanism employed is the "Divided Space-
Time Attention", which sequentially applies temporal and spatial attention. This
method permits more scalable management of attention, thereby reducing the
computational load associated with joint computation across spatial and temporal
dimensions. In this case, the temporal attention is first computed by comparing
each patch to all patches at the same spatial location in other frames. The resulting
encoding is then fed back for the calculation of spatial attention, which compares
each path with the other patches in the same image and is subsequently passed to
the MLP.

Comparing these two types of attention mechanisms, the computational efficiency
of the divided space-time attention mechanism is a significant advantage. In the
joint space-time attention model, the number of per-patch comparisons is (NF +1),
where N is the number of patches per frame and F is the number of frames.
This complexity arises because each patch attends to every other patch across all
frames simultaneously. Conversely, in the divided attention model, the per-patch
comparisons are significantly reduced to (N + F + 2). This reduction is achieved
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by first computing temporal attention across frames and then computing spatial
attention within each frame.

2.3 Deep learning models in earth observation
tasks

The use of deep learning models in satellite image analysis has gained considerable
popularity in research, allowing such methods to be used for a variety of tasks, such
as land cover classification, vegetation monitoring, urban development analysis, and
disaster detection. This section aims to illustrate the most innovative approaches
used in the field of satellite images, divided by the most popular models.

CNNs are widely used for their ability to effectively capture spatial hierarchies
in data through convolutional operations. Geo-bench model [33] shows the ability
of a Convolutional Neural Network (CNN) to outperform the accuracy for land
cover classification and change detection tasks. For this final task, MSFCTNet [34]
integrates a Convolutional Neural Network (CNN) with a transformer. This model
consists of a Siamese CNN followed by a CNN-Transformer module that captures
both global and local features. On the other hand, SEIFNET [35] presents a different
approach. It employs a Siamese network based on ResNet18 [36] as its backbone
to obtain multiscale feature maps, then it has the Spatio-Temporal Differential
Enhancement Module (ST-DEM), which tries to extract contextual information,
the Adaptive Content Fusion Module (ACFM) for contextual information fusion,
and a refinement module (RM) to optimize boundary details. This architecture
follows an encoder-decoder framework. The ST-DEM, part of the encoder, includes
two branches: the Connection branch, which combines features along the channel
dimension using convolution, batch normalization, and activation functions; and the
Subtraction branch, which computes the absolute difference between bi-temporal
feature maps. In the decoder, the ACFM refines multiscale targets through a
three-step process: feature upsampling to match the resolution of low-level feature
maps, weight calculation via a pooling and fusion process, and feature reintegration
to combine complementary information. Finally, the RM further refines these
features using the Convolutional Block Attention Module (CBAM). A different
study [37], always related to CNN models-based, introduces how the techniques of
resizing and normalization affect the performance on remote sensing tasks.

LSTM models, instead, are introduced to capture temporal dependencies in
sequential data. Zhao et al. [38] evaluate the performance of LSTMs alongside
3D-CNNs and ViTs, demonstrating their effectiveness in temporal representation
data.

After the discovery that ViT models can handle long-range dependencies and
large-scale data, Yuan et al. [39] introduce a pre-trained ViT model specifically
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designed for Sentinel2 data and compare it against baseline models including
Random Forest (RF), SITS-BERT, CNN-Transformer and Convolutional Recurrent
Neural Networks (ConvRNN). In this case, the encoder takes as input timeseries of
patches extracted from 3D-CNN, which are then merged with the other embeddings
generated using a sin-positional encoding for the day of year information. These
embeddings are then fed into the Transformer, which captures relevant spatial and
temporal dependencies.

Another study made by Tarasiou et al. [40] illustrates how ViTs can be employed
to process satellite image timeseries, leveraging their self-attention mechanisms to
capture intricate spatio-temporal relationships. Fibaek et al. [41] provide a com-
prehensive evaluation of geospatial foundation models, including ViTs, reinforcing
their potential in various geospatial analysis applications.

Discussing transformer-based models, one that gains particular success in the
realm of satellite data is Presto [42], which is of particular interest for the work
presented here. The architecture of Presto, a lightweight transformer-based model,
is specifically designed for processing timeseries data from remote sensing pixels.
The model employs a masked autoencoding framework consisting of an encoder
and a decoder. During pre-training, part of the input data is masked, and the
encoder processes the unmasked part, while the decoder attempts to reconstruct
the masked portion from the encoded data (Figure 2.3). This pre-training strategy
enables the model to learn robust representations from incomplete data, making it
highly efficient for various downstream tasks.

Various masking strategies are employed to encourage the model to learn robust
representations. These include:

• Random Masking: This involves randomly masking a portion of the input
data.

• Channel Group Masking: Entire groups of channels are masked simulta-
neously. This type of masking simulates the absence of data from specific
sensors or sources and helps the model generalize better when dealing with
inputs from incomplete or faulty sources.

• Contiguous Timestep Masking: This strategy involves masking continuous
temporal sequences rather than individual time points. In this way, the model
learns to interpolate missing information over longer periods, improving its
ability to handle temporal gaps in the input data.

• Random Timestep Masking: Similar to random masking but applied
specifically to time steps, this technique randomly selects various temporal
points to mask. This strategy helps the model become robust to incomplete
or irregular temporal data.
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Figure 2.3: Presto transformer architecture [42]. The encoder-decoder model is
trained to reconstruct the original timeseries. During fine-tuning, the decoder is
discarded, and only the encoder’s output is utilized.

The encoder, after pre-training, is used for fine-tuning or as a feature extractor.
Presto is capable of handling both static and dynamic inputs over time, as well as
metadata for each pixel timeseries.

The main components of Presto’s architecture include:

Input Transformation

The input x is transformed into several tokens, each represented by an embedding
e, to be subsequently processed by the transformer.

Channel Grouping and Projection

The input variables, divided into temporal segments, are grouped into channel
groups C based on the type of sensor or source. These channel groups are pro-
jected into a common latent space of dimension d through separate learned linear
projections h. Mathematically, this can be represented as:

hCi
= WCi

xCi
+ bCi

where xCi
represents the input data for channel group Ci, and WCi

and bCi
are the

learned weights and biases for channel group Ci.
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Categorical Class Embedding

Categorical classes are embedded by indexing into an embedding matrix:

ecat = Embedding(xcat)

where xcat represents the categorical input.

Positional, Temporal, and Channel Encodings

Unlike natural images, where data and labels are standalone, remote sensing
labels are intrinsically tied to a specific location and time on Earth, defined by
latitude/longitude and timestamp. The architecture addresses this by adding
encodings to the embeddings to convey the data point’s location, timestamp, and
channel group. The complete encoding is a concatenation of positional, monthly,
and learned channel encodings, resulting in a dimension de.

• Sinusoidal Positional Encoding: it provides a unique representation for
each position in the sequence.

ps(p, 2i) = sin
3

p

100002i/de

4

ps(p, 2i + 1) = cos
3

p

100002i/de

4
where p is the position index of the data point in the sequence, and i is the
dimension index.

• Monthly Encoding: it helps the model to capture seasonal patterns by
using monthly information.

pm = Embedding(m)

where m is the input representing the month.

• Channel Encoding: it distinguishes between different sensor or source types.

pch = Wch · C

where Wch are the learnable weights for the channel encoding, and C represents
the channel group.

The transformer input E ∈ R(T ·|Cd|+|Cs|)×de , where T represents the number of
temporal segments, |Cd| is the number of dynamic channels, |Cs| is the number of
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static channels, de is the dimension of the embeddings, is thus a concatenation of
dynamic variables, topological data, and coordinates:

E = [ps, pm, pch, x]

The transformer processes this through various layers of encoding and decoding,
learning its latent representations. Each transformer layer performs self-attention
and feed-forward operations, enabling the model to capture long-term relationships
between temporal and spatial tokens. The transformer’s output is an encoded
representation of the input that can be used for various tasks.

14



Chapter 3

Datasets analysis

This chapter provides a comprehensive overview of the datasets used in this study,
highlighting their characteristics, sources and relevance. It is structured into
different sections to facilitate detailed exploration of the datasets. Each block will
then contain insights into the sources, formats and attributes used in the model
for each data source. The problems of each dataset will also be highlighted, if any.
Finally, a final section will be dedicated to how it is decided to structure the data
preprocessing and therefore resolve any problems mentioned above.

3.1 Datasets description
The sources of the datasets can be divided into two groups: dynamic sources, which
include Sentinel3, Sentinel5P and Era5 and static sources, which include DEM
and Land Cover. Dynamic data change daily, instead, static data are always the
same. The dataset covers the period from April 30th, 2018, corresponding to the
deployment of Sentinel5P, to the end of 2023. For this research, the study area
selected is the central part of Milan, as depicted in Figure 3.1. This area was
chosen because it encompasses all the relevant land sensors, that collect pollutant
concentrations.
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Figure 3.1: The area analyzed in Milan is the central part of the city, chosen
because it includes all the pertinent land sensors that gather pollutant concentra-
tions.

3.1.1 Static Data

Land Cover

The Urban Atlas 2018 Land Use/Land Cover (LU/LC) dataset [43], provided by the
Copernicus program, serves as a static resource for land monitoring. This dataset
offers a consistent snapshot of land use and coverage at a 10-meter resolution
specifically for the year 2018. It consists of a wide range of categories, such as
residential areas, commercial areas, green spaces, transport infrastructure, and
water bodies, mapped with a minimum mapping unit of 0.25 hectares. Table 3.1
shows the full list of labels.

The LU/LC of Urban Atlas 2018 is used in GeoTIFF format. To better clarify
the type of data available, Figure 3.2 provides the land cover of the city centre of
Milan originally provided by the dataset.
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Band
Continuous Urban Fabric (S.L. > 80%)
Discontinuous Dense Urban Fabric (S.L.: 50% - 80%)
Discontinuous Medium Density Urban Fabric (S.L.: 30% - 50%)
Discontinuous Low Density Urban Fabric (S.L.: 10% - 30%)
Discontinuous Very Low Density Urban Fabric (S.L. < 10%)
Isolated Structures
Industrial, commercial, public, military and private units
Fast transit roads and associated land
Other roads and associated land
Railways and associated land
Port areas
Airports
Mineral extraction and dump sites
Land without current use
Green urban areas
Sports and leisure facilities
Open spaces with little or no vegetation (beaches, dunes, bare rocks, glaciers)
Arable land (annual crops)
Permanent crops (vineyards, fruit trees, olive groves)
Pastures
Complex and mixed cultivation patterns
Orchards at the fringe of urban classes
Forests
Herbaceous vegetation associations (natural grassland, moors...)
Wetlands
Water bodies

Table 3.1: Urban Atlas Land Cover 2018 bands
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Figure 3.2: Land Cover of the city centre of Milan (original taxonomy).

DEM

The Digital Elevation Model (DEM) [44] provided by the Copernicus program, in
collaboration with the German Aerospace Center (DLR) and Airbus Defense and
Space, collects characteristics inherent to the earth’s surface, including the type
of terrain present in a certain area, man-made structures such as buildings and
infrastructure, and natural elements such as vegetation. The dataset is obtained
from a rework of the dataset known as WorldDEMTM, which includes the flattening
of water bodies and the constant flow of rivers. Additionally, special modifications
have been applied to coastlines, airports, and terrain structure corrections. Un-
derpinning the collected measurements is interferometric synthetic aperture radar
(InSAR) to generate high-precision elevation data. This dataset is provided in sev-
eral formats, including DGED (Defense Gridded Elevation Data), DTED (Digital
Terrain Elevation Data), and INSPIRE (Infrastructure for Spatial Information in
Europe). Each format has specific grid spacing, file formats (GeoTIFF for DGED
and DTED), and coordinate reference systems. Of interest to this research is the
DGED format, which uses a 32-bit floating-point data type and comes in GeoTIFF
format.

The data resolution for the city of Milan is 10 m per pixel; in some cases, it is
also obtained or reprocessed using LiDAR instrumentation. To better clarify the
type of data available, Figure 3.3 shows an example of GeoTIFF.
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Figure 3.3: DEM for the city centre of Milan.

3.1.2 Dynamic Data

Era5

ERA5 [45] is the latest of five European Center for Medium-Range Weather Fore-
casts (ECMWF) reanalyses of global climate and weather. The data collected
includes a time window ranging from 1940 to the present day. These data concern
climate parameters, which have been added and improved over the years regarding
instrumentation precision and spatial and temporal resolution. Although data is
collected hourly, preliminary ERA5 data is available within five days (ERA5-T),
with subsequent validation within two months. The dataset is created by combining
model data with global observations. This process is similar to that used by numer-
ical weather prediction centres and allows the production of a globally complete
and coherent data set. Among the biggest improvements, undoubtedly, are updates
to cloud and precipitation patterns, improved parameterizations for convection,
turbulent mixing, and surface interaction, as well as better representations of
evaporation in bare soils and conditions of the snow cover. The oceanic component
has also been enhanced with a new wave adduction scheme. The data resolution
is on a regular grid of 0.25 degrees for reanalysis and 0.5 degrees for uncertainty
estimation, while for ocean waves it is 0.5 and 1 degree, respectively. The data
used are collected in a CSV file and Table 3.2 contains the subset of bands used in
the context of this work. To better clarify the type of data available, Figure 3.4
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shows the band named d2m of the dataset for the city of Milan.

Name Meaning Unit of measure
u10 10m U-component of wind meters per second (m/s)
v10 10m V-component of wind meters per second (m/s)
d2m 2m dew point temperature Kelvin (K)
msl Mean sea level pressure Pascal (Pa)
mcc Medium cloud cover fraction (0 to 1)
skt Skin temperature Kelvin (K)
ssr Surface solar radiation downwards Watts per square meter (W/m2)
tp Total precipitation meters (m)

Table 3.2: ERA5 bands

Figure 3.4: ERA5 band (d2m) for the city centre of Milan.

Sentinel3

Sentinel3 [46] dataset collects data from a satellite launched in 2016 and its suite of
advanced instruments, among which are two large optical instruments: the Ocean
and Land Color Instrument (OLCI) with 21 spectral channels with a wavelength
ranging from 0.4 to 1.0 µm, and the Sea and Land Surface Temperature Radiometer
(SLSTR) with 9 spectral channels with a wavelength ranging from 0.5 µm to 13
µm, acquiring data in both the nadir and oblique directions [47]. Additionally,
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there is a SAR Radar Altimeter (SRAL) and a Microwave Radiometer (MWR),
complemented by a suite of Precise Orbit Determination (POD) instruments.
Sentinel3 provides two daily measurements with a resolution of 300 meters for
visual images and 1 kilometre for thermal measurements. Table 3.3 contains the
bands and their resolutions, reporting only those used in this work. To better
clarify the type of data available, Figure 3.5 provides an example of F1 band in
the centre of the city of Milan in April 2018.

Band Meaning of Measure Resolution Band
per pixel

F1 Visible and near-infrared 1000 m
F2 Red edge 1000 m
S7 Thermal infrared (nadir) 1000 m
S8 Thermal infrared (oblique) 1000 m
S9 Thermal infrared 1000 m

Table 3.3: Sentinel3 spectral bands

Figure 3.5: Example of Sentinel3 band F1 collected in the city centre of Milan in
April 2018.
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Sentinel5P

Sentinel5P [48] is a satellite, which carries the TROPOspheric Monitoring Instru-
ment (TROPOMI), which is a nadir imaging spectrometer. The sensor measures
electromagnetic spectral wavelengths between UV (270-320 nm) and SWIR (2305-
2385 nm) to monitor air pollution. The TROPOMI sensor has a neighbour pixel
size of 7×3.5 km2 for most spectral bands, except for the UV-1 and SWIR bands,
which have pixel sizes of 7×28 km2 and 7×7 km2, respectively. Since its launch, the
TROPOMI sensor has been used worldwide in numerous research projects related
to mapping, monitoring, and modelling air pollution. TROPOMI provides accu-
rate daily measurements of various atmospheric constituents. Its main challenges
include relatively low resolution, limiting the ability to collect emissions in detail.
Additionally, observations may be affected by cloud cover and variable atmospheric
conditions. Not all the data collected by Sentinel5P for a single day in the city
of Milan are considered input to the model, and therefore in Table 3.4 there is
a complete list and a single explanation of those of greatest interest. To better
clarify the type of data, Figure 3.6 provides an example of a band extracted from
the GeoTIFF in the city of Milan in April 2018.

Measured Bands Description
CO Carbon Monoxide

HCHO Formaldehyde
NO2 Nitrogen Dioxide
O3 Ozone
SO2 Sulfur Dioxide

CLOUD_TOP_PRESSURE Cloud Top Pressure
CLOUD_BASE_PRESSURE Cloud Base Pressure

AER_AI_340_380 Aerosol Index (340-380 nm)
AER_AI_354_388 Aerosol Index (354-388 nm)

Table 3.4: Sentinel5P spectral bands measured by TROPOMI sensor.
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Figure 3.6: Example of Sentinel5P band (CO) collected in the city centre of
Milan in April 2018.

3.1.3 Stations data

Stations data are used as labels to train and test the model. This dataset is manually
created and contains punctual data from the city of Milan. It is formatted as a daily
GeoTIFF file, where each band contains data on collected pollutants (i.e. PM10,
PM2.5, O3, NO2, and SO2). Each pixel in a band, instead, represents an area of
the city and holds a numerical value indicating the concentration of a pollutant.

These values are of two types:

• Hard Labels: values collected by local land stations and downloaded from
the open portal of Milan municipality [49].

• Soft Labels: data generated by five distinct XGBoost-based models, one for
each pollutant. These models estimate values for areas without land sensors.

There are five terrestrial sensors and all of them are located in the centre of
Milan. Figure 3.7 illustrates the positions of land stations within Milan, along with
the corresponding pollutants monitored by each station.
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Figure 3.7: Stations in the city of Milan and pollutants collected.

The difference between hard and soft labels is particularly useful in the model
training phase, which will be further discussed in the next chapter (Chap. 4).

3.2 Data preprocessing
The different steps necessary to prepare the data for analysis are presented. These
are: data cleaning, management of missing values, temporal and spatial alignment
of the data, creation of timeseries, and generation of labels for forecasting.

3.2.1 Data cleaning and space-time alignment
As fully described above in the chapter, data are divided into static and dynamic.
The dynamic data sources (Sentinel5P, Sentinel3 and Era5), i.e., those that vary
over time (in this case, with a daily frequency), all come from satellite images in
GeoTIFF format. Each file therefore contains a timestamp, a measurement for
each quantity that the satellite must measure, and the related metadata (spatial
resolution, temporal resolution, bounding box). Static data sources (DEM and
Land Cover), on the other hand, are also in GeoTIFF format or traced back to this
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format, but consist of a single file that remains constant for the entire duration of
the analyzed period.

For the Land Cover dataset, the categories have been grouped into 10 macro-
categories, obtaining the taxonomy visible in Table 3.5. Figure 3.8 shows the
output of a land cover band after the categories are grouped. After grouping the
labels of the land cover into 10 macro-categories, a raster data set is created where
each channel represents one of these 10 labels, and each pixel within each channel
contains the percentage of that label in the area represented by the pixel.

Category Contains
Urban Continuous Urban Fabric (S.L. > 80%), Discontinuous

Dense Urban Fabric (S.L.: 50% - 80%), Discontinuous
Medium Density Urban Fabric (S.L.: 30% - 50%), Discon-
tinuous Low Density Urban Fabric (S.L.: 10% - 30%), Dis-
continuous Very Low Density Urban Fabric (S.L. < 10%),
Isolated Structures, Industrial, commercial, public, military
and private units, Construction sites

Road Fast transit roads and associated land, Other roads and
associated land

Railways Railways and associated land
Port Port areas
Airports Airports
Extraction Mineral extraction and dump sites
NoUse Land without current use
Green Green urban areas, Arable land (annual crops), Permanent

crops (vineyards, fruit trees, olive groves), Pastures, Com-
plex and mixed cultivation patterns, Orchards at the fringe
of urban classes, Forests, Herbaceous vegetation associations
(natural grassland, moors...)

OpenSpaces Sports and leisure facilities, Open spaces with little or no
vegetation (beaches, dunes, bare rocks, glaciers)

Water Wetland, Water bodies

Table 3.5: Land Cover Category Mapping

To work with timeseries built on these data, two fundamental problems arise:
missing data (both of single measurements within the day and of entire days)
and different resolutions, both in the spatial and temporal domains. This means
that some satellites make multiple measurements per day (i.e. Sentinel3) while
others only make one, and the measurements differ from each other in their spatial
resolution. Therefore, it is possible that even if the bounding box is the same, the
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Figure 3.8: Land Cover of the city centre of Milan (resized taxonomy). The
categories of the LU/LC Urban Atals 2018 dataset have been grouped into 10
macro-categories.

pixels between the sources may represent a different portion of the geographic area
due to the reprojection algorithm. The implemented solutions are the following:

• Spatial alignment: all sources are aligned to a final resolution of 500 m per
pixel, which corresponds to an image of shape 17 x 18. This means that when
an image has a finer resolution, groups of adjacent pixels are averaged. If the
initial resolution is smoother, the final image is filled and interpolated to reach
the final resolution.

• Temporal alignment: all sources are brought to the minimum daily fre-
quency, in this case, one measurement per day is therefore considered for each
source. In the case of multiple measurements, the choice is to take the one
carried out in the time slot most similar to that of the collection of the other
measurements.

• Missing spatial data: when one of the sources is missing a measurement
of one of its bands, this value is filled with the average (calculated along the
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temporal dimension) of that band.

• Missing temporal data: When one of the sources is missing for an entire
day, synthetic data is generated to cover that day. The values correspond to
the average along the entire temporal dimension of the measurements for each
band.

• Static time data: considering static sources, the same value is used for each
timestamp.

Thus, for each source, exactly one daily measurement for each band with the
same resolution per pixel is obtained. This means that all sources are now aligned
spatio-temporally.

3.2.2 Creation of timeseries
After preprocessing the data, the timeseries are generated by merging all bands
from the different data sources for the same day. This process allows the creation of
a temporal sequence that integrates the various measurements collected over April
2018 and 2023. Each element of the dataset will therefore be a timeseries of fixed
length N . During the experimental phase, it is decided to create the timeseries
with a stride equal to 1, and therefore each timeseries overlapped with the next
(i.e. if the first timeseries is [t, t + N ] the next one will be [t + 1, t + N + 1]).

Figure 3.9 illustrates a sample representation of the input data to the model:
dynamic bands vary between the two days, while static bands remain consistent
and are repeated for each day.

To further characterize the input with information on seasonality trends and
possible periodic behaviours, temporal information, expressed as day of the week
and day of the year, is used. In addition, spatial information, such as latitude and
longitude, is added.

Finally, the final format of the dataset is composed by:

• Timeseries: it is the series of concatenated measurements of a contiguous
period.

• Latitude and Longitude: contains the spatial information (latitude, longi-
tude) of the analyzed area.

• Day of the year: for each of the days contained in the timeseries, the
corresponding day of the year.

• Day of the week: for each of the days contained in the timeseries, the
corresponding day of the week.
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Figure 3.9: Example of timeseries, the input of the model. All bands for each
day are grouped together, with dynamic bands varying between days while static
bands remain consistent and are repeated daily.

3.2.3 Generation of ground truth labels
The task of pollutant prediction involves providing a target value for each timeseries.
This target value can be either the next day’s hard labels or, if unavailable, the
next day’s soft labels. Given that the timeseries of pixels concludes on day t, the
input to the model incorporates the target values for day t + 1. Furthermore, each
item in the dataset includes a loss factor used to weigh the loss according to the
trust level of the provided target value. This loss factor is 1 when using the hard
label and decreases based on the distance from the nearest stations that measure
the hard label.
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Methodology

This chapter provides a brief description of the model used and the related adapta-
tions made to improve performance. Furthermore, it shows a brief introduction of
the loss function and the metrics used to train and evaluate the models.

4.1 Model
For the analysis and prediction of pollutants, the TimeSformer model presented in
Chapter 2 is used. This model takes as input a series of discontinuous video frames,
which in this case are the timeseries extensively described in Chapter 3. This
input then passes through a Convolution Layer to reduce the individual rasters into
patches and generate embeddings, which are then passed to the transformer encoder,
immediately after adding the positional embedding. The difference from the
original model lies simply in the elimination of the CLS token and the classification
head (MLP), due to the different task: regression rather than classification. The
classification head is replaced by five regression heads, which consist of MLPs
with 3 hidden layers, one for each pollutant to be predicted. Figure 4.1 shows the
architecture of the TimeSformer model adapted to the specific task.
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Figure 4.1: Architecture of the TimeSformer model adapted for the task of
pollutant prediction

The architecture of the model consists of the following components:

Input and Patch embedding

The input of the model X ∈ RB×T ×C×H×W is a timeseries with dimensions
[B, T, C, H, W ], where B is the batch size, T is the number of timesteps, C is
the number of bands, H is the height, and W is the width.

Each frame is divided into patches of size P × P by the convolution layer, which
focuses on the local regions of the image. Convolutional layers are designed to
detect and capture spatial hierarchies of patterns within images by systematically
applying filters across the input data. Each filter, or kernel, slides over the image,
computing dot products with local patches of the input at every position.

It reduces each raster into patches and generates the embedding:

x(p, t) = Conv(X) ∈ RB×T ×N×D

where N = H×W
P 2 is the number of patches per frame and D is the dimensionality

of the embeddings.

Positional embedding

Each latent vector x(p, t) ∈ RB×T ×N×D is summed with the positional embedding
epos(p, t) ∈ RN×T ×D to include spatio-temporal information, obtaining the final
embedding z(p, t) ∈ RB×T ×N×D. Therefore for each patch (p, t):

z(p, t) = Ex(p, t) + epos(p, t)
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where E ∈ RD×3P 2 is the embedding matrix and epos(p, t) ∈ RD is the positional
embedding.

Transformer Encoder

The embeddings Z ∈ RB×T ×N×D are passed through the transformer encoder, which
uses a combination of temporal and spatial attention to capture dependencies in the
timeseries data. The transformer encoder uses the Divided Space Time Attention
mechanism, where temporal attention and spatial attention are applied separately,
one after the other. In particular,

• Temporal Attention:
The output of the temporal attention is:

Zt = Attention(Qt, Kt, Vt) ∈ RB×T ×N×D

where,

Attention(Qt, Kt, Vt) = softmax
Qt(Kt)⊤ñ

dk,t

Vt

Qt, Kt, Vt = ZWQ
t , ZWK

t , ZWV
t , Qt, Kt, Vt ∈ RB×T ×N×D

dk,t is the dimension of the keys.

• Spatial Attention:
The output of the spatial attention is:

Zs = Attention(Qs, Ks, Vs) ∈ RB×T ×N×D

where,

Attention(Qs, Ks, Vs) = softmax
Qs(Ks)⊤ñ

dk,s

Vs

Qs, Ks, Vs = ZWQ
s , ZWK

s , ZWV
s , Qs, Ks, Vs ∈ RB×T ×N×D

dk,s is the dimension of the keys
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• Combination of Attention Mechanisms and Linear Layer:
The embeddings generated from the spatial and temporal attention heads

Zt, Zs ∈ RB×T ×N×D

are then summed and normalized. The final embedding Y is passed through
a linear layer.

Y = Linear Layer(LayerNorm(Zs + Zt)) ∈ RB×T ×N×D

Upsampling

The upsampling module is employed to scale up embeddings originally sized for n
patches to the dimensions H×W . This adjustment is necessary to enable predictions
for each pixel within the bounding box, specifically regarding pollutant values.
Formally, the output of the transformer encoder is reshaped Y ∈ RB×T ×H′×W ′×D

Next, the reshaped embedding Y is upsampled to the original image resolution
(H, W ) using an upsampling method, so Y ∈ RB×T ×H×W ×D

Finally, the time and spatial dimensions are flattened to prepare the embedding
for the regression heads, Y ∈ RB×(T ·H·W )×D

Regression Heads

The embedding Y is then passed to several regression heads corresponding to the
pollutants to be predicted. Each head is an MLP with 3 hidden layers:

ŷi = MLPi(Y) ∈ RB×T

where ŷi is the prediction for pollutant i and MLPi represents the regression head
for pollutant i.

The MLP is a feed-forward neural network composed of multiple fully connected
layers. Each layer is followed by an activation function (in this study ReLU is
used). The general formulation of an MLP with L layers is:

ŷ = WLhL−1 + bL ∈ RB×1

where Wi and bi are the weights and biases of the i-th layer, and

hl = ReLU(WlY + bl) ∈ RB×D

Numerically, the input size consists of a height of 17 pixels and a width of 18
pixels. Each image is divided into patches of size 2x2. The model processes 7
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frames and employs a divided space-time attention mechanism. The architecture
includes 4 layers, each with an equal number of attention heads and an MLP ratio
of 4.0. The final embedding obtained for each pixel is of shape 512, which serves
as the input to the five MLP regressors, one for each pollutant, to generate the
predicted value of the pollutant.

4.2 Model adaptations
The principal alterations implemented in the TimeSformer model are the incor-
poration of a patch embedding module and the introduction of novel positional
embeddings, which serve to augment the data with spatial and temporal informa-
tion intrinsic to the sequence. Ultimately, a decoder is employed to include the
weather forecast for the day being predicted alongside other inputs.

4.2.1 Patch embedding per single source
The patch embedding in the original model consists of a single convolutional layer.
However, since the input to the model is constructed from data collected from
various sources, this work introduces the generation of a patch embedding for each
source dataset and then the union of all latent vectors corresponding to the same
patch into a single embedding.

To achieve this, the patch embedding module is modified by adding several
convolutional layers equivalent to the number of source datasets. Finally, several
strategies are implemented to generate the final latent vector: MLP, concatenation,
average pooling, and attention mechanism. Formally, let X(s) denote the input
tensor from the source dataset s. For each source dataset s, the module applies a
convolutional layer to obtain patch embeddings:

E(s) = Conv(X(s))

where E(s) is the patch embedding for source s, and Conv represents the
convolution operation.

Next, to combine the patch embeddings from all source datasets into a unified
embedding E, different aggregation methods are explored:

• MLP (Multi-Layer Perceptron): it combines embeddings, learning and
synthesizing the most significant features of the input data.

E = MLP([E(1), E(2), . . . , E(S)])
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• Concatenation: the embeddings are generated within a smaller latent space,
and these vectors are then merged together to obtain the final vector of the
desired shape. This method is straightforward and faster in execution.

E = Concatenate([E(1), E(2), . . . , E(S)])

• Average Pooling: it computes the arithmetic mean of the embeddings,
creating a representative final embedding. It is computationally efficient.

E = 1
S

SØ
s=1

E(s)

• Attention Mechanism: it assigns weights to each embedding based on
their relative importance and combines them into a weighted sum. This
approach allows for giving more relevance to the most informative embeddings,
producing dynamic and contextual representations.

E =
SØ

s=1
α(s)E(s)

where α(s) are attention weights calculated based on the embeddings E(s).

4.2.2 Geo-spatial and time information
Tseng et al. [42] present a pre-trained model on satellite data, named PRESTO,
discussed in Chapter 2, which consists of a transformer and uses geospatial infor-
mation, latitude and longitude, and a temporal datum, the month of the year, as
positional embeddings.

Similarly to their work, the two positional embeddings already present in the
TimeSformer with the use of the divided space-time attention mechanism for the
transformer encoder, epos ∈ RB×N×T ×D and etime ∈ RB×N×T ×D are modified, with
information regarding latitude, longitude, the day of the week, and the day of the
year. This choice allows the model to learn relationships based on geographical
area and seasonality.

The latitude and longitude values are passed as input to the model, Xlatlon ∈
RB×T ×3×H×W , where B is the batch size, T is the number of days that composed
the timeseries in input, H is the height of the image grid, W is the width of the
image grid and 3 corresponds to the number of encodings calculated for each pixel,
allowing the representation of the geographic position in a three-dimensional space.
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The formulas for these encodings, respectively X, Y, Z in a 3D space, are calcu-
lated as follows:

X = cos(lat) × cos(lon)

Y = cos(lat) × sin(lon)

Z = sin(lat)

This matrix is then passed through a LatLon Embedding Module to generate
embeddings for each patch produced by the model. The output of this module
is elatlon ∈ RB×N×T ×D, where N is the number of patches, T is the number of
timesteps and D is the length of the embedding.

For the spatial positional embedding, both epos and elatlon are added to the
output of the Patch Embedding Module:

espatial = epos + elatlon

The values representing the day of the year (doy) and the day of the week (dow)
are calculated using sine and cosine functions as follows:

pdow2i
= sin

A
2π × dowi

7

B
, pdow2i+1 = cos

A
2π × dowi

7

B

pdoy2i
= sin

A
2π × doyi

366

B
, pdoy2i+1 = cos

A
2π × doyi

366

B

The embeddings pdow and pdoy are both of shape RB×D/4, where B is the batch
size and D is the original embedding dimension. These embeddings are obtained
by repeating the sine and cosine values and concatenating them together to form a
tensor of shape RB×D/2. This concatenated tensor is then merged with the original
etime, which now has a shape of RB×D/2 (instead of RB×D).

The final temporal embedding is computed as:

e′
time =

è
pdow, pdoy

é
⊕ etime ∈ RB×D,

where ⊕ denotes concatenation. This approach integrates temporal features
represented by day of the week and day of the year into the overall temporal
representation used in the model.

4.2.3 Decoder for weather forecast
To improve the TimeSformer model’s ability to predict pollutants, a decoder is
added. It takes as input both the embeddings generated by the transformer encoder
and weather forecasts for the days for which predictions are desired. This choice is
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Figure 4.2: Architecture of the TimeSformer model with decoder adapted for the
task of pollutant prediction

motivated by recent studies that indicate weather conditions significantly impact
pollutant levels [9].

Figure 4.2 shows the architecture with the added decoder. The encoder part
remains identical, while the decoder takes as input the embeddings in output
from the encoder, Zenc ∈ RB×T ×HW ×D and the latent vectors of the weather
forecasting. This data comes from Era5, denoted as Xera ∈ RB×Tf ×N , where Tf

is the number of future days for which pollutant predictions are desired, and N
is the number of bands of the dataset. The weather data is passed through a
linear layer, generating Zera ∈ RB×Tf ×D. These embeddings are then summed with
the temporal positional embeddings, consisting of day of year, doy ∈ RB×Tf ×D/4,
day of week, dow ∈ RB×Tf ×D/4 and etime learnable as in the classic TimeSformer,
etime ∈ RB×Tf ×D/2.

Formally,

e′
time = [dow, doy] ⊕ etime ∈ RE,

Z ′
era = Zera + e′

time

So, the decoder takes as input the embeddings Z ′
era and the outputs from the

encoder Zenc ∈ RB×T ×HW ×D.
This module, Dec, applies multi-head attention followed by a linear layer, which

can be expressed as:

Zdecoded = Dec(Z ′
era, Zenc)
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At the output of the decoder, the embeddings pass through the forecasting
heads, which consist of 3-hidden layer MLPs. The final predictions Ŷ are generated
as:

Ŷ = MLP(Zdecoded)
In this encoder-decoder architecture, various configurations for the cross attention

mask are proposed to enhance the model’s performance:

1. Target pixel’s embeddings: concentrate the model’s attention precisely on
the embeddings of the target pixel to utilize the most relevant information for
prediction.

2. Surrounding pixels’ embeddings: expand the attention range to include
embeddings of the surrounding pixels within a 3x3 square grid, allowing
the model to consider spatial context crucial for predicting pollutant levels
influenced by nearby areas.

3. Target pixel’s temporal embeddings: ensure the preservation of com-
prehensive temporal information for each pixel by returning every frame
embedding of each pixel to the encoder.

4. Target and surrounding pixels’ temporal embeddings: modify the
cross-attention mask to focus on both the embeddings of the target pixel and
those of the surrounding pixels, while preserving the temporal information for
each pixel by returning every frame embedding of each pixel to the encoder.
This adaptation allows the model to effectively exploit both temporal and
spatial context.

4.3 Loss functions and metrics
To train the model, it is decided to predict every single pollutant for every pixel of
the bounding box. As anticipated in Chapter 3, the labels are divided into hard
labels, meaning data collected by territorial sensors, and soft labels, synthetic data
generated by an algorithm based on XGBoost.

To integrate this information into the model, a weighted loss is adopted to allow
the model to better adhere to the more trusted hard labels rather than synthetic
ones. The weight in the loss function is inversely proportional to the distance to
the closest sensor and evaluated per individual pixel, resulting in the same for each
pollutant in the given pixel.

Different loss functions are experimented with, the Mean Squared Error (MSE),
the Mean Absolute Percentage Error (MAPE), and the Mean Absolute Error
(MAE).
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Formally,

• Mean Square Error (MSE): it is computed as the mean of the squared
differences between predicted values ŷi and actual values yi, adjusted by
loss factori, across n data points.

MSE = 1
n

nØ
i=1

loss factori · (yi − ŷi)2

where loss factori represents the confidence coefficient associated with the
pixel i

• Mean Absolute Error (MAE): It measures the average absolute difference
between predicted values ŷi and actual values yi adjusted by loss factori, across
n data points.

MAE = 1
n

nØ
i=1

loss factori · |ŷi − yi|

where loss factori represents the confidence coefficient associated with the
pixel i

• Mean Absolute Percentage Error (MAPE): It calculates the average
absolute percentage difference between predicted values ŷi and actual values
yi, adjusted by loss factori, across n data points. It is particularly useful when
the scale of the data varies widely.

MAPE = 1
n

nØ
i=1

loss factori ·
-----yi − ŷi

yi

-----
where loss factori represents the confidence coefficient associated with the
pixel i

Using Mean Absolute Error (MAE) and Mean Squared Error (MSE) as loss
functions, normalization of both labels and predicted outputs is crucial. It helps
prevent the model from disproportionately focusing on pollutants with larger
numerical values, thereby balancing its attention across all pollutants equally.
This approach is particularly beneficial when aiming to predict all five pollutants
simultaneously using a single model, where each pollutant may have significantly
different measurement scales. The use of MAPE as a training loss, as studied by De
Myttenaere et al. [50], diverges from this normalization approach. In the case of
MAPE, normalization of labels is avoided as suggested by the authors, to mitigate
issues associated with values close to zero, ensuring robust training dynamics across
the dataset.
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To further reduce the impact of soft labels, a different strategy is finally tested.
In particular, the loss weight, except for values equal to 1, which correspond to
hard labels, is reduced every N epochs. Formally, let Li,j be the loss associated
with pixel (i, j) and wi,j the loss weight for pixel (i, j).

• For pixels with hard labels (weight value equal to 1), the weight remains
unchanged.

• For pixels with soft labels, i.e. with a weight value different from 1, the weight
is reduced every N epoch. For the final epochs, when e ≥ Efinal, the weight of
the soft labels is reduced to 0. Let e be the number of epochs elapsed and k
the weight reduction factor:

wi,j(e) =


0 if e ≥ Efinal

wi,j(e − 1) · k if e ≡ 0 (mod N)
wi,j(e − 1) otherwise

The total loss L of the model is given by the weighted sum of the individual
pixel losses:

L =
Ø
i,j

wi,j(e) · Li,j

This approach initially provides the model with a comprehensive overview of all
labels, albeit with different weights on the loss, and subsequently allows the model
to focus only on the most certain data.

During the model evaluation phase, the Mean Absolute Percentage Error (MAPE)
is used as the primary metric. The model predicts all pollutants simultaneously
using shared final embeddings before the forecasting heads. This unified approach
allows for the calculation of an overall MAPE, which provides a comprehensive
assessment of the model’s performance across all pollutants. Technically, the overall
MAPE is computed by averaging the MAPE values for each pollutant:

Overall MAPE = 1
m

mØ
j=1

MAPEj

where, m represents the number of pollutants, and MAPEj denotes the MAPE
calculated for the j-th pollutant.
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Chapter 5

Results

In this chapter, the experimental setup and the results obtained using the previously
described methodologies are presented.

The data used for the experiments are composed of timeseries of raster data
in the city centre of Milan from April 2018 till December 2023. The training set
includes data from April 30, 2018, to December 31, 2021, the validation set covers
the entire year of 2022, and the test set spans the entire year of 2023.

The experiments are conducted on a workstation equipped with a single GPU,
ensuring efficient computational performance. Data analysis and processing are
handled using Python, which provides robust libraries for managing datasets
and developing models. Neural network models are both developed and trained
utilizing the PyTorch Lightning framework, renowned for its flexibility and dynamic
computation capabilities. All Python packages and versions are summarized in
Table 5.1.

Library Version
python 3.10.12
pytorch-lightning 1.9.4
torchmetrics 1.3.0
torchvision 0.1.6
numpy 1.24.1
rasterio 1.3.4
einops 0.7.0
scipy 1.10.1
xarray 2023.1.0
torch 2.0.0
pandas 2.2.1

Table 5.1: Libraries used and relative versions
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For training, the model uses a batch size of 16 over 150 epochs, with a learning
rate of 1 × 10−3. The optimizer selected for this task is Adam.

The metric evaluated on the test set is the Mean Absolute Percentage Error
for overall performance as well as for specific pollutants (PM10, PM2.5, O3, NO2,
SO2).

5.1 Baseline
Table 5.2 presents the MAPE values used as baseline metrics for assessing model
performance. These metrics are derived from five distinct models utilizing XGBoost.
In contrast, our model predicts all five pollutants simultaneously as a single
integrated model. The objective is to achieve superior performance compared to
this baseline through the implementation of the model presented in Chap. 4.

PM10 PM2.5 O3 NO2 SO2
0.3154 0.4604 0.2902 0.2703 0.3424

Table 5.2: MAPE baseline results derived from five distinct models, each based
on XGBoost, to predict each pollutant.

5.2 TimeSformer model
Table 5.3 compares the performance of the TimeSformer architecture, used as an
encoder to embed the input data and forecast air pollutants, with the baseline
results.

The baseline model outperforms the TimeSformer model across all pollutants,
achieving lower MAPE errors, indicating greater accuracy in predicting pollutant
concentrations.

Model Overall PM10 PM25 O3 NO2 SO2
Baseline - 0.3154 0.4604 0.2902 0.2703 0.3424

TimeSformer 0.4856 0.4139 0.5789 0.4600 0.3506 0.6247

Table 5.3: MAPE comparison between the raw TimeSformer model and the
baseline XGBoost models for forecasting air pollutants. The overall MAPE is
missing for the baseline because it is evaluated using five distinct models, one for
each pollutant, whereas the TimeSformer is a single model predicting all pollutants
simultaneously.
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After analysing the performance of the raw model, the use of a patch embedder
consisting of different convolutional layers, one for each source of the dataset is
implemented. Each pixel embedding generated by a different layer is combined
using two custom methodologies: a linear layer or concatenation of the latent
vectors. In the last method, the latent vectors are combined to form a single
embedding vector, resulting in a smaller latent space for the individual vectors.
This model, named EoTimeSformer, is evaluated in Table 5.4.

Model Combination Overall PM10 PM2.5 O3 NO2 SO2
TimeSformer - 0.4856 0.4139 0.5789 0.4600 0.3506 0.6247

EoTimeSformer MLP 0.4343 0.4200 0.5757 0.3620 0.2826 0.5313
Concatenation 0.4465 0.3563 0.4937 0.4748 0.3262 0.5816

Table 5.4: Comparison of MAPE values for different model architectures and
combination methods. The table compares the baseline TimeSformer with the
enhanced EoTimeSformer using both MLP and concatenation methods for embed-
ding combination.

Comparing the results, EoTimeSformer outperforms the raw model. Notably, the
linear layer used as the combination method surpasses the concatenation method in
most pollutant categories, showing significant improvements in predicting O3, NO2,
and SO2. However, the concatenation method demonstrates a slight advantage in
predicting PM2.5 and PM10. This suggests that the learnable nature of the linear
layer contributes to its superior performance in reducing overall error.

The second improvement consists of transforming the latitude, longitude, day of
the year, and day of the week information into positional embeddings. Initially, the
results reported in Table 5.5 are obtained only with the temporal information as
positional embeddings, while keeping the geospatial information as sources in the
input model. Subsequently, the latitude and longitude are also transformed into
positional embeddings. Each experiment is repeated for both strategies described
above to combine the latent vectors output by the patch embedding module.
The attention mechanism as a strategy for combining embeddings is also tested,
though this did not improve the results. Nonetheless, the use of different positional
embeddings outperforms previous results.
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Combination LAT-LON Overall PM10 PM25 O3 NO2 SO2
MLP ✗ 0.4146 0.3741 0.4741 0.4484 0.2942 0.4822

Concatenation ✗ 0.4293 0.3800 0.5098 0.3950 0.3047 0.5571
MLP ✓ 0.4131 0.4052 0.5502 0.3441 0.3035 0.4628

Concatenation ✓ 0.4284 0.3800 0.5176 0.4506 0.2878 0.5062
Attention ✓ 0.5040 0.4602 0.6355 0.5062 0.3043 0.6138

Table 5.5: MAPE obtained from training EoTimeSformer using different combina-
tion methods with the inclusion or exclusion of latitude and longitude information.
All experiments include day of year and day of week information.

The best configuration is obtained using all the spatial and temporal information
as positional embedding and the MLP strategy at the end of the patch module.
This approach allows the model to effectively leverage the positional context of
the data, enhancing its ability to learn and predict the complex spatio-temporal
relationships inherent in the dataset. As a result, this configuration outperforms
others, providing the lowest overall MAPE and demonstrating superior performance
across most pollutant categories.

Using the same configuration, hyperparameter tuning is performed, changing
the embedding size and the number of frames, which make up the timeseries. Table
5.6 shows the parameters used and the results obtained. The best configuration in
this optimization process is obtained with an embedding size of 768 and 7 time
steps, resulting in the lowest overall MAPE so far.

Embed
dim Timesteps OVERALL

MAPE
PM10
MAPE

PM25
MAPE

O3
MAPE

NO2
MAPE

SO2
MAPE

256 7 0.4107 0.3733 0.5130 0.4040 0.2876 0.4758
512 7 0.4172 0.3991 0.5495 0.3556 0.2849 0.4968
768 7 0.3699 0.3558 0.4625 0.3236 0.2880 0.4193
768 1 0.4415 0.3894 0.4931 0.4498 0.3007 0.5743
768 2 0.4002 0.3788 0.5141 0.3484 0.2901 0.4695
768 3 0.3976 0.3403 0.4791 0.3873 0.3019 0.4794
768 4 0.3987 0.3941 0.5305 0.3607 0.3000 0.4083
768 5 0.3925 0.3411 0.4759 0.3686 0.2831 0.4936
768 8 0.4346 0.3885 0.5694 0.3854 0.3138 0.5161
768 9 0.4072 0.3726 0.5071 0.3638 0.2774 0.5152
768 10 0.4310 0.4035 0.5490 0.3809 0.3070 0.5145

Table 5.6: MAPE comparison using different hyperparameters of the optimal
EoTimeSformer model.

The larger embedding size of 768 likely provides the model with a richer repre-
sentation of the data, allowing it to capture more complex spatio-temporal patterns.
Furthermore, using 7 time steps, corresponding to one week, appears to be an
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optimal window for model processing. This time frame likely provides a balanced
amount of temporal information, allowing the model to learn effectively without
being overwhelmed by too much data or losing important temporal dependencies.

5.2.1 TimeSformer model with decoder
This section shows results regarding the architecture of the TimeSformer used as
an encoder to embed the input data and the decoder, which takes as input these
embeddings and the weather forecasts for the days for which pollutant levels are
being predicted.

For these experiments, except all others, the model employs a batch size of 16
and runs for 100 epochs, with a learning rate of 1 × 10−4. The optimizer selected
for this task is Adam. Moreover, the best configuration of the TimeSformer encoder
obtained in Table 5.6 is used.

Table 5.7 presents the initial results obtained with the new architecture, exploring
various configurations for the cross-attention mask as detailed in Section 4.2.3.

Strategy Temp.
embed. Overall PM10 PM25 O3 NO2 SO2

Target pixel ✗ 0.4152 0.4363 0.5695 0.3546 0.3548 0.3606
Surrounding

pixels ✗ 0.4259 0.4485 0.5846 0.3754 0.3590 0.3620

Target pixel ✓ 0.4220 0.4266 0.5604 0.4013 0.3584 0.3630
Surrounding

pixels ✓ 0.4223 0.4449 0.5815 0.3669 0.3513 0.3669

Table 5.7: MAPE obtained by the best EoTimeSformer model with the inclusion
of the decoder, evaluating different mask strategies.

The best performance is achieved using the target pixel strategy without temporal
embeddings, resulting in the lowest overall MAPE. This approach outperforms the
others, particularly in O3 and SO2 prediction. The surrounding pixels strategy,
whether frames are joined or not, consistently performs worse than the target
pixel one. These findings suggest that processing individual pixels independently,
rather than aggregating them into squares, allows the model to better capture the
fine-grained spatio-temporal patterns necessary for accurate predictions.

To downplay the significance of soft labels, which are notably more abundant
than hard labels, an approach has been to adjust the loss range not within the
standard [0, 1] range, but rather within [0, 0.1] and [0, 0.3]. This adjustment aims
to counteract significant overfitting observed when incorporating soft labels into
the decoder model. The same configurations as previously tested are employed,
and the results are presented in Table 5.8.
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Strategy Temp.
embed.

Weight
range Overall PM10 PM25 O3 NO2 SO2

Target pixel ✗ [0, 0.1] 0.4059 0.4258 0.5407 0.3677 0.3470 0.3482
Target pixel ✗ [0, 0.3] 0.4308 0.4290 0.5623 0.4224 0.3624 0.3780
Surrounding

pixels ✗ [0, 0.1] 0.42098 0.4349 0.5699 0.3459 0.3634 0.3907

Surrounding
pixels ✗ [0, 0.3] 0.4196 0.4113 0.5410 0.4257 0.3431 0.3772

Target pixel ✓ [0, 0.1] 0.4131 0.4272 0.5173 0.4053 0.3344 0.3814
Target pixel ✓ [0, 0.3] 0.4160 0.4371 0.5371 0.4096 0.3427 0.3537
Surrounding

pixels ✓ [0, 0.1] 0.4217 0.4379 0.5679 0.3541 0.3564 0.3922

Surrounding
pixels ✓ [0, 0.3] 0.4196 0.4342 0.5570 0.3765 0.3558 0.3743

Table 5.8: MAPE comparison with varied loss weight ranges and mask strategies
in the optimal EoTimeSformer model with the inclusion of the decoder.

The best overall performance is achieved with the target pixel strategy and a
weight range of [0, 0.1], which results in the lowest MAPE. This configuration
excels particularly in SO2 prediction. Conversely, the target pixel strategy with a
weight range of [0, 0.3] shows the highest overall MAPE, indicating that a broader
weight range may introduce instability. Among the surrounding pixels strategies,
the best results are obtained without joining temporal embeddings and using a
weight range of [0, 0.3], suggesting some benefit from broader weight ranges in this
setup.

5.2.2 Strategies with different training loss and methodolo-
gies

Various experiments are conducted to evaluate the impact of changing the training
loss function and adopting different strategies. The results presented in Table 5.9
utilize MAE and MAPE as the loss functions, consistent with previous method-
ologies. Therefore, detailed experiments are provided for both encoder-only and
encoder-decoder architectures using the best-performing configurations for each
scenario.

The encoder-only strategy trained with the MAPE loss function achieves the
best overall performance, resulting in the lowest overall MAPE of 0.3588. This
configuration also shows superior performance in PM25 and SO2 prediction. The
encoder-decoder strategy with MAPE loss performs worse overall compared to the
encoder-only approaches, though it excels in NO2 prediction. Training with MAE
loss generally results in higher errors, suggesting that the MAPE loss function is
more effective for this model.
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Decoder Training loss Overall PM10 PM25 O3 NO2 SO2
✗ MAPE 0.3588 0.3731 0.4443 0.3844 0.2957 0.2965
✗ MAE 0.3599 0.3592 0.4466 0.3569 0.2915 0.3453
✓ MAPE 0.3864 0.3811 0.5259 0.3655 0.2775 0.3822
✓ MAE 0.4066 0.4133 0.5026 0.4993 0.2947 0.3229

Table 5.9: MAPE obtained with the best architecture encoder-only and encoder-
decoder with different training loss functions

To further reduce the impact of soft labels, a different strategy is tested. This
approach involves gradually decreasing the weight of the soft labels as the number
of epochs increases during training. This approach enables the model to focus more
on the hard labels while continuing to predict pollutant levels across the entire area
of Milan. The results of this strategy, using MSE, MAE and MAPE as training
loss functions for both encoder and encoder-decoder architectures, are presented in
Table 5.10.

Model Decoder Train
loss Overall PM10 PM25 O3 NO2 SO2

Baseline - - - 0.3154 0.4604 0.2902 0.2703 0.3424

EoTimeSformer

✗ MSE 0.3367 0.3401 0.4741 0.3184 0.2721 0.2789
✗ MAPE 0.3066 0.2875 0.3618 0.3087 0.2747 0.3003
✗ MAE 0.3127 0.3253 0.3760 0.3042 0.2653 0.2926
✓ MSE 0.4584 0.4037 0.5933 0.3951 0.3124 0.5873
✓ MAPE 0.3500 0.3476 0.4370 0.3285 0.2956 0.3412
✓ MAE 0.3659 0.3789 0.5119 0.3689 0.2748 0.2949

Table 5.10: MAPE comparison obtained by EoTimeSformer models trained with
different loss functions and loss decay strategies for soft labels. Baseline values are
reported to facilitate the comparison.

The encoder-only strategy trained with the MAPE loss function achieves the best
overall performance, with an overall MAPE of 0.3066. These results confirm the
findings observed in Table 5.9, demonstrating that MAPE loss training consistently
outperforms other loss functions for this task.

By adopting this methodology, the best performance is achieved, surpassing the
previous baseline, mentioned in Sec. 5.1, for PM10, PM25, and NO2.
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Chapter 6

Conclusions

This study presented an analysis of air quality forecasting using advanced deep
learning techniques, with a particular focus on the TimeSformer model and its
adaptation. The primary goal was to leverage the strengths of this model to
capture intricate spatiotemporal relationships in satellite image data combined
with meteorological and morphological data for accurate pollutant concentration
prediction. The research was driven by the need for more precise air quality models
capable of addressing the complexities of urban pollution, especially in densely
populated and industrially active regions.

Key contributions of this thesis include:

1. Model Development and Optimization: the study successfully imple-
mented and optimized several variants of the TimeSformer model, leading
to an improved version known as EoTimeSformer. This model was designed
to handle multi-source data inputs, integrating various convolutional layers.
Moreover, incorporating latitude, longitude, and temporal data as positional
embeddings, the models improved pollutant predictions based on geographical
and seasonal variations.

2. Performance Metrics and Comparative Analysis: extensive experimen-
tation revealed that the encoder-only architecture with MAPE as training
loss function provided the best results. The research also included a thorough
comparison of various training strategies, not only varying the loss function but
also the label weighting methodology, concluding that the gradual reduction
of soft label weights significantly enhanced the model’s focus and predictive
capabilities.

This work makes a significant contribution to the development of more effective
air quality forecasting models, suggesting future directions for further improvements
and applications in the field of environmental monitoring.
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These include:

1. Enhanced Data Integration: future work could explore integrating ad-
ditional data sources, such as traffic and vegetation information, to further
improve model accuracy. Including such dynamic data could enhance the
model’s responsiveness to sudden changes in air quality.

2. Multi-City Training: this study uses only data collected in Milan from
a limited number of land stations providing precise data. Extending the
model training to multiple cities and regions simultaneously could facilitate
the training process.

These future research directions hold great promise for advancing the field of
pollutant forecasting. By tackling current limitations, utilizing larger and higher-
quality datasets, and exploring innovative models and untested architectures, overall
performance can be enhanced. These initiatives will lead to the creation of more
robust, accurate, and semantically aware systems for predicting pollutants.

48



Bibliography

[1] Andrea Piccoli et al. «Modeling the effect of COVID-19 lockdown on mobility
and NO2 concentration in the Lombardy region». In: Atmosphere 11.12 (2020),
p. 1319 (cit. on p. 1).

[2] Zorana Jovanovic Andersen et al. Clean air for healthy lungs–an urgent call
to action: European Respiratory Society position on the launch of the WHO
2021 Air Quality Guidelines. 2021 (cit. on p. 3).

[3] Roland Stirnberg, Jan Cermak, Julia Fuchs, and Hendrik Andersen. «Mapping
and understanding patterns of air quality using satellite data and machine
learning». In: Journal of Geophysical Research: Atmospheres 125.4 (2020),
e2019JD031380 (cit. on p. 6).

[4] Wan Yun Hong, David Koh, Anis Asma Ahmad Mohtar, and Mohd Talib Latif.
«Statistical analysis and predictive modelling of air pollutants using advanced
machine learning approaches». In: 2020 IEEE Asia-Pacific Conference on
Computer Science and Data Engineering (CSDE). IEEE. 2020, pp. 1–6 (cit. on
p. 6).

[5] Lanyi Zhang, Jane Lin, Rongzu Qiu, Xisheng Hu, Huihui Zhang, Qingyao
Chen, Huamei Tan, Danting Lin, and Jiankai Wang. «Trend analysis and
forecast of PM2. 5 in Fuzhou, China using the ARIMA model». In: Ecological
indicators 95 (2018), pp. 702–710 (cit. on p. 6).

[6] Sahar Masmoudi, Haytham Elghazel, Dalila Taieb, Orhan Yazar, and Amjad
Kallel. «A machine-learning framework for predicting multiple air pollutants’
concentrations via multi-target regression and feature selection». In: Science
of the Total Environment 715 (2020), p. 136991 (cit. on p. 6).

[7] WC Leong, RO Kelani, and Z Ahmad. «Prediction of air pollution index
(API) using support vector machine (SVM)». In: Journal of Environmental
Chemical Engineering 8.3 (2020), p. 103208 (cit. on p. 6).

49



BIBLIOGRAPHY

[8] Sheen Mclean Cabaneros, John Kaiser Calautit, and Ben Richard Hughes. «A
review of artificial neural network models for ambient air pollution prediction».
In: Environmental Modelling & Software 119 (2019), pp. 285–304 (cit. on
p. 6).

[9] Lu Bai, Jianzhou Wang, Xuejiao Ma, and Haiyan Lu. «Air pollution forecasts:
An overview». In: International journal of environmental research and public
health 15.4 (2018), p. 780 (cit. on pp. 6, 36).

[10] A Masih. «Machine learning algorithms in air quality modeling». In: Global
Journal of Environmental Science and Management 5.4 (2019), pp. 515–534
(cit. on p. 6).

[11] Qi Liao, Mingming Zhu, Lin Wu, Xiaole Pan, Xiao Tang, and Zifa Wang.
«Deep learning for air quality forecasts: a review». In: Current Pollution
Reports 6 (2020), pp. 399–409 (cit. on p. 6).

[12] Adil Masood and Kafeel Ahmad. «A review on emerging artificial intelligence
(AI) techniques for air pollution forecasting: Fundamentals, application and
performance». In: Journal of Cleaner Production 322 (2021), p. 129072 (cit. on
p. 6).

[13] Andrew Rowley and Oktay Karakuş. «Predicting air quality via multimodal
AI and satellite imagery». In: Remote Sensing of Environment 293 (2023),
p. 113609 (cit. on p. 6).

[14] Nabin Rijal, Ravi Teja Gutta, Tingting Cao, Jerry Lin, Qirong Bo, and Jing
Zhang. «Ensemble of deep neural networks for estimating particulate matter
from images». In: 2018 IEEE 3rd international conference on image, Vision
and Computing (ICIVC). IEEE. 2018, pp. 733–738 (cit. on p. 7).

[15] Chao Zhang, Junchi Yan, Changsheng Li, Xiaoguang Rui, Liang Liu, and
Rongfang Bie. «On estimating air pollution from photos using convolutional
neural network». In: Proceedings of the 24th ACM international conference
on Multimedia. 2016, pp. 297–301 (cit. on p. 7).

[16] Unjin Pak, Chungsong Kim, Unsok Ryu, Kyongjin Sok, and Sungnam Pak.
«A hybrid model based on convolutional neural networks and long short-term
memory for ozone concentration prediction». In: Air Quality, Atmosphere &
Health 11 (2018), pp. 883–895 (cit. on p. 7).

[17] Unjin Pak, Jun Ma, Unsok Ryu, Kwangchol Ryom, U Juhyok, Kyongsok Pak,
and Chanil Pak. «Deep learning-based PM2. 5 prediction considering the
spatiotemporal correlations: A case study of Beijing, China». In: Science of
the Total Environment 699 (2020), p. 133561 (cit. on p. 7).

50



BIBLIOGRAPHY

[18] Jiaqi Zhu, Fang Deng, Jiachen Zhao, and Hao Zheng. «Attention-based
parallel networks (APNet) for PM2. 5 spatiotemporal prediction». In: Science
of The Total Environment 769 (2021), p. 145082 (cit. on p. 7).

[19] Rui Yan, Jiaqiang Liao, Jie Yang, Wei Sun, Mingyue Nong, and Feipeng Li.
«Multi-hour and multi-site air quality index forecasting in Beijing using CNN,
LSTM, CNN-LSTM, and spatiotemporal clustering». In: Expert Systems with
Applications 169 (2021), p. 114513 (cit. on p. 7).

[20] Shengdong Du, Tianrui Li, Yan Yang, and Shi-Jinn Horng. «Deep air quality
forecasting using hybrid deep learning framework». In: IEEE Transactions on
Knowledge and Data Engineering 33.6 (2019), pp. 2412–2424 (cit. on p. 7).

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems 30 (2017) (cit.
on p. 7).

[22] Alexey Dosovitskiy et al. «An image is worth 16x16 words: Transformers
for image recognition at scale». In: arXiv preprint arXiv:2010.11929 (2020)
(cit. on pp. 7, 8).

[23] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. «On the rela-
tionship between self-attention and convolutional layers». In: arXiv preprint
arXiv:1911.03584 (2019) (cit. on p. 7).

[24] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. «Image transformer». In: International
conference on machine learning. PMLR. 2018, pp. 4055–4064 (cit. on p. 7).

[25] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. «Local relation net-
works for image recognition». In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, pp. 3464–3473 (cit. on p. 7).

[26] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm
Levskaya, and Jon Shlens. «Stand-alone self-attention in vision models». In:
Advances in neural information processing systems 32 (2019) (cit. on p. 7).

[27] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. «Exploring self-attention for
image recognition». In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 10076–10085 (cit. on p. 7).

[28] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. «Generating long
sequences with sparse transformers». In: arXiv preprint arXiv:1904.10509
(2019) (cit. on p. 7).

[29] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. «Scaling autore-
gressive video models». In: arXiv preprint arXiv:1906.02634 (2019) (cit. on
p. 7).

51



BIBLIOGRAPHY

[30] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. «Axial-deeplab: Stand-alone axial-attention for panoptic
segmentation». In: European conference on computer vision. Springer. 2020,
pp. 108–126 (cit. on p. 7).

[31] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić,
and Cordelia Schmid. «Vivit: A video vision transformer». In: Proceedings of
the IEEE/CVF international conference on computer vision. 2021, pp. 6836–
6846 (cit. on pp. 7, 8).

[32] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. «Is space-time attention
all you need for video understanding?» In: ICML. Vol. 2. 3. 2021, p. 4 (cit. on
pp. 7, 8).

[33] Alexandre Lacoste et al. «Geo-bench: Toward foundation models for earth
monitoring». In: Advances in Neural Information Processing Systems 36 (2024)
(cit. on p. 10).

[34] Ming Jiang, Yimin Chen, Zhe Dong, Xiaoping Liu, Xinchang Zhang, and
Honghui Zhang. «Multi-Scale Fusion CNN-Transformer Network for High-
Resolution Remote Sensing Image Change Detection». In: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing (2024)
(cit. on p. 10).

[35] Yanyuan Huang, Xinghua Li, Zhengshun Du, and Huanfeng Shen. «Spa-
tiotemporal Enhancement and Interlevel Fusion Network for Remote Sensing
Images Change Detection». In: IEEE Transactions on Geoscience and Remote
Sensing (2024) (cit. on p. 10).

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 10).

[37] Isaac Corley, Caleb Robinson, Rahul Dodhia, Juan M. Lavista Ferres, and
Peyman Najafirad. Revisiting pre-trained remote sensing model benchmarks:
resizing and normalization matters. 2023. arXiv: 2305.13456 [cs.CV] (cit. on
p. 10).

[38] Linying Zhao and Shunping Ji. «CNN, RNN, or ViT? An Evaluation of
Different Deep Learning Architectures for Spatio-Temporal Representation of
Sentinel Time Series». In: IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 16 (2022), pp. 44–56 (cit. on p. 10).

[39] Yuan Yuan, Lei Lin, Qingshan Liu, Renlong Hang, and Zeng-Guang Zhou.
«SITS-Former: A pre-trained spatio-spectral-temporal representation model
for Sentinel-2 time series classification». In: International Journal of Applied
Earth Observation and Geoinformation 106 (2022), p. 102651 (cit. on p. 10).

52

https://arxiv.org/abs/2305.13456


BIBLIOGRAPHY

[40] Michail Tarasiou, Erik Chavez, and Stefanos Zafeiriou. «ViTs for SITS: Vi-
sion Transformers for Satellite Image Time Series». In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023,
pp. 10418–10428 (cit. on p. 11).

[41] Casper Fibaek, Luke Camilleri, Andreas Luyts, Nikolaos Dionelis, and Bertrand
Le Saux. «PhilEO Bench: Evaluating Geo-Spatial Foundation Models». In:
arXiv preprint arXiv:2401.04464 (2024) (cit. on p. 11).

[42] Gabriel Tseng, Ruben Cartuyvels, Ivan Zvonkov, Mirali Purohit, David Rol-
nick, and Hannah Kerner. «Lightweight, pre-trained transformers for remote
sensing timeseries». In: arXiv preprint arXiv:2304.14065 (2023) (cit. on pp. 11,
12, 34).

[43] Urban Atlas LC/LU. url: https://sdi .eea.europa.eu/catalogue/
copernicus/api/records/fb4dffa1- 6ceb- 4cc0- 8372- 1ed354c285e6?
language=all (cit. on p. 16).

[44] Digital Elevation Models. url: https://spacedata.copernicus.eu/colle
ctions/copernicus-digital-elevation-model (cit. on p. 18).

[45] ERA5 Copernicus. url: https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=overview (cit. on p. 19).

[46] Craig Donlon et al. «The sentinel-3 mission: Overview and status». In: 2012
IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2012,
pp. 1711–1714 (cit. on p. 20).

[47] J Nieke, U Klein, F Borde, B Berruti, J Frerick, J Stroede, and C Mavro-
cordatos. «Sentinel-3 payload overview». In: Proc. SPIE Europe (2009) (cit.
on p. 20).

[48] Arjuman R Reshi, Subbarao Pichuka, and Akshar Tripathi. «Applications
of Sentinel-5P TROPOMI Satellite Sensor: A Review». In: IEEE Sensors
Journal (2024) (cit. on p. 22).

[49] Rivelazione qualità dell’aria comune di Milano. url: https://dati.comune.
milano.it/dataset/ds409-rilevazione-qualita- aria- 2023 (cit. on
p. 23).

[50] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
«Mean absolute percentage error for regression models». In: Neurocomputing
192 (2016), pp. 38–48 (cit. on p. 38).

53

https://sdi.eea.europa.eu/catalogue/copernicus/api/records/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6?language=all
https://sdi.eea.europa.eu/catalogue/copernicus/api/records/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6?language=all
https://sdi.eea.europa.eu/catalogue/copernicus/api/records/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6?language=all
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://dati.comune.milano.it/dataset/ds409-rilevazione-qualita-aria-2023
https://dati.comune.milano.it/dataset/ds409-rilevazione-qualita-aria-2023

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The problem of air quality
	Principal pollutants
	The importance of monitoring air quality

	Related Works
	Approaches for air pollutant concentrations: from classical methods to deep learning techniques
	Vision Transformers
	Deep learning models in earth observation tasks

	Datasets analysis
	Datasets description
	Static Data
	Dynamic Data
	Stations data

	Data preprocessing
	Data cleaning and space-time alignment
	Creation of timeseries
	Generation of ground truth labels


	Methodology
	Model
	Model adaptations
	Patch embedding per single source
	Geo-spatial and time information
	Decoder for weather forecast

	Loss functions and metrics

	Results
	Baseline
	TimeSformer model
	TimeSformer model with decoder
	Strategies with different training loss and methodologies


	Conclusions
	Bibliography

