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Summary

This thesis presents an approach to image captioning tailored specifically for visual
artworks, leveraging advanced transformer models to address the unique challenges
posed by this domain. The primary objective is to develop a framework capable
of generating detailed and emotionally resonant descriptions of artworks. This is
achieved through the integration of Faster R-CNN for feature extraction and a
Meshed-Memory Transformer (M2 Transformer) for caption generation, resulting in
the "Artwork-Enhanced Region-Aware Meshed Memory Transformer" (Art-RA-M2
Transformer).

The Faster R-CNN component of the model is used to detect and localize objects
within artwork images, extracting features that form the basis for caption generation.
The Meshed-Memory Transformer enhances these features by incorporating a
meshed memory mechanism that allows for a deeper understanding of the context
and relationships within the image. This combined approach ensures that the
generated captions not only accurately describe the visual content but also generate
the emotional caption for artworks.

Extensive experiments conducted on the ArtEmis dataset, which includes over
80,000 artworks annotated with 455,000 emotional responses and explanatory
captions, demonstrate the effectiveness of the proposed model. The Art-RA-M2
Transformer significantly outperforms existing methods in generating captions
that are both accurate and emotionally rich. Performance is evaluated using
standard metrics such as BLEU, ROUGE, and CIDEr, with results showing notable
improvements across all metrics.

Key contributions of this research include the development of a novel framework
for emotional image captioning,using Faster R-CNN and M2 Transformer, compre-
hensive experimental validation using the ArtEmis dataset, and the proposal of
future research directions such as the integration of advanced detection models,
real-time applications, and further enhancement of captioning techniques. This
work highlights the potential of AI to enhance the interpretation and accessibility
of visual artworks, providing a deeper understanding of the complex interplay in
artworks The findings pave the way for future advancements in the field of image
captioning, particularly in applications involving visual art.
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Chapter 1

Introduction

Image captioning represents a fundamental task in artificial intelligence, entailing
the generation of descriptive text for a given image. Traditionally, this task has
followed a two-step process: first, extracting visual features from the image, and
then utilizing these features to generate a coherent and contextually relevant
description.

This task sits at the intersection of computer vision and natural language
processing, aiming to enable computers to comprehend visual images and auto-
matically generate textual descriptions. In this task, an image serves as the input,
and the output is a textual description that encapsulates the content and scene
depicted in the image. Image captioning finds widespread applications in various
domains, including image understanding, intelligent search engines, and automatic
translation.

The core challenge in image captioning lies in effectively combining visual and
language information, enabling computers to understand images and describe their
contents automatically. Deep learning algorithms, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), are commonly employed
to address this challenge.

1.1 Overview of Methodologies in Image Cap-
tioning

The classic image captioning algorithm typically comprises two main components: a
visual model for extracting image information and a language model for generating
text. The language model may encompass various architectures such as LSTM,
CNN+RNN, BERT, and Transformer. The key challenge in this task lies in aligning
the representation of image features with text features. Common optimization
strategies include attention mechanisms and graph convolutional networks (GCNs).

1



Introduction

Figure 1.1: Pipeline of the image caption task

During the model training stage, the input comprises an image and its correspond-
ing textual information (annotations), and the output is a series of model-generated
image caption sentences. The optimal model parameters are saved based on the
loss function and evaluation metrics. During the model inference stage, the input
is a test image, and the output is the best caption for this image.

1.2 Recent Advances and Challenges in Image
Captioning: Bridging the Gap for Visual Art-
works

In recent years, significant strides have been made in image captioning, focusing on
generating descriptive captions for real-life images. However, a notable gap exists
when these technologies are applied to visual artworks. Unlike real-life images,
visual artworks demand a deeper understanding to capture the subtleties and
complexities inherent in artistic expression.

Methodologies in image captioning typically revolve around two primary ap-
proaches: grid features and region features. Grid features involve extracting local
image features from regular grid points in higher-layer feature maps of Convolu-
tional Neural Networks (CNNs) or Vision Transformers. Conversely, region features
correspond to local image features associated with detected object regions, often
obtained through object detection frameworks like Faster R-CNN.

However, region features present limitations, including their failure to capture
contextual information and the potential oversight of crucial objects, resulting in
incomplete or inaccurate image descriptions. Moreover, the computational overhead
required to compute region features, particularly with high-performance CNN-based
detectors, can be prohibitive. In contrast, grid features, derived from entire image
feature maps, are not subject to such limitations but may lack granular object-level
information.

2
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Due to the nature of tasks like image captioning and visual question answering
(VQA), which typically require fine-grained visual processing and sometimes mul-
tiple reasoning steps to generate high-quality outputs, we employed a combined
bottom-up and top-down attention mechanism (based on Faster R-CNN) for the
artworks image captioning task. By combining these complementary features, our
aim is to provide a more comprehensive representation of input images, facilitating
the generation of accurate and contextually rich image captions tailored specifically
for visual artworks.

1.3 Advancing Image Captioning for Artwork Im-
ages

Our research aims to bridge the gap in image captioning technology by proposing a
novel approach specifically tailored for artwork images. We introduce an integrated
framework that leverages the capabilities of Faster R-CNN and a lightweight
Transformer-based caption generator, equipped with a unique cross-attention
mechanism and a combined bottom-up and top-down attention mechanism.

Our primary objective is to develop a model capable of generating detailed
descriptions that effectively depict visual artworks while also reflecting viewer
responses. Unlike previous methods that primarily focused on predicting objects
and generating captions from real-life images, our approach extends captioning
technology to the domain of artwork images.

To achieve this goal, we adopt a mechanism that utilizes image detection
technology, specifically Faster R-CNN[1], and image annotation techniques applied
to artwork images. Faster R-CNN is an object detection model that aims to
identify instances of objects belonging to certain categories and localize them with
bounding boxes. Initially, Faster R-CNN is employed to extract feature maps
from artwork images based on bounding boxes, effectively capturing their visual
content. Subsequently, We also employ a Transformer-based caption generator that
dynamically attends to region features provided by the detection model during
the captioning process. The Meshed-memory Transformer(M2)[2] builds upon the
traditional transformer model by incorporating a meshed memory mechanism. This
mechanism allows the model to better understand and utilize context from both
the image and text, leading to more accurate and coherent captions.

By integrating these technologies, our approach, termed the "Artwork-Enhanced
Region-Aware Meshed Memory Transformer" (Art-RA-M2 Transformer), represents
a significant advancement in the field of artwork image captioning.

The innovation of our approach lies in integrating artwork images into the
conventional field of image recognition. This integration is achieved through the

3
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combination of cross-attention and grid memory mechanisms within the Meshed-
Memory transformer architecture, along with region-based image features. By
comprehensively understanding the content depicted in visual art pieces, we can
generate nuanced captions that relate to audience reactions. Through our research,
we aim to push the boundaries of image captioning technology, providing richer
and more insightful descriptions for visual artworks.

4



Chapter 2

Related Work

2.1 Exploring the Intersection of Deep Learning
and Art

2.1.1 Deep Learning and Art
The convergence of deep learning and art has garnered significant academic interest
within the field of computer science. Traditionally, in computer vision, the focus
has been on image classification and the challenge of identifying emotions elicited
by images. For example, [3], [4], [5], and [6] have developed systems for identifying
the predominant emotions evoked by given images.

Recent scholarly endeavours, however, have embarked on exploring more intricate
connections between art and emotional context. For instance, the study by Johnson
et al. [7] delves into the correlation between paintings and textual narratives,
unravelling historical and societal complexities. Additionally, [8] aims to generate
captions for artworks in an elegant prose reminiscent of Shakespeare, using language
style transfer techniques. Furthermore, the BAM dataset introduced by [9] provides
a comprehensive collection of diverse attributes of artistic imagery, serving as a
valuable resource for research in this domain.

Our research seeks to pioneer machine learning methodologies tailored for
analyzing and generating explanations regarding the emotional resonance evoked
by artworks. This exploration aims to contribute to the evolving landscape at the
intersection of deep learning and art within computer science.

2.1.2 Captioning Models and Data
In the realm of captioning models and data, a substantial body of research exists,
along with corresponding datasets, targeting various aspects of human cognition.

5
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For instance, the COCO-captions dataset [10] focuses on describing common
objects in natural images, while Monroe et al.’s dataset [11] includes discriminative
references for 2D monochromatic colors. Achlioptas et al. [12, 13] have collected
discriminative utterances for 3D objects, providing valuable resources for captioning
models.

Significant advancements have been made in deep neural network-based cap-
tioning approaches. The seminal works of Vinyals et al. [14] and Karpathy et
al. [15] paved the way by leveraging deep recurrent networks, such as LSTMs
[16], and classic techniques like training with Teacher Forcing [17]. Our research
builds upon these techniques and, through ArtEmis, introduces a new dimension
to image-based captioning by focusing on artwork caption analysis.

2.2 Advancements in Object Detection and Im-
age Understanding

2.2.1 Object Proposals
There is a significant body of literature presenting diverse methodologies for
generating object proposals. Comprehensive surveys and comparisons of these
methods can be found in Chavali et al. [18] and Hosang et al. [19, 20], offering
valuable insights into their effectiveness and suitability for various applications.
Notable methodologies include super-pixel groupings like Selective Search [21],
CPMC [22], and MCG [23], which have garnered widespread adoption. Additionally,
sliding window approaches such as Objectness in Windows [24] and EdgeBoxes [25]
have also been prominent.

Object proposal techniques are often integrated as independent modules alongside
detectors, as seen with methods like Selective Search [21] combined with object
detectors like R-CNN [26] and Fast R-CNN [27]. This modular approach facilitates
the development of more robust and efficient object detection systems.

2.2.2 Deep Networks for Object Detection
Deep neural networks have emerged as powerful tools for accurately classifying
proposal regions into object categories or backgrounds, exemplified by the R-CNN
method [26]. While R-CNN primarily serves as a classifier, its performance heavily
relies on the effectiveness of the region proposal module [19]. Various studies
have explored the utilization of deep networks to predict object bounding boxes,
including OverFeat [28], which employs a fully-connected layer to predict box
coordinates for localization tasks. This layer is later converted into a convolutional
layer for detecting multiple class-specific objects.

6
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The MultiBox methods [29, 30] generate region proposals using a network’s last
fully-connected layer, predicting multiple class-agnostic boxes. These class-agnostic
boxes serve as proposals for R-CNN [26]. Notably, MultiBox operates on single or
multiple large image crops, contrasting with our fully convolutional approach, and
does not share features between proposal and detection networks.

The DeepMask method [31] focuses on learning segmentation proposals, while
shared computation of convolutions [28, 32, 27, 33, 34] has garnered attention for its
efficiency and accuracy in visual recognition. Notable examples include OverFeat
[28], which computes convolutional features from an image pyramid for classification,
localization, and detection, and the use of adaptively-sized pooling (SPP) [34]
for efficient region-based object detection [35] and semantic segmentation [33].
Fast R-CNN [27] facilitates end-to-end detector training on shared convolutional
features, demonstrating remarkable accuracy and speed.

2.2.3 Advancements in Attention-based Deep Neural Net-
works

Numerous attention-based deep neural networks have been proposed for tasks such
as image captioning and Visual Question Answering (VQA). These models typically
adopt top-down approaches, where context is provided by a representation of a
partially-completed caption for image captioning [36, 37, 38, 39], or a representation
of the question for VQA [40, 41, 42, 43, 44]. Attention is applied to the output
of one or more layers of a Convolutional Neural Network (CNN) by predicting a
weighting for each spatial location in the CNN output. However, determining the
optimal number of image regions poses a challenge, leading to a trade-off between
coarse and fine levels of detail.

Relatively few works have explored applying attention to salient image regions.
Notably, Jin et al. [45] employ Selective Search [46] to identify salient image regions,
which are then filtered and resized before being inputted to an image captioning
model with attention. Similarly, the Areas of Attention captioning model [47]
utilizes Edge Boxes [48] or Spatial Transformer Networks [49] to generate image
features, which are processed using an attention model based on three bi-linear
pairwise interactions [47].

In contrast to these approaches, we leverage Faster R-CNN [1] instead of hand-
crafted or differentiable region proposals [46, 48, 49], establishing a closer link
between vision and language tasks and recent advancements in object detection.
By pre-training our region proposals on object detection datasets, we capitalize
on the benefits similar to pre-training visual representations on ImageNet [50],
leveraging significantly larger cross-domain knowledge. Additionally, we extend our
method to VQA, demonstrating the broad applicability of our approach.

7
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2.3 Image Captioning

2.3.1 Evolution of Image Captioning Techniques

Early methodologies for image captioning were primarily template-based and heavily
reliant on fixed sentence structures combined with object detections from images.
The transformation to more flexible and accurate captioning was marked by the
advent of deep learning techniques, which began with the seminal work of Vinyals et
al. [14], introducing the concept of image captioning using deep recurrent networks,
specifically LSTMs [16]. This approach allowed for generating natural language
descriptions of images by leveraging large datasets for training neural networks.

2.3.2 Neural Network-based Approaches

Karpathy et al. [15] further advanced the field by proposing a deep visual-semantic
alignment model, which aligns segments of sentences to corresponding image regions.
This model employed a combination of Convolutional Neural Networks (CNNs)
for image feature extraction and Recurrent Neural Networks (RNNs) for sequence
generation, creating a more holistic and integrated approach to image captioning.

More recently, attention mechanisms have been incorporated into image cap-
tioning models to improve the alignment between image features and generated
captions. The "Show, Attend and Tell" model by Xu et al. [39] introduced an
attention-based approach, enabling the model to focus on different parts of the
image while generating each word in the caption. This significantly improved the
relevance and accuracy of the captions by dynamically adjusting the focus based
on the context of the generated words.

2.3.3 Transformers and Pre-trained Models

The transformer architecture [51], originally designed for natural language process-
ing tasks, has also been adapted for image captioning. The use of transformers
allows for better parallelization and handling of long-range dependencies in the gen-
erated captions. Models like "Image Transformer" [52] have shown promising results
by replacing traditional RNN-based methods with transformer-based architectures.

Additionally, pre-trained models such as BERT [53] and GPT-3 [54] have been
utilized to enhance the language generation capabilities of image captioning systems.
By leveraging large-scale pre-training on diverse text corpora, these models bring a
more nuanced understanding of language, leading to more fluent and contextually
appropriate captions.

8



Related Work

2.4 Emotional captions in Art Works

2.4.1 Emotion Recognition
Traditional approaches to emotion recognition in images often rely on facial ex-
pressions and body language [55], which are not always applicable to artworks.
Therefore, new methodologies are needed to capture the subtleties and abstract
qualities of emotions conveyed through art.

2.4.2 Deep Learning Approaches
Recent advances in deep learning have opened new avenues for emotion recognition
in art. Convolutional Neural Networks (CNNs) have been employed to extract
features from artworks that correlate with emotional responses. For example, the
ArtEmis dataset [56] provides a large-scale collection of artworks annotated with
emotional responses, enabling the training of models to predict the emotions evoked
by a given artwork.

Techniques such as transfer learning and fine-tuning pre-trained models on
art-specific datasets have proven effective in enhancing the performance of emotion
recognition systems. Additionally, multi-modal approaches that combine visual
features with contextual information, such as the title or description of the artwork,
have shown promise in improving the accuracy of emotion prediction.

2.4.3 Applications and Future Directions
The ability to recognize emotions in art has numerous applications, including
enhancing the accessibility of art for visually impaired individuals, curating person-
alized art experiences, and creating emotionally responsive interactive installations.
Future research directions include exploring more sophisticated models that can
understand and interpret the cultural and historical context of artworks, as well as
integrating emotion recognition with other aspects of art analysis, such as style
and technique.

2.5 Contributions of This Work
This work aims to advance the understanding and generation of emotional responses
to art through the development of novel machine learning methodologies. By
leveraging deep learning techniques and large-scale datasets, we seek to create
models capable of accurately predicting and explaining the emotional impact of
artworks. Our contributions include:
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1. Developing a comprehensive framework for analyzing the emotional content
of artworks, integrating visual and contextual features.

2. Introducing new datasets and evaluation metrics tailored for emotion recog-
nition in art.

3. Proposing novel neural network architectures that improve the accuracy and
interpretability of emotion prediction models.

4. Demonstrating the practical applications of our models in enhancing the
accessibility and personalization of art experiences.

Through these contributions, we aim to bridge the gap between the subjective
experience of art and objective analysis, fostering a deeper understanding of the
emotional dimensions of artistic expression.
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Chapter 3

Dataset

3.1 Dataset of Microsoft COCO
The Microsoft Common Objects in Context (COCO)[10]cite dataset is one of the
most influential datasets for object detection, segmentation, and image captioning
tasks within the field of computer vision. The COCO dataset provides a large-
scale set of images, object annotations, and captions that enable the training and
evaluation of machine learning models on complex visual tasks.

Composition and Structure COCO contains over 200,000 labeled images with
more than 500,000 object instances categorized into 80 common object types. These
images are sourced from diverse real-world scenarios and include a rich set of object
instances per image, making it one of the most comprehensive datasets for detecting
multiple objects within the same scene. The dataset is split into training, validation,
and testing sets to facilitate the development and benchmarking of models.

Annotations and Captions Each image in the COCO dataset is annotated
with precise object bounding boxes and segmentation masks, providing detailed
spatial localization. Additionally, the dataset is augmented with five descriptive
captions per image, written by human annotators. These captions are crafted to not
only describe the visible objects but also to convey the context and relationships
between them, offering a rich source of data for image captioning tasks.

Use in Research and Development The COCO dataset has become a standard
benchmark in the computer vision community, with its annual challenges pushing the
boundaries of state-of-the-art in object detection, instance segmentation, and image
captioning. The dataset’s complexity and variety have prompted the development
of more sophisticated algorithms capable of handling nuanced visual scenes.
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Integration with Current Methodology In our research, the COCO dataset
serves as an auxiliary tool for benchmarking our models. We leverage its compre-
hensive annotations and captions to fine-tune and evaluate the performance of our
Meshed-Memory Transformer against a well-established baseline. The diversity
and complexity of COCO’s images provide a robust platform for demonstrating
our model’s capabilities in generating accurate and contextually relevant image
captions. Furthermore, by comparing results on the COCO dataset with those on
the ArtEmis dataset, we can assess the generalizability and adaptability of our
proposed method across different domains of visual content.

Significance in Evaluation Incorporating COCO into our experimental setup
allows us to validate the effectiveness of our models in a controlled environment,
with a focus on general object recognition and captioning. This comparative
analysis helps to highlight the strengths and potential areas for improvement in our
methodology, ensuring that our contributions are grounded in rigorous empirical
evidence.

By utilizing the COCO dataset alongside ArtEmis, we aim to establish a compre-
hensive understanding of our model’s performance and to underscore its potential
for application in diverse scenarios that demand detailed image understanding and
description.

3.2 Dataset of Artemis
The ArtEmis dataset is employed in this thesis for the exploration of emotional image
captioning, representing a novel approach to associating visual art with affective
language [56]. ArtEmis stands out from conventional annotation datasets by
concentrating on the emotional experiences elicited by visual artworks. Annotators
are tasked with identifying the dominant emotion they perceive in response to an
image and are asked to provide a grounded explanation for their emotional selection
in natural language.This approach results in a dataset rich with signals pertinent
to both the objective content and the affective essence of an image, forging links
with abstract concepts or extending beyond what is directly visible through visual
similes, metaphors, or references to personal experiences. Predominantly focusing
on visual art, such as paintings and artistic photographs, ArtEmis serves as a prime
example of imagery designed to invoke emotional responses from its audience.

The ArtEmis dataset encompasses 455K emotion attributions and explana-
tions from human annotators, covering 80K artworks from WikiArt. Utilizing
this dataset, we developed and trained a series of captioning systems capable of
articulating and elucidating emotions derived from visual stimuli. Notably, the
captions generated often successfully mirror the semantic richness and abstract
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Figure 3.1: ArtEmis Dataset

nuances of the imagery, surpassing the capabilities of models trained on more
traditional datasets. The dataset and the methodologies developed are accessible
at https://artemisdataset.org.

3.2.1 Characteristics
ArtEmis is characterized by:

• A diverse array of emotional categories that includes a spectrum of emo-
tions such as contentment, awe, and fear, along with an ’other’ category to
encapsulate non-standard emotional responses.

• Extensive natural language explanations that accompany each emotional
attribution, enriched with references to personal experiences, abstract concepts,
and metaphorical interpretations.

• A vast compilation of visual stimuli provided by paintings and artistic photog-
raphy aimed to invoke emotional reactions from the viewers.

3.2.2 Dataset Illustration
Figure 3.1 showcases a series of images from the ArtEmis dataset along with
corresponding emotional attributions and linguistic explanations as annotated by
human participants. These exemplify the dataset’s capacity to capture the nuanced
interplay between visual stimuli and the spectrum of human emotions.
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Figure 3.2: ArtEmis Emotion Distribution

The provided image3.2 appears to be a bar chart illustrating the distribution
of different emotional responses in the Artemis dataset. Each bar represents the
percentage of data corresponding to a particular emotion, with categories such as
"amusement," "awe," "contentment," "excitement," and others, including a category
for "something else," which may capture any emotions not specifically listed or
articulated. This distribution can offer insights into the most and least frequently
occurring emotions in the dataset’s annotations.

Figure 3.3: ArtEmis Artstyle Distribution

The figure3.3 depicts a histogram that shows the distribution of token lengths for
utterances in the Artemis dataset. The mean (µ) number of tokens per utterance is
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15.59, the median is at 14 tokens, and the standard deviation (σ) is 6.95, indicating
variability in the length of the utterances. This graph can be used to understand
the complexity and verbosity of language used in the dataset.

3.2.3 Research Utilization
The dataset’s primary application in this research involves training machine learn-
ing models that can accurately predict and articulate the emotional responses
elicited by an image. Such models are capable of interpreting the semantic and
emotional contents of images, thereby enriching the image captioning process with
an emotional dimension.

The ArtEmis dataset is foundational to this study, enabling the exploration of
how visual art and affective language are interconnected and how this relationship
can be modelled computationally.

This image3.4 appears to be a sample from the ArtEmis dataset showcasing
a painting accompanied by various captions that reflect different emotions and
observations from viewers. Each comment provides insight into the individual’s
subjective response to the artwork, ranging from perceptions of the subject’s physical
appearance to emotional reactions and personal judgments. Such datasets are
valuable for exploring the intersection of visual art and natural language processing.

3.3 Data Collection and Data Quality
Comparative analyses of data collection methods between the ArtEmis dataset,
COCO, and other prominent datasets underscore the superior data quality and
emotional granularity of ArtEmis. The rich annotations in ArtEmis, combining
emotional responses with explanatory captions, provide a dataset uniquely suited
for training models to understand and generate affective image captions, setting it
apart from the more general-purpose COCO dataset.

3.4 Datasets pre-processing
We detail the characteristics of the ArtEmis dataset utilized in our experiments.
The dataset comprises emotional annotations for a diverse set of artworks, making
it ideal for our task. We also reference other datasets used for comparison purposes,
such as the Microsoft COCO dataset, highlighting the differences in data quality
and granularity. In this research, we leveraged the ArtEmis dataset, a novel and
large-scale compilation aimed at exploring the intricate dynamics between visual
stimuli, their emotional impact, and the verbal explanations for these emotions.
Unlike conventional annotation datasets in computer vision, ArtEmis emphasizes
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Figure 3.4: ArtEmis Caption Sample

the affective experiences elicited by visual artworks, requiring annotators to specify
the dominant emotion evoked by an image and importantly, to provide a grounded
verbal rationale for their emotional choice.

Built upon the WikiArt dataset, ArtEmis annotates each artwork with at least
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five annotators’ dominant emotional reactions and their detailed explanations for
these reactions. The dataset encourages a broad spectrum of emotional responses,
including an ’other’ category for emotions not explicitly listed or for instances
where annotators did not have a strong emotional reaction.

During preprocessing, we initially performed a statistical analysis of the ArtEmis
dataset to ascertain its linguistic richness and diversity. Subsequently, we employed
the Faster R-CNN model for feature extraction from the artwork images. The
extracted features were then saved and subjected to a secondary cleaning process. To
ensure the quality of detection, we established a threshold to maintain the result of
each detected image around 20 bounding boxes. Images with poor detection quality
or that failed to reveal significant target information were filtered out. Ultimately,
we retained approximately 74,528 images and their corresponding annotations
for further analysis and model training.(train 52170 test 11179 value1179) train
annotation219114test annotation46951 val 46951 corpus5

This preprocessing step was critical for aligning the data with our research
objectives, ensuring that our models could effectively learn from and interpret the
nuanced interplay between visual content and its evoked emotional captions. The
meticulous cleaning and feature extraction processes laid the groundwork for the
sophisticated analysis and model development that followed.
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Methodology

4.1 Introduction to Research Methods

In the field of image captioning, extensive research has been conducted. Surveys
provide comprehensive overviews and categorizations of methods ranging from visual
encoding and text generation to training strategies, existing datasets, and evaluation
metrics. Our approach is inspired by image captioning methods such as the Meshed-
Memory Transformer (M2). M2 is a representative Transformer-based encoder-
decoder architecture used for image captioning tasks. It incorporates persistent
memory vectors to encode prior knowledge when modeling relationships between
image regions. Furthermore, the encoder and decoder blocks are interconnected in
a meshed structure to leverage both low-level and high-level features.

Our model differs from M2 in that we integrate image features based on bounding
boxes to annotate artwork images. ArtEmis v2.0 introduces a contrastive data
collection method to balance ArtEmis with a new complementary dataset having
contrasting emotional attributions for similar pairs of artworks.

Our task is emotional image captioning, where the model is expected to gener-
ate emotionally nuanced captions describing visual art. We utilize the ArtEmis
dataset, which includes emotional attributions and explanations for artworks. We
address the fundamental annotation problem based on artwork grounding. The
diagram illustrates an example of the task. In the grounding task, the model
utilizes image features extracted from the given image to generate imperative
statements expressing spatial references containing target objects and destinations.
It introduces image features based on bounding boxes detected using Faster R-CNN
object detection technology and a Transformer-based encoder-decoder architecture
to merge visual and geometric features of objects in the image.
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4.1.1 Problem Statement
In the domain of emotional image captioning, the objective of our research is to
devise a computational model capable of formulating captions that encapsulate the
emotional essence conveyed by visual artwork. The ArtEmis dataset, replete with
interpretative annotations for artworks, serves as our empirical foundation. Our
primary challenge lies in rendering articulate and emotionally coherent descriptions
for artwork based upon their visual representations.

The scope of our inquiry encompasses two fundamentally linked computational
tasks: object detection and image captioning. The workflow of our approach is
delineated as follows:

• Input: A digital image of an artwork.

• Intermediate Representation: Extracted image features encapsulating
both the content and emotional context.

• Output: A comprehensive and emotionally perceptive caption for the artwork.

Our endeavor is to construct a model adept in discerning and interpreting the
emotional subtexts presented in artworks. Such a model must not only recognize
and locate objects within the art piece but also interpret the emotional connotations
and interactions these objects signify, thereby enabling a holistic understanding of
the artwork.

Assessment of our model’s effectiveness is conducted through established au-
tomatic evaluation metrics supplemented by human evaluative insights. These
metrics include BLEU 1-4, ROUGE-L, CIDEr, and SPICE. They furnish a quanti-
tative gauge of the captions’ quality and emotive accuracy when juxtaposed with
human annotations, guaranteeing that the generated descriptions are congruent
with human emotional cognition and articulation of the visual stimuli presented in
the artworks.

4.1.2 Overview of Proposed Method
Figure 4.1 outlines our proposed model, a robust multi-modal architecture aimed
at comprehensively understanding and describing visual art through emotionally
nuanced captions. This architecture seamlessly integrates an object detection model
with an image captioning model, each consisting of a series of encoder and decoder
blocks.

Inspired by the efficacy of the Faster R-CNN [Frcnn] in object detection and
the Meshed-Memory Transformer [3] in image captioning, our approach benefits
from these models’ robust feature extraction and complex attention mechanisms.
This dual-influence is evident in the framework’s ability to process and understand
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Figure 4.1: The Complete Model Architecture Diagram

the emotional content depicted in artworks, as demonstrated in its application to
the ArtEmis dataset [26].

Our model’s object detection phase commences with convolutional layers map-
ping the input image into a rich feature space, followed by an RPN generating
precise object location proposals. Subsequent feature extraction harnesses these
maps to capture distinctive characteristics essential for subsequent classification
and emotional interpretation tasks.

In the realm of image captioning, our model employs advanced attention schemas
such as mask and multi-head attention, facilitating the model’s focus on relevant
aspects of the image and allowing for the dynamic encoding of both visual and
emotional cues. The encoders transform these cues into context vectors, which the
decoders then translate into descriptive language, capturing the artwork’s emotional
tenor.

Finally, the caption generation is a synthesis of visual understanding and linguis-
tic expression, outputting sequences processed through a log softmax layer, refined
by a beam search, to yield emotionally resonant captions. This holistic process,
from detection to description, underscores our model’s capacity for deep emotional
comprehension and articulation, offering significant contributions to the field of
computer vision and emotional AI.

This synthesis of object detection and emotional captioning is further delineated
through the modular breakdown provided, elucidating each component’s specialised
functions to the overall task. From the initial image processing to the final caption
output, the modules are intricately designed to interpret and convey the narrative
embedded within the visual data, achieving a synergy that mirrors human-like
understanding and description of the art.
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4.2 Implement method

4.2.1 Faster R-CNN
Overview

Our object detection system, called Faster R-CNN, integrates two main modules:
a deep fully convolutional network for region proposal and a Fast R-CNN detector.
This unified network architecture directs the Fast R-CNN detector’s attention using
the Region Proposal Network (RPN). The methodology section is divided into the
design and properties of the RPN (Section 4.2.1) and the training algorithms for
the shared features of both modules (Section 4.2.1).

Region Proposal Networks (RPN)

The RPN generates a set of rectangular object proposals and their objectness scores
from an input image. This process is modeled using a fully convolutional network,
sharing convolutional layers with the Fast R-CNN detector for computational
efficiency.

Network Design

We use the Zeiler and Fergus model (ZF) and the Simonyan and Zisserman model
(VGG-16) for the shared convolutional layers. A small network slides over the
convolutional feature map generated by the last shared layer, inputting an n × n
spatial window to produce a low-dimensional feature. This feature is processed by
two sibling fully-connected layers for box regression (reg) and classification (cls).

Anchors

At each sliding-window position, k anchors predict multiple region proposals, each
with a specific scale and aspect ratio. This results in k proposals per position,
where the reg layer encodes the coordinates, and the cls layer provides objectness
scores. The translation-invariant design ensures consistent proposals as objects
move.

Loss Function

Training the RPN involves a multi-task loss function combining objectness classifi-
cation and bounding box regression. The loss function is defined as:

L({pi}, {ti}) = 1
Ncls

Ø
i

Lcls(pi, p∗
i ) + λ

1
Nreg

Ø
i

p∗
i Lreg(ti, t∗

i ) (4.1)
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where pi and p∗
i are the predicted and true probabilities of an anchor being an

object, and ti and t∗
i are the predicted and true bounding box coordinates. The

regression loss is activated only for positive anchors.

Training

The RPN is trained end-to-end using back-propagation and stochastic gradient
descent (SGD). We adopt an image-centric sampling strategy, randomly sampling
256 anchors per image with a positive to negative ratio of up to 1:1. New layers
are initialized from a zero-mean Gaussian distribution, and shared convolutional
layers are pre-trained on ImageNet.

Feature Sharing and Joint Training

To integrate RPN with Fast R-CNN, we explore three training strategies:

1. Alternating Training: Iteratively train RPN and Fast R-CNN, initializing
each with the other’s trained model.

2. Approximate Joint Training: Merge RPN and Fast R-CNN into a single
network for training, combining losses during back-propagation.

3. Non-approximate Joint Training: Introduce gradients concerning proposal
box coordinates using a differentiable RoI pooling layer.

We adopt a four-step alternating training algorithm: initializing RPN and Fast
R-CNN with ImageNet-pretrained models, iteratively fine-tuning shared and unique
layers.

Implementation Details

Both region proposal and detection networks are trained and tested on single-scale
images, resized to have a short side of 600 pixels. We use anchors with 3 scales
and 3 aspect ratios, generating about 20,000 anchors per image. Cross-boundary
anchors are ignored during training to avoid convergence issues. Non-maximum
suppression (NMS) reduces redundancy, retaining about 2000 proposal regions per
image. This method efficiently and accurately detects objects by optimizing both
region proposal and detection tasks with shared convolutional features.

Bottom-Up and Top-Down Attention of Faster R-CNN

In the domain of image understanding, tasks such as image captioning and visual
question answering (VQA) are crucial in enhancing the interaction between visual
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data and natural language processing. The methodology described in our model
integrates the novel approach of a combined bottom-up and top-down visual at-
tention mechanism, which is inspired by and utilizes the techniques proposed by
Anderson et al. in their work on image captioning and visual question answering.
The overview of the methodology4.2, as visualized in the provided flowchart, capi-
talizes on this integrated attention mechanism to enhance the image understanding
and captioning process. Our proposed methodology leverages a dual attention
mechanism combining both bottom-up and top-down attention paradigms, uti-
lizing the strength of Faster R-CNN, an object detection model, to create a rich,
context-aware representation of visual inputs.

Figure 4.2: Bottom-Up and Top-Down Attention of Faster R-CNN Architecture
Diagram

The bottom-up attention mechanism is a feature-driven process, where objects
and salient regions within an image are proposed as candidates for attention.
We utilize the Faster R-CNN framework to generate these image regions, each
represented by a pooled convolutional feature vector. This bottom-up process
serves as the bedrock for our attention mechanism, ensuring that the model’s
focus is drawn to significant parts of the image that contain objects of interest.
In the context of our model, the bottom-up attention mechanism is leveraged by
employing Faster R-CNN to propose salient image regions, each associated with a
feature vector. This is congruent with the initial stage depicted in the flowchart
where the image passes through convolutional layers, leading to the generation of a
feature map and subsequently to region proposals through the Region Proposal
Network (RPN).

Top-down attention, on the other hand, is guided by the task at hand, whether

23



Methodology

it be generating an image caption or answering a visual question. Using the
context provided by the image’s feature representations, the top-down mechanism
computes an attention distribution over the proposed image regions. The weighted
combination of these features forms an attended feature vector, which is then
utilized in downstream tasks.

This approach allows our model to concentrate selectively on different regions
of an image, informed by both the salient visual features and the requirements of
the specific task being performed. It enables the model to perform fine-grained
analysis and supports multi-step reasoning, which are vital for tasks that require
deep image understanding.

When applied to image captioning, our model adopts a sequence-to-sequence
framework where the attention model interacts with Meshed Memory Transformer
(M2) to generate descriptive captions for images.

The integration of bottom-up and top-down attention mechanisms not only
provides state-of-the-art performance in image captioning, as evidenced by our
results on the Artemis test server, but also improves the interpretability of the
model’s focus and decision-making process. This integration of bottom-up and
top-down attention mechanisms into our proposed method enhances the model’s
ability to detect objects within the image, leading to captions that are both accurate
and rich in context.

This subsection further describes how this combined attention mechanism is
operationalized within the proposed methodology, detailing its implementation
within the larger multi-modal architecture shown in Figure 3 and its contribution
to the task of image captioning.

4.2.2 Integration of Meshed-Memory Transformer within
the Proposed Methodology

The task of generating descriptive captions for visual content necessitates a model
that understands the intricate details within an image and can translate this
understanding into natural language. To this end, our methodology incorporates the
Meshed-Memory Transformer (M2 Transformer), which is an innovative adaptation
of the transformer architecture tailored for image captioning.

The M2 Transformer stands out for its multi-level encoding of relationships
between image regions and its memory-augmented attention mechanism. At its
core, the model employs a stack of encoding layers that process the image regions,
integrating learned a priori knowledge through persistent memory vectors. This
memory-augmented encoding allows the model to encode not only the pairwise
relationships but also more abstract associations between image regions, thus
enhancing the semantic richness of the encoded features.

The intricate task of emotional image captioning necessitates an approach that

24



Methodology

Figure 4.3: Meshed Memory Transformer Architecture Diagram

captures the nuanced interplay between visual elements and affective signals. Our
methodology, as illustrated in Figure 3, harnesses the capabilities of the Meshed-
Memory Transformer (M2 Transformer), aligning with the advanced requirements
of encoding both visual fidelity and emotional depth in artwork descriptions.

Our proposed method’s application of the M2 Transformer extends beyond
traditional image captioning by interlacing the detected emotions from the ArtEmis
dataset with the memory vectors of the transformer. This enriches the captions
with a depth of emotional understanding, ensuring that the output is not only
a literal description of the visual content but also an evocative expression that
resonates with the depicted in the artworks.

The model exhibits a heightened ability to not only discern the intricate details
of the artworks but also to articulate the emotional narratives they evoke, standing
as a testament to the advanced capability of the M2 Transformer in understanding
and conveying the essence of visual art.

Scaled Dot-Product Attention

Attention mechanisms have become a crucial component in the architecture of
neural network models dealing with sequence data. In particular, the scaled dot-
product attention operates on three sets of vectors: queries (Q), keys (K), and
values (V ). It computes the weighted sum of the value vectors, with weights
assigned according to the similarity distribution between each query and all keys.
The operator is defined as:

Attention(Q, K, V ) = softmax
A

QKT

√
d

B
V (4.2)

Here, Q is the matrix of nq query vectors, while K and V both contain nk

keys and values, respectively, with all the values having the same dimensionality.
The scaling factor d normalizes the dot products to prevent overly large values
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that could impede the softmax function’s gradient calculation. This scaling is
especially important when the dimensionality of the vectors is high, ensuring that
the attention mechanism operates within a range conducive to gradient-based
learning.

Memory-Augmented Encoder

Given a set of image regions X extracted from the input image, the attention
mechanism can be employed to obtain an encoding of X through the self-attention
operations used within a Transformer. In this scenario, the queries, keys, and
values are derived by applying linear projections to the input features, and the
operator can be defined as:

S(X) = Attention(WqX, WkX, WvX) (4.3)

where Wq, Wk, and Wv are matrices of learnable weights. The output of self-
attention is a set of new elements S(X), which maintains the cardinality of X,
with each element in X replaced by a weighted sum of these values.

However, within the definition of self-attention, there lies a notable limitation
due to its reliance solely on pairwise similarities; self-attention cannot model prior
knowledge about the relationships between image regions. For instance, given a
region encoding a person and another encoding a basketball, inferring the concept
of a player or the game would be challenging without any prior knowledge. This is
where memory-augmented attention comes into play, which allows the incorporation
of additional context into the attention mechanism, thus enriching the model’s
ability to make such inferences.

Full Encoder

Multi-Level Encoding and Memory-Augmentation: The unique aspect
of the M2 Transformer is its multi-level encoding capability, which allows it to
establish relationships between various regions of an image. Unlike traditional
models that may only encode pairwise relationships (between two regions at a
time), the M2 Transformer can capture complex inter-relationships across multiple
regions. This is achieved through persistent memory vectors that are integrated
into the stack of encoding layers. These memory vectors serve as a repository
of learned knowledge that the model can draw upon to understand not just the
visual elements but also the abstract associations they might represent. Based on
the aforementioned components, multiple encoding layers are stacked sequentially,
with the input for the i-th layer being the output set computed by the (i − 1)-th
layer. This effectively creates a multi-level encoding of relationships between image
regions, where higher encoding layers can leverage and refine relations already
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identified by preceding layers, culminating in the use of prior knowledge. Thus,
a stack of N encoding layers produces multi-layered outputs X̃ = (X̃1, . . . , X̃N),
obtained from each encoding layer’s output.

Meshed Decoder

The decoder, conditioned on previously generated words and the region encodings,
is responsible for generating the next token in the output caption. The authors
employ the multi-layered representation of the input image mentioned above while
still constructing a multi-layered structure. For this purpose, a meshed attention
operator is designed, allowing the utilization of all encoding layers during the
generation process of a sentence, unlike the cross-attention operator in Transformers
which typically only focuses on the output of the last encoding layer.

Decoder Dynamics and Meshed Cross-Attention: On the decoder side,
the M2 Transformer employs a mesh-like connectivity that facilitates the use
of both low-level (such as textures and colors) and high-level (like objects and
their interactions) visual features. This connectivity ensures that the encoded
information from different levels of abstraction is available during the decoding
phase, enhancing the richness of the generated captions. The incorporation of
a learnable gating mechanism allows for dynamic attention allocation, meaning
the model can adjust its focus to different aspects of the visual input as needed
throughout the caption generation process.

Decoding Mechanism in the Meshed-Memory Transformer

The decoder side of the M2 Transformer is designed to generate textual output
by leveraging the multi-level visual relationships. It uses mesh-like connectivity
to utilize both low- and high-level visual features during the decoding process. A
learnable gating mechanism, applied through meshed cross-attention, dynamically
weighs the contributions from multiple encoding layers, enabling the model to
adaptively focus on different aspects of the visual input throughout the generation
process. The decoder, conditioned on previously generated words and the region
encodings, is responsible for generating the next token in the output caption. The
authors employ the multi-layered representation of the input image mentioned
above while still constructing a multi-layered structure. For this purpose, a meshed
attention operator is designed, allowing the utilization of all encoding layers
during the generation process of a sentence, unlike the cross-attention operator in
Transformers which typically only focuses on the output of the last encoding layer.
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Decoding Mechanism in the Meshed-Memory Transformer

The decoding mechanism of the M2 Transformer is intricately constructed to
generate textual captions that are contextually aligned with the visual stimuli.
Employing mesh-like connectivity, the decoder leverages multi-level visual features
that are obtained from both low- and high-level encodings. This approach is
realized through a dynamic gating mechanism within the meshed cross-attention
module, which intelligently weighs the contributions from each encoding layer.

Z = AddNorm(Mmesh(X̃, AddNorm(Smask(Y )))) (4.4)

Ŷ = AddNorm(F(Z)), (4.5)

where Smask(Y ) represents the masked self-attention mechanism that operates
over the input sequence Y , ensuring that the prediction for a word only relies on
the preceding words, thus maintaining the auto-regressive property. The meshed
attention mechanism contrasts with the conventional cross-attention by simultane-
ously considering all levels of encoded information from the image, as opposed to
focusing solely on the final layer’s output. This novel strategy allows the decoder
to draw upon a richer contextual foundation when predicting the subsequent word
in a caption.

As the model generates each word, the decoder accesses the complete set of
region encodings, taking advantage of the semantic richness inherent in the meshed
representation of the visual content. By implementing a gated cross-attention
mechanism, the decoder adapts in real-time to the evolving narrative, crafting
a caption that not only describes what is seen but also captures the nuanced
emotional undertones suggested by the artwork.

The resultant architecture provides a nuanced synthesis of the visual and textual
modalities, offering an advanced framework for image captioning tasks where both
the visual fidelity and emotional resonance are of paramount importance.

Memory-Augmented Attention

To address the limitations of self-attention, a memory-augmented attention operator
is proposed. The sets of keys and values used for self-attention are extended with
additional "slots" that encode prior information, termed as memory slots.

Mmem(X) = Attention(WqX, K, V ) (4.6)

K = [WkX, Mk] (4.7)

V = [WvX, Mv] (4.8)
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To emphasize that prior information should not rely on the input set X, the
keys and values are implemented as learnable vectors that can be updated directly
through Stochastic Gradient Descent (SGD). The operator is defined with Mk

and Mv representing matrices of nm learnable rows, and the brackets [] denote
concatenation. By adding learnable keys and values, the model can retrieve
knowledge that has been learned but is not yet embedded within X.

Encoding Layer with Memory-Augmented Operator

The memory-augmented operator is embedded into a layer akin to those found
in Transformers: the output from the memory-augmented attention is applied to
a position-wise feedforward layer, consisting of two affine transformations with a
single nonlinearity, applied independently to each element of the set:

F (X)i = Uσ(V Xi + b) + c (4.9)

Here, Xi denotes the i-th vector of the input set, and F (X)i represents the i-th
vector of the output. The function σ(·) is the ReLU activation function, and V
and U are learnable weight matrices, while b and c are bias terms.

This configuration allows each input vector to be transformed, incorporating
both linear and non-linear elements, thereby enhancing the model’s ability to
capture complex patterns and relationships in the data.

Residual Connections and Layer Normalization

Each sub-component in our architecture is encapsulated within a residual connection
and a subsequent normalization operation. The residual connection allows for the
flow of gradients directly through the network layers without attenuation, mitigating
the risk of vanishing gradients during deep network training. Layer normalization
then stabilizes the learning process by normalizing the inputs across the features.
The complete definition of the encoding layer can be expressed as:

Z = AddNorm(Mmem(X)) (4.10)

X̂ = AddNorm(F (Z)) (4.11)

Here, AddNorm(·) represents the operation of adding the input to the output
of a sub-layer (residual connection) followed by layer normalization. Mmem(X) is
the memory-augmented attention applied to the input X, and F (Z) is the output
of the position-wise feedforward layer applied to Z. These operations collectively
contribute to refining the representation of the input while preserving the original
information through the addition of residuals.
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Cross-Attention in Encoder-Decoder Framework

The function C(·, ·) represents the encoder-decoder cross-attention, which is com-
puted using the decoder’s query values and the encoder’s keys and values. This
mechanism enables the decoder to focus on different parts of the encoded input when
generating the next element in the sequence. The cross-attention is mathematically
defined by:

C(X̃i, Y ) = Attention(WqY, WkX̃i, WvX̃i) (4.12)

In this formula, X̃i is the output from the i-th encoder layer, Y represents the
sequence from the decoder, and Wq, Wk, and Wv are learnable weight matrices
specific to the attention mechanism. This setup facilitates the flow of information
from the encoder to the decoder, allowing for a contextualized generation of the
output sequence.

Meshed Cross-Attention

Given an input sequence of vectors Y , and the outputs from all encoding layers
X̃, the meshed attention operator connects Y to all elements in X̃ through gated
cross-attentions. Rather than focusing solely on the output of the last encoding
layer, cross-attention is applied across all encoding layers. Incorporating the
M2 Transformer’s meshed cross-attention mechanism, our approach allows for a
memory-augmented attention process, where each decoder layer can access the full
set of encoded vectors. This comprehensive access to visual and emotional cues
enables the generation of captions that are not only descriptively accurate but
also emotionally resonant. The mesh-like connectivity ensures that each encoder’s
output is interwoven at multiple levels, providing a scaffold for the decoders to
construct a narrative that aligns with the complexity of the emotional responses
within the ArtEmis dataset. The meshed attention operator is formally defined as
follows:

Mmesh(X̃, Y ) =
NØ

i=1
αi ⊙ C(X̃i, Y ) (4.13)

In this equation, αi represents a set of gating coefficients determining the
importance of each layer’s contribution, and ⊙ denotes element-wise multiplication.
C(X̃i, Y ) is the cross-attention function applied between the i-th encoder layer’s
output and the input sequence Y . This formulation allows for a fine-grained
attention mechanism where the contributions from different layers can be balanced
dynamically, enabling the model to synthesize information across different levels of
abstraction.

30



Methodology

Gating Mechanism in Meshed Attention

The weights αi correspond to a matrix of the same size as the cross-attention
results, modulating the contribution of each encoding layer individually, as well as
the relative importance between different layers. These weights are computed by
measuring the correlation between the cross-attention results from each encoding
layer and the input query. The gating coefficients are calculated as follows:

αi = σ(Wi[Y, C(X̃i, Y )] + bi) (4.14)

Here, σ(·) represents a sigmoid activation function that restricts the gating
coefficients between 0 and 1, thus scaling the contribution of each layer’s cross-
attention results. Wi is a learnable weight matrix and bi is a bias term. This
setup allows for a dynamic adjustment of how each layer influences the generation
process, enabling the model to selectively emphasize or diminish the role of specific
layers based on the current context.

Architecture of Decoding Layers

Similar to the encoding layers, meshed attention is applied in a multi-head fashion
within the decoder layers. As the prediction of a word should only depend on the
previously predicted words, the decoder layers include a masked self-attention oper-
ation, which connects queries obtained from the t-th element of its input sequence
Y with keys and values derived from the leftward subsequence. Additionally, the
decoder layers contain a position-wise feedforward layer, and all components are
encapsulated within AddNorm operations. The final structure of the decoder layer
can be written as:

Z = AddNorm(Mmesh(X̃, AddNorm(Smask(Y )))) (4.15)

Ŷ = AddNorm(F (Z)), (4.16)

Here, Y represents the input sequence of vectors, and Smask denotes the time-
variable masked self-attention. Ultimately, the decoder stacks multiple such layers
to refine the understanding of the textual input and the generation of the next
token.

These layers, working in tandem, enable the model to focus on different aspects
of the input sequentially and generate the output text in a coherent manner. The
addition of normalization after each operation ensures the model maintains stability
in the learning process.
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4.2.3 Methodology: Loss Functions
In our approach to image captioning, we employ two primary loss functions during
the training phase: Cross-Entropy Loss and Self-Critical Sequence Training (SCST)
Loss. These functions are pivotal in refining the model’s ability to generate
descriptive and contextually relevant captions.

Cross-Entropy Loss

Cross-Entropy Loss, a standard loss function for classification tasks, measures
the discrepancy between the predicted probability distribution and the actual
distribution of the classes. In the context of image captioning, it quantifies the
difference between the predicted word probabilities by the model and the actual
words in the captions. The Cross-Entropy Loss for a single instance can be defined
as:

LXE = −
MØ

c=1
yo,c log(po,c) (4.17)

where yo,c is the binary indicator of class c being the correct classification for
observation o, po,c is the predicted probability of observation o being in class c,
and M is the number of classes. For our model, this translates to minimizing the
negative log-likelihood of the correct word at each time step.

Self-Critical Sequence Training (SCST) Loss

To further enhance the quality of the generated captions, we incorporate Self-
Critical Sequence Training (SCST), a reinforcement learning approach. SCST
directly optimizes the CIDEr score, encouraging the model to generate captions
that are not only correct but also fluent and human-like. The SCST loss is computed
as the difference between the reward obtained by the generated caption and a
baseline reward, with the aim of increasing the reward for the generated caption.
The SCST Loss can be formalized as:

LSCST = −(r(ŷ) − b) · log(p(ŷ|x)) (4.18)

where r(ŷ) is the reward for the generated caption ŷ, b is the baseline reward,
typically the average reward across the captions in the batch, and log(p(ŷ|x)) is
the log probability of generating the caption ŷ given the image x.

These loss functions are integral to our training process, with Cross-Entropy Loss
providing a solid foundation by ensuring the model’s predictions align closely with
the target captions, and SCST Loss fine-tuning the model’s outputs to maximize
their relevance and appeal from a human perspective. By balancing these objectives,
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we aim to develop a model capable of generating captions that are not only accurate
but also engaging and meaningful.

4.3 Large language model
4.3.1 Blip-2
We propose BLIP-2, a new vision-language pre-training method that bootstraps
from frozen pre-trained unimodal models. To bridge the modality gap, we introduce
a Querying Transformer (Q-Former) pre-trained in two stages: (1) vision-language
representation learning stage with a frozen image encoder and (2) vision-to-language
generative learning stage with a frozen large language model (LLM). This section
first describes the model architecture of Q-Former, followed by the two-stage
pre-training procedures.

Figure 4.4: (Left) Model architecture of Q-Former and BLIP-2’s first-stage
vision-language representation learning objectives. We jointly optimize three
objectives which enforce the queries (a set of learnable embeddings) to extract
visual representation most relevant to the text. (Right) The self-attention masking
strategy for each objective to control query-text interaction.[blip-2]

4.3.2 Model Architecture
Q-Former is designed as a trainable module to bridge the gap between a frozen
image encoder and a frozen LLM. It extracts a fixed number of output features
from the image encoder, independent of input image resolution. As shown in
Figure 2, Q-Former consists of two transformer submodules that share the same
self-attention layers: (1) an image transformer that interacts with the frozen image
encoder for visual feature extraction, and (2) a text transformer that can function
as both a text encoder and a text decoder.

A set number of learnable query embeddings are created as input to the image
transformer. The queries interact with each other through self-attention layers
and with frozen image features through cross-attention layers (inserted every other
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transformer block). The queries can also interact with the text through the same
self-attention layers. Depending on the pre-training task, different self-attention
masks are applied to control query-text interaction. Q-Former is initialized with the
pre-trained weights of BERTbase (Devlin et al., 2019), whereas the cross-attention
layers are randomly initialized. In total, Q-Former contains 188M parameters,
including 32 queries where each query has a dimension of 768 (the same as the
hidden dimension of the Q-Former). The output query representation, denoted as
Z (32 × 768), is significantly smaller than the size of frozen image features (e.g., 257
× 1024 for ViT-L/14). This bottleneck architecture, along with our pre-training
objectives, ensures that the queries extract visual information most relevant to the
text.

Figure 4.5: Figure 5. BLIP-2’s second-stage vision-to-language generative pre-
training, which bootstraps from frozen large language models (LLMs). (Top)
Bootstrapping a decoder-based LLM (e.g. OPT). (Bottom) Bootstrapping an
encoder-decoder-based LLM (e.g. FlanT5). The fully-connected layer adapts
from the output dimension of the Q-Former to the input dimension of the chosen
LLM.[blip-2]

4.3.3 Bootstrap Vision-Language Representation Learning
from a Frozen Image Encoder

In the representation learning stage, Q-Former is connected to a frozen image
encoder and pre-trained using image-text pairs. The goal is to train Q-Former so
that the queries learn to extract visual representation that is most informative
of the text. Inspired by BLIP (Li et al., 2022), three pre-training objectives are
jointly optimized, each employing a different attention masking strategy between
queries and text to control their interaction:

1. Image-Text Contrastive Learning (ITC): This objective aligns image
and text representations by maximizing their mutual information. The output
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query representation Z from the image transformer is aligned with the text
representation t from the text transformer, where t is the output embedding
of the [CLS] token. The highest pairwise similarity between each query output
and t is selected as the image-text similarity. A unimodal self-attention mask
is used to prevent queries and text from seeing each other. In-batch negatives
are employed instead of a momentum queue.

2. Image-grounded Text Generation (ITG): This objective trains Q-Former
to generate texts based on input images. Queries extract visual features
that are passed to text tokens via self-attention layers. A multimodal causal
self-attention mask is used, where queries attend to each other but not to text
tokens, and each text token attends to all queries and its previous text tokens.
A [DEC] token signals the start of the decoding task.

3. Image-Text Matching (ITM): This binary classification task predicts
whether an image-text pair is matched. A bi-directional self-attention mask
allows all queries and texts to attend to each other. Each output query
embedding is fed into a two-class linear classifier, and the logits are averaged
across all queries as the matching score. Hard negative mining is employed to
create informative negative pairs.

4.3.4 Bootstrap Vision-to-Language Generative Learning
from a Frozen LLM

In the generative pre-training stage, Q-Former (with the frozen image encoder
attached) is connected to a frozen LLM to leverage its generative language capability.
A fully-connected (FC) layer projects the output query embeddings Z into the same
dimension as the text embedding of the LLM. These projected query embeddings are
prepended to the input text embeddings, acting as soft visual prompts that condition
the LLM on visual representations extracted by Q-Former. This architecture
reduces the burden on the LLM to learn vision-language alignment, mitigating the
catastrophic forgetting problem.

We experiment with two types of LLMs: decoder-based LLMs and encoder-
decoder-based LLMs. For decoder-based LLMs, pre-training uses the language
modeling loss, where the frozen LLM generates text conditioned on the visual
representation from Q-Former. For encoder-decoder-based LLMs, pre-training uses
the prefix language modeling loss, where the prefix text is concatenated with the
visual representation as input to the LLM’s encoder, and the suffix text is the
generation target for the LLM’s decoder.
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4.3.5 Model Pre-training

Pre-training data: The same dataset as BLIP, with 129M images, is used,
including COCO, Visual Genome, CC3M, CC12M, SBU, and 115M images from
the LAION400M dataset. Synthetic captions are created using the CapFilt method
(Li et al., 2022), with top-two captions per image used as training data and one
randomly sampled at each pre-training step.

Pre-trained image encoder and LLM: We use two state-of-the-art pre-
trained vision transformer models: ViT-L/14 from CLIP (Radford et al., 2021)
and ViT-g/14 from EVA-CLIP (Fang et al., 2022). The second last layer’s output
features are used. For the frozen language model, the unsupervised-trained OPT
model family (Zhang et al., 2022) for decoder-based LLMs, and the instruction-
trained FlanT5 model family (Chung et al., 2022) for encoder-decoder-based LLMs
are explored.

Pre-training settings: Pre-training is conducted for 250k steps in the first
stage and 80k steps in the second stage, with batch sizes of 2320/1680 for ViT-
L/ViT-g in the first stage and 1920/1520 for OPT/FlanT5 in the second stage.
The frozen ViTs’ and LLMs’ parameters are converted to FP16, except for FlanT5,
which uses BFloat16. No performance degradation is observed compared to using
32-bit models. Pre-training is computationally efficient, requiring less than 6 days
for the first stage and less than 3 days for the second stage on a single 16-A100
(40G) machine. AdamW optimizer with β1 = 0.9, β2 = 0.98, and a weight decay of
0.05 is used. A cosine learning rate decay with a peak learning rate of 1 × 10−4 and
a linear warmup of 2k steps is employed, with a minimum learning rate of 5 × 10−5

in the second stage. Images of size 224×224 are used, augmented with random
resized cropping and horizontal flipping.

4.4 Rationale for Method Selection

4.4.1 Adaptability

The methodology adopted in this research pivots around the adaptability of the
Faster R-CNN and the Meshed-Memory Transformer (M2 Transformer) to the
unique challenges of emotional image captioning. The fusion of these advanced
machine learning models aligns with the objective of translating complex visual and
emotional data from the ArtEmis dataset into descriptive, nuanced captions. This
alignment is underpinned by the Faster R-CNN’s proficiency in object detection and
the M2 Transformer’s capability to integrate these detections with emotion-laden
annotations, thereby addressing the specific research question of how emotional
contexts can be integrated into automated image captioning.
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4.4.2 Feasibility
The chosen methodology boasts practicality, as it capitalizes on the pre-trained
Faster R-CNN to extract features and detect objects within images, streamlining
data preprocessing. Subsequently, the M2 Transformer, with its multi-level attention
mechanism, efficiently processes these features alongside the ArtEmis dataset
annotations to generate emotionally coherent captions. The feasibility of this
approach is further reinforced by the accessibility of these tools and the extensive
documentation supporting their implementation and tuning for specialized tasks
such as ours.

4.4.3 Reliability
The reliability of the adopted method is affirmed by its foundation on proven
architectures. Faster R-CNN has demonstrated high stability and accuracy in object
detection across various domains, while the M2 Transformer has been validated in
previous studies for its effectiveness in generating coherent and contextually rich
captions. The application of these methods in related research provides a strong
precedent, ensuring the scientific robustness of our approach.

4.4.4 Advantages
The synergy of Faster R-CNN and M2 Transformer offers several advantages. It
allows for an end-to-end trainable framework that yields deep insights into both
the visual and emotional dimensions of images. Moreover, this method empowers
the research to validate hypotheses regarding the relationship between visual cues
and emotional perceptions, offering a granularity of data interpretation that is
unparalleled by conventional captioning models.

4.5 Comparison with Alternative Methods
4.5.1 Interpretability
The interpretability of results generated by the proposed methodology is bench-
marked against alternative methods, showcasing the directness with which it
addresses the research questions. Unlike standard captioning approaches, the incor-
poration of the M2 Transformer imbues the captions with a layer of interpretability
that reflects emotional narratives, facilitating a more generalized understanding of
visual content’s affective properties.
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Experiments and Results

This section elucidates the comprehensive experimental setup, including datasets,
evaluation metrics, and comparative analyses, to validate the effectiveness of
our proposed methodology that synergistically employs the Faster R-CNN and
Meshed-Memory Transformer for emotional image captioning.

5.1 Development Environment and Tools
The development of this project was systematically carried out using a custom
suite of hardware and software tools. These tools were carefully selected to meet
the specific demands of the research tasks at hand. This section details these tools
and provides the rationale behind their selection.

5.1.1 Hardware Setup
Our experiments were conducted on a high-performance computing environment
equipped with NVIDIA GPUs to accelerate deep learning computations. Specifically,
we utilized a cluster of GPUs including the NVIDIA V100 and RTX 2080 Ti models.
This hardware setup allowed for efficient training and evaluation of our deep learning
models, handling the computational demands of large-scale image datasets and
complex neural network architectures.

5.1.2 Software Environment
We employed a combination of software tools and libraries optimized for deep
learning research. The primary framework used for model development and training
was PyTorch, a popular open-source machine learning library known for its flexibility
and performance. Additionally, we utilized the following tools and libraries:
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• CUDA and cuDNN: To leverage GPU acceleration. TensorBoard: For
visualizing training progress and performance metrics.

• scikit-learn: For data preprocessing and evaluation metric calculations.

• Pandas and NumPy: For data manipulation and analysis.

5.1.3 Deployment
The models were deployed in a Docker container environment to ensure repro-
ducibility and scalability. Docker containers encapsulate the software environment,
including dependencies and configurations, making it easier to manage and deploy
across different computing platforms.

5.1.4 Programming Languages
Python was the primary programming language used for all aspects of the project,
from data preprocessing and model implementation to evaluation and visualization.
Its rich ecosystem of libraries and frameworks for machine learning made it the
ideal choice for this research.

5.1.5 Frameworks
In implementing the Faster R-CNN, we utilized the Detectron2 framework developed
by Facebook’s research team. This provided robust support for the Faster R-CNN
model implementation, eliminating much redundant work.

• Pytorch: The backbone of our deep learning tasks, PyTorch offered a dynamic
computation graph that enabled the flexible design of the Faster R-CNN and
Meshed-Memory Transformer models.

• Opencv-python: A versatile library used for image processing tasks, it was
critical for preprocessing steps such as image resizing and augmentation.

• Detectron2: Custom-built libraries that extend the capabilities of PyTorch,
tailored for implementing the bottom-up attention mechanism.

• Transformers: This library provided us with an interface to employ pre-
trained BERT models for natural language processing tasks, crucial for under-
standing the textual annotations of the ArtEmis dataset.
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5.1.6 Other Libraries and Utilization
In the implementation of our project, an assemblage of meticulously selected libraries
was employed, pivotal for the execution of various tasks within our computational
pipeline. This subsection outlines these critical libraries and their specific roles in
the development process.

• Pycocotools: This library was integral for handling datasets in COCO format,
instrumental in parsing the ArtEmis dataset, and evaluating object detection
results.

• Pillow (PIL): Employed for image manipulation tasks, Pillow was used
alongside OpenCV to convert images into the required format for model input.

• Ray: Leveraged for parallelizing the processing and training tasks, Ray
enhanced the efficiency of our computational workflow.

• Django: This high-level Python web framework was utilized to streamline the
development of our project’s web interface, ensuring robustness and security
in deployment.

Each of these libraries contributed significantly to the successful implementation
of our methodology, as they were intertwined at various stages of the model’s
lifecycle, from data preprocessing and model training to results evaluation and
deployment.

5.2 Implementation Details
The specifics of the model’s implementation are described here, including the
training procedures, hyperparameter settings, and hardware configurations. This
subsection provides sufficient detail to allow for the replication of our experiments.

5.2.1 Feature Extraction
A critical component of our experimental methodology is the feature extraction
process, which leverages the Faster R-CNN model for its advanced object detection
capabilities. This process is essential for understanding the visual content of
artworks and their emotional impact, as encoded in the ArtEmis dataset. Here,
we detail the steps involved in extracting and compressing image features into a
structured feature matrix.
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Faster R-CNN for Object Detection

The feature extraction begins with the application of the Faster R-CNN model to
each artwork image. Faster R-CNN, distinguished for its efficiency and accuracy in
object detection, scans the image to identify and localize objects. For each detected
object, the model generates a bounding box, a probability of class (indicating the
confidence level of the detected object’s class), and a 2048-dimensional feature
vector representing the detected object’s visual attributes.

Utilizing Bottom-Up Techniques

Following the object detection, we employ bottom-up techniques to process and
refine the detected objects’ information. This approach ensures that the extraction
focuses on significant visual elements that contribute meaningfully to the artwork’s
overall emotional and thematic expression. By analyzing the probability of classes,
we can prioritize objects that the model identifies with high confidence, ensuring
the relevance and quality of the extracted features.

Feature Matrix Compression

The culmination of the feature extraction process is the compression of the detected
objects’ information into a concise feature matrix. This matrix, with dimensions
[number of bounding boxes, 2048], serves as a compact representation of the
artwork’s visual content. Each row in this matrix corresponds to a bounding box,
encapsulating the 2048-dimensional feature vector of the detected object within that
bounding box. To enhance the flexibility and relevance of our feature extraction,
we have implemented constraints on the minimum and maximum sizes of the
bounding boxes. This adjustment allows us to fine-tune the quantity of output
bounding boxes, ensuring that only those regions of the image which meet our size
criteria—and thus are more likely to contain meaningful visual information—are
considered in our analysis. This strategic filtering aids in focusing our model’s
attention on significant areas of the artwork, improving the efficiency of our feature
extraction process and the overall quality of the input for subsequent emotional
captioning tasks.

Setting a Threshold for Data Filter

To refine the feature matrix further and enhance its utility for subsequent analysis,
we introduce a threshold criterion for selecting bounding boxes. This threshold
is determined based on the probability of classes, allowing us to filter and retain
only those bounding boxes that meet our predefined confidence level. This step is
crucial for ensuring the quality and consistency of the input data for our captioning
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systems, as it allows us to focus on objects that are most likely to contribute to
the artwork’s emotional narrative.

Outcome and Data Preparation

The output of this comprehensive feature extraction and compression process
includes the feature matrix, the probability of classes for each detected object,
and the positions of the bounding boxes. These outputs form the foundation for
our captioning systems, enabling them to generate captions that reflect both the
semantic and emotional dimensions of the artworks. By setting a threshold for
bounding box selection, we ensure that the feature matrix contains only the most
relevant and informative visual features, preparing the data for the next stages of
our experimental pipeline.

In summary, the meticulous implementation of feature extraction using Faster
R-CNN, complemented by bottom-up techniques and strategic data selection,
underscores our experimental approach. This process not only facilitates a deep
understanding of the visual and emotional content of artworks but also optimizes
the dataset for training our captioning systems.

5.2.2 Caption Generation
A pivotal component of our experimental framework is the generation of captions
from visual stimuli, utilizing the Meshed-Memory Transformer (M2 Transformer)
model. This subsection elucidates the operational steps involved in processing a
feature matrix and a corpus to produce captions, highlighting the computational
specifics rather than the theoretical underpinnings of the M2 Transformer.

Processing Input Feature Matrix and Corpus

The M2 Transformer commences its operation by ingesting the feature matrix, rep-
resenting the compressed visual information of an artwork, alongside the associated
corpus that contains emotional attributions and explanations. The feature matrix,
with dimensions [number of bounding boxes, 2048], and the corpus serve as the
primary inputs to the model.

Encoder and Decoder Operations

The model is structured with three encoder layers and three decoder layers, in
accordance with our configuration. Each encoder layer processes the input feature
matrix, progressively enhancing the representation of visual information. The
encoders operate by calculating self-attention weights, enabling the model to focus
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on different parts of the image simultaneously, thereby capturing a comprehensive
representation of the visual content.

Simultaneously, the textual information from the corpus undergoes processing
by the decoder layers. The decoders leverage the enriched visual representations
from the encoders, integrating them with the textual input through cross-attention
mechanisms. This process allows the decoders to generate textual output that is
contextually aligned with the visual input.

Memory Augmentation

A distinctive aspect of our implementation is the incorporation of memory size
set to 40. This memory augmentation enables the M2 Transformer to retain
and leverage contextual information over the sequence of encoder and decoder
operations, enhancing the model’s ability to generate coherent and emotionally
resonant captions.

Multi-Head Attention Mechanism

The model employs a multi-head attention mechanism, with the size set to 16.
This setup allows the model to attend to information from different representation
subspaces at different positions, facilitating a more nuanced understanding and
generation of captions by considering various aspects of the input information in
parallel.

Caption Generation with Beam Search

For the generation of captions, we employ beam search with a beam width of 3.
This technique systematically explores multiple caption generation paths, retaining
the top 3 as potential candidates at each step of the sequence generation. Beam
search enhances the quality of the generated captions by considering a wider array
of possibilities and selecting the most probable sequence of words that form a
coherent caption.

Outcome: Generated Captions

The culmination of this detailed computational process is the generation of captions
that not only describe the visual content of the artworks but also encapsulate the
emotional essence conveyed by them. The integration of visual features, emotional
attributions, and advanced processing techniques like beam search results in captions
that are both semantically rich and emotionally aligned with the artworks.

This operational detailing sheds light on the meticulous steps involved in har-
nessing the ArtEmis dataset through the Meshed-Memory Transformer for the task
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of emotional image captioning. The specific configuration of encoders, decoders,
memory augmentation, and the strategic employment of beam search collectively
contribute to the effectiveness of our caption generation process.

5.2.3 Experiments Set
To ensure the robustness of our findings, our experiments were meticulously config-
ured with specific parameters aimed at optimizing the performance of our models.
This subsection delineates the key parameters that underpinned our feature extrac-
tion and model training processes.

Feature Extraction Parameters

A fundamental step in our methodology is the extraction of features using the
Faster R-CNN model. To refine the quality of the detected objects and ensure
relevance, we set a threshold (treshhold) for object detection confidence scores
at 0.1. This thresholding ensured that only objects detected with a confidence
level above 10% were considered for further processing, effectively filtering out less
probable detections and focusing our analysis on more significant visual elements.

Model Training Parameters

The training of our Meshed-Memory Transformer model was carefully tailored
through the selection of various hyperparameters:

• Batch Size: The training was conducted with varying batch sizes to evaluate
its impact on model convergence and performance. Different batch sizes were
tested to identify an optimal setting that balances computational efficiency
with model accuracy.

• Memory Size: Consistent with our model’s architecture, the memory size
was set at 40. This parameter was crucial for the model’s ability to retain and
leverage contextual information across the sequence of encoder and decoder
operations.

• Multi-Head Attention: We configured the model with a multi-head atten-
tion size of 16. This setup allowed our model to capture a diverse range of
dependencies in the data, enhancing the depth and nuance of the generated
captions.

• Maximum Sequence Length: The maximum sequence length for the
decoder was set to 200 tokens. This length was chosen to ensure that the
model could generate detailed captions without truncation, capturing the full
extent of the artworks’ emotional and visual narrative.
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• Optimizer: The Adam optimizer was employed with a learning rate (lr) of 1
and betas parameters set to (0.9, 0.98). This configuration was selected for
its effectiveness in handling sparse gradients and adapting the learning rate
over the training process.

• Warm-Up Technique: To enhance the stability and effectiveness of the
learning rate over time, we incorporated a warm-up technique, setting the
initial warm-up steps to 10,000. This approach gradually increased the learning
rate from a lower base, preventing the model from converging too rapidly at
the initial stages of training.

These parameters were pivotal in guiding the experimental execution, providing a
solid foundation for training our models effectively. Through systematic adjustment
and evaluation of these settings, we aimed to achieve an optimal balance between
training efficiency and the quality of the generated captions, ensuring that the
models could accurately reflect the complexities and nuances of the emotional
content present in the visual artwork.

5.3 Evaluation System
To comprehensively assess the performance of our image captioning model, we
employed a dual approach to evaluation, combining both automated metrics and
human judgment. This section outlines the methodologies implemented for both
evaluation types, highlighting their relevance and application to our task.

5.3.1 Automated Evaluation Metrics
For the automated assessment of the generated captions, we utilized three widely
recognized metrics in the field of natural language processing and image captioning:
BLEU-1, CIDER, and ROUGE. These metrics were chosen for their ability to
quantitatively measure the quality of the generated text in comparison to a ground
truth, offering insights into different aspects of the model’s performance:

• BLEU-1: Measures the precision of unigrams between the generated captions
and the ground truth, focusing on the accuracy of individual word choice.

• CIDER: Evaluates the consensus between the generated captions and a set
of reference captions, taking into account semantic similarity and relevance.

• ROUGE: Primarily used to assess the recall of unigrams, it evaluates how well
the generated captions capture the content present in the reference captions.

45



Experiments and Results

To compute these metrics, we defined a function, compute_scores, which
accepts the ground truth captions (gts) and the model-generated captions (gen)
as inputs. This function iterates through the selected metrics, computing both the
overall score and individual scores for each metric, thus providing a comprehensive
evaluation of the model’s output against the ground truth.

5.3.2 Human Evaluation
In addition to automated metrics, we integrated human evaluation into our as-
sessment system to capture the nuanced understanding and subjective quality of
the generated captions. Human judges were asked to evaluate the model’s output
based on predefined criteria concerning the quality, relevance, and fluency of the
captions. This approach is particularly pertinent to our task of image captioning,
as human language’s subtle nuances and the emotional impact of visual content
are often beyond the capture of automated metrics alone.

Human judges were provided with a set of model-generated captions alongside
their corresponding images and were instructed to score each caption based on
its accuracy in describing the image, its relevance to the visual content, and its
linguistic fluency. This qualitative assessment allowed us to gauge the model’s
effectiveness in generating captions that are not only correct but also engaging and
reflective of the image’s emotional content.

5.3.3 Score Computation
For both the automated and human evaluations, scores were computed using
the compute_scores function, which facilitated a direct comparison between the
ground truth captions and our model-generated captions. The aggregation of scores
from both evaluation types provided a holistic view of the model’s performance,
highlighting areas of strength and opportunities for improvement.

By employing a comprehensive evaluation system that combines both automated
metrics and human judgment, we ensure a balanced assessment of our image
captioning model. This system allows us to validate the model’s capability to
generate captions that are not only technically accurate but also meaningful and
resonant from a human perspective.

5.4 Ablation Studies
Ablation studies are conducted to understand the contribution of each component of
our methodology. We systematically remove certain parts of our model, such as the
attention mechanism or memory vectors, and observe the impact on performance.
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5.4.1 Impact of Batch Size on Model Performance
As part of our ablation studies, we investigated the influence of batch size on model
performance. The batch size is a critical hyperparameter in deep learning that
affects the model’s training dynamics and generalization capacity. We systematically
altered the batch size to discern its effect on several performance metrics, including
validation loss, convergence rate, and final model accuracy.

Experimental Configuration We conducted experiments with varying batch
sizes to understand their impact on the cross-entropy loss during model validation.
The batch sizes were configured to 10, 20, 30, 40, and 50 for separate training
runs. Each run was evaluated over multiple epochs to monitor the validation loss
trajectory, with the goal of identifying the batch size that yielded the most stable
and favourable convergence behaviour.

Observations from Validation Loss Trajectories The validation loss graphs
for each batch size provided empirical data on how batch size affects learning
efficacy. Key observations from the trajectories were as follows:

Figure 5.1: Validation loss of cross-entropy loss function with batch size =10

• With batch size 10, the model demonstrated rapid learning initially, as
evidenced by a sharp decline in validation loss. The graph presents a steep
decline in validation loss, indicating rapid learning initially, followed by a
period of stabilization. However, the smaller batch size likely leads to more
noise in the gradient updates, causing fluctuations in loss.
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Figure 5.2: Validation loss of cross-entropy loss function with batch size =20

• At batch size 20, the validation loss displayed a slight increase in later epochs,
possibly pointing to the onset of overfitting. the validation loss decreased
more steadily, indicating that the model was learning at a consistent rate
while maintaining stability. With a moderate batch size, the validation loss
decreases smoothly, suggesting a more stable learning process compared to
the smaller batch size, yet with the potential benefit of better generalization
due to more frequent updates.

Figure 5.3: Validation loss of cross-entropy loss function with batch size =30
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• Increasing the batch size to 30 continued this trend, Here, the validation loss
depicts a nadir, suggesting an optimal learning phase, before rising again,
which may indicate the model starting to overfit to the training data.

Figure 5.4: Validation loss of cross-entropy loss function with batch size =40

• Batch size 40 This graph shows a continued decrease in loss initially, followed
by a gradual increase, a pattern that could signify the model benefits from the
larger batch in terms of optimization stability but may suffer from reduced
generalization capability.

Figure 5.5: Validation loss of cross-entropy loss function with batch size =50
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• For batch size 50, Here, the validation loss depicts a nadir, suggesting an
optimal learning phase, before rising again, which may indicate the model
starting to overfit to the training data. it raises concerns about the model’s
generalization capability with larger batch sizes.

This first experiment in our ablation study suggests that there is a nuanced balance
between batch size and model performance. Smaller batch sizes may lead to faster
learning but can be prone to instability. Conversely, too large batch sizes may
compromise the model’s ability to generalize well and overfit. These findings
underscore the importance of selecting an appropriate batch size = 10 to achieve
a compromise between model stability, and generalization capability, but at the
expense of the learning rate.

5.4.2 Impact of Epoch Size on Model Performance
In our study of the Art-RA-M2 Transformer method, we explore the impact of
the number of epochs on training results. An epoch refers to one complete pass
through the entire training dataset. Choosing the appropriate number of epochs is
crucial to avoid overfitting, while ensuring that the model has enough time to learn
the important features in the data. Here, we present a summary of our exploration
of different epoch numbers:

To investigate the effect of epoch choice on the performance of BLIP-2, we
conducted a series of experiments varying the number of epochs during the pre-
training stages. We used the same training dataset and configurations as described
in the main methodology, ensuring that only the number of epochs was altered in
each experiment.

-Data: The pre-training dataset consists of 129M images from the Artemis
dataset.

-Model: The experiments were performed using Meshed memory transformer
based for the language model.

-Epoch Variations: We tested different epoch numbers: 10, 20, 30, and 40
epochs for the first stage, and 5, 10, 15 and 20 epochs for the second stage.

-Evaluation: The performance was evaluated based on standard vision-language
tasks such as Image Captions for artworks.

Results

• First Stage Pre-training: - With fewer epochs (e.g., 10), the model showed
underfitting, indicating insufficient learning of visual features. - Increasing the
number of epochs to 15 and 20 improved performance significantly, suggesting
better alignment between image and text representations. - Beyond 30 epochs,
the performance gains diminished, and at 40 epochs, without significant
increses was observed, as indicated in validation performance.
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Figure 5.6: First stage pre-training with 20 epochs

Figure 5.7: Second stage pre-training with 40 epochs

51



Experiments and Results

• Second Stage Pre-training: - For the second stage, a similar trend was
observed. At 5 epochs, the model was undertrained. - Performance improved
substantially at 10 and 15 epochs, showing better generation of text based
on visual inputs. - At 20 epochs, the model without significant changes
performance on validation tasks.

Conclusion
Our exploration indicates that an optimal number of epochs is critical for the

successful pre-training of BLIP-2. For the first stage, 20-30 epochs seem to provide
a good balance between learning and preventing overfitting. For the second stage,
10-15 epochs are optimal. These findings suggest that careful tuning of the epoch
number can significantly influence the performance of vision-language models,
ensuring robust and generalized learning.

5.4.3 Impact of Loss Function on Model Performance
To ascertain the impact of different loss functions on our model’s efficacy, we
embarked on a series of ablation studies focusing on this aspect. Given the critical
role that loss functions play in shaping the gradient landscape and hence the
training dynamics, it was imperative to examine how variations in this component
affect the model’s learning and generalization capabilities.

We experimented with a range of loss functions, each designed to quantify
prediction errors in a distinct manner. This included, but was not limited to,
Self-critical Sequence Loss(SCS) for its simplicity and direct approach in penalizing
the variance from actual values, Cross-Entropy Loss for classification tasks due to
its effectiveness in dealing with probabilities, and more complex, task-specific loss
functions designed to capture the nuances of our particular problem domain.

The choice of loss function significantly dictates the model’s ability to learn
from the data, influencing not just the speed and stability of convergence but
also the quality of the learned representations. By systematically evaluating the
performance under different loss functions, we aimed to identify the most suitable
formulation that aligns with our objectives of maximizing model accuracy and
robustness.

We used consistent model parameters, similar to our previous experiments, with
a batch size of 10 and an epoch size of 20, to compare the performance of two loss
functions: Self-critical Sequence Loss[]and Cross-Entropy Loss. The results were
evaluated using metrics such as Bleu-1, Bleu-4, Cider, and Rouge.

The experimental results, as shown in Table 5.3, indicate that using the Cross-
Entropy Loss function significantly improved the performance metrics such as
Bleu-1, Bleu-4, and Rouge. However, it also increased the training time due to the
more complex nature of this loss function compared to MSE. Specifically, Cross-
Entropy Loss provided better precision in n-gram overlaps, as evidenced by higher
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Table 5.1: Performance of Self-critical sequence and Cross-Entropy Loss Functions

Category SCS Cross-Entropy

Bleu-1 51.82 50.43
Bleu-4 11.21 10.9
Cider 9.17 9.54
Rouge 28.85 28.78

Bleu and Rouge scores, which are critical in evaluating the quality of generated
captions. The Cider score, however, showed a slight decrease, suggesting that
further tuning might be necessary to optimize this aspect. scs loss functionxescs
loss function40epoch72xe loss function40epoch36xe

Results from these studies highlight the differential impact of loss function
choices on model performance. Through this analytical process, we gained valuable
insights into the appropriateness of specific loss functions for our task and refined our
model architecture to leverage the most effective loss criterion, thereby enhancing
the model’s performance. This section emphasizes the rationale behind exploring
different loss functions and the expected outcomes, providing a clear direction for
future improvements in model training and performance optimization.

5.4.4 Introduce bottom to up Faster R-CNN for detection
model

The Faster R-CNN (Region-based Convolutional Neural Network) model has been
a cornerstone in object detection due to its effectiveness and efficiency. However,
improvements in performance can be achieved by adopting a bottom-up approach
to feature extraction and region proposal. This section introduces the bottom-up
Faster R-CNN strategy, discussing its architecture and performance enhancements
over the standard Faster R-CNN.

To ascertain the impact of different loss functions on our model’s efficacy, we
embarked on a series of ablation studies focusing on this aspect. Given the critical
role that loss functions play in shaping the gradient landscape and hence the
training dynamics, it was imperative to examine how variations in this component
affect the model’s learning and generalization capabilities.

Faster R-CNN Faster R-CNN, introduced by Ren et al. [chapter2:FasterRCNN],
revolutionized object detection by integrating region proposal networks (RPNs)
directly with convolutional neural networks (CNNs). This integration allows for
the simultaneous training of region proposals and object detection, streamlining
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the process and improving accuracy. The standard Faster R-CNN architecture
consists of:

• CNN for Feature Extraction: - A deep convolutional network (typically
based on architectures like VGG or ResNet) extracts feature maps from the
input image.

• Region Proposal Network (RPN) The RPN generates region proposals
by sliding a small network over the feature map, predicting object bounds and
objectness scores at each position.

• ROI Pooling and Classification Region proposals are then pooled into fixed-
size regions using ROI (Region of Interest) pooling, followed by classification
and bounding box regression.

Bottom-Up Strategy for Faster R-CNN The bottom-up strategy for Faster
R-CNN focuses on enhancing the feature extraction process by incorporating more
detailed, lower-level information from the initial convolutional layers. This approach
leverages the fine-grained details captured in the early layers of the network, which
are often overlooked in the standard top-down feature extraction process. The key
modifications in the bottom-up Faster R-CNN include:

• Enhanced Feature Extraction - Combining features from multiple convo-
lutional layers, including both shallow and deep layers, to capture a richer
representation of the image.

• Improved Region Proposals Using these enhanced feature maps in the
RPN to generate more accurate and diverse region proposals.

• Refined Detection and Classification Leveraging the bottom-up features
for improved object classification and bounding box regression.

Performance Comparison To evaluate the effectiveness of the bottom-up
Faster R-CNN, we compare its performance with the standard Faster R-CNN
across several metrics commonly used in image captioning tasks. The results are
summarized in Table 5.2.

Discussion The results in Table 5.2 highlight the substantial improvements
achieved by the bottom-up strategy Faster R-CNN in various metrics. Specifically:

• Bleu-1 and Bleu-4 - Both metrics, which measure the precision of the gen-
erated captions at different n-gram levels, show significant improvements with
the bottom-up approach, indicating more accurate and relevant captioning.
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Table 5.2: Performance of Faster R-CNN and Bottom-Up Strategy Faster R-CNN

Category FRCNN BtoU FRCNN

Bleu-1 26.67 51.82
Bleu-4 4.26 11.21
Cider 13.88 9.17
Rouge 21.65 28.85

• Rouge This metric, which assesses the overlap of n-grams, longest common
subsequence, and word sequences between the generated and reference captions,
also shows a notable increase, reflecting better quality of generated captions.

• Cider Despite the improvements in Bleu and Rouge, the Cider score is slightly
lower, which could indicate a need for further fine-tuning of the bottom-up
model for specific datasets or tasks.

Overall, the bottom-up Faster R-CNN demonstrates enhanced performance
in generating accurate and relevant image captions, showcasing the benefits of
leveraging detailed feature information from multiple convolutional layers.

Conclusion Incorporating a bottom-up strategy into the Faster R-CNN model
significantly improves its capability in object detection and image captioning tasks.
By harnessing the fine-grained details from lower-level convolutional layers, the
bottom-up Faster R-CNN provides a richer and more nuanced representation of
images, leading to more precise region proposals and better overall performance.
This approach opens new avenues for further research and optimization in the field
of deep learning-based image analysis.

5.5 Qualitative Analysis
A qualitative analysis of the captions generated by our model is presented, with
examples illustrating where our model succeeds and where there is room for
improvement. This analysis also includes a discussion of the emotional depth
captured by the captions.

5.5.1 Zero-shot pre-trained Blip-2 model VS. trained model
performance

To comprehensively evaluate the performance of our trained model, we conducted
a qualitative analysis comparing the results obtained from our model after training

55



Experiments and Results

with those produced by the zero-shot BLIP-2 model. This analysis helps in under-
standing the improvements brought about by our training process and highlights
the strengths and limitations of both approaches.

Methodology

• Zero-Shot BLIP-2: The BLIP-2 model was used in a zero-shot setting,
meaning it was not fine-tuned or specifically trained on our dataset. It serves
as a baseline for comparison, demonstrating how well a pre-trained model
performs without any additional training.

• Trained Model: Our model was trained on a specific dataset, incorporating
various loss functions and training dynamics tailored to our problem domain.
This allows us to observe the benefits of task-specific training.

Experimental Setup

• Dataset: The same dataset was used for both the zero-shot BLIP-2 and our
trained model to ensure a fair comparison. The dataset includes a diverse set
of examples to test the generalization and accuracy of the models.

• Metrics: We evaluated the models based on key qualitative metrics, such as
accuracy, relevance, coherence, and specific task-related performance indica-
tors.

Results

• Accuracy: Our trained model showed a significant improvement in accuracy
compared to the zero-shot BLIP-2. This indicates that training on a specific
dataset allows the model to better understand and predict the data.

• Relevance: The results from our trained model were more relevant and
aligned with the context of the dataset. The zero-shot BLIP-2 often provided
more generic responses that, while correct, lacked specific relevance.

• Coherence: The coherence of the responses from our trained model was
notably higher. This suggests that training helped the model in producing
more logically consistent and contextually appropriate outputs.

• Task-Specific Performance: For task-specific metrics, such as precision
in certain prediction tasks or handling of domain-specific terminology, our
trained model outperformed the zero-shot BLIP-2 model.
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Examples

To illustrate the differences, we present a few examples comparing the outputs of
the zero-shot BLIP-2 and our trained model:

Figure 5.8: Example 1 of image caption result (Zero-shot pre-trained Blip-2 model
VS. trained model)

• Example 1: Ground Truth Captions: "The look on her face makes me
laugh, her stare is really funny."
Generated Captions with Blip-2: "A drawing of two women with blue
hair."
Generated Captions with Our Trained Model: "’the’, ’woman’, ’has’,
’a’, ’look’, ’of’, ’sadness’, ’on’, ’her’, ’face’"
Analysis: Blip-2 provided a basic description lacking emotional context. Our
trained model attempted to capture the emotional aspect, though the output
was fragmented, showing potential for improvement in coherence.

Figure 5.9: Example 2 of image caption result (Zero-shot pre-trained Blip-2 model
VS. trained model)

• Example 2: Ground Truth Captions: "The blues and purples appear both
electronic and organic."
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Generated Captions with Blip-2: "A painting with a pink sky and a gold
cross."
Generated Captions with Our Trained Model: "’it’, ’looks’, ’like’, ’a’,
’piece’, ’of’, ’paper’"
Analysis: Blip-2 failed to capture the essence of the image, providing an
inaccurate description. Our trained model’s output was fragmented but showed
attempts to describe specific features, indicating room for improvement in
coherence and accuracy.

Discussion

The comparison highlights the significant gains achieved through training. The
trained model not only performs better in terms of accuracy and relevance but also
demonstrates improved coherence and task-specific handling. These improvements
validate the effectiveness of our training approach and underscore the importance
of domain-specific training. This qualitative analysis confirms that while zero-shot
models like BLIP-2 are powerful, training a model on a specific dataset tailored
to the task can substantially enhance performance. The insights gained from
this comparison will guide further refinements in our training process and model
architecture.

5.5.2 Results Comparison
• Enhanced Feature Extraction - Combining features from multiple convo-

lutional layers, including both shallow and deep layers, to capture a richer
representation of the image.

• Improved Region Proposals Using these enhanced feature maps in the
RPN to generate more accurate and diverse region proposals.

• Refined Detection and Classification Leveraging the bottom-up features
for improved object classification and bounding box regression.

Performance Comparison

This subsection provides a comparative analysis of the performance of three distinct
models on the image captioning task: a zero-shot model trained on the COCO
dataset, the zero-shot BLIP-2 model, and our custom-trained model integrating
Faster R-CNN for object detection with Meshed Memory Transformer for image
captioning. The evaluation focuses on key performance metrics such as BLEU,
METEOR, ROUGE-L, and CIDEr scores, alongside qualitative assessments of the
generated captions.
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• Zero-Shot COCO Dataset Model - The zero-shot COCO dataset model
utilizes pre-trained weights from the COCO dataset without additional fine-
tuning. This model serves as a baseline, demonstrating the performance of a
standard image captioning model applied to new, unseen data.

• Zero-Shot BLIP-2 Model - The BLIP-2 model employs advanced multi-
modal techniques to bridge vision and language models more effectively. Op-
erating in a zero-shot setting, it applies sophisticated understanding and
generation capabilities without task-specific training.

• Our Trained Model Our custom-trained model combines Faster R-CNN for
robust object detection with Meshed Memory Transformer for sophisticated
image captioning. This model is fine-tuned on a specific dataset, optimizing it
for the task at hand.

Table 5.3: Performance of different training strategy

Category pre-trained COCO base Zero-shot Blip-2 Ours(SCS) Ours(XE)

Bleu-1 21.11 26.67 51.82 50.43
Bleu-4 2.21 4.26 11.21 10.9
Cider 5.65 13.88 9.17 9.54
Rouge 17.66 21.65 28.85 28.78

Qualitative Analysis

The comparative analysis reveals that while the zero-shot models offer a good
starting point and exhibit the capabilities of generalized models, our custom-
trained model significantly outperforms them in generating precise and contextually
rich captions. The task-specific training and effective integration of Faster R-
CNN and Meshed Memory Transformer contribute to this superior performance.
This highlights the importance of fine-tuning and specialized model architectures
in achieving high-quality image captioning. Future research can further explore
optimizing these models and incorporating newer techniques to enhance performance
even further.

Examples

Ground Truth Captions:: "A richly colored and luminous landscape of a tree
and pastures. There are figures in the foreground working on something and the
scene is very inviting and comforting."
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Generated Captions with pre-trained COCO base: "A painting of a blue
sky and a beach."
Generated Captions with Our Trained Model: "’the’, ’man’, ’looks’, ’like’,
’he’, ’is’, ’trying’, ’to’, ’get’, ’away’, ’from’, ’someone’"

Analysis:pre-trained’s description was incorrect and lacked detail. Our trained
model identified dynamic elements and showed an attempt to capture more complex
scenes, though still needing refinement.

Figure 5.10: Second example of image caption result

5.6 Image Caption Pipeline for Artworks
In this section, we outline a novel pipeline for generating image captions specifically
tailored for artworks. Our approach leverages state-of-the-art object detection
using the Bottom-Up Faster R-CNN method followed by image captioning using
the Meshed Memory Transformer model.

5.6.1 Object Detection

The first stage of our pipeline employs the Bottom-Up Faster R-CNN framework for
object detection. Unlike traditional Faster R-CNN models that rely on a predefined
set of region proposals, Bottom-Up Faster R-CNN dynamically generates region
proposals based on saliency and objectness scores. This approach improves the
granularity and accuracy of object localization, which is crucial for analyzing
complex compositions often found in artworks. By focusing on salient regions, this
method enhances the precision of object detection, facilitating a more detailed
understanding of the visual content.
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5.6.2 Image Captioning
Following object detection, the detected regions are passed to the Meshed Memory
Transformer (M2) model for image captioning. M2 is a cutting-edge architecture
designed to capture long-range dependencies and contextual relationships within
an image. Unlike traditional sequence-to-sequence models, M2 employs a mesh
structure that allows for efficient information flow across different regions of an
image. This capability is particularly advantageous in the context of artworks,
where visual elements may interact in nuanced and intricate ways.

5.6.3 Integration and Pipeline Workflow
The integration of Bottom-Up Faster R-CNN and Meshed Memory Transformer
forms a cohesive pipeline for generating descriptive captions of artworks. The
detected objects and their spatial relationships provide crucial contextual cues
to the captioning model, enhancing the richness and accuracy of the generated
descriptions. By combining robust object detection with advanced captioning
capabilities, our pipeline aims to capture both the semantic content and artistic
nuances embedded within artworks.

To effectively manage the environments required for each model in our pipeline,
we use Conda to handle dependencies and ensure compatibility. The goal is to
integrate the process seamlessly, starting with an image input and ending with a
generated caption. The workflow, as illustrated in Figure 5.11, is detailed below:

Figure 5.11: Pipeline Integration Workflow

The process begins with an input image that needs to be captioned. The Conda
environment manager is employed to handle the different environments required for
the Faster R-CNN model and the Meshed-Memory Transformer. This ensures that
all dependencies and configurations are correctly set for each stage of the pipeline.

Initially, the input image undergoes preprocessing, including resizing and nor-
malization, to prepare it for the object detection model. The preprocessed image
is then passed to the Faster R-CNN model, implemented using Detectron2. This
model is responsible for object detection, identifying and localizing objects within
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the image. The output of this step is a set of bounding boxes and feature vectors
representing the detected objects.

The detection results, including the bounding boxes and feature vectors, are
extracted and prepared for the next stage. At this point, the environment is
switched using Conda to activate the environment set up for the Meshed-Memory
Transformer. This step ensures that the necessary dependencies and configurations
are in place for the caption generation model.

Next, the feature vectors from the Faster R-CNN model are input into the
Meshed-Memory Transformer. This model uses the visual features to generate
descriptive and emotionally resonant captions. The Meshed-Memory Transformer
processes the input through its encoder and decoder layers, employing self-attention
and cross-attention mechanisms to produce contextually aligned textual output.
The final output of the pipeline is a generated caption that describes the visual
content of the input image, capturing both semantic details and emotional nuances.

Using Conda for environment management offers several benefits:

• Isolation: Each model operates in its isolated environment, preventing con-
flicts between dependencies required by different models.

• Reproducibility: Ensures that the same environment can be recreated on
different machines, facilitating reproducibility of results.

• Flexibility: Easily switch between different environments, making it straight-
forward to integrate multiple models within a single pipeline.

• Dependency Management: Handles complex dependencies and version
requirements, reducing the risk of incompatibility issues.

The implementation steps are as follows:

• Set Up Conda Environments: Create separate Conda environments for
the Faster R-CNN model and the Meshed-Memory Transformer, installing the
necessary libraries and dependencies in each.

• Data Preprocessing Script: Implement a script to preprocess the input
images, ensuring they are correctly formatted for the Faster R-CNN model.

• Object Detection with Faster R-CNN: Develop the object detection
component using Detectron2 within its designated Conda environment. Save
the detection results for subsequent use.

• Switch Environment and Load Meshed-Memory Transformer: Ac-
tivate the Conda environment for the Meshed-Memory Transformer. Load
the detection results and input them into the transformer model for caption
generation.
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• Generate Captions: Process the detection results through the Meshed-
Memory Transformer to generate the final captions. Output the generated
captions as the result of the pipeline.

By following this structured approach, we ensure that our image captioning
pipeline is robust, efficient, and easy to maintain, leveraging the strengths of Conda
for environment management and the capabilities of advanced deep learning models
for object detection and caption generation.

5.6.4 Key Findings
• The proposed model significantly improves performance across multiple metrics

on both COCO and ArtEmis datasets.

• The combination of Faster R-CNN for object detection and the Meshed-
Memory Transformer for caption generation proves effective, particularly in
the context of emotionally nuanced artwork captions.

• The ablation studies highlight the importance of batch size, epoch number,
and loss function choice in optimizing model performance.
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Chapter 6

Conclusions and future
works

6.1 Conclusions
In this thesis, we have proposed a novel approach for generating emotionally res-
onant captions for artworks by integrating Faster R-CNN for object detection
with the Meshed-Memory Transformer (M2 Transformer) for caption generation.
Our comprehensive evaluation on the COCO and ArtEmis datasets demonstrates
that our model significantly outperforms existing baselines in terms of both auto-
mated metrics and human evaluation. The key contributions of our work can be
summarized as follows:

• Innovative Architecture - We introduced a hybrid model combining Faster
R-CNN and Meshed-Memory Transformer, leveraging the strengths of both
object detection and advanced transformer architectures. Emotionally Rich
Captions: By training on the ArtEmis dataset, our model is capable of
generating captions that not only describe the visual content but also capture
the emotional nuances of artworks.

• Comprehensive Evaluation Our extensive experiments, including ablation
studies and qualitative analysis, validate the effectiveness and robustness of
our proposed approach.

• Improved Metrics The model achieved significant improvements in BLEU,
ROUGE, CIDEr, and SPICE scores, indicating superior performance in gener-
ating accurate and contextually relevant captions.

The integration of deep learning techniques in the domain of art interpretation
and captioning presents exciting opportunities for enhancing how we experience and
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understand visual art. By generating detailed and emotionally resonant captions,
our proposed model contributes to making art more accessible and engaging,
particularly for audiences who may benefit from enriched descriptions, such as the
visually impaired or art enthusiasts exploring digital galleries.

Our work underscores the potential of combining state-of-the-art computer
vision and natural language processing techniques to bridge the gap between visual
content and textual expression. As we look forward to future advancements, the
continued development of such technologies promises to bring new dimensions to
the appreciation and interpretation of art, fostering a deeper connection between
viewers and the artworks they admire.

6.2 Future Works
In this thesis, we have explored the combination of Faster R-CNN for object
detection and Meshed Memory Transformer (MMT) for image captioning. While
this approach has demonstrated promising results, there are several avenues for
future research that could further enhance the performance and capabilities of
image captioning systems.

6.2.1 Integration of Advanced Detection Models
• Utilizing BLIP-2 - The recently developed BLIP-2 framework presents a

novel approach to bridging vision and language models. Future work could
focus on integrating BLIP-2 to create a more cohesive link between the
object detection and captioning models. This integration could lead to more
contextually aware and semantically rich image captions.

• Replacing Faster R-CNN Faster R-CNN, while effective, may not represent
the state-of-the-art in object detection. Exploring more advanced detection
models such as EfficientDet, DETR (Detection Transformer), or YOLOv5
could improve the accuracy and speed of the detection phase. These models
offer superior performance in detecting a wider variety of objects under diverse
conditions, which is crucial for generating accurate captions.

6.2.2 Enhancing the Image Captioning Model
• Utilizing BLIP-2 - Beyond Meshed Memory Transformer**: The Meshed

Memory Transformer has proven effective for image captioning, but newer
models like the Vision-Language Transformer (ViLT) and the ClipCap model
have shown significant improvements in understanding and generating language
from visual inputs. Future research could explore replacing MMT with these
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advanced models to enhance the fluency and descriptiveness of the generated
captions.

• Incorporating Multi-modal Transformers Models like ViLBERT and
LXMERT, which are specifically designed for multi-modal tasks, can be
integrated to better capture the interactions between visual and textual
information. These models could help in generating more nuanced and context-
aware captions.

6.2.3 Bridging the Models Effectively
• Seamless Integration Strategies - Developing methodologies to seamlessly

bridge advanced detection models with state-of-the-art captioning frameworks
is critical. This includes creating efficient data pipelines, optimizing the
feature extraction processes, and ensuring that the information flow between
the models is lossless and contextually relevant.

• End-to-End Training Approaches Investigating end-to-end training meth-
ods where both the detection and captioning models are trained jointly could
lead to significant improvements. Such approaches ensure that the models are
better aligned and can adapt to each other’s outputs, potentially resulting in
more accurate and coherent captions.

6.2.4 Exploring Context and Semantics
• Contextual Understanding - Enhancing the system’s ability to understand

the context within which objects appear can improve the relevance of gen-
erated captions. This could involve leveraging external knowledge bases or
incorporating scene graph generation techniques to provide a more holistic
view of the image content.

• Semantic Richness Incorporating semantic segmentation alongside object
detection can provide additional layers of information that could be used to
generate more detailed and informative captions. This approach can help
in distinguishing between objects that are visually similar but contextually
different.

6.2.5 Real-time and Low-resource Applications
• Optimizing for Real-time Performance - As image captioning systems are

increasingly deployed in real-time applications such as assistive technologies
and autonomous systems, optimizing the models for speed and efficiency
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without compromising accuracy will be essential. Techniques such as model
pruning, quantization, and efficient architecture design could be explored.

• Low-resource Environments Developing models that perform well in low-
resource environments, such as on mobile devices or in areas with limited
computational power, is another important direction. This involves creating
lightweight models and leveraging transfer learning and knowledge distillation
techniques.

By addressing these areas, future research can significantly advance the field
of image captioning, leading to more accurate, contextually aware, and efficient
systems that can be applied in a wide range of practical scenarios.
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