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SUMMARY

With this work, we propose “MDI-LLM,” a framework based on the model-distributed

inference (MDI) approach used to deploy large language models (LLMs) over a network of low-

capability devices at the internet edge. This method consists of partitioning the transformer-

based model into chunks and assigning each to a different device, with intermediate model

states transmitted between the nodes. We pair MDI with “recurrent pipeline parallelism”,

which allows the network nodes to process samples, specifically pieces of text for LLMs, in

parallel. This prevents idle periods and achieves an increased throughput in generated tokens

per unit of time.

We discuss the system’s design and implementation, starting with small models to validate

our assumptions on the benefits and moving on to larger, more recent ones. We also highlight the

specific challenges that drove the choices that gave shape to the final version of the framework.

Thanks to our framework, it is possible to run models that would not fit in the memory of

a single device, increase the generation rate through parallel processing, and scale the system

with ease by adding nodes to the network.

vii



CHAPTER 1

INTRODUCTION

The last decade has seen the ascension of generative AI (GenAI) to one of the most

widespread applications of artificial intelligence used today. The rise of this technology al-

lowed access to tools, such as ChatGPT, that were considered science fiction in the past. Being

the most trending AI application, academic and industrial research is currently focusing on it,

as proven by the growth of publications and hype around the field. The main direction that is

being pursued by the industry, however, is that of scaling-up, by increasing more and more the

size of the models and the capabilities of the hardware. In the specific case of large language

models for text generation, the most used form of generative AI, the size of the deep neural

networks used, started out in the order of hundreds of millions of parameters. In contrast,

today’s state-of-the-art models use hundreds of billions of parameters. This translates into the

need for a huge amount of computation power, making it impossible, or very expensive, to

deploy LLMs outside the cloud. In particular, for applications at the edge, generative AI is still

an unexplored ground, as, typically, edge devices lack the capabilities to run these models on

their own.

Many approaches have been devised in the literature for performing deep neural network

inference at the edge. These techniques try to overcome the limitations of edge devices on

both computational capabilities and connectivity through distributed computing approaches,

which involve several devices cooperating to process the data. Large Language Models pose an

1
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additional challenge, given the large size of the neural network, which makes it impossible for

individual edge devices to fit the whole model. As a result, data-parallelism approaches that

split the input data to be processed among the network nodes are not viable in this scenario.

We propose a model-distributed inference approach for large language models (MDI-LLM),

following a framework that has been proven effective for traditional DNNs, but that has not

been applied yet to generative AI.

The main contributions of this work are:

• The analysis of model-distributed inference as a viable approach for the edge.

• A discussion of large language models and their main characteristics, pinpointing the

issues in their deployment at the edge.

• The implementation of MDI-LLM, with the discussion of all design choices taken during

development.

• The introduction of more recent LLM architectures (Llama) by incorporating new mech-

anisms designed to improve inference performance.



CHAPTER 2

PREVIOUS WORK

This section contains an overview of the concepts that served as a starting point for the

development of MDI-LLM.

The recent ten years have seen a massive increase in the number of publications related

to AI, in particular Natural Language Processing (NLP). Still, the main contributions focus

on improving the performance of such models by increasing the available resources, and their

experiments are typically performed on high-end computer hardware (typically in the cloud).

In recent years, the Internet of Things (IoT) and edge computing have also asserted them-

selves as new and interesting scenarios that require processing massive amounts of data. Fur-

thermore, the integration of machine learning and artificial intelligence approaches have been

well-suited for processing data generated at the edge. These methodologies offer innovative

analytical techniques to transform raw data into actionable insights, facilitating the extraction

of meaningful interpretations from complex results.

2.1 Model-Distributed Inference

The general trend in deep neural networks (DNNs) during the last ten years has been to

attempt to increase the model sizes to improve performance. While this approach can be valid,

up to some extent, this resulted in a process that established the cloud as the only possible

location where to deploy such models, as cloud computing resources are highly available and can

3
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be scaled easily. For scenarios such as the edge, where it may be required to use such models to

perform AI-related tasks, the established approach has been to delegate the heavy computation

tasks involving deep neural networks to cloud servers, introducing high communication costs

and latency alongside concerns related to data privacy and security.

As a result, studies have been performed to develop frameworks for applying DNN models at

the edge. Researchers devised three main directions to achieve this goal: “data parallelism” [1;

2], “tensor parallelism” [3; 4], and “model parallelism” (with and without “pipeline parallelism”)

[5; 6; 7; 8].

Out of these three, tensor parallelism does not meet the requirements for being applied in

edge scenarios, as it necessitates a massive communication overhead, which makes it only viable

in cloud servers exchanging data through high-bandwidth connections [3].

Data parallelism is well-suited for applications of AI that involve processing of large amounts

of data, such as computer vision. The idea is to split the data among the nodes of the network,

which all contain the full DL model. This way, nodes will process a subset of the inputs and

will be able to work in parallel. Supposing to have a fixed data set, this reduces the overall

processing time by introducing parallelism at the expense of the communication cost required

to transmit the input data to the nodes. Another important aspect is that this approach scales

well, as the number of nodes is inversely proportional to the amount of data processed at each

host.

In the specific case of inference, the application of this approach takes the name of “data-

distributed inference” (DDI), and has been observed to bring relevant performance improve-
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ments for models where the input size is smaller compared to the intermediate activation size.

This approach, however, requires each node in the network to fit the whole model in memory,

which is a constraint for deep neural networks running on devices with limited resources.

Due to the latter limitation, an alternative approach called “model parallelism” has been

developed. In this case, the model is divided into chunks consisting of subsets of contiguous

layers of the neural network, which then get assigned to different nodes in the network. As a

result, each node will be responsible for processing its local layers and transmitting its outputs

to the node containing the following layers, with the nodes forming a chain that gets traversed

sequentially by each processed sample. When this approach is applied to inference, we talk

about “model-distributed inference” (MDI) [6; 8].

It is possible to introduce parallelism in this system in the form of “pipeline parallelism”, i.e.,

allowing the network to process more than one input each time, ensuring each node is always

working on a different sample [7; 8]. This can be achieved by imposing that the first node in

the chain, after processing one sample and transmitting the output activations to its successor

in the chain, immediately starts processing the following input sample.

Compared to the previous approach, this one requires data transmission during processing

to transmit the intermediate model activations.

This method has been observed to yield a better performance in terms of memory and

network usage when compared to DDI in the case of models that have a large input size and

a smaller activation vector size. It is essential to highlight, however, how the performance

strongly depends on the network reliability and the ability to partition the model in a way
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that ensures equal processing times at all nodes to prevent bottlenecks. Indeed, this research

line is now focusing on introducing reliability in MDI systems by devising mechanisms that can

account for unstable network connections and node failures [6].

For our specific use case, MDI is the only viable approach among the two, because of the size

of large language models preventing them from fitting in the memory of typical edge devices.

Additionally, since LLMs are autoregressive, i.e., they require feeding the output back to the

model input to generate long sentences, we devise a new approach towards pipeline parallelism,

which we call “recurrent pipeline parallelism”. Following this method, it is possible to perform

large language model inference efficiently over a network of edge devices with limited resource

availability.

2.2 Large Language Models overview

This section will provide an overview of Large Language Models (LLMs), focusing on the

characteristics that had an impact on the design of MDI-LLM.

Large language models are a type of deep neural network (DNN) which has been designed

for text generation. They are decoder-only transformer-based neural networks, following the

architecture first described in [9].

The “unit of information” in LLMs is the “token”, a short sequence of characters in which

text can be broken up. Section 2.2.1 describes tokenizers and the tokenization process.

This type of neural network receives as input a string (typically referred to as “prompt”),

and produces at the output a new token that is appended to the current sentence to produce

meaningful text. Once this new token is added to the sequence, the latter will then be fed back
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into the input of the LLM for a new forward pass through the network, to produce another

token.

This process can be stopped either by the user, i.e., specifying a maximum number of tokens,

or when encountering special tokens, e.g., the “end of sentence” (EOS).

The use of the attention mechanism makes these models able to learn and reproduce the

relationships between different elements in a sentence, resulting in a remarkable ability to

generate novel text which has the same characteristics as the training samples.

2.2.1 Tokenizers

The first step to use a transformer-based model is always tokenization. Tokenization consists

of translating a piece of text (or any other type of data that one may want to feed to a

transformer model) into a sequence of integer values, which can then be used in a mathematical

model such as an LLM. This can be achieved through a tokenizer, which takes as input the text

that needs to be tokenized and splits it into “tokens”, corresponding to groups of characters

associated with a specific integer value.

All the possible different tokens make up the vocabulary, and the number of tokens is the

vocabulary size.

Many different types of tokenizers exist in language processing.

The simplest ones are the character-level tokenizers, which associate every single character to

a different token. Due to their simplicity, the performance of generative models for text that

use this type of tokenizer is typically poor since the relationships among individual characters

in a sentence are generally complex and difficult to generalize when performing neural network
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training (e.g., think about how knowing two consecutive characters in a generic piece of text

does not give any context to the overall sentence).

More sophisticated implementations are based on “Byte-Pair Encoding” (BPE), an algo-

rithm created by Philip Gage, dating back to 1994 [10]. Following this method, it is possible

to build tokenizers based on the statistical characteristics of the text on which the tokenizer is

trained. Indeed, after specifying a desired vocabulary size, the tokenizer will analyze a training

text sample and will create tokens by grouping the most common sequences of characters. By

tuning the number of tokens, it is possible to find a good compromise between an extensive vo-

cabulary, which makes tokenization long and increases the number of parameters in the model,

and a good enough performance of the LLM.

State-of-the-art models use BPE tokenizers with a vocabulary of tens to hundreds of thousands

of tokens [11; 12; 13].

2.2.2 LLM structure

The input of an LLM consists of a sequence of integer numbers obtained through the to-

kenization of the input prompt, as the network is still a mathematical model working with

numbers.

The first stage of any LLM is the token embedding. Each token is substituted by a fixed

length (the “embedding dimension”) vector at this step through a lookup table learned during

training.

In addition, the input undergoes positional encoding. This step aims to include the informa-

tion of each token’s position in the sentence in its embedding by performing specific operations
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on each embedded token. Typical operations consist of adding vectors or multiplying matri-

ces with specific values (that encode the position information) to the embedded tokens. Some

examples of positional encoding implementations used in state-of-the-art transformer models

use the sine and cosine functions to produce vectors that are added to the input embeddings,

as in the original implementation [9]. Using such functions ensures boundedness (in the range

[−1, 1]) and changing the “sampling rate” of the sinusoids, uniqueness of the values for each

of the positions in the considered context.

It is also possible to make positional encoding learnable, for example by evaluating the

vector containing the positional information through a trainable lookup table in which each

entry corresponds to one specific position in the context (“trainable positional encoding”).

This approach is more common in recent LLM architectures, such as GPT [14], as it is more

flexible and generally yields better performance.

Another approach proposed in the literature, which took over the world of LLMs (primarily

open-source ones) in the last couple of years [15; 12], is to use rotary positional embeddings

(RoPE) [16]. With this type of embedding, it is possible to encode both absolute and relative po-

sition information in the input vectors through the multiplication with fixed (i.e., non-trainable)

rotation matrices.

An important aspect of RoPE is that its operation is embedded in the attention evaluation to

maximize efficiency. This implies that this type of positional encoding is done at every attention

layer and not just at the network input (as specified by the original transformer architecture).
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The network’s core is the “attention block”, reported in figure Figure 1. Note that the

figure shows the structure of the attention block for the GPT architecture (and all the following

transformer-based LLMs), which differs from the original description of the transformer [9] in

that the layer normalization is performed before each of the two block steps.

Figure 1: Attention block structure (GPT architecture and following)
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Decoder-only transformer-based neural networks typically contain multiple of these blocks

in a cascade following the initial embedding stage.

Both the input and the output of each block are vectors of length equal to the embedding

dimension, allowing to scale up on the number of blocks to obtain bigger (and, up to some

extent, better performing) LLMs.

Disregarding the layer normalizations, which are introduced to improve the training effec-

tiveness and the overall performance [17], each attention block is composed of a multi-head

attention (MHA) layer (possibly including RoPE), followed by a small fully connected network

(typically, two layers), both surrounded by residual connections with the corresponding inputs.

The attention layers consist of multiple “attention heads” that work in parallel on different

non-overlapping sub-vectors of the input. The operations performed in each head, as described

in [9], are:

• Evaluation of the Query, Key and Value matrices on the input Xi = [x0, . . . ,xhead dim−1]

of each attention head i:

Qi = Wi, QXi (2.1)

Ki = Wi,KXi (2.2)

Vi = Wi, V Xi (2.3)

where Wi, Q, Wi,K and Wi, V are model parameters for head i.
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• Evaluation of the scaled causal self-attention at each head i:

hi = Attention(Q,K,V) = Softmax

(
Mask

(
QKT

)
√
dk

)
V (2.4)

where “Mask” performs triangular masking enforcing causality, i.e., the attention score for

each token is evaluated only with previous tokens in the sequence and the scaling factor

dk is the dimension of the key vectors. The Softmax function, instead, is applied on each

row of the resulting matrix and will produce a probability mass function indicating the

“similarity” of each of the Keys (rows of K with every Query vector rows of Q.

• Stacking the result of each attention head in a vector with the same length as the input

(embedding dimension):

H = [h0, . . . ,hhead dim−1] (2.5)

• Forward pass through a single linear layer.

The feed-forward network that serves as the second step in the transformer block is typically

composed of two layers. The first layer has a dimension of (4 · embedding dimension), as in

[9], while the output layer has the same dimension as the input, i.e., the embedding dimension,

that keeps the output dimension equal to the input one.

After the cascade of transformer blocks (and after another layer normalization), the output

activation vector is passed through a single fully connected NN layer, with an output dimension

equal to the vocabulary size. Then, the softmax function is applied to the elements of this
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vector, i.e., for an output vector z = [z0, . . . , zV−1], being V the vocabulary size, to obtain a

probability mass function (PMF) over the token space:

Softmax(z) =

[
e

z0
τ∑V−1

i=0 e
zi
τ

, . . . ,
e

zV−1
τ∑V−1

i=0 e
zi
τ

]T
(2.6)

In Equation 2.6, the parameter τ (a strictly positive value) is the “temperature” and it

is used to control how smooth the output is. For a low value of τ , i.e., τ ∈ (0, 1), the final

vector will be more “concentrated” on the largest value of z, i.e., that value will have a much

higher probability compared to all others, while, as τ increases, the distribution will tend to be

uniform.

The next token will be obtained by sampling the produced PMF.

2.2.3 GPT-2 architecture

GPT-2 indicates a family of four models that range from 124 million to 1.5 billion param-

eters, presented by OpenAI in 2019 and described in [11]. These models have been chosen for

the implementation of Model-Distributed Inference due to their small size and identical archi-

tecture to newer models such as GPT-3. Indeed, the models of the GPT-3 family are simply

a scaled-up version of the GPT-2 ones, with up to 175 billion parameters. As a result, by

building a scalable MDI architecture, it should be possible to port the larger GPT-3 models to

this framework with minimal effort (just by adding nodes to the network).

The general structure of this LLM is the same one reported in 2.2.2, i.e.:

• Input embedding.
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• Positional embedding.

• Cascade of transformer blocks.

• Output linear layer (with softmax function).

Figure 2: GPT-2 model structure

Figure 2 reports the full model structure.

Some specific aspects of the GPT-2 architecture are

the following.

The tokenizer uses a vocabulary of 50257 tokens, and

the maximum context length is 1024. Positional embed-

ding is performed through a trainable lookup table that

maps integer values corresponding to the position of each

token to the positional embedding vectors, that are then

added to the token embeddings. The activation function

used in the feed-forward layers is the GeLU function [18].

The different “flavors”, i.e., the models of the GPT-2

family, differ in the number of transformer blocks, em-

bedding dimensions, and the number of attention heads

per Multi-Head Attention layer. The number of atten-

tion heads is chosen to keep the length of the sub-vector

processed by each attention head, i.e., the embedding di-

mension divided by the number of attention heads per

MHA layer, constant (equal to 64, in the case of GPT-2).
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2.2.4 Llama Architecture

Llama is an open-source large language model architecture first made public by Meta in

February 2023 [15]. Since its release, this architecture has gained popularity, becoming the state-

of-the-art model family for both researchers and individuals who want to deploy performant

LLMs on their own hardware. In July 2023, Meta released the Llama 2 family [12], which did

not only include foundation models, i.e., models that only produce text by adding words to

a given prompt, but also fine-tuned versions that could be used for chat. As of the time of

writing, the last release of this model family is Llama 3 [19], which has been observed to be the

most performant open-source LLM today on many benchmarking tests.

The Llama family includes models spanning 7 billion to 70 billion parameters. This design

flexibility enables the models to be executed efficiently on diverse computing architectures,

facilitating their deployment on various hardware platforms.

One of the main characteristics that makes these models stand out is their exceptional

performance when compared to bigger models. Indeed, thanks to a combination of structural

features, training corpus, and tokenizer used, a small model such as Llama 3 8B is able to achieve

the same, if not better, performance as GPT 3.5 turbo (the model behind Chat GPT). The 70B

Llama 3 model has also been observed to perform better than GPT 4 in some benchmarks.

The architecture of the Llama family has remained mostly unchanged across its different

iterations, with changes mainly focusing on the training corpus data size and on the tokenizer

(from Llama 2 to Llama 3). Compared to the GPT architecture, Llama 3 uses:

• SwiGLU [20] activation function instead of GeLU [18];
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• Rotary positional embeddings (RoPE) [16] applied at each attention layer instead of

absolute positional embeddings (applied at the model input);

• Root-mean-squared layer normalization [21] instead of layer normalization [17];

• Grouped-query attention (GQA) [22] instead of standard multi-head attention (only in

Llama 3 and Llama 2 70B and larger);

Additionally, the context length of the Llama models ranges from 2048 tokens (Llama 1) to

4096 in Llama 2 to 8192 in Llama 3.

Discussing tokenizers, the Llama 1 and 2 model families have a 32k-token vocabulary, while

Llama 3 introduced an improved tokenizer using 128k tokens. Consequently, the new model

family performs better in the most common text-understanding benchmarks at the cost of a

slight increase in the number of parameters (for the smallest model, from 7B to 8B) due to the

need to accommodate a more extensive vocabulary.

2.3 LLMs at the Edge

The phenomenon of edge computing has arisen during the last decade. With the popular-

ization of IoT and the increase in computational capabilities of the computers we commonly

use in our everyday life, alongside the introduction of computer systems in common appliances

and in cars, it has now become clear that empowering such technologies with deep learning

capabilities can lead to significant benefits and quality of life improvements for the users.

Due to the need to process high amounts of data produced by edge devices alongside the high

complexity and resources required to run deep learning models, specifically neural networks, the
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state-of-the-art approach to tackle this scenario is to offload the computation to cloud servers,

where resources are highly available.

Using the cloud, however, introduces new challenges and concerns [23]. First, transmitting

data to and from the cloud results in an increased latency, which can be problematic for time-

sensitive applications, such as autonomous driving.

This issue is further aggravated if the physical distance of the cloud is considerable, or if

the network is congested. Another complicating factor is the type of data that needs to be

exchanged with the cloud, as, for example, images or video streams drastically increase the

transmission overhead.

System scalability is also a critical point in this scenario. Indeed, as the number of edge

devices or the amount of data to be processed increases, the amount of cloud resources and

network bandwidth should scale. This aspect is especially relevant for networking, as cloud

resources are typically purchased on demand.

Data privacy and security are among the most concerning problems for some types of appli-

cations. By transmitting private data over the internet, the users technically lose control over

it, and sensitive information can potentially be intercepted or misused.

In some other cases, it may even happen that it is impossible to ensure a reliable connection

from the edge to the cloud, such as in the case of drones and UAVs, or sensor networks installed

in isolated locations.

Due to these challenges, new approaches to deep learning have been introduced in the

literature, and edge computing has proven to be the most suitable direction to follow. Still, it
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is not as simple as moving the computation closer to the data sources, as the intrinsic nature

of the edge provides some challenges as well.

The main issue in this scenario is to be able to accommodate the high resource requirements

of deep learning on less powerful edge devices [23]. To tackle this limitation, research is focusing

on developing new frameworks for the deployment of machine learning and AI models over

networks of devices with low resource availability, with some examples already discussed in 2.1.

In the specific case of LLMs, though, the main line of work that is currently focusing on

enabling their deployment closer to the edge is model quantization [24; 25].

Following this approach, it is possible to reduce the representation precision, in terms of the

number of bits per parameter of the model weights, dramatically reducing the overall memory

footprint required to run the language model and, as a bonus, making inference faster. This

approach, however, is not scalable, as the representation precision of the model parameters

cannot be reduced indefinitely, and the number of parameters used by the model remains the

same.

Additionally, it has been observed how reducing the representation precision excessively can

cause performance degradation [26].

Another important aspect is that not all hardware supports operations at lower precision,

implying that, for some devices, model quantization will be inefficient as it will require repre-

sentation conversion when processing the model – the weights will be stored in memory using

a low number of bits, but the operations will require conversion to full-precision formats.
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Other approaches that are currently being explored are knowledge distillation [27], in which

smaller LLMs are trained to emulate larger, more performant ones, and model pruning [28],

which defines rules to reduce the model size by deleting portions of it.

Still, most research that is being conducted in the field of LLMs aims at improving the

models’ performance by increasing their size and complexity, with the assumption that such

models will only be deployed in the cloud.

Not much work has been done so far to deploy LLMs at the internet edge by spreading

the computational load among devices in a network. The few attempts at distributing the

computation in transformer-based models were either related to the introduction of parallelism

in cloud servers to optimize training and inference times while still relying on high-end hardware

and available resources allowing for model parallelism [3], or just concentrated on deploying

LLMs on powerful consumer-grade hardware, still more performant than average edge devices,

and relying on stable network connections [5].

This work aims to provide a proof of concept for the deployment of transformer-based

models at the internet edge, demonstrating how it may be possible to avoid the limitations

of the cloud in scenarios where latency or data privacy may be of interest, or the absence

of a reliable network infrastructure connecting the edge of the cloud would prevent accessing

additional computer resources.

We believe this approach to be exceptionally viable as it is scalable. Indeed, by adding more

devices to the network, it is possible to increase the size of the shared memory pool, enabling

the deployment of larger models.
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We will specifically focus on LLMs (GPT-2, Llama); however, being the transformer archi-

tecture used in most generative AI applications, we believe this framework can be applied to

different use cases.

The ability to utilize such powerful architecture far from the cloud opens up to new possible

applications of generative AI and deep learning that have not been implemented before due

to the lack of frameworks. Some examples are confidential healthcare applications, AI-based

private personal assistants, edge processing in IoT, private AI-based smart home management

systems and improved processing in drone fleets, to name a few.



CHAPTER 3

MDI-LLM

This chapter contains a description of the developed framework for the implementation

of Model-Distributed Inference on Large Language Models: “MDI-LLM ”. We will follow the

evolution of the application, concentrating on the reasons that drove the design choices taken

during the development.

The initial implementation was based on NanoGPT [29], a scaled-down version of GPT-

2. Having tested this first version of MDI-LLM, we moved on to porting GPT-2 [11] to this

framework. Subsequently, we focused on adding support for the Llama model family, concen-

trating on the TinyLlama model, which has the same architectural characteristics of the Llama

2 model family, but with a reduced scale, using just 1.1 billion parameters (comparable with

the largest GPT-2 variant). We referred to its implementation provided by the LitGPT project

[30], a framework for deploying multiple LLM families built with an eye to the simplicity of

NanoGPT, allowing us to use other models as well, e.g., Mistral 7B [13].

Switching to bigger models brought some challenges due to the different number of parame-

ters and vector sizes, requiring minor architectural modifications. Additionally, since the Llama

model family includes additional mechanisms, such as KV caching and RoPE embeddings, we

also developed solutions to apply them to a distributed scenario and make them compatible

with recurrent pipeline parallelism.

21
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3.1 Testbed

The testbed used for the development of MDI-LLM consisted of a network composed of

three Nvidia Jetson TX2 devkit boards connected via gigabit ethernet.

These embedded systems have 8 GB of shared RAM (i.e., accessed by both CPU and GPU),

a 256-core GPU based on the Pascal architecture working at a maximum of 1.3 GHz, and two

CPUs, a dual-core Nvidia Denver and a quad-core Arm Cortex A57, both clocked at 2.0 GHz

peak [31]. These specs guarantee the boards a good performance in AI tasks (Nvidia estimates

1.33 TFLOPS), which is in line with common smartphones of today.

The operating system is a custom Linux distribution (“Linux4Tegra”) based on Ubuntu

18.04 LTS. The application was developed in Python 3.8, using PyTorch 1.12, the latest version

supporting CUDA 10.2 running on the boards.

Notice that these devices do not support operations in half-precision 16-bit floating point,

which is a relevant constraint considering most state-of-the-art open-source models are deployed

in float-16 of bfloat-16 (a format specifically designed for machine learning models, using 16

bits); however, this makes for a good representation of a “worst-case scenario” when dealing with

edge devices. Loading the models in half-precision (float-16) is still possible, but the operations

performed when using them require conversion to 32-bit representation, which introduces a

slight overhead.

Unless explicitly stated, we will always use full-precision (32-bit floating point) representa-

tion throughout our analysis.
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3.2 Rationale

The idea behind the MDI-LLM framework is that of integrating model-distributed inference

with pipeline parallelism as described in [6] with state-of-the-art LLMs, providing a user-ready

implementation that was able to achieve good performance by incorporating the benefits of the

MDI framework.

To our knowledge, model-distributed inference at the edge has not been applied to recurrent

or autoregressive models yet, hence our focus for this work is to devise “recurrent pipeline

parallelism” in order to achieve parallel computation and maximize the system efficiency when

working on many samples, i.e., pieces of text at the same time.

The underlying idea for distributing the model is to partition the transformer layers in a

balanced manner among the network nodes, then set up fast communication channels to allow

them to exchange intermediate model activations, forming a “ring” overlay network so that the

model outputs can be fed back to the input, as required by LLMs.

Model partition should be performed in a way that ensures equal processing time at all

nodes so as to prevent bottlenecks in the generation. We, however, do not specifically focus on

providing algorithms to partition the model, as the literature contains several examples [32; 6].

Our focus, instead, concerns finding the best partition to ensure message transmission does

not hinder the overall generation process. Indeed, in scaling up the deployed models, we have

observed how ensuring a balanced message size is vital to achieving competitive performances

when comparing our system to running LLMs on a single device, as message transmission can

quickly become the bottleneck in a system such as ours.
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3.3 Distributing NanoGPT

NanoGPT is a basic implementation of OpenAI’s generative pre-trained transformer archi-

tecture provided as an open-source project by A. Karpathy [29]. It is a basic decoder-only

transformer model based on the paper [11] released alongside GPT-2.

This model is a good starting point for the development of MDI-LLM, since it provides a

straightforward implementation of the LLM without the overhead that is usually found in more

complex and production-ready libraries. Thanks to this characteristic, it is also possible to

access to some configuration parameters that usually hide behind implementation abstractions,

such as the number of transformer blocks or the dimension of the embeddings. This grants total

control over the models, allowing the creation LLMs of any size. In particular, it is possible

to define models so small that they can fit in memory-constrained devices such as the Nvidia

Jetson TX2 boards used as a testbed for this implementation to provide a baseline for the

performance analysis of our implementation.

The three specific models used at this development stage have the following characteristics:

• Embedding dimension: 384;

• Context length: 128 tokens;

• Attention heads per MHA layer: 6;

• Head dimension: 384/6 = 64;

• Number of attention blocks: 7, 9 or 12;

• Number of parameters:
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– 7 blocks: 12, 438, 977;

– 9 blocks: 15, 985, 601;

– 12 blocks: 21, 305, 537;

As a result, the model sizes in memory will be a few tens of megabytes, allowing not only to

fit them in a single device, useful for benchmarking reasons, but also to train them reasonably

quickly.

All these models were trained on the “Tiny Shakespeare” data set [33], published by A.

Karpathy himself in 2015. This data set consists of the concatenation of all of Shakespeare’s

works, resulting in approximately 1.1 MB of pure text (40,000 lines).

The tokenizer used is a character-based one, which was trained on the data set itself, i.e.,

the possible tokens (characters) are only the ones that appear in the text in the first place,

resulting in a vocabulary size of 65 tokens.

3.3.1 Model partition

The logic behind the model partition was to start from the general model structure and

naively divide it into separate portions to be assigned to a different device each. Each node will

then receive the input for its local model chunk from the previous node in the communication

chain, and it will process it to transmit its output to the next node.

As a result, inference requires a sequential flow of messages from the first node in the network

to the last. On top of this, due to the autoregressive nature of LLMs, the output information

will have to be fed back into the input to generate another token.

Figure 3 reports the partition scheme, referring to the same structure discussed in 2.2.3.
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Figure 3: NanoGPT partition scheme

Notice that despite the testbed used in practice

being composed of three devices, the model parti-

tion was implemented with scalability in mind, al-

lowing users to potentially add as many “intermedi-

ate” nodes as required to fit any model size.

There are three node types in the architecture:

the “starter”, the “intermediate” and the “finisher”.

The first and the last are required (meaning there

should always be at least two nodes in the net-

work), while the intermediate nodes are optional,

and adding more allows the application to scale.

The starter node initiates the inference transmission,

as it contains the first layers of the network (embed-

dings and a few transformer blocks). It also accepts

the “logits”, i.e., the output of the final linear layer,

from the finisher node, on which it applies the soft-

max function to obtain the output probability mass

function that is then sampled to select the next to-

ken in the sequence.

The intermediate nodes contain a set of transformer

blocks (typically more than the starter node), allow-



27

ing more nodes of such type to be added when the model size increases. Indeed, as discussed

in 2.2, scaling up a model of a given architecture family means either increasing the number

of attention heads or adding more transformer blocks. In our application, if the model size

grows, it is enough to add nodes and redefine the model partition to allow the LLM to run

distributedly.

The finisher node’s local model chunk is composed of a few transformer blocks, alongside with

the output layer normalization and linear layer producing the logits.

Notice how this partition scheme results in the size of the messages being different between

the nodes. It should be kept in mind that the intermediate activations of the network are

tensors of size S, where S is:

S = (output dimension) · (current context length) (3.1)

Here, (output dimension) is the vector dimension at the output of the current layer, and

(current context length) is the number of tokens that are currently in the context, i.e.,

min ((context length), (n. tokens in current phrase)).

An important aspect to keep into consideration throughout this whole analysis is how the

messages grow in size during generation until they reach a maximum value, given by:

S = (output dimension) · (context length) (3.2)
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This value corresponds to the case where the context window is full, i.e., the number of tokens

in the current piece of text is greater or equal to the model’s context length.

The activation vectors transmitted from the starter node to the first intermediate node,

between intermediate nodes, and from the last intermediate to the finisher node are all outputs

of transformer blocks and, therefore, all have size equal to the embedding length multiplied by

the current context size. The message transmitted from the finisher node back to the starter

node, instead, has a size equal to (current context length) · (vocabulary size), as it contains the

output logits (since it will yield the output distribution over the token space). In the specific

case of NanoGPT, which uses a character-level tokenizer having a vocabulary size of 65 tokens,

the message size ends up being smaller than the activations transmitted between the other

nodes. Upgrading the tokenizer to any state-of-the-art one, such as the GPT-2 tokenizer, will

affect the size of this vector. As a result, we can anticipate this will be a critical aspect of the

architecture when porting GPT-2 to the MDI framework – see 3.4.1.

At this stage of the development, the layer assignment for each node was done intuitively,

without any quantitative time analysis, to qualitatively split the computation load fairly among

the devices.

3.3.2 Recurrent pipelining

The relevant contribution of this work is the theorization and implementation of recur-

rent pipeline parallelism, a technique used to improve the generation rate of LLMs running

in a model-distributed setting. Through this approach it is possible to achieve computational

parallelism when performing inference, i.e., generating text.
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The rationale is to minimize as much as possible the idle times of the network nodes by

ensuring they are processing data at all times. This can only be achieved when we deal with

more than one sample at a time, i.e., the batch size is greater than one – in the case of large

language models, the term “sample” refers to an independent piece of text. Indeed, due to

the need to feed the output back into the input to generate a new token, only working on one

sample would imply that only one node is actively processing such sample at any time instant,

with all the others waiting. By raising the number of generated samples at inference stage, it

is possible to have each computer process a different one at any time, provided the processing

time of each node is the same. At each processing step, where “processing step” indicates the

local processing of one sample at every node, the network hosts will process a different sample

through their local model layers; then, they will forward the output to the next node in the

communication chain.

Let us consider the case of a three-node network generating three samples with recurrent

pipeline parallelism. Figure 4 reports this scenario. The arrows represent the message flow

through the network, otherwise referred to as the “inference direction”.

At the beginning of inference, the starter node will process the first sample, while all other

nodes are idle. Then, it will send the output associated with the first sample to the intermediate

node and start processing the second sample. Assuming the time for a single processing step in

all nodes is the same, as the starter node finishes processing the second sample, the intermediate

node should finish processing the first sample. Then, the starter node will transmit the output
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Figure 4: Recurrent pipeline parallelism – 3-node network

associated with sample number 2 to the intermediate node and start processing sample number

3 while the intermediate node will pass the output vector for sample 1 to the finisher node.

Again, let us highlight the importance of ensuring the same time duration for each processing

step at every node, which requires optimizing the model partition. Thanks to some design

choices that will be explained later, however, it is possible to mitigate slight disparities in

processing times between the different nodes, which become inevitable when we factor in the

effect of the random transmission delay introduced by the message exchange.

3.3.3 Practical implementation

This section deals with the practical details of the implementation of MDI-LLM. The need to

translate the theoretical architecture into code has influenced many aspects of the application.
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A fundamental aspect of the application is networking. To allow for message transmission,

we must create an overlay network by setting up connections between the nodes in advance.

This requires coordination, and our approach is that of using the starter node as a “central

authority” to initialize all other network participants before launching the generation.

Initialization is performed through a secondary configuration channel running over HTTP. As

a result, each node in the network also acts as an HTTP server, supporting different types of

requests to accommodate various operations.

Before the initialization, the “non-starter” nodes (intermediate and finisher) do not know

their roles, nor do they possess their model chunk. They are initialized through a POST request

sent by the starter node, which informs them of their role in the network, assigns them a model

chunk, transmits all the configuration parameters for the model and specifies their neighboring

nodes (predecessor and successor) in the message transmission chain. In the case of NanoGPT,

the model can be split at runtime by the starter node before being transmitted since its size is

limited.

Upon receiving this information, each node will first check the integrity of the message,

create the local model and load the parameters, initialize the connections with the neighbors,

and start waiting for incoming messages to be processed.

The connections used for transmitting the intermediate activations have been designed with

performance and reliability in mind. In practice, they have been implemented through Python

sockets, running on top of TCP/IP. At the application layer, the implemented protocol is

minimal to reduce the overhead while still counting on the reliability introduced by TCP. The
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application layer message is composed of a fixed-length header, which only contains the current

payload size in bytes, and the payload, containing a byte stream obtained by dumping the

Python object containing the activation vector (a PyTorch tensor). Following this approach,

upon receiving a message, each node can read precisely the number of bytes occupied by the

received tensor, preventing issues related message truncation.

Throughout every run, the communication sockets between the nodes remain the same,

preventing the time loss that would have resulted by re-creating them at each message exchange.

Implementing recurrent pipelining in practice requires handling and coordinating message

transmission between the nodes. The idea is to ensure the receiver node is always expecting the

message when the sender has to transmit its output. This requirement, however, is problematic,

as message transmission and reception would block the processing loop, meaning that until the

message is transmitted (at the sender) or received (at the receiver), the node will wait, resulting

in undesired idle periods. In practice, this mechanism causes total blocking of the application,

as it results in a situation where all nodes attempt the transmission of their current sample to

the following one in the chain without any node being ready to receive the message.

To solve this major problem, we decided to implement an input message FIFO queue which

gets filled on a secondary thread on each network node. The thread will, therefore, always

be listening for incoming messages, unpack them, and place them in the queue. The main

processing loop, instead of having to wait for the messages over the sockets will pop the oldest

message from the queue and process it. Following this approach, the receiving side of message

transmission will occur in parallel to the main loop, preventing blocking, and each sender will
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always be able to transmit since the receiving side will always be ready. Figure 5 shows the

updated architecture, including the queues.

Figure 5: Implementation of input message queues

It can be noticed that this approach does not prevent short idle periods due to slight

processing time differences between the nodes, as the main thread may still have to wait if the

message queue is empty.

This solution proved very effective in streamlining the transmission procedure, and came with

the bonus of an architecture that is more resilient to network delay jitter (which was the cause

of blocking in the first place). Indeed, the queues help buffer in case some nodes are processing

sample at a slightly faster rate.

The introduction of the message queues also opens up the possibility of processing a number

of samples larger than the number of nodes, as it provides a way to temporarily store the
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messages related to samples that are not currently being processed. This feature, however, was

implemented only later – see 3.5.1.

By using the starter node as the network coordinator, it is possible to make it handle the

generation loop to minimize the points of failure. Specifically, the starter node is the only

one that knows the actual number of tokens that have to be generated, meaning that it is

the only node whose processing loop has a finite duration. The other types of nodes will keep

processing the samples as they arrive until the starter node sends a special termination message

signaling the end of its generation loop. The only check the “non-starter” nodes perform is on

the sample ID of each message, ensuring they process samples in the correct order (periodically,

from sample 1 to sample N , where N is the number of nodes, equal to the number of samples

in this case).

The use of different dependent threads in the application also requires particular care when

terminating the execution. As anticipated before, the starter node transmits a termination

message over the output socket once it finishes the generation loop. As the nodes receive

this message, they will interrupt their main loop, additionally terminating the receiving queue

thread and forwarding the same message to the following node in the chain. The starter node,

in addition, also sends out a PUT request to advertise the end of the run. This mechanism was

designed to allow the message sent over the sockets to indicate the end of the current generation

loop, while the PUT requests to address the termination of the whole application, to logically

separate these two aspects of the software.
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3.4 Distributing GPT-2

Having created a first working implementation of MDI-LLM for NanoGPT, we could focus

on scaling up the architecture and switching to the GPT-2 family of models. Since MDI-LLM

was designed with scalability in mind, the transition to bigger models was almost seamless:

it was enough to change the configuration parameters to the ones of the new models, as the

underlying architecture, i.e., the type of layers and the network structure, remained the same.

However, the increased model size raised some issues that required tweaking some aspects of

the implementation. Additionally, we focused on additional improvements to optimize the code

and make the system more reliable.

As discussed previously, the GPT-2 model family contains four different model variants

(“flavors”), which just differ in scale. Table I reports the flavor-specific parameters (number of

attention blocks, embedding dimension, number of attention heads and total number of model

parameters).

Flavor N. attn. blocks Embed. dim. N. heads N. params.

GPT-2 12 768 12 124 M

GPT-2 medium 24 1024 16 350 M

GPT-2 large 36 1280 20 774 M

GPT-2 XL 48 1600 25 1558 M

TABLE I: FLAVOR-SPECIFIC MODEL PARAMETERS, GPT-2
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The common features, instead, are a context length of 1024 tokens and a vocabulary size of

50357 tokens.

3.4.1 Architectural changes

As explained in previous sections, GPT-2 uses a tokenizer with more than fifty thousand

possible tokens, unlike NanoGPT, whose character-level tokenizer uses few tens of tokens. As

a consequence, in the former model, the dimension of the logits vector, i.e., the output of the

last linear layer, is much greater compared to the latter (52, 000 vs. 65).

Therefore, when deploying GPT-2 models on the MDI framework developed for NanoGPT,

this results in a much larger size of the message transmitted by the finisher node to the starter,

causing a heavy bottleneck due to the longer transmission time needed.

This issue required redefining the model partition scheme in order to ensure that messages

of the same size were transmitted between the nodes. To achieve this, we decided to move

the last layer normalization step and the final linear layer to the starter node, as depicted in

Figure 6. In the same way the starter node was used to apply the softmax function on the logits

received by the finisher in the initial architecture, now it evaluates the logits themselves, which

means it receives from the last node in the chain a message containing the output of the last

transformer block, i.e., having dimension S = (output dimension) · (current context length),

which is the same as the messages exchanged between the other nodes.

Notice how this new partition scheme effectively gets rid of the distinction between the

intermediate and finisher nodes, as now they will both only contain a subset of the transformer

blocks making up their local model.
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Figure 6: GPT-2 partition scheme

These two node types are now replaced by “sec-

ondary” (worker) nodes, resulting in a simpler archi-

tecture and improved scalability. Indeed, now the

system must have at least one node (the starter) to

run against the two necessary nodes for the previous

architecture iteration (starter and finisher), making

the application more flexible and supporting stan-

dalone inference.

Alongside this improvement, required by the in-

crease in model size, other features have been intro-

duced in this version of MDI-LLM.

First, since message transmission was still per-

formed during the main processing loop, this implied

that it could have affected the performance in case

the network slowed down temporarily. Introducing

a mechanism analogous to that of the input queues

at the transmitting side allows for mitigating this

issue. Now, each time a node finishes processing a

sample, it will simply place it inside an output FIFO

message queue, where another program thread will
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extract it in order and transmit it to the next node. The operation of this mechanism is shown

in Figure 7.

Secondly, as anticipated previously, another possible improvement for the application is to

allow for the generation of a number of samples higher than the number of network nodes.

Introducing both input and output queues ensures samples that are not being processed can

be temporarily stored while still achieving parallel processing. Additionally, since the nodes

are “overwhelmed” by the samples, this ensures that, even if there are slight discrepancies in

the local processing times between the nodes, there will always be samples to process in the

main loop, as the generation will not have to wait for message transmission or reception thanks

to the queues. Notice that increasing the number of samples reduces the benefits of parallel

computation, as the samples have to wait before being processed. Still, since it is possible to

prevent idle nodes, the overall system utilization is maximized.

Figure 7: Implementation of input and output message queues
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Allowing for more flexibility on the number of generated samples, it is also possible to set

it to a value lower than the number of nodes, allowing us to observe the situation in which the

network works inefficiently (i.e., at all times, some nodes are idle). Still, by distributing the

model on multiple nodes, it is possible to let the LLM run on various devices that could not

load all the model parameters in memory.

Another detail that has not been implemented so far is the support for user prompts. Until

now, generation would start from a single “\n” token and would generate a predefined number

of tokens. By adding prompt support, it is possible to provide an initial string, which will be

tokenized and will be used as the beginning of the generated text to provide context.

3.5 Distributing Llama

The port of the Llama 2 model family was based on the LitGPT project [30], which imple-

ments today’s most common open-source models. Despite our focus being Llama, specifically

TinyLlama 1.1B and Llama 2 7B, the project also supports other interesting families, such

as Llama 3, Mistral, and Falcon. This analysis will not focus on these families because their

architecture is similar to Llama 2’s, implying that the same design choices can easily be applied

to support them as well.

Llama 2 includes a series of architectural changes when compared to GPT-2, allowing it to

achieve better performance both in terms of LLM benchmarks and generation speed.

First, positional embedding is achieved through RoPE, which, as described previously, is

a mechanism that is embedded in the self-attention layer. With RoPE, it is possible to use

relative positional encoding, which has proven to be the best-performing encoding approach.
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Secondly, in larger models of the Llama 2 family, grouped-query attention is used. This

technique allows the sharing of the query matrices in the attention layer, reducing the amount

of computation required at each forward pass in the model and speeding up inference.

Thirdly, due to the larger embedding dimensions used and to prevent repeating the same

operations when generating every token, Llama uses KV caches. This means that, instead of re-

evaluating the key and value matrices at each self-attention layer for all the token embeddings

in the context, the model will keep them in memory, allowing the propagation of just the

new token through the network at each subsequent forward pass. It is important to note that

propagating all of the prompt tokens is still necessary to build the cache at the first forward

pass.

The first two improvements could be implemented effortlessly in our framework, as they

are compatible with the distributed setting and are not affected by how the system achieves

pipeline parallelism.

KV caching, instead, required an adaptation since, in MDI-LLM, every node always pro-

cesses different samples one after the other, as shown in Figure 4. Therefore, we devise a

mechanism we call “rotating KV caches”, according to which each node has to swap the cur-

rently active KV cache for the one associated with the sample it has to process. Choosing a

suitable data structure to minimize this mechanism’s overhead and avoiding reading and writ-

ing large amounts of data can allow the system to achieve very high generation rates, resulting

in a functional implementation.
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Our development was conducted using three LLMs with different memory footprints to

make developing and testing easier. To provide a baseline, we trained a custom model we

named “NanoLlama“using 304 million parameters. Due to its restricted size, running it on

a single device to evaluate the performance improvements derived from using MDI-LLM was

possible.

Then, we performed tests on TinyLlama 1.1B [34], a scaled-down version of Llama 2 7B,

trained as a proof of concept to showcase the impact training data can have on the performance

of LLMs, even if they are ”small” compared to state-of-the-art ones. In this case, the model

footprint is comparable to GPT-2 XL (1.5B).

It was also possible to deploy Llama 2 7B. Since this model is much bigger than the others

that we had analyzed so far, we were not able to fit it in the memory of our testbed devices

(also considering the lack of support for half-precision representation on the Nvidia Jetson TX2

boards), and it was only tested on different hardware. For this reason, we choose not to provide

results related to this model, as they would not be relevant to the scope of our research.

What follows is the description of the characteristics of the tested models.

• NanoLlama 304M

– Maximum context length: 2048 tokens.

– Embedding dimension (activation length): 1024.

– Number of transformer blocks: 12.

– Number of attention heads per Multi-Head Attention (MHA) layer: 16.
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– Vocabulary size: 32000 tokens.

• TinyLlama 1.1B

– Maximum context length: 2048 tokens

– Embedding dimension (activation length): 2048

– Number of transformer blocks: 22

– Number of attention heads per Multi-Head Attention (MHA) layer: 32

– Vocabulary size: 32000 tokens

3.5.1 Final architecture of MDI-LLM

The final architecture of the system is reported in Figure 8. As noted previously, MDI-LLM

requires at least one node (the starter) to run, resulting in a flexible framework that can also

be used to deploy the models in standalone mode (single device).

Figure 9, instead, reports the layer partition scheme for the Llama architecture. The only

difference compared to GPT-2 is that positional encoding is now embedded in the attention

blocks, specifically in the multi-head attention layers.

3.5.2 Nodes operation

In this section, we will explain the actions performed by each node during the application’s

runs. The following assumes that all the nodes have already been configured, have loaded

their own model chunk into memory, have instantiated the message queues, and have set up

the communication channels with their own neighbors (i.e., predecessor and successor in the
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Figure 8: MDI-LLM architecture

communication chain), launching the threads used to handle message transmission (i.e., filling

the input queue and emptying the output queue).

Algorithm 1 describes the main processing loop of the starter node. It should be remembered

that this node knows how many tokens it has to generate for each sample; its generation loop will

have a pre-determined duration, with a number of iterations equal to the number of processed

samples multiplied by the number of tokens to be generated.

Also notice how the executed operations change based on the current iteration number.

During the first iteration for each sample (k ∈ {0, ...,n samples − 1}), the node has to initialize
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Figure 9: Layer partition scheme – Llama models

the KV cache, i.e., it allocates the memory to contain key and value matrices that will be used

to speed up inference; then, it will process the mode input (embedding and local transformer

blocks).

For the final iteration, instead, the node will only process the output layers (linear layer with

softmax and probability mass function sampling) to obtain the last token.
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Data: n samples, n tokens
Tokenize prompts (one for each sample);
Place input tensors in input message queue;
n iterations← n samples× n tokens;
for k = 0 to n iterations do

Extract sample sn (n = k mod n samples) from input queue;
if k < n samples then

// First iteration for each sample: initialize cache

init KV cache(sample = sn);

else
// Process model output (final layers) - no need for KV cache

Process output layers;
Sample output probability distribution and get token;
Append new token to the current sample sn;

end
// Process model input (initial layers)

if k < n samples× (n tokens− 1) then
// If here, not in the final iteration for the samples

Activate n-th KV cache;
Forward sample sn through input layers;
Place result in output message queue;

end

end
Send stopping message to nodes (over sockets);
Decode samples sn ∀n ∈ {0, ...,n samples − 1} with tokenizer;
Result: List of generated pieces of text

Algorithm 1: Starter node main processing loop

For all other iterations, the node will first process the output layers to obtain the new token,

then pass this new output through the model input, giving start to tle following forward pass,

before placing the activation result in the output queue to be transmitted to the next node.

The processing loop for secondary nodes, instead, is reported in algorithm 2. As discussed,

secondary nodes are agnostic about the number of iterations. Their only task is to receive a
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Data: n samples
Initialize empty list of n samples caches;
while Stopping message not received do

Extract sample sn from input queue;
if n-th KV cache is None then

// First iteration for current sample

init KV cache(sample = sn);

end
Activate KV cache n;
Forward sample sn through local model layers;
Place result in output message queue;

end
Algorithm 2: Secondary node main processing loop

sample, activate or create the KV cache for it, and forward it through the local model chunk

before sending it to the next node. This allows secondary nodes to focus only on processing,

effectively acting as worker nodes, completely agnostic of the rest of the application. Once again,

this characteristic was implemented with scalability in mind, allowing the effortless addition of

extra nodes to support larger models.



CHAPTER 4

PERFORMANCE ANALYSIS

This chapter provides an in-depth performance analysis of the developed MDI-LLM frame-

work for all the tested models.

The main metrics we will focus on are the token generation rate, i.e., the amount of tokens

generated per unit of time and the memory usage of each device. We will also analyze the

message size for each model and observe its impact on overall system performance.

We tested the models when running in standalone mode (one node), over two nodes and

over three. For one of the considered LLMs (GPT-2 XL), however, it was not possible to fit

the whole model in the memory of a single device; hence, we use it as a proof of concept of the

memory usage reduction while still being able to compare the results to the other models of

the same family.

4.1 Results – NanoGPT

The analyzed NanoGPT models have been described in 3.3. Table II and Table III report

the partition scheme, i.e., the number of transformer blocks assigned to each node for the

two- and three-node cases, respectively. It should be noted that this model was deployed on

the first MDI-LLM version, which used an architecture involving three node types (“starter”,

“intermediate”, and “finisher”). Hence, the finisher node also contains the output linear layer.

47
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Model N. blocks, node 1 N. blocks, node 2

7 blocks 3 4

9 blocks 4 5

12 blocks 5 7

TABLE II: LAYERS ASSIGNMENT – NANOGPT OVER 2 NODES

Model N. blocks, node 1 N. blocks, node 2 N. blocks, node 3

7 blocks 1 3 3

9 blocks 2 4 3

12 blocks 3 5 4

TABLE III: LAYERS ASSIGNMENT – NANOGPT OVER 3 NODES

Figures Figure 10, Figure 11 and Figure 12 report the plots of the time versus the number

of generated tokens for this model’s variants (7, 9 and 12 blocks models, respectively). These

plots were obtained by observing the generation of 2000 tokens in all three scenarios. For the

1-node case, we generated two 1000-token samples sequentially (as if the single device had to

fulfill the request of two users); in the 2-node case, the system generated two samples of 1000

tokens each (to achieve parallel computation through recurrent pipeline parallelism in the 2-

node case), while the 3-node line resulted from the generation of three samples of 1000 tokens

each, with the plot being truncated at 2000 tokens since, in order to ensure proper pipeline

parallelism, we need to generate at least as many samples as the number of network nodes.
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In all three cases, it is possible to observe an increase in the generation rate when adding

nodes to the system, proving how achieving parallel processing for the samples results in greater

efficiency.

However, performance increases less when going from two to three nodes in the network

than when going from one to two. Specifically, for the 7-block model, the generation rates are:

16.0 tokens/s for using a single node, 20.9 tokens/s for two nodes, and 22.3 tokens/s for using

three, resulting in an increase of 30.6 % in going from one to two devices, but only 6.7 % in

going from two to three.

For the 9-block model, the rates are 14.4 tokens/s (single node), 18.7 tokens/s (two nodes),

and 20.7 tokens/s (three nodes), associated with performance increases of 29.9 % (one to two

nodes) and 10.7 % (from two to three).

Last, for the 12-block model, the rates are 10.7 tokens/s (single node), 15.8 tokens/s (two

nodes), and 17.9 tokens/s (three nodes). The associated performance increases are 47 % in

using two devices versus one, and 13.7 % in going from two to three.

This lower improvement can be explained by considering the impact of the message trans-

mission and the small model size in all these scenarios.

Indeed, since these models are already small (few tens of megabytes overall), by partitioning

them into smaller chunks, the local model of each node will be even smaller, resulting in a low

processing time, i.e., a low time to complete each local forward pass. At the same time, the size

of the transmitted messages is the same in all cases, i.e., it will take the same amount of time.
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Specifically, since these models do not use KV caching, the size of the intermediate activations

(that make up the messages) will be, at most, equal to:

(context length) · (embedding dimension) · 4 B = 128 · 384 · 4 B = 196, 608 Bytes (4.1)

since we use 32-bit floating point representation.

This size is an upper bound, reached when the number of tokens in the generated sequence is

greater than or equal to the context size (128). Indeed, as the number of tokens exceeds the

context length, the system will truncate the input sequence to consider the last 128 tokens.

This aspect is clearly a limitation of this version of MDI-LLM, as the message size greatly

impacts the overall generation speed. Theoretically, a higher generation rate could be achievable

if it was possible to neglect the transmission effect. In any case, with the later introduction of

KV caching – see 4.3, tackling the message size reduction will be possible.

In other words, when partitioning the model over more nodes, the processing time will

become smaller than the message transmission time, making message exchange a bottleneck.

Consequently, when working with small models, the improvements brought by MDI-LLM are

only marginal. To maximize the system’s efficiency, it is required to maximize the utilization

of the network nodes, which is equivalent to maximizing the local chunk size – a scenario that

will be analyzed more in detail when discussing larger models later.

In other words, adding nodes does not indefinitely improve the generation rate, as the

processing time of the local model becomes overwhelmed by the transmission time.
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Figure 10: Time vs. N. of tokens –
NanoGPT 7 blocks

Figure 11: Time vs. N. of tokens –
NanoGPT 9 blocks

We also included a detail of the behavior at the origin of the 12-blocks model in Figure 13,

which shows a shape that can also be observed in the other plots. The step-like behavior at

the very beginning can be attributed to the time required for the Torch library to initialize the

internal model state in every node. Indeed, the ”number of steps” equals the number of nodes

for each line. This behavior is unavoidable in our setting, as the nodes can only initialize the

model state once they receive the first sample to process since we assumed a realistic scenario

in which the nodes do not know the samples they will work on in advance.

Another observation that can be made on the same image is that the lines associated with the

multi-node cases are jagged, while the line for the standalone case is straight. This is clearly the

effect of the variable transmission delay resulting from the variable network conditions, which

causes the non-constant time required for transmitting one sample through the whole network
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Figure 12: Time vs. N. of tokens –
NanoGPT 12 blocks

Figure 13: Time vs. N. of tokens – detail
at the origin

to obtain each new token. It can also be observed that the three-node case produces a line with

bigger “oscillations” due to the presence of an additional transmission step when compared

to the two-node case, resulting in a higher variance (assuming the transmission delays to be

independent random variables, summing them results in a random variable with a variance

equal to the sum of the variances of the two). This behavior should be considered when scaling

the system even further, i.e., introducing even more nodes; however, it can be mitigated by

reducing the message size, as, typically, in communication systems, it is reasonable to assume

the variance of the transmission delay to be proportional to the message size, since larger

messages cause network congestion faster.

The other important performance metric for our system is the memory usage. Table IV

reports the memory usage for each node in every configuration for the considered models.
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1 Node 2 Nodes 3 Nodes

Node 1 1 2 1 2 3

7 blocks 991 MB 981 MB 874 MB 974 MB 865 MB 866 MB

9 blocks 1.07 GB 1.04 GB 899 MB 1.01 GB 874 MB 875 MB

12 blocks 1.17 GB 1.13 GB 934 MB 1.105 GB 899 MB 891 MB

TABLE IV: TOTAL (RAM + VRAM) MEMORY USAGE – NANOGPT

Notice how, in this case, the memory savings are marginal (a few tens of MB). This behavior

is due to our working with very small models. In these cases, most of the memory used by the

application on the nodes is actually devoted to loading the Python libraries and handling the

connections (sockets for transmitting activations and HTTP server for configuration purposes).

It is necessary to work with larger models whose memory requirements are higher than the

application’s “baseline” amount used to store libraries and connection information (only in the

multi-node scenarios) to see relevant reductions in memory usage when adding nodes.

4.2 Results – GPT-2

This section reports the performance analysis for the GPT-2 model family. The four models

that are part of this family (GPT-2, GPT-2 Medium, GPT-2 Large, and GPT-2 XL) have

already been described in 2.2.3. In Table V and Table VI, we report the number of transformer

blocks assigned to each node in the two- and three-node scenarios. Deciding the partition

scheme in this case was easier, especially for the three-node case, thanks to the simplified

partition scheme introduced when porting these models to the framework. Indeed, since the

“non-starter” nodes all contain the same amount of model, i.e., only a sequence of transformer
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blocks, assigning them the same number of blocks is enough to guarantee equal processing times

among them since our testbed is made up of identical devices.

Model N. blocks, node 1 N. blocks, node 2

GPT-2 5 7

GPT-2 Medium 10 14

GPT-2 Large 16 20

GPT-2 XL 22 26

TABLE V: LAYERS ASSIGNMENT – GPT-2 MODELS OVER 2 NODES

Model N. blocks, node 1 N. blocks, node 2 N. blocks, node 3

GPT-2 2 5 5

GPT-2 Medium 4 10 10

GPT-2 Large 10 13 13

GPT-2 XL 14 17 17

TABLE VI: LAYERS ASSIGNMENT – GPT-2 MODELS OVER 3 NODES

To evaluate the generation rate, we generate two samples of 400 tokens each in the one- and

two-node cases, while for the three-node case, we generate three samples and truncate the plot

to 800 tokens to provide a fair comparison.
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Figure 14, Figure 15, Figure 16 and Figure 17 contain the plots reporting the generation

time versus the number of tokens for all models of the GPT-2 family.

Figure 14: Time vs. N. of tokens – GPT-2
Figure 15: Time vs. N. of tokens – GPT-2
Medium

It should be noted that, due to its size, GPT-2 XL (1.5B parameters) cannot be fit in less

than three devices using 32-bit floating point representation. While this proves MDI-LLM’s

ability to scale the model size with the number of network nodes, we cannot compare this

model’s performance in different settings. Still, comparing the results of different scenarios, it

is possible to observe how GPT-2 XL achieves a better generation rate when deployed on three

nodes compared to, for example, GPT-2 Large on a single node.
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Figure 16: Time vs. N. of tokens – GPT-2
Large

Figure 17: Time vs. N. of tokens – GPT-2
XL

We chose not to reduce the model precision to provide a valid comparison with the other models,

which have all been deployed using 32-bit floating point representation.

In this case, the generation rates, evaluated on the full run (start to finish), are the following:

• GPT-2:

– 1 node: 7.91 tokens/s

– 2 nodes: 8.43 tokens/s

– 3 nodes: 13.3 tokens/s

• GPT-2 Medium:

– 1 node: 2.63 tokens/s

– 2 nodes: 4.09 tokens/s
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– 3 nodes: 7.67 tokens/s

• GPT-2 Large:

– 1 node: 1.12 tokens/s

– 2 nodes: 2.07 tokens/s

– 3 nodes: 4.03 tokens/s

• GPT-2 XL:

– 3 nodes: 2.15 tokens/s

One of the most notable aspects of all these performance plots is the curvature of the lines.

This behavior can be attributed to the larger context length (1024 tokens), which requires

processing more data at each forward pass and transmitting bigger messages.

In Figure 14, in particular, it is possible to observe how the effect of message transmission,

which is absent in the single-node case, results in a reduced generation rate improvement when

increasing the number of nodes. Repeating the same calculations as in the previous section and

referring to Table I, it can be seen how the maximum message size (when the context window

is full) is huge in this scenario:
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GPT-2: (ctx. length) · (emb. dim.) · 4 B = 1024 · 768 · 4 B = 3, 145, 728 Bytes (4.2)

GPT-2 Medium: 1024 · 1024 · 4 B = 4, 194, 304 Bytes (4.3)

GPT-2 Large: 1024 · 1280 · 4 B = 5, 242, 880 Bytes (4.4)

GPT-2 XL: 1024 · 1600 · 4 B = 6, 553, 600 Bytes (4.5)

In our specific tests, the maximum size has not been reached, as we only generated 400 tokens

per sample, which is insufficient to fill the context. However, the effect of larger embedding

dimensions and context size causes a relevant slowdown as more tokens are generated, resulting

in the curvature of the plots; in other words, the matrices that need to be processed by the

model grow larger as more tokens are produced. This effect is undesirable in LLMs, as it

translates into a generation slowdown when dealing with longer sentences. This is the reason

why KV caching has been introduced in the literature and why we chose to include it in the

final MDI-LLM iteration.

Still, despite this issue, distributing the large language models results in a faster generation

compared to the standalone case.

It is also possible to observe the same behavior at the origin reported in Figure 13, as the

initialization of the models still happens in the same way as before.

Table VII contains the memory usage measurements for the models. Again, it is possible

to see how each device’s memory usage reduces when adding nodes, even though the total
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amount of memory increases due to the need to accommodate the libraries and handle the

communication channels. Still, the memory savings on the individual nodes allow GPT-2 XL

to be run by splitting it among three nodes.

1 Node 2 Nodes 3 Nodes

Node 1 1 2 1 2 3

GPT-2 1.65 GB 1.43 GB 1.14 GB 1.25 GB 1.04 GB 1.04 GB

GPT-2 Medium 2.9 GB 2.26 GB 1.87 GB 1.65 GB 1.57 GB 1.57 GB

GPT2 Large 5.6 GB 3.87 GB 3.17 GB 3.06 GB 2.37 GB 2.37 GB

GPT-2 XL N/A N/A N/A 4.85 GB 3.87 GB 3.87 GB

TABLE VII: TOTAL (RAM + VRAM) MEMORY USAGE – GPT-2

4.3 Results – Llama

This section contains the performance analysis for the final MDI-LLM version, which differs

from the previous ones in that it uses KV caching (with rotating caches), RoPE, and allows

the generation of a number of samples greater than the number of nodes.

As anticipated in previous chapters, we deployed two Llama models on our testbed, NanoL-

lama 304M and TinyLlama 1.1B, based on the Llama 2 architecture. Refer to section 3.5 for

the exact specifications.

While NanoLlama’s parameters were loaded using 32-bit floating point representation (as all

previously analyzed models), we decided to use 16-bit representation for TinyLlama, as the orig-

inal model was trained using this specific representation, meaning we did not have to quantize
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the model and potentially lose performance. As remarked previously, using this floating point

representation on the testbed devices (Nvidia Jetson TX2) requires converting 32-bit values

when performing GPU operations, which could cause a slight operation overhead. However, we

believe this situation could be representative of common edge devices. Furthermore, we did not

see a relevant performance loss in our tests due to using a low-precision representation.

Tables Table VIII and Table IX report the model partition for the two considered Llama

models. As discussed in previous sections, these models have a slightly different structure

compared to GPT-2, as the positional encoding is not performed at the input (adding encoding

vectors) but rather at each multi-head attention layer (RoPE). In our distributed system, this

means that the starter node only has to perform token embedding before passing the sample

through its local transformer blocks.

Model N. blocks, node 1 N. blocks, node 2

NanoLlama 5 7

TinyLlama 10 12

TABLE VIII: LAYERS ASSIGNMENT – LLAMA MODELS OVER 2 NODES

We performed our tests generating three samples of 800 tokens in all three settings, thanks

to the possibility, introduced in this last MDI-LLM version, of handling as many samples as

desired, to allow for a fair comparison.
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Model N. blocks, node 1 N. blocks, node 2 N. blocks, node 3

NanoLlama 2 5 5

TinyLlama 6 8 8

TABLE IX: LAYERS ASSIGNMENT – LLAMA MODELS OVER 3 NODES

It should be noted that, for the two-node case, this results in one sample waiting in a

message queue at all times since we have more samples than nodes. This slightly impacts the

overall generation speed of each sample but achieves the same token generation rate overall.

In other words, the wait time (between sending the request and receiving the result) for three

users requesting one sample each will be slightly higher compared to generating two samples,

but the system will generate tokens at the same rate.

Figure 18: Time vs. N. of tokens – NanoL-
lama 304M

Figure 19: Time vs. N. of tokens – TinyL-
lama 1.1B
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Figure 18 and Figure 19 contain the time vs. number of generated tokens for NanoLlama

and TinyLlama, respectively. Once again, the trend is that of a token generation rate that

increases with the number of nodes.

The specific token generation rates are:

• NanoLlama 304M:

– 1 node: 17.87 tokens/s

– 2 nodes: 25.97 tokens/s

– 3 nodes: 30.46 tokens/s

• TinyLlama 1.1B:

– 1 node: 9.23 tokens/s

– 2 nodes: 13.33 tokens/s

– 3 nodes: 18.0 tokens/s

For Figure 18, the same observations that have been made for NanoGPT in 4.1 are valid:

due to the small size of the model, the improvement in generation rate going from two to three

nodes (16.3 %) is lower than the one going from one to two nodes (45.3 %), as the transmission

time becomes a bottleneck.

Compared to section 4.2, the figures also show the benefit of including KV caching, as both

models have a maximum context length of 2048 tokens, which is higher than the one of all GPT-

2 models (1024), but do not incur in the generation slowdown observed for the previous models.
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Indeed, the messages exchanged during generation will only include the single embedding vector

associated with the new token, with the exception of the first forward pass for each sample,

which will contain the embeddings of all tokens in the prompt. We can evaluate the message

size (after the first forward pass) as follows:

NanoLlama: (embedding dimension) · 4 B = 1024 · 4 B = 4096 B (4.6)

TinyLlama: (embedding dimension) · 4 B = 2048 · 4 B = 8192 B (4.7)

when using 32-bit floating point values. Since in our tests we deployed TinyLlama using half-

precision (16-bit) floating point numbers, the actual message size in our scenario was 4096

B.

KV caching introduces a dramatic improvement, allowing bigger samples to be generated

in less time than with GPT-2.

The memory usage measurements are found in Table X. Notice how deploying TinyLlama

using 16-bit floating point representation results in a much lower memory consumption with

respect to GPT-2 XL (Table VII) despite the comparable model size.

It should be noted that KV caching speeds up computation at the cost of higher memory

usage. Indeed, the cached matrices will be stored in the device memory, and the amount of

stored data will increase with the number of processed samples.

RoPE embedding matrices are also cached in our implementation to improve the through-

put (as done in state-of-the-art production LLMs), as they are not trainable parameters. In
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particular, the RoPE sine and cosine values are initialized at the beginning of each run for

all the possible positions within the context. It should be noted that the memory used for

the RoPE cache adds to the boilerplate memory used by each node (libraries, web server, and

connection state information) since they are used in every multi-head attention layer; hence,

each node will have to initialize its copy.

1 Node 2 Nodes 3 Nodes

Node 1 1 2 1 2 3

NanoLlama 2.6 GB 1.76 GB 1.76 GB 1.34 GB 1.46 GB 1.46 GB

TinyLlama 3.41 GB 2.6 GB 2.6 GB 1.98 GB 1.99 GB 1.99 GB

TABLE X: TOTAL (RAM + VRAM) MEMORY USAGE – LLAMA



CHAPTER 5

CONCLUSIONS

This work provides the implementation details and performance analysis of the application of

pipeline parallelism to large language model inference. We also show how properly implementing

recurrent pipeline parallelism allows a network of nodes to achieve better performance in terms

of throughput when compared to running the model on a single device, as it forces each node

to be working at all times, preventing idle waiting times.

We started our development with small models based on one of the first LLM architectures

to prove the validity of our approach in achieving efficient parallelism. We then proceeded to

scale up the system, supporting bigger models with billions of parameters and including some

architectural improvements introduced in more recent LLMs. By devising an approach that

allows nodes to exchange messages as fast as possible and reducing the message size using KV

caching, we also succeeded in minimizing the network’s effects on overall system performance.

These benefits add to MDI-LLM’s main objective: to allow the deployment of massive models

that would not fit on a single device using a network of interconnected devices.

We believe this research is an important step towards deploying LLMs and transformer-

based models at the Internet edge. This would significantly increase AI accessibility, allowing

the design of innovative applications that would benefit from processing happening closer to

the user.
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Most of the skepticism concerning AI applications today is related to the end users’ lack

of control over their own data. By allowing models to run on low-capability hardware and

on-premises, we can avoid having data sent to third-party computers, as all the processing is

done locally and does not require expensive hardware.

The developed framework could also find its way into more peculiar edge scenarios like

drone fleets or smart mobility. Allowing different hosts to process data concurrently using

bigger models that cannot be fully deployed on a single node would make performing more

demanding operations and improving the overall system capabilities possible.

Scalability is another very relevant benefit that should not be overlooked. Indeed, adding

nodes to the network is enough to support bigger, more complex models.

Thanks to these characteristics, model-distributed inference is a framework that can po-

tentially adapt to support future AI models, especially as we increase their computational

requirements. Increasing the network size makes it possible to process more samples efficiently

too. This characteristic makes MDI-LLM a valid framework for making the deployed model

highly available, as effective generation is achieved by processing many samples concurrently.

Still, our implementation is a proof of concept that showcases the best theoretical scenario

for deploying distributed large language models, as it does not have to deal with practical

limitations related to the deployment in actual edge scenarios. A crucial aspect is the device

interconnection, which, in our testbed, was ideal (gigabit ethernet) compared to actual edge

scenarios where communication can be unreliable or slow. Thanks to the introduction of KV

caching, we achieved the lowest message size possible in the final version of MDI-LLM. Still,
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unreliable connections could represent a limitation, given the number of message exchanges

that need to be performed at each run. This issue requires devising strategies to introduce

resilience to node failure and recovery, of which some examples have already been analyzed

for different applications of MDI [6]. Additionally, we have observed how the overall effect of

message exchange increases with the number of nodes. This factor should be considered when

discussing larger networks.

All these points should be properly taken into account to be able to deploy the system in

practical scenarios.

5.1 Future developments

We propose here some ideas for future development of this line of work, especially to try

tackling the aspects we highlighted previously and that, as of now, represent obstacles prevent-

ing the actual deployment of the MDI-LLM framework in “production” environments.

An aspect we neglected in our analysis is the introduction of strategies to increase system

reliability. An example of such methods is introducing redundancy in the processing to ensure

the system can produce the responses even if nodes fail. Another idea is to devise recovery

methods to tackle connection issues in remote scenarios, where the quality of the communication

channels may degrade due to environmental changes. Some more complex approaches could be

to analyze systems in which the physical network topology changes over time, forcing the overlay

topology, i.e., the specific node-to-node connections used to transmit the model activations, to

change as well.
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Other interesting studies can be carried out to minimize message transmission’s effect on

the overall system performance and stability. As observed, the large number of messages that

need to be exchanged can greatly impact system performance, especially when the number of

nodes increases, affecting the generation rate stability in time. A straightforward approach that

could be followed is that of trying to introduce compression, as reducing the message size makes

transmission faster and reduces the risk of network congestion bottlenecks. Still, compression

would introduce processing overhead, depending on the complexity of the specific technique

used.

A more sophisticated work could pair compression with batching, i.e., processing samples “in

parallel” at the same node by increasing the “batch size” – in our implementation, the batch

size was set to 1. This approach would significantly increase the number of processed samples

and, compared to the scenario we described, reduce the number of messages exchanged when

working with the same number of samples, as now, each message will contain the activations

of more than a single sample. In other words, the amount of transmitted data would increase,

but the number of messages would decrease significantly.

Lastly, in recent years, new architectures have been proposed as alternatives to transformers.

Most notably, the “Mixture of Experts” [35] proposes itself as an interesting structure to be

deployed in a distributed fashion. This new model type could be brought to the internet edge

by assigning the “experts” to different subsets of network nodes. Concerning new generative

AI types, instead, it would be relevant to attempt the deployment of multi-modal models using
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model-distributed inference, e.g., by delegating different tasks to different groups of nodes that

process different foundational models.

With so many advancements in AI, it is more than ever necessary to devise ways to make

these new innovations more accessible to researchers and general users. With this work, we

investigate one possible approach to moving away from a private, geographically distant cloud.

This approach not only avoids limitations related to privacy and slow response times, but it

also allows the deployment of large language models in a scalable way at the edge, resulting in

the ability to run state-of-the-art models on low-power hardware. The MDI-LLM framework

has potentially many applications, from just enabling the deployment of models that are too

large to fit in the memory of a single computer to more innovative uses of generative AI and

transformer architecture, such as distributed sensing, UAV fleets, and self-driving vehicles.
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Training generalized multi-query transformer models from multi-head checkpoints,
2023.

23. Chen, J. and Ran, X.: Deep learning with edge computing: A review. Proceedings of the
IEEE, 107(8):1655–1674, 2019.

24. Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S., Ceze, L., Krishnamurthy, A.,
Chen, T., and Kasikci, B.: Atom: Low-bit quantization for efficient and accurate
llm serving, 2024.

25. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K.: A survey of
quantization methods for efficient neural network inference, 2021.

26. Jaiswal, A., Gan, Z., Du, X., Zhang, B., Wang, Z., and Yang, Y.: Compressing llms: The
truth is rarely pure and never simple, 2024.

27. Xu, X., Li, M., Tao, C., Shen, T., Cheng, R., Li, J., Xu, C., Tao, D., and Zhou, T.: A
survey on knowledge distillation of large language models, 2024.

28. Sun, M., Liu, Z., Bair, A., and Kolter, J. Z.: A simple and effective pruning approach for
large language models, 2024.

29. Karpathy, A.: NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

30. AI, L.: Litgpt. https://github.com/Lightning-AI/litgpt, 2023.

31. Nvidia: Jetson tx2 technical specifications. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-tx2/.

32. Chen, Y., Luo, T., Fang, W., and Xiong, N. N.: Edgeci: Distributed workload assignment
and model partitioning for cnn inference on edge clusters. ACM Trans. Internet
Technol., 24(2), may 2024.

33. Karpathy, A.: Tiny shakespeare data set. https://raw.githubusercontent.com/karpathy/char-
rnn/master/data/tinyshakespeare/input.txt, 2015.



73

CITED LITERATURE (continued)

34. Zhang, P., Zeng, G., Wang, T., and Lu, W.: Tinyllama: An open-source small language
model, 2024.

35. Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot,
D. S., de las Casas, D., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G., Lample,
G., Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P., Subramanian, S., Yang,
S., Antoniak, S., Scao, T. L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., and
Sayed, W. E.: Mixtral of experts, 2024.

36. Macario, D.: A Model-Distributed Inference Approach for Large Language Models at the
Edge, April 2024.

37. Habibi, P., Farhoudi, M., Kazemian, S., Khorsandi, S., and Leon-Garcia, A.: Fog comput-
ing: A comprehensive architectural survey. IEEE Access, 8:69105–69133, 2020.



VITA

NAME Davide Macario

EDUCATION

Master of Science in “Electrical and Computer Engineering”, Univer-
sity of Illinois at Chicago, Month 2024, USA

Master of Science in “ICT for Smart Societies”, Month 2024, Polytech-
nic of Turin, Italy

Bachelor’s Degree in “Electronics and Communications Engineering
(ECE)” - September 2022, Polytechnic of Turin, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2022 - IELTS examination (8.0/9 – C1)

A.Y. 2023/24 One Year of study abroad in Chicago, Illinois

2019–2023 Lessons and exams attended exclusively in English

SCHOLARSHIPS

Spring 2024 Graduate Hourly (GH) position (10 hours/week) with stipend

Fall 2023 Italian scholarship for TOP-UIC students

2022–2024 “Alta Scuola Politecnica (ASP)” program, with full tuition waiver,
Polytechnic of Turin and Polytechnic of Milan

2019–2022 “Giovani Talenti” program, with full tuition waiver, Polytechnic of
Turin, Italy

TECHNICAL SKILLS

Basic level Kubernetes, C++

Average level Docker, Linux, C, MATLAB, Data Science

Advanced level Python, PyTorch, Computer Networking, Neural Networks, Machine
Learning

74



75

VITA (continued)

WORK EXPERIENCE AND PROJECTS

2023 “FREISA - Four-legged Robot Ensuring Intelligent Sprinkler Automa-
tion”

Winner of the OpenCV AI Competition (2023)

2023 Creation and implementation of a heuristic solution for the “Container
Loading” problem, Operations Research

2023 Development of a microservices application for a smart greenhouse in
Python

2022 Design and implementation of a digital synthesizer in MATLAB


